1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision integer 10 // constant values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/bit.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <climits> 28 #include <cmath> 29 #include <cstdlib> 30 #include <cstring> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "apint" 34 35 /// A utility function for allocating memory, checking for allocation failures, 36 /// and ensuring the contents are zeroed. 37 inline static uint64_t* getClearedMemory(unsigned numWords) { 38 uint64_t *result = new uint64_t[numWords]; 39 memset(result, 0, numWords * sizeof(uint64_t)); 40 return result; 41 } 42 43 /// A utility function for allocating memory and checking for allocation 44 /// failure. The content is not zeroed. 45 inline static uint64_t* getMemory(unsigned numWords) { 46 return new uint64_t[numWords]; 47 } 48 49 /// A utility function that converts a character to a digit. 50 inline static unsigned getDigit(char cdigit, uint8_t radix) { 51 unsigned r; 52 53 if (radix == 16 || radix == 36) { 54 r = cdigit - '0'; 55 if (r <= 9) 56 return r; 57 58 r = cdigit - 'A'; 59 if (r <= radix - 11U) 60 return r + 10; 61 62 r = cdigit - 'a'; 63 if (r <= radix - 11U) 64 return r + 10; 65 66 radix = 10; 67 } 68 69 r = cdigit - '0'; 70 if (r < radix) 71 return r; 72 73 return -1U; 74 } 75 76 77 void APInt::initSlowCase(uint64_t val, bool isSigned) { 78 U.pVal = getClearedMemory(getNumWords()); 79 U.pVal[0] = val; 80 if (isSigned && int64_t(val) < 0) 81 for (unsigned i = 1; i < getNumWords(); ++i) 82 U.pVal[i] = WORDTYPE_MAX; 83 clearUnusedBits(); 84 } 85 86 void APInt::initSlowCase(const APInt& that) { 87 U.pVal = getMemory(getNumWords()); 88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 89 } 90 91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 92 assert(bigVal.data() && "Null pointer detected!"); 93 if (isSingleWord()) 94 U.VAL = bigVal[0]; 95 else { 96 // Get memory, cleared to 0 97 U.pVal = getClearedMemory(getNumWords()); 98 // Calculate the number of words to copy 99 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 100 // Copy the words from bigVal to pVal 101 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 102 } 103 // Make sure unused high bits are cleared 104 clearUnusedBits(); 105 } 106 107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { 108 initFromArray(bigVal); 109 } 110 111 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 112 : BitWidth(numBits) { 113 initFromArray(makeArrayRef(bigVal, numWords)); 114 } 115 116 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 117 : BitWidth(numbits) { 118 fromString(numbits, Str, radix); 119 } 120 121 void APInt::reallocate(unsigned NewBitWidth) { 122 // If the number of words is the same we can just change the width and stop. 123 if (getNumWords() == getNumWords(NewBitWidth)) { 124 BitWidth = NewBitWidth; 125 return; 126 } 127 128 // If we have an allocation, delete it. 129 if (!isSingleWord()) 130 delete [] U.pVal; 131 132 // Update BitWidth. 133 BitWidth = NewBitWidth; 134 135 // If we are supposed to have an allocation, create it. 136 if (!isSingleWord()) 137 U.pVal = getMemory(getNumWords()); 138 } 139 140 void APInt::assignSlowCase(const APInt &RHS) { 141 // Don't do anything for X = X 142 if (this == &RHS) 143 return; 144 145 // Adjust the bit width and handle allocations as necessary. 146 reallocate(RHS.getBitWidth()); 147 148 // Copy the data. 149 if (isSingleWord()) 150 U.VAL = RHS.U.VAL; 151 else 152 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 153 } 154 155 /// This method 'profiles' an APInt for use with FoldingSet. 156 void APInt::Profile(FoldingSetNodeID& ID) const { 157 ID.AddInteger(BitWidth); 158 159 if (isSingleWord()) { 160 ID.AddInteger(U.VAL); 161 return; 162 } 163 164 unsigned NumWords = getNumWords(); 165 for (unsigned i = 0; i < NumWords; ++i) 166 ID.AddInteger(U.pVal[i]); 167 } 168 169 /// Prefix increment operator. Increments the APInt by one. 170 APInt& APInt::operator++() { 171 if (isSingleWord()) 172 ++U.VAL; 173 else 174 tcIncrement(U.pVal, getNumWords()); 175 return clearUnusedBits(); 176 } 177 178 /// Prefix decrement operator. Decrements the APInt by one. 179 APInt& APInt::operator--() { 180 if (isSingleWord()) 181 --U.VAL; 182 else 183 tcDecrement(U.pVal, getNumWords()); 184 return clearUnusedBits(); 185 } 186 187 /// Adds the RHS APInt to this APInt. 188 /// @returns this, after addition of RHS. 189 /// Addition assignment operator. 190 APInt& APInt::operator+=(const APInt& RHS) { 191 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 192 if (isSingleWord()) 193 U.VAL += RHS.U.VAL; 194 else 195 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 196 return clearUnusedBits(); 197 } 198 199 APInt& APInt::operator+=(uint64_t RHS) { 200 if (isSingleWord()) 201 U.VAL += RHS; 202 else 203 tcAddPart(U.pVal, RHS, getNumWords()); 204 return clearUnusedBits(); 205 } 206 207 /// Subtracts the RHS APInt from this APInt 208 /// @returns this, after subtraction 209 /// Subtraction assignment operator. 210 APInt& APInt::operator-=(const APInt& RHS) { 211 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 212 if (isSingleWord()) 213 U.VAL -= RHS.U.VAL; 214 else 215 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 216 return clearUnusedBits(); 217 } 218 219 APInt& APInt::operator-=(uint64_t RHS) { 220 if (isSingleWord()) 221 U.VAL -= RHS; 222 else 223 tcSubtractPart(U.pVal, RHS, getNumWords()); 224 return clearUnusedBits(); 225 } 226 227 APInt APInt::operator*(const APInt& RHS) const { 228 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 229 if (isSingleWord()) 230 return APInt(BitWidth, U.VAL * RHS.U.VAL); 231 232 APInt Result(getMemory(getNumWords()), getBitWidth()); 233 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 234 Result.clearUnusedBits(); 235 return Result; 236 } 237 238 void APInt::andAssignSlowCase(const APInt &RHS) { 239 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 240 for (size_t i = 0, e = getNumWords(); i != e; ++i) 241 dst[i] &= rhs[i]; 242 } 243 244 void APInt::orAssignSlowCase(const APInt &RHS) { 245 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 246 for (size_t i = 0, e = getNumWords(); i != e; ++i) 247 dst[i] |= rhs[i]; 248 } 249 250 void APInt::xorAssignSlowCase(const APInt &RHS) { 251 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 252 for (size_t i = 0, e = getNumWords(); i != e; ++i) 253 dst[i] ^= rhs[i]; 254 } 255 256 APInt &APInt::operator*=(const APInt &RHS) { 257 *this = *this * RHS; 258 return *this; 259 } 260 261 APInt& APInt::operator*=(uint64_t RHS) { 262 if (isSingleWord()) { 263 U.VAL *= RHS; 264 } else { 265 unsigned NumWords = getNumWords(); 266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 267 } 268 return clearUnusedBits(); 269 } 270 271 bool APInt::equalSlowCase(const APInt &RHS) const { 272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 273 } 274 275 int APInt::compare(const APInt& RHS) const { 276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 277 if (isSingleWord()) 278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 279 280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 281 } 282 283 int APInt::compareSigned(const APInt& RHS) const { 284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 285 if (isSingleWord()) { 286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 289 } 290 291 bool lhsNeg = isNegative(); 292 bool rhsNeg = RHS.isNegative(); 293 294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 295 if (lhsNeg != rhsNeg) 296 return lhsNeg ? -1 : 1; 297 298 // Otherwise we can just use an unsigned comparison, because even negative 299 // numbers compare correctly this way if both have the same signed-ness. 300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 301 } 302 303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 304 unsigned loWord = whichWord(loBit); 305 unsigned hiWord = whichWord(hiBit); 306 307 // Create an initial mask for the low word with zeros below loBit. 308 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); 309 310 // If hiBit is not aligned, we need a high mask. 311 unsigned hiShiftAmt = whichBit(hiBit); 312 if (hiShiftAmt != 0) { 313 // Create a high mask with zeros above hiBit. 314 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 315 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 316 // set the bits in hiWord. 317 if (hiWord == loWord) 318 loMask &= hiMask; 319 else 320 U.pVal[hiWord] |= hiMask; 321 } 322 // Apply the mask to the low word. 323 U.pVal[loWord] |= loMask; 324 325 // Fill any words between loWord and hiWord with all ones. 326 for (unsigned word = loWord + 1; word < hiWord; ++word) 327 U.pVal[word] = WORDTYPE_MAX; 328 } 329 330 // Complement a bignum in-place. 331 static void tcComplement(APInt::WordType *dst, unsigned parts) { 332 for (unsigned i = 0; i < parts; i++) 333 dst[i] = ~dst[i]; 334 } 335 336 /// Toggle every bit to its opposite value. 337 void APInt::flipAllBitsSlowCase() { 338 tcComplement(U.pVal, getNumWords()); 339 clearUnusedBits(); 340 } 341 342 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is 343 /// equivalent to: 344 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) 345 /// In the slow case, we know the result is large. 346 APInt APInt::concatSlowCase(const APInt &NewLSB) const { 347 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); 348 APInt Result = NewLSB.zextOrSelf(NewWidth); 349 Result.insertBits(*this, NewLSB.getBitWidth()); 350 return Result; 351 } 352 353 /// Toggle a given bit to its opposite value whose position is given 354 /// as "bitPosition". 355 /// Toggles a given bit to its opposite value. 356 void APInt::flipBit(unsigned bitPosition) { 357 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 358 setBitVal(bitPosition, !(*this)[bitPosition]); 359 } 360 361 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 362 unsigned subBitWidth = subBits.getBitWidth(); 363 assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion"); 364 365 // inserting no bits is a noop. 366 if (subBitWidth == 0) 367 return; 368 369 // Insertion is a direct copy. 370 if (subBitWidth == BitWidth) { 371 *this = subBits; 372 return; 373 } 374 375 // Single word result can be done as a direct bitmask. 376 if (isSingleWord()) { 377 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 378 U.VAL &= ~(mask << bitPosition); 379 U.VAL |= (subBits.U.VAL << bitPosition); 380 return; 381 } 382 383 unsigned loBit = whichBit(bitPosition); 384 unsigned loWord = whichWord(bitPosition); 385 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 386 387 // Insertion within a single word can be done as a direct bitmask. 388 if (loWord == hi1Word) { 389 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 390 U.pVal[loWord] &= ~(mask << loBit); 391 U.pVal[loWord] |= (subBits.U.VAL << loBit); 392 return; 393 } 394 395 // Insert on word boundaries. 396 if (loBit == 0) { 397 // Direct copy whole words. 398 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 399 memcpy(U.pVal + loWord, subBits.getRawData(), 400 numWholeSubWords * APINT_WORD_SIZE); 401 402 // Mask+insert remaining bits. 403 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 404 if (remainingBits != 0) { 405 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); 406 U.pVal[hi1Word] &= ~mask; 407 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 408 } 409 return; 410 } 411 412 // General case - set/clear individual bits in dst based on src. 413 // TODO - there is scope for optimization here, but at the moment this code 414 // path is barely used so prefer readability over performance. 415 for (unsigned i = 0; i != subBitWidth; ++i) 416 setBitVal(bitPosition + i, subBits[i]); 417 } 418 419 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { 420 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 421 subBits &= maskBits; 422 if (isSingleWord()) { 423 U.VAL &= ~(maskBits << bitPosition); 424 U.VAL |= subBits << bitPosition; 425 return; 426 } 427 428 unsigned loBit = whichBit(bitPosition); 429 unsigned loWord = whichWord(bitPosition); 430 unsigned hiWord = whichWord(bitPosition + numBits - 1); 431 if (loWord == hiWord) { 432 U.pVal[loWord] &= ~(maskBits << loBit); 433 U.pVal[loWord] |= subBits << loBit; 434 return; 435 } 436 437 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 438 unsigned wordBits = 8 * sizeof(WordType); 439 U.pVal[loWord] &= ~(maskBits << loBit); 440 U.pVal[loWord] |= subBits << loBit; 441 442 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); 443 U.pVal[hiWord] |= subBits >> (wordBits - loBit); 444 } 445 446 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 447 assert(numBits > 0 && "Can't extract zero bits"); 448 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 449 "Illegal bit extraction"); 450 451 if (isSingleWord()) 452 return APInt(numBits, U.VAL >> bitPosition); 453 454 unsigned loBit = whichBit(bitPosition); 455 unsigned loWord = whichWord(bitPosition); 456 unsigned hiWord = whichWord(bitPosition + numBits - 1); 457 458 // Single word result extracting bits from a single word source. 