1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include <climits> 26 #include <cmath> 27 #include <cstdlib> 28 #include <cstring> 29 using namespace llvm; 30 31 #define DEBUG_TYPE "apint" 32 33 /// A utility function for allocating memory, checking for allocation failures, 34 /// and ensuring the contents are zeroed. 35 inline static uint64_t* getClearedMemory(unsigned numWords) { 36 uint64_t * result = new uint64_t[numWords]; 37 assert(result && "APInt memory allocation fails!"); 38 memset(result, 0, numWords * sizeof(uint64_t)); 39 return result; 40 } 41 42 /// A utility function for allocating memory and checking for allocation 43 /// failure. The content is not zeroed. 44 inline static uint64_t* getMemory(unsigned numWords) { 45 uint64_t * result = new uint64_t[numWords]; 46 assert(result && "APInt memory allocation fails!"); 47 return result; 48 } 49 50 /// A utility function that converts a character to a digit. 51 inline static unsigned getDigit(char cdigit, uint8_t radix) { 52 unsigned r; 53 54 if (radix == 16 || radix == 36) { 55 r = cdigit - '0'; 56 if (r <= 9) 57 return r; 58 59 r = cdigit - 'A'; 60 if (r <= radix - 11U) 61 return r + 10; 62 63 r = cdigit - 'a'; 64 if (r <= radix - 11U) 65 return r + 10; 66 67 radix = 10; 68 } 69 70 r = cdigit - '0'; 71 if (r < radix) 72 return r; 73 74 return -1U; 75 } 76 77 78 void APInt::initSlowCase(uint64_t val, bool isSigned) { 79 U.pVal = getClearedMemory(getNumWords()); 80 U.pVal[0] = val; 81 if (isSigned && int64_t(val) < 0) 82 for (unsigned i = 1; i < getNumWords(); ++i) 83 U.pVal[i] = WORD_MAX; 84 clearUnusedBits(); 85 } 86 87 void APInt::initSlowCase(const APInt& that) { 88 U.pVal = getMemory(getNumWords()); 89 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 90 } 91 92 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 93 assert(BitWidth && "Bitwidth too small"); 94 assert(bigVal.data() && "Null pointer detected!"); 95 if (isSingleWord()) 96 U.VAL = bigVal[0]; 97 else { 98 // Get memory, cleared to 0 99 U.pVal = getClearedMemory(getNumWords()); 100 // Calculate the number of words to copy 101 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 102 // Copy the words from bigVal to pVal 103 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 104 } 105 // Make sure unused high bits are cleared 106 clearUnusedBits(); 107 } 108 109 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 110 : BitWidth(numBits) { 111 initFromArray(bigVal); 112 } 113 114 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 115 : BitWidth(numBits) { 116 initFromArray(makeArrayRef(bigVal, numWords)); 117 } 118 119 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 120 : BitWidth(numbits) { 121 assert(BitWidth && "Bitwidth too small"); 122 fromString(numbits, Str, radix); 123 } 124 125 void APInt::reallocate(unsigned NewBitWidth) { 126 // If the number of words is the same we can just change the width and stop. 127 if (getNumWords() == getNumWords(NewBitWidth)) { 128 BitWidth = NewBitWidth; 129 return; 130 } 131 132 // If we have an allocation, delete it. 133 if (!isSingleWord()) 134 delete [] U.pVal; 135 136 // Update BitWidth. 137 BitWidth = NewBitWidth; 138 139 // If we are supposed to have an allocation, create it. 140 if (!isSingleWord()) 141 U.pVal = getMemory(getNumWords()); 142 } 143 144 void APInt::AssignSlowCase(const APInt& RHS) { 145 // Don't do anything for X = X 146 if (this == &RHS) 147 return; 148 149 // Adjust the bit width and handle allocations as necessary. 150 reallocate(RHS.getBitWidth()); 151 152 // Copy the data. 153 if (isSingleWord()) 154 U.VAL = RHS.U.VAL; 155 else 156 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 157 } 158 159 /// This method 'profiles' an APInt for use with FoldingSet. 160 void APInt::Profile(FoldingSetNodeID& ID) const { 161 ID.AddInteger(BitWidth); 162 163 if (isSingleWord()) { 164 ID.AddInteger(U.VAL); 165 return; 166 } 167 168 unsigned NumWords = getNumWords(); 169 for (unsigned i = 0; i < NumWords; ++i) 170 ID.AddInteger(U.pVal[i]); 171 } 172 173 /// @brief Prefix increment operator. Increments the APInt by one. 174 APInt& APInt::operator++() { 175 if (isSingleWord()) 176 ++U.VAL; 177 else 178 tcIncrement(U.pVal, getNumWords()); 179 return clearUnusedBits(); 180 } 181 182 /// @brief Prefix decrement operator. Decrements the APInt by one. 183 APInt& APInt::operator--() { 184 if (isSingleWord()) 185 --U.VAL; 186 else 187 tcDecrement(U.pVal, getNumWords()); 188 return clearUnusedBits(); 189 } 190 191 /// Adds the RHS APint to this APInt. 192 /// @returns this, after addition of RHS. 193 /// @brief Addition assignment operator. 194 APInt& APInt::operator+=(const APInt& RHS) { 195 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 196 if (isSingleWord()) 197 U.VAL += RHS.U.VAL; 198 else 199 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 200 return clearUnusedBits(); 201 } 202 203 APInt& APInt::operator+=(uint64_t RHS) { 204 if (isSingleWord()) 205 U.VAL += RHS; 206 else 207 tcAddPart(U.pVal, RHS, getNumWords()); 208 return clearUnusedBits(); 209 } 210 211 /// Subtracts the RHS APInt from this APInt 212 /// @returns this, after subtraction 213 /// @brief Subtraction assignment operator. 214 APInt& APInt::operator-=(const APInt& RHS) { 215 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 216 if (isSingleWord()) 217 U.VAL -= RHS.U.VAL; 218 else 219 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 220 return clearUnusedBits(); 221 } 222 223 APInt& APInt::operator-=(uint64_t RHS) { 224 if (isSingleWord()) 225 U.VAL -= RHS; 226 else 227 tcSubtractPart(U.pVal, RHS, getNumWords()); 228 return clearUnusedBits(); 229 } 230 231 APInt APInt::operator*(const APInt& RHS) const { 232 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 233 if (isSingleWord()) 234 return APInt(BitWidth, U.VAL * RHS.U.VAL); 235 236 APInt Result(getMemory(getNumWords()), getBitWidth()); 237 238 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 239 240 Result.clearUnusedBits(); 241 return Result; 242 } 243 244 void APInt::AndAssignSlowCase(const APInt& RHS) { 245 tcAnd(U.pVal, RHS.U.pVal, getNumWords()); 246 } 247 248 void APInt::OrAssignSlowCase(const APInt& RHS) { 249 tcOr(U.pVal, RHS.U.pVal, getNumWords()); 250 } 251 252 void APInt::XorAssignSlowCase(const APInt& RHS) { 253 tcXor(U.pVal, RHS.U.pVal, getNumWords()); 254 } 255 256 APInt& APInt::operator*=(const APInt& RHS) { 257 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 258 *this = *this * RHS; 259 