1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "apint" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/FoldingSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <cmath> 25 #include <limits> 26 #include <cstring> 27 #include <cstdlib> 28 using namespace llvm; 29 30 /// A utility function for allocating memory, checking for allocation failures, 31 /// and ensuring the contents are zeroed. 32 inline static uint64_t* getClearedMemory(unsigned numWords) { 33 uint64_t * result = new uint64_t[numWords]; 34 assert(result && "APInt memory allocation fails!"); 35 memset(result, 0, numWords * sizeof(uint64_t)); 36 return result; 37 } 38 39 /// A utility function for allocating memory and checking for allocation 40 /// failure. The content is not zeroed. 41 inline static uint64_t* getMemory(unsigned numWords) { 42 uint64_t * result = new uint64_t[numWords]; 43 assert(result && "APInt memory allocation fails!"); 44 return result; 45 } 46 47 /// A utility function that converts a character to a digit. 48 inline static unsigned getDigit(char cdigit, uint8_t radix) { 49 unsigned r; 50 51 if (radix == 16 || radix == 36) { 52 r = cdigit - '0'; 53 if (r <= 9) 54 return r; 55 56 r = cdigit - 'A'; 57 if (r <= radix - 11U) 58 return r + 10; 59 60 r = cdigit - 'a'; 61 if (r <= radix - 11U) 62 return r + 10; 63 64 radix = 10; 65 } 66 67 r = cdigit - '0'; 68 if (r < radix) 69 return r; 70 71 return -1U; 72 } 73 74 75 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { 76 pVal = getClearedMemory(getNumWords()); 77 pVal[0] = val; 78 if (isSigned && int64_t(val) < 0) 79 for (unsigned i = 1; i < getNumWords(); ++i) 80 pVal[i] = -1ULL; 81 } 82 83 void APInt::initSlowCase(const APInt& that) { 84 pVal = getMemory(getNumWords()); 85 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); 86 } 87 88 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 89 assert(BitWidth && "Bitwidth too small"); 90 assert(bigVal.data() && "Null pointer detected!"); 91 if (isSingleWord()) 92 VAL = bigVal[0]; 93 else { 94 // Get memory, cleared to 0 95 pVal = getClearedMemory(getNumWords()); 96 // Calculate the number of words to copy 97 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 98 // Copy the words from bigVal to pVal 99 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); 100 } 101 // Make sure unused high bits are cleared 102 clearUnusedBits(); 103 } 104 105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 106 : BitWidth(numBits), VAL(0) { 107 initFromArray(bigVal); 108 } 109 110 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 111 : BitWidth(numBits), VAL(0) { 112 initFromArray(makeArrayRef(bigVal, numWords)); 113 } 114 115 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 116 : BitWidth(numbits), VAL(0) { 117 assert(BitWidth && "Bitwidth too small"); 118 fromString(numbits, Str, radix); 119 } 120 121 APInt& APInt::AssignSlowCase(const APInt& RHS) { 122 // Don't do anything for X = X 123 if (this == &RHS) 124 return *this; 125 126 if (BitWidth == RHS.getBitWidth()) { 127 // assume same bit-width single-word case is already handled 128 assert(!isSingleWord()); 129 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); 130 return *this; 131 } 132 133 if (isSingleWord()) { 134 // assume case where both are single words is already handled 135 assert(!RHS.isSingleWord()); 136 VAL = 0; 137 pVal = getMemory(RHS.getNumWords()); 138 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 139 } else if (getNumWords() == RHS.getNumWords()) 140 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 141 else if (RHS.isSingleWord()) { 142 delete [] pVal; 143 VAL = RHS.VAL; 144 } else { 145 delete [] pVal; 146 pVal = getMemory(RHS.getNumWords()); 147 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 148 } 149 BitWidth = RHS.BitWidth; 150 return clearUnusedBits(); 151 } 152 153 APInt& APInt::operator=(uint64_t RHS) { 154 if (isSingleWord()) 155 VAL = RHS; 156 else { 157 pVal[0] = RHS; 158 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 159 } 160 return clearUnusedBits(); 161 } 162 163 /// Profile - This method 'profiles' an APInt for use with FoldingSet. 164 void APInt::Profile(FoldingSetNodeID& ID) const { 165 ID.AddInteger(BitWidth); 166 167 if (isSingleWord()) { 168 ID.AddInteger(VAL); 169 return; 170 } 171 172 unsigned NumWords = getNumWords(); 173 for (unsigned i = 0; i < NumWords; ++i) 174 ID.AddInteger(pVal[i]); 175 } 176 177 /// add_1 - This function adds a single "digit" integer, y, to the multiple 178 /// "digit" integer array, x[]. x[] is modified to reflect the addition and 179 /// 1 is returned if there is a carry out, otherwise 0 is returned. 180 /// @returns the carry of the addition. 181 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 182 for (unsigned i = 0; i < len; ++i) { 183 dest[i] = y + x[i]; 184 if (dest[i] < y) 185 y = 1; // Carry one to next digit. 186 else { 187 y = 0; // No need to carry so exit early 188 break; 189 } 190 } 191 return y; 192 } 193 194 /// @brief Prefix increment operator. Increments the APInt by one. 195 APInt& APInt::operator++() { 196 if (isSingleWord()) 197 ++VAL; 198 else 199 add_1(pVal, pVal, getNumWords(), 1); 200 return clearUnusedBits(); 201 } 202 203 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from 204 /// the multi-digit integer array, x[], propagating the borrowed 1 value until 205 /// no further borrowing is neeeded or it runs out of "digits" in x. The result 206 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. 207 /// In other words, if y > x then this function returns 1, otherwise 0. 208 /// @returns the borrow out of the subtraction 209 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { 210 for (unsigned i = 0; i < len; ++i) { 211 uint64_t X = x[i]; 212 x[i] -= y; 213 if (y > X) 214 y = 1; // We have to "borrow 1" from next "digit" 215 else { 216 y = 0; // No need to borrow 217 break; // Remaining digits are unchanged so exit early 218 } 219 } 220 return bool(y); 221 } 222 223 /// @brief Prefix decrement operator. Decrements the APInt by one. 224 APInt& APInt::operator--() { 225 if (isSingleWord()) 226 --VAL; 227 else 228 sub_1(pVal, getNumWords(), 1); 229 return clearUnusedBits(); 230 } 231 232 /// add - This function adds the integer array x to the integer array Y and 233 /// places the result in dest. 234 /// @returns the carry out from the addition 235 /// @brief General addition of 64-bit integer arrays 236 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, 237 unsigned len) { 238 bool carry = false; 239 for (unsigned i = 0; i< len; ++i) { 240 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x 241 dest[i] = x[i] + y[i] + carry; 242 carry = dest[i] < limit || (carry && dest[i] == limit); 243 } 244 return carry; 245 } 246 247 /// Adds the RHS APint to this APInt. 248 /// @returns this, after addition of RHS. 249 /// @brief Addition assignment operator. 250 APInt& APInt::operator+=(const APInt& RHS) { 251 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 252 if (isSingleWord()) 253 VAL += RHS.VAL; 254 else { 255 add(pVal, pVal, RHS.pVal, getNumWords()); 256 } 257 return clearUnusedBits(); 258 } 259 260 /// Subtracts the integer array y from the integer array x 261 /// @returns returns the borrow out. 262 /// @brief Generalized subtraction of 64-bit integer arrays. 263 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 264 unsigned len) { 265 bool borrow = false; 266 for (unsigned i = 0; i < len; ++i) { 267 uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; 268 borrow = y[i] > x_tmp || (borrow && x[i] == 0); 269 dest[i] = x_tmp - y[i]; 270 } 271 return borrow; 272 } 273 274 /// Subtracts the RHS APInt from this APInt 275 /// @returns this, after subtraction 276 /// @brief Subtraction assignment operator. 277 APInt& APInt::operator-=(const APInt& RHS) { 278 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 279 if (isSingleWord()) 280 VAL -= RHS.VAL; 281 else 282 sub(pVal, pVal, RHS.pVal, getNumWords()); 283 return clearUnusedBits(); 284 } 285 286 /// Multiplies an integer array, x, by a uint64_t integer and places the result 287 /// into dest. 288 /// @returns the carry out of the multiplication. 289 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. 290 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 291 // Split y into high 32-bit part (hy) and low 32-bit part (ly) 292 uint64_t ly = y & 0xffffffffULL, hy = y >> 32; 293 uint64_t carry = 0; 294 295 // For each digit of x. 296 for (unsigned i = 0; i < len; ++i) { 297 // Split x into high and low words 298 uint64_t lx = x[i] & 0xffffffffULL; 299 uint64_t hx = x[i] >> 32; 300 // hasCarry - A flag to indicate if there is a carry to the next digit. 301 // hasCarry == 0, no carry 302 // hasCarry == 1, has carry 303 // hasCarry == 2, no carry and the calculation result == 0. 304 uint8_t hasCarry = 0; 305 dest[i] = carry + lx * ly; 306 // Determine if the add above introduces carry. 307 hasCarry = (dest[i] < carry) ? 1 : 0; 308 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); 309 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 310 // (2^32 - 1) + 2^32 = 2^64. 311 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 312 313 carry += (lx * hy) & 0xffffffffULL; 314 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); 315 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 316 (carry >> 32) + ((lx * hy) >> 32) + hx * hy; 317 } 318 return carry; 319 } 320 321 /// Multiplies integer array x by integer array y and stores the result into 322 /// the integer array dest. Note that dest's size must be >= xlen + ylen. 323 /// @brief Generalized multiplicate of integer arrays. 324 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], 325 unsigned ylen) { 326 dest[xlen] = mul_1(dest, x, xlen, y[0]); 327 for (unsigned i = 1; i < ylen; ++i) { 328 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; 329 uint64_t carry = 0, lx = 0, hx = 0; 330 for (unsigned j = 0; j < xlen; ++j) { 331 lx = x[j] & 0xffffffffULL; 332 hx = x[j] >> 32; 333 // hasCarry - A flag to indicate if has carry. 334 // hasCarry == 0, no carry 335 // hasCarry == 1, has carry 336 // hasCarry == 2, no carry and the calculation result == 0. 337 uint8_t hasCarry = 0; 338 uint64_t resul = carry + lx * ly; 339 hasCarry = (resul < carry) ? 