1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision integer 10 // constant values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/bit.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <climits> 28 #include <cmath> 29 #include <cstdlib> 30 #include <cstring> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "apint" 34 35 /// A utility function for allocating memory, checking for allocation failures, 36 /// and ensuring the contents are zeroed. 37 inline static uint64_t* getClearedMemory(unsigned numWords) { 38 uint64_t *result = new uint64_t[numWords]; 39 memset(result, 0, numWords * sizeof(uint64_t)); 40 return result; 41 } 42 43 /// A utility function for allocating memory and checking for allocation 44 /// failure. The content is not zeroed. 45 inline static uint64_t* getMemory(unsigned numWords) { 46 return new uint64_t[numWords]; 47 } 48 49 /// A utility function that converts a character to a digit. 50 inline static unsigned getDigit(char cdigit, uint8_t radix) { 51 unsigned r; 52 53 if (radix == 16 || radix == 36) { 54 r = cdigit - '0'; 55 if (r <= 9) 56 return r; 57 58 r = cdigit - 'A'; 59 if (r <= radix - 11U) 60 return r + 10; 61 62 r = cdigit - 'a'; 63 if (r <= radix - 11U) 64 return r + 10; 65 66 radix = 10; 67 } 68 69 r = cdigit - '0'; 70 if (r < radix) 71 return r; 72 73 return -1U; 74 } 75 76 77 void APInt::initSlowCase(uint64_t val, bool isSigned) { 78 U.pVal = getClearedMemory(getNumWords()); 79 U.pVal[0] = val; 80 if (isSigned && int64_t(val) < 0) 81 for (unsigned i = 1; i < getNumWords(); ++i) 82 U.pVal[i] = WORDTYPE_MAX; 83 clearUnusedBits(); 84 } 85 86 void APInt::initSlowCase(const APInt& that) { 87 U.pVal = getMemory(getNumWords()); 88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 89 } 90 91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 92 assert(bigVal.data() && "Null pointer detected!"); 93 if (isSingleWord()) 94 U.VAL = bigVal[0]; 95 else { 96 // Get memory, cleared to 0 97 U.pVal = getClearedMemory(getNumWords()); 98 // Calculate the number of words to copy 99 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 100 // Copy the words from bigVal to pVal 101 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 102 } 103 // Make sure unused high bits are cleared 104 clearUnusedBits(); 105 } 106 107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { 108 initFromArray(bigVal); 109 } 110 111 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 112 : BitWidth(numBits) { 113 initFromArray(makeArrayRef(bigVal, numWords)); 114 } 115 116 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 117 : BitWidth(numbits) { 118 fromString(numbits, Str, radix); 119 } 120 121 void APInt::reallocate(unsigned NewBitWidth) { 122 // If the number of words is the same we can just change the width and stop. 123 if (getNumWords() == getNumWords(NewBitWidth)) { 124 BitWidth = NewBitWidth; 125 return; 126 } 127 128 // If we have an allocation, delete it. 129 if (!isSingleWord()) 130 delete [] U.pVal; 131 132 // Update BitWidth. 133 BitWidth = NewBitWidth; 134 135 // If we are supposed to have an allocation, create it. 136 if (!isSingleWord()) 137 U.pVal = getMemory(getNumWords()); 138 } 139 140 void APInt::assignSlowCase(const APInt &RHS) { 141 // Don't do anything for X = X 142 if (this == &RHS) 143 return; 144 145 // Adjust the bit width and handle allocations as necessary. 146 reallocate(RHS.getBitWidth()); 147 148 // Copy the data. 149 if (isSingleWord()) 150 U.VAL = RHS.U.VAL; 151 else 152 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 153 } 154 155 /// This method 'profiles' an APInt for use with FoldingSet. 156 void APInt::Profile(FoldingSetNodeID& ID) const { 157 ID.AddInteger(BitWidth); 158 159 if (isSingleWord()) { 160 ID.AddInteger(U.VAL); 161 return; 162 } 163 164 unsigned NumWords = getNumWords(); 165 for (unsigned i = 0; i < NumWords; ++i) 166 ID.AddInteger(U.pVal[i]); 167 } 168 169 /// Prefix increment operator. Increments the APInt by one. 170 APInt& APInt::operator++() { 171 if (isSingleWord()) 172 ++U.VAL; 173 else 174 tcIncrement(U.pVal, getNumWords()); 175 return clearUnusedBits(); 176 } 177 178 /// Prefix decrement operator. Decrements the APInt by one. 179 APInt& APInt::operator--() { 180 if (isSingleWord()) 181 --U.VAL; 182 else 183 tcDecrement(U.pVal, getNumWords()); 184 return clearUnusedBits(); 185 } 186 187 /// Adds the RHS APInt to this APInt. 188 /// @returns this, after addition of RHS. 189 /// Addition assignment operator. 190 APInt& APInt::operator+=(const APInt& RHS) { 191 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 192 if (isSingleWord()) 193 U.VAL += RHS.U.VAL; 194 else 195 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 196 return clearUnusedBits(); 197 } 198 199 APInt& APInt::operator+=(uint64_t RHS) { 200 if (isSingleWord()) 201 U.VAL += RHS; 202 else 203 tcAddPart(U.pVal, RHS, getNumWords()); 204 return clearUnusedBits(); 205 } 206 207 /// Subtracts the RHS APInt from this APInt 208 /// @returns this, after subtraction 209 /// Subtraction assignment operator. 210 APInt& APInt::operator-=(const APInt& RHS) { 211 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 212 if (isSingleWord()) 213 U.VAL -= RHS.U.VAL; 214 else 215 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 216 return clearUnusedBits(); 217 } 218 219 APInt& APInt::operator-=(uint64_t RHS) { 220 if (isSingleWord()) 221 U.VAL -= RHS; 222 else 223 tcSubtractPart(U.pVal, RHS, getNumWords()); 224 return clearUnusedBits(); 225 } 226 227 APInt APInt::operator*(const APInt& RHS) const { 228 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 229 if (isSingleWord()) 230 return APInt(BitWidth, U.VAL * RHS.U.VAL); 231 232 APInt Result(getMemory(getNumWords()), getBitWidth()); 233 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 234 Result.clearUnusedBits(); 235 return Result; 236 } 237 238 void APInt::andAssignSlowCase(const APInt &RHS) { 239 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 240 for (size_t i = 0, e = getNumWords(); i != e; ++i) 241 dst[i] &= rhs[i]; 242 } 243 244 void APInt::orAssignSlowCase(const APInt &RHS) { 245 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 246 for (size_t i = 0, e = getNumWords(); i != e; ++i) 247 dst[i] |= rhs[i]; 248 } 249 250 void APInt::xorAssignSlowCase(const APInt &RHS) { 251 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 252 for (size_t i = 0, e = getNumWords(); i != e; ++i) 253 dst[i] ^= rhs[i]; 254 } 255 256 APInt &APInt::operator*=(const APInt &RHS) { 257 *this = *this * RHS; 258 return *this; 259 } 260 261 APInt& APInt::operator*=(uint64_t RHS) { 262 if (isSingleWord()) { 263 U.VAL *= RHS; 264 } else { 265 unsigned NumWords = getNumWords(); 266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 267 } 268 return clearUnusedBits(); 269 } 270 271 bool APInt::equalSlowCase(const APInt &RHS) const { 272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 273 } 274 275 int APInt::compare(const APInt& RHS) const { 276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 277 if (isSingleWord()) 278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 279 280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 281 } 282 283 int APInt::compareSigned(const APInt& RHS) const { 284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 285 if (isSingleWord()) { 286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 289 } 290 291 bool lhsNeg = isNegative(); 292 bool rhsNeg = RHS.isNegative(); 293 294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 295 if (lhsNeg != rhsNeg) 296 return lhsNeg ? -1 : 1; 297 298 // Otherwise we can just use an unsigned comparison, because even negative 299 // numbers compare correctly this way if both have the same signed-ness. 300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 301 } 302 303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 304 unsigned loWord = whichWord(loBit); 305 unsigned hiWord = whichWord(hiBit); 306 307 // Create an initial mask for the low word with zeros below loBit. 308 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); 309 310 // If hiBit is not aligned, we need a high mask. 311 unsigned hiShiftAmt = whichBit(hiBit); 312 if (hiShiftAmt != 0) { 313 // Create a high mask with zeros above hiBit. 314 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 315 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 316 // set the bits in hiWord. 317 if (hiWord == loWord) 318 loMask &= hiMask; 319 else 320 U.pVal[hiWord] |= hiMask; 321 } 322 // Apply the mask to the low word. 323 U.pVal[loWord] |= loMask; 324 325 // Fill any words between loWord and hiWord with all ones. 326 for (unsigned word = loWord + 1; word < hiWord; ++word) 327 U.pVal[word] = WORDTYPE_MAX; 328 } 329 330 // Complement a bignum in-place. 331 static void tcComplement(APInt::WordType *dst, unsigned parts) { 332 for (unsigned i = 0; i < parts; i++) 333 dst[i] = ~dst[i]; 334 } 335 336 /// Toggle every bit to its opposite value. 337 void APInt::flipAllBitsSlowCase() { 338 tcComplement(U.pVal, getNumWords()); 339 clearUnusedBits(); 340 } 341 342 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is 343 /// equivalent to: 344 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) 345 /// In the slow case, we know the result is large. 346 APInt APInt::concatSlowCase(const APInt &NewLSB) const { 347 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); 348 APInt Result = NewLSB.zextOrSelf(NewWidth); 349 Result.insertBits(*this, NewLSB.getBitWidth()); 350 return Result; 351 } 352 353 /// Toggle a given bit to its opposite value whose position is given 354 /// as "bitPosition". 355 /// Toggles a given bit to its opposite value. 356 void APInt::flipBit(unsigned bitPosition) { 357 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 358 setBitVal(bitPosition, !(*this)[bitPosition]); 359 } 360 361 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 362 unsigned subBitWidth = subBits.getBitWidth(); 363 assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion"); 364 365 // inserting no bits is a noop. 366 if (subBitWidth == 0) 367 return; 368 369 // Insertion is a direct copy. 370 if (subBitWidth == BitWidth) { 371 *this = subBits; 372 return; 373 } 374 375 // Single word result can be done as a direct bitmask. 376 if (isSingleWord()) { 377 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 378 U.VAL &= ~(mask << bitPosition); 379 U.VAL |= (subBits.U.VAL << bitPosition); 380 return; 381 } 382 383 unsigned loBit = whichBit(bitPosition); 384 unsigned loWord = whichWord(bitPosition); 385 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 386 387 // Insertion within a single word can be done as a direct bitmask. 388 if (loWord == hi1Word) { 389 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 390 U.pVal[loWord] &= ~(mask << loBit); 391 U.pVal[loWord] |= (subBits.U.VAL << loBit); 392 return; 393 } 394 395 // Insert on word boundaries. 396 if (loBit == 0) { 397 // Direct copy whole words. 398 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 399 memcpy(U.pVal + loWord, subBits.getRawData(), 400 numWholeSubWords * APINT_WORD_SIZE); 401 402 // Mask+insert remaining bits. 403 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 404 if (remainingBits != 0) { 405 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); 406 U.pVal[hi1Word] &= ~mask; 407 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 408 } 409 return; 410 } 411 412 // General case - set/clear individual bits in dst based on src. 413 // TODO - there is scope for optimization here, but at the moment this code 414 // path is barely used so prefer readability over performance. 415 for (unsigned i = 0; i != subBitWidth; ++i) 416 setBitVal(bitPosition + i, subBits[i]); 417 } 418 419 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { 420 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 421 subBits &= maskBits; 422 if (isSingleWord()) { 423 U.VAL &= ~(maskBits << bitPosition); 424 U.VAL |= subBits << bitPosition; 425 return; 426 } 427 428 unsigned loBit = whichBit(bitPosition); 429 unsigned loWord = whichWord(bitPosition); 430 unsigned hiWord = whichWord(bitPosition + numBits - 1); 431 if (loWord == hiWord) { 432 U.pVal[loWord] &= ~(maskBits << loBit); 433 U.pVal[loWord] |= subBits << loBit; 434 return; 435 } 436 437 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 438 unsigned wordBits = 8 * sizeof(WordType); 439 U.pVal[loWord] &= ~(maskBits << loBit); 440 U.pVal[loWord] |= subBits << loBit; 441 442 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); 443 U.pVal[hiWord] |= subBits >> (wordBits - loBit); 444 } 445 446 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 447 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 448 "Illegal bit extraction"); 449 450 if (isSingleWord()) 451 return APInt(numBits, U.VAL >> bitPosition); 452 453 unsigned loBit = whichBit(bitPosition); 454 unsigned loWord = whichWord(bitPosition); 455 unsigned hiWord = whichWord(bitPosition + numBits - 1); 456 457 // Single word result extracting bits from a single word source. 