1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cmath>
28 #include <cstring>
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "apint"
32 
33 /// A utility function for allocating memory, checking for allocation failures,
34 /// and ensuring the contents are zeroed.
35 inline static uint64_t* getClearedMemory(unsigned numWords) {
36   uint64_t *result = new uint64_t[numWords];
37   memset(result, 0, numWords * sizeof(uint64_t));
38   return result;
39 }
40 
41 /// A utility function for allocating memory and checking for allocation
42 /// failure.  The content is not zeroed.
43 inline static uint64_t* getMemory(unsigned numWords) {
44   return new uint64_t[numWords];
45 }
46 
47 /// A utility function that converts a character to a digit.
48 inline static unsigned getDigit(char cdigit, uint8_t radix) {
49   unsigned r;
50 
51   if (radix == 16 || radix == 36) {
52     r = cdigit - '0';
53     if (r <= 9)
54       return r;
55 
56     r = cdigit - 'A';
57     if (r <= radix - 11U)
58       return r + 10;
59 
60     r = cdigit - 'a';
61     if (r <= radix - 11U)
62       return r + 10;
63 
64     radix = 10;
65   }
66 
67   r = cdigit - '0';
68   if (r < radix)
69     return r;
70 
71   return -1U;
72 }
73 
74 
75 void APInt::initSlowCase(uint64_t val, bool isSigned) {
76   U.pVal = getClearedMemory(getNumWords());
77   U.pVal[0] = val;
78   if (isSigned && int64_t(val) < 0)
79     for (unsigned i = 1; i < getNumWords(); ++i)
80       U.pVal[i] = WORDTYPE_MAX;
81   clearUnusedBits();
82 }
83 
84 void APInt::initSlowCase(const APInt& that) {
85   U.pVal = getMemory(getNumWords());
86   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
87 }
88 
89 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
90   assert(bigVal.data() && "Null pointer detected!");
91   if (isSingleWord())
92     U.VAL = bigVal[0];
93   else {
94     // Get memory, cleared to 0
95     U.pVal = getClearedMemory(getNumWords());
96     // Calculate the number of words to copy
97     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
98     // Copy the words from bigVal to pVal
99     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
100   }
101   // Make sure unused high bits are cleared
102   clearUnusedBits();
103 }
104 
105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
106   initFromArray(bigVal);
107 }
108 
109 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
110     : BitWidth(numBits) {
111   initFromArray(makeArrayRef(bigVal, numWords));
112 }
113 
114 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
115     : BitWidth(numbits) {
116   fromString(numbits, Str, radix);
117 }
118 
119 void APInt::reallocate(unsigned NewBitWidth) {
120   // If the number of words is the same we can just change the width and stop.
121   if (getNumWords() == getNumWords(NewBitWidth)) {
122     BitWidth = NewBitWidth;
123     return;
124   }
125 
126   // If we have an allocation, delete it.
127   if (!isSingleWord())
128     delete [] U.pVal;
129 
130   // Update BitWidth.
131   BitWidth = NewBitWidth;
132 
133   // If we are supposed to have an allocation, create it.
134   if (!isSingleWord())
135     U.pVal = getMemory(getNumWords());
136 }
137 
138 void APInt::assignSlowCase(const APInt &RHS) {
139   // Don't do anything for X = X
140   if (this == &RHS)
141     return;
142 
143   // Adjust the bit width and handle allocations as necessary.
144   reallocate(RHS.getBitWidth());
145 
146   // Copy the data.
147   if (isSingleWord())
148     U.VAL = RHS.U.VAL;
149   else
150     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
151 }
152 
153 /// This method 'profiles' an APInt for use with FoldingSet.
154 void APInt::Profile(FoldingSetNodeID& ID) const {
155   ID.AddInteger(BitWidth);
156 
157   if (isSingleWord()) {
158     ID.AddInteger(U.VAL);
159     return;
160   }
161 
162   unsigned NumWords = getNumWords();
163   for (unsigned i = 0; i < NumWords; ++i)
164     ID.AddInteger(U.pVal[i]);
165 }
166 
167 /// Prefix increment operator. Increments the APInt by one.
168 APInt& APInt::operator++() {
169   if (isSingleWord())
170     ++U.VAL;
171   else
172     tcIncrement(U.pVal, getNumWords());
173   return clearUnusedBits();
174 }
175 
176 /// Prefix decrement operator. Decrements the APInt by one.
177 APInt& APInt::operator--() {
178   if (isSingleWord())
179     --U.VAL;
180   else
181     tcDecrement(U.pVal, getNumWords());
182   return clearUnusedBits();
183 }
184 
185 /// Adds the RHS APInt to this APInt.
186 /// @returns this, after addition of RHS.
187 /// Addition assignment operator.
188 APInt& APInt::operator+=(const APInt& RHS) {
189   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
190   if (isSingleWord())
191     U.VAL += RHS.U.VAL;
192   else
193     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
194   return clearUnusedBits();
195 }
196 
197 APInt& APInt::operator+=(uint64_t RHS) {
198   if (isSingleWord())
199     U.VAL += RHS;
200   else
201     tcAddPart(U.pVal, RHS, getNumWords());
202   return clearUnusedBits();
203 }
204 
205 /// Subtracts the RHS APInt from this APInt
206 /// @returns this, after subtraction
207 /// Subtraction assignment operator.
208 APInt& APInt::operator-=(const APInt& RHS) {
209   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
210   if (isSingleWord())
211     U.VAL -= RHS.U.VAL;
212   else
213     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
214   return clearUnusedBits();
215 }
216 
217 APInt& APInt::operator-=(uint64_t RHS) {
218   if (isSingleWord())
219     U.VAL -= RHS;
220   else
221     tcSubtractPart(U.pVal, RHS, getNumWords());
222   return clearUnusedBits();
223 }
224 
225 APInt APInt::operator*(const APInt& RHS) const {
226   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
227   if (isSingleWord())
228     return APInt(BitWidth, U.VAL * RHS.U.VAL);
229 
230   APInt Result(getMemory(getNumWords()), getBitWidth());
231   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
232   Result.clearUnusedBits();
233   return Result;
234 }
235 
236 void APInt::andAssignSlowCase(const APInt &RHS) {
237   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
238   for (size_t i = 0, e = getNumWords(); i != e; ++i)
239     dst[i] &= rhs[i];
240 }
241 
242 void APInt::orAssignSlowCase(const APInt &RHS) {
243   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
244   for (size_t i = 0, e = getNumWords(); i != e; ++i)
245     dst[i] |= rhs[i];
246 }
247 
248 void APInt::xorAssignSlowCase(const APInt &RHS) {
249   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
250   for (size_t i = 0, e = getNumWords(); i != e; ++i)
251     dst[i] ^= rhs[i];
252 }
253 
254 APInt &APInt::operator*=(const APInt &RHS) {
255   *this = *this * RHS;
256   return *this;
257 }
258 
259 APInt& APInt::operator*=(uint64_t RHS) {
260   if (isSingleWord()) {
261     U.VAL *= RHS;
262   } else {
263     unsigned NumWords = getNumWords();
264     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
265   }
266   return clearUnusedBits();
267 }
268 
269 bool APInt::equalSlowCase(const APInt &RHS) const {
270   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
271 }
272 
273 int APInt::compare(const APInt& RHS) const {
274   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
275   if (isSingleWord())
276     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
277 
278   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
279 }
280 
281 int APInt::compareSigned(const APInt& RHS) const {
282   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
283   if (isSingleWord()) {
284     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
285     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
286     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
287   }
288 
289   bool lhsNeg = isNegative();
290   bool rhsNeg = RHS.isNegative();
291 
292   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
293   if (lhsNeg != rhsNeg)
294     return lhsNeg ? -1 : 1;
295 
296   // Otherwise we can just use an unsigned comparison, because even negative
297   // numbers compare correctly this way if both have the same signed-ness.
298   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
299 }
300 
301 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
302   unsigned loWord = whichWord(loBit);
303   unsigned hiWord = whichWord(hiBit);
304 
305   // Create an initial mask for the low word with zeros below loBit.
306   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
307 
308   // If hiBit is not aligned, we need a high mask.
309   unsigned hiShiftAmt = whichBit(hiBit);
310   if (hiShiftAmt != 0) {
311     // Create a high mask with zeros above hiBit.
312     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
313     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
314     // set the bits in hiWord.
315     if (hiWord == loWord)
316       loMask &= hiMask;
317     else
318       U.pVal[hiWord] |= hiMask;
319   }
320   // Apply the mask to the low word.
321   U.pVal[loWord] |= loMask;
322 
323   // Fill any words between loWord and hiWord with all ones.
324   for (unsigned word = loWord + 1; word < hiWord; ++word)
325     U.pVal[word] = WORDTYPE_MAX;
326 }
327 
328 // Complement a bignum in-place.
329 static void tcComplement(APInt::WordType *dst, unsigned parts) {
330   for (unsigned i = 0; i < parts; i++)
331     dst[i] = ~dst[i];
332 }
333 
334 /// Toggle every bit to its opposite value.
335 void APInt::flipAllBitsSlowCase() {
336   tcComplement(U.pVal, getNumWords());
337   clearUnusedBits();
338 }
339 
340 /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
341 /// equivalent to:
342 ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
343 /// In the slow case, we know the result is large.
344 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
345   unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
346   APInt Result = NewLSB.zext(NewWidth);
347   Result.insertBits(*this, NewLSB.getBitWidth());
348   return Result;
349 }
350 
351 /// Toggle a given bit to its opposite value whose position is given
352 /// as "bitPosition".
353 /// Toggles a given bit to its opposite value.
354 void APInt::flipBit(unsigned bitPosition) {
355   assert(bitPosition < BitWidth && "Out of the bit-width range!");
356   setBitVal(bitPosition, !(*this)[bitPosition]);
357 }
358 
359 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
360   unsigned subBitWidth = subBits.getBitWidth();
361   assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
362 
363   // inserting no bits is a noop.
364   if (subBitWidth == 0)
365     return;
366 
367   // Insertion is a direct copy.
368   if (subBitWidth == BitWidth) {
369     *this = subBits;
370     return;
371   }
372 
373   // Single word result can be done as a direct bitmask.
374   if (isSingleWord()) {
375     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
376     U.VAL &= ~(mask << bitPosition);
377     U.VAL |= (subBits.U.VAL << bitPosition);
378     return;
379   }
380 
381   unsigned loBit = whichBit(bitPosition);
382   unsigned loWord = whichWord(bitPosition);
383   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
384 
385   // Insertion within a single word can be done as a direct bitmask.
386   if (loWord == hi1Word) {
387     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
388     U.pVal[loWord] &= ~(mask << loBit);
389     U.pVal[loWord] |= (subBits.U.VAL << loBit);
390     return;
391   }
392 
393   // Insert on word boundaries.
394   if (loBit == 0) {
395     // Direct copy whole words.
396     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
397     memcpy(U.pVal + loWord, subBits.getRawData(),
398            numWholeSubWords * APINT_WORD_SIZE);
399 
400     // Mask+insert remaining bits.
401     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
402     if (remainingBits != 0) {
403       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
404       U.pVal[hi1Word] &= ~mask;
405       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
406     }
407     return;
408   }
409 
410   // General case - set/clear individual bits in dst based on src.
411   // TODO - there is scope for optimization here, but at the moment this code
412   // path is barely used so prefer readability over performance.