1 : 0; 340 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); 341 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 342 343 carry += (lx * hy) & 0xffffffffULL; 344 resul = (carry << 32) | (resul & 0xffffffffULL); 345 dest[i+j] += resul; 346 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ 347 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 348 ((lx * hy) >> 32) + hx * hy; 349 } 350 dest[i+xlen] = carry; 351 } 352 } 353 354 APInt& APInt::operator*=(const APInt& RHS) { 355 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 356 if (isSingleWord()) { 357 VAL *= RHS.VAL; 358 clearUnusedBits(); 359 return *this; 360 } 361 362 // Get some bit facts about LHS and check for zero 363 unsigned lhsBits = getActiveBits(); 364 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; 365 if (!lhsWords) 366 // 0 * X ===> 0 367 return *this; 368 369 // Get some bit facts about RHS and check for zero 370 unsigned rhsBits = RHS.getActiveBits(); 371 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; 372 if (!rhsWords) { 373 // X * 0 ===> 0 374 clearAllBits(); 375 return *this; 376 } 377 378 // Allocate space for the result 379 unsigned destWords = rhsWords + lhsWords; 380 uint64_t *dest = getMemory(destWords); 381 382 // Perform the long multiply 383 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); 384 385 // Copy result back into *this 386 clearAllBits(); 387 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; 388 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); 389 clearUnusedBits(); 390 391 // delete dest array and return 392 delete[] dest; 393 return *this; 394 } 395 396 APInt& APInt::operator&=(const APInt& RHS) { 397 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 398 if (isSingleWord()) { 399 VAL &= RHS.VAL; 400 return *this; 401 } 402 unsigned numWords = getNumWords(); 403 for (unsigned i = 0; i < numWords; ++i) 404 pVal[i] &= RHS.pVal[i]; 405 return *this; 406 } 407 408 APInt& APInt::operator|=(const APInt& RHS) { 409 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 410 if (isSingleWord()) { 411 VAL |= RHS.VAL; 412 return *this; 413 } 414 unsigned numWords = getNumWords(); 415 for (unsigned i = 0; i < numWords; ++i) 416 pVal[i] |= RHS.pVal[i]; 417 return *this; 418 } 419 420 APInt& APInt::operator^=(const APInt& RHS) { 421 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 422 if (isSingleWord()) { 423 VAL ^= RHS.VAL; 424 this->clearUnusedBits(); 425 return *this; 426 } 427 unsigned numWords = getNumWords(); 428 for (unsigned i = 0; i < numWords; ++i) 429 pVal[i] ^= RHS.pVal[i]; 430 return clearUnusedBits(); 431 } 432 433 APInt APInt::AndSlowCase(const APInt& RHS) const { 434 unsigned numWords = getNumWords(); 435 uint64_t* val = getMemory(numWords); 436 for (unsigned i = 0; i < numWords; ++i) 437 val[i] = pVal[i] & RHS.pVal[i]; 438 return APInt(val, getBitWidth()); 439 } 440 441 APInt APInt::OrSlowCase(const APInt& RHS) const { 442 unsigned numWords = getNumWords(); 443 uint64_t *val = getMemory(numWords); 444 for (unsigned i = 0; i < numWords; ++i) 445 val[i] = pVal[i] | RHS.pVal[i]; 446 return APInt(val, getBitWidth()); 447 } 448 449 APInt APInt::XorSlowCase(const APInt& RHS) const { 450 unsigned numWords = getNumWords(); 451 uint64_t *val = getMemory(numWords); 452 for (unsigned i = 0; i < numWords; ++i) 453 val[i] = pVal[i] ^ RHS.pVal[i]; 454 455 // 0^0==1 so clear the high bits in case they got set. 456 return APInt(val, getBitWidth()).clearUnusedBits(); 457 } 458 459 bool APInt::operator !() const { 460 if (isSingleWord()) 461 return !VAL; 462 463 for (unsigned i = 0; i < getNumWords(); ++i) 464 if (pVal[i]) 465 return false; 466 return true; 467 } 468 469 APInt APInt::operator*(const APInt& RHS) const { 470 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 471 if (isSingleWord()) 472 return APInt(BitWidth, VAL * RHS.VAL); 473 APInt Result(*this); 474 Result *= RHS; 475 return Result; 476 } 477 478 APInt APInt::operator+(const APInt& RHS) const { 479 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 480 if (isSingleWord()) 481 return APInt(BitWidth, VAL + RHS.VAL); 482 APInt Result(BitWidth, 0); 483 add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 484 return Result.clearUnusedBits(); 485 } 486 487 APInt APInt::operator-(const APInt& RHS) const { 488 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 489 if (isSingleWord()) 490 return APInt(BitWidth, VAL - RHS.VAL); 491 APInt Result(BitWidth, 0); 492 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 493 return Result.clearUnusedBits(); 494 } 495 496 bool APInt::operator[](unsigned bitPosition) const { 497 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 498 return (maskBit(bitPosition) & 499 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; 500 } 501 502 bool APInt::EqualSlowCase(const APInt& RHS) const { 503 // Get some facts about the number of bits used in the two operands. 504 unsigned n1 = getActiveBits(); 505 unsigned n2 = RHS.getActiveBits(); 506 507 // If the number of bits isn't the same, they aren't equal 508 if (n1 != n2) 509 return false; 510 511 // If the number of bits fits in a word, we only need to compare the low word. 512 if (n1 <= APINT_BITS_PER_WORD) 513 return pVal[0] == RHS.pVal[0]; 514 515 // Otherwise, compare everything 516 for (int i = whichWord(n1 - 1); i >= 0; --i) 517 if (pVal[i] != RHS.pVal[i]) 518 return false; 519 return true; 520 } 521 522 bool APInt::EqualSlowCase(uint64_t Val) const { 523 unsigned n = getActiveBits(); 524 if (n <= APINT_BITS_PER_WORD) 525 return pVal[0] == Val; 526 else 527 return false; 528 } 529 530 bool APInt::ult(const APInt& RHS) const { 531 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 532 if (isSingleWord()) 533 return VAL < RHS.VAL; 534 535 // Get active bit length of both operands 536 unsigned n1 = getActiveBits(); 537 unsigned n2 = RHS.getActiveBits(); 538 539 // If magnitude of LHS is less than RHS, return true. 540 if (n1 < n2) 541 return true; 542 543 // If magnitude of RHS is greather than LHS, return false. 544 if (n2 < n1) 545 return false; 546 547 // If they bot fit in a word, just compare the low order word 548 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) 549 return pVal[0] < RHS.pVal[0]; 550 551 // Otherwise, compare all words 552 unsigned topWord = whichWord(std::max(n1,n2)-1); 553 for (int i = topWord; i >= 0; --i) { 554 if (pVal[i] > RHS.pVal[i]) 555 return false; 556 if (pVal[i] < RHS.pVal[i]) 557 return true; 558 } 559 return false; 560 } 561 562 bool APInt::slt(const APInt& RHS) const { 563 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 564 if (isSingleWord()) { 565 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); 566 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); 567 return lhsSext < rhsSext; 568 } 569 570 APInt lhs(*this); 571 APInt rhs(RHS); 572 bool lhsNeg = isNegative(); 573 bool rhsNeg = rhs.isNegative(); 574 if (lhsNeg) { 575 // Sign bit is set so perform two's complement to make it positive 576 lhs.flipAllBits(); 577 lhs++; 578 } 579 if (rhsNeg) { 580 // Sign bit is set so perform two's complement to make it positive 581 rhs.flipAllBits(); 582 rhs++; 583 } 584 585 // Now we have unsigned values to compare so do the comparison if necessary 586 // based on the negativeness of the values. 587 if (lhsNeg) 588 if (rhsNeg) 589 return lhs.ugt(rhs); 590 else 591 return true; 592 else if (rhsNeg) 593 return false; 594 else 595 return lhs.ult(rhs); 596 } 597 598 void APInt::setBit(unsigned bitPosition) { 599 if (isSingleWord()) 600 VAL |= maskBit(bitPosition); 601 else 602 pVal[whichWord(bitPosition)] |= maskBit(bitPosition); 603 } 604 605 /// Set the given bit to 0 whose position is given as "bitPosition". 606 /// @brief Set a given bit to 0. 607 void APInt::clearBit(unsigned bitPosition) { 608 if (isSingleWord()) 609 VAL &= ~maskBit(bitPosition); 610 else 611 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); 612 } 613 614 /// @brief Toggle every bit to its opposite value. 615 616 /// Toggle a given bit to its opposite value whose position is given 617 /// as "bitPosition". 618 /// @brief Toggles a given bit to its opposite value. 619 void APInt::flipBit(unsigned bitPosition) { 620 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 621 if ((*this)[bitPosition]) clearBit(bitPosition); 622 else setBit(bitPosition); 623 } 624 625 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 626 assert(!str.empty() && "Invalid string length"); 627 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 628 radix == 36) && 629 "Radix should be 2, 8, 10, 16, or 36!"); 630 631 size_t slen = str.size(); 632 633 // Each computation below needs to know if it's negative. 634 StringRef::iterator p = str.begin(); 635 unsigned isNegative = *p == '-'; 636 if (*p == '-' || *p == '+') { 637 p++; 638 slen--; 639 assert(slen && "String is only a sign, needs a value."); 640 } 641 642 // For radixes of power-of-two values, the bits required is accurately and 643 // easily computed 644 if (radix == 2) 645 return slen + isNegative; 646 if (radix == 8) 647 return slen * 3 + isNegative; 648 if (radix == 16) 649 return slen * 4 + isNegative; 650 651 // FIXME: base 36 652 653 // This is grossly inefficient but accurate. We could probably do something 654 // with a computation of roughly slen*64/20 and then adjust by the value of 655 // the first few digits. But, I'm not sure how accurate that could be. 656 657 // Compute a sufficient number of bits that is always large enough but might 658 // be too large. This avoids the assertion in the constructor. This 659 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 660 // bits in that case. 661 unsigned sufficient 662 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 663 : (slen == 1 ? 7 : slen * 16/3); 664 665 // Convert to the actual binary value. 666 APInt tmp(sufficient, StringRef(p, slen), radix); 667 668 // Compute how many bits are required. If the log is infinite, assume we need 669 // just bit. 670 unsigned log = tmp.logBase2(); 671 if (log == (unsigned)-1) { 672 return isNegative + 1; 673 } else { 674 return isNegative + log + 1; 675 } 676 } 677 678 // From http://www.burtleburtle.net, byBob Jenkins. 679 // When targeting x86, both GCC and LLVM seem to recognize this as a 680 // rotate instruction. 681 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) 682 683 // From http://www.burtleburtle.net, by Bob Jenkins. 684 #define mix(a,b,c) \ 685 { \ 686 a -= c; a ^= rot(c, 4); c += b; \ 687 b -= a; b ^= rot(a, 6); a += c; \ 688 c -= b; c ^= rot(b, 8); b += a; \ 689 a -= c; a ^= rot(c,16); c += b; \ 690 b -= a; b ^= rot(a,19); a += c; \ 691 c -= b; c ^= rot(b, 4); b += a; \ 692 } 693 694 // From http://www.burtleburtle.net, by Bob Jenkins. 695 #define final(a,b,c) \ 696 { \ 697 c ^= b; c -= rot(b,14); \ 698 a ^= c; a -= rot(c,11); \ 699 b ^= a; b -= rot(a,25); \ 700 c ^= b; c -= rot(b,16); \ 701 a ^= c; a -= rot(c,4); \ 702 b ^= a; b -= rot(a,14); \ 703 c ^= b; c -= rot(b,24); \ 704 } 705 706 // hashword() was adapted from http://www.burtleburtle.net, by Bob 707 // Jenkins. k is a pointer to an array of uint32_t values; length is 708 // the length of the key, in 32-bit chunks. This version only handles 709 // keys that are a multiple of 32 bits in size. 710 static inline uint32_t hashword(const uint64_t *k64, size_t length) 711 { 712 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64); 713 uint32_t a,b,c; 714 715 /* Set up the internal state */ 716 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2); 717 718 /*------------------------------------------------- handle most of the key */ 719 while (length > 3) { 720 a += k[0]; 721 b += k[1]; 722 c += k[2]; 723 mix(a,b,c); 724 length -= 3; 725 k += 3; 726 } 727 728 /*------------------------------------------- handle the last 3 uint32_t's */ 729 switch (length) { /* all the case statements fall through */ 730 case 3 : c+=k[2]; 731 case 2 : b+=k[1]; 732 case 1 : a+=k[0]; 733 final(a,b,c); 734 case 0: /* case 0: nothing left to add */ 735 break; 736 } 737 /*------------------------------------------------------ report the result */ 738 return c; 739 } 740 741 // hashword8() was adapted from http://www.burtleburtle.net, by Bob 742 // Jenkins. This computes a 32-bit hash from one 64-bit word. When 743 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this 744 // function into about 35 instructions when inlined. 745 static inline uint32_t hashword8(const uint64_t k64) 746 { 747 uint32_t a,b,c; 748 a = b = c = 0xdeadbeef + 4; 749 b += k64 >> 32; 750 a += k64 & 0xffffffff; 751 final(a,b,c); 752 return c; 753 } 754 #undef final 755 #undef mix 756 #undef rot 757 758 uint64_t APInt::getHashValue() const { 759 uint64_t hash; 760 if (isSingleWord()) 761 hash = hashword8(VAL); 762 else 763 hash = hashword(pVal, getNumWords()*2); 764 return hash; 765 } 766 767 /// HiBits - This function returns the high "numBits" bits of this APInt. 