return *this; 260 } 261 262 APInt& APInt::operator*=(uint64_t RHS) { 263 if (isSingleWord()) { 264 U.VAL *= RHS; 265 } else { 266 unsigned NumWords = getNumWords(); 267 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 268 } 269 return clearUnusedBits(); 270 } 271 272 bool APInt::EqualSlowCase(const APInt& RHS) const { 273 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 274 } 275 276 int APInt::compare(const APInt& RHS) const { 277 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 278 if (isSingleWord()) 279 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 280 281 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 282 } 283 284 int APInt::compareSigned(const APInt& RHS) const { 285 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 286 if (isSingleWord()) { 287 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 288 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 289 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 290 } 291 292 bool lhsNeg = isNegative(); 293 bool rhsNeg = RHS.isNegative(); 294 295 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 296 if (lhsNeg != rhsNeg) 297 return lhsNeg ? -1 : 1; 298 299 // Otherwise we can just use an unsigned comparison, because even negative 300 // numbers compare correctly this way if both have the same signed-ness. 301 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 302 } 303 304 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 305 unsigned loWord = whichWord(loBit); 306 unsigned hiWord = whichWord(hiBit); 307 308 // Create an initial mask for the low word with zeros below loBit. 309 uint64_t loMask = WORD_MAX << whichBit(loBit); 310 311 // If hiBit is not aligned, we need a high mask. 312 unsigned hiShiftAmt = whichBit(hiBit); 313 if (hiShiftAmt != 0) { 314 // Create a high mask with zeros above hiBit. 315 uint64_t hiMask = WORD_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 316 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 317 // set the bits in hiWord. 318 if (hiWord == loWord) 319 loMask &= hiMask; 320 else 321 U.pVal[hiWord] |= hiMask; 322 } 323 // Apply the mask to the low word. 324 U.pVal[loWord] |= loMask; 325 326 // Fill any words between loWord and hiWord with all ones. 327 for (unsigned word = loWord + 1; word < hiWord; ++word) 328 U.pVal[word] = WORD_MAX; 329 } 330 331 /// @brief Toggle every bit to its opposite value. 332 void APInt::flipAllBitsSlowCase() { 333 tcComplement(U.pVal, getNumWords()); 334 clearUnusedBits(); 335 } 336 337 /// Toggle a given bit to its opposite value whose position is given 338 /// as "bitPosition". 339 /// @brief Toggles a given bit to its opposite value. 340 void APInt::flipBit(unsigned bitPosition) { 341 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 342 if ((*this)[bitPosition]) clearBit(bitPosition); 343 else setBit(bitPosition); 344 } 345 346 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 347 unsigned subBitWidth = subBits.getBitWidth(); 348 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && 349 "Illegal bit insertion"); 350 351 // Insertion is a direct copy. 352 if (subBitWidth == BitWidth) { 353 *this = subBits; 354 return; 355 } 356 357 // Single word result can be done as a direct bitmask. 358 if (isSingleWord()) { 359 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 360 U.VAL &= ~(mask << bitPosition); 361 U.VAL |= (subBits.U.VAL << bitPosition); 362 return; 363 } 364 365 unsigned loBit = whichBit(bitPosition); 366 unsigned loWord = whichWord(bitPosition); 367 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 368 369 // Insertion within a single word can be done as a direct bitmask. 370 if (loWord == hi1Word) { 371 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 372 U.pVal[loWord] &= ~(mask << loBit); 373 U.pVal[loWord] |= (subBits.U.VAL << loBit); 374 return; 375 } 376 377 // Insert on word boundaries. 378 if (loBit == 0) { 379 // Direct copy whole words. 380 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 381 memcpy(U.pVal + loWord, subBits.getRawData(), 382 numWholeSubWords * APINT_WORD_SIZE); 383 384 // Mask+insert remaining bits. 385 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 386 if (remainingBits != 0) { 387 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - remainingBits); 388 U.pVal[hi1Word] &= ~mask; 389 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 390 } 391 return; 392 } 393 394 // General case - set/clear individual bits in dst based on src. 395 // TODO - there is scope for optimization here, but at the moment this code 396 // path is barely used so prefer readability over performance. 397 for (unsigned i = 0; i != subBitWidth; ++i) { 398 if (subBits[i]) 399 setBit(bitPosition + i); 400 else 401 clearBit(bitPosition + i); 402 } 403 } 404 405 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 406 assert(numBits > 0 && "Can't extract zero bits"); 407 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 408 "Illegal bit extraction"); 409 410 if (isSingleWord()) 411 return APInt(numBits, U.VAL >> bitPosition); 412 413 unsigned loBit = whichBit(bitPosition); 414 unsigned loWord = whichWord(bitPosition); 415 unsigned hiWord = whichWord(bitPosition + numBits - 1); 416 417 // Single word result extracting bits from a single word source. 418 if (loWord == hiWord) 419 return APInt(numBits, U.pVal[loWord] >> loBit); 420 421 // Extracting bits that start on a source word boundary can be done 422 // as a fast memory copy. 423 if (loBit == 0) 424 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 425 426 // General case - shift + copy source words directly into place. 427 APInt Result(numBits, 0); 428 unsigned NumSrcWords = getNumWords(); 429 unsigned NumDstWords = Result.getNumWords(); 430 431 for (unsigned word = 0; word < NumDstWords; ++word) { 432 uint64_t w0 = U.pVal[loWord + word]; 433 uint64_t w1 = 434 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 435 Result.U.pVal[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 436 } 437 438 return Result.clearUnusedBits(); 439 } 440 441 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 442 assert(!str.empty() && "Invalid string length"); 443 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 444 radix == 36) && 445 "Radix should be 2, 8, 10, 16, or 36!"); 446 447 size_t slen = str.size(); 448 449 // Each computation below needs to know if it's negative. 