413   for (unsigned i = 0; i != subBitWidth; ++i)
414     setBitVal(bitPosition + i, subBits[i]);
415 }
416 
417 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
418   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
419   subBits &= maskBits;
420   if (isSingleWord()) {
421     U.VAL &= ~(maskBits << bitPosition);
422     U.VAL |= subBits << bitPosition;
423     return;
424   }
425 
426   unsigned loBit = whichBit(bitPosition);
427   unsigned loWord = whichWord(bitPosition);
428   unsigned hiWord = whichWord(bitPosition + numBits - 1);
429   if (loWord == hiWord) {
430     U.pVal[loWord] &= ~(maskBits << loBit);
431     U.pVal[loWord] |= subBits << loBit;
432     return;
433   }
434 
435   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
436   unsigned wordBits = 8 * sizeof(WordType);
437   U.pVal[loWord] &= ~(maskBits << loBit);
438   U.pVal[loWord] |= subBits << loBit;
439 
440   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
441   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
442 }
443 
444 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
445   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
446          "Illegal bit extraction");
447 
448   if (isSingleWord())
449     return APInt(numBits, U.VAL >> bitPosition);
450 
451   unsigned loBit = whichBit(bitPosition);
452   unsigned loWord = whichWord(bitPosition);
453   unsigned hiWord = whichWord(bitPosition + numBits - 1);
454 
455   // Single word result extracting bits from a single word source.
456   if (loWord == hiWord)
457     return APInt(numBits, U.pVal[loWord] >> loBit);
458 
459   // Extracting bits that start on a source word boundary can be done
460   // as a fast memory copy.
461   if (loBit == 0)
462     return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
463 
464   // General case - shift + copy source words directly into place.
465   APInt Result(numBits, 0);
466   unsigned NumSrcWords = getNumWords();
467   unsigned NumDstWords = Result.getNumWords();
468 
469   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
470   for (unsigned word = 0; word < NumDstWords; ++word) {
471     uint64_t w0 = U.pVal[loWord + word];
472     uint64_t w1 =
473         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
474     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
475   }
476 
477   return Result.clearUnusedBits();
478 }
479 
480 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
481                                        unsigned bitPosition) const {
482   assert(numBits > 0 && "Can't extract zero bits");
483   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
484          "Illegal bit extraction");
485   assert(numBits <= 64 && "Illegal bit extraction");
486 
487   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
488   if (isSingleWord())
489     return (U.VAL >> bitPosition) & maskBits;
490 
491   unsigned loBit = whichBit(bitPosition);
492   unsigned loWord = whichWord(bitPosition);
493   unsigned hiWord = whichWord(bitPosition + numBits - 1);
494   if (loWord == hiWord)
495     return (U.pVal[loWord] >> loBit) & maskBits;
496 
497   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
498   unsigned wordBits = 8 * sizeof(WordType);
499   uint64_t retBits = U.pVal[loWord] >> loBit;
500   retBits |= U.pVal[hiWord] << (wordBits - loBit);
501   retBits &= maskBits;
502   return retBits;
503 }
504 
505 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
506   assert(!Str.empty() && "Invalid string length");
507   size_t StrLen = Str.size();
508 
509   // Each computation below needs to know if it's negative.
510   unsigned IsNegative = false;
511   if (Str[0] == '-' || Str[0] == '+') {
512     IsNegative = Str[0] == '-';
513     StrLen--;
514     assert(StrLen && "String is only a sign, needs a value.");
515   }
516 
517   // For radixes of power-of-two values, the bits required is accurately and
518   // easily computed.
519   if (Radix == 2)
520     return StrLen + IsNegative;
521   if (Radix == 8)
522     return StrLen * 3 + IsNegative;
523   if (Radix == 16)
524     return StrLen * 4 + IsNegative;
525 
526   // Compute a sufficient number of bits that is always large enough but might
527   // be too large. This avoids the assertion in the constructor. This
528   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
529   // bits in that case.
530   if (Radix == 10)
531     return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
532 
533   assert(Radix == 36);
534   return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
535 }
536 
537 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
538   // Compute a sufficient number of bits that is always large enough but might
539   // be too large.
540   unsigned sufficient = getSufficientBitsNeeded(str, radix);
541 
542   // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
543   // return the value directly. For bases 10 and 36, we need to do extra work.
544   if (radix == 2 || radix == 8 || radix == 16)
545     return sufficient;
546 
547   // This is grossly inefficient but accurate. We could probably do something
548   // with a computation of roughly slen*64/20 and then adjust by the value of
549   // the first few digits. But, I'm not sure how accurate that could be.
550   size_t slen = str.size();
551 
552   // Each computation below needs to know if it's negative.
553   StringRef::iterator p = str.begin();
554   unsigned isNegative = *p == '-';
555   if (*p == '-' || *p == '+') {
556     p++;
557     slen--;
558     assert(slen && "String is only a sign, needs a value.");
559   }
560 
561 
562   // Convert to the actual binary value.
563   APInt tmp(sufficient, StringRef(p, slen), radix);
564 
565   // Compute how many bits are required. If the log is infinite, assume we need
566   // just bit. If the log is exact and value is negative, then the value is
567   // MinSignedValue with (log + 1) bits.
568   unsigned log = tmp.logBase2();
569   if (log == (unsigned)-1) {
570     return isNegative + 1;
571   } else if (isNegative && tmp.isPowerOf2()) {
572     return isNegative + log;
573   } else {
574     return isNegative + log + 1;
575   }
576 }
577 
578 hash_code llvm::hash_value(const APInt &Arg) {
579   if (Arg.isSingleWord())
580     return hash_combine(Arg.BitWidth, Arg.U.VAL);
581 
582   return hash_combine(
583       Arg.BitWidth,
584       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
585 }
586 
587 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
588   return static_cast<unsigned>(hash_value(Key));
589 }
590 
591 bool APInt::isSplat(unsigned SplatSizeInBits) const {
592   assert(getBitWidth() % SplatSizeInBits == 0 &&
593          "SplatSizeInBits must divide width!");
594   // We can check that all parts of an integer are equal by making use of a
595   // little trick: rotate and check if it's still the same value.
596   return *this == rotl(SplatSizeInBits);
597 }
598 
599 /// This function returns the high "numBits" bits of this APInt.
600 APInt APInt::getHiBits(unsigned numBits) const {
601   return this->lshr(BitWidth - numBits);
602 }
603 
604 /// This function returns the low "numBits" bits of this APInt.
605 APInt APInt::getLoBits(unsigned numBits) const {
606   APInt Result(getLowBitsSet(BitWidth, numBits));
607   Result &= *this;
608   return Result;
609 }
610 
611 /// Return a value containing V broadcasted over NewLen bits.
612 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
613   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
614 
615   APInt Val = V.zext(NewLen);
616   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
617     Val |= Val << I;
618 
619   return Val;
620 }
621 
622 unsigned APInt::countLeadingZerosSlowCase() const {
623   unsigned Count = 0;
624   for (int i = getNumWords()-1; i >= 0; --i) {
625     uint64_t V = U.pVal[i];
626     if (V == 0)
627       Count += APINT_BITS_PER_WORD;
628     else {
629       Count += llvm::countLeadingZeros(V);
630       break;
631     }
632   }
633   // Adjust for unused bits in the most significant word (they are zero).
634   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
635   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
636   return Count;
637 }
638 
639 unsigned APInt::countLeadingOnesSlowCase() const {
640   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
641   unsigned shift;
642   if (!highWordBits) {
643     highWordBits = APINT_BITS_PER_WORD;
644     shift = 0;
645   } else {
646     shift = APINT_BITS_PER_WORD - highWordBits;
647   }
648   int i = getNumWords() - 1;
649   unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
650   if (Count == highWordBits) {
651     for (i--; i >= 0; --i) {
652       if (U.pVal[i] == WORDTYPE_MAX)
653         Count += APINT_BITS_PER_WORD;
654       else {
655         Count += llvm::countLeadingOnes(U.pVal[i]);
656         break;
657       }
658     }
659   }
660   return Count;
661 }
662 
663 unsigned APInt::countTrailingZerosSlowCase() const {
664   unsigned Count = 0;
665   unsigned i = 0;
666   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
667     Count += APINT_BITS_PER_WORD;
668   if (i < getNumWords())
669     Count += llvm::countTrailingZeros(U.pVal[i]);
670   return std::min(Count, BitWidth);
671 }
672 
673 unsigned APInt::countTrailingOnesSlowCase() const {
674   unsigned Count = 0;
675   unsigned i = 0;
676   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
677     Count += APINT_BITS_PER_WORD;
678   if (i < getNumWords())
679     Count += llvm::countTrailingOnes(U.pVal[i]);
680   assert(Count <= BitWidth);
681   return Count;
682 }
683 
684 unsigned APInt::countPopulationSlowCase() const {
685   unsigned Count = 0;
686   for (unsigned i = 0; i < getNumWords(); ++i)
687     Count += llvm::countPopulation(U.pVal[i]);
688   return Count;
689 }
690 
691 bool APInt::intersectsSlowCase(const APInt &RHS) const {
692   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
693     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
694       return true;
695 
696   return false;
697 }
698 
699 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
700   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
702       return false;
703 
704   return true;
705 }
706 
707 APInt APInt::byteSwap() const {
708   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
709   if (BitWidth == 16)
710     return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
711   if (BitWidth == 32)
712     return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
713   if (BitWidth <= 64) {
714     uint64_t Tmp1 = ByteSwap_64(U.VAL);
715     Tmp1 >>= (64 - BitWidth);
716     return APInt(BitWidth, Tmp1);
717   }
718 
719   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
720   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
721     Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
722   if (Result.BitWidth != BitWidth) {
723     Result.lshrInPlace(Result.BitWidth - BitWidth);
724     Result.BitWidth = BitWidth;
725   }
726   return Result;
727 }
728 
729 APInt APInt::reverseBits() const {
730   switch (BitWidth) {
731   case 64:
732     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
733   case 32:
734     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
735   case 16:
736     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
737   case 8:
738     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
739   case 0:
740     return *this;
741   default:
742     break;
743   }
744 
745   APInt Val(*this);
746   APInt Reversed(BitWidth, 0);
747   unsigned S = BitWidth;
748 
749   for (; Val != 0; Val.lshrInPlace(1)) {
750     Reversed <<= 1;
751     Reversed |= Val[0];
752     --S;
753   }
754 
755   Reversed <<= S;
756   return Reversed;
757 }
758 
759 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
760   // Fast-path a common case.
761   if (A == B) return A;
762 
763   // Corner cases: if either operand is zero, the other is the gcd.
764   if (!A) return B;
765   if (!B) return A;
766 
767   // Count common powers of 2 and remove all other powers of 2.
768   unsigned Pow2;
769   {
770     unsigned Pow2_A = A.countTrailingZeros();
771     unsigned Pow2_B = B.countTrailingZeros();
772     if (Pow2_A > Pow2_B) {
773       A.lshrInPlace(Pow2_A - Pow2_B);
774       Pow2 = Pow2_B;
775     } else if (Pow2_B > Pow2_A) {
776       B.lshrInPlace(Pow2_B - Pow2_A);
777       Pow2 = Pow2_A;
778     } else {
779       Pow2 = Pow2_A;
780     }
781   }
782 
783   // Both operands are odd multiples of 2^Pow_2:
784   //
785   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
786   //
787   // This is a modified version of Stein's algorithm, taking advantage of
788   // efficient countTrailingZeros().
789   while (A != B) {
790     if (A.ugt(B)) {
791       A -= B;
792       A.lshrInPlace(A.countTrailingZeros() - Pow2);
793     } else {
794       B -= A;
795       B.lshrInPlace(B.countTrailingZeros() - Pow2);
796     }
797   }
798 
799   return A;
800 }
801 
802 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
803   uint64_t I = bit_cast<uint64_t>(Double);
804 
805   // Get the sign bit from the highest order bit
806   bool isNeg = I >> 63;
807 
808   // Get the 11-bit exponent and adjust for the 1023 bit bias
809   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
810 
811   // If the exponent is negative, the value is < 0 so just return 0.
812   if (exp < 0)
813     return APInt(width, 0u);
814 
815   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
816   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
817 
818   // If the exponent doesn't shift all bits out of the mantissa
819   if (exp < 52)
820     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
821                     APInt(width, mantissa >> (52 - exp));
822 
823   // If the client didn't provide enough bits for us to shift the mantissa into
824   // then the result is undefined, just return 0
825   if (width <= exp - 52)
826     return APInt(width, 0);
827 
828   // Otherwise, we have to shift the mantissa bits up to the right location
829   APInt Tmp(width, mantissa);
830   Tmp <<= (unsigned)exp - 52;
831   return isNeg ? -Tmp : Tmp;
832 }
833 
834 /// This function converts this APInt to a double.