459 if (loWord == hiWord) 460 return APInt(numBits, U.pVal[loWord] >> loBit); 461 462 // Extracting bits that start on a source word boundary can be done 463 // as a fast memory copy. 464 if (loBit == 0) 465 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 466 467 // General case - shift + copy source words directly into place. 468 APInt Result(numBits, 0); 469 unsigned NumSrcWords = getNumWords(); 470 unsigned NumDstWords = Result.getNumWords(); 471 472 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 473 for (unsigned word = 0; word < NumDstWords; ++word) { 474 uint64_t w0 = U.pVal[loWord + word]; 475 uint64_t w1 = 476 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 477 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 478 } 479 480 return Result.clearUnusedBits(); 481 } 482 483 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, 484 unsigned bitPosition) const { 485 assert(numBits > 0 && "Can't extract zero bits"); 486 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 487 "Illegal bit extraction"); 488 assert(numBits <= 64 && "Illegal bit extraction"); 489 490 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 491 if (isSingleWord()) 492 return (U.VAL >> bitPosition) & maskBits; 493 494 unsigned loBit = whichBit(bitPosition); 495 unsigned loWord = whichWord(bitPosition); 496 unsigned hiWord = whichWord(bitPosition + numBits - 1); 497 if (loWord == hiWord) 498 return (U.pVal[loWord] >> loBit) & maskBits; 499 500 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 501 unsigned wordBits = 8 * sizeof(WordType); 502 uint64_t retBits = U.pVal[loWord] >> loBit; 503 retBits |= U.pVal[hiWord] << (wordBits - loBit); 504 retBits &= maskBits; 505 return retBits; 506 } 507 508 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 509 assert(!str.empty() && "Invalid string length"); 510 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 511 radix == 36) && 512 "Radix should be 2, 8, 10, 16, or 36!"); 513 514 size_t slen = str.size(); 515 516 // Each computation below needs to know if it's negative. 517 StringRef::iterator p = str.begin(); 518 unsigned isNegative = *p == '-'; 519 if (*p == '-' || *p == '+') { 520 p++; 521 slen--; 522 assert(slen && "String is only a sign, needs a value."); 523 } 524 525 // For radixes of power-of-two values, the bits required is accurately and 526 // easily computed 527 if (radix == 2) 528 return slen + isNegative; 529 if (radix == 8) 530 return slen * 3 + isNegative; 531 if (radix == 16) 532 return slen * 4 + isNegative; 533 534 // FIXME: base 36 535 536 // This is grossly inefficient but accurate. We could probably do something 537 // with a computation of roughly slen*64/20 and then adjust by the value of 538 // the first few digits. But, I'm not sure how accurate that could be. 539 540 // Compute a sufficient number of bits that is always large enough but might 541 // be too large. This avoids the assertion in the constructor. This 542 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 543 // bits in that case. 544 unsigned sufficient 545 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 546 : (slen == 1 ? 7 : slen * 16/3); 547 548 // Convert to the actual binary value. 549 APInt tmp(sufficient, StringRef(p, slen), radix); 550 551 // Compute how many bits are required. If the log is infinite, assume we need 552 // just bit. If the log is exact and value is negative, then the value is 553 // MinSignedValue with (log + 1) bits. 554 unsigned log = tmp.logBase2(); 555 if (log == (unsigned)-1) { 556 return isNegative + 1; 557 } else if (isNegative && tmp.isPowerOf2()) { 558 return isNegative + log; 559 } else { 560 return isNegative + log + 1; 561 } 562 } 563 564 hash_code llvm::hash_value(const APInt &Arg) { 565 if (Arg.isSingleWord()) 566 return hash_combine(Arg.BitWidth, Arg.U.VAL); 567 568 return hash_combine( 569 Arg.BitWidth, 570 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); 571 } 572 573 unsigned DenseMapInfo<APInt>::getHashValue(const APInt &Key) { 574 return static_cast<unsigned>(hash_value(Key)); 575 } 576 577 bool APInt::isSplat(unsigned SplatSizeInBits) const { 578 assert(getBitWidth() % SplatSizeInBits == 0 && 579 "SplatSizeInBits must divide width!"); 580 // We can check that all parts of an integer are equal by making use of a 581 // little trick: rotate and check if it's still the same value. 582 return *this == rotl(SplatSizeInBits); 583 } 584 585 /// This function returns the high "numBits" bits of this APInt. 586 APInt APInt::getHiBits(unsigned numBits) const { 587 return this->lshr(BitWidth - numBits); 588 } 589 590 /// This function returns the low "numBits" bits of this APInt. 591 APInt APInt::getLoBits(unsigned numBits) const { 592 APInt Result(getLowBitsSet(BitWidth, numBits)); 593 Result &= *this; 594 return Result; 595 } 596 597 /// Return a value containing V broadcasted over NewLen bits. 598 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 599 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 600 601 APInt Val = V.zextOrSelf(NewLen); 602 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 603 Val |= Val << I; 604 605 return Val; 606 } 607 608 unsigned APInt::countLeadingZerosSlowCase() const { 609 unsigned Count = 0; 610 for (int i = getNumWords()-1; i >= 0; --i) { 611 uint64_t V = U.pVal[i]; 612 if (V == 0) 613 Count += APINT_BITS_PER_WORD; 614 else { 615 Count += llvm::countLeadingZeros(V); 616 break; 617 } 618 } 619 // Adjust for unused bits in the most significant word (they are zero). 620 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 621 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 622 return Count; 623 } 624 625 unsigned APInt::countLeadingOnesSlowCase() const { 626 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 627 unsigned shift; 628 if (!highWordBits) { 629 highWordBits = APINT_BITS_PER_WORD; 630 shift = 0; 631 } else { 632 shift = APINT_BITS_PER_WORD - highWordBits; 633 } 634 int i = getNumWords() - 1; 635 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); 636 if (Count == highWordBits) { 637 for (i--; i >= 0; --i) { 638 if (U.pVal[i] == WORDTYPE_MAX) 639 Count += APINT_BITS_PER_WORD; 640 else { 641 Count += llvm::countLeadingOnes(U.pVal[i]); 642 break; 643 } 644 } 645 } 646 return Count; 647 } 648 649 unsigned APInt::countTrailingZerosSlowCase() const { 650 unsigned Count = 0; 651 unsigned i = 0; 652 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 653 Count += APINT_BITS_PER_WORD; 654 if (i < getNumWords()) 655 Count += llvm::countTrailingZeros(U.pVal[i]); 656 return std::min(Count, BitWidth); 657 } 658 659 unsigned APInt::countTrailingOnesSlowCase() const { 660 unsigned Count = 0; 661 unsigned i = 0; 662 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) 663 Count += APINT_BITS_PER_WORD; 664 if (i < getNumWords()) 665 Count += llvm::countTrailingOnes(U.pVal[i]); 666 assert(Count <= BitWidth); 667 return Count; 668 } 669 670 unsigned APInt::countPopulationSlowCase() const { 671 unsigned Count = 0; 672 for (unsigned i = 0; i < getNumWords(); ++i) 673 Count += llvm::countPopulation(U.pVal[i]); 674 return Count; 675 } 676 677 bool APInt::intersectsSlowCase(const APInt &RHS) const { 678 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 679 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 680 return true; 681 682 return false; 683 } 684 685 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 686 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 687 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 688 return false; 689 690 return true; 691 } 692 693 APInt APInt::byteSwap() const { 694 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); 695 if (BitWidth == 16) 696 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); 697 if (BitWidth == 32) 698 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); 699 if (BitWidth <= 64) { 700 uint64_t Tmp1 = ByteSwap_64(U.VAL); 701 Tmp1 >>= (64 - BitWidth); 702 return APInt(BitWidth, Tmp1); 703 } 704 705 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 706 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 707 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); 708 if (Result.BitWidth != BitWidth) { 709 Result.lshrInPlace(Result.BitWidth - BitWidth); 710 Result.BitWidth = BitWidth; 711 } 712 return Result; 713 } 714 715 APInt APInt::reverseBits() const { 716 switch (BitWidth) { 717 case 64: 718 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 719 case 32: 720 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 721 case 16: 722 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 723 case 8: 724 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 725 case 0: 726 return *this; 727 default: 728 break; 729 } 730 731 APInt Val(*this); 732 APInt Reversed(BitWidth, 0); 733 unsigned S = BitWidth; 734 735 for (; Val != 0; Val.lshrInPlace(1)) { 736 Reversed <<= 1; 737 Reversed |= Val[0]; 738 --S; 739 } 740 741 Reversed <<= S; 742 return Reversed; 743 } 744 745 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 746 // Fast-path a common case. 747 if (A == B) return A; 748 749 // Corner cases: if either operand is zero, the other is the gcd. 750 if (!A) return B; 751 if (!B) return A; 752 753 // Count common powers of 2 and remove all other powers of 2. 754 unsigned Pow2; 755 { 756 unsigned Pow2_A = A.countTrailingZeros(); 757 unsigned Pow2_B = B.countTrailingZeros(); 758 if (Pow2_A > Pow2_B) { 759 A.lshrInPlace(Pow2_A - Pow2_B); 760 Pow2 = Pow2_B; 761 } else if (Pow2_B > Pow2_A) { 762 B.lshrInPlace(Pow2_B - Pow2_A); 763 Pow2 = Pow2_A; 764 } else { 765 Pow2 = Pow2_A; 766 } 767 } 768 769 // Both operands are odd multiples of 2^Pow_2: 770 // 771 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 772 // 773 // This is a modified version of Stein's algorithm, taking advantage of 774 // efficient countTrailingZeros(). 775 while (A != B) { 776 if (A.ugt(B)) { 777 A -= B; 778 A.lshrInPlace(A.countTrailingZeros() - Pow2); 779 } else { 780 B -= A; 781 B.lshrInPlace(B.countTrailingZeros() - Pow2); 782 } 783 } 784 785 return A; 786 } 787 788 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 789 uint64_t I = bit_cast<uint64_t>(Double); 790 791 // Get the sign bit from the highest order bit 792 bool isNeg = I >> 63; 793 794 // Get the 11-bit exponent and adjust for the 1023 bit bias 795 int64_t exp = ((I >> 52) & 0x7ff) - 1023; 796 797 // If the exponent is negative, the value is < 0 so just return 0. 798 if (exp < 0) 799 return APInt(width, 0u); 800 801 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 802 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; 803 804 // If the exponent doesn't shift all bits out of the mantissa 805 if (exp < 52) 806 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 807 APInt(width, mantissa >> (52 - exp)); 808 809 // If the client didn't provide enough bits for us to shift the mantissa into 810 // then the result is undefined, just return 0 811 if (width <= exp - 52) 812 return APInt(width, 0); 813 814 // Otherwise, we have to shift the mantissa bits up to the right location 815 APInt Tmp(width, mantissa); 816 Tmp <<= (unsigned)exp - 52; 817 return isNeg ? -Tmp : Tmp; 818 } 819 820 /// This function converts this APInt to a double. 821 /// The layout for double is as following (IEEE Standard 754): 822 /// -------------------------------------- 823 /// | Sign Exponent Fraction Bias | 824 /// |-------------------------------------- | 825 /// | 1[63] 11[62-52] 52[51-00] 1023 | 826 /// -------------------------------------- 827 double APInt::roundToDouble(bool isSigned) const { 828 829 // Handle the simple case where the value is contained in one uint64_t. 830 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 831 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 832 if (isSigned) { 833 int64_t sext = SignExtend64(getWord(0), BitWidth); 834 return double(sext); 835 } else 836 return double(getWord(0)); 837 } 838 839 // Determine if the value is negative. 