458 if (loWord == hiWord) 459 return APInt(numBits, U.pVal[loWord] >> loBit); 460 461 // Extracting bits that start on a source word boundary can be done 462 // as a fast memory copy. 463 if (loBit == 0) 464 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 465 466 // General case - shift + copy source words directly into place. 467 APInt Result(numBits, 0); 468 unsigned NumSrcWords = getNumWords(); 469 unsigned NumDstWords = Result.getNumWords(); 470 471 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 472 for (unsigned word = 0; word < NumDstWords; ++word) { 473 uint64_t w0 = U.pVal[loWord + word]; 474 uint64_t w1 = 475 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 476 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 477 } 478 479 return Result.clearUnusedBits(); 480 } 481 482 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, 483 unsigned bitPosition) const { 484 assert(numBits > 0 && "Can't extract zero bits"); 485 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 486 "Illegal bit extraction"); 487 assert(numBits <= 64 && "Illegal bit extraction"); 488 489 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 490 if (isSingleWord()) 491 return (U.VAL >> bitPosition) & maskBits; 492 493 unsigned loBit = whichBit(bitPosition); 494 unsigned loWord = whichWord(bitPosition); 495 unsigned hiWord = whichWord(bitPosition + numBits - 1); 496 if (loWord == hiWord) 497 return (U.pVal[loWord] >> loBit) & maskBits; 498 499 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 500 unsigned wordBits = 8 * sizeof(WordType); 501 uint64_t retBits = U.pVal[loWord] >> loBit; 502 retBits |= U.pVal[hiWord] << (wordBits - loBit); 503 retBits &= maskBits; 504 return retBits; 505 } 506 507 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 508 assert(!str.empty() && "Invalid string length"); 509 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 510 radix == 36) && 511 "Radix should be 2, 8, 10, 16, or 36!"); 512 513 size_t slen = str.size(); 514 515 // Each computation below needs to know if it's negative. 516 StringRef::iterator p = str.begin(); 517 unsigned isNegative = *p == '-'; 518 if (*p == '-' || *p == '+') { 519 p++; 520 slen--; 521 assert(slen && "String is only a sign, needs a value."); 522 } 523 524 // For radixes of power-of-two values, the bits required is accurately and 525 // easily computed 526 if (radix == 2) 527 return slen + isNegative; 528 if (radix == 8) 529 return slen * 3 + isNegative; 530 if (radix == 16) 531 return slen * 4 + isNegative; 532 533 // FIXME: base 36 534 535 // This is grossly inefficient but accurate. We could probably do something 536 // with a computation of roughly slen*64/20 and then adjust by the value of 537 // the first few digits. But, I'm not sure how accurate that could be. 538 539 // Compute a sufficient number of bits that is always large enough but might 540 // be too large. This avoids the assertion in the constructor. This 541 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 542 // bits in that case. 543 unsigned sufficient 544 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 545 : (slen == 1 ? 7 : slen * 16/3); 546 547 // Convert to the actual binary value. 548 APInt tmp(sufficient, StringRef(p, slen), radix); 549 550 // Compute how many bits are required. If the log is infinite, assume we need 551 // just bit. If the log is exact and value is negative, then the value is 552 // MinSignedValue with (log + 1) bits. 553 unsigned log = tmp.logBase2(); 554 if (log == (unsigned)-1) { 555 return isNegative + 1; 556 } else if (isNegative && tmp.isPowerOf2()) { 557 return isNegative + log; 558 } else { 559 return isNegative + log + 1; 560 } 561 } 562 563 hash_code llvm::hash_value(const APInt &Arg) { 564 if (Arg.isSingleWord()) 565 return hash_combine(Arg.BitWidth, Arg.U.VAL); 566 567 return hash_combine( 568 Arg.BitWidth, 569 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); 570 } 571 572 unsigned DenseMapInfo<APInt>::getHashValue(const APInt &Key) { 573 return static_cast<unsigned>(hash_value(Key)); 574 } 575 576 bool APInt::isSplat(unsigned SplatSizeInBits) const { 577 assert(getBitWidth() % SplatSizeInBits == 0 && 578 "SplatSizeInBits must divide width!"); 579 // We can check that all parts of an integer are equal by making use of a 580 // little trick: rotate and check if it's still the same value. 581 return *this == rotl(SplatSizeInBits); 582 } 583 584 /// This function returns the high "numBits" bits of this APInt. 585 APInt APInt::getHiBits(unsigned numBits) const { 586 return this->lshr(BitWidth - numBits); 587 } 588 589 /// This function returns the low "numBits" bits of this APInt. 590 APInt APInt::getLoBits(unsigned numBits) const { 591 APInt Result(getLowBitsSet(BitWidth, numBits)); 592 Result &= *this; 593 return Result; 594 } 595 596 /// Return a value containing V broadcasted over NewLen bits. 597 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 598 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 599 600 APInt Val = V.zextOrSelf(NewLen); 601 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 602 Val |= Val << I; 603 604 return Val; 605 } 606 607 unsigned APInt::countLeadingZerosSlowCase() const { 608 unsigned Count = 0; 609 for (int i = getNumWords()-1; i >= 0; --i) { 610 uint64_t V = U.pVal[i]; 611 if (V == 0) 612 Count += APINT_BITS_PER_WORD; 613 else { 614 Count += llvm::countLeadingZeros(V); 615 break; 616 } 617 } 618 // Adjust for unused bits in the most significant word (they are zero). 619 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 620 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 621 return Count; 622 } 623 624 unsigned APInt::countLeadingOnesSlowCase() const { 625 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 626 unsigned shift; 627 if (!highWordBits) { 628 highWordBits = APINT_BITS_PER_WORD; 629 shift = 0; 630 } else { 631 shift = APINT_BITS_PER_WORD - highWordBits; 632 } 633 int i = getNumWords() - 1; 634 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); 635 if (Count == highWordBits) { 636 for (i--; i >= 0; --i) { 637 if (U.pVal[i] == WORDTYPE_MAX) 638 Count += APINT_BITS_PER_WORD; 639 else { 640 Count += llvm::countLeadingOnes(U.pVal[i]); 641 break; 642 } 643 } 644 } 645 return Count; 646 } 647 648 unsigned APInt::countTrailingZerosSlowCase() const { 649 unsigned Count = 0; 650 unsigned i = 0; 651 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 652 Count += APINT_BITS_PER_WORD; 653 if (i < getNumWords()) 654 Count += llvm::countTrailingZeros(U.pVal[i]); 655 return std::min(Count, BitWidth); 656 } 657 658 unsigned APInt::countTrailingOnesSlowCase() const { 659 unsigned Count = 0; 660 unsigned i = 0; 661 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) 662 Count += APINT_BITS_PER_WORD; 663 if (i < getNumWords()) 664 Count += llvm::countTrailingOnes(U.pVal[i]); 665 assert(Count <= BitWidth); 666 return Count; 667 } 668 669 unsigned APInt::countPopulationSlowCase() const { 670 unsigned Count = 0; 671 for (unsigned i = 0; i < getNumWords(); ++i) 672 Count += llvm::countPopulation(U.pVal[i]); 673 return Count; 674 } 675 676 bool APInt::intersectsSlowCase(const APInt &RHS) const { 677 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 678 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 679 return true; 680 681 return false; 682 } 683 684 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 685 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 686 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 687 return false; 688 689 return true; 690 } 691 692 APInt APInt::byteSwap() const { 693 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); 694 if (BitWidth == 16) 695 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); 696 if (BitWidth == 32) 697 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); 698 if (BitWidth <= 64) { 699 uint64_t Tmp1 = ByteSwap_64(U.VAL); 700 Tmp1 >>= (64 - BitWidth); 701 return APInt(BitWidth, Tmp1); 702 } 703 704 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 705 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 706 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); 707 if (Result.BitWidth != BitWidth) { 708 Result.lshrInPlace(Result.BitWidth - BitWidth); 709 Result.BitWidth = BitWidth; 710 } 711 return Result; 712 } 713 714 APInt APInt::reverseBits() const { 715 switch (BitWidth) { 716 case 64: 717 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 718 case 32: 719 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 720 case 16: 721 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 722 case 8: 723 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 724 case 0: 725 return *this; 726 default: 727 break; 728 } 729 730 APInt Val(*this); 731 APInt Reversed(BitWidth, 0); 732 unsigned S = BitWidth; 733 734 for (; Val != 0; Val.lshrInPlace(1)) { 735 Reversed <<= 1; 736 Reversed |= Val[0]; 737 --S; 738 } 739 740 Reversed <<= S; 741 return Reversed; 742 } 743 744 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 745 // Fast-path a common case. 746 if (A == B) return A; 747 748 // Corner cases: if either operand is zero, the other is the gcd. 749 if (!A) return B; 750 if (!B) return A; 751 752 // Count common powers of 2 and remove all other powers of 2. 753 unsigned Pow2; 754 { 755 unsigned Pow2_A = A.countTrailingZeros(); 756 unsigned Pow2_B = B.countTrailingZeros(); 757 if (Pow2_A > Pow2_B) { 758 A.lshrInPlace(Pow2_A - Pow2_B); 759 Pow2 = Pow2_B; 760 } else if (Pow2_B > Pow2_A) { 761 B.lshrInPlace(Pow2_B - Pow2_A); 762 Pow2 = Pow2_A; 763 } else { 764 Pow2 = Pow2_A; 765 } 766 } 767 768 // Both operands are odd multiples of 2^Pow_2: 769 // 770 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 771 // 772 // This is a modified version of Stein's algorithm, taking advantage of 773 // efficient countTrailingZeros(). 774 while (A != B) { 775 if (A.ugt(B)) { 776 A -= B; 777 A.lshrInPlace(A.countTrailingZeros() - Pow2); 778 } else { 779 B -= A; 780 B.lshrInPlace(B.countTrailingZeros() - Pow2); 781 } 782 } 783 784 return A; 785 } 786 787 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 788 uint64_t I = bit_cast<uint64_t>(Double); 789 790 // Get the sign bit from the highest order bit 791 bool isNeg = I >> 63; 792 793 // Get the 11-bit exponent and adjust for the 1023 bit bias 794 int64_t exp = ((I >> 52) & 0x7ff) - 1023; 795 796 // If the exponent is negative, the value is < 0 so just return 0. 797 if (exp < 0) 798 return APInt(width, 0u); 799 800 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 801 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; 802 803 // If the exponent doesn't shift all bits out of the mantissa 804 if (exp < 52) 805 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 806 APInt(width, mantissa >> (52 - exp)); 807 808 // If the client didn't provide enough bits for us to shift the mantissa into 809 // then the result is undefined, just return 0 810 if (width <= exp - 52) 811 return APInt(width, 0); 812 813 // Otherwise, we have to shift the mantissa bits up to the right location 814 APInt Tmp(width, mantissa); 815 Tmp <<= (unsigned)exp - 52; 816 return isNeg ? -Tmp : Tmp; 817 } 818 819 /// This function converts this APInt to a double. 820 /// The layout for double is as following (IEEE Standard 754): 821 /// -------------------------------------- 822 /// | Sign Exponent Fraction Bias | 823 /// |-------------------------------------- | 824 /// | 1[63] 11[62-52] 52[51-00] 1023 | 825 /// -------------------------------------- 826 double APInt::roundToDouble(bool isSigned) const { 827 828 // Handle the simple case where the value is contained in one uint64_t. 829 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 830 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 831 if (isSigned) { 832 int64_t sext = SignExtend64(getWord(0), BitWidth); 833 return double(sext); 834 } else 835 return double(getWord(0)); 836 } 837 838 // Determine if the value is negative. 