1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <climits> 28 #include <cmath> 29 #include <cstdlib> 30 #include <cstring> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "apint" 34 35 /// A utility function for allocating memory, checking for allocation failures, 36 /// and ensuring the contents are zeroed. 37 inline static uint64_t* getClearedMemory(unsigned numWords) { 38 uint64_t *result = new uint64_t[numWords]; 39 memset(result, 0, numWords * sizeof(uint64_t)); 40 return result; 41 } 42 43 /// A utility function for allocating memory and checking for allocation 44 /// failure. The content is not zeroed. 45 inline static uint64_t* getMemory(unsigned numWords) { 46 return new uint64_t[numWords]; 47 } 48 49 /// A utility function that converts a character to a digit. 50 inline static unsigned getDigit(char cdigit, uint8_t radix) { 51 unsigned r; 52 53 if (radix == 16 || radix == 36) { 54 r = cdigit - '0'; 55 if (r <= 9) 56 return r; 57 58 r = cdigit - 'A'; 59 if (r <= radix - 11U) 60 return r + 10; 61 62 r = cdigit - 'a'; 63 if (r <= radix - 11U) 64 return r + 10; 65 66 radix = 10; 67 } 68 69 r = cdigit - '0'; 70 if (r < radix) 71 return r; 72 73 return -1U; 74 } 75 76 77 void APInt::initSlowCase(uint64_t val, bool isSigned) { 78 U.pVal = getClearedMemory(getNumWords()); 79 U.pVal[0] = val; 80 if (isSigned && int64_t(val) < 0) 81 for (unsigned i = 1; i < getNumWords(); ++i) 82 U.pVal[i] = WORD_MAX; 83 clearUnusedBits(); 84 } 85 86 void APInt::initSlowCase(const APInt& that) { 87 U.pVal = getMemory(getNumWords()); 88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 89 } 90 91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 92 assert(BitWidth && "Bitwidth too small"); 93 assert(bigVal.data() && "Null pointer detected!"); 94 if (isSingleWord()) 95 U.VAL = bigVal[0]; 96 else { 97 // Get memory, cleared to 0 98 U.pVal = getClearedMemory(getNumWords()); 99 // Calculate the number of words to copy 100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 101 // Copy the words from bigVal to pVal 102 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 103 } 104 // Make sure unused high bits are cleared 105 clearUnusedBits(); 106 } 107 108 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 109 : BitWidth(numBits) { 110 initFromArray(bigVal); 111 } 112 113 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 114 : BitWidth(numBits) { 115 initFromArray(makeArrayRef(bigVal, numWords)); 116 } 117 118 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 119 : BitWidth(numbits) { 120 assert(BitWidth && "Bitwidth too small"); 121 fromString(numbits, Str, radix); 122 } 123 124 void APInt::reallocate(unsigned NewBitWidth) { 125 // If the number of words is the same we can just change the width and stop. 126 if (getNumWords() == getNumWords(NewBitWidth)) { 127 BitWidth = NewBitWidth; 128 return; 129 } 130 131 // If we have an allocation, delete it. 132 if (!isSingleWord()) 133 delete [] U.pVal; 134 135 // Update BitWidth. 136 BitWidth = NewBitWidth; 137 138 // If we are supposed to have an allocation, create it. 139 if (!isSingleWord()) 140 U.pVal = getMemory(getNumWords()); 141 } 142 143 void APInt::AssignSlowCase(const APInt& RHS) { 144 // Don't do anything for X = X 145 if (this == &RHS) 146 return; 147 148 // Adjust the bit width and handle allocations as necessary. 149 reallocate(RHS.getBitWidth()); 150 151 // Copy the data. 152 if (isSingleWord()) 153 U.VAL = RHS.U.VAL; 154 else 155 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 156 } 157 158 /// This method 'profiles' an APInt for use with FoldingSet. 159 void APInt::Profile(FoldingSetNodeID& ID) const { 160 ID.AddInteger(BitWidth); 161 162 if (isSingleWord()) { 163 ID.AddInteger(U.VAL); 164 return; 165 } 166 167 unsigned NumWords = getNumWords(); 168 for (unsigned i = 0; i < NumWords; ++i) 169 ID.AddInteger(U.pVal[i]); 170 } 171 172 /// Prefix increment operator. Increments the APInt by one. 173 APInt& APInt::operator++() { 174 if (isSingleWord()) 175 ++U.VAL; 176 else 177 tcIncrement(U.pVal, getNumWords()); 178 return clearUnusedBits(); 179 } 180 181 /// Prefix decrement operator. Decrements the APInt by one. 182 APInt& APInt::operator--() { 183 if (isSingleWord()) 184 --U.VAL; 185 else 186 tcDecrement(U.pVal, getNumWords()); 187 return clearUnusedBits(); 188 } 189 190 /// Adds the RHS APint to this APInt. 191 /// @returns this, after addition of RHS. 192 /// Addition assignment operator. 193 APInt& APInt::operator+=(const APInt& RHS) { 194 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 195 if (isSingleWord()) 196 U.VAL += RHS.U.VAL; 197 else 198 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 199 return clearUnusedBits(); 200 } 201 202 APInt& APInt::operator+=(uint64_t RHS) { 203 if (isSingleWord()) 204 U.VAL += RHS; 205 else 206 tcAddPart(U.pVal, RHS, getNumWords()); 207 return clearUnusedBits(); 208 } 209 210 /// Subtracts the RHS APInt from this APInt 211 /// @returns this, after subtraction 212 /// Subtraction assignment operator. 213 APInt& APInt::operator-=(const APInt& RHS) { 214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 215 if (isSingleWord()) 216 U.VAL -= RHS.U.VAL; 217 else 218 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 219 return clearUnusedBits(); 220 } 221 222 APInt& APInt::operator-=(uint64_t RHS) { 223 if (isSingleWord()) 224 U.VAL -= RHS; 225 else 226 tcSubtractPart(U.pVal, RHS, getNumWords()); 227 return clearUnusedBits(); 228 } 229 230 APInt APInt::operator*(const APInt& RHS) const { 231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 232 if (isSingleWord()) 233 return APInt(BitWidth, U.VAL * RHS.U.VAL); 234 235 APInt Result(getMemory(getNumWords()), getBitWidth()); 236 237 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 238 239 Result.clearUnusedBits(); 240 return Result; 241 } 242 243 void APInt::AndAssignSlowCase(const APInt& RHS) { 244 tcAnd(U.pVal, RHS.U.pVal, getNumWords()); 245 } 246 247 void APInt::OrAssignSlowCase(const APInt& RHS) { 248 tcOr(U.pVal, RHS.U.pVal, getNumWords()); 249 } 250 251 void APInt::XorAssignSlowCase(const APInt& RHS) { 252 tcXor(U.pVal, RHS.U.pVal, getNumWords()); 253 } 254 255 APInt& APInt::operator*=(const APInt& RHS) { 256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 257 *this = *this * RHS; 258 return *this; 259 } 260 261 APInt& APInt::operator*=(uint64_t RHS) { 262 if (isSingleWord()) { 263 U.VAL *= RHS; 264 } else { 265 unsigned NumWords = getNumWords(); 266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 267 } 268 return clearUnusedBits(); 269 } 270 271 bool APInt::EqualSlowCase(const APInt& RHS) const { 272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 273 } 274 275 int APInt::compare(const APInt& RHS) const { 276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 277 if (isSingleWord()) 278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 279 280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 281 } 282 283 int APInt::compareSigned(const APInt& RHS) const { 284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 285 if (isSingleWord()) { 286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 289 } 290 291 bool lhsNeg = isNegative(); 292 bool rhsNeg = RHS.isNegative(); 293 294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 295 if (lhsNeg != rhsNeg) 296 return lhsNeg ? -1 : 1; 297 298 // Otherwise we can just use an unsigned comparison, because even negative 299 // numbers compare correctly this way if both have the same signed-ness. 300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 301 } 302 303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 304 unsigned loWord = whichWord(loBit); 305 unsigned hiWord = whichWord(hiBit); 306 307 // Create an initial mask for the low word with zeros below loBit. 308 uint64_t loMask = WORD_MAX << whichBit(loBit); 309 310 // If hiBit is not aligned, we need a high mask. 311 unsigned hiShiftAmt = whichBit(hiBit); 312 if (hiShiftAmt != 0) { 313 // Create a high mask with zeros above hiBit. 314 uint64_t hiMask = WORD_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 315 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 316 // set the bits in hiWord. 317 if (hiWord == loWord) 318 loMask &= hiMask; 319 else 320 U.pVal[hiWord] |= hiMask; 321 } 322 // Apply the mask to the low word. 323 U.pVal[loWord] |= loMask; 324 325 // Fill any words between loWord and hiWord with all ones. 326 for (unsigned word = loWord + 1; word < hiWord; ++word) 327 U.pVal[word] = WORD_MAX; 328 } 329 330 /// Toggle every bit to its opposite value. 331 void APInt::flipAllBitsSlowCase() { 332 tcComplement(U.pVal, getNumWords()); 333 clearUnusedBits(); 334 } 335 336 /// Toggle a given bit to its opposite value whose position is given 337 /// as "bitPosition". 338 /// Toggles a given bit to its opposite value. 339 void APInt::flipBit(unsigned bitPosition) { 340 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 341 if ((*this)[bitPosition]) clearBit(bitPosition); 342 else setBit(bitPosition); 343 } 344 345 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 346 unsigned subBitWidth = subBits.getBitWidth(); 347 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && 348 "Illegal bit insertion"); 349 350 // Insertion is a direct copy. 351 if (subBitWidth == BitWidth) { 352 *this = subBits; 353 return; 354 } 355 356 // Single word result can be done as a direct bitmask. 357 if (isSingleWord()) { 358 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 359 U.VAL &= ~(mask << bitPosition); 360 U.VAL |= (subBits.U.VAL << bitPosition); 361 return; 362 } 363 364 unsigned loBit = whichBit(bitPosition); 365 unsigned loWord = whichWord(bitPosition); 366 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 367 368 // Insertion within a single word can be done as a direct bitmask. 369 if (loWord == hi1Word) { 370 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 371 U.pVal[loWord] &= ~(mask << loBit); 372 U.pVal[loWord] |= (subBits.U.VAL << loBit); 373 return; 374 } 375 376 // Insert on word boundaries. 377 if (loBit == 0) { 378 // Direct copy whole words. 379 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 380 memcpy(U.pVal + loWord, subBits.getRawData(), 381 numWholeSubWords * APINT_WORD_SIZE); 382 383 // Mask+insert remaining bits. 384 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 385 if (remainingBits != 0) { 386 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - remainingBits); 387 U.pVal[hi1Word] &= ~mask; 388 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 389 } 390 return; 391 } 392 393 // General case - set/clear individual bits in dst based on src. 394 // TODO - there is scope for optimization here, but at the moment this code 395 // path is barely used so prefer readability over performance. 396 for (unsigned i = 0; i != subBitWidth; ++i) { 397 if (subBits[i]) 398 setBit(bitPosition + i); 399 else 400 clearBit(bitPosition + i); 401 } 402 } 403 404 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 405 assert(numBits > 0 && "Can't extract zero bits"); 406 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 407 "Illegal bit extraction"); 408 409 if (isSingleWord()) 410 return APInt(numBits, U.VAL >> bitPosition); 411 412 unsigned loBit = whichBit(bitPosition); 413 unsigned loWord = whichWord(bitPosition); 414 unsigned hiWord = whichWord(bitPosition + numBits - 1); 415 416 // Single word result extracting bits from a single word source. 417 if (loWord == hiWord) 418 return APInt(numBits, U.pVal[loWord] >> loBit); 419 420 // Extracting bits that start on a source word boundary can be done 421 // as a fast memory copy. 422 if (loBit == 0) 423 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 424 425 // General case - shift + copy source words directly into place. 