840 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 841 842 // Construct the absolute value if we're negative. 843 APInt Tmp(isNeg ? -(*this) : (*this)); 844 845 // Figure out how many bits we're using. 846 unsigned n = Tmp.getActiveBits(); 847 848 // The exponent (without bias normalization) is just the number of bits 849 // we are using. Note that the sign bit is gone since we constructed the 850 // absolute value. 851 uint64_t exp = n; 852 853 // Return infinity for exponent overflow 854 if (exp > 1023) { 855 if (!isSigned || !isNeg) 856 return std::numeric_limits<double>::infinity(); 857 else 858 return -std::numeric_limits<double>::infinity(); 859 } 860 exp += 1023; // Increment for 1023 bias 861 862 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 863 // extract the high 52 bits from the correct words in pVal. 864 uint64_t mantissa; 865 unsigned hiWord = whichWord(n-1); 866 if (hiWord == 0) { 867 mantissa = Tmp.U.pVal[0]; 868 if (n > 52) 869 mantissa >>= n - 52; // shift down, we want the top 52 bits. 870 } else { 871 assert(hiWord > 0 && "huh?"); 872 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 873 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 874 mantissa = hibits | lobits; 875 } 876 877 // The leading bit of mantissa is implicit, so get rid of it. 878 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 879 uint64_t I = sign | (exp << 52) | mantissa; 880 return bit_cast<double>(I); 881 } 882 883 // Truncate to new width. 884 APInt APInt::trunc(unsigned width) const { 885 assert(width < BitWidth && "Invalid APInt Truncate request"); 886 887 if (width <= APINT_BITS_PER_WORD) 888 return APInt(width, getRawData()[0]); 889 890 APInt Result(getMemory(getNumWords(width)), width); 891 892 // Copy full words. 893 unsigned i; 894 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 895 Result.U.pVal[i] = U.pVal[i]; 896 897 // Truncate and copy any partial word. 898 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 899 if (bits != 0) 900 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 901 902 return Result; 903 } 904 905 // Truncate to new width with unsigned saturation. 906 APInt APInt::truncUSat(unsigned width) const { 907 assert(width < BitWidth && "Invalid APInt Truncate request"); 908 909 // Can we just losslessly truncate it? 910 if (isIntN(width)) 911 return trunc(width); 912 // If not, then just return the new limit. 913 return APInt::getMaxValue(width); 914 } 915 916 // Truncate to new width with signed saturation. 917 APInt APInt::truncSSat(unsigned width) const { 918 assert(width < BitWidth && "Invalid APInt Truncate request"); 919 920 // Can we just losslessly truncate it? 921 if (isSignedIntN(width)) 922 return trunc(width); 923 // If not, then just return the new limits. 924 return isNegative() ? APInt::getSignedMinValue(width) 925 : APInt::getSignedMaxValue(width); 926 } 927 928 // Sign extend to a new width. 929 APInt APInt::sext(unsigned Width) const { 930 assert(Width > BitWidth && "Invalid APInt SignExtend request"); 931 932 if (Width <= APINT_BITS_PER_WORD) 933 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 934 935 APInt Result(getMemory(getNumWords(Width)), Width); 936 937 // Copy words. 938 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 939 940 // Sign extend the last word since there may be unused bits in the input. 941 Result.U.pVal[getNumWords() - 1] = 942 SignExtend64(Result.U.pVal[getNumWords() - 1], 943 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 944 945 // Fill with sign bits. 946 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 947 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 948 Result.clearUnusedBits(); 949 return Result; 950 } 951 952 // Zero extend to a new width. 953 APInt APInt::zext(unsigned width) const { 954 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 955 956 if (width <= APINT_BITS_PER_WORD) 957 return APInt(width, U.VAL); 958 959 APInt Result(getMemory(getNumWords(width)), width); 960 961 // Copy words. 962 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 963 964 // Zero remaining words. 965 std::memset(Result.U.pVal + getNumWords(), 0, 966 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 967 968 return Result; 969 } 970 971 APInt APInt::zextOrTrunc(unsigned width) const { 972 if (BitWidth < width) 973 return zext(width); 974 if (BitWidth > width) 975 return trunc(width); 976 return *this; 977 } 978 979 APInt APInt::sextOrTrunc(unsigned width) const { 980 if (BitWidth < width) 981 return sext(width); 982 if (BitWidth > width) 983 return trunc(width); 984 return *this; 985 } 986 987 APInt APInt::truncOrSelf(unsigned width) const { 988 if (BitWidth > width) 989 return trunc(width); 990 return *this; 991 } 992 993 APInt APInt::zextOrSelf(unsigned width) const { 994 if (BitWidth < width) 995 return zext(width); 996 return *this; 997 } 998 999 APInt APInt::sextOrSelf(unsigned width) const { 1000 if (BitWidth < width) 1001 return sext(width); 1002 return *this; 1003 } 1004 1005 /// Arithmetic right-shift this APInt by shiftAmt. 1006 /// Arithmetic right-shift function. 1007 void APInt::ashrInPlace(const APInt &shiftAmt) { 1008 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1009 } 1010 1011 /// Arithmetic right-shift this APInt by shiftAmt. 1012 /// Arithmetic right-shift function. 1013 void APInt::ashrSlowCase(unsigned ShiftAmt) { 1014 // Don't bother performing a no-op shift. 1015 if (!ShiftAmt) 1016 return; 1017 1018 // Save the original sign bit for later. 1019 bool Negative = isNegative(); 1020 1021 // WordShift is the inter-part shift; BitShift is intra-part shift. 1022 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 1023 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 1024 1025 unsigned WordsToMove = getNumWords() - WordShift; 1026 if (WordsToMove != 0) { 1027 // Sign extend the last word to fill in the unused bits. 1028 U.pVal[getNumWords() - 1] = SignExtend64( 1029 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 1030 1031 // Fastpath for moving by whole words. 1032 if (BitShift == 0) { 1033 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 1034 } else { 1035 // Move the words containing significant bits. 1036 for (unsigned i = 0; i != WordsToMove - 1; ++i) 1037 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 1038 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 1039 1040 // Handle the last word which has no high bits to copy. 1041 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 1042 // Sign extend one more time. 1043 U.pVal[WordsToMove - 1] = 1044 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 1045 } 1046 } 1047 1048 // Fill in the remainder based on the original sign. 1049 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 1050 WordShift * APINT_WORD_SIZE); 1051 clearUnusedBits(); 1052 } 1053 1054 /// Logical right-shift this APInt by shiftAmt. 1055 /// Logical right-shift function. 1056 void APInt::lshrInPlace(const APInt &shiftAmt) { 1057 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1058 } 1059 1060 /// Logical right-shift this APInt by shiftAmt. 1061 /// Logical right-shift function. 1062 void APInt::lshrSlowCase(unsigned ShiftAmt) { 1063 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 1064 } 1065 1066 /// Left-shift this APInt by shiftAmt. 1067 /// Left-shift function. 1068 APInt &APInt::operator<<=(const APInt &shiftAmt) { 1069 // It's undefined behavior in C to shift by BitWidth or greater. 1070 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 1071 return *this; 1072 } 1073 1074 void APInt::shlSlowCase(unsigned ShiftAmt) { 1075 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 1076 clearUnusedBits(); 1077 } 1078 1079 // Calculate the rotate amount modulo the bit width. 1080 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1081 if (LLVM_UNLIKELY(BitWidth == 0)) 1082 return 0; 1083 unsigned rotBitWidth = rotateAmt.getBitWidth(); 1084 APInt rot = rotateAmt; 1085 if (rotBitWidth < BitWidth) { 1086 // Extend the rotate APInt, so that the urem doesn't divide by 0. 1087 // e.g. APInt(1, 32) would give APInt(1, 0). 1088 rot = rotateAmt.zext(BitWidth); 1089 } 1090 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 1091 return rot.getLimitedValue(BitWidth); 1092 } 1093 1094 APInt APInt::rotl(const APInt &rotateAmt) const { 1095 return rotl(rotateModulo(BitWidth, rotateAmt)); 1096 } 1097 1098 APInt APInt::rotl(unsigned rotateAmt) const { 1099 if (LLVM_UNLIKELY(BitWidth == 0)) 1100 return *this; 1101 rotateAmt %= BitWidth; 1102 if (rotateAmt == 0) 1103 return *this; 1104 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1105 } 1106 1107 APInt APInt::rotr(const APInt &rotateAmt) const { 1108 return rotr(rotateModulo(BitWidth, rotateAmt)); 1109 } 1110 1111 APInt APInt::rotr(unsigned rotateAmt) const { 1112 if (BitWidth == 0) 1113 return *this; 1114 rotateAmt %= BitWidth; 1115 if (rotateAmt == 0) 1116 return *this; 1117 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1118 } 1119 1120 /// \returns the nearest log base 2 of this APInt. Ties round up. 1121 /// 1122 /// NOTE: When we have a BitWidth of 1, we define: 1123 /// 1124 /// log2(0) = UINT32_MAX 1125 /// log2(1) = 0 1126 /// 1127 /// to get around any mathematical concerns resulting from 1128 /// referencing 2 in a space where 2 does no exist. 1129 unsigned APInt::nearestLogBase2() const { 1130 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1131 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1132 // UINT32_MAX. 1133 if (BitWidth == 1) 1134 return U.VAL - 1; 1135 1136 // Handle the zero case. 1137 if (isZero()) 1138 return UINT32_MAX; 1139 1140 // The non-zero case is handled by computing: 1141 // 1142 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1143 // 1144 // where x[i] is referring to the value of the ith bit of x. 1145 unsigned lg = logBase2(); 1146 return lg + unsigned((*this)[lg - 1]); 1147 } 1148 1149 // Square Root - this method computes and returns the square root of "this". 1150 // Three mechanisms are used for computation. For small values (<= 5 bits), 1151 // a table lookup is done. This gets some performance for common cases. For 1152 // values using less than 52 bits, the value is converted to double and then 1153 // the libc sqrt function is called. The result is rounded and then converted 1154 // back to a uint64_t which is then used to construct the result. Finally, 1155 // the Babylonian method for computing square roots is used. 1156 APInt APInt::sqrt() const { 1157 1158 // Determine the magnitude of the value. 1159 unsigned magnitude = getActiveBits(); 1160 1161 // Use a fast table for some small values. This also gets rid of some 1162 // rounding errors in libc sqrt for small values. 1163 if (magnitude <= 5) { 1164 static const uint8_t results[32] = { 1165 /* 0 */ 0, 1166 /* 1- 2 */ 1, 1, 1167 /* 3- 6 */ 2, 2, 2, 2, 1168 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1169 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1170 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1171 /* 31 */ 6 1172 }; 1173 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1174 } 1175 1176 // If the magnitude of the value fits in less than 52 bits (the precision of 1177 // an IEEE double precision floating point value), then we can use the 1178 // libc sqrt function which will probably use a hardware sqrt computation. 1179 // This should be faster than the algorithm below. 1180 if (magnitude < 52) { 1181 return APInt(BitWidth, 1182 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1183 : U.pVal[0]))))); 1184 } 1185 1186 // Okay, all the short cuts are exhausted. We must compute it. The following 1187 // is a classical Babylonian method for computing the square root. This code 1188 // was adapted to APInt from a wikipedia article on such computations. 1189 // See http://www.wikipedia.org/ and go to the page named 1190 // Calculate_an_integer_square_root. 1191 unsigned nbits = BitWidth, i = 4; 1192 APInt testy(BitWidth, 16); 1193 APInt x_old(BitWidth, 1); 1194 APInt x_new(BitWidth, 0); 1195 APInt two(BitWidth, 2); 1196 1197 // Select a good starting value using binary logarithms. 