839 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 840 841 // Construct the absolute value if we're negative. 842 APInt Tmp(isNeg ? -(*this) : (*this)); 843 844 // Figure out how many bits we're using. 845 unsigned n = Tmp.getActiveBits(); 846 847 // The exponent (without bias normalization) is just the number of bits 848 // we are using. Note that the sign bit is gone since we constructed the 849 // absolute value. 850 uint64_t exp = n; 851 852 // Return infinity for exponent overflow 853 if (exp > 1023) { 854 if (!isSigned || !isNeg) 855 return std::numeric_limits<double>::infinity(); 856 else 857 return -std::numeric_limits<double>::infinity(); 858 } 859 exp += 1023; // Increment for 1023 bias 860 861 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 862 // extract the high 52 bits from the correct words in pVal. 863 uint64_t mantissa; 864 unsigned hiWord = whichWord(n-1); 865 if (hiWord == 0) { 866 mantissa = Tmp.U.pVal[0]; 867 if (n > 52) 868 mantissa >>= n - 52; // shift down, we want the top 52 bits. 869 } else { 870 assert(hiWord > 0 && "huh?"); 871 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 872 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 873 mantissa = hibits | lobits; 874 } 875 876 // The leading bit of mantissa is implicit, so get rid of it. 877 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 878 uint64_t I = sign | (exp << 52) | mantissa; 879 return bit_cast<double>(I); 880 } 881 882 // Truncate to new width. 883 APInt APInt::trunc(unsigned width) const { 884 assert(width < BitWidth && "Invalid APInt Truncate request"); 885 886 if (width <= APINT_BITS_PER_WORD) 887 return APInt(width, getRawData()[0]); 888 889 APInt Result(getMemory(getNumWords(width)), width); 890 891 // Copy full words. 892 unsigned i; 893 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 894 Result.U.pVal[i] = U.pVal[i]; 895 896 // Truncate and copy any partial word. 897 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 898 if (bits != 0) 899 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 900 901 return Result; 902 } 903 904 // Truncate to new width with unsigned saturation. 905 APInt APInt::truncUSat(unsigned width) const { 906 assert(width < BitWidth && "Invalid APInt Truncate request"); 907 908 // Can we just losslessly truncate it? 909 if (isIntN(width)) 910 return trunc(width); 911 // If not, then just return the new limit. 912 return APInt::getMaxValue(width); 913 } 914 915 // Truncate to new width with signed saturation. 916 APInt APInt::truncSSat(unsigned width) const { 917 assert(width < BitWidth && "Invalid APInt Truncate request"); 918 919 // Can we just losslessly truncate it? 920 if (isSignedIntN(width)) 921 return trunc(width); 922 // If not, then just return the new limits. 923 return isNegative() ? APInt::getSignedMinValue(width) 924 : APInt::getSignedMaxValue(width); 925 } 926 927 // Sign extend to a new width. 928 APInt APInt::sext(unsigned Width) const { 929 assert(Width > BitWidth && "Invalid APInt SignExtend request"); 930 931 if (Width <= APINT_BITS_PER_WORD) 932 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 933 934 APInt Result(getMemory(getNumWords(Width)), Width); 935 936 // Copy words. 937 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 938 939 // Sign extend the last word since there may be unused bits in the input. 940 Result.U.pVal[getNumWords() - 1] = 941 SignExtend64(Result.U.pVal[getNumWords() - 1], 942 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 943 944 // Fill with sign bits. 945 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 946 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 947 Result.clearUnusedBits(); 948 return Result; 949 } 950 951 // Zero extend to a new width. 952 APInt APInt::zext(unsigned width) const { 953 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 954 955 if (width <= APINT_BITS_PER_WORD) 956 return APInt(width, U.VAL); 957 958 APInt Result(getMemory(getNumWords(width)), width); 959 960 // Copy words. 961 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 962 963 // Zero remaining words. 964 std::memset(Result.U.pVal + getNumWords(), 0, 965 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 966 967 return Result; 968 } 969 970 APInt APInt::zextOrTrunc(unsigned width) const { 971 if (BitWidth < width) 972 return zext(width); 973 if (BitWidth > width) 974 return trunc(width); 975 return *this; 976 } 977 978 APInt APInt::sextOrTrunc(unsigned width) const { 979 if (BitWidth < width) 980 return sext(width); 981 if (BitWidth > width) 982 return trunc(width); 983 return *this; 984 } 985 986 APInt APInt::truncOrSelf(unsigned width) const { 987 if (BitWidth > width) 988 return trunc(width); 989 return *this; 990 } 991 992 APInt APInt::zextOrSelf(unsigned width) const { 993 if (BitWidth < width) 994 return zext(width); 995 return *this; 996 } 997 998 APInt APInt::sextOrSelf(unsigned width) const { 999 if (BitWidth < width) 1000 return sext(width); 1001 return *this; 1002 } 1003 1004 /// Arithmetic right-shift this APInt by shiftAmt. 1005 /// Arithmetic right-shift function. 1006 void APInt::ashrInPlace(const APInt &shiftAmt) { 1007 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1008 } 1009 1010 /// Arithmetic right-shift this APInt by shiftAmt. 1011 /// Arithmetic right-shift function. 1012 void APInt::ashrSlowCase(unsigned ShiftAmt) { 1013 // Don't bother performing a no-op shift. 1014 if (!ShiftAmt) 1015 return; 1016 1017 // Save the original sign bit for later. 1018 bool Negative = isNegative(); 1019 1020 // WordShift is the inter-part shift; BitShift is intra-part shift. 1021 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 1022 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 1023 1024 unsigned WordsToMove = getNumWords() - WordShift; 1025 if (WordsToMove != 0) { 1026 // Sign extend the last word to fill in the unused bits. 1027 U.pVal[getNumWords() - 1] = SignExtend64( 1028 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 1029 1030 // Fastpath for moving by whole words. 1031 if (BitShift == 0) { 1032 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 1033 } else { 1034 // Move the words containing significant bits. 1035 for (unsigned i = 0; i != WordsToMove - 1; ++i) 1036 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 1037 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 1038 1039 // Handle the last word which has no high bits to copy. 1040 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 1041 // Sign extend one more time. 1042 U.pVal[WordsToMove - 1] = 1043 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 1044 } 1045 } 1046 1047 // Fill in the remainder based on the original sign. 1048 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 1049 WordShift * APINT_WORD_SIZE); 1050 clearUnusedBits(); 1051 } 1052 1053 /// Logical right-shift this APInt by shiftAmt. 1054 /// Logical right-shift function. 1055 void APInt::lshrInPlace(const APInt &shiftAmt) { 1056 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1057 } 1058 1059 /// Logical right-shift this APInt by shiftAmt. 1060 /// Logical right-shift function. 1061 void APInt::lshrSlowCase(unsigned ShiftAmt) { 1062 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 1063 } 1064 1065 /// Left-shift this APInt by shiftAmt. 1066 /// Left-shift function. 1067 APInt &APInt::operator<<=(const APInt &shiftAmt) { 1068 // It's undefined behavior in C to shift by BitWidth or greater. 1069 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 1070 return *this; 1071 } 1072 1073 void APInt::shlSlowCase(unsigned ShiftAmt) { 1074 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 1075 clearUnusedBits(); 1076 } 1077 1078 // Calculate the rotate amount modulo the bit width. 1079 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1080 if (LLVM_UNLIKELY(BitWidth == 0)) 1081 return 0; 1082 unsigned rotBitWidth = rotateAmt.getBitWidth(); 1083 APInt rot = rotateAmt; 1084 if (rotBitWidth < BitWidth) { 1085 // Extend the rotate APInt, so that the urem doesn't divide by 0. 1086 // e.g. APInt(1, 32) would give APInt(1, 0). 1087 rot = rotateAmt.zext(BitWidth); 1088 } 1089 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 1090 return rot.getLimitedValue(BitWidth); 1091 } 1092 1093 APInt APInt::rotl(const APInt &rotateAmt) const { 1094 return rotl(rotateModulo(BitWidth, rotateAmt)); 1095 } 1096 1097 APInt APInt::rotl(unsigned rotateAmt) const { 1098 if (LLVM_UNLIKELY(BitWidth == 0)) 1099 return *this; 1100 rotateAmt %= BitWidth; 1101 if (rotateAmt == 0) 1102 return *this; 1103 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1104 } 1105 1106 APInt APInt::rotr(const APInt &rotateAmt) const { 1107 return rotr(rotateModulo(BitWidth, rotateAmt)); 1108 } 1109 1110 APInt APInt::rotr(unsigned rotateAmt) const { 1111 if (BitWidth == 0) 1112 return *this; 1113 rotateAmt %= BitWidth; 1114 if (rotateAmt == 0) 1115 return *this; 1116 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1117 } 1118 1119 /// \returns the nearest log base 2 of this APInt. Ties round up. 1120 /// 1121 /// NOTE: When we have a BitWidth of 1, we define: 1122 /// 1123 /// log2(0) = UINT32_MAX 1124 /// log2(1) = 0 1125 /// 1126 /// to get around any mathematical concerns resulting from 1127 /// referencing 2 in a space where 2 does no exist. 1128 unsigned APInt::nearestLogBase2() const { 1129 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1130 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1131 // UINT32_MAX. 1132 if (BitWidth == 1) 1133 return U.VAL - 1; 1134 1135 // Handle the zero case. 1136 if (isZero()) 1137 return UINT32_MAX; 1138 1139 // The non-zero case is handled by computing: 1140 // 1141 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1142 // 1143 // where x[i] is referring to the value of the ith bit of x. 1144 unsigned lg = logBase2(); 1145 return lg + unsigned((*this)[lg - 1]); 1146 } 1147 1148 // Square Root - this method computes and returns the square root of "this". 1149 // Three mechanisms are used for computation. For small values (<= 5 bits), 1150 // a table lookup is done. This gets some performance for common cases. For 1151 // values using less than 52 bits, the value is converted to double and then 1152 // the libc sqrt function is called. The result is rounded and then converted 1153 // back to a uint64_t which is then used to construct the result. Finally, 1154 // the Babylonian method for computing square roots is used. 1155 APInt APInt::sqrt() const { 1156 1157 // Determine the magnitude of the value. 1158 unsigned magnitude = getActiveBits(); 1159 1160 // Use a fast table for some small values. This also gets rid of some 1161 // rounding errors in libc sqrt for small values. 1162 if (magnitude <= 5) { 1163 static const uint8_t results[32] = { 1164 /* 0 */ 0, 1165 /* 1- 2 */ 1, 1, 1166 /* 3- 6 */ 2, 2, 2, 2, 1167 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1168 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1169 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1170 /* 31 */ 6 1171 }; 1172 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1173 } 1174 1175 // If the magnitude of the value fits in less than 52 bits (the precision of 1176 // an IEEE double precision floating point value), then we can use the 1177 // libc sqrt function which will probably use a hardware sqrt computation. 1178 // This should be faster than the algorithm below. 1179 if (magnitude < 52) { 1180 return APInt(BitWidth, 1181 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1182 : U.pVal[0]))))); 1183 } 1184 1185 // Okay, all the short cuts are exhausted. We must compute it. The following 1186 // is a classical Babylonian method for computing the square root. This code 1187 // was adapted to APInt from a wikipedia article on such computations. 1188 // See http://www.wikipedia.org/ and go to the page named 1189 // Calculate_an_integer_square_root. 1190 unsigned nbits = BitWidth, i = 4; 1191 APInt testy(BitWidth, 16); 1192 APInt x_old(BitWidth, 1); 1193 APInt x_new(BitWidth, 0); 1194 APInt two(BitWidth, 2); 1195 1196 // Select a good starting value using binary logarithms. 