426 APInt Result(numBits, 0); 427 unsigned NumSrcWords = getNumWords(); 428 unsigned NumDstWords = Result.getNumWords(); 429 430 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 431 for (unsigned word = 0; word < NumDstWords; ++word) { 432 uint64_t w0 = U.pVal[loWord + word]; 433 uint64_t w1 = 434 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 435 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 436 } 437 438 return Result.clearUnusedBits(); 439 } 440 441 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 442 assert(!str.empty() && "Invalid string length"); 443 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 444 radix == 36) && 445 "Radix should be 2, 8, 10, 16, or 36!"); 446 447 size_t slen = str.size(); 448 449 // Each computation below needs to know if it's negative. 450 StringRef::iterator p = str.begin(); 451 unsigned isNegative = *p == '-'; 452 if (*p == '-' || *p == '+') { 453 p++; 454 slen--; 455 assert(slen && "String is only a sign, needs a value."); 456 } 457 458 // For radixes of power-of-two values, the bits required is accurately and 459 // easily computed 460 if (radix == 2) 461 return slen + isNegative; 462 if (radix == 8) 463 return slen * 3 + isNegative; 464 if (radix == 16) 465 return slen * 4 + isNegative; 466 467 // FIXME: base 36 468 469 // This is grossly inefficient but accurate. We could probably do something 470 // with a computation of roughly slen*64/20 and then adjust by the value of 471 // the first few digits. But, I'm not sure how accurate that could be. 472 473 // Compute a sufficient number of bits that is always large enough but might 474 // be too large. This avoids the assertion in the constructor. This 475 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 476 // bits in that case. 477 unsigned sufficient 478 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 479 : (slen == 1 ? 7 : slen * 16/3); 480 481 // Convert to the actual binary value. 482 APInt tmp(sufficient, StringRef(p, slen), radix); 483 484 // Compute how many bits are required. If the log is infinite, assume we need 485 // just bit. 486 unsigned log = tmp.logBase2(); 487 if (log == (unsigned)-1) { 488 return isNegative + 1; 489 } else { 490 return isNegative + log + 1; 491 } 492 } 493 494 hash_code llvm::hash_value(const APInt &Arg) { 495 if (Arg.isSingleWord()) 496 return hash_combine(Arg.U.VAL); 497 498 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()); 499 } 500 501 bool APInt::isSplat(unsigned SplatSizeInBits) const { 502 assert(getBitWidth() % SplatSizeInBits == 0 && 503 "SplatSizeInBits must divide width!"); 504 // We can check that all parts of an integer are equal by making use of a 505 // little trick: rotate and check if it's still the same value. 506 return *this == rotl(SplatSizeInBits); 507 } 508 509 /// This function returns the high "numBits" bits of this APInt. 510 APInt APInt::getHiBits(unsigned numBits) const { 511 return this->lshr(BitWidth - numBits); 512 } 513 514 /// This function returns the low "numBits" bits of this APInt. 515 APInt APInt::getLoBits(unsigned numBits) const { 516 APInt Result(getLowBitsSet(BitWidth, numBits)); 517 Result &= *this; 518 return Result; 519 } 520 521 /// Return a value containing V broadcasted over NewLen bits. 522 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 523 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 524 525 APInt Val = V.zextOrSelf(NewLen); 526 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 527 Val |= Val << I; 528 529 return Val; 530 } 531 532 unsigned APInt::countLeadingZerosSlowCase() const { 533 unsigned Count = 0; 534 for (int i = getNumWords()-1; i >= 0; --i) { 535 uint64_t V = U.pVal[i]; 536 if (V == 0) 537 Count += APINT_BITS_PER_WORD; 538 else { 539 Count += llvm::countLeadingZeros(V); 540 break; 541 } 542 } 543 // Adjust for unused bits in the most significant word (they are zero). 544 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 545 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 546 return Count; 547 } 548 549 unsigned APInt::countLeadingOnesSlowCase() const { 550 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 551 unsigned shift; 552 if (!highWordBits) { 553 highWordBits = APINT_BITS_PER_WORD; 554 shift = 0; 555 } else { 556 shift = APINT_BITS_PER_WORD - highWordBits; 557 } 558 int i = getNumWords() - 1; 559 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); 560 if (Count == highWordBits) { 561 for (i--; i >= 0; --i) { 562 if (U.pVal[i] == WORD_MAX) 563 Count += APINT_BITS_PER_WORD; 564 else { 565 Count += llvm::countLeadingOnes(U.pVal[i]); 566 break; 567 } 568 } 569 } 570 return Count; 571 } 572 573 unsigned APInt::countTrailingZerosSlowCase() const { 574 unsigned Count = 0; 575 unsigned i = 0; 576 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 577 Count += APINT_BITS_PER_WORD; 578 if (i < getNumWords()) 579 Count += llvm::countTrailingZeros(U.pVal[i]); 580 return std::min(Count, BitWidth); 581 } 582 583 unsigned APInt::countTrailingOnesSlowCase() const { 584 unsigned Count = 0; 585 unsigned i = 0; 586 for (; i < getNumWords() && U.pVal[i] == WORD_MAX; ++i) 587 Count += APINT_BITS_PER_WORD; 588 if (i < getNumWords()) 589 Count += llvm::countTrailingOnes(U.pVal[i]); 590 assert(Count <= BitWidth); 591 return Count; 592 } 593 594 unsigned APInt::countPopulationSlowCase() const { 595 unsigned Count = 0; 596 for (unsigned i = 0; i < getNumWords(); ++i) 597 Count += llvm::countPopulation(U.pVal[i]); 598 return Count; 599 } 600 601 bool APInt::intersectsSlowCase(const APInt &RHS) const { 602 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 603 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 604 return true; 605 606 return false; 607 } 608 609 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 610 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 611 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 612 return false; 613 614 return true; 615 } 616 617 APInt APInt::byteSwap() const { 618 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 619 if (BitWidth == 16) 620 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); 621 if (BitWidth == 32) 622 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); 623 if (BitWidth == 48) { 624 unsigned Tmp1 = unsigned(U.VAL >> 16); 625 Tmp1 = ByteSwap_32(Tmp1); 626 uint16_t Tmp2 = uint16_t(U.VAL); 627 Tmp2 = ByteSwap_16(Tmp2); 628 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 629 } 630 if (BitWidth == 64) 631 return APInt(BitWidth, ByteSwap_64(U.VAL)); 632 633 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 634 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 635 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); 636 if (Result.BitWidth != BitWidth) { 637 Result.lshrInPlace(Result.BitWidth - BitWidth); 638 Result.BitWidth = BitWidth; 639 } 640 return Result; 641 } 642 643 APInt APInt::reverseBits() const { 644 switch (BitWidth) { 645 case 64: 646 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 647 case 32: 648 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 649 case 16: 650 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 651 case 8: 652 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 653 default: 654 break; 655 } 656 657 APInt Val(*this); 658 APInt Reversed(BitWidth, 0); 659 unsigned S = BitWidth; 660 661 for (; Val != 0; Val.lshrInPlace(1)) { 662 Reversed <<= 1; 663 Reversed |= Val[0]; 664 --S; 665 } 666 667 Reversed <<= S; 668 return Reversed; 669 } 670 671 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 672 // Fast-path a common case. 673 if (A == B) return A; 674 675 // Corner cases: if either operand is zero, the other is the gcd. 676 if (!A) return B; 677 if (!B) return A; 678 679 // Count common powers of 2 and remove all other powers of 2. 680 unsigned Pow2; 681 { 682 unsigned Pow2_A = A.countTrailingZeros(); 683 unsigned Pow2_B = B.countTrailingZeros(); 684 if (Pow2_A > Pow2_B) { 685 A.lshrInPlace(Pow2_A - Pow2_B); 686 Pow2 = Pow2_B; 687 } else if (Pow2_B > Pow2_A) { 688 B.lshrInPlace(Pow2_B - Pow2_A); 689 Pow2 = Pow2_A; 690 } else { 691 Pow2 = Pow2_A; 692 } 693 } 694 695 // Both operands are odd multiples of 2^Pow_2: 696 // 697 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 698 // 699 // This is a modified version of Stein's algorithm, taking advantage of 700 // efficient countTrailingZeros(). 701 while (A != B) { 702 if (A.ugt(B)) { 703 A -= B; 704 A.lshrInPlace(A.countTrailingZeros() - Pow2); 705 } else { 706 B -= A; 707 B.lshrInPlace(B.countTrailingZeros() - Pow2); 708 } 709 } 710 711 return A; 712 } 713 714 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 715 union { 716 double D; 717 uint64_t I; 718 } T; 719 T.D = Double; 720 721 // Get the sign bit from the highest order bit 722 bool isNeg = T.I >> 63; 723 724 // Get the 11-bit exponent and adjust for the 1023 bit bias 725 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 726 727 // If the exponent is negative, the value is < 0 so just return 0. 728 if (exp < 0) 729 return APInt(width, 0u); 730 731 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 732 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 733 734 // If the exponent doesn't shift all bits out of the mantissa 735 if (exp < 52) 736 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 737 APInt(width, mantissa >> (52 - exp)); 738 739 // If the client didn't provide enough bits for us to shift the mantissa into 740 // then the result is undefined, just return 0 741 if (width <= exp - 52) 742 return APInt(width, 0); 743 744 // Otherwise, we have to shift the mantissa bits up to the right location 745 APInt Tmp(width, mantissa); 746 Tmp <<= (unsigned)exp - 52; 747 return isNeg ? -Tmp : Tmp; 748 } 749 750 /// This function converts this APInt to a double. 751 /// The layout for double is as following (IEEE Standard 754): 752 /// -------------------------------------- 753 /// | Sign Exponent Fraction Bias | 754 /// |-------------------------------------- | 755 /// | 1[63] 11[62-52] 52[51-00] 1023 | 756 /// -------------------------------------- 757 double APInt::roundToDouble(bool isSigned) const { 758 759 // Handle the simple case where the value is contained in one uint64_t. 760 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 761 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 762 if (isSigned) { 763 int64_t sext = SignExtend64(getWord(0), BitWidth); 764 return double(sext); 765 } else 766 return double(getWord(0)); 767 } 768 769 // Determine if the value is negative. 770 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 771 772 // Construct the absolute value if we're negative. 773 APInt Tmp(isNeg ? -(*this) : (*this)); 774 775 // Figure out how many bits we're using. 776 unsigned n = Tmp.getActiveBits(); 777 778 // The exponent (without bias normalization) is just the number of bits 779 // we are using. Note that the sign bit is gone since we constructed the 780 // absolute value. 781 uint64_t exp = n; 782 783 // Return infinity for exponent overflow 784 if (exp > 1023) { 785 if (!isSigned || !isNeg) 786 return std::numeric_limits<double>::infinity(); 787 else 788 return -std::numeric_limits<double>::infinity(); 789 } 790 exp += 1023; // Increment for 1023 bias 791 792 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 793 // extract the high 52 bits from the correct words in pVal. 794 uint64_t mantissa; 795 unsigned hiWord = whichWord(n-1); 796 if (hiWord == 0) { 797 mantissa = Tmp.U.pVal[0]; 798 if (n > 52) 799 mantissa >>= n - 52; // shift down, we want the top 52 bits. 800 } else { 801 assert(hiWord > 0 && "huh?"); 802 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 803 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 804 mantissa = hibits | lobits; 805 } 806 807 // The leading bit of mantissa is implicit, so get rid of it. 808 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 809 union { 810 double D; 811 uint64_t I; 812 } T; 813 T.I = sign | (exp << 52) | mantissa; 814 return T.D; 815 } 816 817 // Truncate to new width. 