835 /// The layout for double is as following (IEEE Standard 754):
836 ///  --------------------------------------
837 /// |  Sign    Exponent    Fraction    Bias |
838 /// |-------------------------------------- |
839 /// |  1[63]   11[62-52]   52[51-00]   1023 |
840 ///  --------------------------------------
841 double APInt::roundToDouble(bool isSigned) const {
842 
843   // Handle the simple case where the value is contained in one uint64_t.
844   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
845   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
846     if (isSigned) {
847       int64_t sext = SignExtend64(getWord(0), BitWidth);
848       return double(sext);
849     } else
850       return double(getWord(0));
851   }
852 
853   // Determine if the value is negative.
854   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
855 
856   // Construct the absolute value if we're negative.
857   APInt Tmp(isNeg ? -(*this) : (*this));
858 
859   // Figure out how many bits we're using.
860   unsigned n = Tmp.getActiveBits();
861 
862   // The exponent (without bias normalization) is just the number of bits
863   // we are using. Note that the sign bit is gone since we constructed the
864   // absolute value.
865   uint64_t exp = n;
866 
867   // Return infinity for exponent overflow
868   if (exp > 1023) {
869     if (!isSigned || !isNeg)
870       return std::numeric_limits<double>::infinity();
871     else
872       return -std::numeric_limits<double>::infinity();
873   }
874   exp += 1023; // Increment for 1023 bias
875 
876   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
877   // extract the high 52 bits from the correct words in pVal.
878   uint64_t mantissa;
879   unsigned hiWord = whichWord(n-1);
880   if (hiWord == 0) {
881     mantissa = Tmp.U.pVal[0];
882     if (n > 52)
883       mantissa >>= n - 52; // shift down, we want the top 52 bits.
884   } else {
885     assert(hiWord > 0 && "huh?");
886     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
887     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
888     mantissa = hibits | lobits;
889   }
890 
891   // The leading bit of mantissa is implicit, so get rid of it.
892   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
893   uint64_t I = sign | (exp << 52) | mantissa;
894   return bit_cast<double>(I);
895 }
896 
897 // Truncate to new width.
898 APInt APInt::trunc(unsigned width) const {
899   assert(width <= BitWidth && "Invalid APInt Truncate request");
900 
901   if (width <= APINT_BITS_PER_WORD)
902     return APInt(width, getRawData()[0]);
903 
904   if (width == BitWidth)
905     return *this;
906 
907   APInt Result(getMemory(getNumWords(width)), width);
908 
909   // Copy full words.
910   unsigned i;
911   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
912     Result.U.pVal[i] = U.pVal[i];
913 
914   // Truncate and copy any partial word.
915   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
916   if (bits != 0)
917     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
918 
919   return Result;
920 }
921 
922 // Truncate to new width with unsigned saturation.
923 APInt APInt::truncUSat(unsigned width) const {
924   assert(width <= BitWidth && "Invalid APInt Truncate request");
925 
926   // Can we just losslessly truncate it?
927   if (isIntN(width))
928     return trunc(width);
929   // If not, then just return the new limit.
930   return APInt::getMaxValue(width);
931 }
932 
933 // Truncate to new width with signed saturation.
934 APInt APInt::truncSSat(unsigned width) const {
935   assert(width <= BitWidth && "Invalid APInt Truncate request");
936 
937   // Can we just losslessly truncate it?
938   if (isSignedIntN(width))
939     return trunc(width);
940   // If not, then just return the new limits.
941   return isNegative() ? APInt::getSignedMinValue(width)
942                       : APInt::getSignedMaxValue(width);
943 }
944 
945 // Sign extend to a new width.
946 APInt APInt::sext(unsigned Width) const {
947   assert(Width >= BitWidth && "Invalid APInt SignExtend request");
948 
949   if (Width <= APINT_BITS_PER_WORD)
950     return APInt(Width, SignExtend64(U.VAL, BitWidth));
951 
952   if (Width == BitWidth)
953     return *this;
954 
955   APInt Result(getMemory(getNumWords(Width)), Width);
956 
957   // Copy words.
958   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
959 
960   // Sign extend the last word since there may be unused bits in the input.
961   Result.U.pVal[getNumWords() - 1] =
962       SignExtend64(Result.U.pVal[getNumWords() - 1],
963                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
964 
965   // Fill with sign bits.
966   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
967               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
968   Result.clearUnusedBits();
969   return Result;
970 }
971 
972 //  Zero extend to a new width.
973 APInt APInt::zext(unsigned width) const {
974   assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
975 
976   if (width <= APINT_BITS_PER_WORD)
977     return APInt(width, U.VAL);
978 
979   if (width == BitWidth)
980     return *this;
981 
982   APInt Result(getMemory(getNumWords(width)), width);
983 
984   // Copy words.
985   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
986 
987   // Zero remaining words.
988   std::memset(Result.U.pVal + getNumWords(), 0,
989               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
990 
991   return Result;
992 }
993 
994 APInt APInt::zextOrTrunc(unsigned width) const {
995   if (BitWidth < width)
996     return zext(width);
997   if (BitWidth > width)
998     return trunc(width);
999   return *this;
1000 }
1001 
1002 APInt APInt::sextOrTrunc(unsigned width) const {
1003   if (BitWidth < width)
1004     return sext(width);
1005   if (BitWidth > width)
1006     return trunc(width);
1007   return *this;
1008 }
1009 
1010 APInt APInt::truncOrSelf(unsigned width) const {
1011   if (BitWidth > width)
1012     return trunc(width);
1013   return *this;
1014 }
1015 
1016 APInt APInt::zextOrSelf(unsigned width) const {
1017   if (BitWidth < width)
1018     return zext(width);
1019   return *this;
1020 }
1021 
1022 APInt APInt::sextOrSelf(unsigned width) const {
1023   if (BitWidth < width)
1024     return sext(width);
1025   return *this;
1026 }
1027 
1028 /// Arithmetic right-shift this APInt by shiftAmt.
1029 /// Arithmetic right-shift function.
1030 void APInt::ashrInPlace(const APInt &shiftAmt) {
1031   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1032 }
1033 
1034 /// Arithmetic right-shift this APInt by shiftAmt.
1035 /// Arithmetic right-shift function.
1036 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1037   // Don't bother performing a no-op shift.
1038   if (!ShiftAmt)
1039     return;
1040 
1041   // Save the original sign bit for later.
1042   bool Negative = isNegative();
1043 
1044   // WordShift is the inter-part shift; BitShift is intra-part shift.
1045   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1046   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1047 
1048   unsigned WordsToMove = getNumWords() - WordShift;
1049   if (WordsToMove != 0) {
1050     // Sign extend the last word to fill in the unused bits.
1051     U.pVal[getNumWords() - 1] = SignExtend64(
1052         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1053 
1054     // Fastpath for moving by whole words.
1055     if (BitShift == 0) {
1056       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1057     } else {
1058       // Move the words containing significant bits.
1059       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1060         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1061                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1062 
1063       // Handle the last word which has no high bits to copy.
1064       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1065       // Sign extend one more time.
1066       U.pVal[WordsToMove - 1] =
1067           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1068     }
1069   }
1070 
1071   // Fill in the remainder based on the original sign.
1072   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1073               WordShift * APINT_WORD_SIZE);
1074   clearUnusedBits();
1075 }
1076 
1077 /// Logical right-shift this APInt by shiftAmt.
1078 /// Logical right-shift function.
1079 void APInt::lshrInPlace(const APInt &shiftAmt) {
1080   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1081 }
1082 
1083 /// Logical right-shift this APInt by shiftAmt.
1084 /// Logical right-shift function.
1085 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1086   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1087 }
1088 
1089 /// Left-shift this APInt by shiftAmt.
1090 /// Left-shift function.
1091 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1092   // It's undefined behavior in C to shift by BitWidth or greater.
1093   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1094   return *this;
1095 }
1096 
1097 void APInt::shlSlowCase(unsigned ShiftAmt) {
1098   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1099   clearUnusedBits();
1100 }
1101 
1102 // Calculate the rotate amount modulo the bit width.
1103 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1104   if (LLVM_UNLIKELY(BitWidth == 0))
1105     return 0;
1106   unsigned rotBitWidth = rotateAmt.getBitWidth();
1107   APInt rot = rotateAmt;
1108   if (rotBitWidth < BitWidth) {
1109     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1110     // e.g. APInt(1, 32) would give APInt(1, 0).
1111     rot = rotateAmt.zext(BitWidth);
1112   }
1113   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1114   return rot.getLimitedValue(BitWidth);
1115 }
1116 
1117 APInt APInt::rotl(const APInt &rotateAmt) const {
1118   return rotl(rotateModulo(BitWidth, rotateAmt));
1119 }
1120 
1121 APInt APInt::rotl(unsigned rotateAmt) const {
1122   if (LLVM_UNLIKELY(BitWidth == 0))
1123     return *this;
1124   rotateAmt %= BitWidth;
1125   if (rotateAmt == 0)
1126     return *this;
1127   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1128 }
1129 
1130 APInt APInt::rotr(const APInt &rotateAmt) const {
1131   return rotr(rotateModulo(BitWidth, rotateAmt));
1132 }
1133 
1134 APInt APInt::rotr(unsigned rotateAmt) const {
1135   if (BitWidth == 0)
1136     return *this;
1137   rotateAmt %= BitWidth;
1138   if (rotateAmt == 0)
1139     return *this;
1140   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1141 }
1142 
1143 /// \returns the nearest log base 2 of this APInt. Ties round up.
1144 ///
1145 /// NOTE: When we have a BitWidth of 1, we define:
1146 ///
1147 ///   log2(0) = UINT32_MAX
1148 ///   log2(1) = 0
1149 ///
1150 /// to get around any mathematical concerns resulting from
1151 /// referencing 2 in a space where 2 does no exist.
1152 unsigned APInt::nearestLogBase2() const {
1153   // Special case when we have a bitwidth of 1. If VAL is 1, then we
1154   // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1155   // UINT32_MAX.
1156   if (BitWidth == 1)
1157     return U.VAL - 1;
1158 
1159   // Handle the zero case.
1160   if (isZero())
1161     return UINT32_MAX;
1162 
1163   // The non-zero case is handled by computing:
1164   //
1165   //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1166   //
1167   // where x[i] is referring to the value of the ith bit of x.
1168   unsigned lg = logBase2();
1169   return lg + unsigned((*this)[lg - 1]);
1170 }
1171 
1172 // Square Root - this method computes and returns the square root of "this".
1173 // Three mechanisms are used for computation. For small values (<= 5 bits),
1174 // a table lookup is done. This gets some performance for common cases. For
1175 // values using less than 52 bits, the value is converted to double and then
1176 // the libc sqrt function is called. The result is rounded and then converted
1177 // back to a uint64_t which is then used to construct the result. Finally,
1178 // the Babylonian method for computing square roots is used.
1179 APInt APInt::sqrt() const {
1180 
1181   // Determine the magnitude of the value.
1182   unsigned magnitude = getActiveBits();
1183 
1184   // Use a fast table for some small values. This also gets rid of some
1185   // rounding errors in libc sqrt for small values.
1186   if (magnitude <= 5) {
1187     static const uint8_t results[32] = {
1188       /*     0 */ 0,
1189       /*  1- 2 */ 1, 1,
1190       /*  3- 6 */ 2, 2, 2, 2,
1191       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1192       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1193       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1194       /*    31 */ 6
1195     };
1196     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1197   }
1198 
1199   // If the magnitude of the value fits in less than 52 bits (the precision of
1200   // an IEEE double precision floating point value), then we can use the
1201   // libc sqrt function which will probably use a hardware sqrt computation.
1202   // This should be faster than the algorithm below.