768 APInt APInt::getHiBits(unsigned numBits) const { 769 return APIntOps::lshr(*this, BitWidth - numBits); 770 } 771 772 /// LoBits - This function returns the low "numBits" bits of this APInt. 773 APInt APInt::getLoBits(unsigned numBits) const { 774 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 775 BitWidth - numBits); 776 } 777 778 unsigned APInt::countLeadingZerosSlowCase() const { 779 // Treat the most significand word differently because it might have 780 // meaningless bits set beyond the precision. 781 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; 782 integerPart MSWMask; 783 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; 784 else { 785 MSWMask = ~integerPart(0); 786 BitsInMSW = APINT_BITS_PER_WORD; 787 } 788 789 unsigned i = getNumWords(); 790 integerPart MSW = pVal[i-1] & MSWMask; 791 if (MSW) 792 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); 793 794 unsigned Count = BitsInMSW; 795 for (--i; i > 0u; --i) { 796 if (pVal[i-1] == 0) 797 Count += APINT_BITS_PER_WORD; 798 else { 799 Count += CountLeadingZeros_64(pVal[i-1]); 800 break; 801 } 802 } 803 return Count; 804 } 805 806 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) { 807 unsigned Count = 0; 808 if (skip) 809 V <<= skip; 810 while (V && (V & (1ULL << 63))) { 811 Count++; 812 V <<= 1; 813 } 814 return Count; 815 } 816 817 unsigned APInt::countLeadingOnes() const { 818 if (isSingleWord()) 819 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); 820 821 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 822 unsigned shift; 823 if (!highWordBits) { 824 highWordBits = APINT_BITS_PER_WORD; 825 shift = 0; 826 } else { 827 shift = APINT_BITS_PER_WORD - highWordBits; 828 } 829 int i = getNumWords() - 1; 830 unsigned Count = countLeadingOnes_64(pVal[i], shift); 831 if (Count == highWordBits) { 832 for (i--; i >= 0; --i) { 833 if (pVal[i] == -1ULL) 834 Count += APINT_BITS_PER_WORD; 835 else { 836 Count += countLeadingOnes_64(pVal[i], 0); 837 break; 838 } 839 } 840 } 841 return Count; 842 } 843 844 unsigned APInt::countTrailingZeros() const { 845 if (isSingleWord()) 846 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth); 847 unsigned Count = 0; 848 unsigned i = 0; 849 for (; i < getNumWords() && pVal[i] == 0; ++i) 850 Count += APINT_BITS_PER_WORD; 851 if (i < getNumWords()) 852 Count += CountTrailingZeros_64(pVal[i]); 853 return std::min(Count, BitWidth); 854 } 855 856 unsigned APInt::countTrailingOnesSlowCase() const { 857 unsigned Count = 0; 858 unsigned i = 0; 859 for (; i < getNumWords() && pVal[i] == -1ULL; ++i) 860 Count += APINT_BITS_PER_WORD; 861 if (i < getNumWords()) 862 Count += CountTrailingOnes_64(pVal[i]); 863 return std::min(Count, BitWidth); 864 } 865 866 unsigned APInt::countPopulationSlowCase() const { 867 unsigned Count = 0; 868 for (unsigned i = 0; i < getNumWords(); ++i) 869 Count += CountPopulation_64(pVal[i]); 870 return Count; 871 } 872 873 /// Perform a logical right-shift from Src to Dst, which must be equal or 874 /// non-overlapping, of Words words, by Shift, which must be less than 64. 875 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, 876 unsigned Shift) { 877 uint64_t Carry = 0; 878 for (int I = Words - 1; I >= 0; --I) { 879 uint64_t Tmp = Src[I]; 880 Dst[I] = (Tmp >> Shift) | Carry; 881 Carry = Tmp << (64 - Shift); 882 } 883 } 884 885 APInt APInt::byteSwap() const { 886 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 887 if (BitWidth == 16) 888 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); 889 if (BitWidth == 32) 890 return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); 891 if (BitWidth == 48) { 892 unsigned Tmp1 = unsigned(VAL >> 16); 893 Tmp1 = ByteSwap_32(Tmp1); 894 uint16_t Tmp2 = uint16_t(VAL); 895 Tmp2 = ByteSwap_16(Tmp2); 896 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 897 } 898 if (BitWidth == 64) 899 return APInt(BitWidth, ByteSwap_64(VAL)); 900 901 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 902 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 903 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); 904 if (Result.BitWidth != BitWidth) { 905 lshrNear(Result.pVal, Result.pVal, getNumWords(), 906 Result.BitWidth - BitWidth); 907 Result.BitWidth = BitWidth; 908 } 909 return Result; 910 } 911 912 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 913 const APInt& API2) { 914 APInt A = API1, B = API2; 915 while (!!B) { 916 APInt T = B; 917 B = APIntOps::urem(A, B); 918 A = T; 919 } 920 return A; 921 } 922 923 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 924 union { 925 double D; 926 uint64_t I; 927 } T; 928 T.D = Double; 929 930 // Get the sign bit from the highest order bit 931 bool isNeg = T.I >> 63; 932 933 // Get the 11-bit exponent and adjust for the 1023 bit bias 934 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 935 936 // If the exponent is negative, the value is < 0 so just return 0. 937 if (exp < 0) 938 return APInt(width, 0u); 939 940 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 941 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 942 943 // If the exponent doesn't shift all bits out of the mantissa 944 if (exp < 52) 945 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 946 APInt(width, mantissa >> (52 - exp)); 947 948 // If the client didn't provide enough bits for us to shift the mantissa into 949 // then the result is undefined, just return 0 950 if (width <= exp - 52) 951 return APInt(width, 0); 952 953 // Otherwise, we have to shift the mantissa bits up to the right location 954 APInt Tmp(width, mantissa); 955 Tmp = Tmp.shl((unsigned)exp - 52); 956 return isNeg ? -Tmp : Tmp; 957 } 958 959 /// RoundToDouble - This function converts this APInt to a double. 960 /// The layout for double is as following (IEEE Standard 754): 961 /// -------------------------------------- 962 /// | Sign Exponent Fraction Bias | 963 /// |-------------------------------------- | 964 /// | 1[63] 11[62-52] 52[51-00] 1023 | 965 /// -------------------------------------- 966 double APInt::roundToDouble(bool isSigned) const { 967 968 // Handle the simple case where the value is contained in one uint64_t. 969 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 970 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 971 if (isSigned) { 972 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); 973 return double(sext); 974 } else 975 return double(getWord(0)); 976 } 977 978 // Determine if the value is negative. 979 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 980 981 // Construct the absolute value if we're negative. 982 APInt Tmp(isNeg ? -(*this) : (*this)); 983 984 // Figure out how many bits we're using. 985 unsigned n = Tmp.getActiveBits(); 986 987 // The exponent (without bias normalization) is just the number of bits 988 // we are using. Note that the sign bit is gone since we constructed the 989 // absolute value. 990 uint64_t exp = n; 991 992 // Return infinity for exponent overflow 993 if (exp > 1023) { 994 if (!isSigned || !isNeg) 995 return std::numeric_limits<double>::infinity(); 996 else 997 return -std::numeric_limits<double>::infinity(); 998 } 999 exp += 1023; // Increment for 1023 bias 1000 1001 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 1002 // extract the high 52 bits from the correct words in pVal. 1003 uint64_t mantissa; 1004 unsigned hiWord = whichWord(n-1); 1005 if (hiWord == 0) { 1006 mantissa = Tmp.pVal[0]; 1007 if (n > 52) 1008 mantissa >>= n - 52; // shift down, we want the top 52 bits. 1009 } else { 1010 assert(hiWord > 0 && "huh?"); 1011 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 1012 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 1013 mantissa = hibits | lobits; 1014 } 1015 1016 // The leading bit of mantissa is implicit, so get rid of it. 1017 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 1018 union { 1019 double D; 1020 uint64_t I; 1021 } T; 1022 T.I = sign | (exp << 52) | mantissa; 1023 return T.D; 1024 } 1025 1026 // Truncate to new width. 1027 APInt APInt::trunc(unsigned width) const { 1028 assert(width < BitWidth && "Invalid APInt Truncate request"); 1029 assert(width && "Can't truncate to 0 bits"); 1030 1031 if (width <= APINT_BITS_PER_WORD) 1032 return APInt(width, getRawData()[0]); 1033 1034 APInt Result(getMemory(getNumWords(width)), width); 1035 1036 // Copy full words. 1037 unsigned i; 1038 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 1039 Result.pVal[i] = pVal[i]; 1040 1041 // Truncate and copy any partial word. 1042 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 1043 if (bits != 0) 1044 Result.pVal[i] = pVal[i] << bits >> bits; 1045 1046 return Result; 1047 } 1048 1049 // Sign extend to a new width. 1050 APInt APInt::sext(unsigned width) const { 1051 assert(width > BitWidth && "Invalid APInt SignExtend request"); 1052 1053 if (width <= APINT_BITS_PER_WORD) { 1054 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); 1055 val = (int64_t)val >> (width - BitWidth); 1056 return APInt(width, val >> (APINT_BITS_PER_WORD - width)); 1057 } 1058 1059 APInt Result(getMemory(getNumWords(width)), width); 1060 1061 // Copy full words. 1062 unsigned i; 1063 uint64_t word = 0; 1064 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { 1065 word = getRawData()[i]; 1066 Result.pVal[i] = word; 1067 } 1068 1069 // Read and sign-extend any partial word. 1070 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; 1071 if (bits != 0) 1072 word = (int64_t)getRawData()[i] << bits >> bits; 1073 else 1074 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 1075 1076 // Write remaining full words. 1077 for (; i != width / APINT_BITS_PER_WORD; i++) { 1078 Result.pVal[i] = word; 1079 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 1080 } 1081 1082 // Write any partial word. 1083 bits = (0 - width) % APINT_BITS_PER_WORD; 1084 if (bits != 0) 1085 Result.pVal[i] = word << bits >> bits; 1086 1087 return Result; 1088 } 1089 1090 // Zero extend to a new width. 1091 APInt APInt::zext(unsigned width) const { 1092 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 1093 1094 if (width <= APINT_BITS_PER_WORD) 1095 return APInt(width, VAL); 1096 1097 APInt Result(getMemory(getNumWords(width)), width); 1098 1099 // Copy words. 1100 unsigned i; 1101 for (i = 0; i != getNumWords(); i++) 1102 Result.pVal[i] = getRawData()[i]; 1103 1104 // Zero remaining words. 1105 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); 1106 1107 return Result; 1108 } 1109 1110 APInt APInt::zextOrTrunc(unsigned width) const { 1111 if (BitWidth < width) 1112 return zext(width); 1113 if (BitWidth > width) 1114 return trunc(width); 1115 return *this; 1116 } 1117 1118 APInt APInt::sextOrTrunc(unsigned width) const { 1119 if (BitWidth < width) 1120 return sext(width); 1121 if (BitWidth > width) 1122 return trunc(width); 1123 return *this; 1124 } 1125 1126 /// Arithmetic right-shift this APInt by shiftAmt. 1127 /// @brief Arithmetic right-shift function. 1128 APInt APInt::ashr(const APInt &shiftAmt) const { 1129 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1130 } 1131 1132 /// Arithmetic right-shift this APInt by shiftAmt. 1133 /// @brief Arithmetic right-shift function. 1134 APInt APInt::ashr(unsigned shiftAmt) const { 1135 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 1136 // Handle a degenerate case 1137 if (shiftAmt == 0) 1138 return *this; 1139 1140 // Handle single word shifts with built-in ashr 1141 if (isSingleWord()) { 1142 if (shiftAmt == BitWidth) 1143 return APInt(BitWidth, 0); // undefined 1144 else { 1145 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; 1146 return APInt(BitWidth, 1147 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); 1148 } 1149 } 1150 1151 // If all the bits were shifted out, the result is, technically, undefined. 