818 APInt APInt::trunc(unsigned width) const { 819 assert(width < BitWidth && "Invalid APInt Truncate request"); 820 assert(width && "Can't truncate to 0 bits"); 821 822 if (width <= APINT_BITS_PER_WORD) 823 return APInt(width, getRawData()[0]); 824 825 APInt Result(getMemory(getNumWords(width)), width); 826 827 // Copy full words. 828 unsigned i; 829 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 830 Result.U.pVal[i] = U.pVal[i]; 831 832 // Truncate and copy any partial word. 833 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 834 if (bits != 0) 835 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 836 837 return Result; 838 } 839 840 // Sign extend to a new width. 841 APInt APInt::sext(unsigned Width) const { 842 assert(Width > BitWidth && "Invalid APInt SignExtend request"); 843 844 if (Width <= APINT_BITS_PER_WORD) 845 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 846 847 APInt Result(getMemory(getNumWords(Width)), Width); 848 849 // Copy words. 850 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 851 852 // Sign extend the last word since there may be unused bits in the input. 853 Result.U.pVal[getNumWords() - 1] = 854 SignExtend64(Result.U.pVal[getNumWords() - 1], 855 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 856 857 // Fill with sign bits. 858 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 859 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 860 Result.clearUnusedBits(); 861 return Result; 862 } 863 864 // Zero extend to a new width. 865 APInt APInt::zext(unsigned width) const { 866 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 867 868 if (width <= APINT_BITS_PER_WORD) 869 return APInt(width, U.VAL); 870 871 APInt Result(getMemory(getNumWords(width)), width); 872 873 // Copy words. 874 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 875 876 // Zero remaining words. 877 std::memset(Result.U.pVal + getNumWords(), 0, 878 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 879 880 return Result; 881 } 882 883 APInt APInt::zextOrTrunc(unsigned width) const { 884 if (BitWidth < width) 885 return zext(width); 886 if (BitWidth > width) 887 return trunc(width); 888 return *this; 889 } 890 891 APInt APInt::sextOrTrunc(unsigned width) const { 892 if (BitWidth < width) 893 return sext(width); 894 if (BitWidth > width) 895 return trunc(width); 896 return *this; 897 } 898 899 APInt APInt::zextOrSelf(unsigned width) const { 900 if (BitWidth < width) 901 return zext(width); 902 return *this; 903 } 904 905 APInt APInt::sextOrSelf(unsigned width) const { 906 if (BitWidth < width) 907 return sext(width); 908 return *this; 909 } 910 911 /// Arithmetic right-shift this APInt by shiftAmt. 912 /// Arithmetic right-shift function. 913 void APInt::ashrInPlace(const APInt &shiftAmt) { 914 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 915 } 916 917 /// Arithmetic right-shift this APInt by shiftAmt. 918 /// Arithmetic right-shift function. 919 void APInt::ashrSlowCase(unsigned ShiftAmt) { 920 // Don't bother performing a no-op shift. 921 if (!ShiftAmt) 922 return; 923 924 // Save the original sign bit for later. 925 bool Negative = isNegative(); 926 927 // WordShift is the inter-part shift; BitShift is intra-part shift. 928 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 929 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 930 931 unsigned WordsToMove = getNumWords() - WordShift; 932 if (WordsToMove != 0) { 933 // Sign extend the last word to fill in the unused bits. 934 U.pVal[getNumWords() - 1] = SignExtend64( 935 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 936 937 // Fastpath for moving by whole words. 938 if (BitShift == 0) { 939 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 940 } else { 941 // Move the words containing significant bits. 942 for (unsigned i = 0; i != WordsToMove - 1; ++i) 943 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 944 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 945 946 // Handle the last word which has no high bits to copy. 947 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 948 // Sign extend one more time. 949 U.pVal[WordsToMove - 1] = 950 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 951 } 952 } 953 954 // Fill in the remainder based on the original sign. 955 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 956 WordShift * APINT_WORD_SIZE); 957 clearUnusedBits(); 958 } 959 960 /// Logical right-shift this APInt by shiftAmt. 961 /// Logical right-shift function. 962 void APInt::lshrInPlace(const APInt &shiftAmt) { 963 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 964 } 965 966 /// Logical right-shift this APInt by shiftAmt. 967 /// Logical right-shift function. 968 void APInt::lshrSlowCase(unsigned ShiftAmt) { 969 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 970 } 971 972 /// Left-shift this APInt by shiftAmt. 973 /// Left-shift function. 974 APInt &APInt::operator<<=(const APInt &shiftAmt) { 975 // It's undefined behavior in C to shift by BitWidth or greater. 976 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 977 return *this; 978 } 979 980 void APInt::shlSlowCase(unsigned ShiftAmt) { 981 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 982 clearUnusedBits(); 983 } 984 985 // Calculate the rotate amount modulo the bit width. 986 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 987 unsigned rotBitWidth = rotateAmt.getBitWidth(); 988 APInt rot = rotateAmt; 989 if (rotBitWidth < BitWidth) { 990 // Extend the rotate APInt, so that the urem doesn't divide by 0. 991 // e.g. APInt(1, 32) would give APInt(1, 0). 992 rot = rotateAmt.zext(BitWidth); 993 } 994 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 995 return rot.getLimitedValue(BitWidth); 996 } 997 998 APInt APInt::rotl(const APInt &rotateAmt) const { 999 return rotl(rotateModulo(BitWidth, rotateAmt)); 1000 } 1001 1002 APInt APInt::rotl(unsigned rotateAmt) const { 1003 rotateAmt %= BitWidth; 1004 if (rotateAmt == 0) 1005 return *this; 1006 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1007 } 1008 1009 APInt APInt::rotr(const APInt &rotateAmt) const { 1010 return rotr(rotateModulo(BitWidth, rotateAmt)); 1011 } 1012 1013 APInt APInt::rotr(unsigned rotateAmt) const { 1014 rotateAmt %= BitWidth; 1015 if (rotateAmt == 0) 1016 return *this; 1017 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1018 } 1019 1020 // Square Root - this method computes and returns the square root of "this". 1021 // Three mechanisms are used for computation. For small values (<= 5 bits), 1022 // a table lookup is done. This gets some performance for common cases. For 1023 // values using less than 52 bits, the value is converted to double and then 1024 // the libc sqrt function is called. The result is rounded and then converted 1025 // back to a uint64_t which is then used to construct the result. Finally, 1026 // the Babylonian method for computing square roots is used. 1027 APInt APInt::sqrt() const { 1028 1029 // Determine the magnitude of the value. 1030 unsigned magnitude = getActiveBits(); 1031 1032 // Use a fast table for some small values. This also gets rid of some 1033 // rounding errors in libc sqrt for small values. 1034 if (magnitude <= 5) { 1035 static const uint8_t results[32] = { 1036 /* 0 */ 0, 1037 /* 1- 2 */ 1, 1, 1038 /* 3- 6 */ 2, 2, 2, 2, 1039 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1040 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1041 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1042 /* 31 */ 6 1043 }; 1044 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1045 } 1046 1047 // If the magnitude of the value fits in less than 52 bits (the precision of 1048 // an IEEE double precision floating point value), then we can use the 1049 // libc sqrt function which will probably use a hardware sqrt computation. 1050 // This should be faster than the algorithm below. 1051 if (magnitude < 52) { 1052 return APInt(BitWidth, 1053 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1054 : U.pVal[0]))))); 1055 } 1056 1057 // Okay, all the short cuts are exhausted. We must compute it. The following 1058 // is a classical Babylonian method for computing the square root. This code 1059 // was adapted to APInt from a wikipedia article on such computations. 1060 // See http://www.wikipedia.org/ and go to the page named 1061 // Calculate_an_integer_square_root. 1062 unsigned nbits = BitWidth, i = 4; 1063 APInt testy(BitWidth, 16); 1064 APInt x_old(BitWidth, 1); 1065 APInt x_new(BitWidth, 0); 1066 APInt two(BitWidth, 2); 1067 1068 // Select a good starting value using binary logarithms. 1069 for (;; i += 2, testy = testy.shl(2)) 1070 if (i >= nbits || this->ule(testy)) { 1071 x_old = x_old.shl(i / 2); 1072 break; 1073 } 1074 1075 // Use the Babylonian method to arrive at the integer square root: 1076 for (;;) { 1077 x_new = (this->udiv(x_old) + x_old).udiv(two); 1078 if (x_old.ule(x_new)) 1079 break; 1080 x_old = x_new; 1081 } 1082 1083 // Make sure we return the closest approximation 1084 // NOTE: The rounding calculation below is correct. It will produce an 1085 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1086 // determined to be a rounding issue with pari/gp as it begins to use a 1087 // floating point representation after 192 bits. There are no discrepancies 1088 // between this algorithm and pari/gp for bit widths < 192 bits. 1089 APInt square(x_old * x_old); 1090 APInt nextSquare((x_old + 1) * (x_old +1)); 1091 if (this->ult(square)) 1092 return x_old; 1093 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1094 APInt midpoint((nextSquare - square).udiv(two)); 1095 APInt offset(*this - square); 1096 if (offset.ult(midpoint)) 1097 return x_old; 1098 return x_old + 1; 1099 } 1100 1101 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1102 /// iterative extended Euclidean algorithm is used to solve for this value, 1103 /// however we simplify it to speed up calculating only the inverse, and take 1104 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1105 /// (potentially large) APInts around. 1106 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1107 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1108 1109 // Using the properties listed at the following web page (accessed 06/21/08): 1110 // http://www.numbertheory.org/php/euclid.html 1111 // (especially the properties numbered 3, 4 and 9) it can be proved that 1112 // BitWidth bits suffice for all the computations in the algorithm implemented 1113 // below. More precisely, this number of bits suffice if the multiplicative 1114 // inverse exists, but may not suffice for the general extended Euclidean 1115 // algorithm. 1116 1117 APInt r[2] = { modulo, *this }; 1118 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1119 APInt q(BitWidth, 0); 1120 1121 unsigned i; 1122 for (i = 0; r[i^1] != 0; i ^= 1) { 1123 // An overview of the math without the confusing bit-flipping: 1124 // q = r[i-2] / r[i-1] 1125 // r[i] = r[i-2] % r[i-1] 1126 // t[i] = t[i-2] - t[i-1] * q 1127 udivrem(r[i], r[i^1], q, r[i]); 1128 t[i] -= t[i^1] * q; 1129 } 1130 1131 // If this APInt and the modulo are not coprime, there is no multiplicative 1132 // inverse, so return 0. We check this by looking at the next-to-last 1133 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1134 // algorithm. 