1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "apint" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/FoldingSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <cmath> 25 #include <limits> 26 #include <cstring> 27 #include <cstdlib> 28 using namespace llvm; 29 30 /// A utility function for allocating memory, checking for allocation failures, 31 /// and ensuring the contents are zeroed. 32 inline static uint64_t* getClearedMemory(unsigned numWords) { 33 uint64_t * result = new uint64_t[numWords]; 34 assert(result && "APInt memory allocation fails!"); 35 memset(result, 0, numWords * sizeof(uint64_t)); 36 return result; 37 } 38 39 /// A utility function for allocating memory and checking for allocation 40 /// failure. The content is not zeroed. 41 inline static uint64_t* getMemory(unsigned numWords) { 42 uint64_t * result = new uint64_t[numWords]; 43 assert(result && "APInt memory allocation fails!"); 44 return result; 45 } 46 47 /// A utility function that converts a character to a digit. 48 inline static unsigned getDigit(char cdigit, uint8_t radix) { 49 unsigned r; 50 51 if (radix == 16 || radix == 36) { 52 r = cdigit - '0'; 53 if (r <= 9) 54 return r; 55 56 r = cdigit - 'A'; 57 if (r <= radix - 11U) 58 return r + 10; 59 60 r = cdigit - 'a'; 61 if (r <= radix - 11U) 62 return r + 10; 63 64 radix = 10; 65 } 66 67 r = cdigit - '0'; 68 if (r < radix) 69 return r; 70 71 return -1U; 72 } 73 74 75 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { 76 pVal = getClearedMemory(getNumWords()); 77 pVal[0] = val; 78 if (isSigned && int64_t(val) < 0) 79 for (unsigned i = 1; i < getNumWords(); ++i) 80 pVal[i] = -1ULL; 81 } 82 83 void APInt::initSlowCase(const APInt& that) { 84 pVal = getMemory(getNumWords()); 85 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); 86 } 87 88 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 89 assert(BitWidth && "Bitwidth too small"); 90 assert(bigVal.data() && "Null pointer detected!"); 91 if (isSingleWord()) 92 VAL = bigVal[0]; 93 else { 94 // Get memory, cleared to 0 95 pVal = getClearedMemory(getNumWords()); 96 // Calculate the number of words to copy 97 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 98 // Copy the words from bigVal to pVal 99 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); 100 } 101 // Make sure unused high bits are cleared 102 clearUnusedBits(); 103 } 104 105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 106 : BitWidth(numBits), VAL(0) { 107 initFromArray(bigVal); 108 } 109 110 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 111 : BitWidth(numBits), VAL(0) { 112 initFromArray(makeArrayRef(bigVal, numWords)); 113 } 114 115 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 116 : BitWidth(numbits), VAL(0) { 117 assert(BitWidth && "Bitwidth too small"); 118 fromString(numbits, Str, radix); 119 } 120 121 APInt& APInt::AssignSlowCase(const APInt& RHS) { 122 // Don't do anything for X = X 123 if (this == &RHS) 124 return *this; 125 126 if (BitWidth == RHS.getBitWidth()) { 127 // assume same bit-width single-word case is already handled 128 assert(!isSingleWord()); 129 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); 130 return *this; 131 } 132 133 if (isSingleWord()) { 134 // assume case where both are single words is already handled 135 assert(!RHS.isSingleWord()); 136 VAL = 0; 137 pVal = getMemory(RHS.getNumWords()); 138 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 139 } else if (getNumWords() == RHS.getNumWords()) 140 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 141 else if (RHS.isSingleWord()) { 142 delete [] pVal; 143 VAL = RHS.VAL; 144 } else { 145 delete [] pVal; 146 pVal = getMemory(RHS.getNumWords()); 147 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 148 } 149 BitWidth = RHS.BitWidth; 150 return clearUnusedBits(); 151 } 152 153 APInt& APInt::operator=(uint64_t RHS) { 154 if (isSingleWord()) 155 VAL = RHS; 156 else { 157 pVal[0] = RHS; 158 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 159 } 160 return clearUnusedBits(); 161 } 162 163 /// Profile - This method 'profiles' an APInt for use with FoldingSet. 164 void APInt::Profile(FoldingSetNodeID& ID) const { 165 ID.AddInteger(BitWidth); 166 167 if (isSingleWord()) { 168 ID.AddInteger(VAL); 169 return; 170 } 171 172 unsigned NumWords = getNumWords(); 173 for (unsigned i = 0; i < NumWords; ++i) 174 ID.AddInteger(pVal[i]); 175 } 176 177 /// add_1 - This function adds a single "digit" integer, y, to the multiple 178 /// "digit" integer array, x[]. x[] is modified to reflect the addition and 179 /// 1 is returned if there is a carry out, otherwise 0 is returned. 180 /// @returns the carry of the addition. 181 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 182 for (unsigned i = 0; i < len; ++i) { 183 dest[i] = y + x[i]; 184 if (dest[i] < y) 185 y = 1; // Carry one to next digit. 186 else { 187 y = 0; // No need to carry so exit early 188 break; 189 } 190 } 191 return y; 192 } 193 194 /// @brief Prefix increment operator. Increments the APInt by one. 195 APInt& APInt::operator++() { 196 if (isSingleWord()) 197 ++VAL; 198 else 199 add_1(pVal, pVal, getNumWords(), 1); 200 return clearUnusedBits(); 201 } 202 203 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from 204 /// the multi-digit integer array, x[], propagating the borrowed 1 value until 205 /// no further borrowing is neeeded or it runs out of "digits" in x. The result 206 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. 207 /// In other words, if y > x then this function returns 1, otherwise 0. 208 /// @returns the borrow out of the subtraction 209 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { 210 for (unsigned i = 0; i < len; ++i) { 211 uint64_t X = x[i]; 212 x[i] -= y; 213 if (y > X) 214 y = 1; // We have to "borrow 1" from next "digit" 215 else { 216 y = 0; // No need to borrow 217 break; // Remaining digits are unchanged so exit early 218 } 219 } 220 return bool(y); 221 } 222 223 /// @brief Prefix decrement operator. Decrements the APInt by one. 224 APInt& APInt::operator--() { 225 if (isSingleWord()) 226 --VAL; 227 else 228 sub_1(pVal, getNumWords(), 1); 229 return clearUnusedBits(); 230 } 231 232 /// add - This function adds the integer array x to the integer array Y and 233 /// places the result in dest. 234 /// @returns the carry out from the addition 235 /// @brief General addition of 64-bit integer arrays 236 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, 237 unsigned len) { 238 bool carry = false; 239 for (unsigned i = 0; i< len; ++i) { 240 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x 241 dest[i] = x[i] + y[i] + carry; 242 carry = dest[i] < limit || (carry && dest[i] == limit); 243 } 244 return carry; 245 } 246 247 /// Adds the RHS APint to this APInt. 248 /// @returns this, after addition of RHS. 249 /// @brief Addition assignment operator. 250 APInt& APInt::operator+=(const APInt& RHS) { 251 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 252 if (isSingleWord()) 253 VAL += RHS.VAL; 254 else { 255 add(pVal, pVal, RHS.pVal, getNumWords()); 256 } 257 return clearUnusedBits(); 258 } 259 260 /// Subtracts the integer array y from the integer array x 261 /// @returns returns the borrow out. 262 /// @brief Generalized subtraction of 64-bit integer arrays. 263 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 264 unsigned len) { 265 bool borrow = false; 266 for (unsigned i = 0; i < len; ++i) { 267 uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; 268 borrow = y[i] > x_tmp || (borrow && x[i] == 0); 269 dest[i] = x_tmp - y[i]; 270 } 271 return borrow; 272 } 273 274 /// Subtracts the RHS APInt from this APInt 275 /// @returns this, after subtraction 276 /// @brief Subtraction assignment operator. 277 APInt& APInt::operator-=(const APInt& RHS) { 278 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 279 if (isSingleWord()) 280 VAL -= RHS.VAL; 281 else 282 sub(pVal, pVal, RHS.pVal, getNumWords()); 283 return clearUnusedBits(); 284 } 285 286 /// Multiplies an integer array, x, by a uint64_t integer and places the result 287 /// into dest. 288 /// @returns the carry out of the multiplication. 289 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. 290 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 291 // Split y into high 32-bit part (hy) and low 32-bit part (ly) 292 uint64_t ly = y & 0xffffffffULL, hy = y >> 32; 293 uint64_t carry = 0; 294 295 // For each digit of x. 296 for (unsigned i = 0; i < len; ++i) { 297 // Split x into high and low words 298 uint64_t lx = x[i] & 0xffffffffULL; 299 uint64_t hx = x[i] >> 32; 300 // hasCarry - A flag to indicate if there is a carry to the next digit. 301 // hasCarry == 0, no carry 302 // hasCarry == 1, has carry 303 // hasCarry == 2, no carry and the calculation result == 0. 304 uint8_t hasCarry = 0; 305 dest[i] = carry + lx * ly; 306 // Determine if the add above introduces carry. 307 hasCarry = (dest[i] < carry) ? 1 : 0; 308 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); 309 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 310 // (2^32 - 1) + 2^32 = 2^64. 311 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 312 313 carry += (lx * hy) & 0xffffffffULL; 314 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); 315 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 316 (carry >> 32) + ((lx * hy) >> 32) + hx * hy; 317 } 318 return carry; 319 } 320 321 /// Multiplies integer array x by integer array y and stores the result into 322 /// the integer array dest. Note that dest's size must be >= xlen + ylen. 323 /// @brief Generalized multiplicate of integer arrays. 324 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], 325 unsigned ylen) { 326 dest[xlen] = mul_1(dest, x, xlen, y[0]); 327 for (unsigned i = 1; i < ylen; ++i) { 328 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; 329 uint64_t carry = 0, lx = 0, hx = 0; 330 for (unsigned j = 0; j < xlen; ++j) { 331 lx = x[j] & 0xffffffffULL; 332 hx = x[j] >> 32; 333 // hasCarry - A flag to indicate if has carry. 334 // hasCarry == 0, no carry 335 // hasCarry == 1, has carry 336 // hasCarry == 2, no carry and the calculation result == 0. 337 uint8_t hasCarry = 0; 338 uint64_t resul = carry + lx * ly; 339 hasCarry = (resul < carry) ? 