450 StringRef::iterator p = str.begin(); 451 unsigned isNegative = *p == '-'; 452 if (*p == '-' || *p == '+') { 453 p++; 454 slen--; 455 assert(slen && "String is only a sign, needs a value."); 456 } 457 458 // For radixes of power-of-two values, the bits required is accurately and 459 // easily computed 460 if (radix == 2) 461 return slen + isNegative; 462 if (radix == 8) 463 return slen * 3 + isNegative; 464 if (radix == 16) 465 return slen * 4 + isNegative; 466 467 // FIXME: base 36 468 469 // This is grossly inefficient but accurate. We could probably do something 470 // with a computation of roughly slen*64/20 and then adjust by the value of 471 // the first few digits. But, I'm not sure how accurate that could be. 472 473 // Compute a sufficient number of bits that is always large enough but might 474 // be too large. This avoids the assertion in the constructor. This 475 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 476 // bits in that case. 477 unsigned sufficient 478 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 479 : (slen == 1 ? 7 : slen * 16/3); 480 481 // Convert to the actual binary value. 482 APInt tmp(sufficient, StringRef(p, slen), radix); 483 484 // Compute how many bits are required. If the log is infinite, assume we need 485 // just bit. 486 unsigned log = tmp.logBase2(); 487 if (log == (unsigned)-1) { 488 return isNegative + 1; 489 } else { 490 return isNegative + log + 1; 491 } 492 } 493 494 hash_code llvm::hash_value(const APInt &Arg) { 495 if (Arg.isSingleWord()) 496 return hash_combine(Arg.U.VAL); 497 498 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()); 499 } 500 501 bool APInt::isSplat(unsigned SplatSizeInBits) const { 502 assert(getBitWidth() % SplatSizeInBits == 0 && 503 "SplatSizeInBits must divide width!"); 504 // We can check that all parts of an integer are equal by making use of a 505 // little trick: rotate and check if it's still the same value. 506 return *this == rotl(SplatSizeInBits); 507 } 508 509 /// This function returns the high "numBits" bits of this APInt. 510 APInt APInt::getHiBits(unsigned numBits) const { 511 return this->lshr(BitWidth - numBits); 512 } 513 514 /// This function returns the low "numBits" bits of this APInt. 515 APInt APInt::getLoBits(unsigned numBits) const { 516 APInt Result(getLowBitsSet(BitWidth, numBits)); 517 Result &= *this; 518 return Result; 519 } 520 521 /// Return a value containing V broadcasted over NewLen bits. 522 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 523 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 524 525 APInt Val = V.zextOrSelf(NewLen); 526 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 527 Val |= Val << I; 528 529 return Val; 530 } 531 532 unsigned APInt::countLeadingZerosSlowCase() const { 533 unsigned Count = 0; 534 for (int i = getNumWords()-1; i >= 0; --i) { 535 uint64_t V = U.pVal[i]; 536 if (V == 0) 537 Count += APINT_BITS_PER_WORD; 538 else { 539 Count += llvm::countLeadingZeros(V); 540 break; 541 } 542 } 543 // Adjust for unused bits in the most significant word (they are zero). 544 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 545 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 546 return Count; 547 } 548 549 unsigned APInt::countLeadingOnesSlowCase() const { 550 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 551 unsigned shift; 552 if (!highWordBits) { 553 highWordBits = APINT_BITS_PER_WORD; 554 shift = 0; 555 } else { 556 shift = APINT_BITS_PER_WORD - highWordBits; 557 } 558 int i = getNumWords() - 1; 559 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); 560 if (Count == highWordBits) { 561 for (i--; i >= 0; --i) { 562 if (U.pVal[i] == WORD_MAX) 563 Count += APINT_BITS_PER_WORD; 564 else { 565 Count += llvm::countLeadingOnes(U.pVal[i]); 566 break; 567 } 568 } 569 } 570 return Count; 571 } 572 573 unsigned APInt::countTrailingZerosSlowCase() const { 574 unsigned Count = 0; 575 unsigned i = 0; 576 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 577 Count += APINT_BITS_PER_WORD; 578 if (i < getNumWords()) 579 Count += llvm::countTrailingZeros(U.pVal[i]); 580 return std::min(Count, BitWidth); 581 } 582 583 unsigned APInt::countTrailingOnesSlowCase() const { 584 unsigned Count = 0; 585 unsigned i = 0; 586 for (; i < getNumWords() && U.pVal[i] == WORD_MAX; ++i) 587 Count += APINT_BITS_PER_WORD; 588 if (i < getNumWords()) 589 Count += llvm::countTrailingOnes(U.pVal[i]); 590 assert(Count <= BitWidth); 591 return Count; 592 } 593 594 unsigned APInt::countPopulationSlowCase() const { 595 unsigned Count = 0; 596 for (unsigned i = 0; i < getNumWords(); ++i) 597 Count += llvm::countPopulation(U.pVal[i]); 598 return Count; 599 } 600 601 bool APInt::intersectsSlowCase(const APInt &RHS) const { 602 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 603 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 604 return true; 605 606 return false; 607 } 608 609 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 610 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 611 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 612 return false; 613 614 return true; 615 } 616 617 APInt APInt::byteSwap() const { 618 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 619 if (BitWidth == 16) 620 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); 621 if (BitWidth == 32) 622 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); 623 if (BitWidth == 48) { 624 unsigned Tmp1 = unsigned(U.VAL >> 16); 625 Tmp1 = ByteSwap_32(Tmp1); 626 uint16_t Tmp2 = uint16_t(U.VAL); 627 Tmp2 = ByteSwap_16(Tmp2); 628 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 629 } 630 if (BitWidth == 64) 631 return APInt(BitWidth, ByteSwap_64(U.VAL)); 632 633 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 634 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 635 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); 636 if (Result.BitWidth != BitWidth) { 637 Result.lshrInPlace(Result.BitWidth - BitWidth); 638 Result.BitWidth = BitWidth; 639 } 640 return Result; 641 } 642 643 APInt APInt::reverseBits() const { 644 switch (BitWidth) { 645 case 64: 646 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 647 case 32: 648 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 649 case 16: 650 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 651 case 8: 652 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 653 default: 654 break; 655 } 656 657 APInt Val(*this); 658 APInt Reversed(BitWidth, 0); 659 unsigned S = BitWidth; 660 661 for (; Val != 0; Val.lshrInPlace(1)) { 662 Reversed <<= 1; 663 Reversed |= Val[0]; 664 --S; 665 } 666 667 Reversed <<= S; 668 return Reversed; 669 } 670 671 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 672 // Fast-path a common case. 673 if (A == B) return A; 674 675 // Corner cases: if either operand is zero, the other is the gcd. 676 if (!A) return B; 677 if (!B) return A; 678 679 // Count common powers of 2 and remove all other powers of 2. 