1203   if (magnitude < 52) {
1204     return APInt(BitWidth,
1205                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1206                                                                : U.pVal[0])))));
1207   }
1208 
1209   // Okay, all the short cuts are exhausted. We must compute it. The following
1210   // is a classical Babylonian method for computing the square root. This code
1211   // was adapted to APInt from a wikipedia article on such computations.
1212   // See http://www.wikipedia.org/ and go to the page named
1213   // Calculate_an_integer_square_root.
1214   unsigned nbits = BitWidth, i = 4;
1215   APInt testy(BitWidth, 16);
1216   APInt x_old(BitWidth, 1);
1217   APInt x_new(BitWidth, 0);
1218   APInt two(BitWidth, 2);
1219 
1220   // Select a good starting value using binary logarithms.
1221   for (;; i += 2, testy = testy.shl(2))
1222     if (i >= nbits || this->ule(testy)) {
1223       x_old = x_old.shl(i / 2);
1224       break;
1225     }
1226 
1227   // Use the Babylonian method to arrive at the integer square root:
1228   for (;;) {
1229     x_new = (this->udiv(x_old) + x_old).udiv(two);
1230     if (x_old.ule(x_new))
1231       break;
1232     x_old = x_new;
1233   }
1234 
1235   // Make sure we return the closest approximation
1236   // NOTE: The rounding calculation below is correct. It will produce an
1237   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1238   // determined to be a rounding issue with pari/gp as it begins to use a
1239   // floating point representation after 192 bits. There are no discrepancies
1240   // between this algorithm and pari/gp for bit widths < 192 bits.
1241   APInt square(x_old * x_old);
1242   APInt nextSquare((x_old + 1) * (x_old +1));
1243   if (this->ult(square))
1244     return x_old;
1245   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1246   APInt midpoint((nextSquare - square).udiv(two));
1247   APInt offset(*this - square);
1248   if (offset.ult(midpoint))
1249     return x_old;
1250   return x_old + 1;
1251 }
1252 
1253 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1254 /// iterative extended Euclidean algorithm is used to solve for this value,
1255 /// however we simplify it to speed up calculating only the inverse, and take
1256 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1257 /// (potentially large) APInts around.
1258 /// WARNING: a value of '0' may be returned,
1259 ///          signifying that no multiplicative inverse exists!
1260 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1261   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1262 
1263   // Using the properties listed at the following web page (accessed 06/21/08):
1264   //   http://www.numbertheory.org/php/euclid.html
1265   // (especially the properties numbered 3, 4 and 9) it can be proved that
1266   // BitWidth bits suffice for all the computations in the algorithm implemented
1267   // below. More precisely, this number of bits suffice if the multiplicative
1268   // inverse exists, but may not suffice for the general extended Euclidean
1269   // algorithm.
1270 
1271   APInt r[2] = { modulo, *this };
1272   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1273   APInt q(BitWidth, 0);
1274 
1275   unsigned i;
1276   for (i = 0; r[i^1] != 0; i ^= 1) {
1277     // An overview of the math without the confusing bit-flipping:
1278     // q = r[i-2] / r[i-1]
1279     // r[i] = r[i-2] % r[i-1]
1280     // t[i] = t[i-2] - t[i-1] * q
1281     udivrem(r[i], r[i^1], q, r[i]);
1282     t[i] -= t[i^1] * q;
1283   }
1284 
1285   // If this APInt and the modulo are not coprime, there is no multiplicative
1286   // inverse, so return 0. We check this by looking at the next-to-last
1287   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1288   // algorithm.
1289   if (r[i] != 1)
1290     return APInt(BitWidth, 0);
1291 
1292   // The next-to-last t is the multiplicative inverse.  However, we are
1293   // interested in a positive inverse. Calculate a positive one from a negative
1294   // one if necessary. A simple addition of the modulo suffices because
1295   // abs(t[i]) is known to be less than *this/2 (see the link above).
1296   if (t[i].isNegative())
1297     t[i] += modulo;
1298 
1299   return std::move(t[i]);
1300 }
1301 
1302 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1303 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1304 /// variables here have the same names as in the algorithm. Comments explain
1305 /// the algorithm and any deviation from it.
1306 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1307                      unsigned m, unsigned n) {
1308   assert(u && "Must provide dividend");
1309   assert(v && "Must provide divisor");
1310   assert(q && "Must provide quotient");
1311   assert(u != v && u != q && v != q && "Must use different memory");
1312   assert(n>1 && "n must be > 1");
1313 
1314   // b denotes the base of the number system. In our case b is 2^32.
1315   const uint64_t b = uint64_t(1) << 32;
1316 
1317 // The DEBUG macros here tend to be spam in the debug output if you're not
1318 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1319 #ifdef KNUTH_DEBUG
1320 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1321 #else
1322 #define DEBUG_KNUTH(X) do {} while(false)
1323 #endif
1324 
1325   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1326   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1327   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1328   DEBUG_KNUTH(dbgs() << " by");
1329   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1330   DEBUG_KNUTH(dbgs() << '\n');
1331   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1332   // u and v by d. Note that we have taken Knuth's advice here to use a power
1333   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1334   // 2 allows us to shift instead of multiply and it is easy to determine the
1335   // shift amount from the leading zeros.  We are basically normalizing the u
1336   // and v so that its high bits are shifted to the top of v's range without
1337   // overflow. Note that this can require an extra word in u so that u must
1338   // be of length m+n+1.
1339   unsigned shift = countLeadingZeros(v[n-1]);
1340   uint32_t v_carry = 0;
1341   uint32_t u_carry = 0;
1342   if (shift) {
1343     for (unsigned i = 0; i < m+n; ++i) {
1344       uint32_t u_tmp = u[i] >> (32 - shift);
1345       u[i] = (u[i] << shift) | u_carry;
1346       u_carry = u_tmp;
1347     }
1348     for (unsigned i = 0; i < n; ++i) {
1349       uint32_t v_tmp = v[i] >> (32 - shift);
1350       v[i] = (v[i] << shift) | v_carry;
1351       v_carry = v_tmp;
1352     }
1353   }
1354   u[m+n] = u_carry;
1355 
1356   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1357   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1358   DEBUG_KNUTH(dbgs() << " by");
1359   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1360   DEBUG_KNUTH(dbgs() << '\n');
1361 
1362   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1363   int j = m;
1364   do {
1365     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1366     // D3. [Calculate q'.].
1367     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1368     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1369     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1370     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1371     // on v[n-2] determines at high speed most of the cases in which the trial
1372     // value qp is one too large, and it eliminates all cases where qp is two
1373     // too large.
1374     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1375     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1376     uint64_t qp = dividend / v[n-1];
1377     uint64_t rp = dividend % v[n-1];
1378     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1379       qp--;
1380       rp += v[n-1];
1381       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1382         qp--;
1383     }
1384     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1385 
1386     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1387     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1388     // consists of a simple multiplication by a one-place number, combined with
1389     // a subtraction.
1390     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1391     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1392     // true value plus b**(n+1), namely as the b's complement of
1393     // the true value, and a "borrow" to the left should be remembered.
1394     int64_t borrow = 0;
1395     for (unsigned i = 0; i < n; ++i) {
1396       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1397       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1398       u[j+i] = Lo_32(subres);
1399       borrow = Hi_32(p) - Hi_32(subres);
1400       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1401                         << ", borrow = " << borrow << '\n');
1402     }
1403     bool isNeg = u[j+n] < borrow;
1404     u[j+n] -= Lo_32(borrow);
1405 
1406     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1407     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1408     DEBUG_KNUTH(dbgs() << '\n');
1409 
1410     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1411     // negative, go to step D6; otherwise go on to step D7.
1412     q[j] = Lo_32(qp);
1413     if (isNeg) {
1414       // D6. [Add back]. The probability that this step is necessary is very
1415       // small, on the order of only 2/b. Make sure that test data accounts for
1416       // this possibility. Decrease q[j] by 1
1417       q[j]--;
1418       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1419       // A carry will occur to the left of u[j+n], and it should be ignored
1420       // since it cancels with the borrow that occurred in D4.
1421       bool carry = false;
1422       for (unsigned i = 0; i < n; i++) {
1423         uint32_t limit = std::min(u[j+i],v[i]);
1424         u[j+i] += v[i] + carry;
1425         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1426       }
1427       u[j+n] += carry;
1428     }
1429     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1430     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1431     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1432 
1433     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1434   } while (--j >= 0);
1435 
1436   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1437   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1438   DEBUG_KNUTH(dbgs() << '\n');
1439 
1440   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1441   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1442   // compute the remainder (urem uses this).
1443   if (r) {
1444     // The value d is expressed by the "shift" value above since we avoided
1445     // multiplication by d by using a shift left. So, all we have to do is
1446     // shift right here.
1447     if (shift) {
1448       uint32_t carry = 0;
1449       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1450       for (int i = n-1; i >= 0; i--) {
1451         r[i] = (u[i] >> shift) | carry;
1452         carry = u[i] << (32 - shift);
1453         DEBUG_KNUTH(dbgs() << " " << r[i]);
1454       }
1455     } else {
1456       for (int i = n-1; i >= 0; i--) {
1457         r[i] = u[i];
1458         DEBUG_KNUTH(dbgs() << " " << r[i]);
1459       }
1460     }
1461     DEBUG_KNUTH(dbgs() << '\n');
1462   }
1463   DEBUG_KNUTH(dbgs() << '\n');
1464 }
1465 
1466 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1467                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1468   assert(lhsWords >= rhsWords && "Fractional result");
1469 
1470   // First, compose the values into an array of 32-bit words instead of
1471   // 64-bit words. This is a necessity of both the "short division" algorithm
1472   // and the Knuth "classical algorithm" which requires there to be native
1473   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1474   // can't use 64-bit operands here because we don't have native results of
1475   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1476   // work on large-endian machines.
1477   unsigned n = rhsWords * 2;
1478   unsigned m = (lhsWords * 2) - n;
1479 
1480   // Allocate space for the temporary values we need either on the stack, if
1481   // it will fit, or on the heap if it won't.
1482   uint32_t SPACE[128];
1483   uint32_t *U = nullptr;
1484   uint32_t *V = nullptr;
1485   uint32_t *Q = nullptr;
1486   uint32_t *R = nullptr;
1487   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1488     U = &SPACE[0];
1489     V = &SPACE[m+n+1];
1490     Q = &SPACE[(m+n+1) + n];
1491     if (Remainder)
1492       R = &SPACE[(m+n+1) + n + (m+n)];
1493   } else {
1494     U = new uint32_t[m + n + 1];
1495     V = new uint32_t[n];
1496     Q = new uint32_t[m+n];
1497     if (Remainder)
1498       R = new uint32_t[n];
1499   }
1500 
1501   // Initialize the dividend
1502   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1503   for (unsigned i = 0; i < lhsWords; ++i) {
1504     uint64_t tmp = LHS[i];
1505     U[i * 2] = Lo_32(tmp);
1506     U[i * 2 + 1] = Hi_32(tmp);
1507   }
1508   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1509 
1510   // Initialize the divisor
1511   memset(V, 0, (n)*sizeof(uint32_t));
1512   for (unsigned i = 0; i < rhsWords; ++i) {
1513     uint64_t tmp = RHS[i];
1514     V[i * 2] = Lo_32(tmp);
1515     V[i * 2 + 1] = Hi_32(tmp);
1516   }
1517 
1518   // initialize the quotient and remainder
1519   memset(Q, 0, (m+n) * sizeof(uint32_t));
1520   if (Remainder)
1521     memset(R, 0, n * sizeof(uint32_t));
1522 
1523   // Now, adjust m and n for the Knuth division. n is the number of words in
1524   // the divisor. m is the number of words by which the dividend exceeds the
1525   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1526   // contain any zero words or the Knuth algorithm fails.
1527   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1528     n--;
1529     m++;
1530   }
1531   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1532     m--;
1533 
1534   // If we're left with only a single word for the divisor, Knuth doesn't work
1535   // so we implement the short division algorithm here. This is much simpler
1536   // and faster because we are certain that we can divide a 64-bit quantity
1537   // by a 32-bit quantity at hardware speed and short division is simply a
1538   // series of such operations. This is just like doing short division but we
1539   // are using base 2^32 instead of base 10.