1135 if (r[i] != 1) 1136 return APInt(BitWidth, 0); 1137 1138 // The next-to-last t is the multiplicative inverse. However, we are 1139 // interested in a positive inverse. Calculate a positive one from a negative 1140 // one if necessary. A simple addition of the modulo suffices because 1141 // abs(t[i]) is known to be less than *this/2 (see the link above). 1142 if (t[i].isNegative()) 1143 t[i] += modulo; 1144 1145 return std::move(t[i]); 1146 } 1147 1148 /// Calculate the magic numbers required to implement a signed integer division 1149 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1150 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1151 /// Warren, Jr., chapter 10. 1152 APInt::ms APInt::magic() const { 1153 const APInt& d = *this; 1154 unsigned p; 1155 APInt ad, anc, delta, q1, r1, q2, r2, t; 1156 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1157 struct ms mag; 1158 1159 ad = d.abs(); 1160 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1161 anc = t - 1 - t.urem(ad); // absolute value of nc 1162 p = d.getBitWidth() - 1; // initialize p 1163 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1164 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1165 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1166 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1167 do { 1168 p = p + 1; 1169 q1 = q1<<1; // update q1 = 2p/abs(nc) 1170 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1171 if (r1.uge(anc)) { // must be unsigned comparison 1172 q1 = q1 + 1; 1173 r1 = r1 - anc; 1174 } 1175 q2 = q2<<1; // update q2 = 2p/abs(d) 1176 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1177 if (r2.uge(ad)) { // must be unsigned comparison 1178 q2 = q2 + 1; 1179 r2 = r2 - ad; 1180 } 1181 delta = ad - r2; 1182 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1183 1184 mag.m = q2 + 1; 1185 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1186 mag.s = p - d.getBitWidth(); // resulting shift 1187 return mag; 1188 } 1189 1190 /// Calculate the magic numbers required to implement an unsigned integer 1191 /// division by a constant as a sequence of multiplies, adds and shifts. 1192 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1193 /// S. Warren, Jr., chapter 10. 1194 /// LeadingZeros can be used to simplify the calculation if the upper bits 1195 /// of the divided value are known zero. 1196 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1197 const APInt& d = *this; 1198 unsigned p; 1199 APInt nc, delta, q1, r1, q2, r2; 1200 struct mu magu; 1201 magu.a = 0; // initialize "add" indicator 1202 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1203 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1204 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1205 1206 nc = allOnes - (allOnes - d).urem(d); 1207 p = d.getBitWidth() - 1; // initialize p 1208 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1209 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1210 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1211 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1212 do { 1213 p = p + 1; 1214 if (r1.uge(nc - r1)) { 1215 q1 = q1 + q1 + 1; // update q1 1216 r1 = r1 + r1 - nc; // update r1 1217 } 1218 else { 1219 q1 = q1+q1; // update q1 1220 r1 = r1+r1; // update r1 1221 } 1222 if ((r2 + 1).uge(d - r2)) { 1223 if (q2.uge(signedMax)) magu.a = 1; 1224 q2 = q2+q2 + 1; // update q2 1225 r2 = r2+r2 + 1 - d; // update r2 1226 } 1227 else { 1228 if (q2.uge(signedMin)) magu.a = 1; 1229 q2 = q2+q2; // update q2 1230 r2 = r2+r2 + 1; // update r2 1231 } 1232 delta = d - 1 - r2; 1233 } while (p < d.getBitWidth()*2 && 1234 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1235 magu.m = q2 + 1; // resulting magic number 1236 magu.s = p - d.getBitWidth(); // resulting shift 1237 return magu; 1238 } 1239 1240 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1241 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1242 /// variables here have the same names as in the algorithm. Comments explain 1243 /// the algorithm and any deviation from it. 1244 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1245 unsigned m, unsigned n) { 1246 assert(u && "Must provide dividend"); 1247 assert(v && "Must provide divisor"); 1248 assert(q && "Must provide quotient"); 1249 assert(u != v && u != q && v != q && "Must use different memory"); 1250 assert(n>1 && "n must be > 1"); 1251 1252 // b denotes the base of the number system. In our case b is 2^32. 1253 const uint64_t b = uint64_t(1) << 32; 1254 1255 // The DEBUG macros here tend to be spam in the debug output if you're not 1256 // debugging this code. Disable them unless KNUTH_DEBUG is defined. 1257 #pragma push_macro("LLVM_DEBUG") 1258 #ifndef KNUTH_DEBUG 1259 #undef LLVM_DEBUG 1260 #define LLVM_DEBUG(X) \ 1261 do { \ 1262 } while (false) 1263 #endif 1264 1265 LLVM_DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1266 LLVM_DEBUG(dbgs() << "KnuthDiv: original:"); 1267 LLVM_DEBUG(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1268 LLVM_DEBUG(dbgs() << " by"); 1269 LLVM_DEBUG(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1270 LLVM_DEBUG(dbgs() << '\n'); 1271 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1272 // u and v by d. Note that we have taken Knuth's advice here to use a power 1273 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1274 // 2 allows us to shift instead of multiply and it is easy to determine the 1275 // shift amount from the leading zeros. We are basically normalizing the u 1276 // and v so that its high bits are shifted to the top of v's range without 1277 // overflow. Note that this can require an extra word in u so that u must 1278 // be of length m+n+1. 1279 unsigned shift = countLeadingZeros(v[n-1]); 1280 uint32_t v_carry = 0; 1281 uint32_t u_carry = 0; 1282 if (shift) { 1283 for (unsigned i = 0; i < m+n; ++i) { 1284 uint32_t u_tmp = u[i] >> (32 - shift); 1285 u[i] = (u[i] << shift) | u_carry; 1286 u_carry = u_tmp; 1287 } 1288 for (unsigned i = 0; i < n; ++i) { 1289 uint32_t v_tmp = v[i] >> (32 - shift); 1290 v[i] = (v[i] << shift) | v_carry; 1291 v_carry = v_tmp; 1292 } 1293 } 1294 u[m+n] = u_carry; 1295 1296 LLVM_DEBUG(dbgs() << "KnuthDiv: normal:"); 1297 LLVM_DEBUG(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1298 LLVM_DEBUG(dbgs() << " by"); 1299 LLVM_DEBUG(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1300 LLVM_DEBUG(dbgs() << '\n'); 1301 1302 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1303 int j = m; 1304 do { 1305 LLVM_DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1306 // D3. [Calculate q'.]. 1307 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1308 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1309 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1310 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1311 // on v[n-2] determines at high speed most of the cases in which the trial 1312 // value qp is one too large, and it eliminates all cases where qp is two 1313 // too large. 1314 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1315 LLVM_DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1316 uint64_t qp = dividend / v[n-1]; 1317 uint64_t rp = dividend % v[n-1]; 1318 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1319 qp--; 1320 rp += v[n-1]; 1321 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1322 qp--; 1323 } 1324 LLVM_DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1325 1326 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1327 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1328 // consists of a simple multiplication by a one-place number, combined with 1329 // a subtraction. 1330 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1331 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1332 // true value plus b**(n+1), namely as the b's complement of 1333 // the true value, and a "borrow" to the left should be remembered. 1334 int64_t borrow = 0; 1335 for (unsigned i = 0; i < n; ++i) { 1336 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1337 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1338 u[j+i] = Lo_32(subres); 1339 borrow = Hi_32(p) - Hi_32(subres); 1340 LLVM_DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 1341 << ", borrow = " << borrow << '\n'); 1342 } 1343 bool isNeg = u[j+n] < borrow; 1344 u[j+n] -= Lo_32(borrow); 1345 1346 LLVM_DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1347 LLVM_DEBUG(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1348 LLVM_DEBUG(dbgs() << '\n'); 1349 1350 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1351 // negative, go to step D6; otherwise go on to step D7. 1352 q[j] = Lo_32(qp); 1353 if (isNeg) { 1354 // D6. [Add back]. The probability that this step is necessary is very 1355 // small, on the order of only 2/b. Make sure that test data accounts for 1356 // this possibility. Decrease q[j] by 1 1357 q[j]--; 1358 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1359 // A carry will occur to the left of u[j+n], and it should be ignored 1360 // since it cancels with the borrow that occurred in D4. 1361 bool carry = false; 1362 for (unsigned i = 0; i < n; i++) { 1363 uint32_t limit = std::min(u[j+i],v[i]); 1364 u[j+i] += v[i] + carry; 1365 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1366 } 1367 u[j+n] += carry; 1368 } 1369 LLVM_DEBUG(dbgs() << "KnuthDiv: after correction:"); 1370 LLVM_DEBUG(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1371 LLVM_DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1372 1373 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1374 } while (--j >= 0); 1375 1376 LLVM_DEBUG(dbgs() << "KnuthDiv: quotient:"); 1377 LLVM_DEBUG(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 1378 LLVM_DEBUG(dbgs() << '\n'); 1379 1380 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1381 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1382 // compute the remainder (urem uses this). 1383 if (r) { 1384 // The value d is expressed by the "shift" value above since we avoided 1385 // multiplication by d by using a shift left. So, all we have to do is 1386 // shift right here. 1387 if (shift) { 1388 uint32_t carry = 0; 1389 LLVM_DEBUG(dbgs() << "KnuthDiv: remainder:"); 1390 for (int i = n-1; i >= 0; i--) { 1391 r[i] = (u[i] >> shift) | carry; 1392 carry = u[i] << (32 - shift); 1393 LLVM_DEBUG(dbgs() << " " << r[i]); 1394 } 1395 } else { 1396 for (int i = n-1; i >= 0; i--) { 1397 r[i] = u[i]; 1398 LLVM_DEBUG(dbgs() << " " << r[i]); 1399 } 1400 } 1401 LLVM_DEBUG(dbgs() << '\n'); 1402 } 1403 LLVM_DEBUG(dbgs() << '\n'); 1404 1405 #pragma pop_macro("LLVM_DEBUG") 1406 } 1407 1408 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1409 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1410 assert(lhsWords >= rhsWords && "Fractional result"); 1411 1412 // First, compose the values into an array of 32-bit words instead of 1413 // 64-bit words. This is a necessity of both the "short division" algorithm 1414 // and the Knuth "classical algorithm" which requires there to be native 1415 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1416 // can't use 64-bit operands here because we don't have native results of 1417 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1418 // work on large-endian machines. 