1152 // We return -1 if it was negative, 0 otherwise. We check this early to avoid 1153 // issues in the algorithm below. 1154 if (shiftAmt == BitWidth) { 1155 if (isNegative()) 1156 return APInt(BitWidth, -1ULL, true); 1157 else 1158 return APInt(BitWidth, 0); 1159 } 1160 1161 // Create some space for the result. 1162 uint64_t * val = new uint64_t[getNumWords()]; 1163 1164 // Compute some values needed by the following shift algorithms 1165 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word 1166 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift 1167 unsigned breakWord = getNumWords() - 1 - offset; // last word affected 1168 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? 1169 if (bitsInWord == 0) 1170 bitsInWord = APINT_BITS_PER_WORD; 1171 1172 // If we are shifting whole words, just move whole words 1173 if (wordShift == 0) { 1174 // Move the words containing significant bits 1175 for (unsigned i = 0; i <= breakWord; ++i) 1176 val[i] = pVal[i+offset]; // move whole word 1177 1178 // Adjust the top significant word for sign bit fill, if negative 1179 if (isNegative()) 1180 if (bitsInWord < APINT_BITS_PER_WORD) 1181 val[breakWord] |= ~0ULL << bitsInWord; // set high bits 1182 } else { 1183 // Shift the low order words 1184 for (unsigned i = 0; i < breakWord; ++i) { 1185 // This combines the shifted corresponding word with the low bits from 1186 // the next word (shifted into this word's high bits). 1187 val[i] = (pVal[i+offset] >> wordShift) | 1188 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1189 } 1190 1191 // Shift the break word. In this case there are no bits from the next word 1192 // to include in this word. 1193 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1194 1195 // Deal with sign extenstion in the break word, and possibly the word before 1196 // it. 1197 if (isNegative()) { 1198 if (wordShift > bitsInWord) { 1199 if (breakWord > 0) 1200 val[breakWord-1] |= 1201 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); 1202 val[breakWord] |= ~0ULL; 1203 } else 1204 val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); 1205 } 1206 } 1207 1208 // Remaining words are 0 or -1, just assign them. 1209 uint64_t fillValue = (isNegative() ? -1ULL : 0); 1210 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1211 val[i] = fillValue; 1212 return APInt(val, BitWidth).clearUnusedBits(); 1213 } 1214 1215 /// Logical right-shift this APInt by shiftAmt. 1216 /// @brief Logical right-shift function. 1217 APInt APInt::lshr(const APInt &shiftAmt) const { 1218 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1219 } 1220 1221 /// Logical right-shift this APInt by shiftAmt. 1222 /// @brief Logical right-shift function. 1223 APInt APInt::lshr(unsigned shiftAmt) const { 1224 if (isSingleWord()) { 1225 if (shiftAmt == BitWidth) 1226 return APInt(BitWidth, 0); 1227 else 1228 return APInt(BitWidth, this->VAL >> shiftAmt); 1229 } 1230 1231 // If all the bits were shifted out, the result is 0. This avoids issues 1232 // with shifting by the size of the integer type, which produces undefined 1233 // results. We define these "undefined results" to always be 0. 1234 if (shiftAmt == BitWidth) 1235 return APInt(BitWidth, 0); 1236 1237 // If none of the bits are shifted out, the result is *this. This avoids 1238 // issues with shifting by the size of the integer type, which produces 1239 // undefined results in the code below. This is also an optimization. 1240 if (shiftAmt == 0) 1241 return *this; 1242 1243 // Create some space for the result. 1244 uint64_t * val = new uint64_t[getNumWords()]; 1245 1246 // If we are shifting less than a word, compute the shift with a simple carry 1247 if (shiftAmt < APINT_BITS_PER_WORD) { 1248 lshrNear(val, pVal, getNumWords(), shiftAmt); 1249 return APInt(val, BitWidth).clearUnusedBits(); 1250 } 1251 1252 // Compute some values needed by the remaining shift algorithms 1253 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1254 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1255 1256 // If we are shifting whole words, just move whole words 1257 if (wordShift == 0) { 1258 for (unsigned i = 0; i < getNumWords() - offset; ++i) 1259 val[i] = pVal[i+offset]; 1260 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) 1261 val[i] = 0; 1262 return APInt(val,BitWidth).clearUnusedBits(); 1263 } 1264 1265 // Shift the low order words 1266 unsigned breakWord = getNumWords() - offset -1; 1267 for (unsigned i = 0; i < breakWord; ++i) 1268 val[i] = (pVal[i+offset] >> wordShift) | 1269 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1270 // Shift the break word. 1271 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1272 1273 // Remaining words are 0 1274 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1275 val[i] = 0; 1276 return APInt(val, BitWidth).clearUnusedBits(); 1277 } 1278 1279 /// Left-shift this APInt by shiftAmt. 1280 /// @brief Left-shift function. 1281 APInt APInt::shl(const APInt &shiftAmt) const { 1282 // It's undefined behavior in C to shift by BitWidth or greater. 1283 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1284 } 1285 1286 APInt APInt::shlSlowCase(unsigned shiftAmt) const { 1287 // If all the bits were shifted out, the result is 0. This avoids issues 1288 // with shifting by the size of the integer type, which produces undefined 1289 // results. We define these "undefined results" to always be 0. 1290 if (shiftAmt == BitWidth) 1291 return APInt(BitWidth, 0); 1292 1293 // If none of the bits are shifted out, the result is *this. This avoids a 1294 // lshr by the words size in the loop below which can produce incorrect 1295 // results. It also avoids the expensive computation below for a common case. 1296 if (shiftAmt == 0) 1297 return *this; 1298 1299 // Create some space for the result. 1300 uint64_t * val = new uint64_t[getNumWords()]; 1301 1302 // If we are shifting less than a word, do it the easy way 1303 if (shiftAmt < APINT_BITS_PER_WORD) { 1304 uint64_t carry = 0; 1305 for (unsigned i = 0; i < getNumWords(); i++) { 1306 val[i] = pVal[i] << shiftAmt | carry; 1307 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); 1308 } 1309 return APInt(val, BitWidth).clearUnusedBits(); 1310 } 1311 1312 // Compute some values needed by the remaining shift algorithms 1313 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1314 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1315 1316 // If we are shifting whole words, just move whole words 1317 if (wordShift == 0) { 1318 for (unsigned i = 0; i < offset; i++) 1319 val[i] = 0; 1320 for (unsigned i = offset; i < getNumWords(); i++) 1321 val[i] = pVal[i-offset]; 1322 return APInt(val,BitWidth).clearUnusedBits(); 1323 } 1324 1325 // Copy whole words from this to Result. 1326 unsigned i = getNumWords() - 1; 1327 for (; i > offset; --i) 1328 val[i] = pVal[i-offset] << wordShift | 1329 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); 1330 val[offset] = pVal[0] << wordShift; 1331 for (i = 0; i < offset; ++i) 1332 val[i] = 0; 1333 return APInt(val, BitWidth).clearUnusedBits(); 1334 } 1335 1336 APInt APInt::rotl(const APInt &rotateAmt) const { 1337 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1338 } 1339 1340 APInt APInt::rotl(unsigned rotateAmt) const { 1341 rotateAmt %= BitWidth; 1342 if (rotateAmt == 0) 1343 return *this; 1344 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1345 } 1346 1347 APInt APInt::rotr(const APInt &rotateAmt) const { 1348 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1349 } 1350 1351 APInt APInt::rotr(unsigned rotateAmt) const { 1352 rotateAmt %= BitWidth; 1353 if (rotateAmt == 0) 1354 return *this; 1355 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1356 } 1357 1358 // Square Root - this method computes and returns the square root of "this". 1359 // Three mechanisms are used for computation. For small values (<= 5 bits), 1360 // a table lookup is done. This gets some performance for common cases. For 1361 // values using less than 52 bits, the value is converted to double and then 1362 // the libc sqrt function is called. The result is rounded and then converted 1363 // back to a uint64_t which is then used to construct the result. Finally, 1364 // the Babylonian method for computing square roots is used. 1365 APInt APInt::sqrt() const { 1366 1367 // Determine the magnitude of the value. 1368 unsigned magnitude = getActiveBits(); 1369 1370 // Use a fast table for some small values. This also gets rid of some 1371 // rounding errors in libc sqrt for small values. 1372 if (magnitude <= 5) { 1373 static const uint8_t results[32] = { 1374 /* 0 */ 0, 1375 /* 1- 2 */ 1, 1, 1376 /* 3- 6 */ 2, 2, 2, 2, 1377 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1378 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1379 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1380 /* 31 */ 6 1381 }; 1382 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); 1383 } 1384 1385 // If the magnitude of the value fits in less than 52 bits (the precision of 1386 // an IEEE double precision floating point value), then we can use the 1387 // libc sqrt function which will probably use a hardware sqrt computation. 1388 // This should be faster than the algorithm below. 1389 if (magnitude < 52) { 1390 #if HAVE_ROUND 1391 return APInt(BitWidth, 1392 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); 1393 #else 1394 return APInt(BitWidth, 1395 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5)); 1396 #endif 1397 } 1398 1399 // Okay, all the short cuts are exhausted. We must compute it. The following 1400 // is a classical Babylonian method for computing the square root. This code 1401 // was adapted to APINt from a wikipedia article on such computations. 1402 // See http://www.wikipedia.org/ and go to the page named 1403 // Calculate_an_integer_square_root. 1404 unsigned nbits = BitWidth, i = 4; 1405 APInt testy(BitWidth, 16); 1406 APInt x_old(BitWidth, 1); 1407 APInt x_new(BitWidth, 0); 1408 APInt two(BitWidth, 2); 1409 1410 // Select a good starting value using binary logarithms. 1411 for (;; i += 2, testy = testy.shl(2)) 1412 if (i >= nbits || this->ule(testy)) { 1413 x_old = x_old.shl(i / 2); 1414 break; 1415 } 1416 1417 // Use the Babylonian method to arrive at the integer square root: 1418 for (;;) { 1419 x_new = (this->udiv(x_old) + x_old).udiv(two); 1420 if (x_old.ule(x_new)) 1421 break; 1422 x_old = x_new; 1423 } 1424 1425 // Make sure we return the closest approximation 1426 // NOTE: The rounding calculation below is correct. It will produce an 1427 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1428 // determined to be a rounding issue with pari/gp as it begins to use a 1429 // floating point representation after 192 bits. There are no discrepancies 1430 // between this algorithm and pari/gp for bit widths < 192 bits. 1431 APInt square(x_old * x_old); 1432 APInt nextSquare((x_old + 1) * (x_old +1)); 1433 if (this->ult(square)) 1434 return x_old; 1435 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1436 APInt midpoint((nextSquare - square).udiv(two)); 1437 APInt offset(*this - square); 1438 if (offset.ult(midpoint)) 1439 return x_old; 1440 return x_old + 1; 1441 } 1442 1443 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1444 /// iterative extended Euclidean algorithm is used to solve for this value, 1445 /// however we simplify it to speed up calculating only the inverse, and take 1446 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1447 /// (potentially large) APInts around. 