1540   assert(n != 0 && "Divide by zero?");
1541   if (n == 1) {
1542     uint32_t divisor = V[0];
1543     uint32_t remainder = 0;
1544     for (int i = m; i >= 0; i--) {
1545       uint64_t partial_dividend = Make_64(remainder, U[i]);
1546       if (partial_dividend == 0) {
1547         Q[i] = 0;
1548         remainder = 0;
1549       } else if (partial_dividend < divisor) {
1550         Q[i] = 0;
1551         remainder = Lo_32(partial_dividend);
1552       } else if (partial_dividend == divisor) {
1553         Q[i] = 1;
1554         remainder = 0;
1555       } else {
1556         Q[i] = Lo_32(partial_dividend / divisor);
1557         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1558       }
1559     }
1560     if (R)
1561       R[0] = remainder;
1562   } else {
1563     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1564     // case n > 1.
1565     KnuthDiv(U, V, Q, R, m, n);
1566   }
1567 
1568   // If the caller wants the quotient
1569   if (Quotient) {
1570     for (unsigned i = 0; i < lhsWords; ++i)
1571       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1572   }
1573 
1574   // If the caller wants the remainder
1575   if (Remainder) {
1576     for (unsigned i = 0; i < rhsWords; ++i)
1577       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1578   }
1579 
1580   // Clean up the memory we allocated.
1581   if (U != &SPACE[0]) {
1582     delete [] U;
1583     delete [] V;
1584     delete [] Q;
1585     delete [] R;
1586   }
1587 }
1588 
1589 APInt APInt::udiv(const APInt &RHS) const {
1590   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1591 
1592   // First, deal with the easy case
1593   if (isSingleWord()) {
1594     assert(RHS.U.VAL != 0 && "Divide by zero?");
1595     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1596   }
1597 
1598   // Get some facts about the LHS and RHS number of bits and words
1599   unsigned lhsWords = getNumWords(getActiveBits());
1600   unsigned rhsBits  = RHS.getActiveBits();
1601   unsigned rhsWords = getNumWords(rhsBits);
1602   assert(rhsWords && "Divided by zero???");
1603 
1604   // Deal with some degenerate cases
1605   if (!lhsWords)
1606     // 0 / X ===> 0
1607     return APInt(BitWidth, 0);
1608   if (rhsBits == 1)
1609     // X / 1 ===> X
1610     return *this;
1611   if (lhsWords < rhsWords || this->ult(RHS))
1612     // X / Y ===> 0, iff X < Y
1613     return APInt(BitWidth, 0);
1614   if (*this == RHS)
1615     // X / X ===> 1
1616     return APInt(BitWidth, 1);
1617   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1618     // All high words are zero, just use native divide
1619     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1620 
1621   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1622   APInt Quotient(BitWidth, 0); // to hold result.
1623   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1624   return Quotient;
1625 }
1626 
1627 APInt APInt::udiv(uint64_t RHS) const {
1628   assert(RHS != 0 && "Divide by zero?");
1629 
1630   // First, deal with the easy case
1631   if (isSingleWord())
1632     return APInt(BitWidth, U.VAL / RHS);
1633 
1634   // Get some facts about the LHS words.
1635   unsigned lhsWords = getNumWords(getActiveBits());
1636 
1637   // Deal with some degenerate cases
1638   if (!lhsWords)
1639     // 0 / X ===> 0
1640     return APInt(BitWidth, 0);
1641   if (RHS == 1)
1642     // X / 1 ===> X
1643     return *this;
1644   if (this->ult(RHS))
1645     // X / Y ===> 0, iff X < Y
1646     return APInt(BitWidth, 0);
1647   if (*this == RHS)
1648     // X / X ===> 1
1649     return APInt(BitWidth, 1);
1650   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1651     // All high words are zero, just use native divide
1652     return APInt(BitWidth, this->U.pVal[0] / RHS);
1653 
1654   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1655   APInt Quotient(BitWidth, 0); // to hold result.
1656   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1657   return Quotient;
1658 }
1659 
1660 APInt APInt::sdiv(const APInt &RHS) const {
1661   if (isNegative()) {
1662     if (RHS.isNegative())
1663       return (-(*this)).udiv(-RHS);
1664     return -((-(*this)).udiv(RHS));
1665   }
1666   if (RHS.isNegative())
1667     return -(this->udiv(-RHS));
1668   return this->udiv(RHS);
1669 }
1670 
1671 APInt APInt::sdiv(int64_t RHS) const {
1672   if (isNegative()) {
1673     if (RHS < 0)
1674       return (-(*this)).udiv(-RHS);
1675     return -((-(*this)).udiv(RHS));
1676   }
1677   if (RHS < 0)
1678     return -(this->udiv(-RHS));
1679   return this->udiv(RHS);
1680 }
1681 
1682 APInt APInt::urem(const APInt &RHS) const {
1683   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1684   if (isSingleWord()) {
1685     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1686     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1687   }
1688 
1689   // Get some facts about the LHS
1690   unsigned lhsWords = getNumWords(getActiveBits());
1691 
1692   // Get some facts about the RHS
1693   unsigned rhsBits = RHS.getActiveBits();
1694   unsigned rhsWords = getNumWords(rhsBits);
1695   assert(rhsWords && "Performing remainder operation by zero ???");
1696 
1697   // Check the degenerate cases
1698   if (lhsWords == 0)
1699     // 0 % Y ===> 0
1700     return APInt(BitWidth, 0);
1701   if (rhsBits == 1)
1702     // X % 1 ===> 0
1703     return APInt(BitWidth, 0);
1704   if (lhsWords < rhsWords || this->ult(RHS))
1705     // X % Y ===> X, iff X < Y
1706     return *this;
1707   if (*this == RHS)
1708     // X % X == 0;
1709     return APInt(BitWidth, 0);
1710   if (lhsWords == 1)
1711     // All high words are zero, just use native remainder
1712     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1713 
1714   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1715   APInt Remainder(BitWidth, 0);
1716   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1717   return Remainder;
1718 }
1719 
1720 uint64_t APInt::urem(uint64_t RHS) const {
1721   assert(RHS != 0 && "Remainder by zero?");
1722 
1723   if (isSingleWord())
1724     return U.VAL % RHS;
1725 
1726   // Get some facts about the LHS
1727   unsigned lhsWords = getNumWords(getActiveBits());
1728 
1729   // Check the degenerate cases
1730   if (lhsWords == 0)
1731     // 0 % Y ===> 0
1732     return 0;
1733   if (RHS == 1)
1734     // X % 1 ===> 0
1735     return 0;
1736   if (this->ult(RHS))
1737     // X % Y ===> X, iff X < Y
1738     return getZExtValue();
1739   if (*this == RHS)
1740     // X % X == 0;
1741     return 0;
1742   if (lhsWords == 1)
1743     // All high words are zero, just use native remainder
1744     return U.pVal[0] % RHS;
1745 
1746   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1747   uint64_t Remainder;
1748   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1749   return Remainder;
1750 }
1751 
1752 APInt APInt::srem(const APInt &RHS) const {
1753   if (isNegative()) {
1754     if (RHS.isNegative())
1755       return -((-(*this)).urem(-RHS));
1756     return -((-(*this)).urem(RHS));
1757   }
1758   if (RHS.isNegative())
1759     return this->urem(-RHS);
1760   return this->urem(RHS);
1761 }
1762 
1763 int64_t APInt::srem(int64_t RHS) const {
1764   if (isNegative()) {
1765     if (RHS < 0)
1766       return -((-(*this)).urem(-RHS));
1767     return -((-(*this)).urem(RHS));
1768   }
1769   if (RHS < 0)
1770     return this->urem(-RHS);
1771   return this->urem(RHS);
1772 }
1773 
1774 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1775                     APInt &Quotient, APInt &Remainder) {
1776   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1777   unsigned BitWidth = LHS.BitWidth;
1778 
1779   // First, deal with the easy case
1780   if (LHS.isSingleWord()) {
1781     assert(RHS.U.VAL != 0 && "Divide by zero?");
1782     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1783     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1784     Quotient = APInt(BitWidth, QuotVal);
1785     Remainder = APInt(BitWidth, RemVal);
1786     return;
1787   }
1788 
1789   // Get some size facts about the dividend and divisor
1790   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1791   unsigned rhsBits  = RHS.getActiveBits();
1792   unsigned rhsWords = getNumWords(rhsBits);
1793   assert(rhsWords && "Performing divrem operation by zero ???");
1794 
1795   // Check the degenerate cases
1796   if (lhsWords == 0) {
1797     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1798     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1799     return;
1800   }
1801 
1802   if (rhsBits == 1) {
1803     Quotient = LHS;                   // X / 1 ===> X
1804     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1805   }
1806 
1807   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1808     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1809     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1810     return;
1811   }
1812 
1813   if (LHS == RHS) {
1814     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1815     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1816     return;
1817   }
1818 
1819   // Make sure there is enough space to hold the results.
1820   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1821   // change the size. This is necessary if Quotient or Remainder is aliased
1822   // with LHS or RHS.
1823   Quotient.reallocate(BitWidth);
1824   Remainder.reallocate(BitWidth);
1825 
1826   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1827     // There is only one word to consider so use the native versions.
1828     uint64_t lhsValue = LHS.U.pVal[0];
1829     uint64_t rhsValue = RHS.U.pVal[0];
1830     Quotient = lhsValue / rhsValue;
1831     Remainder = lhsValue % rhsValue;
1832     return;
1833   }
1834 
1835   // Okay, lets do it the long way
1836   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1837          Remainder.U.pVal);
1838   // Clear the rest of the Quotient and Remainder.
1839   std::memset(Quotient.U.pVal + lhsWords, 0,
1840               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1841   std::memset(Remainder.U.pVal + rhsWords, 0,
1842               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1843 }
1844 
1845 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1846                     uint64_t &Remainder) {
1847   assert(RHS != 0 && "Divide by zero?");
1848   unsigned BitWidth = LHS.BitWidth;
1849 
1850   // First, deal with the easy case
1851   if (LHS.isSingleWord()) {
1852     uint64_t QuotVal = LHS.U.VAL / RHS;
1853     Remainder = LHS.U.VAL % RHS;
1854     Quotient = APInt(BitWidth, QuotVal);
1855     return;
1856   }
1857 
1858   // Get some size facts about the dividend and divisor
1859   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1860 
1861   // Check the degenerate cases
1862   if (lhsWords == 0) {
1863     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1864     Remainder = 0;                    // 0 % Y ===> 0
1865     return;
1866   }
1867 
1868   if (RHS == 1) {
1869     Quotient = LHS;                   // X / 1 ===> X
1870     Remainder = 0;                    // X % 1 ===> 0
1871     return;
1872   }
1873 
1874   if (LHS.ult(RHS)) {
1875     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1876     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1877     return;
1878   }
1879 
1880   if (LHS == RHS) {
1881     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1882     Remainder = 0;                    // X % X ===> 0;
1883     return;
1884   }
1885 
1886   // Make sure there is enough space to hold the results.
1887   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1888   // change the size. This is necessary if Quotient is aliased with LHS.
1889   Quotient.reallocate(BitWidth);
1890 
1891   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1892     // There is only one word to consider so use the native versions.
1893     uint64_t lhsValue = LHS.U.pVal[0];
1894     Quotient = lhsValue / RHS;
1895     Remainder = lhsValue % RHS;
1896     return;
1897   }
1898 
1899   // Okay, lets do it the long way
1900   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1901   // Clear the rest of the Quotient.