1198 for (;; i += 2, testy = testy.shl(2)) 1199 if (i >= nbits || this->ule(testy)) { 1200 x_old = x_old.shl(i / 2); 1201 break; 1202 } 1203 1204 // Use the Babylonian method to arrive at the integer square root: 1205 for (;;) { 1206 x_new = (this->udiv(x_old) + x_old).udiv(two); 1207 if (x_old.ule(x_new)) 1208 break; 1209 x_old = x_new; 1210 } 1211 1212 // Make sure we return the closest approximation 1213 // NOTE: The rounding calculation below is correct. It will produce an 1214 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1215 // determined to be a rounding issue with pari/gp as it begins to use a 1216 // floating point representation after 192 bits. There are no discrepancies 1217 // between this algorithm and pari/gp for bit widths < 192 bits. 1218 APInt square(x_old * x_old); 1219 APInt nextSquare((x_old + 1) * (x_old +1)); 1220 if (this->ult(square)) 1221 return x_old; 1222 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1223 APInt midpoint((nextSquare - square).udiv(two)); 1224 APInt offset(*this - square); 1225 if (offset.ult(midpoint)) 1226 return x_old; 1227 return x_old + 1; 1228 } 1229 1230 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1231 /// iterative extended Euclidean algorithm is used to solve for this value, 1232 /// however we simplify it to speed up calculating only the inverse, and take 1233 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1234 /// (potentially large) APInts around. 1235 /// WARNING: a value of '0' may be returned, 1236 /// signifying that no multiplicative inverse exists! 1237 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1238 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1239 1240 // Using the properties listed at the following web page (accessed 06/21/08): 1241 // http://www.numbertheory.org/php/euclid.html 1242 // (especially the properties numbered 3, 4 and 9) it can be proved that 1243 // BitWidth bits suffice for all the computations in the algorithm implemented 1244 // below. More precisely, this number of bits suffice if the multiplicative 1245 // inverse exists, but may not suffice for the general extended Euclidean 1246 // algorithm. 1247 1248 APInt r[2] = { modulo, *this }; 1249 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1250 APInt q(BitWidth, 0); 1251 1252 unsigned i; 1253 for (i = 0; r[i^1] != 0; i ^= 1) { 1254 // An overview of the math without the confusing bit-flipping: 1255 // q = r[i-2] / r[i-1] 1256 // r[i] = r[i-2] % r[i-1] 1257 // t[i] = t[i-2] - t[i-1] * q 1258 udivrem(r[i], r[i^1], q, r[i]); 1259 t[i] -= t[i^1] * q; 1260 } 1261 1262 // If this APInt and the modulo are not coprime, there is no multiplicative 1263 // inverse, so return 0. We check this by looking at the next-to-last 1264 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1265 // algorithm. 1266 if (r[i] != 1) 1267 return APInt(BitWidth, 0); 1268 1269 // The next-to-last t is the multiplicative inverse. However, we are 1270 // interested in a positive inverse. Calculate a positive one from a negative 1271 // one if necessary. A simple addition of the modulo suffices because 1272 // abs(t[i]) is known to be less than *this/2 (see the link above). 1273 if (t[i].isNegative()) 1274 t[i] += modulo; 1275 1276 return std::move(t[i]); 1277 } 1278 1279 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1280 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1281 /// variables here have the same names as in the algorithm. Comments explain 1282 /// the algorithm and any deviation from it. 1283 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1284 unsigned m, unsigned n) { 1285 assert(u && "Must provide dividend"); 1286 assert(v && "Must provide divisor"); 1287 assert(q && "Must provide quotient"); 1288 assert(u != v && u != q && v != q && "Must use different memory"); 1289 assert(n>1 && "n must be > 1"); 1290 1291 // b denotes the base of the number system. In our case b is 2^32. 1292 const uint64_t b = uint64_t(1) << 32; 1293 1294 // The DEBUG macros here tend to be spam in the debug output if you're not 1295 // debugging this code. Disable them unless KNUTH_DEBUG is defined. 1296 #ifdef KNUTH_DEBUG 1297 #define DEBUG_KNUTH(X) LLVM_DEBUG(X) 1298 #else 1299 #define DEBUG_KNUTH(X) do {} while(false) 1300 #endif 1301 1302 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1303 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); 1304 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1305 DEBUG_KNUTH(dbgs() << " by"); 1306 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1307 DEBUG_KNUTH(dbgs() << '\n'); 1308 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1309 // u and v by d. Note that we have taken Knuth's advice here to use a power 1310 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1311 // 2 allows us to shift instead of multiply and it is easy to determine the 1312 // shift amount from the leading zeros. We are basically normalizing the u 1313 // and v so that its high bits are shifted to the top of v's range without 1314 // overflow. Note that this can require an extra word in u so that u must 1315 // be of length m+n+1. 1316 unsigned shift = countLeadingZeros(v[n-1]); 1317 uint32_t v_carry = 0; 1318 uint32_t u_carry = 0; 1319 if (shift) { 1320 for (unsigned i = 0; i < m+n; ++i) { 1321 uint32_t u_tmp = u[i] >> (32 - shift); 1322 u[i] = (u[i] << shift) | u_carry; 1323 u_carry = u_tmp; 1324 } 1325 for (unsigned i = 0; i < n; ++i) { 1326 uint32_t v_tmp = v[i] >> (32 - shift); 1327 v[i] = (v[i] << shift) | v_carry; 1328 v_carry = v_tmp; 1329 } 1330 } 1331 u[m+n] = u_carry; 1332 1333 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); 1334 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1335 DEBUG_KNUTH(dbgs() << " by"); 1336 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1337 DEBUG_KNUTH(dbgs() << '\n'); 1338 1339 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1340 int j = m; 1341 do { 1342 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1343 // D3. [Calculate q'.]. 1344 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1345 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1346 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1347 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1348 // on v[n-2] determines at high speed most of the cases in which the trial 1349 // value qp is one too large, and it eliminates all cases where qp is two 1350 // too large. 1351 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1352 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1353 uint64_t qp = dividend / v[n-1]; 1354 uint64_t rp = dividend % v[n-1]; 1355 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1356 qp--; 1357 rp += v[n-1]; 1358 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1359 qp--; 1360 } 1361 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1362 1363 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1364 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1365 // consists of a simple multiplication by a one-place number, combined with 1366 // a subtraction. 1367 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1368 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1369 // true value plus b**(n+1), namely as the b's complement of 1370 // the true value, and a "borrow" to the left should be remembered. 1371 int64_t borrow = 0; 1372 for (unsigned i = 0; i < n; ++i) { 1373 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1374 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1375 u[j+i] = Lo_32(subres); 1376 borrow = Hi_32(p) - Hi_32(subres); 1377 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 1378 << ", borrow = " << borrow << '\n'); 1379 } 1380 bool isNeg = u[j+n] < borrow; 1381 u[j+n] -= Lo_32(borrow); 1382 1383 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); 1384 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1385 DEBUG_KNUTH(dbgs() << '\n'); 1386 1387 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1388 // negative, go to step D6; otherwise go on to step D7. 1389 q[j] = Lo_32(qp); 1390 if (isNeg) { 1391 // D6. [Add back]. The probability that this step is necessary is very 1392 // small, on the order of only 2/b. Make sure that test data accounts for 1393 // this possibility. Decrease q[j] by 1 1394 q[j]--; 1395 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1396 // A carry will occur to the left of u[j+n], and it should be ignored 1397 // since it cancels with the borrow that occurred in D4. 1398 bool carry = false; 1399 for (unsigned i = 0; i < n; i++) { 1400 uint32_t limit = std::min(u[j+i],v[i]); 1401 u[j+i] += v[i] + carry; 1402 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1403 } 1404 u[j+n] += carry; 1405 } 1406 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); 1407 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1408 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1409 1410 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1411 } while (--j >= 0); 1412 1413 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); 1414 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 1415 DEBUG_KNUTH(dbgs() << '\n'); 1416 1417 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1418 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1419 // compute the remainder (urem uses this). 1420 if (r) { 1421 // The value d is expressed by the "shift" value above since we avoided 1422 // multiplication by d by using a shift left. So, all we have to do is 1423 // shift right here. 1424 if (shift) { 1425 uint32_t carry = 0; 1426 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); 1427 for (int i = n-1; i >= 0; i--) { 1428 r[i] = (u[i] >> shift) | carry; 1429 carry = u[i] << (32 - shift); 1430 DEBUG_KNUTH(dbgs() << " " << r[i]); 1431 } 1432 } else { 1433 for (int i = n-1; i >= 0; i--) { 1434 r[i] = u[i]; 1435 DEBUG_KNUTH(dbgs() << " " << r[i]); 1436 } 1437 } 1438 DEBUG_KNUTH(dbgs() << '\n'); 1439 } 1440 DEBUG_KNUTH(dbgs() << '\n'); 1441 } 1442 1443 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1444 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1445 assert(lhsWords >= rhsWords && "Fractional result"); 1446 1447 // First, compose the values into an array of 32-bit words instead of 1448 // 64-bit words. This is a necessity of both the "short division" algorithm 1449 // and the Knuth "classical algorithm" which requires there to be native 1450 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1451 // can't use 64-bit operands here because we don't have native results of 1452 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1453 // work on large-endian machines. 1454 unsigned n = rhsWords * 2; 1455 unsigned m = (lhsWords * 2) - n; 1456 1457 // Allocate space for the temporary values we need either on the stack, if 1458 // it will fit, or on the heap if it won't. 1459 uint32_t SPACE[128]; 1460 uint32_t *U = nullptr; 1461 uint32_t *V = nullptr; 1462 uint32_t *Q = nullptr; 1463 uint32_t *R = nullptr; 1464 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1465 U = &SPACE[0]; 1466 V = &SPACE[m+n+1]; 1467 Q = &SPACE[(m+n+1) + n]; 1468 if (Remainder) 1469 R = &SPACE[(m+n+1) + n + (m+n)]; 1470 } else { 1471 U = new uint32_t[m + n + 1]; 1472 V = new uint32_t[n]; 1473 Q = new uint32_t[m+n]; 1474 if (Remainder) 1475 R = new uint32_t[n]; 1476 } 1477 1478 // Initialize the dividend 1479 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1480 for (unsigned i = 0; i < lhsWords; ++i) { 1481 uint64_t tmp = LHS[i]; 1482 U[i * 2] = Lo_32(tmp); 1483 U[i * 2 + 1] = Hi_32(tmp); 1484 } 1485 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1486 1487 // Initialize the divisor 1488 memset(V, 0, (n)*sizeof(uint32_t)); 1489 for (unsigned i = 0; i < rhsWords; ++i) { 1490 uint64_t tmp = RHS[i]; 1491 V[i * 2] = Lo_32(tmp); 1492 V[i * 2 + 1] = Hi_32(tmp); 1493 } 1494 1495 // initialize the quotient and remainder 1496 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1497 if (Remainder) 1498 memset(R, 0, n * sizeof(uint32_t)); 1499 1500 // Now, adjust m and n for the Knuth division. n is the number of words in 1501 // the divisor. m is the number of words by which the dividend exceeds the 1502 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1503 // contain any zero words or the Knuth algorithm fails. 