1419 unsigned n = rhsWords * 2; 1420 unsigned m = (lhsWords * 2) - n; 1421 1422 // Allocate space for the temporary values we need either on the stack, if 1423 // it will fit, or on the heap if it won't. 1424 uint32_t SPACE[128]; 1425 uint32_t *U = nullptr; 1426 uint32_t *V = nullptr; 1427 uint32_t *Q = nullptr; 1428 uint32_t *R = nullptr; 1429 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1430 U = &SPACE[0]; 1431 V = &SPACE[m+n+1]; 1432 Q = &SPACE[(m+n+1) + n]; 1433 if (Remainder) 1434 R = &SPACE[(m+n+1) + n + (m+n)]; 1435 } else { 1436 U = new uint32_t[m + n + 1]; 1437 V = new uint32_t[n]; 1438 Q = new uint32_t[m+n]; 1439 if (Remainder) 1440 R = new uint32_t[n]; 1441 } 1442 1443 // Initialize the dividend 1444 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1445 for (unsigned i = 0; i < lhsWords; ++i) { 1446 uint64_t tmp = LHS[i]; 1447 U[i * 2] = Lo_32(tmp); 1448 U[i * 2 + 1] = Hi_32(tmp); 1449 } 1450 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1451 1452 // Initialize the divisor 1453 memset(V, 0, (n)*sizeof(uint32_t)); 1454 for (unsigned i = 0; i < rhsWords; ++i) { 1455 uint64_t tmp = RHS[i]; 1456 V[i * 2] = Lo_32(tmp); 1457 V[i * 2 + 1] = Hi_32(tmp); 1458 } 1459 1460 // initialize the quotient and remainder 1461 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1462 if (Remainder) 1463 memset(R, 0, n * sizeof(uint32_t)); 1464 1465 // Now, adjust m and n for the Knuth division. n is the number of words in 1466 // the divisor. m is the number of words by which the dividend exceeds the 1467 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1468 // contain any zero words or the Knuth algorithm fails. 1469 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1470 n--; 1471 m++; 1472 } 1473 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1474 m--; 1475 1476 // If we're left with only a single word for the divisor, Knuth doesn't work 1477 // so we implement the short division algorithm here. This is much simpler 1478 // and faster because we are certain that we can divide a 64-bit quantity 1479 // by a 32-bit quantity at hardware speed and short division is simply a 1480 // series of such operations. This is just like doing short division but we 1481 // are using base 2^32 instead of base 10. 1482 assert(n != 0 && "Divide by zero?"); 1483 if (n == 1) { 1484 uint32_t divisor = V[0]; 1485 uint32_t remainder = 0; 1486 for (int i = m; i >= 0; i--) { 1487 uint64_t partial_dividend = Make_64(remainder, U[i]); 1488 if (partial_dividend == 0) { 1489 Q[i] = 0; 1490 remainder = 0; 1491 } else if (partial_dividend < divisor) { 1492 Q[i] = 0; 1493 remainder = Lo_32(partial_dividend); 1494 } else if (partial_dividend == divisor) { 1495 Q[i] = 1; 1496 remainder = 0; 1497 } else { 1498 Q[i] = Lo_32(partial_dividend / divisor); 1499 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1500 } 1501 } 1502 if (R) 1503 R[0] = remainder; 1504 } else { 1505 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1506 // case n > 1. 1507 KnuthDiv(U, V, Q, R, m, n); 1508 } 1509 1510 // If the caller wants the quotient 1511 if (Quotient) { 1512 for (unsigned i = 0; i < lhsWords; ++i) 1513 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1514 } 1515 1516 // If the caller wants the remainder 1517 if (Remainder) { 1518 for (unsigned i = 0; i < rhsWords; ++i) 1519 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1520 } 1521 1522 // Clean up the memory we allocated. 1523 if (U != &SPACE[0]) { 1524 delete [] U; 1525 delete [] V; 1526 delete [] Q; 1527 delete [] R; 1528 } 1529 } 1530 1531 APInt APInt::udiv(const APInt &RHS) const { 1532 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1533 1534 // First, deal with the easy case 1535 if (isSingleWord()) { 1536 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1537 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1538 } 1539 1540 // Get some facts about the LHS and RHS number of bits and words 1541 unsigned lhsWords = getNumWords(getActiveBits()); 1542 unsigned rhsBits = RHS.getActiveBits(); 1543 unsigned rhsWords = getNumWords(rhsBits); 1544 assert(rhsWords && "Divided by zero???"); 1545 1546 // Deal with some degenerate cases 1547 if (!lhsWords) 1548 // 0 / X ===> 0 1549 return APInt(BitWidth, 0); 1550 if (rhsBits == 1) 1551 // X / 1 ===> X 1552 return *this; 1553 if (lhsWords < rhsWords || this->ult(RHS)) 1554 // X / Y ===> 0, iff X < Y 1555 return APInt(BitWidth, 0); 1556 if (*this == RHS) 1557 // X / X ===> 1 1558 return APInt(BitWidth, 1); 1559 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1560 // All high words are zero, just use native divide 1561 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1562 1563 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1564 APInt Quotient(BitWidth, 0); // to hold result. 1565 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1566 return Quotient; 1567 } 1568 1569 APInt APInt::udiv(uint64_t RHS) const { 1570 assert(RHS != 0 && "Divide by zero?"); 1571 1572 // First, deal with the easy case 1573 if (isSingleWord()) 1574 return APInt(BitWidth, U.VAL / RHS); 1575 1576 // Get some facts about the LHS words. 1577 unsigned lhsWords = getNumWords(getActiveBits()); 1578 1579 // Deal with some degenerate cases 1580 if (!lhsWords) 1581 // 0 / X ===> 0 1582 return APInt(BitWidth, 0); 1583 if (RHS == 1) 1584 // X / 1 ===> X 1585 return *this; 1586 if (this->ult(RHS)) 1587 // X / Y ===> 0, iff X < Y 1588 return APInt(BitWidth, 0); 1589 if (*this == RHS) 1590 // X / X ===> 1 1591 return APInt(BitWidth, 1); 1592 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1593 // All high words are zero, just use native divide 1594 return APInt(BitWidth, this->U.pVal[0] / RHS); 1595 1596 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1597 APInt Quotient(BitWidth, 0); // to hold result. 1598 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1599 return Quotient; 1600 } 1601 1602 APInt APInt::sdiv(const APInt &RHS) const { 1603 if (isNegative()) { 1604 if (RHS.isNegative()) 1605 return (-(*this)).udiv(-RHS); 1606 return -((-(*this)).udiv(RHS)); 1607 } 1608 if (RHS.isNegative()) 1609 return -(this->udiv(-RHS)); 1610 return this->udiv(RHS); 1611 } 1612 1613 APInt APInt::sdiv(int64_t RHS) const { 1614 if (isNegative()) { 1615 if (RHS < 0) 1616 return (-(*this)).udiv(-RHS); 1617 return -((-(*this)).udiv(RHS)); 1618 } 1619 if (RHS < 0) 1620 return -(this->udiv(-RHS)); 1621 return this->udiv(RHS); 1622 } 1623 1624 APInt APInt::urem(const APInt &RHS) const { 1625 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1626 if (isSingleWord()) { 1627 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1628 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1629 } 1630 1631 // Get some facts about the LHS 1632 unsigned lhsWords = getNumWords(getActiveBits()); 1633 1634 // Get some facts about the RHS 1635 unsigned rhsBits = RHS.getActiveBits(); 1636 unsigned rhsWords = getNumWords(rhsBits); 1637 assert(rhsWords && "Performing remainder operation by zero ???"); 1638 1639 // Check the degenerate cases 1640 if (lhsWords == 0) 1641 // 0 % Y ===> 0 1642 return APInt(BitWidth, 0); 1643 if (rhsBits == 1) 1644 // X % 1 ===> 0 1645 return APInt(BitWidth, 0); 1646 if (lhsWords < rhsWords || this->ult(RHS)) 1647 // X % Y ===> X, iff X < Y 1648 return *this; 1649 if (*this == RHS) 1650 // X % X == 0; 1651 return APInt(BitWidth, 0); 1652 if (lhsWords == 1) 1653 // All high words are zero, just use native remainder 1654 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1655 1656 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1657 APInt Remainder(BitWidth, 0); 1658 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1659 return Remainder; 1660 } 1661 1662 uint64_t APInt::urem(uint64_t RHS) const { 1663 assert(RHS != 0 && "Remainder by zero?"); 1664 1665 if (isSingleWord()) 1666 return U.VAL % RHS; 1667 1668 // Get some facts about the LHS 1669 unsigned lhsWords = getNumWords(getActiveBits()); 1670 1671 // Check the degenerate cases 1672 if (lhsWords == 0) 1673 // 0 % Y ===> 0 1674 return 0; 1675 if (RHS == 1) 1676 // X % 1 ===> 0 1677 return 0; 1678 if (this->ult(RHS)) 1679 // X % Y ===> X, iff X < Y 1680 return getZExtValue(); 1681 if (*this == RHS) 1682 // X % X == 0; 1683 return 0; 1684 if (lhsWords == 1) 1685 // All high words are zero, just use native remainder 1686 return U.pVal[0] % RHS; 1687 1688 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1689 uint64_t Remainder; 1690 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1691 return Remainder; 1692 } 1693 1694 APInt APInt::srem(const APInt &RHS) const { 1695 if (isNegative()) { 1696 if (RHS.isNegative()) 1697 return -((-(*this)).urem(-RHS)); 1698 return -((-(*this)).urem(RHS)); 1699 } 1700 if (RHS.isNegative()) 1701 return this->urem(-RHS); 1702 return this->urem(RHS); 1703 } 1704 1705 int64_t APInt::srem(int64_t RHS) const { 1706 if (isNegative()) { 1707 if (RHS < 0) 1708 return -((-(*this)).urem(-RHS)); 1709 return -((-(*this)).urem(RHS)); 1710 } 1711 if (RHS < 0) 1712 return this->urem(-RHS); 1713 return this->urem(RHS); 1714 } 1715 1716 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1717 APInt &Quotient, APInt &Remainder) { 1718 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1719 unsigned BitWidth = LHS.BitWidth; 1720 1721 // First, deal with the easy case 1722 if (LHS.isSingleWord()) { 1723 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1724 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1725 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1726 Quotient = APInt(BitWidth, QuotVal); 1727 Remainder = APInt(BitWidth, RemVal); 1728 return; 1729 } 1730 1731 // Get some size facts about the dividend and divisor 1732 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1733 unsigned rhsBits = RHS.getActiveBits(); 1734 unsigned rhsWords = getNumWords(rhsBits); 1735 assert(rhsWords && "Performing divrem operation by zero ???"); 1736 1737 // Check the degenerate cases 1738 if (lhsWords == 0) { 1739 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1740 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 1741 return; 1742 } 1743 1744 if (rhsBits == 1) { 1745 Quotient = LHS; // X / 1 ===> X 1746 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 1747 } 1748 1749 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1750 Remainder = LHS; // X % Y ===> X, iff X < Y 1751 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1752 return; 1753 } 1754 1755 if (LHS == RHS) { 1756 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1757 Remainder = APInt(BitWidth, 0); // X % X ===> 0; 1758 return; 1759 } 1760 1761 // Make sure there is enough space to hold the results. 1762 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1763 // change the size. This is necessary if Quotient or Remainder is aliased 1764 // with LHS or RHS. 1765 Quotient.reallocate(BitWidth); 1766 Remainder.reallocate(BitWidth); 1767 1768 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1769 // There is only one word to consider so use the native versions. 1770 uint64_t lhsValue = LHS.U.pVal[0]; 1771 uint64_t rhsValue = RHS.U.pVal[0]; 1772 Quotient = lhsValue / rhsValue; 1773 Remainder = lhsValue % rhsValue; 1774 return; 1775 } 1776 1777 // Okay, lets do it the long way 1778 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1779 Remainder.U.pVal); 1780 // Clear the rest of the Quotient and Remainder. 1781 std::memset(Quotient.U.pVal + lhsWords, 0, 1782 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1783 std::memset(Remainder.U.pVal + rhsWords, 0, 1784 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1785 } 1786 1787 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1788 uint64_t &Remainder) { 1789 assert(RHS != 0 && "Divide by zero?"); 1790 unsigned BitWidth = LHS.BitWidth; 1791 1792 // First, deal with the easy case 1793 if (LHS.isSingleWord()) { 1794 uint64_t QuotVal = LHS.U.VAL / RHS; 1795 Remainder = LHS.U.VAL % RHS; 1796 Quotient = APInt(BitWidth, QuotVal); 1797 return; 1798 } 1799 1800 // Get some size facts about the dividend and divisor 1801 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1802 1803 // Check the degenerate cases 1804 if (lhsWords == 0) { 1805 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1806 Remainder = 0; // 0 % Y ===> 0 1807 return; 1808 } 1809 1810 if (RHS == 1) { 1811 Quotient = LHS; // X / 1 ===> X 1812 Remainder = 0; // X % 1 ===> 0 1813 return; 1814 } 1815 1816 if (LHS.ult(RHS)) { 1817 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1818 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1819 return; 1820 } 1821 1822 if (LHS == RHS) { 1823 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1824 Remainder = 0; // X % X ===> 0; 1825 return; 1826 } 1827 1828 // Make sure there is enough space to hold the results. 