1 : 0; 340 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); 341 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 342 343 carry += (lx * hy) & 0xffffffffULL; 344 resul = (carry << 32) | (resul & 0xffffffffULL); 345 dest[i+j] += resul; 346 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ 347 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 348 ((lx * hy) >> 32) + hx * hy; 349 } 350 dest[i+xlen] = carry; 351 } 352 } 353 354 APInt& APInt::operator*=(const APInt& RHS) { 355 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 356 if (isSingleWord()) { 357 VAL *= RHS.VAL; 358 clearUnusedBits(); 359 return *this; 360 } 361 362 // Get some bit facts about LHS and check for zero 363 unsigned lhsBits = getActiveBits(); 364 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; 365 if (!lhsWords) 366 // 0 * X ===> 0 367 return *this; 368 369 // Get some bit facts about RHS and check for zero 370 unsigned rhsBits = RHS.getActiveBits(); 371 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; 372 if (!rhsWords) { 373 // X * 0 ===> 0 374 clearAllBits(); 375 return *this; 376 } 377 378 // Allocate space for the result 379 unsigned destWords = rhsWords + lhsWords; 380 uint64_t *dest = getMemory(destWords); 381 382 // Perform the long multiply 383 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); 384 385 // Copy result back into *this 386 clearAllBits(); 387 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; 388 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); 389 clearUnusedBits(); 390 391 // delete dest array and return 392 delete[] dest; 393 return *this; 394 } 395 396 APInt& APInt::operator&=(const APInt& RHS) { 397 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 398 if (isSingleWord()) { 399 VAL &= RHS.VAL; 400 return *this; 401 } 402 unsigned numWords = getNumWords(); 403 for (unsigned i = 0; i < numWords; ++i) 404 pVal[i] &= RHS.pVal[i]; 405 return *this; 406 } 407 408 APInt& APInt::operator|=(const APInt& RHS) { 409 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 410 if (isSingleWord()) { 411 VAL |= RHS.VAL; 412 return *this; 413 } 414 unsigned numWords = getNumWords(); 415 for (unsigned i = 0; i < numWords; ++i) 416 pVal[i] |= RHS.pVal[i]; 417 return *this; 418 } 419 420 APInt& APInt::operator^=(const APInt& RHS) { 421 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 422 if (isSingleWord()) { 423 VAL ^= RHS.VAL; 424 this->clearUnusedBits(); 425 return *this; 426 } 427 unsigned numWords = getNumWords(); 428 for (unsigned i = 0; i < numWords; ++i) 429 pVal[i] ^= RHS.pVal[i]; 430 return clearUnusedBits(); 431 } 432 433 APInt APInt::AndSlowCase(const APInt& RHS) const { 434 unsigned numWords = getNumWords(); 435 uint64_t* val = getMemory(numWords); 436 for (unsigned i = 0; i < numWords; ++i) 437 val[i] = pVal[i] & RHS.pVal[i]; 438 return APInt(val, getBitWidth()); 439 } 440 441 APInt APInt::OrSlowCase(const APInt& RHS) const { 442 unsigned numWords = getNumWords(); 443 uint64_t *val = getMemory(numWords); 444 for (unsigned i = 0; i < numWords; ++i) 445 val[i] = pVal[i] | RHS.pVal[i]; 446 return APInt(val, getBitWidth()); 447 } 448 449 APInt APInt::XorSlowCase(const APInt& RHS) const { 450 unsigned numWords = getNumWords(); 451 uint64_t *val = getMemory(numWords); 452 for (unsigned i = 0; i < numWords; ++i) 453 val[i] = pVal[i] ^ RHS.pVal[i]; 454 455 // 0^0==1 so clear the high bits in case they got set. 456 return APInt(val, getBitWidth()).clearUnusedBits(); 457 } 458 459 bool APInt::operator !() const { 460 if (isSingleWord()) 461 return !VAL; 462 463 for (unsigned i = 0; i < getNumWords(); ++i) 464 if (pVal[i]) 465 return false; 466 return true; 467 } 468 469 APInt APInt::operator*(const APInt& RHS) const { 470 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 471 if (isSingleWord()) 472 return APInt(BitWidth, VAL * RHS.VAL); 473 APInt Result(*this); 474 Result *= RHS; 475 return Result; 476 } 477 478 APInt APInt::operator+(const APInt& RHS) const { 479 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 480 if (isSingleWord()) 481 return APInt(BitWidth, VAL + RHS.VAL); 482 APInt Result(BitWidth, 0); 483 add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 484 return Result.clearUnusedBits(); 485 } 486 487 APInt APInt::operator-(const APInt& RHS) const { 488 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 489 if (isSingleWord()) 490 return APInt(BitWidth, VAL - RHS.VAL); 491 APInt Result(BitWidth, 0); 492 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 493 return Result.clearUnusedBits(); 494 } 495 496 bool APInt::operator[](unsigned bitPosition) const { 497 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 498 return (maskBit(bitPosition) & 499 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; 500 } 501 502 bool APInt::EqualSlowCase(const APInt& RHS) const { 503 // Get some facts about the number of bits used in the two operands. 504 unsigned n1 = getActiveBits(); 505 unsigned n2 = RHS.getActiveBits(); 506 507 // If the number of bits isn't the same, they aren't equal 508 if (n1 != n2) 509 return false; 510 511 // If the number of bits fits in a word, we only need to compare the low word. 512 if (n1 <= APINT_BITS_PER_WORD) 513 return pVal[0] == RHS.pVal[0]; 514 515 // Otherwise, compare everything 516 for (int i = whichWord(n1 - 1); i >= 0; --i) 517 if (pVal[i] != RHS.pVal[i]) 518 return false; 519 return true; 520 } 521 522 bool APInt::EqualSlowCase(uint64_t Val) const { 523 unsigned n = getActiveBits(); 524 if (n <= APINT_BITS_PER_WORD) 525 return pVal[0] == Val; 526 else 527 return false; 528 } 529 530 bool APInt::ult(const APInt& RHS) const { 531 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 532 if (isSingleWord()) 533 return VAL < RHS.VAL; 534 535 // Get active bit length of both operands 536 unsigned n1 = getActiveBits(); 537 unsigned n2 = RHS.getActiveBits(); 538 539 // If magnitude of LHS is less than RHS, return true. 540 if (n1 < n2) 541 return true; 542 543 // If magnitude of RHS is greather than LHS, return false. 544 if (n2 < n1) 545 return false; 546 547 // If they bot fit in a word, just compare the low order word 548 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) 549 return pVal[0] < RHS.pVal[0]; 550 551 // Otherwise, compare all words 552 unsigned topWord = whichWord(std::max(n1,n2)-1); 553 for (int i = topWord; i >= 0; --i) { 554 if (pVal[i] > RHS.pVal[i]) 555 return false; 556 if (pVal[i] < RHS.pVal[i]) 557 return true; 558 } 559 return false; 560 } 561 562 bool APInt::slt(const APInt& RHS) const { 563 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 564 if (isSingleWord()) { 565 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); 566 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); 567 return lhsSext < rhsSext; 568 } 569 570 APInt lhs(*this); 571 APInt rhs(RHS); 572 bool lhsNeg = isNegative(); 573 bool rhsNeg = rhs.isNegative(); 574 if (lhsNeg) { 575 // Sign bit is set so perform two's complement to make it positive 576 lhs.flipAllBits(); 577 lhs++; 578 } 579 if (rhsNeg) { 580 // Sign bit is set so perform two's complement to make it positive 581 rhs.flipAllBits(); 582 rhs++; 583 } 584 585 // Now we have unsigned values to compare so do the comparison if necessary 586 // based on the negativeness of the values. 587 if (lhsNeg) 588 if (rhsNeg) 589 return lhs.ugt(rhs); 590 else 591 return true; 592 else if (rhsNeg) 593 return false; 594 else 595 return lhs.ult(rhs); 596 } 597 598 void APInt::setBit(unsigned bitPosition) { 599 if (isSingleWord()) 600 VAL |= maskBit(bitPosition); 601 else 602 pVal[whichWord(bitPosition)] |= maskBit(bitPosition); 603 } 604 605 /// Set the given bit to 0 whose position is given as "bitPosition". 606 /// @brief Set a given bit to 0. 607 void APInt::clearBit(unsigned bitPosition) { 608 if (isSingleWord()) 609 VAL &= ~maskBit(bitPosition); 610 else 611 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); 612 } 613 614 /// @brief Toggle every bit to its opposite value. 615 616 /// Toggle a given bit to its opposite value whose position is given 617 /// as "bitPosition". 618 /// @brief Toggles a given bit to its opposite value. 619 void APInt::flipBit(unsigned bitPosition) { 620 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 621 if ((*this)[bitPosition]) clearBit(bitPosition); 622 else setBit(bitPosition); 623 } 624 625 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 626 assert(!str.empty() && "Invalid string length"); 627 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 628 radix == 36) && 629 "Radix should be 2, 8, 10, 16, or 36!"); 630 631 size_t slen = str.size(); 632 633 // Each computation below needs to know if it's negative. 634 StringRef::iterator p = str.begin(); 635 unsigned isNegative = *p == '-'; 636 if (*p == '-' || *p == '+') { 637 p++; 638 slen--; 639 assert(slen && "String is only a sign, needs a value."); 640 } 641 642 // For radixes of power-of-two values, the bits required is accurately and 643 // easily computed 644 if (radix == 2) 645 return slen + isNegative; 646 if (radix == 8) 647 return slen * 3 + isNegative; 648 if (radix == 16) 649 return slen * 4 + isNegative; 650 651 // FIXME: base 36 652 653 // This is grossly inefficient but accurate. We could probably do something 654 // with a computation of roughly slen*64/20 and then adjust by the value of 655 // the first few digits. But, I'm not sure how accurate that could be. 656 657 // Compute a sufficient number of bits that is always large enough but might 658 // be too large. This avoids the assertion in the constructor. This 659 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 660 // bits in that case. 661 unsigned sufficient 662 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 663 : (slen == 1 ? 7 : slen * 16/3); 664 665 // Convert to the actual binary value. 666 APInt tmp(sufficient, StringRef(p, slen), radix); 667 668 // Compute how many bits are required. If the log is infinite, assume we need 669 // just bit. 670 unsigned log = tmp.logBase2(); 671 if (log == (unsigned)-1) { 672 return isNegative + 1; 673 } else { 674 return isNegative + log + 1; 675 } 676 } 677 678 // From http://www.burtleburtle.net, byBob Jenkins. 679 // When targeting x86, both GCC and LLVM seem to recognize this as a 680 // rotate instruction. 681 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) 682 683 // From http://www.burtleburtle.net, by Bob Jenkins. 684 #define mix(a,b,c) \ 685 { \ 686 a -= c; a ^= rot(c, 4); c += b; \ 687 b -= a; b ^= rot(a, 6); a += c; \ 688 c -= b; c ^= rot(b, 8); b += a; \ 689 a -= c; a ^= rot(c,16); c += b; \ 690 b -= a; b ^= rot(a,19); a += c; \ 691 c -= b; c ^= rot(b, 4); b += a; \ 692 } 693 694 // From http://www.burtleburtle.net, by Bob Jenkins. 695 #define final(a,b,c) \ 696 { \ 697 c ^= b; c -= rot(b,14); \ 698 a ^= c; a -= rot(c,11); \ 699 b ^= a; b -= rot(a,25); \ 700 c ^= b; c -= rot(b,16); \ 701 a ^= c; a -= rot(c,4); \ 702 b ^= a; b -= rot(a,14); \ 703 c ^= b; c -= rot(b,24); \ 704 } 705 706 // hashword() was adapted from http://www.burtleburtle.net, by Bob 707 // Jenkins. k is a pointer to an array of uint32_t values; length is 708 // the length of the key, in 32-bit chunks. This version only handles 709 // keys that are a multiple of 32 bits in size. 710 static inline uint32_t hashword(const uint64_t *k64, size_t length) 711 { 712 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64); 713 uint32_t a,b,c; 714 715 /* Set up the internal state */ 716 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2); 717 718 /*------------------------------------------------- handle most of the key */ 719 while (length > 3) { 720 a += k[0]; 721 b += k[1]; 722 c += k[2]; 723 mix(a,b,c); 724 length -= 3; 725 k += 3; 726 } 727 728 /*------------------------------------------- handle the last 3 uint32_t's */ 729 switch (length) { /* all the case statements fall through */ 730 case 3 : c+=k[2]; 731 case 2 : b+=k[1]; 732 case 1 : a+=k[0]; 733 final(a,b,c); 734 case 0: /* case 0: nothing left to add */ 735 break; 736 } 737 /*------------------------------------------------------ report the result */ 738 return c; 739 } 740 741 // hashword8() was adapted from http://www.burtleburtle.net, by Bob 742 // Jenkins. This computes a 32-bit hash from one 64-bit word. When 743 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this 744 // function into about 35 instructions when inlined. 745 static inline uint32_t hashword8(const uint64_t k64) 746 { 747 uint32_t a,b,c; 748 a = b = c = 0xdeadbeef + 4; 749 b += k64 >> 32; 750 a += k64 & 0xffffffff; 751 final(a,b,c); 752 return c; 753 } 754 #undef final 755 #undef mix 756 #undef rot 757 758 uint64_t APInt::getHashValue() const { 759 uint64_t hash; 760 if (isSingleWord()) 761 hash = hashword8(VAL); 762 else 763 hash = hashword(pVal, getNumWords()*2); 764 return hash; 765 } 766 767 /// HiBits - This function returns the high "numBits" bits of this APInt. 