1504 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1505 n--; 1506 m++; 1507 } 1508 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1509 m--; 1510 1511 // If we're left with only a single word for the divisor, Knuth doesn't work 1512 // so we implement the short division algorithm here. This is much simpler 1513 // and faster because we are certain that we can divide a 64-bit quantity 1514 // by a 32-bit quantity at hardware speed and short division is simply a 1515 // series of such operations. This is just like doing short division but we 1516 // are using base 2^32 instead of base 10. 1517 assert(n != 0 && "Divide by zero?"); 1518 if (n == 1) { 1519 uint32_t divisor = V[0]; 1520 uint32_t remainder = 0; 1521 for (int i = m; i >= 0; i--) { 1522 uint64_t partial_dividend = Make_64(remainder, U[i]); 1523 if (partial_dividend == 0) { 1524 Q[i] = 0; 1525 remainder = 0; 1526 } else if (partial_dividend < divisor) { 1527 Q[i] = 0; 1528 remainder = Lo_32(partial_dividend); 1529 } else if (partial_dividend == divisor) { 1530 Q[i] = 1; 1531 remainder = 0; 1532 } else { 1533 Q[i] = Lo_32(partial_dividend / divisor); 1534 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1535 } 1536 } 1537 if (R) 1538 R[0] = remainder; 1539 } else { 1540 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1541 // case n > 1. 1542 KnuthDiv(U, V, Q, R, m, n); 1543 } 1544 1545 // If the caller wants the quotient 1546 if (Quotient) { 1547 for (unsigned i = 0; i < lhsWords; ++i) 1548 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1549 } 1550 1551 // If the caller wants the remainder 1552 if (Remainder) { 1553 for (unsigned i = 0; i < rhsWords; ++i) 1554 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1555 } 1556 1557 // Clean up the memory we allocated. 1558 if (U != &SPACE[0]) { 1559 delete [] U; 1560 delete [] V; 1561 delete [] Q; 1562 delete [] R; 1563 } 1564 } 1565 1566 APInt APInt::udiv(const APInt &RHS) const { 1567 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1568 1569 // First, deal with the easy case 1570 if (isSingleWord()) { 1571 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1572 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1573 } 1574 1575 // Get some facts about the LHS and RHS number of bits and words 1576 unsigned lhsWords = getNumWords(getActiveBits()); 1577 unsigned rhsBits = RHS.getActiveBits(); 1578 unsigned rhsWords = getNumWords(rhsBits); 1579 assert(rhsWords && "Divided by zero???"); 1580 1581 // Deal with some degenerate cases 1582 if (!lhsWords) 1583 // 0 / X ===> 0 1584 return APInt(BitWidth, 0); 1585 if (rhsBits == 1) 1586 // X / 1 ===> X 1587 return *this; 1588 if (lhsWords < rhsWords || this->ult(RHS)) 1589 // X / Y ===> 0, iff X < Y 1590 return APInt(BitWidth, 0); 1591 if (*this == RHS) 1592 // X / X ===> 1 1593 return APInt(BitWidth, 1); 1594 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1595 // All high words are zero, just use native divide 1596 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1597 1598 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1599 APInt Quotient(BitWidth, 0); // to hold result. 1600 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1601 return Quotient; 1602 } 1603 1604 APInt APInt::udiv(uint64_t RHS) const { 1605 assert(RHS != 0 && "Divide by zero?"); 1606 1607 // First, deal with the easy case 1608 if (isSingleWord()) 1609 return APInt(BitWidth, U.VAL / RHS); 1610 1611 // Get some facts about the LHS words. 1612 unsigned lhsWords = getNumWords(getActiveBits()); 1613 1614 // Deal with some degenerate cases 1615 if (!lhsWords) 1616 // 0 / X ===> 0 1617 return APInt(BitWidth, 0); 1618 if (RHS == 1) 1619 // X / 1 ===> X 1620 return *this; 1621 if (this->ult(RHS)) 1622 // X / Y ===> 0, iff X < Y 1623 return APInt(BitWidth, 0); 1624 if (*this == RHS) 1625 // X / X ===> 1 1626 return APInt(BitWidth, 1); 1627 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1628 // All high words are zero, just use native divide 1629 return APInt(BitWidth, this->U.pVal[0] / RHS); 1630 1631 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1632 APInt Quotient(BitWidth, 0); // to hold result. 1633 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1634 return Quotient; 1635 } 1636 1637 APInt APInt::sdiv(const APInt &RHS) const { 1638 if (isNegative()) { 1639 if (RHS.isNegative()) 1640 return (-(*this)).udiv(-RHS); 1641 return -((-(*this)).udiv(RHS)); 1642 } 1643 if (RHS.isNegative()) 1644 return -(this->udiv(-RHS)); 1645 return this->udiv(RHS); 1646 } 1647 1648 APInt APInt::sdiv(int64_t RHS) const { 1649 if (isNegative()) { 1650 if (RHS < 0) 1651 return (-(*this)).udiv(-RHS); 1652 return -((-(*this)).udiv(RHS)); 1653 } 1654 if (RHS < 0) 1655 return -(this->udiv(-RHS)); 1656 return this->udiv(RHS); 1657 } 1658 1659 APInt APInt::urem(const APInt &RHS) const { 1660 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1661 if (isSingleWord()) { 1662 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1663 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1664 } 1665 1666 // Get some facts about the LHS 1667 unsigned lhsWords = getNumWords(getActiveBits()); 1668 1669 // Get some facts about the RHS 1670 unsigned rhsBits = RHS.getActiveBits(); 1671 unsigned rhsWords = getNumWords(rhsBits); 1672 assert(rhsWords && "Performing remainder operation by zero ???"); 1673 1674 // Check the degenerate cases 1675 if (lhsWords == 0) 1676 // 0 % Y ===> 0 1677 return APInt(BitWidth, 0); 1678 if (rhsBits == 1) 1679 // X % 1 ===> 0 1680 return APInt(BitWidth, 0); 1681 if (lhsWords < rhsWords || this->ult(RHS)) 1682 // X % Y ===> X, iff X < Y 1683 return *this; 1684 if (*this == RHS) 1685 // X % X == 0; 1686 return APInt(BitWidth, 0); 1687 if (lhsWords == 1) 1688 // All high words are zero, just use native remainder 1689 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1690 1691 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1692 APInt Remainder(BitWidth, 0); 1693 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1694 return Remainder; 1695 } 1696 1697 uint64_t APInt::urem(uint64_t RHS) const { 1698 assert(RHS != 0 && "Remainder by zero?"); 1699 1700 if (isSingleWord()) 1701 return U.VAL % RHS; 1702 1703 // Get some facts about the LHS 1704 unsigned lhsWords = getNumWords(getActiveBits()); 1705 1706 // Check the degenerate cases 1707 if (lhsWords == 0) 1708 // 0 % Y ===> 0 1709 return 0; 1710 if (RHS == 1) 1711 // X % 1 ===> 0 1712 return 0; 1713 if (this->ult(RHS)) 1714 // X % Y ===> X, iff X < Y 1715 return getZExtValue(); 1716 if (*this == RHS) 1717 // X % X == 0; 1718 return 0; 1719 if (lhsWords == 1) 1720 // All high words are zero, just use native remainder 1721 return U.pVal[0] % RHS; 1722 1723 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1724 uint64_t Remainder; 1725 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1726 return Remainder; 1727 } 1728 1729 APInt APInt::srem(const APInt &RHS) const { 1730 if (isNegative()) { 1731 if (RHS.isNegative()) 1732 return -((-(*this)).urem(-RHS)); 1733 return -((-(*this)).urem(RHS)); 1734 } 1735 if (RHS.isNegative()) 1736 return this->urem(-RHS); 1737 return this->urem(RHS); 1738 } 1739 1740 int64_t APInt::srem(int64_t RHS) const { 1741 if (isNegative()) { 1742 if (RHS < 0) 1743 return -((-(*this)).urem(-RHS)); 1744 return -((-(*this)).urem(RHS)); 1745 } 1746 if (RHS < 0) 1747 return this->urem(-RHS); 1748 return this->urem(RHS); 1749 } 1750 1751 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1752 APInt &Quotient, APInt &Remainder) { 1753 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1754 unsigned BitWidth = LHS.BitWidth; 1755 1756 // First, deal with the easy case 1757 if (LHS.isSingleWord()) { 1758 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1759 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1760 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1761 Quotient = APInt(BitWidth, QuotVal); 1762 Remainder = APInt(BitWidth, RemVal); 1763 return; 1764 } 1765 1766 // Get some size facts about the dividend and divisor 1767 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1768 unsigned rhsBits = RHS.getActiveBits(); 1769 unsigned rhsWords = getNumWords(rhsBits); 1770 assert(rhsWords && "Performing divrem operation by zero ???"); 1771 1772 // Check the degenerate cases 1773 if (lhsWords == 0) { 1774 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1775 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 1776 return; 1777 } 1778 1779 if (rhsBits == 1) { 1780 Quotient = LHS; // X / 1 ===> X 1781 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 1782 } 1783 1784 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1785 Remainder = LHS; // X % Y ===> X, iff X < Y 1786 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1787 return; 1788 } 1789 1790 if (LHS == RHS) { 1791 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1792 Remainder = APInt(BitWidth, 0); // X % X ===> 0; 1793 return; 1794 } 1795 1796 // Make sure there is enough space to hold the results. 1797 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1798 // change the size. This is necessary if Quotient or Remainder is aliased 1799 // with LHS or RHS. 1800 Quotient.reallocate(BitWidth); 1801 Remainder.reallocate(BitWidth); 1802 1803 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1804 // There is only one word to consider so use the native versions. 1805 uint64_t lhsValue = LHS.U.pVal[0]; 1806 uint64_t rhsValue = RHS.U.pVal[0]; 1807 Quotient = lhsValue / rhsValue; 1808 Remainder = lhsValue % rhsValue; 1809 return; 1810 } 1811 1812 // Okay, lets do it the long way 1813 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1814 Remainder.U.pVal); 1815 // Clear the rest of the Quotient and Remainder. 1816 std::memset(Quotient.U.pVal + lhsWords, 0, 1817 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1818 std::memset(Remainder.U.pVal + rhsWords, 0, 1819 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1820 } 1821 1822 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1823 uint64_t &Remainder) { 1824 assert(RHS != 0 && "Divide by zero?"); 1825 unsigned BitWidth = LHS.BitWidth; 1826 1827 // First, deal with the easy case 1828 if (LHS.isSingleWord()) { 1829 uint64_t QuotVal = LHS.U.VAL / RHS; 1830 Remainder = LHS.U.VAL % RHS; 1831 Quotient = APInt(BitWidth, QuotVal); 1832 return; 1833 } 1834 1835 // Get some size facts about the dividend and divisor 1836 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1837 1838 // Check the degenerate cases 1839 if (lhsWords == 0) { 1840 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1841 Remainder = 0; // 0 % Y ===> 0 1842 return; 1843 } 1844 1845 if (RHS == 1) { 1846 Quotient = LHS; // X / 1 ===> X 1847 Remainder = 0; // X % 1 ===> 0 1848 return; 1849 } 1850 1851 if (LHS.ult(RHS)) { 1852 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1853 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1854 return; 1855 } 1856 1857 if (LHS == RHS) { 1858 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1859 Remainder = 0; // X % X ===> 0; 1860 return; 1861 } 1862 1863 // Make sure there is enough space to hold the results. 1864 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1865 // change the size. This is necessary if Quotient is aliased with LHS. 1866 Quotient.reallocate(BitWidth); 1867 1868 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1869 // There is only one word to consider so use the native versions. 1870 uint64_t lhsValue = LHS.U.pVal[0]; 1871 Quotient = lhsValue / RHS; 1872 Remainder = lhsValue % RHS; 1873 return; 1874 } 1875 1876 // Okay, lets do it the long way 1877 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1878 // Clear the rest of the Quotient. 