1829 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1830 // change the size. This is necessary if Quotient is aliased with LHS. 1831 Quotient.reallocate(BitWidth); 1832 1833 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1834 // There is only one word to consider so use the native versions. 1835 uint64_t lhsValue = LHS.U.pVal[0]; 1836 Quotient = lhsValue / RHS; 1837 Remainder = lhsValue % RHS; 1838 return; 1839 } 1840 1841 // Okay, lets do it the long way 1842 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1843 // Clear the rest of the Quotient. 1844 std::memset(Quotient.U.pVal + lhsWords, 0, 1845 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1846 } 1847 1848 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1849 APInt &Quotient, APInt &Remainder) { 1850 if (LHS.isNegative()) { 1851 if (RHS.isNegative()) 1852 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1853 else { 1854 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1855 Quotient.negate(); 1856 } 1857 Remainder.negate(); 1858 } else if (RHS.isNegative()) { 1859 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1860 Quotient.negate(); 1861 } else { 1862 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1863 } 1864 } 1865 1866 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1867 APInt &Quotient, int64_t &Remainder) { 1868 uint64_t R = Remainder; 1869 if (LHS.isNegative()) { 1870 if (RHS < 0) 1871 APInt::udivrem(-LHS, -RHS, Quotient, R); 1872 else { 1873 APInt::udivrem(-LHS, RHS, Quotient, R); 1874 Quotient.negate(); 1875 } 1876 R = -R; 1877 } else if (RHS < 0) { 1878 APInt::udivrem(LHS, -RHS, Quotient, R); 1879 Quotient.negate(); 1880 } else { 1881 APInt::udivrem(LHS, RHS, Quotient, R); 1882 } 1883 Remainder = R; 1884 } 1885 1886 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1887 APInt Res = *this+RHS; 1888 Overflow = isNonNegative() == RHS.isNonNegative() && 1889 Res.isNonNegative() != isNonNegative(); 1890 return Res; 1891 } 1892 1893 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1894 APInt Res = *this+RHS; 1895 Overflow = Res.ult(RHS); 1896 return Res; 1897 } 1898 1899 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1900 APInt Res = *this - RHS; 1901 Overflow = isNonNegative() != RHS.isNonNegative() && 1902 Res.isNonNegative() != isNonNegative(); 1903 return Res; 1904 } 1905 1906 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1907 APInt Res = *this-RHS; 1908 Overflow = Res.ugt(*this); 1909 return Res; 1910 } 1911 1912 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1913 // MININT/-1 --> overflow. 1914 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 1915 return sdiv(RHS); 1916 } 1917 1918 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1919 APInt Res = *this * RHS; 1920 1921 if (*this != 0 && RHS != 0) 1922 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 1923 else 1924 Overflow = false; 1925 return Res; 1926 } 1927 1928 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1929 APInt Res = *this * RHS; 1930 1931 if (*this != 0 && RHS != 0) 1932 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 1933 else 1934 Overflow = false; 1935 return Res; 1936 } 1937 1938 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1939 Overflow = ShAmt.uge(getBitWidth()); 1940 if (Overflow) 1941 return APInt(BitWidth, 0); 1942 1943 if (isNonNegative()) // Don't allow sign change. 1944 Overflow = ShAmt.uge(countLeadingZeros()); 1945 else 1946 Overflow = ShAmt.uge(countLeadingOnes()); 1947 1948 return *this << ShAmt; 1949 } 1950 1951 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 1952 Overflow = ShAmt.uge(getBitWidth()); 1953 if (Overflow) 1954 return APInt(BitWidth, 0); 1955 1956 Overflow = ShAmt.ugt(countLeadingZeros()); 1957 1958 return *this << ShAmt; 1959 } 1960 1961 1962 1963 1964 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 1965 // Check our assumptions here 1966 assert(!str.empty() && "Invalid string length"); 1967 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 1968 radix == 36) && 1969 "Radix should be 2, 8, 10, 16, or 36!"); 1970 1971 StringRef::iterator p = str.begin(); 1972 size_t slen = str.size(); 1973 bool isNeg = *p == '-'; 1974 if (*p == '-' || *p == '+') { 1975 p++; 1976 slen--; 1977 assert(slen && "String is only a sign, needs a value."); 1978 } 1979 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 1980 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 1981 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 1982 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 1983 "Insufficient bit width"); 1984 1985 // Allocate memory if needed 1986 if (isSingleWord()) 1987 U.VAL = 0; 1988 else 1989 U.pVal = getClearedMemory(getNumWords()); 1990 1991 // Figure out if we can shift instead of multiply 1992 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 1993 1994 // Enter digit traversal loop 1995 for (StringRef::iterator e = str.end(); p != e; ++p) { 1996 unsigned digit = getDigit(*p, radix); 1997 assert(digit < radix && "Invalid character in digit string"); 1998 1999 // Shift or multiply the value by the radix 2000 if (slen > 1) { 2001 if (shift) 2002 *this <<= shift; 2003 else 2004 *this *= radix; 2005 } 2006 2007 // Add in the digit we just interpreted 2008 *this += digit; 2009 } 2010 // If its negative, put it in two's complement form 2011 if (isNeg) 2012 this->negate(); 2013 } 2014 2015 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2016 bool Signed, bool formatAsCLiteral) const { 2017 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2018 Radix == 36) && 2019 "Radix should be 2, 8, 10, 16, or 36!"); 2020 2021 const char *Prefix = ""; 2022 if (formatAsCLiteral) { 2023 switch (Radix) { 2024 case 2: 2025 // Binary literals are a non-standard extension added in gcc 4.3: 2026 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2027 Prefix = "0b"; 2028 break; 2029 case 8: 2030 Prefix = "0"; 2031 break; 2032 case 10: 2033 break; // No prefix 2034 case 16: 2035 Prefix = "0x"; 2036 break; 2037 default: 2038 llvm_unreachable("Invalid radix!"); 2039 } 2040 } 2041 2042 // First, check for a zero value and just short circuit the logic below. 2043 if (*this == 0) { 2044 while (*Prefix) { 2045 Str.push_back(*Prefix); 2046 ++Prefix; 2047 }; 2048 Str.push_back('0'); 2049 return; 2050 } 2051 2052 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2053 2054 if (isSingleWord()) { 2055 char Buffer[65]; 2056 char *BufPtr = std::end(Buffer); 2057 2058 uint64_t N; 2059 if (!Signed) { 2060 N = getZExtValue(); 2061 } else { 2062 int64_t I = getSExtValue(); 2063 if (I >= 0) { 2064 N = I; 2065 } else { 2066 Str.push_back('-'); 2067 N = -(uint64_t)I; 2068 } 2069 } 2070 2071 while (*Prefix) { 2072 Str.push_back(*Prefix); 2073 ++Prefix; 2074 }; 2075 2076 while (N) { 2077 *--BufPtr = Digits[N % Radix]; 2078 N /= Radix; 2079 } 2080 Str.append(BufPtr, std::end(Buffer)); 2081 return; 2082 } 2083 2084 APInt Tmp(*this); 2085 2086 if (Signed && isNegative()) { 2087 // They want to print the signed version and it is a negative value 2088 // Flip the bits and add one to turn it into the equivalent positive 2089 // value and put a '-' in the result. 2090 Tmp.negate(); 2091 Str.push_back('-'); 2092 } 2093 2094 while (*Prefix) { 2095 Str.push_back(*Prefix); 2096 ++Prefix; 2097 }; 2098 2099 // We insert the digits backward, then reverse them to get the right order. 2100 unsigned StartDig = Str.size(); 2101 2102 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2103 // because the number of bits per digit (1, 3 and 4 respectively) divides 2104 // equally. We just shift until the value is zero. 2105 if (Radix == 2 || Radix == 8 || Radix == 16) { 2106 // Just shift tmp right for each digit width until it becomes zero 2107 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2108 unsigned MaskAmt = Radix - 1; 2109 2110 while (Tmp.getBoolValue()) { 2111 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2112 Str.push_back(Digits[Digit]); 2113 Tmp.lshrInPlace(ShiftAmt); 2114 } 2115 } else { 2116 while (Tmp.getBoolValue()) { 2117 uint64_t Digit; 2118 udivrem(Tmp, Radix, Tmp, Digit); 2119 assert(Digit < Radix && "divide failed"); 2120 Str.push_back(Digits[Digit]); 2121 } 2122 } 2123 2124 // Reverse the digits before returning. 2125 std::reverse(Str.begin()+StartDig, Str.end()); 2126 } 2127 2128 /// Returns the APInt as a std::string. Note that this is an inefficient method. 2129 /// It is better to pass in a SmallVector/SmallString to the methods above. 2130 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2131 SmallString<40> S; 2132 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2133 return S.str(); 2134 } 2135 2136 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2137 LLVM_DUMP_METHOD void APInt::dump() const { 2138 SmallString<40> S, U; 2139 this->toStringUnsigned(U); 2140 this->toStringSigned(S); 2141 dbgs() << "APInt(" << BitWidth << "b, " 2142 << U << "u " << S << "s)\n"; 2143 } 2144 #endif 2145 2146 void APInt::print(raw_ostream &OS, bool isSigned) const { 2147 SmallString<40> S; 2148 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2149 OS << S; 2150 } 2151 2152 // This implements a variety of operations on a representation of 2153 // arbitrary precision, two's-complement, bignum integer values. 2154 2155 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2156 // and unrestricting assumption. 2157 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2158 "Part width must be divisible by 2!"); 2159 2160 /* Some handy functions local to this file. */ 2161 2162 /* Returns the integer part with the least significant BITS set. 2163 BITS cannot be zero. */ 2164 static inline APInt::WordType lowBitMask(unsigned bits) { 2165 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2166 2167 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2168 } 2169 2170 /* Returns the value of the lower half of PART. */ 2171 static inline APInt::WordType lowHalf(APInt::WordType part) { 2172 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2173 } 2174 2175 /* Returns the value of the upper half of PART. */ 2176 static inline APInt::WordType highHalf(APInt::WordType part) { 2177 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2178 } 2179 2180 /* Returns the bit number of the most significant set bit of a part. 2181 If the input number has no bits set -1U is returned. */ 2182 static unsigned partMSB(APInt::WordType value) { 2183 return findLastSet(value, ZB_Max); 2184 } 2185 2186 /* Returns the bit number of the least significant set bit of a 2187 part. If the input number has no bits set -1U is returned. */ 2188 static unsigned partLSB(APInt::WordType value) { 2189 return findFirstSet(value, ZB_Max); 2190 } 2191 2192 /* Sets the least significant part of a bignum to the input value, and 2193 zeroes out higher parts. */ 2194 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2195 assert(parts > 0); 2196 2197 dst[0] = part; 2198 for (unsigned i = 1; i < parts; i++) 2199 dst[i] = 0; 2200 } 2201 2202 /* Assign one bignum to another. */ 2203 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2204 for (unsigned i = 0; i < parts; i++) 2205 dst[i] = src[i]; 2206 } 2207 2208 /* Returns true if a bignum is zero, false otherwise. */ 2209 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2210 for (unsigned i = 0; i < parts; i++) 2211 if (src[i]) 2212 return false; 2213 2214 return true; 2215 } 2216 2217 /* Extract the given bit of a bignum; returns 0 or 1. */ 2218 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2219 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2220 } 2221 2222 /* Set the given bit of a bignum. */ 2223 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2224 parts[whichWord(bit)] |= maskBit(bit); 2225 } 2226 2227 /* Clears the given bit of a bignum. */ 2228 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2229 parts[whichWord(bit)] &= ~maskBit(bit); 2230 } 2231 2232 /* Returns the bit number of the least significant set bit of a 2233 number. If the input number has no bits set -1U is returned. */ 2234 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2235 for (unsigned i = 0; i < n; i++) { 2236 if (parts[i] != 0) { 2237 unsigned lsb = partLSB(parts[i]); 2238 2239 return lsb + i * APINT_BITS_PER_WORD; 2240 } 2241 } 2242 2243 return -1U; 2244 } 2245 2246 /* Returns the bit number of the most significant set bit of a number. 