680 unsigned Pow2; 681 { 682 unsigned Pow2_A = A.countTrailingZeros(); 683 unsigned Pow2_B = B.countTrailingZeros(); 684 if (Pow2_A > Pow2_B) { 685 A.lshrInPlace(Pow2_A - Pow2_B); 686 Pow2 = Pow2_B; 687 } else if (Pow2_B > Pow2_A) { 688 B.lshrInPlace(Pow2_B - Pow2_A); 689 Pow2 = Pow2_A; 690 } else { 691 Pow2 = Pow2_A; 692 } 693 } 694 695 // Both operands are odd multiples of 2^Pow_2: 696 // 697 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 698 // 699 // This is a modified version of Stein's algorithm, taking advantage of 700 // efficient countTrailingZeros(). 701 while (A != B) { 702 if (A.ugt(B)) { 703 A -= B; 704 A.lshrInPlace(A.countTrailingZeros() - Pow2); 705 } else { 706 B -= A; 707 B.lshrInPlace(B.countTrailingZeros() - Pow2); 708 } 709 } 710 711 return A; 712 } 713 714 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 715 union { 716 double D; 717 uint64_t I; 718 } T; 719 T.D = Double; 720 721 // Get the sign bit from the highest order bit 722 bool isNeg = T.I >> 63; 723 724 // Get the 11-bit exponent and adjust for the 1023 bit bias 725 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 726 727 // If the exponent is negative, the value is < 0 so just return 0. 728 if (exp < 0) 729 return APInt(width, 0u); 730 731 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 732 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 733 734 // If the exponent doesn't shift all bits out of the mantissa 735 if (exp < 52) 736 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 737 APInt(width, mantissa >> (52 - exp)); 738 739 // If the client didn't provide enough bits for us to shift the mantissa into 740 // then the result is undefined, just return 0 741 if (width <= exp - 52) 742 return APInt(width, 0); 743 744 // Otherwise, we have to shift the mantissa bits up to the right location 745 APInt Tmp(width, mantissa); 746 Tmp <<= (unsigned)exp - 52; 747 return isNeg ? -Tmp : Tmp; 748 } 749 750 /// This function converts this APInt to a double. 751 /// The layout for double is as following (IEEE Standard 754): 752 /// -------------------------------------- 753 /// | Sign Exponent Fraction Bias | 754 /// |-------------------------------------- | 755 /// | 1[63] 11[62-52] 52[51-00] 1023 | 756 /// -------------------------------------- 757 double APInt::roundToDouble(bool isSigned) const { 758 759 // Handle the simple case where the value is contained in one uint64_t. 760 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 761 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 762 if (isSigned) { 763 int64_t sext = SignExtend64(getWord(0), BitWidth); 764 return double(sext); 765 } else 766 return double(getWord(0)); 767 } 768 769 // Determine if the value is negative. 770 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 771 772 // Construct the absolute value if we're negative. 773 APInt Tmp(isNeg ? -(*this) : (*this)); 774 775 // Figure out how many bits we're using. 776 unsigned n = Tmp.getActiveBits(); 777 778 // The exponent (without bias normalization) is just the number of bits 779 // we are using. Note that the sign bit is gone since we constructed the 780 // absolute value. 781 uint64_t exp = n; 782 783 // Return infinity for exponent overflow 784 if (exp > 1023) { 785 if (!isSigned || !isNeg) 786 return std::numeric_limits<double>::infinity(); 787 else 788 return -std::numeric_limits<double>::infinity(); 789 } 790 exp += 1023; // Increment for 1023 bias 791 792 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 793 // extract the high 52 bits from the correct words in pVal. 794 uint64_t mantissa; 795 unsigned hiWord = whichWord(n-1); 796 if (hiWord == 0) { 797 mantissa = Tmp.U.pVal[0]; 798 if (n > 52) 799 mantissa >>= n - 52; // shift down, we want the top 52 bits. 800 } else { 801 assert(hiWord > 0 && "huh?"); 802 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 803 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 804 mantissa = hibits | lobits; 805 } 806 807 // The leading bit of mantissa is implicit, so get rid of it. 808 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 809 union { 810 double D; 811 uint64_t I; 812 } T; 813 T.I = sign | (exp << 52) | mantissa; 814 return T.D; 815 } 816 817 // Truncate to new width. 818 APInt APInt::trunc(unsigned width) const { 819 assert(width < BitWidth && "Invalid APInt Truncate request"); 820 assert(width && "Can't truncate to 0 bits"); 821 822 if (width <= APINT_BITS_PER_WORD) 823 return APInt(width, getRawData()[0]); 824 825 APInt Result(getMemory(getNumWords(width)), width); 826 827 // Copy full words. 828 unsigned i; 829 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 830 Result.U.pVal[i] = U.pVal[i]; 831 832 // Truncate and copy any partial word. 833 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 834 if (bits != 0) 835 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 836 837 return Result; 838 } 839 840 // Sign extend to a new width. 841 APInt APInt::sext(unsigned Width) const { 842 assert(Width > BitWidth && "Invalid APInt SignExtend request"); 843 844 if (Width <= APINT_BITS_PER_WORD) 845 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 846 847 APInt Result(getMemory(getNumWords(Width)), Width); 848 849 // Copy words. 850 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 851 852 // Sign extend the last word since there may be unused bits in the input. 853 Result.U.pVal[getNumWords() - 1] = 854 SignExtend64(Result.U.pVal[getNumWords() - 1], 855 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 856 857 // Fill with sign bits. 858 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 859 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 860 Result.clearUnusedBits(); 861 return Result; 862 } 863 864 // Zero extend to a new width. 865 APInt APInt::zext(unsigned width) const { 866 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 867 868 if (width <= APINT_BITS_PER_WORD) 869 return APInt(width, U.VAL); 870 871 APInt Result(getMemory(getNumWords(width)), width); 872 873 // Copy words. 874 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 875 876 // Zero remaining words. 