768 APInt APInt::getHiBits(unsigned numBits) const { 769 return APIntOps::lshr(*this, BitWidth - numBits); 770 } 771 772 /// LoBits - This function returns the low "numBits" bits of this APInt. 773 APInt APInt::getLoBits(unsigned numBits) const { 774 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 775 BitWidth - numBits); 776 } 777 778 unsigned APInt::countLeadingZerosSlowCase() const { 779 // Treat the most significand word differently because it might have 780 // meaningless bits set beyond the precision. 781 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; 782 integerPart MSWMask; 783 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; 784 else { 785 MSWMask = ~integerPart(0); 786 BitsInMSW = APINT_BITS_PER_WORD; 787 } 788 789 unsigned i = getNumWords(); 790 integerPart MSW = pVal[i-1] & MSWMask; 791 if (MSW) 792 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); 793 794 unsigned Count = BitsInMSW; 795 for (--i; i > 0u; --i) { 796 if (pVal[i-1] == 0) 797 Count += APINT_BITS_PER_WORD; 798 else { 799 Count += CountLeadingZeros_64(pVal[i-1]); 800 break; 801 } 802 } 803 return Count; 804 } 805 806 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) { 807 unsigned Count = 0; 808 if (skip) 809 V <<= skip; 810 while (V && (V & (1ULL << 63))) { 811 Count++; 812 V <<= 1; 813 } 814 return Count; 815 } 816 817 unsigned APInt::countLeadingOnes() const { 818 if (isSingleWord()) 819 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); 820 821 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 822 unsigned shift; 823 if (!highWordBits) { 824 highWordBits = APINT_BITS_PER_WORD; 825 shift = 0; 826 } else { 827 shift = APINT_BITS_PER_WORD - highWordBits; 828 } 829 int i = getNumWords() - 1; 830 unsigned Count = countLeadingOnes_64(pVal[i], shift); 831 if (Count == highWordBits) { 832 for (i--; i >= 0; --i) { 833 if (pVal[i] == -1ULL) 834 Count += APINT_BITS_PER_WORD; 835 else { 836 Count += countLeadingOnes_64(pVal[i], 0); 837 break; 838 } 839 } 840 } 841 return Count; 842 } 843 844 unsigned APInt::countTrailingZeros() const { 845 if (isSingleWord()) 846 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth); 847 unsigned Count = 0; 848 unsigned i = 0; 849 for (; i < getNumWords() && pVal[i] == 0; ++i) 850 Count += APINT_BITS_PER_WORD; 851 if (i < getNumWords()) 852 Count += CountTrailingZeros_64(pVal[i]); 853 return std::min(Count, BitWidth); 854 } 855 856 unsigned APInt::countTrailingOnesSlowCase() const { 857 unsigned Count = 0; 858 unsigned i = 0; 859 for (; i < getNumWords() && pVal[i] == -1ULL; ++i) 860 Count += APINT_BITS_PER_WORD; 861 if (i < getNumWords()) 862 Count += CountTrailingOnes_64(pVal[i]); 863 return std::min(Count, BitWidth); 864 } 865 866 unsigned APInt::countPopulationSlowCase() const { 867 unsigned Count = 0; 868 for (unsigned i = 0; i < getNumWords(); ++i) 869 Count += CountPopulation_64(pVal[i]); 870 return Count; 871 } 872 873 /// Perform a logical right-shift from Src to Dst, which must be equal or 874 /// non-overlapping, of Words words, by Shift, which must be less than 64. 875 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, 876 unsigned Shift) { 877 uint64_t Carry = 0; 878 for (int I = Words - 1; I >= 0; --I) { 879 uint64_t Tmp = Src[I]; 880 Dst[I] = (Tmp >> Shift) | Carry; 881 Carry = Tmp << (64 - Shift); 882 } 883 } 884 885 APInt APInt::byteSwap() const { 886 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 887 if (BitWidth == 16) 888 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); 889 if (BitWidth == 32) 890 return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); 891 if (BitWidth == 48) { 892 unsigned Tmp1 = unsigned(VAL >> 16); 893 Tmp1 = ByteSwap_32(Tmp1); 894 uint16_t Tmp2 = uint16_t(VAL); 895 Tmp2 = ByteSwap_16(Tmp2); 896 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 897 } 898 if (BitWidth == 64) 899 return APInt(BitWidth, ByteSwap_64(VAL)); 900 901 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 902 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 903 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); 904 if (Result.BitWidth != BitWidth) { 905 lshrNear(Result.pVal, Result.pVal, getNumWords(), 906 Result.BitWidth - BitWidth); 907 Result.BitWidth = BitWidth; 908 } 909 return Result; 910 } 911 912 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 913 const APInt& API2) { 914 APInt A = API1, B = API2; 915 while (!!B) { 916 APInt T = B; 917 B = APIntOps::urem(A, B); 918 A = T; 919 } 920 return A; 921 } 922 923 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 924 union { 925 double D; 926 uint64_t I; 927 } T; 928 T.D = Double; 929 930 // Get the sign bit from the highest order bit 931 bool isNeg = T.I >> 63; 932 933 // Get the 11-bit exponent and adjust for the 1023 bit bias 934 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 935 936 // If the exponent is negative, the value is < 0 so just return 0. 937 if (exp < 0) 938 return APInt(width, 0u); 939 940 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 941 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 942 943 // If the exponent doesn't shift all bits out of the mantissa 944 if (exp < 52) 945 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 946 APInt(width, mantissa >> (52 - exp)); 947 948 // If the client didn't provide enough bits for us to shift the mantissa into 949 // then the result is undefined, just return 0 950 if (width <= exp - 52) 951 return APInt(width, 0); 952 953 // Otherwise, we have to shift the mantissa bits up to the right location 954 APInt Tmp(width, mantissa); 955 Tmp = Tmp.shl((unsigned)exp - 52); 956 return isNeg ? -Tmp : Tmp; 957 } 958 959 /// RoundToDouble - This function converts this APInt to a double. 960 /// The layout for double is as following (IEEE Standard 754): 961 /// -------------------------------------- 962 /// | Sign Exponent Fraction Bias | 963 /// |-------------------------------------- | 964 /// | 1[63] 11[62-52] 52[51-00] 1023 | 965 /// -------------------------------------- 966 double APInt::roundToDouble(bool isSigned) const { 967 968 // Handle the simple case where the value is contained in one uint64_t. 969 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 970 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 971 if (isSigned) { 972 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); 973 return double(sext); 974 } else 975 return double(getWord(0)); 976 } 977 978 // Determine if the value is negative. 979 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 980 981 // Construct the absolute value if we're negative. 982 APInt Tmp(isNeg ? -(*this) : (*this)); 983 984 // Figure out how many bits we're using. 985 unsigned n = Tmp.getActiveBits(); 986 987 // The exponent (without bias normalization) is just the number of bits 988 // we are using. Note that the sign bit is gone since we constructed the 989 // absolute value. 990 uint64_t exp = n; 991 992 // Return infinity for exponent overflow 993 if (exp > 1023) { 994 if (!isSigned || !isNeg) 995 return std::numeric_limits<double>::infinity(); 996 else 997 return -std::numeric_limits<double>::infinity(); 998 } 999 exp += 1023; // Increment for 1023 bias 1000 1001 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 1002 // extract the high 52 bits from the correct words in pVal. 1003 uint64_t mantissa; 1004 unsigned hiWord = whichWord(n-1); 1005 if (hiWord == 0) { 1006 mantissa = Tmp.pVal[0]; 1007 if (n > 52) 1008 mantissa >>= n - 52; // shift down, we want the top 52 bits. 1009 } else { 1010 assert(hiWord > 0 && "huh?"); 1011 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 1012 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 1013 mantissa = hibits | lobits; 1014 } 1015 1016 // The leading bit of mantissa is implicit, so get rid of it. 1017 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 1018 union { 1019 double D; 1020 uint64_t I; 1021 } T; 1022 T.I = sign | (exp << 52) | mantissa; 1023 return T.D; 1024 } 1025 1026 // Truncate to new width. 1027 APInt APInt::trunc(unsigned width) const { 1028 assert(width < BitWidth && "Invalid APInt Truncate request"); 1029 assert(width && "Can't truncate to 0 bits"); 1030 1031 if (width <= APINT_BITS_PER_WORD) 1032 return APInt(width, getRawData()[0]); 1033 1034 APInt Result(getMemory(getNumWords(width)), width); 1035 1036 // Copy full words. 1037 unsigned i; 1038 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 1039 Result.pVal[i] = pVal[i]; 1040 1041 // Truncate and copy any partial word. 1042 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 1043 if (bits != 0) 1044 Result.pVal[i] = pVal[i] << bits >> bits; 1045 1046 return Result; 1047 } 1048 1049 // Sign extend to a new width. 1050 APInt APInt::sext(unsigned width) const { 1051 assert(width > BitWidth && "Invalid APInt SignExtend request"); 1052 1053 if (width <= APINT_BITS_PER_WORD) { 1054 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); 1055 val = (int64_t)val >> (width - BitWidth); 1056 return APInt(width, val >> (APINT_BITS_PER_WORD - width)); 1057 } 1058 1059 APInt Result(getMemory(getNumWords(width)), width); 1060 1061 // Copy full words. 1062 unsigned i; 1063 uint64_t word = 0; 1064 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { 1065 word = getRawData()[i]; 1066 Result.pVal[i] = word; 1067 } 1068 1069 // Read and sign-extend any partial word. 1070 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; 1071 if (bits != 0) 1072 word = (int64_t)getRawData()[i] << bits >> bits; 1073 else 1074 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 1075 1076 // Write remaining full words. 1077 for (; i != width / APINT_BITS_PER_WORD; i++) { 1078 Result.pVal[i] = word; 1079 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 1080 } 1081 1082 // Write any partial word. 1083 bits = (0 - width) % APINT_BITS_PER_WORD; 1084 if (bits != 0) 1085 Result.pVal[i] = word << bits >> bits; 1086 1087 return Result; 1088 } 1089 1090 // Zero extend to a new width. 1091 APInt APInt::zext(unsigned width) const { 1092 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 1093 1094 if (width <= APINT_BITS_PER_WORD) 1095 return APInt(width, VAL); 1096 1097 APInt Result(getMemory(getNumWords(width)), width); 1098 1099 // Copy words. 1100 unsigned i; 1101 for (i = 0; i != getNumWords(); i++) 1102 Result.pVal[i] = getRawData()[i]; 1103 1104 // Zero remaining words. 1105 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); 1106 1107 return Result; 1108 } 1109 1110 APInt APInt::zextOrTrunc(unsigned width) const { 1111 if (BitWidth < width) 1112 return zext(width); 1113 if (BitWidth > width) 1114 return trunc(width); 1115 return *this; 1116 } 1117 1118 APInt APInt::sextOrTrunc(unsigned width) const { 1119 if (BitWidth < width) 1120 return sext(width); 1121 if (BitWidth > width) 1122 return trunc(width); 1123 return *this; 1124 } 1125 1126 APInt APInt::zextOrSelf(unsigned width) const { 1127 if (BitWidth < width) 1128 return zext(width); 1129 return *this; 1130 } 1131 1132 APInt APInt::sextOrSelf(unsigned width) const { 1133 if (BitWidth < width) 1134 return sext(width); 1135 return *this; 1136 } 1137 1138 /// Arithmetic right-shift this APInt by shiftAmt. 1139 /// @brief Arithmetic right-shift function. 1140 APInt APInt::ashr(const APInt &shiftAmt) const { 1141 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1142 } 1143 1144 /// Arithmetic right-shift this APInt by shiftAmt. 1145 /// @brief Arithmetic right-shift function. 