2247 If the input number has no bits set -1U is returned. */ 2248 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2249 do { 2250 --n; 2251 2252 if (parts[n] != 0) { 2253 unsigned msb = partMSB(parts[n]); 2254 2255 return msb + n * APINT_BITS_PER_WORD; 2256 } 2257 } while (n); 2258 2259 return -1U; 2260 } 2261 2262 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2263 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2264 the least significant bit of DST. All high bits above srcBITS in 2265 DST are zero-filled. */ 2266 void 2267 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2268 unsigned srcBits, unsigned srcLSB) { 2269 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2270 assert(dstParts <= dstCount); 2271 2272 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2273 tcAssign (dst, src + firstSrcPart, dstParts); 2274 2275 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2276 tcShiftRight (dst, dstParts, shift); 2277 2278 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2279 in DST. If this is less that srcBits, append the rest, else 2280 clear the high bits. */ 2281 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2282 if (n < srcBits) { 2283 WordType mask = lowBitMask (srcBits - n); 2284 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2285 << n % APINT_BITS_PER_WORD); 2286 } else if (n > srcBits) { 2287 if (srcBits % APINT_BITS_PER_WORD) 2288 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2289 } 2290 2291 /* Clear high parts. */ 2292 while (dstParts < dstCount) 2293 dst[dstParts++] = 0; 2294 } 2295 2296 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2297 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2298 WordType c, unsigned parts) { 2299 assert(c <= 1); 2300 2301 for (unsigned i = 0; i < parts; i++) { 2302 WordType l = dst[i]; 2303 if (c) { 2304 dst[i] += rhs[i] + 1; 2305 c = (dst[i] <= l); 2306 } else { 2307 dst[i] += rhs[i]; 2308 c = (dst[i] < l); 2309 } 2310 } 2311 2312 return c; 2313 } 2314 2315 /// This function adds a single "word" integer, src, to the multiple 2316 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2317 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2318 /// @returns the carry of the addition. 2319 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2320 unsigned parts) { 2321 for (unsigned i = 0; i < parts; ++i) { 2322 dst[i] += src; 2323 if (dst[i] >= src) 2324 return 0; // No need to carry so exit early. 2325 src = 1; // Carry one to next digit. 2326 } 2327 2328 return 1; 2329 } 2330 2331 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2332 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2333 WordType c, unsigned parts) { 2334 assert(c <= 1); 2335 2336 for (unsigned i = 0; i < parts; i++) { 2337 WordType l = dst[i]; 2338 if (c) { 2339 dst[i] -= rhs[i] + 1; 2340 c = (dst[i] >= l); 2341 } else { 2342 dst[i] -= rhs[i]; 2343 c = (dst[i] > l); 2344 } 2345 } 2346 2347 return c; 2348 } 2349 2350 /// This function subtracts a single "word" (64-bit word), src, from 2351 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2352 /// no further borrowing is needed or it runs out of "words" in dst. The result 2353 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2354 /// exhausted. In other words, if src > dst then this function returns 1, 2355 /// otherwise 0. 2356 /// @returns the borrow out of the subtraction 2357 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2358 unsigned parts) { 2359 for (unsigned i = 0; i < parts; ++i) { 2360 WordType Dst = dst[i]; 2361 dst[i] -= src; 2362 if (src <= Dst) 2363 return 0; // No need to borrow so exit early. 2364 src = 1; // We have to "borrow 1" from next "word" 2365 } 2366 2367 return 1; 2368 } 2369 2370 /* Negate a bignum in-place. */ 2371 void APInt::tcNegate(WordType *dst, unsigned parts) { 2372 tcComplement(dst, parts); 2373 tcIncrement(dst, parts); 2374 } 2375 2376 /* DST += SRC * MULTIPLIER + CARRY if add is true 2377 DST = SRC * MULTIPLIER + CARRY if add is false 2378 2379 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2380 they must start at the same point, i.e. DST == SRC. 2381 2382 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2383 returned. Otherwise DST is filled with the least significant 2384 DSTPARTS parts of the result, and if all of the omitted higher 2385 parts were zero return zero, otherwise overflow occurred and 2386 return one. */ 2387 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2388 WordType multiplier, WordType carry, 2389 unsigned srcParts, unsigned dstParts, 2390 bool add) { 2391 /* Otherwise our writes of DST kill our later reads of SRC. */ 2392 assert(dst <= src || dst >= src + srcParts); 2393 assert(dstParts <= srcParts + 1); 2394 2395 /* N loops; minimum of dstParts and srcParts. */ 2396 unsigned n = std::min(dstParts, srcParts); 2397 2398 for (unsigned i = 0; i < n; i++) { 2399 WordType low, mid, high, srcPart; 2400 2401 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2402 2403 This cannot overflow, because 2404 2405 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2406 2407 which is less than n^2. */ 2408 2409 srcPart = src[i]; 2410 2411 if (multiplier == 0 || srcPart == 0) { 2412 low = carry; 2413 high = 0; 2414 } else { 2415 low = lowHalf(srcPart) * lowHalf(multiplier); 2416 high = highHalf(srcPart) * highHalf(multiplier); 2417 2418 mid = lowHalf(srcPart) * highHalf(multiplier); 2419 high += highHalf(mid); 2420 mid <<= APINT_BITS_PER_WORD / 2; 2421 if (low + mid < low) 2422 high++; 2423 low += mid; 2424 2425 mid = highHalf(srcPart) * lowHalf(multiplier); 2426 high += highHalf(mid); 2427 mid <<= APINT_BITS_PER_WORD / 2; 2428 if (low + mid < low) 2429 high++; 2430 low += mid; 2431 2432 /* Now add carry. */ 2433 if (low + carry < low) 2434 high++; 2435 low += carry; 2436 } 2437 2438 if (add) { 2439 /* And now DST[i], and store the new low part there. */ 2440 if (low + dst[i] < low) 2441 high++; 2442 dst[i] += low; 2443 } else 2444 dst[i] = low; 2445 2446 carry = high; 2447 } 2448 2449 if (srcParts < dstParts) { 2450 /* Full multiplication, there is no overflow. */ 2451 assert(srcParts + 1 == dstParts); 2452 dst[srcParts] = carry; 2453 return 0; 2454 } 2455 2456 /* We overflowed if there is carry. */ 2457 if (carry) 2458 return 1; 2459 2460 /* We would overflow if any significant unwritten parts would be 2461 non-zero. This is true if any remaining src parts are non-zero 2462 and the multiplier is non-zero. */ 2463 if (multiplier) 2464 for (unsigned i = dstParts; i < srcParts; i++) 2465 if (src[i]) 2466 return 1; 2467 2468 /* We fitted in the narrow destination. */ 2469 return 0; 2470 } 2471 2472 /* DST = LHS * RHS, where DST has the same width as the operands and 2473 is filled with the least significant parts of the result. Returns 2474 one if overflow occurred, otherwise zero. DST must be disjoint 2475 from both operands. */ 2476 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2477 const WordType *rhs, unsigned parts) { 2478 assert(dst != lhs && dst != rhs); 2479 2480 int overflow = 0; 2481 tcSet(dst, 0, parts); 2482 2483 for (unsigned i = 0; i < parts; i++) 2484 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2485 parts - i, true); 2486 2487 return overflow; 2488 } 2489 2490 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2491 /// operands. No overflow occurs. DST must be disjoint from both operands. 2492 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2493 const WordType *rhs, unsigned lhsParts, 2494 unsigned rhsParts) { 2495 /* Put the narrower number on the LHS for less loops below. */ 2496 if (lhsParts > rhsParts) 2497 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2498 2499 assert(dst != lhs && dst != rhs); 2500 2501 tcSet(dst, 0, rhsParts); 2502 2503 for (unsigned i = 0; i < lhsParts; i++) 2504 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2505 } 2506 2507 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2508 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2509 set REMAINDER to the remainder, return zero. i.e. 2510 2511 OLD_LHS = RHS * LHS + REMAINDER 2512 2513 SCRATCH is a bignum of the same size as the operands and result for 2514 use by the routine; its contents need not be initialized and are 2515 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2516 */ 2517 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2518 WordType *remainder, WordType *srhs, 2519 unsigned parts) { 2520 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2521 2522 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2523 if (shiftCount == 0) 2524 return true; 2525 2526 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2527 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2528 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2529 2530 tcAssign(srhs, rhs, parts); 2531 tcShiftLeft(srhs, parts, shiftCount); 2532 tcAssign(remainder, lhs, parts); 2533 tcSet(lhs, 0, parts); 2534 2535 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2536 the total. */ 2537 for (;;) { 2538 int compare = tcCompare(remainder, srhs, parts); 2539 if (compare >= 0) { 2540 tcSubtract(remainder, srhs, 0, parts); 2541 lhs[n] |= mask; 2542 } 2543 2544 if (shiftCount == 0) 2545 break; 2546 shiftCount--; 2547 tcShiftRight(srhs, parts, 1); 2548 if ((mask >>= 1) == 0) { 2549 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2550 n--; 2551 } 2552 } 2553 2554 return false; 2555 } 2556 2557 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2558 /// no restrictions on Count. 2559 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2560 // Don't bother performing a no-op shift. 2561 if (!Count) 2562 return; 2563 2564 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2565 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2566 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2567 2568 // Fastpath for moving by whole words. 2569 if (BitShift == 0) { 2570 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2571 } else { 2572 while (Words-- > WordShift) { 2573 Dst[Words] = Dst[Words - WordShift] << BitShift; 2574 if (Words > WordShift) 2575 Dst[Words] |= 2576 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2577 } 2578 } 2579 2580 // Fill in the remainder with 0s. 2581 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2582 } 2583 2584 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2585 /// are no restrictions on Count. 2586 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2587 // Don't bother performing a no-op shift. 