877 std::memset(Result.U.pVal + getNumWords(), 0, 878 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 879 880 return Result; 881 } 882 883 APInt APInt::zextOrTrunc(unsigned width) const { 884 if (BitWidth < width) 885 return zext(width); 886 if (BitWidth > width) 887 return trunc(width); 888 return *this; 889 } 890 891 APInt APInt::sextOrTrunc(unsigned width) const { 892 if (BitWidth < width) 893 return sext(width); 894 if (BitWidth > width) 895 return trunc(width); 896 return *this; 897 } 898 899 APInt APInt::zextOrSelf(unsigned width) const { 900 if (BitWidth < width) 901 return zext(width); 902 return *this; 903 } 904 905 APInt APInt::sextOrSelf(unsigned width) const { 906 if (BitWidth < width) 907 return sext(width); 908 return *this; 909 } 910 911 /// Arithmetic right-shift this APInt by shiftAmt. 912 /// @brief Arithmetic right-shift function. 913 void APInt::ashrInPlace(const APInt &shiftAmt) { 914 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 915 } 916 917 /// Arithmetic right-shift this APInt by shiftAmt. 918 /// @brief Arithmetic right-shift function. 919 void APInt::ashrSlowCase(unsigned ShiftAmt) { 920 // Don't bother performing a no-op shift. 921 if (!ShiftAmt) 922 return; 923 924 // Save the original sign bit for later. 925 bool Negative = isNegative(); 926 927 // WordShift is the inter-part shift; BitShift is is intra-part shift. 928 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 929 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 930 931 unsigned WordsToMove = getNumWords() - WordShift; 932 if (WordsToMove != 0) { 933 // Sign extend the last word to fill in the unused bits. 934 U.pVal[getNumWords() - 1] = SignExtend64( 935 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 936 937 // Fastpath for moving by whole words. 938 if (BitShift == 0) { 939 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 940 } else { 941 // Move the words containing significant bits. 942 for (unsigned i = 0; i != WordsToMove - 1; ++i) 943 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 944 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 945 946 // Handle the last word which has no high bits to copy. 947 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 948 // Sign extend one more time. 949 U.pVal[WordsToMove - 1] = 950 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 951 } 952 } 953 954 // Fill in the remainder based on the original sign. 955 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 956 WordShift * APINT_WORD_SIZE); 957 clearUnusedBits(); 958 } 959 960 /// Logical right-shift this APInt by shiftAmt. 961 /// @brief Logical right-shift function. 962 void APInt::lshrInPlace(const APInt &shiftAmt) { 963 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 964 } 965 966 /// Logical right-shift this APInt by shiftAmt. 967 /// @brief Logical right-shift function. 968 void APInt::lshrSlowCase(unsigned ShiftAmt) { 969 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 970 } 971 972 /// Left-shift this APInt by shiftAmt. 973 /// @brief Left-shift function. 974 APInt &APInt::operator<<=(const APInt &shiftAmt) { 975 // It's undefined behavior in C to shift by BitWidth or greater. 976 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 977 return *this; 978 } 979 980 void APInt::shlSlowCase(unsigned ShiftAmt) { 981 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 982 clearUnusedBits(); 983 } 984 985 // Calculate the rotate amount modulo the bit width. 986 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 987 unsigned rotBitWidth = rotateAmt.getBitWidth(); 988 APInt rot = rotateAmt; 989 if (rotBitWidth < BitWidth) { 990 // Extend the rotate APInt, so that the urem doesn't divide by 0. 991 // e.g. APInt(1, 32) would give APInt(1, 0). 992 rot = rotateAmt.zext(BitWidth); 993 } 994 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 995 return rot.getLimitedValue(BitWidth); 996 } 997 998 APInt APInt::rotl(const APInt &rotateAmt) const { 999 return rotl(rotateModulo(BitWidth, rotateAmt)); 1000 } 1001 1002 APInt APInt::rotl(unsigned rotateAmt) const { 1003 rotateAmt %= BitWidth; 1004 if (rotateAmt == 0) 1005 return *this; 1006 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1007 } 1008 1009 APInt APInt::rotr(const APInt &rotateAmt) const { 1010 return rotr(rotateModulo(BitWidth, rotateAmt)); 1011 } 1012 1013 APInt APInt::rotr(unsigned rotateAmt) const { 1014 rotateAmt %= BitWidth; 1015 if (rotateAmt == 0) 1016 return *this; 1017 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1018 } 1019 1020 // Square Root - this method computes and returns the square root of "this". 1021 // Three mechanisms are used for computation. For small values (<= 5 bits), 1022 // a table lookup is done. This gets some performance for common cases. For 1023 // values using less than 52 bits, the value is converted to double and then 1024 // the libc sqrt function is called. The result is rounded and then converted 1025 // back to a uint64_t which is then used to construct the result. Finally, 1026 // the Babylonian method for computing square roots is used. 1027 APInt APInt::sqrt() const { 1028 1029 // Determine the magnitude of the value. 1030 unsigned magnitude = getActiveBits(); 1031 1032 // Use a fast table for some small values. This also gets rid of some 1033 // rounding errors in libc sqrt for small values. 1034 if (magnitude <= 5) { 1035 static const uint8_t results[32] = { 1036 /* 0 */ 0, 1037 /* 1- 2 */ 1, 1, 1038 /* 3- 6 */ 2, 2, 2, 2, 1039 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1040 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1041 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1042 /* 31 */ 6 1043 }; 1044 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1045 } 1046 1047 // If the magnitude of the value fits in less than 52 bits (the precision of 1048 // an IEEE double precision floating point value), then we can use the 1049 // libc sqrt function which will probably use a hardware sqrt computation. 1050 // This should be faster than the algorithm below. 1051 if (magnitude < 52) { 1052 return APInt(BitWidth, 1053 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1054 : U.pVal[0]))))); 1055 } 1056 1057 // Okay, all the short cuts are exhausted. We must compute it. The following 1058 // is a classical Babylonian method for computing the square root. This code 1059 // was adapted to APInt from a wikipedia article on such computations. 