1146 APInt APInt::ashr(unsigned shiftAmt) const { 1147 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 1148 // Handle a degenerate case 1149 if (shiftAmt == 0) 1150 return *this; 1151 1152 // Handle single word shifts with built-in ashr 1153 if (isSingleWord()) { 1154 if (shiftAmt == BitWidth) 1155 return APInt(BitWidth, 0); // undefined 1156 else { 1157 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; 1158 return APInt(BitWidth, 1159 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); 1160 } 1161 } 1162 1163 // If all the bits were shifted out, the result is, technically, undefined. 1164 // We return -1 if it was negative, 0 otherwise. We check this early to avoid 1165 // issues in the algorithm below. 1166 if (shiftAmt == BitWidth) { 1167 if (isNegative()) 1168 return APInt(BitWidth, -1ULL, true); 1169 else 1170 return APInt(BitWidth, 0); 1171 } 1172 1173 // Create some space for the result. 1174 uint64_t * val = new uint64_t[getNumWords()]; 1175 1176 // Compute some values needed by the following shift algorithms 1177 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word 1178 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift 1179 unsigned breakWord = getNumWords() - 1 - offset; // last word affected 1180 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? 1181 if (bitsInWord == 0) 1182 bitsInWord = APINT_BITS_PER_WORD; 1183 1184 // If we are shifting whole words, just move whole words 1185 if (wordShift == 0) { 1186 // Move the words containing significant bits 1187 for (unsigned i = 0; i <= breakWord; ++i) 1188 val[i] = pVal[i+offset]; // move whole word 1189 1190 // Adjust the top significant word for sign bit fill, if negative 1191 if (isNegative()) 1192 if (bitsInWord < APINT_BITS_PER_WORD) 1193 val[breakWord] |= ~0ULL << bitsInWord; // set high bits 1194 } else { 1195 // Shift the low order words 1196 for (unsigned i = 0; i < breakWord; ++i) { 1197 // This combines the shifted corresponding word with the low bits from 1198 // the next word (shifted into this word's high bits). 1199 val[i] = (pVal[i+offset] >> wordShift) | 1200 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1201 } 1202 1203 // Shift the break word. In this case there are no bits from the next word 1204 // to include in this word. 1205 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1206 1207 // Deal with sign extenstion in the break word, and possibly the word before 1208 // it. 1209 if (isNegative()) { 1210 if (wordShift > bitsInWord) { 1211 if (breakWord > 0) 1212 val[breakWord-1] |= 1213 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); 1214 val[breakWord] |= ~0ULL; 1215 } else 1216 val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); 1217 } 1218 } 1219 1220 // Remaining words are 0 or -1, just assign them. 1221 uint64_t fillValue = (isNegative() ? -1ULL : 0); 1222 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1223 val[i] = fillValue; 1224 return APInt(val, BitWidth).clearUnusedBits(); 1225 } 1226 1227 /// Logical right-shift this APInt by shiftAmt. 1228 /// @brief Logical right-shift function. 1229 APInt APInt::lshr(const APInt &shiftAmt) const { 1230 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1231 } 1232 1233 /// Logical right-shift this APInt by shiftAmt. 1234 /// @brief Logical right-shift function. 1235 APInt APInt::lshr(unsigned shiftAmt) const { 1236 if (isSingleWord()) { 1237 if (shiftAmt == BitWidth) 1238 return APInt(BitWidth, 0); 1239 else 1240 return APInt(BitWidth, this->VAL >> shiftAmt); 1241 } 1242 1243 // If all the bits were shifted out, the result is 0. This avoids issues 1244 // with shifting by the size of the integer type, which produces undefined 1245 // results. We define these "undefined results" to always be 0. 1246 if (shiftAmt == BitWidth) 1247 return APInt(BitWidth, 0); 1248 1249 // If none of the bits are shifted out, the result is *this. This avoids 1250 // issues with shifting by the size of the integer type, which produces 1251 // undefined results in the code below. This is also an optimization. 1252 if (shiftAmt == 0) 1253 return *this; 1254 1255 // Create some space for the result. 1256 uint64_t * val = new uint64_t[getNumWords()]; 1257 1258 // If we are shifting less than a word, compute the shift with a simple carry 1259 if (shiftAmt < APINT_BITS_PER_WORD) { 1260 lshrNear(val, pVal, getNumWords(), shiftAmt); 1261 return APInt(val, BitWidth).clearUnusedBits(); 1262 } 1263 1264 // Compute some values needed by the remaining shift algorithms 1265 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1266 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1267 1268 // If we are shifting whole words, just move whole words 1269 if (wordShift == 0) { 1270 for (unsigned i = 0; i < getNumWords() - offset; ++i) 1271 val[i] = pVal[i+offset]; 1272 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) 1273 val[i] = 0; 1274 return APInt(val,BitWidth).clearUnusedBits(); 1275 } 1276 1277 // Shift the low order words 1278 unsigned breakWord = getNumWords() - offset -1; 1279 for (unsigned i = 0; i < breakWord; ++i) 1280 val[i] = (pVal[i+offset] >> wordShift) | 1281 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1282 // Shift the break word. 1283 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1284 1285 // Remaining words are 0 1286 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1287 val[i] = 0; 1288 return APInt(val, BitWidth).clearUnusedBits(); 1289 } 1290 1291 /// Left-shift this APInt by shiftAmt. 1292 /// @brief Left-shift function. 1293 APInt APInt::shl(const APInt &shiftAmt) const { 1294 // It's undefined behavior in C to shift by BitWidth or greater. 1295 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1296 } 1297 1298 APInt APInt::shlSlowCase(unsigned shiftAmt) const { 1299 // If all the bits were shifted out, the result is 0. This avoids issues 1300 // with shifting by the size of the integer type, which produces undefined 1301 // results. We define these "undefined results" to always be 0. 1302 if (shiftAmt == BitWidth) 1303 return APInt(BitWidth, 0); 1304 1305 // If none of the bits are shifted out, the result is *this. This avoids a 1306 // lshr by the words size in the loop below which can produce incorrect 1307 // results. It also avoids the expensive computation below for a common case. 1308 if (shiftAmt == 0) 1309 return *this; 1310 1311 // Create some space for the result. 1312 uint64_t * val = new uint64_t[getNumWords()]; 1313 1314 // If we are shifting less than a word, do it the easy way 1315 if (shiftAmt < APINT_BITS_PER_WORD) { 1316 uint64_t carry = 0; 1317 for (unsigned i = 0; i < getNumWords(); i++) { 1318 val[i] = pVal[i] << shiftAmt | carry; 1319 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); 1320 } 1321 return APInt(val, BitWidth).clearUnusedBits(); 1322 } 1323 1324 // Compute some values needed by the remaining shift algorithms 1325 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1326 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1327 1328 // If we are shifting whole words, just move whole words 1329 if (wordShift == 0) { 1330 for (unsigned i = 0; i < offset; i++) 1331 val[i] = 0; 1332 for (unsigned i = offset; i < getNumWords(); i++) 1333 val[i] = pVal[i-offset]; 1334 return APInt(val,BitWidth).clearUnusedBits(); 1335 } 1336 1337 // Copy whole words from this to Result. 1338 unsigned i = getNumWords() - 1; 1339 for (; i > offset; --i) 1340 val[i] = pVal[i-offset] << wordShift | 1341 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); 1342 val[offset] = pVal[0] << wordShift; 1343 for (i = 0; i < offset; ++i) 1344 val[i] = 0; 1345 return APInt(val, BitWidth).clearUnusedBits(); 1346 } 1347 1348 APInt APInt::rotl(const APInt &rotateAmt) const { 1349 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1350 } 1351 1352 APInt APInt::rotl(unsigned rotateAmt) const { 1353 rotateAmt %= BitWidth; 1354 if (rotateAmt == 0) 1355 return *this; 1356 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1357 } 1358 1359 APInt APInt::rotr(const APInt &rotateAmt) const { 1360 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1361 } 1362 1363 APInt APInt::rotr(unsigned rotateAmt) const { 1364 rotateAmt %= BitWidth; 1365 if (rotateAmt == 0) 1366 return *this; 1367 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1368 } 1369 1370 // Square Root - this method computes and returns the square root of "this". 1371 // Three mechanisms are used for computation. For small values (<= 5 bits), 1372 // a table lookup is done. This gets some performance for common cases. For 1373 // values using less than 52 bits, the value is converted to double and then 1374 // the libc sqrt function is called. The result is rounded and then converted 1375 // back to a uint64_t which is then used to construct the result. Finally, 1376 // the Babylonian method for computing square roots is used. 1377 APInt APInt::sqrt() const { 1378 1379 // Determine the magnitude of the value. 1380 unsigned magnitude = getActiveBits(); 1381 1382 // Use a fast table for some small values. This also gets rid of some 1383 // rounding errors in libc sqrt for small values. 1384 if (magnitude <= 5) { 1385 static const uint8_t results[32] = { 1386 /* 0 */ 0, 1387 /* 1- 2 */ 1, 1, 1388 /* 3- 6 */ 2, 2, 2, 2, 1389 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1390 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1391 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1392 /* 31 */ 6 1393 }; 1394 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); 1395 } 1396 1397 // If the magnitude of the value fits in less than 52 bits (the precision of 1398 // an IEEE double precision floating point value), then we can use the 1399 // libc sqrt function which will probably use a hardware sqrt computation. 1400 // This should be faster than the algorithm below. 1401 if (magnitude < 52) { 1402 #if HAVE_ROUND 1403 return APInt(BitWidth, 1404 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); 1405 #else 1406 return APInt(BitWidth, 1407 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5)); 1408 #endif 1409 } 1410 1411 // Okay, all the short cuts are exhausted. We must compute it. The following 1412 // is a classical Babylonian method for computing the square root. This code 1413 // was adapted to APINt from a wikipedia article on such computations. 1414 // See http://www.wikipedia.org/ and go to the page named 1415 // Calculate_an_integer_square_root. 1416 unsigned nbits = BitWidth, i = 4; 1417 APInt testy(BitWidth, 16); 1418 APInt x_old(BitWidth, 1); 1419 APInt x_new(BitWidth, 0); 1420 APInt two(BitWidth, 2); 1421 1422 // Select a good starting value using binary logarithms. 1423 for (;; i += 2, testy = testy.shl(2)) 1424 if (i >= nbits || this->ule(testy)) { 1425 x_old = x_old.shl(i / 2); 1426 break; 1427 } 1428 1429 // Use the Babylonian method to arrive at the integer square root: 1430 for (;;) { 1431 x_new = (this->udiv(x_old) + x_old).udiv(two); 1432 if (x_old.ule(x_new)) 1433 break; 1434 x_old = x_new; 1435 } 1436 1437 // Make sure we return the closest approximation 1438 // NOTE: The rounding calculation below is correct. It will produce an 1439 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1440 // determined to be a rounding issue with pari/gp as it begins to use a 1441 // floating point representation after 192 bits. There are no discrepancies 1442 // between this algorithm and pari/gp for bit widths < 192 bits. 1443 APInt square(x_old * x_old); 1444 APInt nextSquare((x_old + 1) * (x_old +1)); 1445 if (this->ult(square)) 1446 return x_old; 1447 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1448 APInt midpoint((nextSquare - square).udiv(two)); 1449 APInt offset(*this - square); 1450 if (offset.ult(midpoint)) 1451 return x_old; 1452 return x_old + 1; 1453 } 1454 1455 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1456 /// iterative extended Euclidean algorithm is used to solve for this value, 1457 /// however we simplify it to speed up calculating only the inverse, and take 1458 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1459 /// (potentially large) APInts around. 