1879 std::memset(Quotient.U.pVal + lhsWords, 0, 1880 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1881 } 1882 1883 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1884 APInt &Quotient, APInt &Remainder) { 1885 if (LHS.isNegative()) { 1886 if (RHS.isNegative()) 1887 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1888 else { 1889 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1890 Quotient.negate(); 1891 } 1892 Remainder.negate(); 1893 } else if (RHS.isNegative()) { 1894 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1895 Quotient.negate(); 1896 } else { 1897 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1898 } 1899 } 1900 1901 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1902 APInt &Quotient, int64_t &Remainder) { 1903 uint64_t R = Remainder; 1904 if (LHS.isNegative()) { 1905 if (RHS < 0) 1906 APInt::udivrem(-LHS, -RHS, Quotient, R); 1907 else { 1908 APInt::udivrem(-LHS, RHS, Quotient, R); 1909 Quotient.negate(); 1910 } 1911 R = -R; 1912 } else if (RHS < 0) { 1913 APInt::udivrem(LHS, -RHS, Quotient, R); 1914 Quotient.negate(); 1915 } else { 1916 APInt::udivrem(LHS, RHS, Quotient, R); 1917 } 1918 Remainder = R; 1919 } 1920 1921 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1922 APInt Res = *this+RHS; 1923 Overflow = isNonNegative() == RHS.isNonNegative() && 1924 Res.isNonNegative() != isNonNegative(); 1925 return Res; 1926 } 1927 1928 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1929 APInt Res = *this+RHS; 1930 Overflow = Res.ult(RHS); 1931 return Res; 1932 } 1933 1934 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1935 APInt Res = *this - RHS; 1936 Overflow = isNonNegative() != RHS.isNonNegative() && 1937 Res.isNonNegative() != isNonNegative(); 1938 return Res; 1939 } 1940 1941 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1942 APInt Res = *this-RHS; 1943 Overflow = Res.ugt(*this); 1944 return Res; 1945 } 1946 1947 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1948 // MININT/-1 --> overflow. 1949 Overflow = isMinSignedValue() && RHS.isAllOnes(); 1950 return sdiv(RHS); 1951 } 1952 1953 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1954 APInt Res = *this * RHS; 1955 1956 if (*this != 0 && RHS != 0) 1957 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 1958 else 1959 Overflow = false; 1960 return Res; 1961 } 1962 1963 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1964 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) { 1965 Overflow = true; 1966 return *this * RHS; 1967 } 1968 1969 APInt Res = lshr(1) * RHS; 1970 Overflow = Res.isNegative(); 1971 Res <<= 1; 1972 if ((*this)[0]) { 1973 Res += RHS; 1974 if (Res.ult(RHS)) 1975 Overflow = true; 1976 } 1977 return Res; 1978 } 1979 1980 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1981 Overflow = ShAmt.uge(getBitWidth()); 1982 if (Overflow) 1983 return APInt(BitWidth, 0); 1984 1985 if (isNonNegative()) // Don't allow sign change. 1986 Overflow = ShAmt.uge(countLeadingZeros()); 1987 else 1988 Overflow = ShAmt.uge(countLeadingOnes()); 1989 1990 return *this << ShAmt; 1991 } 1992 1993 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 1994 Overflow = ShAmt.uge(getBitWidth()); 1995 if (Overflow) 1996 return APInt(BitWidth, 0); 1997 1998 Overflow = ShAmt.ugt(countLeadingZeros()); 1999 2000 return *this << ShAmt; 2001 } 2002 2003 APInt APInt::sadd_sat(const APInt &RHS) const { 2004 bool Overflow; 2005 APInt Res = sadd_ov(RHS, Overflow); 2006 if (!Overflow) 2007 return Res; 2008 2009 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2010 : APInt::getSignedMaxValue(BitWidth); 2011 } 2012 2013 APInt APInt::uadd_sat(const APInt &RHS) const { 2014 bool Overflow; 2015 APInt Res = uadd_ov(RHS, Overflow); 2016 if (!Overflow) 2017 return Res; 2018 2019 return APInt::getMaxValue(BitWidth); 2020 } 2021 2022 APInt APInt::ssub_sat(const APInt &RHS) const { 2023 bool Overflow; 2024 APInt Res = ssub_ov(RHS, Overflow); 2025 if (!Overflow) 2026 return Res; 2027 2028 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2029 : APInt::getSignedMaxValue(BitWidth); 2030 } 2031 2032 APInt APInt::usub_sat(const APInt &RHS) const { 2033 bool Overflow; 2034 APInt Res = usub_ov(RHS, Overflow); 2035 if (!Overflow) 2036 return Res; 2037 2038 return APInt(BitWidth, 0); 2039 } 2040 2041 APInt APInt::smul_sat(const APInt &RHS) const { 2042 bool Overflow; 2043 APInt Res = smul_ov(RHS, Overflow); 2044 if (!Overflow) 2045 return Res; 2046 2047 // The result is negative if one and only one of inputs is negative. 2048 bool ResIsNegative = isNegative() ^ RHS.isNegative(); 2049 2050 return ResIsNegative ? APInt::getSignedMinValue(BitWidth) 2051 : APInt::getSignedMaxValue(BitWidth); 2052 } 2053 2054 APInt APInt::umul_sat(const APInt &RHS) const { 2055 bool Overflow; 2056 APInt Res = umul_ov(RHS, Overflow); 2057 if (!Overflow) 2058 return Res; 2059 2060 return APInt::getMaxValue(BitWidth); 2061 } 2062 2063 APInt APInt::sshl_sat(const APInt &RHS) const { 2064 bool Overflow; 2065 APInt Res = sshl_ov(RHS, Overflow); 2066 if (!Overflow) 2067 return Res; 2068 2069 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2070 : APInt::getSignedMaxValue(BitWidth); 2071 } 2072 2073 APInt APInt::ushl_sat(const APInt &RHS) const { 2074 bool Overflow; 2075 APInt Res = ushl_ov(RHS, Overflow); 2076 if (!Overflow) 2077 return Res; 2078 2079 return APInt::getMaxValue(BitWidth); 2080 } 2081 2082 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2083 // Check our assumptions here 2084 assert(!str.empty() && "Invalid string length"); 2085 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2086 radix == 36) && 2087 "Radix should be 2, 8, 10, 16, or 36!"); 2088 2089 StringRef::iterator p = str.begin(); 2090 size_t slen = str.size(); 2091 bool isNeg = *p == '-'; 2092 if (*p == '-' || *p == '+') { 2093 p++; 2094 slen--; 2095 assert(slen && "String is only a sign, needs a value."); 2096 } 2097 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2098 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2099 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2100 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2101 "Insufficient bit width"); 2102 2103 // Allocate memory if needed 2104 if (isSingleWord()) 2105 U.VAL = 0; 2106 else 2107 U.pVal = getClearedMemory(getNumWords()); 2108 2109 // Figure out if we can shift instead of multiply 2110 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2111 2112 // Enter digit traversal loop 2113 for (StringRef::iterator e = str.end(); p != e; ++p) { 2114 unsigned digit = getDigit(*p, radix); 2115 assert(digit < radix && "Invalid character in digit string"); 2116 2117 // Shift or multiply the value by the radix 2118 if (slen > 1) { 2119 if (shift) 2120 *this <<= shift; 2121 else 2122 *this *= radix; 2123 } 2124 2125 // Add in the digit we just interpreted 2126 *this += digit; 2127 } 2128 // If its negative, put it in two's complement form 2129 if (isNeg) 2130 this->negate(); 2131 } 2132 2133 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2134 bool Signed, bool formatAsCLiteral) const { 2135 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2136 Radix == 36) && 2137 "Radix should be 2, 8, 10, 16, or 36!"); 2138 2139 const char *Prefix = ""; 2140 if (formatAsCLiteral) { 2141 switch (Radix) { 2142 case 2: 2143 // Binary literals are a non-standard extension added in gcc 4.3: 2144 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2145 Prefix = "0b"; 2146 break; 2147 case 8: 2148 Prefix = "0"; 2149 break; 2150 case 10: 2151 break; // No prefix 2152 case 16: 2153 Prefix = "0x"; 2154 break; 2155 default: 2156 llvm_unreachable("Invalid radix!"); 2157 } 2158 } 2159 2160 // First, check for a zero value and just short circuit the logic below. 2161 if (isZero()) { 2162 while (*Prefix) { 2163 Str.push_back(*Prefix); 2164 ++Prefix; 2165 }; 2166 Str.push_back('0'); 2167 return; 2168 } 2169 2170 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2171 2172 if (isSingleWord()) { 2173 char Buffer[65]; 2174 char *BufPtr = std::end(Buffer); 2175 2176 uint64_t N; 2177 if (!Signed) { 2178 N = getZExtValue(); 2179 } else { 2180 int64_t I = getSExtValue(); 2181 if (I >= 0) { 2182 N = I; 2183 } else { 2184 Str.push_back('-'); 2185 N = -(uint64_t)I; 2186 } 2187 } 2188 2189 while (*Prefix) { 2190 Str.push_back(*Prefix); 2191 ++Prefix; 2192 }; 2193 2194 while (N) { 2195 *--BufPtr = Digits[N % Radix]; 2196 N /= Radix; 2197 } 2198 Str.append(BufPtr, std::end(Buffer)); 2199 return; 2200 } 2201 2202 APInt Tmp(*this); 2203 2204 if (Signed && isNegative()) { 2205 // They want to print the signed version and it is a negative value 2206 // Flip the bits and add one to turn it into the equivalent positive 2207 // value and put a '-' in the result. 2208 Tmp.negate(); 2209 Str.push_back('-'); 2210 } 2211 2212 while (*Prefix) { 2213 Str.push_back(*Prefix); 2214 ++Prefix; 2215 }; 2216 2217 // We insert the digits backward, then reverse them to get the right order. 2218 unsigned StartDig = Str.size(); 2219 2220 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2221 // because the number of bits per digit (1, 3 and 4 respectively) divides 2222 // equally. We just shift until the value is zero. 2223 if (Radix == 2 || Radix == 8 || Radix == 16) { 2224 // Just shift tmp right for each digit width until it becomes zero 2225 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2226 unsigned MaskAmt = Radix - 1; 2227 2228 while (Tmp.getBoolValue()) { 2229 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2230 Str.push_back(Digits[Digit]); 2231 Tmp.lshrInPlace(ShiftAmt); 2232 } 2233 } else { 2234 while (Tmp.getBoolValue()) { 2235 uint64_t Digit; 2236 udivrem(Tmp, Radix, Tmp, Digit); 2237 assert(Digit < Radix && "divide failed"); 2238 Str.push_back(Digits[Digit]); 2239 } 2240 } 2241 2242 // Reverse the digits before returning. 2243 std::reverse(Str.begin()+StartDig, Str.end()); 2244 } 2245 2246 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2247 LLVM_DUMP_METHOD void APInt::dump() const { 2248 SmallString<40> S, U; 2249 this->toStringUnsigned(U); 2250 this->toStringSigned(S); 2251 dbgs() << "APInt(" << BitWidth << "b, " 2252 << U << "u " << S << "s)\n"; 2253 } 2254 #endif 2255 2256 void APInt::print(raw_ostream &OS, bool isSigned) const { 2257 SmallString<40> S; 2258 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2259 OS << S; 2260 } 2261 2262 // This implements a variety of operations on a representation of 2263 // arbitrary precision, two's-complement, bignum integer values. 2264 2265 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2266 // and unrestricting assumption. 2267 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2268 "Part width must be divisible by 2!"); 2269 2270 // Returns the integer part with the least significant BITS set. 2271 // BITS cannot be zero. 2272 static inline APInt::WordType lowBitMask(unsigned bits) { 2273 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2274 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2275 } 2276 2277 /// Returns the value of the lower half of PART. 2278 static inline APInt::WordType lowHalf(APInt::WordType part) { 2279 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2280 } 2281 2282 /// Returns the value of the upper half of PART. 2283 static inline APInt::WordType highHalf(APInt::WordType part) { 2284 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2285 } 2286 2287 /// Returns the bit number of the most significant set bit of a part. 2288 /// If the input number has no bits set -1U is returned. 2289 static unsigned partMSB(APInt::WordType value) { 2290 return findLastSet(value, ZB_Max); 2291 } 2292 2293 /// Returns the bit number of the least significant set bit of a part. If the 2294 /// input number has no bits set -1U is returned. 2295 static unsigned partLSB(APInt::WordType value) { 2296 return findFirstSet(value, ZB_Max); 2297 } 2298 2299 /// Sets the least significant part of a bignum to the input value, and zeroes 2300 /// out higher parts. 2301 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2302 assert(parts > 0); 2303 dst[0] = part; 2304 for (unsigned i = 1; i < parts; i++) 2305 dst[i] = 0; 2306 } 2307 2308 /// Assign one bignum to another. 2309 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2310 for (unsigned i = 0; i < parts; i++) 2311 dst[i] = src[i]; 2312 } 2313 2314 /// Returns true if a bignum is zero, false otherwise. 2315 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2316 for (unsigned i = 0; i < parts; i++) 2317 if (src[i]) 2318 return false; 2319 2320 return true; 2321 } 2322 2323 /// Extract the given bit of a bignum; returns 0 or 1. 2324 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2325 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2326 } 2327 2328 /// Set the given bit of a bignum. 2329 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2330 parts[whichWord(bit)] |= maskBit(bit); 2331 } 2332 2333 /// Clears the given bit of a bignum. 2334 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2335 parts[whichWord(bit)] &= ~maskBit(bit); 2336 } 2337 2338 /// Returns the bit number of the least significant set bit of a number. If the 2339 /// input number has no bits set -1U is returned. 