1902   std::memset(Quotient.U.pVal + lhsWords, 0,
1903               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1904 }
1905 
1906 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1907                     APInt &Quotient, APInt &Remainder) {
1908   if (LHS.isNegative()) {
1909     if (RHS.isNegative())
1910       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1911     else {
1912       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1913       Quotient.negate();
1914     }
1915     Remainder.negate();
1916   } else if (RHS.isNegative()) {
1917     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1918     Quotient.negate();
1919   } else {
1920     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1921   }
1922 }
1923 
1924 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1925                     APInt &Quotient, int64_t &Remainder) {
1926   uint64_t R = Remainder;
1927   if (LHS.isNegative()) {
1928     if (RHS < 0)
1929       APInt::udivrem(-LHS, -RHS, Quotient, R);
1930     else {
1931       APInt::udivrem(-LHS, RHS, Quotient, R);
1932       Quotient.negate();
1933     }
1934     R = -R;
1935   } else if (RHS < 0) {
1936     APInt::udivrem(LHS, -RHS, Quotient, R);
1937     Quotient.negate();
1938   } else {
1939     APInt::udivrem(LHS, RHS, Quotient, R);
1940   }
1941   Remainder = R;
1942 }
1943 
1944 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1945   APInt Res = *this+RHS;
1946   Overflow = isNonNegative() == RHS.isNonNegative() &&
1947              Res.isNonNegative() != isNonNegative();
1948   return Res;
1949 }
1950 
1951 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1952   APInt Res = *this+RHS;
1953   Overflow = Res.ult(RHS);
1954   return Res;
1955 }
1956 
1957 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1958   APInt Res = *this - RHS;
1959   Overflow = isNonNegative() != RHS.isNonNegative() &&
1960              Res.isNonNegative() != isNonNegative();
1961   return Res;
1962 }
1963 
1964 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1965   APInt Res = *this-RHS;
1966   Overflow = Res.ugt(*this);
1967   return Res;
1968 }
1969 
1970 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1971   // MININT/-1  -->  overflow.
1972   Overflow = isMinSignedValue() && RHS.isAllOnes();
1973   return sdiv(RHS);
1974 }
1975 
1976 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1977   APInt Res = *this * RHS;
1978 
1979   if (RHS != 0)
1980     Overflow = Res.sdiv(RHS) != *this ||
1981                (isMinSignedValue() && RHS.isAllOnes());
1982   else
1983     Overflow = false;
1984   return Res;
1985 }
1986 
1987 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1988   if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1989     Overflow = true;
1990     return *this * RHS;
1991   }
1992 
1993   APInt Res = lshr(1) * RHS;
1994   Overflow = Res.isNegative();
1995   Res <<= 1;
1996   if ((*this)[0]) {
1997     Res += RHS;
1998     if (Res.ult(RHS))
1999       Overflow = true;
2000   }
2001   return Res;
2002 }
2003 
2004 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2005   Overflow = ShAmt.uge(getBitWidth());
2006   if (Overflow)
2007     return APInt(BitWidth, 0);
2008 
2009   if (isNonNegative()) // Don't allow sign change.
2010     Overflow = ShAmt.uge(countLeadingZeros());
2011   else
2012     Overflow = ShAmt.uge(countLeadingOnes());
2013 
2014   return *this << ShAmt;
2015 }
2016 
2017 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2018   Overflow = ShAmt.uge(getBitWidth());
2019   if (Overflow)
2020     return APInt(BitWidth, 0);
2021 
2022   Overflow = ShAmt.ugt(countLeadingZeros());
2023 
2024   return *this << ShAmt;
2025 }
2026 
2027 APInt APInt::sadd_sat(const APInt &RHS) const {
2028   bool Overflow;
2029   APInt Res = sadd_ov(RHS, Overflow);
2030   if (!Overflow)
2031     return Res;
2032 
2033   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2034                       : APInt::getSignedMaxValue(BitWidth);
2035 }
2036 
2037 APInt APInt::uadd_sat(const APInt &RHS) const {
2038   bool Overflow;
2039   APInt Res = uadd_ov(RHS, Overflow);
2040   if (!Overflow)
2041     return Res;
2042 
2043   return APInt::getMaxValue(BitWidth);
2044 }
2045 
2046 APInt APInt::ssub_sat(const APInt &RHS) const {
2047   bool Overflow;
2048   APInt Res = ssub_ov(RHS, Overflow);
2049   if (!Overflow)
2050     return Res;
2051 
2052   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2053                       : APInt::getSignedMaxValue(BitWidth);
2054 }
2055 
2056 APInt APInt::usub_sat(const APInt &RHS) const {
2057   bool Overflow;
2058   APInt Res = usub_ov(RHS, Overflow);
2059   if (!Overflow)
2060     return Res;
2061 
2062   return APInt(BitWidth, 0);
2063 }
2064 
2065 APInt APInt::smul_sat(const APInt &RHS) const {
2066   bool Overflow;
2067   APInt Res = smul_ov(RHS, Overflow);
2068   if (!Overflow)
2069     return Res;
2070 
2071   // The result is negative if one and only one of inputs is negative.
2072   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2073 
2074   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2075                        : APInt::getSignedMaxValue(BitWidth);
2076 }
2077 
2078 APInt APInt::umul_sat(const APInt &RHS) const {
2079   bool Overflow;
2080   APInt Res = umul_ov(RHS, Overflow);
2081   if (!Overflow)
2082     return Res;
2083 
2084   return APInt::getMaxValue(BitWidth);
2085 }
2086 
2087 APInt APInt::sshl_sat(const APInt &RHS) const {
2088   bool Overflow;
2089   APInt Res = sshl_ov(RHS, Overflow);
2090   if (!Overflow)
2091     return Res;
2092 
2093   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2094                       : APInt::getSignedMaxValue(BitWidth);
2095 }
2096 
2097 APInt APInt::ushl_sat(const APInt &RHS) const {
2098   bool Overflow;
2099   APInt Res = ushl_ov(RHS, Overflow);
2100   if (!Overflow)
2101     return Res;
2102 
2103   return APInt::getMaxValue(BitWidth);
2104 }
2105 
2106 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2107   // Check our assumptions here
2108   assert(!str.empty() && "Invalid string length");
2109   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2110           radix == 36) &&
2111          "Radix should be 2, 8, 10, 16, or 36!");
2112 
2113   StringRef::iterator p = str.begin();
2114   size_t slen = str.size();
2115   bool isNeg = *p == '-';
2116   if (*p == '-' || *p == '+') {
2117     p++;
2118     slen--;
2119     assert(slen && "String is only a sign, needs a value.");
2120   }
2121   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2122   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2123   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2124   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2125          "Insufficient bit width");
2126 
2127   // Allocate memory if needed
2128   if (isSingleWord())
2129     U.VAL = 0;
2130   else
2131     U.pVal = getClearedMemory(getNumWords());
2132 
2133   // Figure out if we can shift instead of multiply
2134   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2135 
2136   // Enter digit traversal loop
2137   for (StringRef::iterator e = str.end(); p != e; ++p) {
2138     unsigned digit = getDigit(*p, radix);
2139     assert(digit < radix && "Invalid character in digit string");
2140 
2141     // Shift or multiply the value by the radix
2142     if (slen > 1) {
2143       if (shift)
2144         *this <<= shift;
2145       else
2146         *this *= radix;
2147     }
2148 
2149     // Add in the digit we just interpreted
2150     *this += digit;
2151   }
2152   // If its negative, put it in two's complement form
2153   if (isNeg)
2154     this->negate();
2155 }
2156 
2157 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2158                      bool Signed, bool formatAsCLiteral) const {
2159   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2160           Radix == 36) &&
2161          "Radix should be 2, 8, 10, 16, or 36!");
2162 
2163   const char *Prefix = "";
2164   if (formatAsCLiteral) {
2165     switch (Radix) {
2166       case 2:
2167         // Binary literals are a non-standard extension added in gcc 4.3:
2168         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2169         Prefix = "0b";
2170         break;
2171       case 8:
2172         Prefix = "0";
2173         break;
2174       case 10:
2175         break; // No prefix
2176       case 16:
2177         Prefix = "0x";
2178         break;
2179       default:
2180         llvm_unreachable("Invalid radix!");
2181     }
2182   }
2183 
2184   // First, check for a zero value and just short circuit the logic below.
2185   if (isZero()) {
2186     while (*Prefix) {
2187       Str.push_back(*Prefix);
2188       ++Prefix;
2189     };
2190     Str.push_back('0');
2191     return;
2192   }
2193 
2194   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2195 
2196   if (isSingleWord()) {
2197     char Buffer[65];
2198     char *BufPtr = std::end(Buffer);
2199 
2200     uint64_t N;
2201     if (!Signed) {
2202       N = getZExtValue();
2203     } else {
2204       int64_t I = getSExtValue();
2205       if (I >= 0) {
2206         N = I;
2207       } else {
2208         Str.push_back('-');
2209         N = -(uint64_t)I;
2210       }
2211     }
2212 
2213     while (*Prefix) {
2214       Str.push_back(*Prefix);
2215       ++Prefix;
2216     };
2217 
2218     while (N) {
2219       *--BufPtr = Digits[N % Radix];
2220       N /= Radix;
2221     }
2222     Str.append(BufPtr, std::end(Buffer));
2223     return;
2224   }
2225 
2226   APInt Tmp(*this);
2227 
2228   if (Signed && isNegative()) {
2229     // They want to print the signed version and it is a negative value
2230     // Flip the bits and add one to turn it into the equivalent positive
2231     // value and put a '-' in the result.
2232     Tmp.negate();
2233     Str.push_back('-');
2234   }
2235 
2236   while (*Prefix) {
2237     Str.push_back(*Prefix);
2238     ++Prefix;
2239   };
2240 
2241   // We insert the digits backward, then reverse them to get the right order.
2242   unsigned StartDig = Str.size();
2243 
2244   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2245   // because the number of bits per digit (1, 3 and 4 respectively) divides
2246   // equally.  We just shift until the value is zero.
2247   if (Radix == 2 || Radix == 8 || Radix == 16) {
2248     // Just shift tmp right for each digit width until it becomes zero
2249     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2250     unsigned MaskAmt = Radix - 1;
2251 
2252     while (Tmp.getBoolValue()) {
2253       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2254       Str.push_back(Digits[Digit]);
2255       Tmp.lshrInPlace(ShiftAmt);
2256     }
2257   } else {
2258     while (Tmp.getBoolValue()) {
2259       uint64_t Digit;
2260       udivrem(Tmp, Radix, Tmp, Digit);
2261       assert(Digit < Radix && "divide failed");
2262       Str.push_back(Digits[Digit]);
2263     }
2264   }
2265 
2266   // Reverse the digits before returning.
2267   std::reverse(Str.begin()+StartDig, Str.end());
2268 }
2269 
2270 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2271 LLVM_DUMP_METHOD void APInt::dump() const {
2272   SmallString<40> S, U;
2273   this->toStringUnsigned(U);
2274   this->toStringSigned(S);
2275   dbgs() << "APInt(" << BitWidth << "b, "
2276          << U << "u " << S << "s)\n";
2277 }
2278 #endif
2279 
2280 void APInt::print(raw_ostream &OS, bool isSigned) const {
2281   SmallString<40> S;
2282   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2283   OS << S;
2284 }
2285 
2286 // This implements a variety of operations on a representation of
2287 // arbitrary precision, two's-complement, bignum integer values.
2288 
2289 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2290 // and unrestricting assumption.
2291 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2292               "Part width must be divisible by 2!");
2293 
2294 // Returns the integer part with the least significant BITS set.
2295 // BITS cannot be zero.
2296 static inline APInt::WordType lowBitMask(unsigned bits) {
2297   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2298   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2299 }
2300 
2301 /// Returns the value of the lower half of PART.
2302 static inline APInt::WordType lowHalf(APInt::WordType part) {
2303   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2304 }
2305 
2306 /// Returns the value of the upper half of PART.
2307 static inline APInt::WordType highHalf(APInt::WordType part) {
2308   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2309 }
2310 
2311 /// Returns the bit number of the most significant set bit of a part.
2312 /// If the input number has no bits set -1U is returned.