1460 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1461 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1462 1463 // Using the properties listed at the following web page (accessed 06/21/08): 1464 // http://www.numbertheory.org/php/euclid.html 1465 // (especially the properties numbered 3, 4 and 9) it can be proved that 1466 // BitWidth bits suffice for all the computations in the algorithm implemented 1467 // below. More precisely, this number of bits suffice if the multiplicative 1468 // inverse exists, but may not suffice for the general extended Euclidean 1469 // algorithm. 1470 1471 APInt r[2] = { modulo, *this }; 1472 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1473 APInt q(BitWidth, 0); 1474 1475 unsigned i; 1476 for (i = 0; r[i^1] != 0; i ^= 1) { 1477 // An overview of the math without the confusing bit-flipping: 1478 // q = r[i-2] / r[i-1] 1479 // r[i] = r[i-2] % r[i-1] 1480 // t[i] = t[i-2] - t[i-1] * q 1481 udivrem(r[i], r[i^1], q, r[i]); 1482 t[i] -= t[i^1] * q; 1483 } 1484 1485 // If this APInt and the modulo are not coprime, there is no multiplicative 1486 // inverse, so return 0. We check this by looking at the next-to-last 1487 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1488 // algorithm. 1489 if (r[i] != 1) 1490 return APInt(BitWidth, 0); 1491 1492 // The next-to-last t is the multiplicative inverse. However, we are 1493 // interested in a positive inverse. Calcuate a positive one from a negative 1494 // one if necessary. A simple addition of the modulo suffices because 1495 // abs(t[i]) is known to be less than *this/2 (see the link above). 1496 return t[i].isNegative() ? t[i] + modulo : t[i]; 1497 } 1498 1499 /// Calculate the magic numbers required to implement a signed integer division 1500 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1501 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1502 /// Warren, Jr., chapter 10. 1503 APInt::ms APInt::magic() const { 1504 const APInt& d = *this; 1505 unsigned p; 1506 APInt ad, anc, delta, q1, r1, q2, r2, t; 1507 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1508 struct ms mag; 1509 1510 ad = d.abs(); 1511 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1512 anc = t - 1 - t.urem(ad); // absolute value of nc 1513 p = d.getBitWidth() - 1; // initialize p 1514 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1515 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1516 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1517 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1518 do { 1519 p = p + 1; 1520 q1 = q1<<1; // update q1 = 2p/abs(nc) 1521 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1522 if (r1.uge(anc)) { // must be unsigned comparison 1523 q1 = q1 + 1; 1524 r1 = r1 - anc; 1525 } 1526 q2 = q2<<1; // update q2 = 2p/abs(d) 1527 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1528 if (r2.uge(ad)) { // must be unsigned comparison 1529 q2 = q2 + 1; 1530 r2 = r2 - ad; 1531 } 1532 delta = ad - r2; 1533 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1534 1535 mag.m = q2 + 1; 1536 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1537 mag.s = p - d.getBitWidth(); // resulting shift 1538 return mag; 1539 } 1540 1541 /// Calculate the magic numbers required to implement an unsigned integer 1542 /// division by a constant as a sequence of multiplies, adds and shifts. 1543 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1544 /// S. Warren, Jr., chapter 10. 1545 /// LeadingZeros can be used to simplify the calculation if the upper bits 1546 /// of the divided value are known zero. 1547 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1548 const APInt& d = *this; 1549 unsigned p; 1550 APInt nc, delta, q1, r1, q2, r2; 1551 struct mu magu; 1552 magu.a = 0; // initialize "add" indicator 1553 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1554 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1555 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1556 1557 nc = allOnes - (-d).urem(d); 1558 p = d.getBitWidth() - 1; // initialize p 1559 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1560 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1561 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1562 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1563 do { 1564 p = p + 1; 1565 if (r1.uge(nc - r1)) { 1566 q1 = q1 + q1 + 1; // update q1 1567 r1 = r1 + r1 - nc; // update r1 1568 } 1569 else { 1570 q1 = q1+q1; // update q1 1571 r1 = r1+r1; // update r1 1572 } 1573 if ((r2 + 1).uge(d - r2)) { 1574 if (q2.uge(signedMax)) magu.a = 1; 1575 q2 = q2+q2 + 1; // update q2 1576 r2 = r2+r2 + 1 - d; // update r2 1577 } 1578 else { 1579 if (q2.uge(signedMin)) magu.a = 1; 1580 q2 = q2+q2; // update q2 1581 r2 = r2+r2 + 1; // update r2 1582 } 1583 delta = d - 1 - r2; 1584 } while (p < d.getBitWidth()*2 && 1585 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1586 magu.m = q2 + 1; // resulting magic number 1587 magu.s = p - d.getBitWidth(); // resulting shift 1588 return magu; 1589 } 1590 1591 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1592 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1593 /// variables here have the same names as in the algorithm. Comments explain 1594 /// the algorithm and any deviation from it. 1595 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, 1596 unsigned m, unsigned n) { 1597 assert(u && "Must provide dividend"); 1598 assert(v && "Must provide divisor"); 1599 assert(q && "Must provide quotient"); 1600 assert(u != v && u != q && v != q && "Must us different memory"); 1601 assert(n>1 && "n must be > 1"); 1602 1603 // Knuth uses the value b as the base of the number system. In our case b 1604 // is 2^31 so we just set it to -1u. 1605 uint64_t b = uint64_t(1) << 32; 1606 1607 #if 0 1608 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1609 DEBUG(dbgs() << "KnuthDiv: original:"); 1610 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1611 DEBUG(dbgs() << " by"); 1612 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1613 DEBUG(dbgs() << '\n'); 1614 #endif 1615 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1616 // u and v by d. Note that we have taken Knuth's advice here to use a power 1617 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1618 // 2 allows us to shift instead of multiply and it is easy to determine the 1619 // shift amount from the leading zeros. We are basically normalizing the u 1620 // and v so that its high bits are shifted to the top of v's range without 1621 // overflow. Note that this can require an extra word in u so that u must 1622 // be of length m+n+1. 1623 unsigned shift = CountLeadingZeros_32(v[n-1]); 1624 unsigned v_carry = 0; 1625 unsigned u_carry = 0; 1626 if (shift) { 1627 for (unsigned i = 0; i < m+n; ++i) { 1628 unsigned u_tmp = u[i] >> (32 - shift); 1629 u[i] = (u[i] << shift) | u_carry; 1630 u_carry = u_tmp; 1631 } 1632 for (unsigned i = 0; i < n; ++i) { 1633 unsigned v_tmp = v[i] >> (32 - shift); 1634 v[i] = (v[i] << shift) | v_carry; 1635 v_carry = v_tmp; 1636 } 1637 } 1638 u[m+n] = u_carry; 1639 #if 0 1640 DEBUG(dbgs() << "KnuthDiv: normal:"); 1641 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1642 DEBUG(dbgs() << " by"); 1643 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1644 DEBUG(dbgs() << '\n'); 1645 #endif 1646 1647 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1648 int j = m; 1649 do { 1650 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1651 // D3. [Calculate q'.]. 1652 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1653 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1654 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1655 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test 1656 // on v[n-2] determines at high speed most of the cases in which the trial 1657 // value qp is one too large, and it eliminates all cases where qp is two 1658 // too large. 1659 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); 1660 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1661 uint64_t qp = dividend / v[n-1]; 1662 uint64_t rp = dividend % v[n-1]; 1663 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1664 qp--; 1665 rp += v[n-1]; 1666 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1667 qp--; 1668 } 1669 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1670 1671 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1672 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1673 // consists of a simple multiplication by a one-place number, combined with 1674 // a subtraction. 1675 bool isNeg = false; 1676 for (unsigned i = 0; i < n; ++i) { 1677 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); 1678 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); 1679 bool borrow = subtrahend > u_tmp; 1680 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp 1681 << ", subtrahend == " << subtrahend 1682 << ", borrow = " << borrow << '\n'); 1683 1684 uint64_t result = u_tmp - subtrahend; 1685 unsigned k = j + i; 1686 u[k++] = (unsigned)(result & (b-1)); // subtract low word 1687 u[k++] = (unsigned)(result >> 32); // subtract high word 1688 while (borrow && k <= m+n) { // deal with borrow to the left 1689 borrow = u[k] == 0; 1690 u[k]--; 1691 k++; 1692 } 1693 isNeg |= borrow; 1694 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << 1695 u[j+i+1] << '\n'); 1696 } 1697 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1698 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1699 DEBUG(dbgs() << '\n'); 1700 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1701 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1702 // true value plus b**(n+1), namely as the b's complement of 1703 // the true value, and a "borrow" to the left should be remembered. 1704 // 1705 if (isNeg) { 1706 bool carry = true; // true because b's complement is "complement + 1" 1707 for (unsigned i = 0; i <= m+n; ++i) { 1708 u[i] = ~u[i] + carry; // b's complement 1709 carry = carry && u[i] == 0; 1710 } 1711 } 1712 DEBUG(dbgs() << "KnuthDiv: after complement:"); 1713 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1714 DEBUG(dbgs() << '\n'); 1715 1716 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1717 // negative, go to step D6; otherwise go on to step D7. 1718 q[j] = (unsigned)qp; 1719 if (isNeg) { 1720 // D6. [Add back]. The probability that this step is necessary is very 1721 // small, on the order of only 2/b. Make sure that test data accounts for 1722 // this possibility. Decrease q[j] by 1 1723 q[j]--; 1724 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1725 // A carry will occur to the left of u[j+n], and it should be ignored 1726 // since it cancels with the borrow that occurred in D4. 1727 bool carry = false; 1728 for (unsigned i = 0; i < n; i++) { 1729 unsigned limit = std::min(u[j+i],v[i]); 1730 u[j+i] += v[i] + carry; 1731 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1732 } 1733 u[j+n] += carry; 1734 } 1735 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1736 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); 1737 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1738 1739 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1740 } while (--j >= 0); 1741 1742 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1743 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1744 DEBUG(dbgs() << '\n'); 1745 1746 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1747 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1748 // compute the remainder (urem uses this). 