1197 for (;; i += 2, testy = testy.shl(2)) 1198 if (i >= nbits || this->ule(testy)) { 1199 x_old = x_old.shl(i / 2); 1200 break; 1201 } 1202 1203 // Use the Babylonian method to arrive at the integer square root: 1204 for (;;) { 1205 x_new = (this->udiv(x_old) + x_old).udiv(two); 1206 if (x_old.ule(x_new)) 1207 break; 1208 x_old = x_new; 1209 } 1210 1211 // Make sure we return the closest approximation 1212 // NOTE: The rounding calculation below is correct. It will produce an 1213 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1214 // determined to be a rounding issue with pari/gp as it begins to use a 1215 // floating point representation after 192 bits. There are no discrepancies 1216 // between this algorithm and pari/gp for bit widths < 192 bits. 1217 APInt square(x_old * x_old); 1218 APInt nextSquare((x_old + 1) * (x_old +1)); 1219 if (this->ult(square)) 1220 return x_old; 1221 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1222 APInt midpoint((nextSquare - square).udiv(two)); 1223 APInt offset(*this - square); 1224 if (offset.ult(midpoint)) 1225 return x_old; 1226 return x_old + 1; 1227 } 1228 1229 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1230 /// iterative extended Euclidean algorithm is used to solve for this value, 1231 /// however we simplify it to speed up calculating only the inverse, and take 1232 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1233 /// (potentially large) APInts around. 1234 /// WARNING: a value of '0' may be returned, 1235 /// signifying that no multiplicative inverse exists! 1236 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1237 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1238 1239 // Using the properties listed at the following web page (accessed 06/21/08): 1240 // http://www.numbertheory.org/php/euclid.html 1241 // (especially the properties numbered 3, 4 and 9) it can be proved that 1242 // BitWidth bits suffice for all the computations in the algorithm implemented 1243 // below. More precisely, this number of bits suffice if the multiplicative 1244 // inverse exists, but may not suffice for the general extended Euclidean 1245 // algorithm. 1246 1247 APInt r[2] = { modulo, *this }; 1248 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1249 APInt q(BitWidth, 0); 1250 1251 unsigned i; 1252 for (i = 0; r[i^1] != 0; i ^= 1) { 1253 // An overview of the math without the confusing bit-flipping: 1254 // q = r[i-2] / r[i-1] 1255 // r[i] = r[i-2] % r[i-1] 1256 // t[i] = t[i-2] - t[i-1] * q 1257 udivrem(r[i], r[i^1], q, r[i]); 1258 t[i] -= t[i^1] * q; 1259 } 1260 1261 // If this APInt and the modulo are not coprime, there is no multiplicative 1262 // inverse, so return 0. We check this by looking at the next-to-last 1263 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1264 // algorithm. 1265 if (r[i] != 1) 1266 return APInt(BitWidth, 0); 1267 1268 // The next-to-last t is the multiplicative inverse. However, we are 1269 // interested in a positive inverse. Calculate a positive one from a negative 1270 // one if necessary. A simple addition of the modulo suffices because 1271 // abs(t[i]) is known to be less than *this/2 (see the link above). 1272 if (t[i].isNegative()) 1273 t[i] += modulo; 1274 1275 return std::move(t[i]); 1276 } 1277 1278 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1279 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1280 /// variables here have the same names as in the algorithm. Comments explain 1281 /// the algorithm and any deviation from it. 1282 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1283 unsigned m, unsigned n) { 1284 assert(u && "Must provide dividend"); 1285 assert(v && "Must provide divisor"); 1286 assert(q && "Must provide quotient"); 1287 assert(u != v && u != q && v != q && "Must use different memory"); 1288 assert(n>1 && "n must be > 1"); 1289 1290 // b denotes the base of the number system. In our case b is 2^32. 1291 const uint64_t b = uint64_t(1) << 32; 1292 1293 // The DEBUG macros here tend to be spam in the debug output if you're not 1294 // debugging this code. Disable them unless KNUTH_DEBUG is defined. 1295 #ifdef KNUTH_DEBUG 1296 #define DEBUG_KNUTH(X) LLVM_DEBUG(X) 1297 #else 1298 #define DEBUG_KNUTH(X) do {} while(false) 1299 #endif 1300 1301 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1302 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); 1303 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1304 DEBUG_KNUTH(dbgs() << " by"); 1305 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1306 DEBUG_KNUTH(dbgs() << '\n'); 1307 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1308 // u and v by d. Note that we have taken Knuth's advice here to use a power 1309 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1310 // 2 allows us to shift instead of multiply and it is easy to determine the 1311 // shift amount from the leading zeros. We are basically normalizing the u 1312 // and v so that its high bits are shifted to the top of v's range without 1313 // overflow. Note that this can require an extra word in u so that u must 1314 // be of length m+n+1. 1315 unsigned shift = countLeadingZeros(v[n-1]); 1316 uint32_t v_carry = 0; 1317 uint32_t u_carry = 0; 1318 if (shift) { 1319 for (unsigned i = 0; i < m+n; ++i) { 1320 uint32_t u_tmp = u[i] >> (32 - shift); 1321 u[i] = (u[i] << shift) | u_carry; 1322 u_carry = u_tmp; 1323 } 1324 for (unsigned i = 0; i < n; ++i) { 1325 uint32_t v_tmp = v[i] >> (32 - shift); 1326 v[i] = (v[i] << shift) | v_carry; 1327 v_carry = v_tmp; 1328 } 1329 } 1330 u[m+n] = u_carry; 1331 1332 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); 1333 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1334 DEBUG_KNUTH(dbgs() << " by"); 1335 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1336 DEBUG_KNUTH(dbgs() << '\n'); 1337 1338 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1339 int j = m; 1340 do { 1341 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1342 // D3. [Calculate q'.]. 1343 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1344 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1345 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1346 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1347 // on v[n-2] determines at high speed most of the cases in which the trial 1348 // value qp is one too large, and it eliminates all cases where qp is two 1349 // too large. 1350 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1351 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1352 uint64_t qp = dividend / v[n-1]; 1353 uint64_t rp = dividend % v[n-1]; 1354 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1355 qp--; 1356 rp += v[n-1]; 1357 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1358 qp--; 1359 } 1360 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1361 1362 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1363 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1364 // consists of a simple multiplication by a one-place number, combined with 1365 // a subtraction. 1366 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1367 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1368 // true value plus b**(n+1), namely as the b's complement of 1369 // the true value, and a "borrow" to the left should be remembered. 1370 int64_t borrow = 0; 1371 for (unsigned i = 0; i < n; ++i) { 1372 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1373 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1374 u[j+i] = Lo_32(subres); 1375 borrow = Hi_32(p) - Hi_32(subres); 1376 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 1377 << ", borrow = " << borrow << '\n'); 1378 } 1379 bool isNeg = u[j+n] < borrow; 1380 u[j+n] -= Lo_32(borrow); 1381 1382 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); 1383 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1384 DEBUG_KNUTH(dbgs() << '\n'); 1385 1386 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1387 // negative, go to step D6; otherwise go on to step D7. 1388 q[j] = Lo_32(qp); 1389 if (isNeg) { 1390 // D6. [Add back]. The probability that this step is necessary is very 1391 // small, on the order of only 2/b. Make sure that test data accounts for 1392 // this possibility. Decrease q[j] by 1 1393 q[j]--; 1394 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1395 // A carry will occur to the left of u[j+n], and it should be ignored 1396 // since it cancels with the borrow that occurred in D4. 1397 bool carry = false; 1398 for (unsigned i = 0; i < n; i++) { 1399 uint32_t limit = std::min(u[j+i],v[i]); 1400 u[j+i] += v[i] + carry; 1401 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1402 } 1403 u[j+n] += carry; 1404 } 1405 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); 1406 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1407 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1408 1409 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1410 } while (--j >= 0); 1411 1412 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); 1413 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 1414 DEBUG_KNUTH(dbgs() << '\n'); 1415 1416 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1417 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1418 // compute the remainder (urem uses this). 1419 if (r) { 1420 // The value d is expressed by the "shift" value above since we avoided 1421 // multiplication by d by using a shift left. So, all we have to do is 1422 // shift right here. 1423 if (shift) { 1424 uint32_t carry = 0; 1425 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); 1426 for (int i = n-1; i >= 0; i--) { 1427 r[i] = (u[i] >> shift) | carry; 1428 carry = u[i] << (32 - shift); 1429 DEBUG_KNUTH(dbgs() << " " << r[i]); 1430 } 1431 } else { 1432 for (int i = n-1; i >= 0; i--) { 1433 r[i] = u[i]; 1434 DEBUG_KNUTH(dbgs() << " " << r[i]); 1435 } 1436 } 1437 DEBUG_KNUTH(dbgs() << '\n'); 1438 } 1439 DEBUG_KNUTH(dbgs() << '\n'); 1440 } 1441 1442 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1443 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1444 assert(lhsWords >= rhsWords && "Fractional result"); 1445 1446 // First, compose the values into an array of 32-bit words instead of 1447 // 64-bit words. This is a necessity of both the "short division" algorithm 1448 // and the Knuth "classical algorithm" which requires there to be native 1449 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1450 // can't use 64-bit operands here because we don't have native results of 1451 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1452 // work on large-endian machines. 1453 unsigned n = rhsWords * 2; 1454 unsigned m = (lhsWords * 2) - n; 1455 1456 // Allocate space for the temporary values we need either on the stack, if 1457 // it will fit, or on the heap if it won't. 1458 uint32_t SPACE[128]; 1459 uint32_t *U = nullptr; 1460 uint32_t *V = nullptr; 1461 uint32_t *Q = nullptr; 1462 uint32_t *R = nullptr; 1463 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1464 U = &SPACE[0]; 1465 V = &SPACE[m+n+1]; 1466 Q = &SPACE[(m+n+1) + n]; 1467 if (Remainder) 1468 R = &SPACE[(m+n+1) + n + (m+n)]; 1469 } else { 1470 U = new uint32_t[m + n + 1]; 1471 V = new uint32_t[n]; 1472 Q = new uint32_t[m+n]; 1473 if (Remainder) 1474 R = new uint32_t[n]; 1475 } 1476 1477 // Initialize the dividend 1478 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1479 for (unsigned i = 0; i < lhsWords; ++i) { 1480 uint64_t tmp = LHS[i]; 1481 U[i * 2] = Lo_32(tmp); 1482 U[i * 2 + 1] = Hi_32(tmp); 1483 } 1484 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1485 1486 // Initialize the divisor 1487 memset(V, 0, (n)*sizeof(uint32_t)); 1488 for (unsigned i = 0; i < rhsWords; ++i) { 1489 uint64_t tmp = RHS[i]; 1490 V[i * 2] = Lo_32(tmp); 1491 V[i * 2 + 1] = Hi_32(tmp); 1492 } 1493 1494 // initialize the quotient and remainder 1495 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1496 if (Remainder) 1497 memset(R, 0, n * sizeof(uint32_t)); 1498 1499 // Now, adjust m and n for the Knuth division. n is the number of words in 1500 // the divisor. m is the number of words by which the dividend exceeds the 1501 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1502 // contain any zero words or the Knuth algorithm fails. 