1448 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1449 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1450 1451 // Using the properties listed at the following web page (accessed 06/21/08): 1452 // http://www.numbertheory.org/php/euclid.html 1453 // (especially the properties numbered 3, 4 and 9) it can be proved that 1454 // BitWidth bits suffice for all the computations in the algorithm implemented 1455 // below. More precisely, this number of bits suffice if the multiplicative 1456 // inverse exists, but may not suffice for the general extended Euclidean 1457 // algorithm. 1458 1459 APInt r[2] = { modulo, *this }; 1460 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1461 APInt q(BitWidth, 0); 1462 1463 unsigned i; 1464 for (i = 0; r[i^1] != 0; i ^= 1) { 1465 // An overview of the math without the confusing bit-flipping: 1466 // q = r[i-2] / r[i-1] 1467 // r[i] = r[i-2] % r[i-1] 1468 // t[i] = t[i-2] - t[i-1] * q 1469 udivrem(r[i], r[i^1], q, r[i]); 1470 t[i] -= t[i^1] * q; 1471 } 1472 1473 // If this APInt and the modulo are not coprime, there is no multiplicative 1474 // inverse, so return 0. We check this by looking at the next-to-last 1475 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1476 // algorithm. 1477 if (r[i] != 1) 1478 return APInt(BitWidth, 0); 1479 1480 // The next-to-last t is the multiplicative inverse. However, we are 1481 // interested in a positive inverse. Calcuate a positive one from a negative 1482 // one if necessary. A simple addition of the modulo suffices because 1483 // abs(t[i]) is known to be less than *this/2 (see the link above). 1484 return t[i].isNegative() ? t[i] + modulo : t[i]; 1485 } 1486 1487 /// Calculate the magic numbers required to implement a signed integer division 1488 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1489 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1490 /// Warren, Jr., chapter 10. 1491 APInt::ms APInt::magic() const { 1492 const APInt& d = *this; 1493 unsigned p; 1494 APInt ad, anc, delta, q1, r1, q2, r2, t; 1495 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1496 struct ms mag; 1497 1498 ad = d.abs(); 1499 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1500 anc = t - 1 - t.urem(ad); // absolute value of nc 1501 p = d.getBitWidth() - 1; // initialize p 1502 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1503 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1504 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1505 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1506 do { 1507 p = p + 1; 1508 q1 = q1<<1; // update q1 = 2p/abs(nc) 1509 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1510 if (r1.uge(anc)) { // must be unsigned comparison 1511 q1 = q1 + 1; 1512 r1 = r1 - anc; 1513 } 1514 q2 = q2<<1; // update q2 = 2p/abs(d) 1515 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1516 if (r2.uge(ad)) { // must be unsigned comparison 1517 q2 = q2 + 1; 1518 r2 = r2 - ad; 1519 } 1520 delta = ad - r2; 1521 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1522 1523 mag.m = q2 + 1; 1524 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1525 mag.s = p - d.getBitWidth(); // resulting shift 1526 return mag; 1527 } 1528 1529 /// Calculate the magic numbers required to implement an unsigned integer 1530 /// division by a constant as a sequence of multiplies, adds and shifts. 1531 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1532 /// S. Warren, Jr., chapter 10. 1533 /// LeadingZeros can be used to simplify the calculation if the upper bits 1534 /// of the divided value are known zero. 1535 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1536 const APInt& d = *this; 1537 unsigned p; 1538 APInt nc, delta, q1, r1, q2, r2; 1539 struct mu magu; 1540 magu.a = 0; // initialize "add" indicator 1541 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1542 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1543 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1544 1545 nc = allOnes - (-d).urem(d); 1546 p = d.getBitWidth() - 1; // initialize p 1547 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1548 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1549 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1550 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1551 do { 1552 p = p + 1; 1553 if (r1.uge(nc - r1)) { 1554 q1 = q1 + q1 + 1; // update q1 1555 r1 = r1 + r1 - nc; // update r1 1556 } 1557 else { 1558 q1 = q1+q1; // update q1 1559 r1 = r1+r1; // update r1 1560 } 1561 if ((r2 + 1).uge(d - r2)) { 1562 if (q2.uge(signedMax)) magu.a = 1; 1563 q2 = q2+q2 + 1; // update q2 1564 r2 = r2+r2 + 1 - d; // update r2 1565 } 1566 else { 1567 if (q2.uge(signedMin)) magu.a = 1; 1568 q2 = q2+q2; // update q2 1569 r2 = r2+r2 + 1; // update r2 1570 } 1571 delta = d - 1 - r2; 1572 } while (p < d.getBitWidth()*2 && 1573 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1574 magu.m = q2 + 1; // resulting magic number 1575 magu.s = p - d.getBitWidth(); // resulting shift 1576 return magu; 1577 } 1578 1579 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1580 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1581 /// variables here have the same names as in the algorithm. Comments explain 1582 /// the algorithm and any deviation from it. 1583 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, 1584 unsigned m, unsigned n) { 1585 assert(u && "Must provide dividend"); 1586 assert(v && "Must provide divisor"); 1587 assert(q && "Must provide quotient"); 1588 assert(u != v && u != q && v != q && "Must us different memory"); 1589 assert(n>1 && "n must be > 1"); 1590 1591 // Knuth uses the value b as the base of the number system. In our case b 1592 // is 2^31 so we just set it to -1u. 1593 uint64_t b = uint64_t(1) << 32; 1594 1595 #if 0 1596 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1597 DEBUG(dbgs() << "KnuthDiv: original:"); 1598 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1599 DEBUG(dbgs() << " by"); 1600 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1601 DEBUG(dbgs() << '\n'); 1602 #endif 1603 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1604 // u and v by d. Note that we have taken Knuth's advice here to use a power 1605 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1606 // 2 allows us to shift instead of multiply and it is easy to determine the 1607 // shift amount from the leading zeros. We are basically normalizing the u 1608 // and v so that its high bits are shifted to the top of v's range without 1609 // overflow. Note that this can require an extra word in u so that u must 1610 // be of length m+n+1. 1611 unsigned shift = CountLeadingZeros_32(v[n-1]); 1612 unsigned v_carry = 0; 1613 unsigned u_carry = 0; 1614 if (shift) { 1615 for (unsigned i = 0; i < m+n; ++i) { 1616 unsigned u_tmp = u[i] >> (32 - shift); 1617 u[i] = (u[i] << shift) | u_carry; 1618 u_carry = u_tmp; 1619 } 1620 for (unsigned i = 0; i < n; ++i) { 1621 unsigned v_tmp = v[i] >> (32 - shift); 1622 v[i] = (v[i] << shift) | v_carry; 1623 v_carry = v_tmp; 1624 } 1625 } 1626 u[m+n] = u_carry; 1627 #if 0 1628 DEBUG(dbgs() << "KnuthDiv: normal:"); 1629 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1630 DEBUG(dbgs() << " by"); 1631 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1632 DEBUG(dbgs() << '\n'); 1633 #endif 1634 1635 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1636 int j = m; 1637 do { 1638 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1639 // D3. [Calculate q'.]. 1640 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1641 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1642 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1643 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test 1644 // on v[n-2] determines at high speed most of the cases in which the trial 1645 // value qp is one too large, and it eliminates all cases where qp is two 1646 // too large. 1647 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); 1648 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1649 uint64_t qp = dividend / v[n-1]; 1650 uint64_t rp = dividend % v[n-1]; 1651 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1652 qp--; 1653 rp += v[n-1]; 1654 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1655 qp--; 1656 } 1657 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1658 1659 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1660 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1661 // consists of a simple multiplication by a one-place number, combined with 1662 // a subtraction. 1663 bool isNeg = false; 1664 for (unsigned i = 0; i < n; ++i) { 1665 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); 1666 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); 1667 bool borrow = subtrahend > u_tmp; 1668 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp 1669 << ", subtrahend == " << subtrahend 1670 << ", borrow = " << borrow << '\n'); 1671 1672 uint64_t result = u_tmp - subtrahend; 1673 unsigned k = j + i; 1674 u[k++] = (unsigned)(result & (b-1)); // subtract low word 1675 u[k++] = (unsigned)(result >> 32); // subtract high word 1676 while (borrow && k <= m+n) { // deal with borrow to the left 1677 borrow = u[k] == 0; 1678 u[k]--; 1679 k++; 1680 } 1681 isNeg |= borrow; 1682 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << 1683 u[j+i+1] << '\n'); 1684 } 1685 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1686 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1687 DEBUG(dbgs() << '\n'); 1688 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1689 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1690 // true value plus b**(n+1), namely as the b's complement of 1691 // the true value, and a "borrow" to the left should be remembered. 1692 // 1693 if (isNeg) { 1694 bool carry = true; // true because b's complement is "complement + 1" 1695 for (unsigned i = 0; i <= m+n; ++i) { 1696 u[i] = ~u[i] + carry; // b's complement 1697 carry = carry && u[i] == 0; 1698 } 1699 } 1700 DEBUG(dbgs() << "KnuthDiv: after complement:"); 1701 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1702 DEBUG(dbgs() << '\n'); 1703 1704 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1705 // negative, go to step D6; otherwise go on to step D7. 1706 q[j] = (unsigned)qp; 1707 if (isNeg) { 1708 // D6. [Add back]. The probability that this step is necessary is very 1709 // small, on the order of only 2/b. Make sure that test data accounts for 1710 // this possibility. Decrease q[j] by 1 1711 q[j]--; 1712 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1713 // A carry will occur to the left of u[j+n], and it should be ignored 1714 // since it cancels with the borrow that occurred in D4. 1715 bool carry = false; 1716 for (unsigned i = 0; i < n; i++) { 1717 unsigned limit = std::min(u[j+i],v[i]); 1718 u[j+i] += v[i] + carry; 1719 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1720 } 1721 u[j+n] += carry; 1722 } 1723 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1724 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); 1725 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1726 1727 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1728 } while (--j >= 0); 1729 1730 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1731 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1732 DEBUG(dbgs() << '\n'); 1733 1734 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1735 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1736 // compute the remainder (urem uses this). 