1060 // See http://www.wikipedia.org/ and go to the page named 1061 // Calculate_an_integer_square_root. 1062 unsigned nbits = BitWidth, i = 4; 1063 APInt testy(BitWidth, 16); 1064 APInt x_old(BitWidth, 1); 1065 APInt x_new(BitWidth, 0); 1066 APInt two(BitWidth, 2); 1067 1068 // Select a good starting value using binary logarithms. 1069 for (;; i += 2, testy = testy.shl(2)) 1070 if (i >= nbits || this->ule(testy)) { 1071 x_old = x_old.shl(i / 2); 1072 break; 1073 } 1074 1075 // Use the Babylonian method to arrive at the integer square root: 1076 for (;;) { 1077 x_new = (this->udiv(x_old) + x_old).udiv(two); 1078 if (x_old.ule(x_new)) 1079 break; 1080 x_old = x_new; 1081 } 1082 1083 // Make sure we return the closest approximation 1084 // NOTE: The rounding calculation below is correct. It will produce an 1085 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1086 // determined to be a rounding issue with pari/gp as it begins to use a 1087 // floating point representation after 192 bits. There are no discrepancies 1088 // between this algorithm and pari/gp for bit widths < 192 bits. 1089 APInt square(x_old * x_old); 1090 APInt nextSquare((x_old + 1) * (x_old +1)); 1091 if (this->ult(square)) 1092 return x_old; 1093 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1094 APInt midpoint((nextSquare - square).udiv(two)); 1095 APInt offset(*this - square); 1096 if (offset.ult(midpoint)) 1097 return x_old; 1098 return x_old + 1; 1099 } 1100 1101 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1102 /// iterative extended Euclidean algorithm is used to solve for this value, 1103 /// however we simplify it to speed up calculating only the inverse, and take 1104 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1105 /// (potentially large) APInts around. 1106 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1107 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1108 1109 // Using the properties listed at the following web page (accessed 06/21/08): 1110 // http://www.numbertheory.org/php/euclid.html 1111 // (especially the properties numbered 3, 4 and 9) it can be proved that 1112 // BitWidth bits suffice for all the computations in the algorithm implemented 1113 // below. More precisely, this number of bits suffice if the multiplicative 1114 // inverse exists, but may not suffice for the general extended Euclidean 1115 // algorithm. 1116 1117 APInt r[2] = { modulo, *this }; 1118 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1119 APInt q(BitWidth, 0); 1120 1121 unsigned i; 1122 for (i = 0; r[i^1] != 0; i ^= 1) { 1123 // An overview of the math without the confusing bit-flipping: 1124 // q = r[i-2] / r[i-1] 1125 // r[i] = r[i-2] % r[i-1] 1126 // t[i] = t[i-2] - t[i-1] * q 1127 udivrem(r[i], r[i^1], q, r[i]); 1128 t[i] -= t[i^1] * q; 1129 } 1130 1131 // If this APInt and the modulo are not coprime, there is no multiplicative 1132 // inverse, so return 0. We check this by looking at the next-to-last 1133 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1134 // algorithm. 1135 if (r[i] != 1) 1136 return APInt(BitWidth, 0); 1137 1138 // The next-to-last t is the multiplicative inverse. However, we are 1139 // interested in a positive inverse. Calculate a positive one from a negative 1140 // one if necessary. A simple addition of the modulo suffices because 1141 // abs(t[i]) is known to be less than *this/2 (see the link above). 1142 if (t[i].isNegative()) 1143 t[i] += modulo; 1144 1145 return std::move(t[i]); 1146 } 1147 1148 /// Calculate the magic numbers required to implement a signed integer division 1149 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1150 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1151 /// Warren, Jr., chapter 10. 1152 APInt::ms APInt::magic() const { 1153 const APInt& d = *this; 1154 unsigned p; 1155 APInt ad, anc, delta, q1, r1, q2, r2, t; 1156 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1157 struct ms mag; 1158 1159 ad = d.abs(); 1160 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1161 anc = t - 1 - t.urem(ad); // absolute value of nc 1162 p = d.getBitWidth() - 1; // initialize p 1163 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1164 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1165 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1166 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1167 do { 1168 p = p + 1; 1169 q1 = q1<<1; // update q1 = 2p/abs(nc) 1170 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1171 if (r1.uge(anc)) { // must be unsigned comparison 1172 q1 = q1 + 1; 1173 r1 = r1 - anc; 1174 } 1175 q2 = q2<<1; // update q2 = 2p/abs(d) 1176 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1177 if (r2.uge(ad)) { // must be unsigned comparison 1178 q2 = q2 + 1; 1179 r2 = r2 - ad; 1180 } 1181 delta = ad - r2; 1182 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1183 1184 mag.m = q2 + 1; 1185 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1186 mag.s = p - d.getBitWidth(); // resulting shift 1187 return mag; 1188 } 1189 1190 /// Calculate the magic numbers required to implement an unsigned integer 1191 /// division by a constant as a sequence of multiplies, adds and shifts. 1192 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1193 /// S. Warren, Jr., chapter 10. 1194 /// LeadingZeros can be used to simplify the calculation if the upper bits 1195 /// of the divided value are known zero. 1196 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1197 const APInt& d = *this; 1198 unsigned p; 1199 APInt nc, delta, q1, r1, q2, r2; 1200 struct mu magu; 1201 magu.a = 0; // initialize "add" indicator 1202 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1203 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1204 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1205 1206 nc = allOnes - (allOnes - d).urem(d); 1207 p = d.getBitWidth() - 1; // initialize p 1208 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1209 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1210 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1211 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1212 do { 1213 p = p + 1; 1214 if (r1.uge(nc - r1)) { 1215 q1 = q1 + q1 + 1; // update q1 1216 r1 = r1 + r1 - nc; // update r1 1217 } 1218 else { 1219 q1 = q1+q1; // update q1 1220 r1 = r1+r1; // update r1 1221 } 1222 if ((r2 + 1).uge(d - r2)) { 1223 if (q2.uge(signedMax)) magu.a = 1; 1224 q2 = q2+q2 + 1; // update q2 1225 r2 = r2+r2 + 1 - d; // update r2 1226 } 1227 else { 1228 if (q2.uge(signedMin)) magu.a = 1; 1229 q2 = q2+q2; // update q2 1230 r2 = r2+r2 + 1; // update r2 1231 } 1232 delta = d - 1 - r2; 1233 } while (p < d.getBitWidth()*2 && 1234 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1235 magu.m = q2 + 1; // resulting magic number 1236 magu.s = p - d.getBitWidth(); // resulting shift 1237 return magu; 1238 } 1239 1240 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1241 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1242 /// variables here have the same names as in the algorithm. Comments explain 1243 /// the algorithm and any deviation from it. 1244 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1245 unsigned m, unsigned n) { 1246 assert(u && "Must provide dividend"); 1247 assert(v && "Must provide divisor"); 1248 assert(q && "Must provide quotient"); 1249 assert(u != v && u != q && v != q && "Must use different memory"); 1250 assert(n>1 && "n must be > 1"); 1251 1252 // b denotes the base of the number system. In our case b is 2^32. 1253 const uint64_t b = uint64_t(1) << 32; 1254 1255 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1256 DEBUG(dbgs() << "KnuthDiv: original:"); 1257 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1258 DEBUG(dbgs() << " by"); 1259 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1260 DEBUG(dbgs() << '\n'); 1261 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1262 // u and v by d. Note that we have taken Knuth's advice here to use a power 1263 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1264 // 2 allows us to shift instead of multiply and it is easy to determine the 1265 // shift amount from the leading zeros. We are basically normalizing the u 1266 // and v so that its high bits are shifted to the top of v's range without 1267 // overflow. Note that this can require an extra word in u so that u must 1268 // be of length m+n+1. 1269 unsigned shift = countLeadingZeros(v[n-1]); 1270 uint32_t v_carry = 0; 1271 uint32_t u_carry = 0; 1272 if (shift) { 1273 for (unsigned i = 0; i < m+n; ++i) { 1274 uint32_t u_tmp = u[i] >> (32 - shift); 1275 u[i] = (u[i] << shift) | u_carry; 1276 u_carry = u_tmp; 1277 } 1278 for (unsigned i = 0; i < n; ++i) { 1279 uint32_t v_tmp = v[i] >> (32 - shift); 1280 v[i] = (v[i] << shift) | v_carry; 1281 v_carry = v_tmp; 1282 } 1283 } 1284 u[m+n] = u_carry; 1285 1286 DEBUG(dbgs() << "KnuthDiv: normal:"); 1287 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1288 DEBUG(dbgs() << " by"); 1289 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1290 DEBUG(dbgs() << '\n'); 1291 1292 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1293 int j = m; 1294 do { 1295 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1296 // D3. [Calculate q'.]. 1297 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1298 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1299 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1300 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1301 // on v[n-2] determines at high speed most of the cases in which the trial 1302 // value qp is one too large, and it eliminates all cases where qp is two 1303 // too large. 1304 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1305 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1306 uint64_t qp = dividend / v[n-1]; 1307 uint64_t rp = dividend % v[n-1]; 1308 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1309 qp--; 1310 rp += v[n-1]; 1311 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1312 qp--; 1313 } 1314 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1315 1316 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1317 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1318 // consists of a simple multiplication by a one-place number, combined with 1319 // a subtraction. 1320 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1321 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1322 // true value plus b**(n+1), namely as the b's complement of 1323 // the true value, and a "borrow" to the left should be remembered. 1324 int64_t borrow = 0; 1325 for (unsigned i = 0; i < n; ++i) { 1326 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1327 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1328 u[j+i] = Lo_32(subres); 1329 borrow = Hi_32(p) - Hi_32(subres); 1330 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] 1331 << ", borrow = " << borrow << '\n'); 1332 } 1333 bool isNeg = u[j+n] < borrow; 1334 u[j+n] -= Lo_32(borrow); 1335 1336 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1337 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1338 DEBUG(dbgs() << '\n'); 1339 1340 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1341 // negative, go to step D6; otherwise go on to step D7. 1342 q[j] = Lo_32(qp); 1343 if (isNeg) { 1344 // D6. [Add back]. The probability that this step is necessary is very 1345 // small, on the order of only 2/b. Make sure that test data accounts for 1346 // this possibility. Decrease q[j] by 1 1347 q[j]--; 1348 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1349 // A carry will occur to the left of u[j+n], and it should be ignored 1350 // since it cancels with the borrow that occurred in D4. 1351 bool carry = false; 1352 for (unsigned i = 0; i < n; i++) { 1353 uint32_t limit = std::min(u[j+i],v[i]); 1354 u[j+i] += v[i] + carry; 1355 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1356 } 1357 u[j+n] += carry; 1358 } 1359 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1360 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1361 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1362 1363 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1364 } while (--j >= 0); 1365 1366 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1367 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1368 DEBUG(dbgs() << '\n'); 1369 1370 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1371 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1372 // compute the remainder (urem uses this). 