1503 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1504 n--; 1505 m++; 1506 } 1507 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1508 m--; 1509 1510 // If we're left with only a single word for the divisor, Knuth doesn't work 1511 // so we implement the short division algorithm here. This is much simpler 1512 // and faster because we are certain that we can divide a 64-bit quantity 1513 // by a 32-bit quantity at hardware speed and short division is simply a 1514 // series of such operations. This is just like doing short division but we 1515 // are using base 2^32 instead of base 10. 1516 assert(n != 0 && "Divide by zero?"); 1517 if (n == 1) { 1518 uint32_t divisor = V[0]; 1519 uint32_t remainder = 0; 1520 for (int i = m; i >= 0; i--) { 1521 uint64_t partial_dividend = Make_64(remainder, U[i]); 1522 if (partial_dividend == 0) { 1523 Q[i] = 0; 1524 remainder = 0; 1525 } else if (partial_dividend < divisor) { 1526 Q[i] = 0; 1527 remainder = Lo_32(partial_dividend); 1528 } else if (partial_dividend == divisor) { 1529 Q[i] = 1; 1530 remainder = 0; 1531 } else { 1532 Q[i] = Lo_32(partial_dividend / divisor); 1533 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1534 } 1535 } 1536 if (R) 1537 R[0] = remainder; 1538 } else { 1539 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1540 // case n > 1. 1541 KnuthDiv(U, V, Q, R, m, n); 1542 } 1543 1544 // If the caller wants the quotient 1545 if (Quotient) { 1546 for (unsigned i = 0; i < lhsWords; ++i) 1547 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1548 } 1549 1550 // If the caller wants the remainder 1551 if (Remainder) { 1552 for (unsigned i = 0; i < rhsWords; ++i) 1553 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1554 } 1555 1556 // Clean up the memory we allocated. 1557 if (U != &SPACE[0]) { 1558 delete [] U; 1559 delete [] V; 1560 delete [] Q; 1561 delete [] R; 1562 } 1563 } 1564 1565 APInt APInt::udiv(const APInt &RHS) const { 1566 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1567 1568 // First, deal with the easy case 1569 if (isSingleWord()) { 1570 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1571 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1572 } 1573 1574 // Get some facts about the LHS and RHS number of bits and words 1575 unsigned lhsWords = getNumWords(getActiveBits()); 1576 unsigned rhsBits = RHS.getActiveBits(); 1577 unsigned rhsWords = getNumWords(rhsBits); 1578 assert(rhsWords && "Divided by zero???"); 1579 1580 // Deal with some degenerate cases 1581 if (!lhsWords) 1582 // 0 / X ===> 0 1583 return APInt(BitWidth, 0); 1584 if (rhsBits == 1) 1585 // X / 1 ===> X 1586 return *this; 1587 if (lhsWords < rhsWords || this->ult(RHS)) 1588 // X / Y ===> 0, iff X < Y 1589 return APInt(BitWidth, 0); 1590 if (*this == RHS) 1591 // X / X ===> 1 1592 return APInt(BitWidth, 1); 1593 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1594 // All high words are zero, just use native divide 1595 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1596 1597 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1598 APInt Quotient(BitWidth, 0); // to hold result. 1599 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1600 return Quotient; 1601 } 1602 1603 APInt APInt::udiv(uint64_t RHS) const { 1604 assert(RHS != 0 && "Divide by zero?"); 1605 1606 // First, deal with the easy case 1607 if (isSingleWord()) 1608 return APInt(BitWidth, U.VAL / RHS); 1609 1610 // Get some facts about the LHS words. 1611 unsigned lhsWords = getNumWords(getActiveBits()); 1612 1613 // Deal with some degenerate cases 1614 if (!lhsWords) 1615 // 0 / X ===> 0 1616 return APInt(BitWidth, 0); 1617 if (RHS == 1) 1618 // X / 1 ===> X 1619 return *this; 1620 if (this->ult(RHS)) 1621 // X / Y ===> 0, iff X < Y 1622 return APInt(BitWidth, 0); 1623 if (*this == RHS) 1624 // X / X ===> 1 1625 return APInt(BitWidth, 1); 1626 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1627 // All high words are zero, just use native divide 1628 return APInt(BitWidth, this->U.pVal[0] / RHS); 1629 1630 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1631 APInt Quotient(BitWidth, 0); // to hold result. 1632 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1633 return Quotient; 1634 } 1635 1636 APInt APInt::sdiv(const APInt &RHS) const { 1637 if (isNegative()) { 1638 if (RHS.isNegative()) 1639 return (-(*this)).udiv(-RHS); 1640 return -((-(*this)).udiv(RHS)); 1641 } 1642 if (RHS.isNegative()) 1643 return -(this->udiv(-RHS)); 1644 return this->udiv(RHS); 1645 } 1646 1647 APInt APInt::sdiv(int64_t RHS) const { 1648 if (isNegative()) { 1649 if (RHS < 0) 1650 return (-(*this)).udiv(-RHS); 1651 return -((-(*this)).udiv(RHS)); 1652 } 1653 if (RHS < 0) 1654 return -(this->udiv(-RHS)); 1655 return this->udiv(RHS); 1656 } 1657 1658 APInt APInt::urem(const APInt &RHS) const { 1659 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1660 if (isSingleWord()) { 1661 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1662 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1663 } 1664 1665 // Get some facts about the LHS 1666 unsigned lhsWords = getNumWords(getActiveBits()); 1667 1668 // Get some facts about the RHS 1669 unsigned rhsBits = RHS.getActiveBits(); 1670 unsigned rhsWords = getNumWords(rhsBits); 1671 assert(rhsWords && "Performing remainder operation by zero ???"); 1672 1673 // Check the degenerate cases 1674 if (lhsWords == 0) 1675 // 0 % Y ===> 0 1676 return APInt(BitWidth, 0); 1677 if (rhsBits == 1) 1678 // X % 1 ===> 0 1679 return APInt(BitWidth, 0); 1680 if (lhsWords < rhsWords || this->ult(RHS)) 1681 // X % Y ===> X, iff X < Y 1682 return *this; 1683 if (*this == RHS) 1684 // X % X == 0; 1685 return APInt(BitWidth, 0); 1686 if (lhsWords == 1) 1687 // All high words are zero, just use native remainder 1688 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1689 1690 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1691 APInt Remainder(BitWidth, 0); 1692 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1693 return Remainder; 1694 } 1695 1696 uint64_t APInt::urem(uint64_t RHS) const { 1697 assert(RHS != 0 && "Remainder by zero?"); 1698 1699 if (isSingleWord()) 1700 return U.VAL % RHS; 1701 1702 // Get some facts about the LHS 1703 unsigned lhsWords = getNumWords(getActiveBits()); 1704 1705 // Check the degenerate cases 1706 if (lhsWords == 0) 1707 // 0 % Y ===> 0 1708 return 0; 1709 if (RHS == 1) 1710 // X % 1 ===> 0 1711 return 0; 1712 if (this->ult(RHS)) 1713 // X % Y ===> X, iff X < Y 1714 return getZExtValue(); 1715 if (*this == RHS) 1716 // X % X == 0; 1717 return 0; 1718 if (lhsWords == 1) 1719 // All high words are zero, just use native remainder 1720 return U.pVal[0] % RHS; 1721 1722 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1723 uint64_t Remainder; 1724 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1725 return Remainder; 1726 } 1727 1728 APInt APInt::srem(const APInt &RHS) const { 1729 if (isNegative()) { 1730 if (RHS.isNegative()) 1731 return -((-(*this)).urem(-RHS)); 1732 return -((-(*this)).urem(RHS)); 1733 } 1734 if (RHS.isNegative()) 1735 return this->urem(-RHS); 1736 return this->urem(RHS); 1737 } 1738 1739 int64_t APInt::srem(int64_t RHS) const { 1740 if (isNegative()) { 1741 if (RHS < 0) 1742 return -((-(*this)).urem(-RHS)); 1743 return -((-(*this)).urem(RHS)); 1744 } 1745 if (RHS < 0) 1746 return this->urem(-RHS); 1747 return this->urem(RHS); 1748 } 1749 1750 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1751 APInt &Quotient, APInt &Remainder) { 1752 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1753 unsigned BitWidth = LHS.BitWidth; 1754 1755 // First, deal with the easy case 1756 if (LHS.isSingleWord()) { 1757 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1758 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1759 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1760 Quotient = APInt(BitWidth, QuotVal); 1761 Remainder = APInt(BitWidth, RemVal); 1762 return; 1763 } 1764 1765 // Get some size facts about the dividend and divisor 1766 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1767 unsigned rhsBits = RHS.getActiveBits(); 1768 unsigned rhsWords = getNumWords(rhsBits); 1769 assert(rhsWords && "Performing divrem operation by zero ???"); 1770 1771 // Check the degenerate cases 1772 if (lhsWords == 0) { 1773 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1774 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 1775 return; 1776 } 1777 1778 if (rhsBits == 1) { 1779 Quotient = LHS; // X / 1 ===> X 1780 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 1781 } 1782 1783 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1784 Remainder = LHS; // X % Y ===> X, iff X < Y 1785 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1786 return; 1787 } 1788 1789 if (LHS == RHS) { 1790 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1791 Remainder = APInt(BitWidth, 0); // X % X ===> 0; 1792 return; 1793 } 1794 1795 // Make sure there is enough space to hold the results. 1796 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1797 // change the size. This is necessary if Quotient or Remainder is aliased 1798 // with LHS or RHS. 1799 Quotient.reallocate(BitWidth); 1800 Remainder.reallocate(BitWidth); 1801 1802 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1803 // There is only one word to consider so use the native versions. 1804 uint64_t lhsValue = LHS.U.pVal[0]; 1805 uint64_t rhsValue = RHS.U.pVal[0]; 1806 Quotient = lhsValue / rhsValue; 1807 Remainder = lhsValue % rhsValue; 1808 return; 1809 } 1810 1811 // Okay, lets do it the long way 1812 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1813 Remainder.U.pVal); 1814 // Clear the rest of the Quotient and Remainder. 1815 std::memset(Quotient.U.pVal + lhsWords, 0, 1816 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1817 std::memset(Remainder.U.pVal + rhsWords, 0, 1818 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1819 } 1820 1821 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1822 uint64_t &Remainder) { 1823 assert(RHS != 0 && "Divide by zero?"); 1824 unsigned BitWidth = LHS.BitWidth; 1825 1826 // First, deal with the easy case 1827 if (LHS.isSingleWord()) { 1828 uint64_t QuotVal = LHS.U.VAL / RHS; 1829 Remainder = LHS.U.VAL % RHS; 1830 Quotient = APInt(BitWidth, QuotVal); 1831 return; 1832 } 1833 1834 // Get some size facts about the dividend and divisor 1835 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1836 1837 // Check the degenerate cases 1838 if (lhsWords == 0) { 1839 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1840 Remainder = 0; // 0 % Y ===> 0 1841 return; 1842 } 1843 1844 if (RHS == 1) { 1845 Quotient = LHS; // X / 1 ===> X 1846 Remainder = 0; // X % 1 ===> 0 1847 return; 1848 } 1849 1850 if (LHS.ult(RHS)) { 1851 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1852 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1853 return; 1854 } 1855 1856 if (LHS == RHS) { 1857 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1858 Remainder = 0; // X % X ===> 0; 1859 return; 1860 } 1861 1862 // Make sure there is enough space to hold the results. 1863 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1864 // change the size. This is necessary if Quotient is aliased with LHS. 1865 Quotient.reallocate(BitWidth); 1866 1867 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1868 // There is only one word to consider so use the native versions. 1869 uint64_t lhsValue = LHS.U.pVal[0]; 1870 Quotient = lhsValue / RHS; 1871 Remainder = lhsValue % RHS; 1872 return; 1873 } 1874 1875 // Okay, lets do it the long way 1876 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1877 // Clear the rest of the Quotient. 