1737 if (r) { 1738 // The value d is expressed by the "shift" value above since we avoided 1739 // multiplication by d by using a shift left. So, all we have to do is 1740 // shift right here. In order to mak 1741 if (shift) { 1742 unsigned carry = 0; 1743 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1744 for (int i = n-1; i >= 0; i--) { 1745 r[i] = (u[i] >> shift) | carry; 1746 carry = u[i] << (32 - shift); 1747 DEBUG(dbgs() << " " << r[i]); 1748 } 1749 } else { 1750 for (int i = n-1; i >= 0; i--) { 1751 r[i] = u[i]; 1752 DEBUG(dbgs() << " " << r[i]); 1753 } 1754 } 1755 DEBUG(dbgs() << '\n'); 1756 } 1757 #if 0 1758 DEBUG(dbgs() << '\n'); 1759 #endif 1760 } 1761 1762 void APInt::divide(const APInt LHS, unsigned lhsWords, 1763 const APInt &RHS, unsigned rhsWords, 1764 APInt *Quotient, APInt *Remainder) 1765 { 1766 assert(lhsWords >= rhsWords && "Fractional result"); 1767 1768 // First, compose the values into an array of 32-bit words instead of 1769 // 64-bit words. This is a necessity of both the "short division" algorithm 1770 // and the Knuth "classical algorithm" which requires there to be native 1771 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1772 // can't use 64-bit operands here because we don't have native results of 1773 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1774 // work on large-endian machines. 1775 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); 1776 unsigned n = rhsWords * 2; 1777 unsigned m = (lhsWords * 2) - n; 1778 1779 // Allocate space for the temporary values we need either on the stack, if 1780 // it will fit, or on the heap if it won't. 1781 unsigned SPACE[128]; 1782 unsigned *U = 0; 1783 unsigned *V = 0; 1784 unsigned *Q = 0; 1785 unsigned *R = 0; 1786 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1787 U = &SPACE[0]; 1788 V = &SPACE[m+n+1]; 1789 Q = &SPACE[(m+n+1) + n]; 1790 if (Remainder) 1791 R = &SPACE[(m+n+1) + n + (m+n)]; 1792 } else { 1793 U = new unsigned[m + n + 1]; 1794 V = new unsigned[n]; 1795 Q = new unsigned[m+n]; 1796 if (Remainder) 1797 R = new unsigned[n]; 1798 } 1799 1800 // Initialize the dividend 1801 memset(U, 0, (m+n+1)*sizeof(unsigned)); 1802 for (unsigned i = 0; i < lhsWords; ++i) { 1803 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); 1804 U[i * 2] = (unsigned)(tmp & mask); 1805 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1806 } 1807 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1808 1809 // Initialize the divisor 1810 memset(V, 0, (n)*sizeof(unsigned)); 1811 for (unsigned i = 0; i < rhsWords; ++i) { 1812 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); 1813 V[i * 2] = (unsigned)(tmp & mask); 1814 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1815 } 1816 1817 // initialize the quotient and remainder 1818 memset(Q, 0, (m+n) * sizeof(unsigned)); 1819 if (Remainder) 1820 memset(R, 0, n * sizeof(unsigned)); 1821 1822 // Now, adjust m and n for the Knuth division. n is the number of words in 1823 // the divisor. m is the number of words by which the dividend exceeds the 1824 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1825 // contain any zero words or the Knuth algorithm fails. 1826 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1827 n--; 1828 m++; 1829 } 1830 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1831 m--; 1832 1833 // If we're left with only a single word for the divisor, Knuth doesn't work 1834 // so we implement the short division algorithm here. This is much simpler 1835 // and faster because we are certain that we can divide a 64-bit quantity 1836 // by a 32-bit quantity at hardware speed and short division is simply a 1837 // series of such operations. This is just like doing short division but we 1838 // are using base 2^32 instead of base 10. 1839 assert(n != 0 && "Divide by zero?"); 1840 if (n == 1) { 1841 unsigned divisor = V[0]; 1842 unsigned remainder = 0; 1843 for (int i = m+n-1; i >= 0; i--) { 1844 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; 1845 if (partial_dividend == 0) { 1846 Q[i] = 0; 1847 remainder = 0; 1848 } else if (partial_dividend < divisor) { 1849 Q[i] = 0; 1850 remainder = (unsigned)partial_dividend; 1851 } else if (partial_dividend == divisor) { 1852 Q[i] = 1; 1853 remainder = 0; 1854 } else { 1855 Q[i] = (unsigned)(partial_dividend / divisor); 1856 remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); 1857 } 1858 } 1859 if (R) 1860 R[0] = remainder; 1861 } else { 1862 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1863 // case n > 1. 1864 KnuthDiv(U, V, Q, R, m, n); 1865 } 1866 1867 // If the caller wants the quotient 1868 if (Quotient) { 1869 // Set up the Quotient value's memory. 1870 if (Quotient->BitWidth != LHS.BitWidth) { 1871 if (Quotient->isSingleWord()) 1872 Quotient->VAL = 0; 1873 else 1874 delete [] Quotient->pVal; 1875 Quotient->BitWidth = LHS.BitWidth; 1876 if (!Quotient->isSingleWord()) 1877 Quotient->pVal = getClearedMemory(Quotient->getNumWords()); 1878 } else 1879 Quotient->clearAllBits(); 1880 1881 // The quotient is in Q. Reconstitute the quotient into Quotient's low 1882 // order words. 1883 if (lhsWords == 1) { 1884 uint64_t tmp = 1885 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); 1886 if (Quotient->isSingleWord()) 1887 Quotient->VAL = tmp; 1888 else 1889 Quotient->pVal[0] = tmp; 1890 } else { 1891 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); 1892 for (unsigned i = 0; i < lhsWords; ++i) 1893 Quotient->pVal[i] = 1894 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1895 } 1896 } 1897 1898 // If the caller wants the remainder 1899 if (Remainder) { 1900 // Set up the Remainder value's memory. 1901 if (Remainder->BitWidth != RHS.BitWidth) { 1902 if (Remainder->isSingleWord()) 1903 Remainder->VAL = 0; 1904 else 1905 delete [] Remainder->pVal; 1906 Remainder->BitWidth = RHS.BitWidth; 1907 if (!Remainder->isSingleWord()) 1908 Remainder->pVal = getClearedMemory(Remainder->getNumWords()); 1909 } else 1910 Remainder->clearAllBits(); 1911 1912 // The remainder is in R. Reconstitute the remainder into Remainder's low 1913 // order words. 1914 if (rhsWords == 1) { 1915 uint64_t tmp = 1916 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); 1917 if (Remainder->isSingleWord()) 1918 Remainder->VAL = tmp; 1919 else 1920 Remainder->pVal[0] = tmp; 1921 } else { 1922 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); 1923 for (unsigned i = 0; i < rhsWords; ++i) 1924 Remainder->pVal[i] = 1925 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1926 } 1927 } 1928 1929 // Clean up the memory we allocated. 1930 if (U != &SPACE[0]) { 1931 delete [] U; 1932 delete [] V; 1933 delete [] Q; 1934 delete [] R; 1935 } 1936 } 1937 1938 APInt APInt::udiv(const APInt& RHS) const { 1939 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1940 1941 // First, deal with the easy case 1942 if (isSingleWord()) { 1943 assert(RHS.VAL != 0 && "Divide by zero?"); 1944 return APInt(BitWidth, VAL / RHS.VAL); 1945 } 1946 1947 // Get some facts about the LHS and RHS number of bits and words 1948 unsigned rhsBits = RHS.getActiveBits(); 1949 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1950 assert(rhsWords && "Divided by zero???"); 1951 unsigned lhsBits = this->getActiveBits(); 1952 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1953 1954 // Deal with some degenerate cases 1955 if (!lhsWords) 1956 // 0 / X ===> 0 1957 return APInt(BitWidth, 0); 1958 else if (lhsWords < rhsWords || this->ult(RHS)) { 1959 // X / Y ===> 0, iff X < Y 1960 return APInt(BitWidth, 0); 1961 } else if (*this == RHS) { 1962 // X / X ===> 1 1963 return APInt(BitWidth, 1); 1964 } else if (lhsWords == 1 && rhsWords == 1) { 1965 // All high words are zero, just use native divide 1966 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); 1967 } 1968 1969 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1970 APInt Quotient(1,0); // to hold result. 1971 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0); 1972 return Quotient; 1973 } 1974 1975 APInt APInt::urem(const APInt& RHS) const { 1976 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1977 if (isSingleWord()) { 1978 assert(RHS.VAL != 0 && "Remainder by zero?"); 1979 return APInt(BitWidth, VAL % RHS.VAL); 1980 } 1981 1982 // Get some facts about the LHS 1983 unsigned lhsBits = getActiveBits(); 1984 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); 1985 1986 // Get some facts about the RHS 1987 unsigned rhsBits = RHS.getActiveBits(); 1988 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1989 assert(rhsWords && "Performing remainder operation by zero ???"); 1990 1991 // Check the degenerate cases 1992 if (lhsWords == 0) { 1993 // 0 % Y ===> 0 1994 return APInt(BitWidth, 0); 1995 } else if (lhsWords < rhsWords || this->ult(RHS)) { 1996 // X % Y ===> X, iff X < Y 1997 return *this; 1998 } else if (*this == RHS) { 1999 // X % X == 0; 2000 return APInt(BitWidth, 0); 2001 } else if (lhsWords == 1) { 2002 // All high words are zero, just use native remainder 2003 return APInt(BitWidth, pVal[0] % RHS.pVal[0]); 2004 } 2005 2006 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 2007 APInt Remainder(1,0); 2008 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder); 2009 return Remainder; 2010 } 2011 2012 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 2013 APInt &Quotient, APInt &Remainder) { 2014 // Get some size facts about the dividend and divisor 2015 unsigned lhsBits = LHS.getActiveBits(); 2016 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 2017 unsigned rhsBits = RHS.getActiveBits(); 2018 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 2019 2020 // Check the degenerate cases 2021 if (lhsWords == 0) { 2022 Quotient = 0; // 0 / Y ===> 0 2023 Remainder = 0; // 0 % Y ===> 0 2024 return; 2025 } 2026 2027 if (lhsWords < rhsWords || LHS.ult(RHS)) { 2028 Remainder = LHS; // X % Y ===> X, iff X < Y 2029 Quotient = 0; // X / Y ===> 0, iff X < Y 2030 return; 2031 } 2032 2033 if (LHS == RHS) { 2034 Quotient = 1; // X / X ===> 1 2035 Remainder = 0; // X % X ===> 0; 2036 return; 2037 } 2038 2039 if (lhsWords == 1 && rhsWords == 1) { 2040 // There is only one word to consider so use the native versions. 2041 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; 2042 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; 2043 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); 2044 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); 2045 return; 2046 } 2047 2048 // Okay, lets do it the long way 2049 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); 2050 } 2051 2052 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 2053 APInt Res = *this+RHS; 2054 Overflow = isNonNegative() == RHS.isNonNegative() && 2055 Res.isNonNegative() != isNonNegative(); 2056 return Res; 2057 } 2058 2059 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 2060 APInt Res = *this+RHS; 2061 Overflow = Res.ult(RHS); 2062 return Res; 2063 } 2064 2065 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 2066 APInt Res = *this - RHS; 2067 Overflow = isNonNegative() != RHS.isNonNegative() && 2068 Res.isNonNegative() != isNonNegative(); 2069 return Res; 2070 } 2071 2072 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 2073 APInt Res = *this-RHS; 2074 Overflow = Res.ugt(*this); 2075 return Res; 2076 } 2077 2078 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 2079 // MININT/-1 --> overflow. 