2313 static unsigned partMSB(APInt::WordType value) {
2314   return findLastSet(value, ZB_Max);
2315 }
2316 
2317 /// Returns the bit number of the least significant set bit of a part.  If the
2318 /// input number has no bits set -1U is returned.
2319 static unsigned partLSB(APInt::WordType value) {
2320   return findFirstSet(value, ZB_Max);
2321 }
2322 
2323 /// Sets the least significant part of a bignum to the input value, and zeroes
2324 /// out higher parts.
2325 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2326   assert(parts > 0);
2327   dst[0] = part;
2328   for (unsigned i = 1; i < parts; i++)
2329     dst[i] = 0;
2330 }
2331 
2332 /// Assign one bignum to another.
2333 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2334   for (unsigned i = 0; i < parts; i++)
2335     dst[i] = src[i];
2336 }
2337 
2338 /// Returns true if a bignum is zero, false otherwise.
2339 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2340   for (unsigned i = 0; i < parts; i++)
2341     if (src[i])
2342       return false;
2343 
2344   return true;
2345 }
2346 
2347 /// Extract the given bit of a bignum; returns 0 or 1.
2348 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2349   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2350 }
2351 
2352 /// Set the given bit of a bignum.
2353 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2354   parts[whichWord(bit)] |= maskBit(bit);
2355 }
2356 
2357 /// Clears the given bit of a bignum.
2358 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2359   parts[whichWord(bit)] &= ~maskBit(bit);
2360 }
2361 
2362 /// Returns the bit number of the least significant set bit of a number.  If the
2363 /// input number has no bits set -1U is returned.
2364 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2365   for (unsigned i = 0; i < n; i++) {
2366     if (parts[i] != 0) {
2367       unsigned lsb = partLSB(parts[i]);
2368       return lsb + i * APINT_BITS_PER_WORD;
2369     }
2370   }
2371 
2372   return -1U;
2373 }
2374 
2375 /// Returns the bit number of the most significant set bit of a number.
2376 /// If the input number has no bits set -1U is returned.
2377 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2378   do {
2379     --n;
2380 
2381     if (parts[n] != 0) {
2382       unsigned msb = partMSB(parts[n]);
2383 
2384       return msb + n * APINT_BITS_PER_WORD;
2385     }
2386   } while (n);
2387 
2388   return -1U;
2389 }
2390 
2391 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2392 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2393 /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2394 /// */
2395 void
2396 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2397                  unsigned srcBits, unsigned srcLSB) {
2398   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2399   assert(dstParts <= dstCount);
2400 
2401   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2402   tcAssign(dst, src + firstSrcPart, dstParts);
2403 
2404   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2405   tcShiftRight(dst, dstParts, shift);
2406 
2407   // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2408   // in DST.  If this is less that srcBits, append the rest, else
2409   // clear the high bits.
2410   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2411   if (n < srcBits) {
2412     WordType mask = lowBitMask (srcBits - n);
2413     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2414                           << n % APINT_BITS_PER_WORD);
2415   } else if (n > srcBits) {
2416     if (srcBits % APINT_BITS_PER_WORD)
2417       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2418   }
2419 
2420   // Clear high parts.
2421   while (dstParts < dstCount)
2422     dst[dstParts++] = 0;
2423 }
2424 
2425 //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2426 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2427                              WordType c, unsigned parts) {
2428   assert(c <= 1);
2429 
2430   for (unsigned i = 0; i < parts; i++) {
2431     WordType l = dst[i];
2432     if (c) {
2433       dst[i] += rhs[i] + 1;
2434       c = (dst[i] <= l);
2435     } else {
2436       dst[i] += rhs[i];
2437       c = (dst[i] < l);
2438     }
2439   }
2440 
2441   return c;
2442 }
2443 
2444 /// This function adds a single "word" integer, src, to the multiple
2445 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2446 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2447 /// @returns the carry of the addition.
2448 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2449                                  unsigned parts) {
2450   for (unsigned i = 0; i < parts; ++i) {
2451     dst[i] += src;
2452     if (dst[i] >= src)
2453       return 0; // No need to carry so exit early.
2454     src = 1; // Carry one to next digit.
2455   }
2456 
2457   return 1;
2458 }
2459 
2460 /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2461 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2462                                   WordType c, unsigned parts) {
2463   assert(c <= 1);
2464 
2465   for (unsigned i = 0; i < parts; i++) {
2466     WordType l = dst[i];
2467     if (c) {
2468       dst[i] -= rhs[i] + 1;
2469       c = (dst[i] >= l);
2470     } else {
2471       dst[i] -= rhs[i];
2472       c = (dst[i] > l);
2473     }
2474   }
2475 
2476   return c;
2477 }
2478 
2479 /// This function subtracts a single "word" (64-bit word), src, from
2480 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2481 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2482 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2483 /// exhausted. In other words, if src > dst then this function returns 1,
2484 /// otherwise 0.
2485 /// @returns the borrow out of the subtraction
2486 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2487                                       unsigned parts) {
2488   for (unsigned i = 0; i < parts; ++i) {
2489     WordType Dst = dst[i];
2490     dst[i] -= src;
2491     if (src <= Dst)
2492       return 0; // No need to borrow so exit early.
2493     src = 1; // We have to "borrow 1" from next "word"
2494   }
2495 
2496   return 1;
2497 }
2498 
2499 /// Negate a bignum in-place.
2500 void APInt::tcNegate(WordType *dst, unsigned parts) {
2501   tcComplement(dst, parts);
2502   tcIncrement(dst, parts);
2503 }
2504 
2505 /// DST += SRC * MULTIPLIER + CARRY   if add is true
2506 /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2507 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2508 /// they must start at the same point, i.e. DST == SRC.
2509 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2510 /// returned.  Otherwise DST is filled with the least significant
2511 /// DSTPARTS parts of the result, and if all of the omitted higher
2512 /// parts were zero return zero, otherwise overflow occurred and
2513 /// return one.
2514 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2515                           WordType multiplier, WordType carry,
2516                           unsigned srcParts, unsigned dstParts,
2517                           bool add) {
2518   // Otherwise our writes of DST kill our later reads of SRC.
2519   assert(dst <= src || dst >= src + srcParts);
2520   assert(dstParts <= srcParts + 1);
2521 
2522   // N loops; minimum of dstParts and srcParts.
2523   unsigned n = std::min(dstParts, srcParts);
2524 
2525   for (unsigned i = 0; i < n; i++) {
2526     // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2527     // This cannot overflow, because:
2528     //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2529     // which is less than n^2.
2530     WordType srcPart = src[i];
2531     WordType low, mid, high;
2532     if (multiplier == 0 || srcPart == 0) {
2533       low = carry;
2534       high = 0;
2535     } else {
2536       low = lowHalf(srcPart) * lowHalf(multiplier);
2537       high = highHalf(srcPart) * highHalf(multiplier);
2538 
2539       mid = lowHalf(srcPart) * highHalf(multiplier);
2540       high += highHalf(mid);
2541       mid <<= APINT_BITS_PER_WORD / 2;
2542       if (low + mid < low)
2543         high++;
2544       low += mid;
2545 
2546       mid = highHalf(srcPart) * lowHalf(multiplier);
2547       high += highHalf(mid);
2548       mid <<= APINT_BITS_PER_WORD / 2;
2549       if (low + mid < low)
2550         high++;
2551       low += mid;
2552 
2553       // Now add carry.
2554       if (low + carry < low)
2555         high++;
2556       low += carry;
2557     }
2558 
2559     if (add) {
2560       // And now DST[i], and store the new low part there.
2561       if (low + dst[i] < low)
2562         high++;
2563       dst[i] += low;
2564     } else
2565       dst[i] = low;
2566 
2567     carry = high;
2568   }
2569 
2570   if (srcParts < dstParts) {
2571     // Full multiplication, there is no overflow.
2572     assert(srcParts + 1 == dstParts);
2573     dst[srcParts] = carry;
2574     return 0;
2575   }
2576 
2577   // We overflowed if there is carry.
2578   if (carry)
2579     return 1;
2580 
2581   // We would overflow if any significant unwritten parts would be
2582   // non-zero.  This is true if any remaining src parts are non-zero
2583   // and the multiplier is non-zero.
2584   if (multiplier)
2585     for (unsigned i = dstParts; i < srcParts; i++)
2586       if (src[i])
2587         return 1;
2588 
2589   // We fitted in the narrow destination.
2590   return 0;
2591 }
2592 
2593 /// DST = LHS * RHS, where DST has the same width as the operands and
2594 /// is filled with the least significant parts of the result.  Returns
2595 /// one if overflow occurred, otherwise zero.  DST must be disjoint
2596 /// from both operands.
2597 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2598                       const WordType *rhs, unsigned parts) {
2599   assert(dst != lhs && dst != rhs);
2600 
2601   int overflow = 0;
2602   tcSet(dst, 0, parts);
2603 
2604   for (unsigned i = 0; i < parts; i++)
2605     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2606                                parts - i, true);
2607 
2608   return overflow;
2609 }
2610 
2611 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2612 /// operands. No overflow occurs. DST must be disjoint from both operands.
2613 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2614                            const WordType *rhs, unsigned lhsParts,
2615                            unsigned rhsParts) {
2616   // Put the narrower number on the LHS for less loops below.
2617   if (lhsParts > rhsParts)
2618     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2619 
2620   assert(dst != lhs && dst != rhs);
2621 
2622   tcSet(dst, 0, rhsParts);
2623 
2624   for (unsigned i = 0; i < lhsParts; i++)
2625     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2626 }
2627 
2628 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2629 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2630 // set REMAINDER to the remainder, return zero.  i.e.
2631 //
2632 //   OLD_LHS = RHS * LHS + REMAINDER
2633 //
2634 // SCRATCH is a bignum of the same size as the operands and result for
2635 // use by the routine; its contents need not be initialized and are
2636 // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2637 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2638                     WordType *remainder, WordType *srhs,
2639                     unsigned parts) {
2640   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2641 
2642   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2643   if (shiftCount == 0)
2644     return true;
2645 
2646   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2647   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2648   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2649 
2650   tcAssign(srhs, rhs, parts);
2651   tcShiftLeft(srhs, parts, shiftCount);
2652   tcAssign(remainder, lhs, parts);
2653   tcSet(lhs, 0, parts);
2654 
2655   // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2656   // total.
2657   for (;;) {
2658     int compare = tcCompare(remainder, srhs, parts);
2659     if (compare >= 0) {
2660       tcSubtract(remainder, srhs, 0, parts);
2661       lhs[n] |= mask;
2662     }
2663 
2664     if (shiftCount == 0)
2665       break;
2666     shiftCount--;
2667     tcShiftRight(srhs, parts, 1);
2668     if ((mask >>= 1) == 0) {
2669       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2670       n--;
2671     }
2672   }
2673 
2674   return false;
2675 }
2676 
2677 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2678 /// no restrictions on Count.
2679 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2680   // Don't bother performing a no-op shift.
2681   if (!Count)
2682     return;
2683 
2684   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2685   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2686   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2687 
2688   // Fastpath for moving by whole words.
2689   if (BitShift == 0) {
2690     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2691   } else {
2692     while (Words-- > WordShift) {
2693       Dst[Words] = Dst[Words - WordShift] << BitShift;
2694       if (Words > WordShift)
2695         Dst[Words] |=
2696           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2697     }
2698   }
2699 
2700   // Fill in the remainder with 0s.
2701   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2702 }
2703 
2704 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2705 /// are no restrictions on Count.
2706 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2707   // Don't bother performing a no-op shift.
2708   if (!Count)
2709     return;
2710 
2711   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2712   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2713   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2714 
2715   unsigned WordsToMove = Words - WordShift;
2716   // Fastpath for moving by whole words.
2717   if (BitShift == 0) {
2718     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2719   } else {
2720     for (unsigned i = 0; i != WordsToMove; ++i) {
2721       Dst[i] = Dst[i + WordShift] >> BitShift;
2722       if (i + 1 != WordsToMove)
2723         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2724     }
2725   }
2726 
2727   // Fill in the remainder with 0s.