1878 std::memset(Quotient.U.pVal + lhsWords, 0, 1879 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1880 } 1881 1882 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1883 APInt &Quotient, APInt &Remainder) { 1884 if (LHS.isNegative()) { 1885 if (RHS.isNegative()) 1886 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1887 else { 1888 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1889 Quotient.negate(); 1890 } 1891 Remainder.negate(); 1892 } else if (RHS.isNegative()) { 1893 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1894 Quotient.negate(); 1895 } else { 1896 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1897 } 1898 } 1899 1900 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1901 APInt &Quotient, int64_t &Remainder) { 1902 uint64_t R = Remainder; 1903 if (LHS.isNegative()) { 1904 if (RHS < 0) 1905 APInt::udivrem(-LHS, -RHS, Quotient, R); 1906 else { 1907 APInt::udivrem(-LHS, RHS, Quotient, R); 1908 Quotient.negate(); 1909 } 1910 R = -R; 1911 } else if (RHS < 0) { 1912 APInt::udivrem(LHS, -RHS, Quotient, R); 1913 Quotient.negate(); 1914 } else { 1915 APInt::udivrem(LHS, RHS, Quotient, R); 1916 } 1917 Remainder = R; 1918 } 1919 1920 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1921 APInt Res = *this+RHS; 1922 Overflow = isNonNegative() == RHS.isNonNegative() && 1923 Res.isNonNegative() != isNonNegative(); 1924 return Res; 1925 } 1926 1927 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1928 APInt Res = *this+RHS; 1929 Overflow = Res.ult(RHS); 1930 return Res; 1931 } 1932 1933 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1934 APInt Res = *this - RHS; 1935 Overflow = isNonNegative() != RHS.isNonNegative() && 1936 Res.isNonNegative() != isNonNegative(); 1937 return Res; 1938 } 1939 1940 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1941 APInt Res = *this-RHS; 1942 Overflow = Res.ugt(*this); 1943 return Res; 1944 } 1945 1946 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1947 // MININT/-1 --> overflow. 1948 Overflow = isMinSignedValue() && RHS.isAllOnes(); 1949 return sdiv(RHS); 1950 } 1951 1952 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1953 APInt Res = *this * RHS; 1954 1955 if (*this != 0 && RHS != 0) 1956 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 1957 else 1958 Overflow = false; 1959 return Res; 1960 } 1961 1962 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1963 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) { 1964 Overflow = true; 1965 return *this * RHS; 1966 } 1967 1968 APInt Res = lshr(1) * RHS; 1969 Overflow = Res.isNegative(); 1970 Res <<= 1; 1971 if ((*this)[0]) { 1972 Res += RHS; 1973 if (Res.ult(RHS)) 1974 Overflow = true; 1975 } 1976 return Res; 1977 } 1978 1979 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1980 Overflow = ShAmt.uge(getBitWidth()); 1981 if (Overflow) 1982 return APInt(BitWidth, 0); 1983 1984 if (isNonNegative()) // Don't allow sign change. 1985 Overflow = ShAmt.uge(countLeadingZeros()); 1986 else 1987 Overflow = ShAmt.uge(countLeadingOnes()); 1988 1989 return *this << ShAmt; 1990 } 1991 1992 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 1993 Overflow = ShAmt.uge(getBitWidth()); 1994 if (Overflow) 1995 return APInt(BitWidth, 0); 1996 1997 Overflow = ShAmt.ugt(countLeadingZeros()); 1998 1999 return *this << ShAmt; 2000 } 2001 2002 APInt APInt::sadd_sat(const APInt &RHS) const { 2003 bool Overflow; 2004 APInt Res = sadd_ov(RHS, Overflow); 2005 if (!Overflow) 2006 return Res; 2007 2008 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2009 : APInt::getSignedMaxValue(BitWidth); 2010 } 2011 2012 APInt APInt::uadd_sat(const APInt &RHS) const { 2013 bool Overflow; 2014 APInt Res = uadd_ov(RHS, Overflow); 2015 if (!Overflow) 2016 return Res; 2017 2018 return APInt::getMaxValue(BitWidth); 2019 } 2020 2021 APInt APInt::ssub_sat(const APInt &RHS) const { 2022 bool Overflow; 2023 APInt Res = ssub_ov(RHS, Overflow); 2024 if (!Overflow) 2025 return Res; 2026 2027 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2028 : APInt::getSignedMaxValue(BitWidth); 2029 } 2030 2031 APInt APInt::usub_sat(const APInt &RHS) const { 2032 bool Overflow; 2033 APInt Res = usub_ov(RHS, Overflow); 2034 if (!Overflow) 2035 return Res; 2036 2037 return APInt(BitWidth, 0); 2038 } 2039 2040 APInt APInt::smul_sat(const APInt &RHS) const { 2041 bool Overflow; 2042 APInt Res = smul_ov(RHS, Overflow); 2043 if (!Overflow) 2044 return Res; 2045 2046 // The result is negative if one and only one of inputs is negative. 2047 bool ResIsNegative = isNegative() ^ RHS.isNegative(); 2048 2049 return ResIsNegative ? APInt::getSignedMinValue(BitWidth) 2050 : APInt::getSignedMaxValue(BitWidth); 2051 } 2052 2053 APInt APInt::umul_sat(const APInt &RHS) const { 2054 bool Overflow; 2055 APInt Res = umul_ov(RHS, Overflow); 2056 if (!Overflow) 2057 return Res; 2058 2059 return APInt::getMaxValue(BitWidth); 2060 } 2061 2062 APInt APInt::sshl_sat(const APInt &RHS) const { 2063 bool Overflow; 2064 APInt Res = sshl_ov(RHS, Overflow); 2065 if (!Overflow) 2066 return Res; 2067 2068 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2069 : APInt::getSignedMaxValue(BitWidth); 2070 } 2071 2072 APInt APInt::ushl_sat(const APInt &RHS) const { 2073 bool Overflow; 2074 APInt Res = ushl_ov(RHS, Overflow); 2075 if (!Overflow) 2076 return Res; 2077 2078 return APInt::getMaxValue(BitWidth); 2079 } 2080 2081 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2082 // Check our assumptions here 2083 assert(!str.empty() && "Invalid string length"); 2084 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2085 radix == 36) && 2086 "Radix should be 2, 8, 10, 16, or 36!"); 2087 2088 StringRef::iterator p = str.begin(); 2089 size_t slen = str.size(); 2090 bool isNeg = *p == '-'; 2091 if (*p == '-' || *p == '+') { 2092 p++; 2093 slen--; 2094 assert(slen && "String is only a sign, needs a value."); 2095 } 2096 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2097 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2098 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2099 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2100 "Insufficient bit width"); 2101 2102 // Allocate memory if needed 2103 if (isSingleWord()) 2104 U.VAL = 0; 2105 else 2106 U.pVal = getClearedMemory(getNumWords()); 2107 2108 // Figure out if we can shift instead of multiply 2109 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2110 2111 // Enter digit traversal loop 2112 for (StringRef::iterator e = str.end(); p != e; ++p) { 2113 unsigned digit = getDigit(*p, radix); 2114 assert(digit < radix && "Invalid character in digit string"); 2115 2116 // Shift or multiply the value by the radix 2117 if (slen > 1) { 2118 if (shift) 2119 *this <<= shift; 2120 else 2121 *this *= radix; 2122 } 2123 2124 // Add in the digit we just interpreted 2125 *this += digit; 2126 } 2127 // If its negative, put it in two's complement form 2128 if (isNeg) 2129 this->negate(); 2130 } 2131 2132 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2133 bool Signed, bool formatAsCLiteral) const { 2134 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2135 Radix == 36) && 2136 "Radix should be 2, 8, 10, 16, or 36!"); 2137 2138 const char *Prefix = ""; 2139 if (formatAsCLiteral) { 2140 switch (Radix) { 2141 case 2: 2142 // Binary literals are a non-standard extension added in gcc 4.3: 2143 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2144 Prefix = "0b"; 2145 break; 2146 case 8: 2147 Prefix = "0"; 2148 break; 2149 case 10: 2150 break; // No prefix 2151 case 16: 2152 Prefix = "0x"; 2153 break; 2154 default: 2155 llvm_unreachable("Invalid radix!"); 2156 } 2157 } 2158 2159 // First, check for a zero value and just short circuit the logic below. 2160 if (isZero()) { 2161 while (*Prefix) { 2162 Str.push_back(*Prefix); 2163 ++Prefix; 2164 }; 2165 Str.push_back('0'); 2166 return; 2167 } 2168 2169 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2170 2171 if (isSingleWord()) { 2172 char Buffer[65]; 2173 char *BufPtr = std::end(Buffer); 2174 2175 uint64_t N; 2176 if (!Signed) { 2177 N = getZExtValue(); 2178 } else { 2179 int64_t I = getSExtValue(); 2180 if (I >= 0) { 2181 N = I; 2182 } else { 2183 Str.push_back('-'); 2184 N = -(uint64_t)I; 2185 } 2186 } 2187 2188 while (*Prefix) { 2189 Str.push_back(*Prefix); 2190 ++Prefix; 2191 }; 2192 2193 while (N) { 2194 *--BufPtr = Digits[N % Radix]; 2195 N /= Radix; 2196 } 2197 Str.append(BufPtr, std::end(Buffer)); 2198 return; 2199 } 2200 2201 APInt Tmp(*this); 2202 2203 if (Signed && isNegative()) { 2204 // They want to print the signed version and it is a negative value 2205 // Flip the bits and add one to turn it into the equivalent positive 2206 // value and put a '-' in the result. 2207 Tmp.negate(); 2208 Str.push_back('-'); 2209 } 2210 2211 while (*Prefix) { 2212 Str.push_back(*Prefix); 2213 ++Prefix; 2214 }; 2215 2216 // We insert the digits backward, then reverse them to get the right order. 2217 unsigned StartDig = Str.size(); 2218 2219 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2220 // because the number of bits per digit (1, 3 and 4 respectively) divides 2221 // equally. We just shift until the value is zero. 2222 if (Radix == 2 || Radix == 8 || Radix == 16) { 2223 // Just shift tmp right for each digit width until it becomes zero 2224 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2225 unsigned MaskAmt = Radix - 1; 2226 2227 while (Tmp.getBoolValue()) { 2228 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2229 Str.push_back(Digits[Digit]); 2230 Tmp.lshrInPlace(ShiftAmt); 2231 } 2232 } else { 2233 while (Tmp.getBoolValue()) { 2234 uint64_t Digit; 2235 udivrem(Tmp, Radix, Tmp, Digit); 2236 assert(Digit < Radix && "divide failed"); 2237 Str.push_back(Digits[Digit]); 2238 } 2239 } 2240 2241 // Reverse the digits before returning. 2242 std::reverse(Str.begin()+StartDig, Str.end()); 2243 } 2244 2245 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2246 LLVM_DUMP_METHOD void APInt::dump() const { 2247 SmallString<40> S, U; 2248 this->toStringUnsigned(U); 2249 this->toStringSigned(S); 2250 dbgs() << "APInt(" << BitWidth << "b, " 2251 << U << "u " << S << "s)\n"; 2252 } 2253 #endif 2254 2255 void APInt::print(raw_ostream &OS, bool isSigned) const { 2256 SmallString<40> S; 2257 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2258 OS << S; 2259 } 2260 2261 // This implements a variety of operations on a representation of 2262 // arbitrary precision, two's-complement, bignum integer values. 2263 2264 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2265 // and unrestricting assumption. 2266 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2267 "Part width must be divisible by 2!"); 2268 2269 // Returns the integer part with the least significant BITS set. 2270 // BITS cannot be zero. 2271 static inline APInt::WordType lowBitMask(unsigned bits) { 2272 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2273 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2274 } 2275 2276 /// Returns the value of the lower half of PART. 2277 static inline APInt::WordType lowHalf(APInt::WordType part) { 2278 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2279 } 2280 2281 /// Returns the value of the upper half of PART. 2282 static inline APInt::WordType highHalf(APInt::WordType part) { 2283 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2284 } 2285 2286 /// Returns the bit number of the most significant set bit of a part. 2287 /// If the input number has no bits set -1U is returned. 2288 static unsigned partMSB(APInt::WordType value) { 2289 return findLastSet(value, ZB_Max); 2290 } 2291 2292 /// Returns the bit number of the least significant set bit of a part. If the 2293 /// input number has no bits set -1U is returned. 2294 static unsigned partLSB(APInt::WordType value) { 2295 return findFirstSet(value, ZB_Max); 2296 } 2297 2298 /// Sets the least significant part of a bignum to the input value, and zeroes 2299 /// out higher parts. 2300 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2301 assert(parts > 0); 2302 dst[0] = part; 2303 for (unsigned i = 1; i < parts; i++) 2304 dst[i] = 0; 2305 } 2306 2307 /// Assign one bignum to another. 2308 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2309 for (unsigned i = 0; i < parts; i++) 2310 dst[i] = src[i]; 2311 } 2312 2313 /// Returns true if a bignum is zero, false otherwise. 2314 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2315 for (unsigned i = 0; i < parts; i++) 2316 if (src[i]) 2317 return false; 2318 2319 return true; 2320 } 2321 2322 /// Extract the given bit of a bignum; returns 0 or 1. 2323 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2324 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2325 } 2326 2327 /// Set the given bit of a bignum. 2328 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2329 parts[whichWord(bit)] |= maskBit(bit); 2330 } 2331 2332 /// Clears the given bit of a bignum. 2333 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2334 parts[whichWord(bit)] &= ~maskBit(bit); 2335 } 2336 2337 /// Returns the bit number of the least significant set bit of a number. If the 2338 /// input number has no bits set -1U is returned. 