1749 if (r) { 1750 // The value d is expressed by the "shift" value above since we avoided 1751 // multiplication by d by using a shift left. So, all we have to do is 1752 // shift right here. In order to mak 1753 if (shift) { 1754 unsigned carry = 0; 1755 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1756 for (int i = n-1; i >= 0; i--) { 1757 r[i] = (u[i] >> shift) | carry; 1758 carry = u[i] << (32 - shift); 1759 DEBUG(dbgs() << " " << r[i]); 1760 } 1761 } else { 1762 for (int i = n-1; i >= 0; i--) { 1763 r[i] = u[i]; 1764 DEBUG(dbgs() << " " << r[i]); 1765 } 1766 } 1767 DEBUG(dbgs() << '\n'); 1768 } 1769 #if 0 1770 DEBUG(dbgs() << '\n'); 1771 #endif 1772 } 1773 1774 void APInt::divide(const APInt LHS, unsigned lhsWords, 1775 const APInt &RHS, unsigned rhsWords, 1776 APInt *Quotient, APInt *Remainder) 1777 { 1778 assert(lhsWords >= rhsWords && "Fractional result"); 1779 1780 // First, compose the values into an array of 32-bit words instead of 1781 // 64-bit words. This is a necessity of both the "short division" algorithm 1782 // and the Knuth "classical algorithm" which requires there to be native 1783 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1784 // can't use 64-bit operands here because we don't have native results of 1785 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1786 // work on large-endian machines. 1787 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); 1788 unsigned n = rhsWords * 2; 1789 unsigned m = (lhsWords * 2) - n; 1790 1791 // Allocate space for the temporary values we need either on the stack, if 1792 // it will fit, or on the heap if it won't. 1793 unsigned SPACE[128]; 1794 unsigned *U = 0; 1795 unsigned *V = 0; 1796 unsigned *Q = 0; 1797 unsigned *R = 0; 1798 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1799 U = &SPACE[0]; 1800 V = &SPACE[m+n+1]; 1801 Q = &SPACE[(m+n+1) + n]; 1802 if (Remainder) 1803 R = &SPACE[(m+n+1) + n + (m+n)]; 1804 } else { 1805 U = new unsigned[m + n + 1]; 1806 V = new unsigned[n]; 1807 Q = new unsigned[m+n]; 1808 if (Remainder) 1809 R = new unsigned[n]; 1810 } 1811 1812 // Initialize the dividend 1813 memset(U, 0, (m+n+1)*sizeof(unsigned)); 1814 for (unsigned i = 0; i < lhsWords; ++i) { 1815 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); 1816 U[i * 2] = (unsigned)(tmp & mask); 1817 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1818 } 1819 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1820 1821 // Initialize the divisor 1822 memset(V, 0, (n)*sizeof(unsigned)); 1823 for (unsigned i = 0; i < rhsWords; ++i) { 1824 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); 1825 V[i * 2] = (unsigned)(tmp & mask); 1826 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1827 } 1828 1829 // initialize the quotient and remainder 1830 memset(Q, 0, (m+n) * sizeof(unsigned)); 1831 if (Remainder) 1832 memset(R, 0, n * sizeof(unsigned)); 1833 1834 // Now, adjust m and n for the Knuth division. n is the number of words in 1835 // the divisor. m is the number of words by which the dividend exceeds the 1836 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1837 // contain any zero words or the Knuth algorithm fails. 1838 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1839 n--; 1840 m++; 1841 } 1842 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1843 m--; 1844 1845 // If we're left with only a single word for the divisor, Knuth doesn't work 1846 // so we implement the short division algorithm here. This is much simpler 1847 // and faster because we are certain that we can divide a 64-bit quantity 1848 // by a 32-bit quantity at hardware speed and short division is simply a 1849 // series of such operations. This is just like doing short division but we 1850 // are using base 2^32 instead of base 10. 1851 assert(n != 0 && "Divide by zero?"); 1852 if (n == 1) { 1853 unsigned divisor = V[0]; 1854 unsigned remainder = 0; 1855 for (int i = m+n-1; i >= 0; i--) { 1856 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; 1857 if (partial_dividend == 0) { 1858 Q[i] = 0; 1859 remainder = 0; 1860 } else if (partial_dividend < divisor) { 1861 Q[i] = 0; 1862 remainder = (unsigned)partial_dividend; 1863 } else if (partial_dividend == divisor) { 1864 Q[i] = 1; 1865 remainder = 0; 1866 } else { 1867 Q[i] = (unsigned)(partial_dividend / divisor); 1868 remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); 1869 } 1870 } 1871 if (R) 1872 R[0] = remainder; 1873 } else { 1874 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1875 // case n > 1. 1876 KnuthDiv(U, V, Q, R, m, n); 1877 } 1878 1879 // If the caller wants the quotient 1880 if (Quotient) { 1881 // Set up the Quotient value's memory. 1882 if (Quotient->BitWidth != LHS.BitWidth) { 1883 if (Quotient->isSingleWord()) 1884 Quotient->VAL = 0; 1885 else 1886 delete [] Quotient->pVal; 1887 Quotient->BitWidth = LHS.BitWidth; 1888 if (!Quotient->isSingleWord()) 1889 Quotient->pVal = getClearedMemory(Quotient->getNumWords()); 1890 } else 1891 Quotient->clearAllBits(); 1892 1893 // The quotient is in Q. Reconstitute the quotient into Quotient's low 1894 // order words. 1895 if (lhsWords == 1) { 1896 uint64_t tmp = 1897 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); 1898 if (Quotient->isSingleWord()) 1899 Quotient->VAL = tmp; 1900 else 1901 Quotient->pVal[0] = tmp; 1902 } else { 1903 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); 1904 for (unsigned i = 0; i < lhsWords; ++i) 1905 Quotient->pVal[i] = 1906 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1907 } 1908 } 1909 1910 // If the caller wants the remainder 1911 if (Remainder) { 1912 // Set up the Remainder value's memory. 1913 if (Remainder->BitWidth != RHS.BitWidth) { 1914 if (Remainder->isSingleWord()) 1915 Remainder->VAL = 0; 1916 else 1917 delete [] Remainder->pVal; 1918 Remainder->BitWidth = RHS.BitWidth; 1919 if (!Remainder->isSingleWord()) 1920 Remainder->pVal = getClearedMemory(Remainder->getNumWords()); 1921 } else 1922 Remainder->clearAllBits(); 1923 1924 // The remainder is in R. Reconstitute the remainder into Remainder's low 1925 // order words. 1926 if (rhsWords == 1) { 1927 uint64_t tmp = 1928 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); 1929 if (Remainder->isSingleWord()) 1930 Remainder->VAL = tmp; 1931 else 1932 Remainder->pVal[0] = tmp; 1933 } else { 1934 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); 1935 for (unsigned i = 0; i < rhsWords; ++i) 1936 Remainder->pVal[i] = 1937 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1938 } 1939 } 1940 1941 // Clean up the memory we allocated. 1942 if (U != &SPACE[0]) { 1943 delete [] U; 1944 delete [] V; 1945 delete [] Q; 1946 delete [] R; 1947 } 1948 } 1949 1950 APInt APInt::udiv(const APInt& RHS) const { 1951 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1952 1953 // First, deal with the easy case 1954 if (isSingleWord()) { 1955 assert(RHS.VAL != 0 && "Divide by zero?"); 1956 return APInt(BitWidth, VAL / RHS.VAL); 1957 } 1958 1959 // Get some facts about the LHS and RHS number of bits and words 1960 unsigned rhsBits = RHS.getActiveBits(); 1961 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1962 assert(rhsWords && "Divided by zero???"); 1963 unsigned lhsBits = this->getActiveBits(); 1964 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1965 1966 // Deal with some degenerate cases 1967 if (!lhsWords) 1968 // 0 / X ===> 0 1969 return APInt(BitWidth, 0); 1970 else if (lhsWords < rhsWords || this->ult(RHS)) { 1971 // X / Y ===> 0, iff X < Y 1972 return APInt(BitWidth, 0); 1973 } else if (*this == RHS) { 1974 // X / X ===> 1 1975 return APInt(BitWidth, 1); 1976 } else if (lhsWords == 1 && rhsWords == 1) { 1977 // All high words are zero, just use native divide 1978 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); 1979 } 1980 1981 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1982 APInt Quotient(1,0); // to hold result. 1983 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0); 1984 return Quotient; 1985 } 1986 1987 APInt APInt::urem(const APInt& RHS) const { 1988 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1989 if (isSingleWord()) { 1990 assert(RHS.VAL != 0 && "Remainder by zero?"); 1991 return APInt(BitWidth, VAL % RHS.VAL); 1992 } 1993 1994 // Get some facts about the LHS 1995 unsigned lhsBits = getActiveBits(); 1996 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); 1997 1998 // Get some facts about the RHS 1999 unsigned rhsBits = RHS.getActiveBits(); 2000 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 2001 assert(rhsWords && "Performing remainder operation by zero ???"); 2002 2003 // Check the degenerate cases 2004 if (lhsWords == 0) { 2005 // 0 % Y ===> 0 2006 return APInt(BitWidth, 0); 2007 } else if (lhsWords < rhsWords || this->ult(RHS)) { 2008 // X % Y ===> X, iff X < Y 2009 return *this; 2010 } else if (*this == RHS) { 2011 // X % X == 0; 2012 return APInt(BitWidth, 0); 2013 } else if (lhsWords == 1) { 2014 // All high words are zero, just use native remainder 2015 return APInt(BitWidth, pVal[0] % RHS.pVal[0]); 2016 } 2017 2018 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 2019 APInt Remainder(1,0); 2020 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder); 2021 return Remainder; 2022 } 2023 2024 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 2025 APInt &Quotient, APInt &Remainder) { 2026 // Get some size facts about the dividend and divisor 2027 unsigned lhsBits = LHS.getActiveBits(); 2028 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 2029 unsigned rhsBits = RHS.getActiveBits(); 2030 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 2031 2032 // Check the degenerate cases 2033 if (lhsWords == 0) { 2034 Quotient = 0; // 0 / Y ===> 0 2035 Remainder = 0; // 0 % Y ===> 0 2036 return; 2037 } 2038 2039 if (lhsWords < rhsWords || LHS.ult(RHS)) { 2040 Remainder = LHS; // X % Y ===> X, iff X < Y 2041 Quotient = 0; // X / Y ===> 0, iff X < Y 2042 return; 2043 } 2044 2045 if (LHS == RHS) { 2046 Quotient = 1; // X / X ===> 1 2047 Remainder = 0; // X % X ===> 0; 2048 return; 2049 } 2050 2051 if (lhsWords == 1 && rhsWords == 1) { 2052 // There is only one word to consider so use the native versions. 2053 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; 2054 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; 2055 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); 2056 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); 2057 return; 2058 } 2059 2060 // Okay, lets do it the long way 2061 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); 2062 } 2063 2064 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 2065 APInt Res = *this+RHS; 2066 Overflow = isNonNegative() == RHS.isNonNegative() && 2067 Res.isNonNegative() != isNonNegative(); 2068 return Res; 2069 } 2070 2071 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 2072 APInt Res = *this+RHS; 2073 Overflow = Res.ult(RHS); 2074 return Res; 2075 } 2076 2077 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 2078 APInt Res = *this - RHS; 2079 Overflow = isNonNegative() != RHS.isNonNegative() && 2080 Res.isNonNegative() != isNonNegative(); 2081 return Res; 2082 } 2083 2084 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 2085 APInt Res = *this-RHS; 2086 Overflow = Res.ugt(*this); 2087 return Res; 2088 } 2089 2090 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 2091 // MININT/-1 --> overflow. 