2728   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2729 }
2730 
2731 // Comparison (unsigned) of two bignums.
2732 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2733                      unsigned parts) {
2734   while (parts) {
2735     parts--;
2736     if (lhs[parts] != rhs[parts])
2737       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2738   }
2739 
2740   return 0;
2741 }
2742 
2743 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2744                                    APInt::Rounding RM) {
2745   // Currently udivrem always rounds down.
2746   switch (RM) {
2747   case APInt::Rounding::DOWN:
2748   case APInt::Rounding::TOWARD_ZERO:
2749     return A.udiv(B);
2750   case APInt::Rounding::UP: {
2751     APInt Quo, Rem;
2752     APInt::udivrem(A, B, Quo, Rem);
2753     if (Rem.isZero())
2754       return Quo;
2755     return Quo + 1;
2756   }
2757   }
2758   llvm_unreachable("Unknown APInt::Rounding enum");
2759 }
2760 
2761 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2762                                    APInt::Rounding RM) {
2763   switch (RM) {
2764   case APInt::Rounding::DOWN:
2765   case APInt::Rounding::UP: {
2766     APInt Quo, Rem;
2767     APInt::sdivrem(A, B, Quo, Rem);
2768     if (Rem.isZero())
2769       return Quo;
2770     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2771     // We want to check whether the non-integer part of the mathematical value
2772     // is negative or not. If the non-integer part is negative, we need to round
2773     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2774     // already rounded down.
2775     if (RM == APInt::Rounding::DOWN) {
2776       if (Rem.isNegative() != B.isNegative())
2777         return Quo - 1;
2778       return Quo;
2779     }
2780     if (Rem.isNegative() != B.isNegative())
2781       return Quo;
2782     return Quo + 1;
2783   }
2784   // Currently sdiv rounds towards zero.
2785   case APInt::Rounding::TOWARD_ZERO:
2786     return A.sdiv(B);
2787   }
2788   llvm_unreachable("Unknown APInt::Rounding enum");
2789 }
2790 
2791 Optional<APInt>
2792 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2793                                            unsigned RangeWidth) {
2794   unsigned CoeffWidth = A.getBitWidth();
2795   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2796   assert(RangeWidth <= CoeffWidth &&
2797          "Value range width should be less than coefficient width");
2798   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2799 
2800   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2801                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2802 
2803   // Identify 0 as a (non)solution immediately.
2804   if (C.sextOrTrunc(RangeWidth).isZero()) {
2805     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2806     return APInt(CoeffWidth, 0);
2807   }
2808 
2809   // The result of APInt arithmetic has the same bit width as the operands,
2810   // so it can actually lose high bits. A product of two n-bit integers needs
2811   // 2n-1 bits to represent the full value.
2812   // The operation done below (on quadratic coefficients) that can produce
2813   // the largest value is the evaluation of the equation during bisection,
2814   // which needs 3 times the bitwidth of the coefficient, so the total number
2815   // of required bits is 3n.
2816   //
2817   // The purpose of this extension is to simulate the set Z of all integers,
2818   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2819   // and negative numbers (not so much in a modulo arithmetic). The method
2820   // used to solve the equation is based on the standard formula for real
2821   // numbers, and uses the concepts of "positive" and "negative" with their
2822   // usual meanings.
2823   CoeffWidth *= 3;
2824   A = A.sext(CoeffWidth);
2825   B = B.sext(CoeffWidth);
2826   C = C.sext(CoeffWidth);
2827 
2828   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2829   // the bit width has increased.
2830   if (A.isNegative()) {
2831     A.negate();
2832     B.negate();
2833     C.negate();
2834   }
2835 
2836   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2837   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2838   // and R = 2^BitWidth.
2839   // Since we're trying not only to find exact solutions, but also values
2840   // that "wrap around", such a set will always have a solution, i.e. an x
2841   // that satisfies at least one of the equations, or such that |q(x)|
2842   // exceeds kR, while |q(x-1)| for the same k does not.
2843   //
2844   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2845   // positive solution n (in the above sense), and also such that the n
2846   // will be the least among all solutions corresponding to k = 0, 1, ...
2847   // (more precisely, the least element in the set
2848   //   { n(k) | k is such that a solution n(k) exists }).
2849   //
2850   // Consider the parabola (over real numbers) that corresponds to the
2851   // quadratic equation. Since A > 0, the arms of the parabola will point
2852   // up. Picking different values of k will shift it up and down by R.
2853   //
2854   // We want to shift the parabola in such a way as to reduce the problem
2855   // of solving q(x) = kR to solving shifted_q(x) = 0.
2856   // (The interesting solutions are the ceilings of the real number
2857   // solutions.)
2858   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2859   APInt TwoA = 2 * A;
2860   APInt SqrB = B * B;
2861   bool PickLow;
2862 
2863   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2864     assert(A.isStrictlyPositive());
2865     APInt T = V.abs().urem(A);
2866     if (T.isZero())
2867       return V;
2868     return V.isNegative() ? V+T : V+(A-T);
2869   };
2870 
2871   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2872   // iff B is positive.
2873   if (B.isNonNegative()) {
2874     // If B >= 0, the vertex it at a negative location (or at 0), so in
2875     // order to have a non-negative solution we need to pick k that makes
2876     // C-kR negative. To satisfy all the requirements for the solution
2877     // that we are looking for, it needs to be closest to 0 of all k.
2878     C = C.srem(R);
2879     if (C.isStrictlyPositive())
2880       C -= R;
2881     // Pick the greater solution.
2882     PickLow = false;
2883   } else {
2884     // If B < 0, the vertex is at a positive location. For any solution
2885     // to exist, the discriminant must be non-negative. This means that
2886     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2887     // lower bound on values of k: kR >= C - B^2/4A.
2888     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2889     // Round LowkR up (towards +inf) to the nearest kR.
2890     LowkR = RoundUp(LowkR, R);
2891 
2892     // If there exists k meeting the condition above, and such that
2893     // C-kR > 0, there will be two positive real number solutions of
2894     // q(x) = kR. Out of all such values of k, pick the one that makes
2895     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2896     // In other words, find maximum k such that LowkR <= kR < C.
2897     if (C.sgt(LowkR)) {
2898       // If LowkR < C, then such a k is guaranteed to exist because
2899       // LowkR itself is a multiple of R.
2900       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2901       // Pick the smaller solution.
2902       PickLow = true;
2903     } else {
2904       // If C-kR < 0 for all potential k's, it means that one solution
2905       // will be negative, while the other will be positive. The positive
2906       // solution will shift towards 0 if the parabola is moved up.
2907       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2908       // to 0, or in other words, out of all parabolas that have solutions,
2909       // pick the one that is the farthest "up").
2910       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2911       C -= LowkR;
2912       // Pick the greater solution.
2913       PickLow = false;
2914     }
2915   }
2916 
2917   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2918                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2919 
2920   APInt D = SqrB - 4*A*C;
2921   assert(D.isNonNegative() && "Negative discriminant");
2922   APInt SQ = D.sqrt();
2923 
2924   APInt Q = SQ * SQ;
2925   bool InexactSQ = Q != D;
2926   // The calculated SQ may actually be greater than the exact (non-integer)
2927   // value. If that's the case, decrement SQ to get a value that is lower.
2928   if (Q.sgt(D))
2929     SQ -= 1;
2930 
2931   APInt X;
2932   APInt Rem;
2933 
2934   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2935   // When using the quadratic formula directly, the calculated low root
2936   // may be greater than the exact one, since we would be subtracting SQ.
2937   // To make sure that the calculated root is not greater than the exact
2938   // one, subtract SQ+1 when calculating the low root (for inexact value
2939   // of SQ).
2940   if (PickLow)
2941     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2942   else
2943     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2944 
2945   // The updated coefficients should be such that the (exact) solution is
2946   // positive. Since APInt division rounds towards 0, the calculated one
2947   // can be 0, but cannot be negative.
2948   assert(X.isNonNegative() && "Solution should be non-negative");
2949 
2950   if (!InexactSQ && Rem.isZero()) {
2951     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2952     return X;
2953   }
2954 
2955   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2956   // The exact value of the square root of D should be between SQ and SQ+1.
2957   // This implies that the solution should be between that corresponding to
2958   // SQ (i.e. X) and that corresponding to SQ+1.
2959   //
2960   // The calculated X cannot be greater than the exact (real) solution.
2961   // Actually it must be strictly less than the exact solution, while
2962   // X+1 will be greater than or equal to it.
2963 
2964   APInt VX = (A*X + B)*X + C;
2965   APInt VY = VX + TwoA*X + A + B;
2966   bool SignChange =
2967       VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2968   // If the sign did not change between X and X+1, X is not a valid solution.
2969   // This could happen when the actual (exact) roots don't have an integer
2970   // between them, so they would both be contained between X and X+1.
2971   if (!SignChange) {
2972     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2973     return None;
2974   }
2975 
2976   X += 1;
2977   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2978   return X;
2979 }
2980 
2981 Optional<unsigned>
2982 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2983   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2984   if (A == B)
2985     return llvm::None;
2986   return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
2987 }
2988 
2989 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) {
2990   unsigned OldBitWidth = A.getBitWidth();
2991   assert((((OldBitWidth % NewBitWidth) == 0) ||
2992           ((NewBitWidth % OldBitWidth) == 0)) &&
2993          "One size should be a multiple of the other one. "
2994          "Can't do fractional scaling.");
2995 
2996   // Check for matching bitwidths.
2997   if (OldBitWidth == NewBitWidth)
2998     return A;
2999 
3000   APInt NewA = APInt::getZero(NewBitWidth);
3001 
3002   // Check for null input.
3003   if (A.isZero())
3004     return NewA;
3005 
3006   if (NewBitWidth > OldBitWidth) {
3007     // Repeat bits.
3008     unsigned Scale = NewBitWidth / OldBitWidth;
3009     for (unsigned i = 0; i != OldBitWidth; ++i)
3010       if (A[i])
3011         NewA.setBits(i * Scale, (i + 1) * Scale);
3012   } else {
3013     // Merge bits - if any old bit is set, then set scale equivalent new bit.
3014     unsigned Scale = OldBitWidth / NewBitWidth;
3015     for (unsigned i = 0; i != NewBitWidth; ++i)
3016       if (!A.extractBits(Scale, i * Scale).isZero())
3017         NewA.setBit(i);
3018   }
3019 
3020   return NewA;
3021 }
3022 
3023 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3024 /// with the integer held in IntVal.
3025 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3026                             unsigned StoreBytes) {
3027   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3028   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3029 
3030   if (sys::IsLittleEndianHost) {
3031     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3032     // destination from LSB to MSB: Do a straight copy.
3033     memcpy(Dst, Src, StoreBytes);
3034   } else {
3035     // Big-endian host - the source is an array of 64 bit words ordered from
3036     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3037     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3038     while (StoreBytes > sizeof(uint64_t)) {
3039       StoreBytes -= sizeof(uint64_t);
3040       // May not be aligned so use memcpy.
3041       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3042       Src += sizeof(uint64_t);
3043     }
3044 
3045     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3046   }
3047 }
3048 
3049 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3050 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3051 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3052                              unsigned LoadBytes) {
3053   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3054   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3055                    const_cast<uint64_t *>(IntVal.getRawData()));
3056 
3057   if (sys::IsLittleEndianHost)
3058     // Little-endian host - the destination must be ordered from LSB to MSB.
3059     // The source is ordered from LSB to MSB: Do a straight copy.
3060     memcpy(Dst, Src, LoadBytes);
3061   else {
3062     // Big-endian - the destination is an array of 64 bit words ordered from
3063     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3064     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3065     // a word.
3066     while (LoadBytes > sizeof(uint64_t)) {
3067       LoadBytes -= sizeof(uint64_t);
3068       // May not be aligned so use memcpy.
3069       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3070       Dst += sizeof(uint64_t);
3071     }
3072 
3073     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3074   }
3075 }
3076