2340 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2341 for (unsigned i = 0; i < n; i++) { 2342 if (parts[i] != 0) { 2343 unsigned lsb = partLSB(parts[i]); 2344 return lsb + i * APINT_BITS_PER_WORD; 2345 } 2346 } 2347 2348 return -1U; 2349 } 2350 2351 /// Returns the bit number of the most significant set bit of a number. 2352 /// If the input number has no bits set -1U is returned. 2353 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2354 do { 2355 --n; 2356 2357 if (parts[n] != 0) { 2358 unsigned msb = partMSB(parts[n]); 2359 2360 return msb + n * APINT_BITS_PER_WORD; 2361 } 2362 } while (n); 2363 2364 return -1U; 2365 } 2366 2367 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 2368 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 2369 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. 2370 /// */ 2371 void 2372 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2373 unsigned srcBits, unsigned srcLSB) { 2374 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2375 assert(dstParts <= dstCount); 2376 2377 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2378 tcAssign(dst, src + firstSrcPart, dstParts); 2379 2380 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2381 tcShiftRight(dst, dstParts, shift); 2382 2383 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2384 // in DST. If this is less that srcBits, append the rest, else 2385 // clear the high bits. 2386 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2387 if (n < srcBits) { 2388 WordType mask = lowBitMask (srcBits - n); 2389 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2390 << n % APINT_BITS_PER_WORD); 2391 } else if (n > srcBits) { 2392 if (srcBits % APINT_BITS_PER_WORD) 2393 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2394 } 2395 2396 // Clear high parts. 2397 while (dstParts < dstCount) 2398 dst[dstParts++] = 0; 2399 } 2400 2401 //// DST += RHS + C where C is zero or one. Returns the carry flag. 2402 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2403 WordType c, unsigned parts) { 2404 assert(c <= 1); 2405 2406 for (unsigned i = 0; i < parts; i++) { 2407 WordType l = dst[i]; 2408 if (c) { 2409 dst[i] += rhs[i] + 1; 2410 c = (dst[i] <= l); 2411 } else { 2412 dst[i] += rhs[i]; 2413 c = (dst[i] < l); 2414 } 2415 } 2416 2417 return c; 2418 } 2419 2420 /// This function adds a single "word" integer, src, to the multiple 2421 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2422 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2423 /// @returns the carry of the addition. 2424 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2425 unsigned parts) { 2426 for (unsigned i = 0; i < parts; ++i) { 2427 dst[i] += src; 2428 if (dst[i] >= src) 2429 return 0; // No need to carry so exit early. 2430 src = 1; // Carry one to next digit. 2431 } 2432 2433 return 1; 2434 } 2435 2436 /// DST -= RHS + C where C is zero or one. Returns the carry flag. 2437 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2438 WordType c, unsigned parts) { 2439 assert(c <= 1); 2440 2441 for (unsigned i = 0; i < parts; i++) { 2442 WordType l = dst[i]; 2443 if (c) { 2444 dst[i] -= rhs[i] + 1; 2445 c = (dst[i] >= l); 2446 } else { 2447 dst[i] -= rhs[i]; 2448 c = (dst[i] > l); 2449 } 2450 } 2451 2452 return c; 2453 } 2454 2455 /// This function subtracts a single "word" (64-bit word), src, from 2456 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2457 /// no further borrowing is needed or it runs out of "words" in dst. The result 2458 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2459 /// exhausted. In other words, if src > dst then this function returns 1, 2460 /// otherwise 0. 2461 /// @returns the borrow out of the subtraction 2462 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2463 unsigned parts) { 2464 for (unsigned i = 0; i < parts; ++i) { 2465 WordType Dst = dst[i]; 2466 dst[i] -= src; 2467 if (src <= Dst) 2468 return 0; // No need to borrow so exit early. 2469 src = 1; // We have to "borrow 1" from next "word" 2470 } 2471 2472 return 1; 2473 } 2474 2475 /// Negate a bignum in-place. 2476 void APInt::tcNegate(WordType *dst, unsigned parts) { 2477 tcComplement(dst, parts); 2478 tcIncrement(dst, parts); 2479 } 2480 2481 /// DST += SRC * MULTIPLIER + CARRY if add is true 2482 /// DST = SRC * MULTIPLIER + CARRY if add is false 2483 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2484 /// they must start at the same point, i.e. DST == SRC. 2485 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2486 /// returned. Otherwise DST is filled with the least significant 2487 /// DSTPARTS parts of the result, and if all of the omitted higher 2488 /// parts were zero return zero, otherwise overflow occurred and 2489 /// return one. 2490 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2491 WordType multiplier, WordType carry, 2492 unsigned srcParts, unsigned dstParts, 2493 bool add) { 2494 // Otherwise our writes of DST kill our later reads of SRC. 2495 assert(dst <= src || dst >= src + srcParts); 2496 assert(dstParts <= srcParts + 1); 2497 2498 // N loops; minimum of dstParts and srcParts. 2499 unsigned n = std::min(dstParts, srcParts); 2500 2501 for (unsigned i = 0; i < n; i++) { 2502 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2503 // This cannot overflow, because: 2504 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2505 // which is less than n^2. 2506 WordType srcPart = src[i]; 2507 WordType low, mid, high; 2508 if (multiplier == 0 || srcPart == 0) { 2509 low = carry; 2510 high = 0; 2511 } else { 2512 low = lowHalf(srcPart) * lowHalf(multiplier); 2513 high = highHalf(srcPart) * highHalf(multiplier); 2514 2515 mid = lowHalf(srcPart) * highHalf(multiplier); 2516 high += highHalf(mid); 2517 mid <<= APINT_BITS_PER_WORD / 2; 2518 if (low + mid < low) 2519 high++; 2520 low += mid; 2521 2522 mid = highHalf(srcPart) * lowHalf(multiplier); 2523 high += highHalf(mid); 2524 mid <<= APINT_BITS_PER_WORD / 2; 2525 if (low + mid < low) 2526 high++; 2527 low += mid; 2528 2529 // Now add carry. 2530 if (low + carry < low) 2531 high++; 2532 low += carry; 2533 } 2534 2535 if (add) { 2536 // And now DST[i], and store the new low part there. 2537 if (low + dst[i] < low) 2538 high++; 2539 dst[i] += low; 2540 } else 2541 dst[i] = low; 2542 2543 carry = high; 2544 } 2545 2546 if (srcParts < dstParts) { 2547 // Full multiplication, there is no overflow. 2548 assert(srcParts + 1 == dstParts); 2549 dst[srcParts] = carry; 2550 return 0; 2551 } 2552 2553 // We overflowed if there is carry. 2554 if (carry) 2555 return 1; 2556 2557 // We would overflow if any significant unwritten parts would be 2558 // non-zero. This is true if any remaining src parts are non-zero 2559 // and the multiplier is non-zero. 2560 if (multiplier) 2561 for (unsigned i = dstParts; i < srcParts; i++) 2562 if (src[i]) 2563 return 1; 2564 2565 // We fitted in the narrow destination. 2566 return 0; 2567 } 2568 2569 /// DST = LHS * RHS, where DST has the same width as the operands and 2570 /// is filled with the least significant parts of the result. Returns 2571 /// one if overflow occurred, otherwise zero. DST must be disjoint 2572 /// from both operands. 2573 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2574 const WordType *rhs, unsigned parts) { 2575 assert(dst != lhs && dst != rhs); 2576 2577 int overflow = 0; 2578 tcSet(dst, 0, parts); 2579 2580 for (unsigned i = 0; i < parts; i++) 2581 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2582 parts - i, true); 2583 2584 return overflow; 2585 } 2586 2587 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2588 /// operands. No overflow occurs. DST must be disjoint from both operands. 2589 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2590 const WordType *rhs, unsigned lhsParts, 2591 unsigned rhsParts) { 2592 // Put the narrower number on the LHS for less loops below. 2593 if (lhsParts > rhsParts) 2594 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2595 2596 assert(dst != lhs && dst != rhs); 2597 2598 tcSet(dst, 0, rhsParts); 2599 2600 for (unsigned i = 0; i < lhsParts; i++) 2601 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2602 } 2603 2604 // If RHS is zero LHS and REMAINDER are left unchanged, return one. 2605 // Otherwise set LHS to LHS / RHS with the fractional part discarded, 2606 // set REMAINDER to the remainder, return zero. i.e. 2607 // 2608 // OLD_LHS = RHS * LHS + REMAINDER 2609 // 2610 // SCRATCH is a bignum of the same size as the operands and result for 2611 // use by the routine; its contents need not be initialized and are 2612 // destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2613 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2614 WordType *remainder, WordType *srhs, 2615 unsigned parts) { 2616 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2617 2618 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2619 if (shiftCount == 0) 2620 return true; 2621 2622 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2623 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2624 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2625 2626 tcAssign(srhs, rhs, parts); 2627 tcShiftLeft(srhs, parts, shiftCount); 2628 tcAssign(remainder, lhs, parts); 2629 tcSet(lhs, 0, parts); 2630 2631 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the 2632 // total. 2633 for (;;) { 2634 int compare = tcCompare(remainder, srhs, parts); 2635 if (compare >= 0) { 2636 tcSubtract(remainder, srhs, 0, parts); 2637 lhs[n] |= mask; 2638 } 2639 2640 if (shiftCount == 0) 2641 break; 2642 shiftCount--; 2643 tcShiftRight(srhs, parts, 1); 2644 if ((mask >>= 1) == 0) { 2645 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2646 n--; 2647 } 2648 } 2649 2650 return false; 2651 } 2652 2653 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2654 /// no restrictions on Count. 2655 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2656 // Don't bother performing a no-op shift. 2657 if (!Count) 2658 return; 2659 2660 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2661 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2662 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2663 2664 // Fastpath for moving by whole words. 2665 if (BitShift == 0) { 2666 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2667 } else { 2668 while (Words-- > WordShift) { 2669 Dst[Words] = Dst[Words - WordShift] << BitShift; 2670 if (Words > WordShift) 2671 Dst[Words] |= 2672 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2673 } 2674 } 2675 2676 // Fill in the remainder with 0s. 2677 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2678 } 2679 2680 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2681 /// are no restrictions on Count. 2682 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2683 // Don't bother performing a no-op shift. 2684 if (!Count) 2685 return; 2686 2687 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2688 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2689 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2690 2691 unsigned WordsToMove = Words - WordShift; 2692 // Fastpath for moving by whole words. 2693 if (BitShift == 0) { 2694 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2695 } else { 2696 for (unsigned i = 0; i != WordsToMove; ++i) { 2697 Dst[i] = Dst[i + WordShift] >> BitShift; 2698 if (i + 1 != WordsToMove) 2699 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2700 } 2701 } 2702 2703 // Fill in the remainder with 0s. 2704 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2705 } 2706 2707 // Comparison (unsigned) of two bignums. 2708 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2709 unsigned parts) { 2710 while (parts) { 2711 parts--; 2712 if (lhs[parts] != rhs[parts]) 2713 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2714 } 2715 2716 return 0; 2717 } 2718 2719 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 2720 APInt::Rounding RM) { 2721 // Currently udivrem always rounds down. 2722 switch (RM) { 2723 case APInt::Rounding::DOWN: 2724 case APInt::Rounding::TOWARD_ZERO: 2725 return A.udiv(B); 2726 case APInt::Rounding::UP: { 2727 APInt Quo, Rem; 2728 APInt::udivrem(A, B, Quo, Rem); 2729 if (Rem.isZero()) 2730 return Quo; 2731 return Quo + 1; 2732 } 2733 } 2734 llvm_unreachable("Unknown APInt::Rounding enum"); 2735 } 2736 2737 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 2738 APInt::Rounding RM) { 2739 switch (RM) { 2740 case APInt::Rounding::DOWN: 2741 case APInt::Rounding::UP: { 2742 APInt Quo, Rem; 2743 APInt::sdivrem(A, B, Quo, Rem); 2744 if (Rem.isZero()) 2745 return Quo; 2746 // This algorithm deals with arbitrary rounding mode used by sdivrem. 