2092 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 2093 return sdiv(RHS); 2094 } 2095 2096 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 2097 APInt Res = *this * RHS; 2098 2099 if (*this != 0 && RHS != 0) 2100 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 2101 else 2102 Overflow = false; 2103 return Res; 2104 } 2105 2106 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 2107 APInt Res = *this * RHS; 2108 2109 if (*this != 0 && RHS != 0) 2110 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 2111 else 2112 Overflow = false; 2113 return Res; 2114 } 2115 2116 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { 2117 Overflow = ShAmt >= getBitWidth(); 2118 if (Overflow) 2119 ShAmt = getBitWidth()-1; 2120 2121 if (isNonNegative()) // Don't allow sign change. 2122 Overflow = ShAmt >= countLeadingZeros(); 2123 else 2124 Overflow = ShAmt >= countLeadingOnes(); 2125 2126 return *this << ShAmt; 2127 } 2128 2129 2130 2131 2132 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2133 // Check our assumptions here 2134 assert(!str.empty() && "Invalid string length"); 2135 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2136 radix == 36) && 2137 "Radix should be 2, 8, 10, 16, or 36!"); 2138 2139 StringRef::iterator p = str.begin(); 2140 size_t slen = str.size(); 2141 bool isNeg = *p == '-'; 2142 if (*p == '-' || *p == '+') { 2143 p++; 2144 slen--; 2145 assert(slen && "String is only a sign, needs a value."); 2146 } 2147 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2148 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2149 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2150 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2151 "Insufficient bit width"); 2152 2153 // Allocate memory 2154 if (!isSingleWord()) 2155 pVal = getClearedMemory(getNumWords()); 2156 2157 // Figure out if we can shift instead of multiply 2158 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2159 2160 // Set up an APInt for the digit to add outside the loop so we don't 2161 // constantly construct/destruct it. 2162 APInt apdigit(getBitWidth(), 0); 2163 APInt apradix(getBitWidth(), radix); 2164 2165 // Enter digit traversal loop 2166 for (StringRef::iterator e = str.end(); p != e; ++p) { 2167 unsigned digit = getDigit(*p, radix); 2168 assert(digit < radix && "Invalid character in digit string"); 2169 2170 // Shift or multiply the value by the radix 2171 if (slen > 1) { 2172 if (shift) 2173 *this <<= shift; 2174 else 2175 *this *= apradix; 2176 } 2177 2178 // Add in the digit we just interpreted 2179 if (apdigit.isSingleWord()) 2180 apdigit.VAL = digit; 2181 else 2182 apdigit.pVal[0] = digit; 2183 *this += apdigit; 2184 } 2185 // If its negative, put it in two's complement form 2186 if (isNeg) { 2187 (*this)--; 2188 this->flipAllBits(); 2189 } 2190 } 2191 2192 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2193 bool Signed, bool formatAsCLiteral) const { 2194 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2195 Radix == 36) && 2196 "Radix should be 2, 8, 10, 16, or 36!"); 2197 2198 const char *Prefix = ""; 2199 if (formatAsCLiteral) { 2200 switch (Radix) { 2201 case 2: 2202 // Binary literals are a non-standard extension added in gcc 4.3: 2203 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2204 Prefix = "0b"; 2205 break; 2206 case 8: 2207 Prefix = "0"; 2208 break; 2209 case 10: 2210 break; // No prefix 2211 case 16: 2212 Prefix = "0x"; 2213 break; 2214 default: 2215 llvm_unreachable("Invalid radix!"); 2216 } 2217 } 2218 2219 // First, check for a zero value and just short circuit the logic below. 2220 if (*this == 0) { 2221 while (*Prefix) { 2222 Str.push_back(*Prefix); 2223 ++Prefix; 2224 }; 2225 Str.push_back('0'); 2226 return; 2227 } 2228 2229 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2230 2231 if (isSingleWord()) { 2232 char Buffer[65]; 2233 char *BufPtr = Buffer+65; 2234 2235 uint64_t N; 2236 if (!Signed) { 2237 N = getZExtValue(); 2238 } else { 2239 int64_t I = getSExtValue(); 2240 if (I >= 0) { 2241 N = I; 2242 } else { 2243 Str.push_back('-'); 2244 N = -(uint64_t)I; 2245 } 2246 } 2247 2248 while (*Prefix) { 2249 Str.push_back(*Prefix); 2250 ++Prefix; 2251 }; 2252 2253 while (N) { 2254 *--BufPtr = Digits[N % Radix]; 2255 N /= Radix; 2256 } 2257 Str.append(BufPtr, Buffer+65); 2258 return; 2259 } 2260 2261 APInt Tmp(*this); 2262 2263 if (Signed && isNegative()) { 2264 // They want to print the signed version and it is a negative value 2265 // Flip the bits and add one to turn it into the equivalent positive 2266 // value and put a '-' in the result. 2267 Tmp.flipAllBits(); 2268 Tmp++; 2269 Str.push_back('-'); 2270 } 2271 2272 while (*Prefix) { 2273 Str.push_back(*Prefix); 2274 ++Prefix; 2275 }; 2276 2277 // We insert the digits backward, then reverse them to get the right order. 2278 unsigned StartDig = Str.size(); 2279 2280 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2281 // because the number of bits per digit (1, 3 and 4 respectively) divides 2282 // equaly. We just shift until the value is zero. 2283 if (Radix == 2 || Radix == 8 || Radix == 16) { 2284 // Just shift tmp right for each digit width until it becomes zero 2285 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2286 unsigned MaskAmt = Radix - 1; 2287 2288 while (Tmp != 0) { 2289 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2290 Str.push_back(Digits[Digit]); 2291 Tmp = Tmp.lshr(ShiftAmt); 2292 } 2293 } else { 2294 APInt divisor(Radix == 10? 4 : 8, Radix); 2295 while (Tmp != 0) { 2296 APInt APdigit(1, 0); 2297 APInt tmp2(Tmp.getBitWidth(), 0); 2298 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 2299 &APdigit); 2300 unsigned Digit = (unsigned)APdigit.getZExtValue(); 2301 assert(Digit < Radix && "divide failed"); 2302 Str.push_back(Digits[Digit]); 2303 Tmp = tmp2; 2304 } 2305 } 2306 2307 // Reverse the digits before returning. 2308 std::reverse(Str.begin()+StartDig, Str.end()); 2309 } 2310 2311 /// toString - This returns the APInt as a std::string. Note that this is an 2312 /// inefficient method. It is better to pass in a SmallVector/SmallString 2313 /// to the methods above. 2314 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2315 SmallString<40> S; 2316 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2317 return S.str(); 2318 } 2319 2320 2321 void APInt::dump() const { 2322 SmallString<40> S, U; 2323 this->toStringUnsigned(U); 2324 this->toStringSigned(S); 2325 dbgs() << "APInt(" << BitWidth << "b, " 2326 << U.str() << "u " << S.str() << "s)"; 2327 } 2328 2329 void APInt::print(raw_ostream &OS, bool isSigned) const { 2330 SmallString<40> S; 2331 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2332 OS << S.str(); 2333 } 2334 2335 // This implements a variety of operations on a representation of 2336 // arbitrary precision, two's-complement, bignum integer values. 2337 2338 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2339 // and unrestricting assumption. 2340 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] 2341 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0); 2342 2343 /* Some handy functions local to this file. */ 2344 namespace { 2345 2346 /* Returns the integer part with the least significant BITS set. 2347 BITS cannot be zero. */ 2348 static inline integerPart 2349 lowBitMask(unsigned int bits) 2350 { 2351 assert(bits != 0 && bits <= integerPartWidth); 2352 2353 return ~(integerPart) 0 >> (integerPartWidth - bits); 2354 } 2355 2356 /* Returns the value of the lower half of PART. */ 2357 static inline integerPart 2358 lowHalf(integerPart part) 2359 { 2360 return part & lowBitMask(integerPartWidth / 2); 2361 } 2362 2363 /* Returns the value of the upper half of PART. */ 2364 static inline integerPart 2365 highHalf(integerPart part) 2366 { 2367 return part >> (integerPartWidth / 2); 2368 } 2369 2370 /* Returns the bit number of the most significant set bit of a part. 2371 If the input number has no bits set -1U is returned. */ 2372 static unsigned int 2373 partMSB(integerPart value) 2374 { 2375 unsigned int n, msb; 2376 2377 if (value == 0) 2378 return -1U; 2379 2380 n = integerPartWidth / 2; 2381 2382 msb = 0; 2383 do { 2384 if (value >> n) { 2385 value >>= n; 2386 msb += n; 2387 } 2388 2389 n >>= 1; 2390 } while (n); 2391 2392 return msb; 2393 } 2394 2395 /* Returns the bit number of the least significant set bit of a 2396 part. If the input number has no bits set -1U is returned. */ 2397 static unsigned int 2398 partLSB(integerPart value) 2399 { 2400 unsigned int n, lsb; 2401 2402 if (value == 0) 2403 return -1U; 2404 2405 lsb = integerPartWidth - 1; 2406 n = integerPartWidth / 2; 2407 2408 do { 2409 if (value << n) { 2410 value <<= n; 2411 lsb -= n; 2412 } 2413 2414 n >>= 1; 2415 } while (n); 2416 2417 return lsb; 2418 } 2419 } 2420 2421 /* Sets the least significant part of a bignum to the input value, and 2422 zeroes out higher parts. */ 2423 void 2424 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) 2425 { 2426 unsigned int i; 2427 2428 assert(parts > 0); 2429 2430 dst[0] = part; 2431 for (i = 1; i < parts; i++) 2432 dst[i] = 0; 2433 } 2434 2435 /* Assign one bignum to another. */ 2436 void 2437 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) 2438 { 2439 unsigned int i; 2440 2441 for (i = 0; i < parts; i++) 2442 dst[i] = src[i]; 2443 } 2444 2445 /* Returns true if a bignum is zero, false otherwise. */ 2446 bool 2447 APInt::tcIsZero(const integerPart *src, unsigned int parts) 2448 { 2449 unsigned int i; 2450 2451 for (i = 0; i < parts; i++) 2452 if (src[i]) 2453 return false; 2454 2455 return true; 2456 } 2457 2458 /* Extract the given bit of a bignum; returns 0 or 1. */ 2459 int 2460 APInt::tcExtractBit(const integerPart *parts, unsigned int bit) 2461 { 2462 return (parts[bit / integerPartWidth] & 2463 ((integerPart) 1 << bit % integerPartWidth)) != 0; 2464 } 2465 2466 /* Set the given bit of a bignum. */ 2467 void 2468 APInt::tcSetBit(integerPart *parts, unsigned int bit) 2469 { 2470 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); 2471 } 2472 2473 /* Clears the given bit of a bignum. */ 2474 void 2475 APInt::tcClearBit(integerPart *parts, unsigned int bit) 2476 { 2477 parts[bit / integerPartWidth] &= 2478 ~((integerPart) 1 << (bit % integerPartWidth)); 2479 } 2480 2481 /* Returns the bit number of the least significant set bit of a 2482 number. If the input number has no bits set -1U is returned. */ 2483 unsigned int 2484 APInt::tcLSB(const integerPart *parts, unsigned int n) 2485 { 2486 unsigned int i, lsb; 2487 2488 for (i = 0; i < n; i++) { 2489 if (parts[i] != 0) { 2490 lsb = partLSB(parts[i]); 2491 2492 return lsb + i * integerPartWidth; 2493 } 2494 } 2495 2496 return -1U; 2497 } 2498 2499 /* Returns the bit number of the most significant set bit of a number. 