2588 if (!Count) 2589 return; 2590 2591 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2592 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2593 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2594 2595 unsigned WordsToMove = Words - WordShift; 2596 // Fastpath for moving by whole words. 2597 if (BitShift == 0) { 2598 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2599 } else { 2600 for (unsigned i = 0; i != WordsToMove; ++i) { 2601 Dst[i] = Dst[i + WordShift] >> BitShift; 2602 if (i + 1 != WordsToMove) 2603 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2604 } 2605 } 2606 2607 // Fill in the remainder with 0s. 2608 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2609 } 2610 2611 /* Bitwise and of two bignums. */ 2612 void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) { 2613 for (unsigned i = 0; i < parts; i++) 2614 dst[i] &= rhs[i]; 2615 } 2616 2617 /* Bitwise inclusive or of two bignums. */ 2618 void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) { 2619 for (unsigned i = 0; i < parts; i++) 2620 dst[i] |= rhs[i]; 2621 } 2622 2623 /* Bitwise exclusive or of two bignums. */ 2624 void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) { 2625 for (unsigned i = 0; i < parts; i++) 2626 dst[i] ^= rhs[i]; 2627 } 2628 2629 /* Complement a bignum in-place. */ 2630 void APInt::tcComplement(WordType *dst, unsigned parts) { 2631 for (unsigned i = 0; i < parts; i++) 2632 dst[i] = ~dst[i]; 2633 } 2634 2635 /* Comparison (unsigned) of two bignums. */ 2636 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2637 unsigned parts) { 2638 while (parts) { 2639 parts--; 2640 if (lhs[parts] != rhs[parts]) 2641 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2642 } 2643 2644 return 0; 2645 } 2646 2647 /* Set the least significant BITS bits of a bignum, clear the 2648 rest. */ 2649 void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts, 2650 unsigned bits) { 2651 unsigned i = 0; 2652 while (bits > APINT_BITS_PER_WORD) { 2653 dst[i++] = ~(WordType) 0; 2654 bits -= APINT_BITS_PER_WORD; 2655 } 2656 2657 if (bits) 2658 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits); 2659 2660 while (i < parts) 2661 dst[i++] = 0; 2662 } 2663 2664 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 2665 APInt::Rounding RM) { 2666 // Currently udivrem always rounds down. 2667 switch (RM) { 2668 case APInt::Rounding::DOWN: 2669 case APInt::Rounding::TOWARD_ZERO: 2670 return A.udiv(B); 2671 case APInt::Rounding::UP: { 2672 APInt Quo, Rem; 2673 APInt::udivrem(A, B, Quo, Rem); 2674 if (Rem == 0) 2675 return Quo; 2676 return Quo + 1; 2677 } 2678 } 2679 llvm_unreachable("Unknown APInt::Rounding enum"); 2680 } 2681 2682 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 2683 APInt::Rounding RM) { 2684 switch (RM) { 2685 case APInt::Rounding::DOWN: 2686 case APInt::Rounding::UP: { 2687 APInt Quo, Rem; 2688 APInt::sdivrem(A, B, Quo, Rem); 2689 if (Rem == 0) 2690 return Quo; 2691 // This algorithm deals with arbitrary rounding mode used by sdivrem. 2692 // We want to check whether the non-integer part of the mathematical value 2693 // is negative or not. If the non-integer part is negative, we need to round 2694 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 2695 // already rounded down. 2696 if (RM == APInt::Rounding::DOWN) { 2697 if (Rem.isNegative() != B.isNegative()) 2698 return Quo - 1; 2699 return Quo; 2700 } 2701 if (Rem.isNegative() != B.isNegative()) 2702 return Quo; 2703 return Quo + 1; 2704 } 2705 // Currently sdiv rounds twards zero. 2706 case APInt::Rounding::TOWARD_ZERO: 2707 return A.sdiv(B); 2708 } 2709 llvm_unreachable("Unknown APInt::Rounding enum"); 2710 } 2711 2712 Optional<APInt> 2713 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2714 unsigned RangeWidth) { 2715 unsigned CoeffWidth = A.getBitWidth(); 2716 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 2717 assert(RangeWidth <= CoeffWidth && 2718 "Value range width should be less than coefficient width"); 2719 assert(RangeWidth > 1 && "Value range bit width should be > 1"); 2720 2721 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 2722 << "x + " << C << ", rw:" << RangeWidth << '\n'); 2723 2724 // Identify 0 as a (non)solution immediately. 2725 if (C.sextOrTrunc(RangeWidth).isNullValue() ) { 2726 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 2727 return APInt(CoeffWidth, 0); 2728 } 2729 2730 // The result of APInt arithmetic has the same bit width as the operands, 2731 // so it can actually lose high bits. A product of two n-bit integers needs 2732 // 2n-1 bits to represent the full value. 2733 // The operation done below (on quadratic coefficients) that can produce 2734 // the largest value is the evaluation of the equation during bisection, 2735 // which needs 3 times the bitwidth of the coefficient, so the total number 2736 // of required bits is 3n. 2737 // 2738 // The purpose of this extension is to simulate the set Z of all integers, 2739 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 2740 // and negative numbers (not so much in a modulo arithmetic). The method 2741 // used to solve the equation is based on the standard formula for real 2742 // numbers, and uses the concepts of "positive" and "negative" with their 2743 // usual meanings. 2744 CoeffWidth *= 3; 2745 A = A.sext(CoeffWidth); 2746 B = B.sext(CoeffWidth); 2747 C = C.sext(CoeffWidth); 2748 2749 // Make A > 0 for simplicity. Negate cannot overflow at this point because 2750 // the bit width has increased. 2751 if (A.isNegative()) { 2752 A.negate(); 2753 B.negate(); 2754 C.negate(); 2755 } 2756 2757 // Solving an equation q(x) = 0 with coefficients in modular arithmetic 2758 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 2759 // and R = 2^BitWidth. 2760 // Since we're trying not only to find exact solutions, but also values 2761 // that "wrap around", such a set will always have a solution, i.e. an x 2762 // that satisfies at least one of the equations, or such that |q(x)| 2763 // exceeds kR, while |q(x-1)| for the same k does not. 2764 // 2765 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 2766 // positive solution n (in the above sense), and also such that the n 2767 // will be the least among all solutions corresponding to k = 0, 1, ... 2768 // (more precisely, the least element in the set 2769 // { n(k) | k is such that a solution n(k) exists }). 2770 // 2771 // Consider the parabola (over real numbers) that corresponds to the 2772 // quadratic equation. Since A > 0, the arms of the parabola will point 2773 // up. Picking different values of k will shift it up and down by R. 2774 // 2775 // We want to shift the parabola in such a way as to reduce the problem 2776 // of solving q(x) = kR to solving shifted_q(x) = 0. 2777 // (The interesting solutions are the ceilings of the real number 2778 // solutions.) 2779 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 2780 APInt TwoA = 2 * A; 2781 APInt SqrB = B * B; 2782 bool PickLow; 2783 2784 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 2785 assert(A.isStrictlyPositive()); 2786 APInt T = V.abs().urem(A); 2787 if (T.isNullValue()) 2788 return V; 2789 return V.isNegative() ? V+T : V+(A-T); 2790 }; 2791 2792 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 2793 // iff B is positive. 2794 if (B.isNonNegative()) { 2795 // If B >= 0, the vertex it at a negative location (or at 0), so in 2796 // order to have a non-negative solution we need to pick k that makes 2797 // C-kR negative. To satisfy all the requirements for the solution 2798 // that we are looking for, it needs to be closest to 0 of all k. 2799 C = C.srem(R); 2800 if (C.isStrictlyPositive()) 2801 C -= R; 2802 // Pick the greater solution. 2803 PickLow = false; 2804 } else { 2805 // If B < 0, the vertex is at a positive location. For any solution 2806 // to exist, the discriminant must be non-negative. This means that 2807 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 2808 // lower bound on values of k: kR >= C - B^2/4A. 2809 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 2810 // Round LowkR up (towards +inf) to the nearest kR. 2811 LowkR = RoundUp(LowkR, R); 2812 2813 // If there exists k meeting the condition above, and such that 2814 // C-kR > 0, there will be two positive real number solutions of 2815 // q(x) = kR. Out of all such values of k, pick the one that makes 2816 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 2817 // In other words, find maximum k such that LowkR <= kR < C. 2818 if (C.sgt(LowkR)) { 2819 // If LowkR < C, then such a k is guaranteed to exist because 2820 // LowkR itself is a multiple of R. 2821 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 2822 // Pick the smaller solution. 2823 PickLow = true; 2824 } else { 2825 // If C-kR < 0 for all potential k's, it means that one solution 2826 // will be negative, while the other will be positive. The positive 2827 // solution will shift towards 0 if the parabola is moved up. 2828 // Pick the kR closest to the lower bound (i.e. make C-kR closest 2829 // to 0, or in other words, out of all parabolas that have solutions, 2830 // pick the one that is the farthest "up"). 2831 // Since LowkR is itself a multiple of R, simply take C-LowkR. 2832 C -= LowkR; 2833 // Pick the greater solution. 2834 PickLow = false; 2835 } 2836 } 2837 2838 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 2839 << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 2840 2841 APInt D = SqrB - 4*A*C; 2842 assert(D.isNonNegative() && "Negative discriminant"); 2843 APInt SQ = D.sqrt(); 2844 2845 APInt Q = SQ * SQ; 2846 bool InexactSQ = Q != D; 2847 // The calculated SQ may actually be greater than the exact (non-integer) 2848 // value. If that's the case, decremement SQ to get a value that is lower. 2849 if (Q.sgt(D)) 2850 SQ -= 1; 2851 2852 APInt X; 2853 APInt Rem; 2854 2855 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 2856 // When using the quadratic formula directly, the calculated low root 2857 // may be greater than the exact one, since we would be subtracting SQ. 2858 // To make sure that the calculated root is not greater than the exact 2859 // one, subtract SQ+1 when calculating the low root (for inexact value 2860 // of SQ). 2861 if (PickLow) 2862 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 2863 else 2864 APInt::sdivrem(-B + SQ, TwoA, X, Rem); 2865 2866 // The updated coefficients should be such that the (exact) solution is 2867 // positive. Since APInt division rounds towards 0, the calculated one 2868 // can be 0, but cannot be negative. 2869 assert(X.isNonNegative() && "Solution should be non-negative"); 2870 2871 if (!InexactSQ && Rem.isNullValue()) { 2872 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 2873 return X; 2874 } 2875 2876 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 2877 // The exact value of the square root of D should be between SQ and SQ+1. 2878 // This implies that the solution should be between that corresponding to 2879 // SQ (i.e. X) and that corresponding to SQ+1. 2880 // 2881 // The calculated X cannot be greater than the exact (real) solution. 2882 // Actually it must be strictly less than the exact solution, while 2883 // X+1 will be greater than or equal to it. 2884 2885 APInt VX = (A*X + B)*X + C; 2886 APInt VY = VX + TwoA*X + A + B; 2887 bool SignChange = VX.isNegative() != VY.isNegative() || 2888 VX.isNullValue() != VY.isNullValue(); 2889 // If the sign did not change between X and X+1, X is not a valid solution. 2890 // This could happen when the actual (exact) roots don't have an integer 2891 // between them, so they would both be contained between X and X+1. 2892 if (!SignChange) { 2893 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2894 return None; 2895 } 2896 2897 X += 1; 2898 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 2899 return X; 2900 } 2901