2747 // We want to check whether the non-integer part of the mathematical value 2748 // is negative or not. If the non-integer part is negative, we need to round 2749 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 2750 // already rounded down. 2751 if (RM == APInt::Rounding::DOWN) { 2752 if (Rem.isNegative() != B.isNegative()) 2753 return Quo - 1; 2754 return Quo; 2755 } 2756 if (Rem.isNegative() != B.isNegative()) 2757 return Quo; 2758 return Quo + 1; 2759 } 2760 // Currently sdiv rounds towards zero. 2761 case APInt::Rounding::TOWARD_ZERO: 2762 return A.sdiv(B); 2763 } 2764 llvm_unreachable("Unknown APInt::Rounding enum"); 2765 } 2766 2767 Optional<APInt> 2768 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2769 unsigned RangeWidth) { 2770 unsigned CoeffWidth = A.getBitWidth(); 2771 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 2772 assert(RangeWidth <= CoeffWidth && 2773 "Value range width should be less than coefficient width"); 2774 assert(RangeWidth > 1 && "Value range bit width should be > 1"); 2775 2776 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 2777 << "x + " << C << ", rw:" << RangeWidth << '\n'); 2778 2779 // Identify 0 as a (non)solution immediately. 2780 if (C.sextOrTrunc(RangeWidth).isZero()) { 2781 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 2782 return APInt(CoeffWidth, 0); 2783 } 2784 2785 // The result of APInt arithmetic has the same bit width as the operands, 2786 // so it can actually lose high bits. A product of two n-bit integers needs 2787 // 2n-1 bits to represent the full value. 2788 // The operation done below (on quadratic coefficients) that can produce 2789 // the largest value is the evaluation of the equation during bisection, 2790 // which needs 3 times the bitwidth of the coefficient, so the total number 2791 // of required bits is 3n. 2792 // 2793 // The purpose of this extension is to simulate the set Z of all integers, 2794 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 2795 // and negative numbers (not so much in a modulo arithmetic). The method 2796 // used to solve the equation is based on the standard formula for real 2797 // numbers, and uses the concepts of "positive" and "negative" with their 2798 // usual meanings. 2799 CoeffWidth *= 3; 2800 A = A.sext(CoeffWidth); 2801 B = B.sext(CoeffWidth); 2802 C = C.sext(CoeffWidth); 2803 2804 // Make A > 0 for simplicity. Negate cannot overflow at this point because 2805 // the bit width has increased. 2806 if (A.isNegative()) { 2807 A.negate(); 2808 B.negate(); 2809 C.negate(); 2810 } 2811 2812 // Solving an equation q(x) = 0 with coefficients in modular arithmetic 2813 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 2814 // and R = 2^BitWidth. 2815 // Since we're trying not only to find exact solutions, but also values 2816 // that "wrap around", such a set will always have a solution, i.e. an x 2817 // that satisfies at least one of the equations, or such that |q(x)| 2818 // exceeds kR, while |q(x-1)| for the same k does not. 2819 // 2820 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 2821 // positive solution n (in the above sense), and also such that the n 2822 // will be the least among all solutions corresponding to k = 0, 1, ... 2823 // (more precisely, the least element in the set 2824 // { n(k) | k is such that a solution n(k) exists }). 2825 // 2826 // Consider the parabola (over real numbers) that corresponds to the 2827 // quadratic equation. Since A > 0, the arms of the parabola will point 2828 // up. Picking different values of k will shift it up and down by R. 2829 // 2830 // We want to shift the parabola in such a way as to reduce the problem 2831 // of solving q(x) = kR to solving shifted_q(x) = 0. 2832 // (The interesting solutions are the ceilings of the real number 2833 // solutions.) 2834 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 2835 APInt TwoA = 2 * A; 2836 APInt SqrB = B * B; 2837 bool PickLow; 2838 2839 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 2840 assert(A.isStrictlyPositive()); 2841 APInt T = V.abs().urem(A); 2842 if (T.isZero()) 2843 return V; 2844 return V.isNegative() ? V+T : V+(A-T); 2845 }; 2846 2847 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 2848 // iff B is positive. 2849 if (B.isNonNegative()) { 2850 // If B >= 0, the vertex it at a negative location (or at 0), so in 2851 // order to have a non-negative solution we need to pick k that makes 2852 // C-kR negative. To satisfy all the requirements for the solution 2853 // that we are looking for, it needs to be closest to 0 of all k. 2854 C = C.srem(R); 2855 if (C.isStrictlyPositive()) 2856 C -= R; 2857 // Pick the greater solution. 2858 PickLow = false; 2859 } else { 2860 // If B < 0, the vertex is at a positive location. For any solution 2861 // to exist, the discriminant must be non-negative. This means that 2862 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 2863 // lower bound on values of k: kR >= C - B^2/4A. 2864 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 2865 // Round LowkR up (towards +inf) to the nearest kR. 2866 LowkR = RoundUp(LowkR, R); 2867 2868 // If there exists k meeting the condition above, and such that 2869 // C-kR > 0, there will be two positive real number solutions of 2870 // q(x) = kR. Out of all such values of k, pick the one that makes 2871 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 2872 // In other words, find maximum k such that LowkR <= kR < C. 2873 if (C.sgt(LowkR)) { 2874 // If LowkR < C, then such a k is guaranteed to exist because 2875 // LowkR itself is a multiple of R. 2876 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 2877 // Pick the smaller solution. 2878 PickLow = true; 2879 } else { 2880 // If C-kR < 0 for all potential k's, it means that one solution 2881 // will be negative, while the other will be positive. The positive 2882 // solution will shift towards 0 if the parabola is moved up. 2883 // Pick the kR closest to the lower bound (i.e. make C-kR closest 2884 // to 0, or in other words, out of all parabolas that have solutions, 2885 // pick the one that is the farthest "up"). 2886 // Since LowkR is itself a multiple of R, simply take C-LowkR. 2887 C -= LowkR; 2888 // Pick the greater solution. 2889 PickLow = false; 2890 } 2891 } 2892 2893 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 2894 << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 2895 2896 APInt D = SqrB - 4*A*C; 2897 assert(D.isNonNegative() && "Negative discriminant"); 2898 APInt SQ = D.sqrt(); 2899 2900 APInt Q = SQ * SQ; 2901 bool InexactSQ = Q != D; 2902 // The calculated SQ may actually be greater than the exact (non-integer) 2903 // value. If that's the case, decrement SQ to get a value that is lower. 2904 if (Q.sgt(D)) 2905 SQ -= 1; 2906 2907 APInt X; 2908 APInt Rem; 2909 2910 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 2911 // When using the quadratic formula directly, the calculated low root 2912 // may be greater than the exact one, since we would be subtracting SQ. 2913 // To make sure that the calculated root is not greater than the exact 2914 // one, subtract SQ+1 when calculating the low root (for inexact value 2915 // of SQ). 2916 if (PickLow) 2917 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 2918 else 2919 APInt::sdivrem(-B + SQ, TwoA, X, Rem); 2920 2921 // The updated coefficients should be such that the (exact) solution is 2922 // positive. Since APInt division rounds towards 0, the calculated one 2923 // can be 0, but cannot be negative. 2924 assert(X.isNonNegative() && "Solution should be non-negative"); 2925 2926 if (!InexactSQ && Rem.isZero()) { 2927 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 2928 return X; 2929 } 2930 2931 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 2932 // The exact value of the square root of D should be between SQ and SQ+1. 2933 // This implies that the solution should be between that corresponding to 2934 // SQ (i.e. X) and that corresponding to SQ+1. 2935 // 2936 // The calculated X cannot be greater than the exact (real) solution. 2937 // Actually it must be strictly less than the exact solution, while 2938 // X+1 will be greater than or equal to it. 2939 2940 APInt VX = (A*X + B)*X + C; 2941 APInt VY = VX + TwoA*X + A + B; 2942 bool SignChange = 2943 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); 2944 // If the sign did not change between X and X+1, X is not a valid solution. 2945 // This could happen when the actual (exact) roots don't have an integer 2946 // between them, so they would both be contained between X and X+1. 2947 if (!SignChange) { 2948 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2949 return None; 2950 } 2951 2952 X += 1; 2953 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 2954 return X; 2955 } 2956 2957 Optional<unsigned> 2958 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { 2959 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); 2960 if (A == B) 2961 return llvm::None; 2962 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1); 2963 } 2964 2965 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) { 2966 unsigned OldBitWidth = A.getBitWidth(); 2967 assert((((OldBitWidth % NewBitWidth) == 0) || 2968 ((NewBitWidth % OldBitWidth) == 0)) && 2969 "One size should be a multiple of the other one. " 2970 "Can't do fractional scaling."); 2971 2972 // Check for matching bitwidths. 2973 if (OldBitWidth == NewBitWidth) 2974 return A; 2975 2976 APInt NewA = APInt::getZero(NewBitWidth); 2977 2978 // Check for null input. 2979 if (A.isZero()) 2980 return NewA; 2981 2982 if (NewBitWidth > OldBitWidth) { 2983 // Repeat bits. 2984 unsigned Scale = NewBitWidth / OldBitWidth; 2985 for (unsigned i = 0; i != OldBitWidth; ++i) 2986 if (A[i]) 2987 NewA.setBits(i * Scale, (i + 1) * Scale); 2988 } else { 2989 // Merge bits - if any old bit is set, then set scale equivalent new bit. 2990 unsigned Scale = OldBitWidth / NewBitWidth; 2991 for (unsigned i = 0; i != NewBitWidth; ++i) 2992 if (!A.extractBits(Scale, i * Scale).isZero()) 2993 NewA.setBit(i); 2994 } 2995 2996 return NewA; 2997 } 2998 2999 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 3000 /// with the integer held in IntVal. 3001 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 3002 unsigned StoreBytes) { 3003 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 3004 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 3005 3006 if (sys::IsLittleEndianHost) { 3007 // Little-endian host - the source is ordered from LSB to MSB. Order the 3008 // destination from LSB to MSB: Do a straight copy. 3009 memcpy(Dst, Src, StoreBytes); 3010 } else { 3011 // Big-endian host - the source is an array of 64 bit words ordered from 3012 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 3013 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 3014 while (StoreBytes > sizeof(uint64_t)) { 3015 StoreBytes -= sizeof(uint64_t); 3016 // May not be aligned so use memcpy. 3017 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 3018 Src += sizeof(uint64_t); 3019 } 3020 3021 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 3022 } 3023 } 3024 3025 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 3026 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 3027 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, 3028 unsigned LoadBytes) { 3029 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 3030 uint8_t *Dst = reinterpret_cast<uint8_t *>( 3031 const_cast<uint64_t *>(IntVal.getRawData())); 3032 3033 if (sys::IsLittleEndianHost) 3034 // Little-endian host - the destination must be ordered from LSB to MSB. 3035 // The source is ordered from LSB to MSB: Do a straight copy. 3036 memcpy(Dst, Src, LoadBytes); 3037 else { 3038 // Big-endian - the destination is an array of 64 bit words ordered from 3039 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 3040 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 3041 // a word. 3042 while (LoadBytes > sizeof(uint64_t)) { 3043 LoadBytes -= sizeof(uint64_t); 3044 // May not be aligned so use memcpy. 3045 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 3046 Dst += sizeof(uint64_t); 3047 } 3048 3049 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 3050 } 3051 } 3052