2339 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2340 for (unsigned i = 0; i < n; i++) { 2341 if (parts[i] != 0) { 2342 unsigned lsb = partLSB(parts[i]); 2343 return lsb + i * APINT_BITS_PER_WORD; 2344 } 2345 } 2346 2347 return -1U; 2348 } 2349 2350 /// Returns the bit number of the most significant set bit of a number. 2351 /// If the input number has no bits set -1U is returned. 2352 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2353 do { 2354 --n; 2355 2356 if (parts[n] != 0) { 2357 unsigned msb = partMSB(parts[n]); 2358 2359 return msb + n * APINT_BITS_PER_WORD; 2360 } 2361 } while (n); 2362 2363 return -1U; 2364 } 2365 2366 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 2367 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 2368 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. 2369 /// */ 2370 void 2371 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2372 unsigned srcBits, unsigned srcLSB) { 2373 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2374 assert(dstParts <= dstCount); 2375 2376 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2377 tcAssign(dst, src + firstSrcPart, dstParts); 2378 2379 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2380 tcShiftRight(dst, dstParts, shift); 2381 2382 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2383 // in DST. If this is less that srcBits, append the rest, else 2384 // clear the high bits. 2385 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2386 if (n < srcBits) { 2387 WordType mask = lowBitMask (srcBits - n); 2388 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2389 << n % APINT_BITS_PER_WORD); 2390 } else if (n > srcBits) { 2391 if (srcBits % APINT_BITS_PER_WORD) 2392 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2393 } 2394 2395 // Clear high parts. 2396 while (dstParts < dstCount) 2397 dst[dstParts++] = 0; 2398 } 2399 2400 //// DST += RHS + C where C is zero or one. Returns the carry flag. 2401 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2402 WordType c, unsigned parts) { 2403 assert(c <= 1); 2404 2405 for (unsigned i = 0; i < parts; i++) { 2406 WordType l = dst[i]; 2407 if (c) { 2408 dst[i] += rhs[i] + 1; 2409 c = (dst[i] <= l); 2410 } else { 2411 dst[i] += rhs[i]; 2412 c = (dst[i] < l); 2413 } 2414 } 2415 2416 return c; 2417 } 2418 2419 /// This function adds a single "word" integer, src, to the multiple 2420 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2421 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2422 /// @returns the carry of the addition. 2423 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2424 unsigned parts) { 2425 for (unsigned i = 0; i < parts; ++i) { 2426 dst[i] += src; 2427 if (dst[i] >= src) 2428 return 0; // No need to carry so exit early. 2429 src = 1; // Carry one to next digit. 2430 } 2431 2432 return 1; 2433 } 2434 2435 /// DST -= RHS + C where C is zero or one. Returns the carry flag. 2436 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2437 WordType c, unsigned parts) { 2438 assert(c <= 1); 2439 2440 for (unsigned i = 0; i < parts; i++) { 2441 WordType l = dst[i]; 2442 if (c) { 2443 dst[i] -= rhs[i] + 1; 2444 c = (dst[i] >= l); 2445 } else { 2446 dst[i] -= rhs[i]; 2447 c = (dst[i] > l); 2448 } 2449 } 2450 2451 return c; 2452 } 2453 2454 /// This function subtracts a single "word" (64-bit word), src, from 2455 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2456 /// no further borrowing is needed or it runs out of "words" in dst. The result 2457 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2458 /// exhausted. In other words, if src > dst then this function returns 1, 2459 /// otherwise 0. 2460 /// @returns the borrow out of the subtraction 2461 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2462 unsigned parts) { 2463 for (unsigned i = 0; i < parts; ++i) { 2464 WordType Dst = dst[i]; 2465 dst[i] -= src; 2466 if (src <= Dst) 2467 return 0; // No need to borrow so exit early. 2468 src = 1; // We have to "borrow 1" from next "word" 2469 } 2470 2471 return 1; 2472 } 2473 2474 /// Negate a bignum in-place. 2475 void APInt::tcNegate(WordType *dst, unsigned parts) { 2476 tcComplement(dst, parts); 2477 tcIncrement(dst, parts); 2478 } 2479 2480 /// DST += SRC * MULTIPLIER + CARRY if add is true 2481 /// DST = SRC * MULTIPLIER + CARRY if add is false 2482 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2483 /// they must start at the same point, i.e. DST == SRC. 2484 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2485 /// returned. Otherwise DST is filled with the least significant 2486 /// DSTPARTS parts of the result, and if all of the omitted higher 2487 /// parts were zero return zero, otherwise overflow occurred and 2488 /// return one. 2489 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2490 WordType multiplier, WordType carry, 2491 unsigned srcParts, unsigned dstParts, 2492 bool add) { 2493 // Otherwise our writes of DST kill our later reads of SRC. 2494 assert(dst <= src || dst >= src + srcParts); 2495 assert(dstParts <= srcParts + 1); 2496 2497 // N loops; minimum of dstParts and srcParts. 2498 unsigned n = std::min(dstParts, srcParts); 2499 2500 for (unsigned i = 0; i < n; i++) { 2501 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2502 // This cannot overflow, because: 2503 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2504 // which is less than n^2. 2505 WordType srcPart = src[i]; 2506 WordType low, mid, high; 2507 if (multiplier == 0 || srcPart == 0) { 2508 low = carry; 2509 high = 0; 2510 } else { 2511 low = lowHalf(srcPart) * lowHalf(multiplier); 2512 high = highHalf(srcPart) * highHalf(multiplier); 2513 2514 mid = lowHalf(srcPart) * highHalf(multiplier); 2515 high += highHalf(mid); 2516 mid <<= APINT_BITS_PER_WORD / 2; 2517 if (low + mid < low) 2518 high++; 2519 low += mid; 2520 2521 mid = highHalf(srcPart) * lowHalf(multiplier); 2522 high += highHalf(mid); 2523 mid <<= APINT_BITS_PER_WORD / 2; 2524 if (low + mid < low) 2525 high++; 2526 low += mid; 2527 2528 // Now add carry. 2529 if (low + carry < low) 2530 high++; 2531 low += carry; 2532 } 2533 2534 if (add) { 2535 // And now DST[i], and store the new low part there. 2536 if (low + dst[i] < low) 2537 high++; 2538 dst[i] += low; 2539 } else 2540 dst[i] = low; 2541 2542 carry = high; 2543 } 2544 2545 if (srcParts < dstParts) { 2546 // Full multiplication, there is no overflow. 2547 assert(srcParts + 1 == dstParts); 2548 dst[srcParts] = carry; 2549 return 0; 2550 } 2551 2552 // We overflowed if there is carry. 2553 if (carry) 2554 return 1; 2555 2556 // We would overflow if any significant unwritten parts would be 2557 // non-zero. This is true if any remaining src parts are non-zero 2558 // and the multiplier is non-zero. 2559 if (multiplier) 2560 for (unsigned i = dstParts; i < srcParts; i++) 2561 if (src[i]) 2562 return 1; 2563 2564 // We fitted in the narrow destination. 2565 return 0; 2566 } 2567 2568 /// DST = LHS * RHS, where DST has the same width as the operands and 2569 /// is filled with the least significant parts of the result. Returns 2570 /// one if overflow occurred, otherwise zero. DST must be disjoint 2571 /// from both operands. 2572 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2573 const WordType *rhs, unsigned parts) { 2574 assert(dst != lhs && dst != rhs); 2575 2576 int overflow = 0; 2577 tcSet(dst, 0, parts); 2578 2579 for (unsigned i = 0; i < parts; i++) 2580 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2581 parts - i, true); 2582 2583 return overflow; 2584 } 2585 2586 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2587 /// operands. No overflow occurs. DST must be disjoint from both operands. 2588 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2589 const WordType *rhs, unsigned lhsParts, 2590 unsigned rhsParts) { 2591 // Put the narrower number on the LHS for less loops below. 2592 if (lhsParts > rhsParts) 2593 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2594 2595 assert(dst != lhs && dst != rhs); 2596 2597 tcSet(dst, 0, rhsParts); 2598 2599 for (unsigned i = 0; i < lhsParts; i++) 2600 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2601 } 2602 2603 // If RHS is zero LHS and REMAINDER are left unchanged, return one. 2604 // Otherwise set LHS to LHS / RHS with the fractional part discarded, 2605 // set REMAINDER to the remainder, return zero. i.e. 2606 // 2607 // OLD_LHS = RHS * LHS + REMAINDER 2608 // 2609 // SCRATCH is a bignum of the same size as the operands and result for 2610 // use by the routine; its contents need not be initialized and are 2611 // destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2612 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2613 WordType *remainder, WordType *srhs, 2614 unsigned parts) { 2615 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2616 2617 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2618 if (shiftCount == 0) 2619 return true; 2620 2621 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2622 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2623 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2624 2625 tcAssign(srhs, rhs, parts); 2626 tcShiftLeft(srhs, parts, shiftCount); 2627 tcAssign(remainder, lhs, parts); 2628 tcSet(lhs, 0, parts); 2629 2630 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the 2631 // total. 2632 for (;;) { 2633 int compare = tcCompare(remainder, srhs, parts); 2634 if (compare >= 0) { 2635 tcSubtract(remainder, srhs, 0, parts); 2636 lhs[n] |= mask; 2637 } 2638 2639 if (shiftCount == 0) 2640 break; 2641 shiftCount--; 2642 tcShiftRight(srhs, parts, 1); 2643 if ((mask >>= 1) == 0) { 2644 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2645 n--; 2646 } 2647 } 2648 2649 return false; 2650 } 2651 2652 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2653 /// no restrictions on Count. 2654 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2655 // Don't bother performing a no-op shift. 2656 if (!Count) 2657 return; 2658 2659 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2660 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2661 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2662 2663 // Fastpath for moving by whole words. 2664 if (BitShift == 0) { 2665 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2666 } else { 2667 while (Words-- > WordShift) { 2668 Dst[Words] = Dst[Words - WordShift] << BitShift; 2669 if (Words > WordShift) 2670 Dst[Words] |= 2671 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2672 } 2673 } 2674 2675 // Fill in the remainder with 0s. 2676 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2677 } 2678 2679 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2680 /// are no restrictions on Count. 2681 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2682 // Don't bother performing a no-op shift. 2683 if (!Count) 2684 return; 2685 2686 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2687 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2688 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2689 2690 unsigned WordsToMove = Words - WordShift; 2691 // Fastpath for moving by whole words. 2692 if (BitShift == 0) { 2693 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2694 } else { 2695 for (unsigned i = 0; i != WordsToMove; ++i) { 2696 Dst[i] = Dst[i + WordShift] >> BitShift; 2697 if (i + 1 != WordsToMove) 2698 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2699 } 2700 } 2701 2702 // Fill in the remainder with 0s. 2703 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2704 } 2705 2706 // Comparison (unsigned) of two bignums. 2707 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2708 unsigned parts) { 2709 while (parts) { 2710 parts--; 2711 if (lhs[parts] != rhs[parts]) 2712 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2713 } 2714 2715 return 0; 2716 } 2717 2718 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 2719 APInt::Rounding RM) { 2720 // Currently udivrem always rounds down. 2721 switch (RM) { 2722 case APInt::Rounding::DOWN: 2723 case APInt::Rounding::TOWARD_ZERO: 2724 return A.udiv(B); 2725 case APInt::Rounding::UP: { 2726 APInt Quo, Rem; 2727 APInt::udivrem(A, B, Quo, Rem); 2728 if (Rem.isZero()) 2729 return Quo; 2730 return Quo + 1; 2731 } 2732 } 2733 llvm_unreachable("Unknown APInt::Rounding enum"); 2734 } 2735 2736 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 2737 APInt::Rounding RM) { 2738 switch (RM) { 2739 case APInt::Rounding::DOWN: 2740 case APInt::Rounding::UP: { 2741 APInt Quo, Rem; 2742 APInt::sdivrem(A, B, Quo, Rem); 2743 if (Rem.isZero()) 2744 return Quo; 2745 // This algorithm deals with arbitrary rounding mode used by sdivrem. 