2080 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 2081 return sdiv(RHS); 2082 } 2083 2084 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 2085 APInt Res = *this * RHS; 2086 2087 if (*this != 0 && RHS != 0) 2088 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 2089 else 2090 Overflow = false; 2091 return Res; 2092 } 2093 2094 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 2095 APInt Res = *this * RHS; 2096 2097 if (*this != 0 && RHS != 0) 2098 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 2099 else 2100 Overflow = false; 2101 return Res; 2102 } 2103 2104 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { 2105 Overflow = ShAmt >= getBitWidth(); 2106 if (Overflow) 2107 ShAmt = getBitWidth()-1; 2108 2109 if (isNonNegative()) // Don't allow sign change. 2110 Overflow = ShAmt >= countLeadingZeros(); 2111 else 2112 Overflow = ShAmt >= countLeadingOnes(); 2113 2114 return *this << ShAmt; 2115 } 2116 2117 2118 2119 2120 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2121 // Check our assumptions here 2122 assert(!str.empty() && "Invalid string length"); 2123 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2124 radix == 36) && 2125 "Radix should be 2, 8, 10, 16, or 36!"); 2126 2127 StringRef::iterator p = str.begin(); 2128 size_t slen = str.size(); 2129 bool isNeg = *p == '-'; 2130 if (*p == '-' || *p == '+') { 2131 p++; 2132 slen--; 2133 assert(slen && "String is only a sign, needs a value."); 2134 } 2135 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2136 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2137 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2138 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2139 "Insufficient bit width"); 2140 2141 // Allocate memory 2142 if (!isSingleWord()) 2143 pVal = getClearedMemory(getNumWords()); 2144 2145 // Figure out if we can shift instead of multiply 2146 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2147 2148 // Set up an APInt for the digit to add outside the loop so we don't 2149 // constantly construct/destruct it. 2150 APInt apdigit(getBitWidth(), 0); 2151 APInt apradix(getBitWidth(), radix); 2152 2153 // Enter digit traversal loop 2154 for (StringRef::iterator e = str.end(); p != e; ++p) { 2155 unsigned digit = getDigit(*p, radix); 2156 assert(digit < radix && "Invalid character in digit string"); 2157 2158 // Shift or multiply the value by the radix 2159 if (slen > 1) { 2160 if (shift) 2161 *this <<= shift; 2162 else 2163 *this *= apradix; 2164 } 2165 2166 // Add in the digit we just interpreted 2167 if (apdigit.isSingleWord()) 2168 apdigit.VAL = digit; 2169 else 2170 apdigit.pVal[0] = digit; 2171 *this += apdigit; 2172 } 2173 // If its negative, put it in two's complement form 2174 if (isNeg) { 2175 (*this)--; 2176 this->flipAllBits(); 2177 } 2178 } 2179 2180 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2181 bool Signed, bool formatAsCLiteral) const { 2182 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2183 Radix == 36) && 2184 "Radix should be 2, 8, 10, 16, or 36!"); 2185 2186 const char *Prefix = ""; 2187 if (formatAsCLiteral) { 2188 switch (Radix) { 2189 case 2: 2190 // Binary literals are a non-standard extension added in gcc 4.3: 2191 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2192 Prefix = "0b"; 2193 break; 2194 case 8: 2195 Prefix = "0"; 2196 break; 2197 case 10: 2198 break; // No prefix 2199 case 16: 2200 Prefix = "0x"; 2201 break; 2202 default: 2203 llvm_unreachable("Invalid radix!"); 2204 } 2205 } 2206 2207 // First, check for a zero value and just short circuit the logic below. 2208 if (*this == 0) { 2209 while (*Prefix) { 2210 Str.push_back(*Prefix); 2211 ++Prefix; 2212 }; 2213 Str.push_back('0'); 2214 return; 2215 } 2216 2217 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2218 2219 if (isSingleWord()) { 2220 char Buffer[65]; 2221 char *BufPtr = Buffer+65; 2222 2223 uint64_t N; 2224 if (!Signed) { 2225 N = getZExtValue(); 2226 } else { 2227 int64_t I = getSExtValue(); 2228 if (I >= 0) { 2229 N = I; 2230 } else { 2231 Str.push_back('-'); 2232 N = -(uint64_t)I; 2233 } 2234 } 2235 2236 while (*Prefix) { 2237 Str.push_back(*Prefix); 2238 ++Prefix; 2239 }; 2240 2241 while (N) { 2242 *--BufPtr = Digits[N % Radix]; 2243 N /= Radix; 2244 } 2245 Str.append(BufPtr, Buffer+65); 2246 return; 2247 } 2248 2249 APInt Tmp(*this); 2250 2251 if (Signed && isNegative()) { 2252 // They want to print the signed version and it is a negative value 2253 // Flip the bits and add one to turn it into the equivalent positive 2254 // value and put a '-' in the result. 2255 Tmp.flipAllBits(); 2256 Tmp++; 2257 Str.push_back('-'); 2258 } 2259 2260 while (*Prefix) { 2261 Str.push_back(*Prefix); 2262 ++Prefix; 2263 }; 2264 2265 // We insert the digits backward, then reverse them to get the right order. 2266 unsigned StartDig = Str.size(); 2267 2268 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2269 // because the number of bits per digit (1, 3 and 4 respectively) divides 2270 // equaly. We just shift until the value is zero. 2271 if (Radix == 2 || Radix == 8 || Radix == 16) { 2272 // Just shift tmp right for each digit width until it becomes zero 2273 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2274 unsigned MaskAmt = Radix - 1; 2275 2276 while (Tmp != 0) { 2277 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2278 Str.push_back(Digits[Digit]); 2279 Tmp = Tmp.lshr(ShiftAmt); 2280 } 2281 } else { 2282 APInt divisor(Radix == 10? 4 : 8, Radix); 2283 while (Tmp != 0) { 2284 APInt APdigit(1, 0); 2285 APInt tmp2(Tmp.getBitWidth(), 0); 2286 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 2287 &APdigit); 2288 unsigned Digit = (unsigned)APdigit.getZExtValue(); 2289 assert(Digit < Radix && "divide failed"); 2290 Str.push_back(Digits[Digit]); 2291 Tmp = tmp2; 2292 } 2293 } 2294 2295 // Reverse the digits before returning. 2296 std::reverse(Str.begin()+StartDig, Str.end()); 2297 } 2298 2299 /// toString - This returns the APInt as a std::string. Note that this is an 2300 /// inefficient method. It is better to pass in a SmallVector/SmallString 2301 /// to the methods above. 2302 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2303 SmallString<40> S; 2304 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2305 return S.str(); 2306 } 2307 2308 2309 void APInt::dump() const { 2310 SmallString<40> S, U; 2311 this->toStringUnsigned(U); 2312 this->toStringSigned(S); 2313 dbgs() << "APInt(" << BitWidth << "b, " 2314 << U.str() << "u " << S.str() << "s)"; 2315 } 2316 2317 void APInt::print(raw_ostream &OS, bool isSigned) const { 2318 SmallString<40> S; 2319 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2320 OS << S.str(); 2321 } 2322 2323 // This implements a variety of operations on a representation of 2324 // arbitrary precision, two's-complement, bignum integer values. 2325 2326 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2327 // and unrestricting assumption. 2328 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] 2329 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0); 2330 2331 /* Some handy functions local to this file. */ 2332 namespace { 2333 2334 /* Returns the integer part with the least significant BITS set. 2335 BITS cannot be zero. */ 2336 static inline integerPart 2337 lowBitMask(unsigned int bits) 2338 { 2339 assert(bits != 0 && bits <= integerPartWidth); 2340 2341 return ~(integerPart) 0 >> (integerPartWidth - bits); 2342 } 2343 2344 /* Returns the value of the lower half of PART. */ 2345 static inline integerPart 2346 lowHalf(integerPart part) 2347 { 2348 return part & lowBitMask(integerPartWidth / 2); 2349 } 2350 2351 /* Returns the value of the upper half of PART. */ 2352 static inline integerPart 2353 highHalf(integerPart part) 2354 { 2355 return part >> (integerPartWidth / 2); 2356 } 2357 2358 /* Returns the bit number of the most significant set bit of a part. 2359 If the input number has no bits set -1U is returned. */ 2360 static unsigned int 2361 partMSB(integerPart value) 2362 { 2363 unsigned int n, msb; 2364 2365 if (value == 0) 2366 return -1U; 2367 2368 n = integerPartWidth / 2; 2369 2370 msb = 0; 2371 do { 2372 if (value >> n) { 2373 value >>= n; 2374 msb += n; 2375 } 2376 2377 n >>= 1; 2378 } while (n); 2379 2380 return msb; 2381 } 2382 2383 /* Returns the bit number of the least significant set bit of a 2384 part. If the input number has no bits set -1U is returned. */ 2385 static unsigned int 2386 partLSB(integerPart value) 2387 { 2388 unsigned int n, lsb; 2389 2390 if (value == 0) 2391 return -1U; 2392 2393 lsb = integerPartWidth - 1; 2394 n = integerPartWidth / 2; 2395 2396 do { 2397 if (value << n) { 2398 value <<= n; 2399 lsb -= n; 2400 } 2401 2402 n >>= 1; 2403 } while (n); 2404 2405 return lsb; 2406 } 2407 } 2408 2409 /* Sets the least significant part of a bignum to the input value, and 2410 zeroes out higher parts. */ 2411 void 2412 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) 2413 { 2414 unsigned int i; 2415 2416 assert(parts > 0); 2417 2418 dst[0] = part; 2419 for (i = 1; i < parts; i++) 2420 dst[i] = 0; 2421 } 2422 2423 /* Assign one bignum to another. */ 2424 void 2425 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) 2426 { 2427 unsigned int i; 2428 2429 for (i = 0; i < parts; i++) 2430 dst[i] = src[i]; 2431 } 2432 2433 /* Returns true if a bignum is zero, false otherwise. */ 2434 bool 2435 APInt::tcIsZero(const integerPart *src, unsigned int parts) 2436 { 2437 unsigned int i; 2438 2439 for (i = 0; i < parts; i++) 2440 if (src[i]) 2441 return false; 2442 2443 return true; 2444 } 2445 2446 /* Extract the given bit of a bignum; returns 0 or 1. */ 2447 int 2448 APInt::tcExtractBit(const integerPart *parts, unsigned int bit) 2449 { 2450 return (parts[bit / integerPartWidth] & 2451 ((integerPart) 1 << bit % integerPartWidth)) != 0; 2452 } 2453 2454 /* Set the given bit of a bignum. */ 2455 void 2456 APInt::tcSetBit(integerPart *parts, unsigned int bit) 2457 { 2458 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); 2459 } 2460 2461 /* Clears the given bit of a bignum. */ 2462 void 2463 APInt::tcClearBit(integerPart *parts, unsigned int bit) 2464 { 2465 parts[bit / integerPartWidth] &= 2466 ~((integerPart) 1 << (bit % integerPartWidth)); 2467 } 2468 2469 /* Returns the bit number of the least significant set bit of a 2470 number. If the input number has no bits set -1U is returned. */ 2471 unsigned int 2472 APInt::tcLSB(const integerPart *parts, unsigned int n) 2473 { 2474 unsigned int i, lsb; 2475 2476 for (i = 0; i < n; i++) { 2477 if (parts[i] != 0) { 2478 lsb = partLSB(parts[i]); 2479 2480 return lsb + i * integerPartWidth; 2481 } 2482 } 2483 2484 return -1U; 2485 } 2486 2487 /* Returns the bit number of the most significant set bit of a number. 