2500 If the input number has no bits set -1U is returned. */ 2501 unsigned int 2502 APInt::tcMSB(const integerPart *parts, unsigned int n) 2503 { 2504 unsigned int msb; 2505 2506 do { 2507 --n; 2508 2509 if (parts[n] != 0) { 2510 msb = partMSB(parts[n]); 2511 2512 return msb + n * integerPartWidth; 2513 } 2514 } while (n); 2515 2516 return -1U; 2517 } 2518 2519 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2520 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2521 the least significant bit of DST. All high bits above srcBITS in 2522 DST are zero-filled. */ 2523 void 2524 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, 2525 unsigned int srcBits, unsigned int srcLSB) 2526 { 2527 unsigned int firstSrcPart, dstParts, shift, n; 2528 2529 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; 2530 assert(dstParts <= dstCount); 2531 2532 firstSrcPart = srcLSB / integerPartWidth; 2533 tcAssign (dst, src + firstSrcPart, dstParts); 2534 2535 shift = srcLSB % integerPartWidth; 2536 tcShiftRight (dst, dstParts, shift); 2537 2538 /* We now have (dstParts * integerPartWidth - shift) bits from SRC 2539 in DST. If this is less that srcBits, append the rest, else 2540 clear the high bits. */ 2541 n = dstParts * integerPartWidth - shift; 2542 if (n < srcBits) { 2543 integerPart mask = lowBitMask (srcBits - n); 2544 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2545 << n % integerPartWidth); 2546 } else if (n > srcBits) { 2547 if (srcBits % integerPartWidth) 2548 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); 2549 } 2550 2551 /* Clear high parts. */ 2552 while (dstParts < dstCount) 2553 dst[dstParts++] = 0; 2554 } 2555 2556 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2557 integerPart 2558 APInt::tcAdd(integerPart *dst, const integerPart *rhs, 2559 integerPart c, unsigned int parts) 2560 { 2561 unsigned int i; 2562 2563 assert(c <= 1); 2564 2565 for (i = 0; i < parts; i++) { 2566 integerPart l; 2567 2568 l = dst[i]; 2569 if (c) { 2570 dst[i] += rhs[i] + 1; 2571 c = (dst[i] <= l); 2572 } else { 2573 dst[i] += rhs[i]; 2574 c = (dst[i] < l); 2575 } 2576 } 2577 2578 return c; 2579 } 2580 2581 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2582 integerPart 2583 APInt::tcSubtract(integerPart *dst, const integerPart *rhs, 2584 integerPart c, unsigned int parts) 2585 { 2586 unsigned int i; 2587 2588 assert(c <= 1); 2589 2590 for (i = 0; i < parts; i++) { 2591 integerPart l; 2592 2593 l = dst[i]; 2594 if (c) { 2595 dst[i] -= rhs[i] + 1; 2596 c = (dst[i] >= l); 2597 } else { 2598 dst[i] -= rhs[i]; 2599 c = (dst[i] > l); 2600 } 2601 } 2602 2603 return c; 2604 } 2605 2606 /* Negate a bignum in-place. */ 2607 void 2608 APInt::tcNegate(integerPart *dst, unsigned int parts) 2609 { 2610 tcComplement(dst, parts); 2611 tcIncrement(dst, parts); 2612 } 2613 2614 /* DST += SRC * MULTIPLIER + CARRY if add is true 2615 DST = SRC * MULTIPLIER + CARRY if add is false 2616 2617 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2618 they must start at the same point, i.e. DST == SRC. 2619 2620 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2621 returned. Otherwise DST is filled with the least significant 2622 DSTPARTS parts of the result, and if all of the omitted higher 2623 parts were zero return zero, otherwise overflow occurred and 2624 return one. */ 2625 int 2626 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, 2627 integerPart multiplier, integerPart carry, 2628 unsigned int srcParts, unsigned int dstParts, 2629 bool add) 2630 { 2631 unsigned int i, n; 2632 2633 /* Otherwise our writes of DST kill our later reads of SRC. */ 2634 assert(dst <= src || dst >= src + srcParts); 2635 assert(dstParts <= srcParts + 1); 2636 2637 /* N loops; minimum of dstParts and srcParts. */ 2638 n = dstParts < srcParts ? dstParts: srcParts; 2639 2640 for (i = 0; i < n; i++) { 2641 integerPart low, mid, high, srcPart; 2642 2643 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2644 2645 This cannot overflow, because 2646 2647 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2648 2649 which is less than n^2. */ 2650 2651 srcPart = src[i]; 2652 2653 if (multiplier == 0 || srcPart == 0) { 2654 low = carry; 2655 high = 0; 2656 } else { 2657 low = lowHalf(srcPart) * lowHalf(multiplier); 2658 high = highHalf(srcPart) * highHalf(multiplier); 2659 2660 mid = lowHalf(srcPart) * highHalf(multiplier); 2661 high += highHalf(mid); 2662 mid <<= integerPartWidth / 2; 2663 if (low + mid < low) 2664 high++; 2665 low += mid; 2666 2667 mid = highHalf(srcPart) * lowHalf(multiplier); 2668 high += highHalf(mid); 2669 mid <<= integerPartWidth / 2; 2670 if (low + mid < low) 2671 high++; 2672 low += mid; 2673 2674 /* Now add carry. */ 2675 if (low + carry < low) 2676 high++; 2677 low += carry; 2678 } 2679 2680 if (add) { 2681 /* And now DST[i], and store the new low part there. */ 2682 if (low + dst[i] < low) 2683 high++; 2684 dst[i] += low; 2685 } else 2686 dst[i] = low; 2687 2688 carry = high; 2689 } 2690 2691 if (i < dstParts) { 2692 /* Full multiplication, there is no overflow. */ 2693 assert(i + 1 == dstParts); 2694 dst[i] = carry; 2695 return 0; 2696 } else { 2697 /* We overflowed if there is carry. */ 2698 if (carry) 2699 return 1; 2700 2701 /* We would overflow if any significant unwritten parts would be 2702 non-zero. This is true if any remaining src parts are non-zero 2703 and the multiplier is non-zero. */ 2704 if (multiplier) 2705 for (; i < srcParts; i++) 2706 if (src[i]) 2707 return 1; 2708 2709 /* We fitted in the narrow destination. */ 2710 return 0; 2711 } 2712 } 2713 2714 /* DST = LHS * RHS, where DST has the same width as the operands and 2715 is filled with the least significant parts of the result. Returns 2716 one if overflow occurred, otherwise zero. DST must be disjoint 2717 from both operands. */ 2718 int 2719 APInt::tcMultiply(integerPart *dst, const integerPart *lhs, 2720 const integerPart *rhs, unsigned int parts) 2721 { 2722 unsigned int i; 2723 int overflow; 2724 2725 assert(dst != lhs && dst != rhs); 2726 2727 overflow = 0; 2728 tcSet(dst, 0, parts); 2729 2730 for (i = 0; i < parts; i++) 2731 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2732 parts - i, true); 2733 2734 return overflow; 2735 } 2736 2737 /* DST = LHS * RHS, where DST has width the sum of the widths of the 2738 operands. No overflow occurs. DST must be disjoint from both 2739 operands. Returns the number of parts required to hold the 2740 result. */ 2741 unsigned int 2742 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, 2743 const integerPart *rhs, unsigned int lhsParts, 2744 unsigned int rhsParts) 2745 { 2746 /* Put the narrower number on the LHS for less loops below. */ 2747 if (lhsParts > rhsParts) { 2748 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2749 } else { 2750 unsigned int n; 2751 2752 assert(dst != lhs && dst != rhs); 2753 2754 tcSet(dst, 0, rhsParts); 2755 2756 for (n = 0; n < lhsParts; n++) 2757 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); 2758 2759 n = lhsParts + rhsParts; 2760 2761 return n - (dst[n - 1] == 0); 2762 } 2763 } 2764 2765 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2766 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2767 set REMAINDER to the remainder, return zero. i.e. 2768 2769 OLD_LHS = RHS * LHS + REMAINDER 2770 2771 SCRATCH is a bignum of the same size as the operands and result for 2772 use by the routine; its contents need not be initialized and are 2773 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2774 */ 2775 int 2776 APInt::tcDivide(integerPart *lhs, const integerPart *rhs, 2777 integerPart *remainder, integerPart *srhs, 2778 unsigned int parts) 2779 { 2780 unsigned int n, shiftCount; 2781 integerPart mask; 2782 2783 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2784 2785 shiftCount = tcMSB(rhs, parts) + 1; 2786 if (shiftCount == 0) 2787 return true; 2788 2789 shiftCount = parts * integerPartWidth - shiftCount; 2790 n = shiftCount / integerPartWidth; 2791 mask = (integerPart) 1 << (shiftCount % integerPartWidth); 2792 2793 tcAssign(srhs, rhs, parts); 2794 tcShiftLeft(srhs, parts, shiftCount); 2795 tcAssign(remainder, lhs, parts); 2796 tcSet(lhs, 0, parts); 2797 2798 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2799 the total. */ 2800 for (;;) { 2801 int compare; 2802 2803 compare = tcCompare(remainder, srhs, parts); 2804 if (compare >= 0) { 2805 tcSubtract(remainder, srhs, 0, parts); 2806 lhs[n] |= mask; 2807 } 2808 2809 if (shiftCount == 0) 2810 break; 2811 shiftCount--; 2812 tcShiftRight(srhs, parts, 1); 2813 if ((mask >>= 1) == 0) 2814 mask = (integerPart) 1 << (integerPartWidth - 1), n--; 2815 } 2816 2817 return false; 2818 } 2819 2820 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. 2821 There are no restrictions on COUNT. */ 2822 void 2823 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) 2824 { 2825 if (count) { 2826 unsigned int jump, shift; 2827 2828 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2829 jump = count / integerPartWidth; 2830 shift = count % integerPartWidth; 2831 2832 while (parts > jump) { 2833 integerPart part; 2834 2835 parts--; 2836 2837 /* dst[i] comes from the two parts src[i - jump] and, if we have 2838 an intra-part shift, src[i - jump - 1]. */ 2839 part = dst[parts - jump]; 2840 if (shift) { 2841 part <<= shift; 2842 if (parts >= jump + 1) 2843 part |= dst[parts - jump - 1] >> (integerPartWidth - shift); 2844 } 2845 2846 dst[parts] = part; 2847 } 2848 2849 while (parts > 0) 2850 dst[--parts] = 0; 2851 } 2852 } 2853 2854 /* Shift a bignum right COUNT bits in-place. Shifted in bits are 2855 zero. There are no restrictions on COUNT. */ 2856 void 2857 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) 2858 { 2859 if (count) { 2860 unsigned int i, jump, shift; 2861 2862 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2863 jump = count / integerPartWidth; 2864 shift = count % integerPartWidth; 2865 2866 /* Perform the shift. This leaves the most significant COUNT bits 2867 of the result at zero. */ 2868 for (i = 0; i < parts; i++) { 2869 integerPart part; 2870 2871 if (i + jump >= parts) { 2872 part = 0; 2873 } else { 2874 part = dst[i + jump]; 2875 if (shift) { 2876 part >>= shift; 2877 if (i + jump + 1 < parts) 2878 part |= dst[i + jump + 1] << (integerPartWidth - shift); 2879 } 2880 } 2881 2882 dst[i] = part; 2883 } 2884 } 2885 } 2886 2887 /* Bitwise and of two bignums. */ 2888 void 2889 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) 2890 { 2891 unsigned int i; 2892 2893 for (i = 0; i < parts; i++) 2894 dst[i] &= rhs[i]; 2895 } 2896 2897 /* Bitwise inclusive or of two bignums. */ 2898 void 2899 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) 2900 { 2901 unsigned int i; 2902 2903 for (i = 0; i < parts; i++) 2904 dst[i] |= rhs[i]; 2905 } 2906 2907 /* Bitwise exclusive or of two bignums. */ 2908 void 2909 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) 2910 { 2911 unsigned int i; 2912 2913 for (i = 0; i < parts; i++) 2914 dst[i] ^= rhs[i]; 2915 } 2916 2917 /* Complement a bignum in-place. */ 2918 void 2919 APInt::tcComplement(integerPart *dst, unsigned int parts) 2920 { 2921 unsigned int i; 2922 2923 for (i = 0; i < parts; i++) 2924 dst[i] = ~dst[i]; 2925 } 2926 2927 /* Comparison (unsigned) of two bignums. */ 2928 int 2929 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, 2930 unsigned int parts) 2931 { 2932 while (parts) { 2933 parts--; 2934 if (lhs[parts] == rhs[parts]) 2935 continue; 2936 2937 if (lhs[parts] > rhs[parts]) 2938 return 1; 2939 else 2940 return -1; 2941 } 2942 2943 return 0; 2944 } 2945 2946 /* Increment a bignum in-place, return the carry flag. */ 2947 integerPart 2948 APInt::tcIncrement(integerPart *dst, unsigned int parts) 2949 { 2950 unsigned int i; 2951 2952 for (i = 0; i < parts; i++) 2953 if (++dst[i] != 0) 2954 break; 2955 2956 return i == parts; 2957 } 2958 2959 /* Set the least significant BITS bits of a bignum, clear the 2960 rest. */ 2961 void 2962 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, 2963 unsigned int bits) 2964 { 2965 unsigned int i; 2966 2967 i = 0; 2968 while (bits > integerPartWidth) { 2969 dst[i++] = ~(integerPart) 0; 2970 bits -= integerPartWidth; 2971 } 2972 2973 if (bits) 2974 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); 2975 2976 while (i < parts) 2977 dst[i++] = 0; 2978 } 2979