2746 // We want to check whether the non-integer part of the mathematical value 2747 // is negative or not. If the non-integer part is negative, we need to round 2748 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 2749 // already rounded down. 2750 if (RM == APInt::Rounding::DOWN) { 2751 if (Rem.isNegative() != B.isNegative()) 2752 return Quo - 1; 2753 return Quo; 2754 } 2755 if (Rem.isNegative() != B.isNegative()) 2756 return Quo; 2757 return Quo + 1; 2758 } 2759 // Currently sdiv rounds towards zero. 2760 case APInt::Rounding::TOWARD_ZERO: 2761 return A.sdiv(B); 2762 } 2763 llvm_unreachable("Unknown APInt::Rounding enum"); 2764 } 2765 2766 Optional<APInt> 2767 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2768 unsigned RangeWidth) { 2769 unsigned CoeffWidth = A.getBitWidth(); 2770 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 2771 assert(RangeWidth <= CoeffWidth && 2772 "Value range width should be less than coefficient width"); 2773 assert(RangeWidth > 1 && "Value range bit width should be > 1"); 2774 2775 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 2776 << "x + " << C << ", rw:" << RangeWidth << '\n'); 2777 2778 // Identify 0 as a (non)solution immediately. 2779 if (C.sextOrTrunc(RangeWidth).isZero()) { 2780 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 2781 return APInt(CoeffWidth, 0); 2782 } 2783 2784 // The result of APInt arithmetic has the same bit width as the operands, 2785 // so it can actually lose high bits. A product of two n-bit integers needs 2786 // 2n-1 bits to represent the full value. 2787 // The operation done below (on quadratic coefficients) that can produce 2788 // the largest value is the evaluation of the equation during bisection, 2789 // which needs 3 times the bitwidth of the coefficient, so the total number 2790 // of required bits is 3n. 2791 // 2792 // The purpose of this extension is to simulate the set Z of all integers, 2793 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 2794 // and negative numbers (not so much in a modulo arithmetic). The method 2795 // used to solve the equation is based on the standard formula for real 2796 // numbers, and uses the concepts of "positive" and "negative" with their 2797 // usual meanings. 2798 CoeffWidth *= 3; 2799 A = A.sext(CoeffWidth); 2800 B = B.sext(CoeffWidth); 2801 C = C.sext(CoeffWidth); 2802 2803 // Make A > 0 for simplicity. Negate cannot overflow at this point because 2804 // the bit width has increased. 2805 if (A.isNegative()) { 2806 A.negate(); 2807 B.negate(); 2808 C.negate(); 2809 } 2810 2811 // Solving an equation q(x) = 0 with coefficients in modular arithmetic 2812 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 2813 // and R = 2^BitWidth. 2814 // Since we're trying not only to find exact solutions, but also values 2815 // that "wrap around", such a set will always have a solution, i.e. an x 2816 // that satisfies at least one of the equations, or such that |q(x)| 2817 // exceeds kR, while |q(x-1)| for the same k does not. 2818 // 2819 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 2820 // positive solution n (in the above sense), and also such that the n 2821 // will be the least among all solutions corresponding to k = 0, 1, ... 2822 // (more precisely, the least element in the set 2823 // { n(k) | k is such that a solution n(k) exists }). 2824 // 2825 // Consider the parabola (over real numbers) that corresponds to the 2826 // quadratic equation. Since A > 0, the arms of the parabola will point 2827 // up. Picking different values of k will shift it up and down by R. 2828 // 2829 // We want to shift the parabola in such a way as to reduce the problem 2830 // of solving q(x) = kR to solving shifted_q(x) = 0. 2831 // (The interesting solutions are the ceilings of the real number 2832 // solutions.) 2833 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 2834 APInt TwoA = 2 * A; 2835 APInt SqrB = B * B; 2836 bool PickLow; 2837 2838 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 2839 assert(A.isStrictlyPositive()); 2840 APInt T = V.abs().urem(A); 2841 if (T.isZero()) 2842 return V; 2843 return V.isNegative() ? V+T : V+(A-T); 2844 }; 2845 2846 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 2847 // iff B is positive. 2848 if (B.isNonNegative()) { 2849 // If B >= 0, the vertex it at a negative location (or at 0), so in 2850 // order to have a non-negative solution we need to pick k that makes 2851 // C-kR negative. To satisfy all the requirements for the solution 2852 // that we are looking for, it needs to be closest to 0 of all k. 2853 C = C.srem(R); 2854 if (C.isStrictlyPositive()) 2855 C -= R; 2856 // Pick the greater solution. 2857 PickLow = false; 2858 } else { 2859 // If B < 0, the vertex is at a positive location. For any solution 2860 // to exist, the discriminant must be non-negative. This means that 2861 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 2862 // lower bound on values of k: kR >= C - B^2/4A. 2863 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 2864 // Round LowkR up (towards +inf) to the nearest kR. 2865 LowkR = RoundUp(LowkR, R); 2866 2867 // If there exists k meeting the condition above, and such that 2868 // C-kR > 0, there will be two positive real number solutions of 2869 // q(x) = kR. Out of all such values of k, pick the one that makes 2870 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 2871 // In other words, find maximum k such that LowkR <= kR < C. 2872 if (C.sgt(LowkR)) { 2873 // If LowkR < C, then such a k is guaranteed to exist because 2874 // LowkR itself is a multiple of R. 2875 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 2876 // Pick the smaller solution. 2877 PickLow = true; 2878 } else { 2879 // If C-kR < 0 for all potential k's, it means that one solution 2880 // will be negative, while the other will be positive. The positive 2881 // solution will shift towards 0 if the parabola is moved up. 2882 // Pick the kR closest to the lower bound (i.e. make C-kR closest 2883 // to 0, or in other words, out of all parabolas that have solutions, 2884 // pick the one that is the farthest "up"). 2885 // Since LowkR is itself a multiple of R, simply take C-LowkR. 2886 C -= LowkR; 2887 // Pick the greater solution. 2888 PickLow = false; 2889 } 2890 } 2891 2892 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 2893 << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 2894 2895 APInt D = SqrB - 4*A*C; 2896 assert(D.isNonNegative() && "Negative discriminant"); 2897 APInt SQ = D.sqrt(); 2898 2899 APInt Q = SQ * SQ; 2900 bool InexactSQ = Q != D; 2901 // The calculated SQ may actually be greater than the exact (non-integer) 2902 // value. If that's the case, decrement SQ to get a value that is lower. 2903 if (Q.sgt(D)) 2904 SQ -= 1; 2905 2906 APInt X; 2907 APInt Rem; 2908 2909 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 2910 // When using the quadratic formula directly, the calculated low root 2911 // may be greater than the exact one, since we would be subtracting SQ. 2912 // To make sure that the calculated root is not greater than the exact 2913 // one, subtract SQ+1 when calculating the low root (for inexact value 2914 // of SQ). 2915 if (PickLow) 2916 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 2917 else 2918 APInt::sdivrem(-B + SQ, TwoA, X, Rem); 2919 2920 // The updated coefficients should be such that the (exact) solution is 2921 // positive. Since APInt division rounds towards 0, the calculated one 2922 // can be 0, but cannot be negative. 2923 assert(X.isNonNegative() && "Solution should be non-negative"); 2924 2925 if (!InexactSQ && Rem.isZero()) { 2926 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 2927 return X; 2928 } 2929 2930 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 2931 // The exact value of the square root of D should be between SQ and SQ+1. 2932 // This implies that the solution should be between that corresponding to 2933 // SQ (i.e. X) and that corresponding to SQ+1. 2934 // 2935 // The calculated X cannot be greater than the exact (real) solution. 2936 // Actually it must be strictly less than the exact solution, while 2937 // X+1 will be greater than or equal to it. 2938 2939 APInt VX = (A*X + B)*X + C; 2940 APInt VY = VX + TwoA*X + A + B; 2941 bool SignChange = 2942 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); 2943 // If the sign did not change between X and X+1, X is not a valid solution. 2944 // This could happen when the actual (exact) roots don't have an integer 2945 // between them, so they would both be contained between X and X+1. 2946 if (!SignChange) { 2947 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2948 return None; 2949 } 2950 2951 X += 1; 2952 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 2953 return X; 2954 } 2955 2956 Optional<unsigned> 2957 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { 2958 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); 2959 if (A == B) 2960 return llvm::None; 2961 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1); 2962 } 2963 2964 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) { 2965 unsigned OldBitWidth = A.getBitWidth(); 2966 assert((((OldBitWidth % NewBitWidth) == 0) || 2967 ((NewBitWidth % OldBitWidth) == 0)) && 2968 "One size should be a multiple of the other one. " 2969 "Can't do fractional scaling."); 2970 2971 // Check for matching bitwidths. 2972 if (OldBitWidth == NewBitWidth) 2973 return A; 2974 2975 APInt NewA = APInt::getZero(NewBitWidth); 2976 2977 // Check for null input. 2978 if (A.isZero()) 2979 return NewA; 2980 2981 if (NewBitWidth > OldBitWidth) { 2982 // Repeat bits. 2983 unsigned Scale = NewBitWidth / OldBitWidth; 2984 for (unsigned i = 0; i != OldBitWidth; ++i) 2985 if (A[i]) 2986 NewA.setBits(i * Scale, (i + 1) * Scale); 2987 } else { 2988 // Merge bits - if any old bit is set, then set scale equivalent new bit. 2989 unsigned Scale = OldBitWidth / NewBitWidth; 2990 for (unsigned i = 0; i != NewBitWidth; ++i) 2991 if (!A.extractBits(Scale, i * Scale).isZero()) 2992 NewA.setBit(i); 2993 } 2994 2995 return NewA; 2996 } 2997 2998 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 2999 /// with the integer held in IntVal. 3000 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 3001 unsigned StoreBytes) { 3002 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 3003 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 3004 3005 if (sys::IsLittleEndianHost) { 3006 // Little-endian host - the source is ordered from LSB to MSB. Order the 3007 // destination from LSB to MSB: Do a straight copy. 3008 memcpy(Dst, Src, StoreBytes); 3009 } else { 3010 // Big-endian host - the source is an array of 64 bit words ordered from 3011 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 3012 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 3013 while (StoreBytes > sizeof(uint64_t)) { 3014 StoreBytes -= sizeof(uint64_t); 3015 // May not be aligned so use memcpy. 3016 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 3017 Src += sizeof(uint64_t); 3018 } 3019 3020 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 3021 } 3022 } 3023 3024 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 3025 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 3026 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, 3027 unsigned LoadBytes) { 3028 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 3029 uint8_t *Dst = reinterpret_cast<uint8_t *>( 3030 const_cast<uint64_t *>(IntVal.getRawData())); 3031 3032 if (sys::IsLittleEndianHost) 3033 // Little-endian host - the destination must be ordered from LSB to MSB. 3034 // The source is ordered from LSB to MSB: Do a straight copy. 3035 memcpy(Dst, Src, LoadBytes); 3036 else { 3037 // Big-endian - the destination is an array of 64 bit words ordered from 3038 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 3039 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 3040 // a word. 3041 while (LoadBytes > sizeof(uint64_t)) { 3042 LoadBytes -= sizeof(uint64_t); 3043 // May not be aligned so use memcpy. 3044 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 3045 Dst += sizeof(uint64_t); 3046 } 3047 3048 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 3049 } 3050 } 3051