2488 If the input number has no bits set -1U is returned. */ 2489 unsigned int 2490 APInt::tcMSB(const integerPart *parts, unsigned int n) 2491 { 2492 unsigned int msb; 2493 2494 do { 2495 --n; 2496 2497 if (parts[n] != 0) { 2498 msb = partMSB(parts[n]); 2499 2500 return msb + n * integerPartWidth; 2501 } 2502 } while (n); 2503 2504 return -1U; 2505 } 2506 2507 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2508 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2509 the least significant bit of DST. All high bits above srcBITS in 2510 DST are zero-filled. */ 2511 void 2512 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, 2513 unsigned int srcBits, unsigned int srcLSB) 2514 { 2515 unsigned int firstSrcPart, dstParts, shift, n; 2516 2517 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; 2518 assert(dstParts <= dstCount); 2519 2520 firstSrcPart = srcLSB / integerPartWidth; 2521 tcAssign (dst, src + firstSrcPart, dstParts); 2522 2523 shift = srcLSB % integerPartWidth; 2524 tcShiftRight (dst, dstParts, shift); 2525 2526 /* We now have (dstParts * integerPartWidth - shift) bits from SRC 2527 in DST. If this is less that srcBits, append the rest, else 2528 clear the high bits. */ 2529 n = dstParts * integerPartWidth - shift; 2530 if (n < srcBits) { 2531 integerPart mask = lowBitMask (srcBits - n); 2532 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2533 << n % integerPartWidth); 2534 } else if (n > srcBits) { 2535 if (srcBits % integerPartWidth) 2536 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); 2537 } 2538 2539 /* Clear high parts. */ 2540 while (dstParts < dstCount) 2541 dst[dstParts++] = 0; 2542 } 2543 2544 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2545 integerPart 2546 APInt::tcAdd(integerPart *dst, const integerPart *rhs, 2547 integerPart c, unsigned int parts) 2548 { 2549 unsigned int i; 2550 2551 assert(c <= 1); 2552 2553 for (i = 0; i < parts; i++) { 2554 integerPart l; 2555 2556 l = dst[i]; 2557 if (c) { 2558 dst[i] += rhs[i] + 1; 2559 c = (dst[i] <= l); 2560 } else { 2561 dst[i] += rhs[i]; 2562 c = (dst[i] < l); 2563 } 2564 } 2565 2566 return c; 2567 } 2568 2569 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2570 integerPart 2571 APInt::tcSubtract(integerPart *dst, const integerPart *rhs, 2572 integerPart c, unsigned int parts) 2573 { 2574 unsigned int i; 2575 2576 assert(c <= 1); 2577 2578 for (i = 0; i < parts; i++) { 2579 integerPart l; 2580 2581 l = dst[i]; 2582 if (c) { 2583 dst[i] -= rhs[i] + 1; 2584 c = (dst[i] >= l); 2585 } else { 2586 dst[i] -= rhs[i]; 2587 c = (dst[i] > l); 2588 } 2589 } 2590 2591 return c; 2592 } 2593 2594 /* Negate a bignum in-place. */ 2595 void 2596 APInt::tcNegate(integerPart *dst, unsigned int parts) 2597 { 2598 tcComplement(dst, parts); 2599 tcIncrement(dst, parts); 2600 } 2601 2602 /* DST += SRC * MULTIPLIER + CARRY if add is true 2603 DST = SRC * MULTIPLIER + CARRY if add is false 2604 2605 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2606 they must start at the same point, i.e. DST == SRC. 2607 2608 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2609 returned. Otherwise DST is filled with the least significant 2610 DSTPARTS parts of the result, and if all of the omitted higher 2611 parts were zero return zero, otherwise overflow occurred and 2612 return one. */ 2613 int 2614 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, 2615 integerPart multiplier, integerPart carry, 2616 unsigned int srcParts, unsigned int dstParts, 2617 bool add) 2618 { 2619 unsigned int i, n; 2620 2621 /* Otherwise our writes of DST kill our later reads of SRC. */ 2622 assert(dst <= src || dst >= src + srcParts); 2623 assert(dstParts <= srcParts + 1); 2624 2625 /* N loops; minimum of dstParts and srcParts. */ 2626 n = dstParts < srcParts ? dstParts: srcParts; 2627 2628 for (i = 0; i < n; i++) { 2629 integerPart low, mid, high, srcPart; 2630 2631 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2632 2633 This cannot overflow, because 2634 2635 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2636 2637 which is less than n^2. */ 2638 2639 srcPart = src[i]; 2640 2641 if (multiplier == 0 || srcPart == 0) { 2642 low = carry; 2643 high = 0; 2644 } else { 2645 low = lowHalf(srcPart) * lowHalf(multiplier); 2646 high = highHalf(srcPart) * highHalf(multiplier); 2647 2648 mid = lowHalf(srcPart) * highHalf(multiplier); 2649 high += highHalf(mid); 2650 mid <<= integerPartWidth / 2; 2651 if (low + mid < low) 2652 high++; 2653 low += mid; 2654 2655 mid = highHalf(srcPart) * lowHalf(multiplier); 2656 high += highHalf(mid); 2657 mid <<= integerPartWidth / 2; 2658 if (low + mid < low) 2659 high++; 2660 low += mid; 2661 2662 /* Now add carry. */ 2663 if (low + carry < low) 2664 high++; 2665 low += carry; 2666 } 2667 2668 if (add) { 2669 /* And now DST[i], and store the new low part there. */ 2670 if (low + dst[i] < low) 2671 high++; 2672 dst[i] += low; 2673 } else 2674 dst[i] = low; 2675 2676 carry = high; 2677 } 2678 2679 if (i < dstParts) { 2680 /* Full multiplication, there is no overflow. */ 2681 assert(i + 1 == dstParts); 2682 dst[i] = carry; 2683 return 0; 2684 } else { 2685 /* We overflowed if there is carry. */ 2686 if (carry) 2687 return 1; 2688 2689 /* We would overflow if any significant unwritten parts would be 2690 non-zero. This is true if any remaining src parts are non-zero 2691 and the multiplier is non-zero. */ 2692 if (multiplier) 2693 for (; i < srcParts; i++) 2694 if (src[i]) 2695 return 1; 2696 2697 /* We fitted in the narrow destination. */ 2698 return 0; 2699 } 2700 } 2701 2702 /* DST = LHS * RHS, where DST has the same width as the operands and 2703 is filled with the least significant parts of the result. Returns 2704 one if overflow occurred, otherwise zero. DST must be disjoint 2705 from both operands. */ 2706 int 2707 APInt::tcMultiply(integerPart *dst, const integerPart *lhs, 2708 const integerPart *rhs, unsigned int parts) 2709 { 2710 unsigned int i; 2711 int overflow; 2712 2713 assert(dst != lhs && dst != rhs); 2714 2715 overflow = 0; 2716 tcSet(dst, 0, parts); 2717 2718 for (i = 0; i < parts; i++) 2719 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2720 parts - i, true); 2721 2722 return overflow; 2723 } 2724 2725 /* DST = LHS * RHS, where DST has width the sum of the widths of the 2726 operands. No overflow occurs. DST must be disjoint from both 2727 operands. Returns the number of parts required to hold the 2728 result. */ 2729 unsigned int 2730 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, 2731 const integerPart *rhs, unsigned int lhsParts, 2732 unsigned int rhsParts) 2733 { 2734 /* Put the narrower number on the LHS for less loops below. */ 2735 if (lhsParts > rhsParts) { 2736 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2737 } else { 2738 unsigned int n; 2739 2740 assert(dst != lhs && dst != rhs); 2741 2742 tcSet(dst, 0, rhsParts); 2743 2744 for (n = 0; n < lhsParts; n++) 2745 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); 2746 2747 n = lhsParts + rhsParts; 2748 2749 return n - (dst[n - 1] == 0); 2750 } 2751 } 2752 2753 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2754 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2755 set REMAINDER to the remainder, return zero. i.e. 2756 2757 OLD_LHS = RHS * LHS + REMAINDER 2758 2759 SCRATCH is a bignum of the same size as the operands and result for 2760 use by the routine; its contents need not be initialized and are 2761 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2762 */ 2763 int 2764 APInt::tcDivide(integerPart *lhs, const integerPart *rhs, 2765 integerPart *remainder, integerPart *srhs, 2766 unsigned int parts) 2767 { 2768 unsigned int n, shiftCount; 2769 integerPart mask; 2770 2771 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2772 2773 shiftCount = tcMSB(rhs, parts) + 1; 2774 if (shiftCount == 0) 2775 return true; 2776 2777 shiftCount = parts * integerPartWidth - shiftCount; 2778 n = shiftCount / integerPartWidth; 2779 mask = (integerPart) 1 << (shiftCount % integerPartWidth); 2780 2781 tcAssign(srhs, rhs, parts); 2782 tcShiftLeft(srhs, parts, shiftCount); 2783 tcAssign(remainder, lhs, parts); 2784 tcSet(lhs, 0, parts); 2785 2786 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2787 the total. */ 2788 for (;;) { 2789 int compare; 2790 2791 compare = tcCompare(remainder, srhs, parts); 2792 if (compare >= 0) { 2793 tcSubtract(remainder, srhs, 0, parts); 2794 lhs[n] |= mask; 2795 } 2796 2797 if (shiftCount == 0) 2798 break; 2799 shiftCount--; 2800 tcShiftRight(srhs, parts, 1); 2801 if ((mask >>= 1) == 0) 2802 mask = (integerPart) 1 << (integerPartWidth - 1), n--; 2803 } 2804 2805 return false; 2806 } 2807 2808 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. 2809 There are no restrictions on COUNT. */ 2810 void 2811 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) 2812 { 2813 if (count) { 2814 unsigned int jump, shift; 2815 2816 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2817 jump = count / integerPartWidth; 2818 shift = count % integerPartWidth; 2819 2820 while (parts > jump) { 2821 integerPart part; 2822 2823 parts--; 2824 2825 /* dst[i] comes from the two parts src[i - jump] and, if we have 2826 an intra-part shift, src[i - jump - 1]. */ 2827 part = dst[parts - jump]; 2828 if (shift) { 2829 part <<= shift; 2830 if (parts >= jump + 1) 2831 part |= dst[parts - jump - 1] >> (integerPartWidth - shift); 2832 } 2833 2834 dst[parts] = part; 2835 } 2836 2837 while (parts > 0) 2838 dst[--parts] = 0; 2839 } 2840 } 2841 2842 /* Shift a bignum right COUNT bits in-place. Shifted in bits are 2843 zero. There are no restrictions on COUNT. */ 2844 void 2845 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) 2846 { 2847 if (count) { 2848 unsigned int i, jump, shift; 2849 2850 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2851 jump = count / integerPartWidth; 2852 shift = count % integerPartWidth; 2853 2854 /* Perform the shift. This leaves the most significant COUNT bits 2855 of the result at zero. */ 2856 for (i = 0; i < parts; i++) { 2857 integerPart part; 2858 2859 if (i + jump >= parts) { 2860 part = 0; 2861 } else { 2862 part = dst[i + jump]; 2863 if (shift) { 2864 part >>= shift; 2865 if (i + jump + 1 < parts) 2866 part |= dst[i + jump + 1] << (integerPartWidth - shift); 2867 } 2868 } 2869 2870 dst[i] = part; 2871 } 2872 } 2873 } 2874 2875 /* Bitwise and of two bignums. */ 2876 void 2877 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) 2878 { 2879 unsigned int i; 2880 2881 for (i = 0; i < parts; i++) 2882 dst[i] &= rhs[i]; 2883 } 2884 2885 /* Bitwise inclusive or of two bignums. */ 2886 void 2887 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) 2888 { 2889 unsigned int i; 2890 2891 for (i = 0; i < parts; i++) 2892 dst[i] |= rhs[i]; 2893 } 2894 2895 /* Bitwise exclusive or of two bignums. */ 2896 void 2897 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) 2898 { 2899 unsigned int i; 2900 2901 for (i = 0; i < parts; i++) 2902 dst[i] ^= rhs[i]; 2903 } 2904 2905 /* Complement a bignum in-place. */ 2906 void 2907 APInt::tcComplement(integerPart *dst, unsigned int parts) 2908 { 2909 unsigned int i; 2910 2911 for (i = 0; i < parts; i++) 2912 dst[i] = ~dst[i]; 2913 } 2914 2915 /* Comparison (unsigned) of two bignums. */ 2916 int 2917 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, 2918 unsigned int parts) 2919 { 2920 while (parts) { 2921 parts--; 2922 if (lhs[parts] == rhs[parts]) 2923 continue; 2924 2925 if (lhs[parts] > rhs[parts]) 2926 return 1; 2927 else 2928 return -1; 2929 } 2930 2931 return 0; 2932 } 2933 2934 /* Increment a bignum in-place, return the carry flag. */ 2935 integerPart 2936 APInt::tcIncrement(integerPart *dst, unsigned int parts) 2937 { 2938 unsigned int i; 2939 2940 for (i = 0; i < parts; i++) 2941 if (++dst[i] != 0) 2942 break; 2943 2944 return i == parts; 2945 } 2946 2947 /* Set the least significant BITS bits of a bignum, clear the 2948 rest. */ 2949 void 2950 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, 2951 unsigned int bits) 2952 { 2953 unsigned int i; 2954 2955 i = 0; 2956 while (bits > integerPartWidth) { 2957 dst[i++] = ~(integerPart) 0; 2958 bits -= integerPartWidth; 2959 } 2960 2961 if (bits) 2962 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); 2963 2964 while (i < parts) 2965 dst[i++] = 0; 2966 } 2967