1373 if (r) { 1374 // The value d is expressed by the "shift" value above since we avoided 1375 // multiplication by d by using a shift left. So, all we have to do is 1376 // shift right here. 1377 if (shift) { 1378 uint32_t carry = 0; 1379 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1380 for (int i = n-1; i >= 0; i--) { 1381 r[i] = (u[i] >> shift) | carry; 1382 carry = u[i] << (32 - shift); 1383 DEBUG(dbgs() << " " << r[i]); 1384 } 1385 } else { 1386 for (int i = n-1; i >= 0; i--) { 1387 r[i] = u[i]; 1388 DEBUG(dbgs() << " " << r[i]); 1389 } 1390 } 1391 DEBUG(dbgs() << '\n'); 1392 } 1393 DEBUG(dbgs() << '\n'); 1394 } 1395 1396 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1397 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1398 assert(lhsWords >= rhsWords && "Fractional result"); 1399 1400 // First, compose the values into an array of 32-bit words instead of 1401 // 64-bit words. This is a necessity of both the "short division" algorithm 1402 // and the Knuth "classical algorithm" which requires there to be native 1403 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1404 // can't use 64-bit operands here because we don't have native results of 1405 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1406 // work on large-endian machines. 1407 unsigned n = rhsWords * 2; 1408 unsigned m = (lhsWords * 2) - n; 1409 1410 // Allocate space for the temporary values we need either on the stack, if 1411 // it will fit, or on the heap if it won't. 1412 uint32_t SPACE[128]; 1413 uint32_t *U = nullptr; 1414 uint32_t *V = nullptr; 1415 uint32_t *Q = nullptr; 1416 uint32_t *R = nullptr; 1417 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1418 U = &SPACE[0]; 1419 V = &SPACE[m+n+1]; 1420 Q = &SPACE[(m+n+1) + n]; 1421 if (Remainder) 1422 R = &SPACE[(m+n+1) + n + (m+n)]; 1423 } else { 1424 U = new uint32_t[m + n + 1]; 1425 V = new uint32_t[n]; 1426 Q = new uint32_t[m+n]; 1427 if (Remainder) 1428 R = new uint32_t[n]; 1429 } 1430 1431 // Initialize the dividend 1432 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1433 for (unsigned i = 0; i < lhsWords; ++i) { 1434 uint64_t tmp = LHS[i]; 1435 U[i * 2] = Lo_32(tmp); 1436 U[i * 2 + 1] = Hi_32(tmp); 1437 } 1438 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1439 1440 // Initialize the divisor 1441 memset(V, 0, (n)*sizeof(uint32_t)); 1442 for (unsigned i = 0; i < rhsWords; ++i) { 1443 uint64_t tmp = RHS[i]; 1444 V[i * 2] = Lo_32(tmp); 1445 V[i * 2 + 1] = Hi_32(tmp); 1446 } 1447 1448 // initialize the quotient and remainder 1449 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1450 if (Remainder) 1451 memset(R, 0, n * sizeof(uint32_t)); 1452 1453 // Now, adjust m and n for the Knuth division. n is the number of words in 1454 // the divisor. m is the number of words by which the dividend exceeds the 1455 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1456 // contain any zero words or the Knuth algorithm fails. 1457 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1458 n--; 1459 m++; 1460 } 1461 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1462 m--; 1463 1464 // If we're left with only a single word for the divisor, Knuth doesn't work 1465 // so we implement the short division algorithm here. This is much simpler 1466 // and faster because we are certain that we can divide a 64-bit quantity 1467 // by a 32-bit quantity at hardware speed and short division is simply a 1468 // series of such operations. This is just like doing short division but we 1469 // are using base 2^32 instead of base 10. 1470 assert(n != 0 && "Divide by zero?"); 1471 if (n == 1) { 1472 uint32_t divisor = V[0]; 1473 uint32_t remainder = 0; 1474 for (int i = m; i >= 0; i--) { 1475 uint64_t partial_dividend = Make_64(remainder, U[i]); 1476 if (partial_dividend == 0) { 1477 Q[i] = 0; 1478 remainder = 0; 1479 } else if (partial_dividend < divisor) { 1480 Q[i] = 0; 1481 remainder = Lo_32(partial_dividend); 1482 } else if (partial_dividend == divisor) { 1483 Q[i] = 1; 1484 remainder = 0; 1485 } else { 1486 Q[i] = Lo_32(partial_dividend / divisor); 1487 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1488 } 1489 } 1490 if (R) 1491 R[0] = remainder; 1492 } else { 1493 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1494 // case n > 1. 1495 KnuthDiv(U, V, Q, R, m, n); 1496 } 1497 1498 // If the caller wants the quotient 1499 if (Quotient) { 1500 for (unsigned i = 0; i < lhsWords; ++i) 1501 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1502 } 1503 1504 // If the caller wants the remainder 1505 if (Remainder) { 1506 for (unsigned i = 0; i < rhsWords; ++i) 1507 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1508 } 1509 1510 // Clean up the memory we allocated. 1511 if (U != &SPACE[0]) { 1512 delete [] U; 1513 delete [] V; 1514 delete [] Q; 1515 delete [] R; 1516 } 1517 } 1518 1519 APInt APInt::udiv(const APInt &RHS) const { 1520 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1521 1522 // First, deal with the easy case 1523 if (isSingleWord()) { 1524 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1525 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1526 } 1527 1528 // Get some facts about the LHS and RHS number of bits and words 1529 unsigned lhsWords = getNumWords(getActiveBits()); 1530 unsigned rhsBits = RHS.getActiveBits(); 1531 unsigned rhsWords = getNumWords(rhsBits); 1532 assert(rhsWords && "Divided by zero???"); 1533 1534 // Deal with some degenerate cases 1535 if (!lhsWords) 1536 // 0 / X ===> 0 1537 return APInt(BitWidth, 0); 1538 if (rhsBits == 1) 1539 // X / 1 ===> X 1540 return *this; 1541 if (lhsWords < rhsWords || this->ult(RHS)) 1542 // X / Y ===> 0, iff X < Y 1543 return APInt(BitWidth, 0); 1544 if (*this == RHS) 1545 // X / X ===> 1 1546 return APInt(BitWidth, 1); 1547 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1548 // All high words are zero, just use native divide 1549 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1550 1551 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1552 APInt Quotient(BitWidth, 0); // to hold result. 1553 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1554 return Quotient; 1555 } 1556 1557 APInt APInt::udiv(uint64_t RHS) const { 1558 assert(RHS != 0 && "Divide by zero?"); 1559 1560 // First, deal with the easy case 1561 if (isSingleWord()) 1562 return APInt(BitWidth, U.VAL / RHS); 1563 1564 // Get some facts about the LHS words. 1565 unsigned lhsWords = getNumWords(getActiveBits()); 1566 1567 // Deal with some degenerate cases 1568 if (!lhsWords) 1569 // 0 / X ===> 0 1570 return APInt(BitWidth, 0); 1571 if (RHS == 1) 1572 // X / 1 ===> X 1573 return *this; 1574 if (this->ult(RHS)) 1575 // X / Y ===> 0, iff X < Y 1576 return APInt(BitWidth, 0); 1577 if (*this == RHS) 1578 // X / X ===> 1 1579 return APInt(BitWidth, 1); 1580 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1581 // All high words are zero, just use native divide 1582 return APInt(BitWidth, this->U.pVal[0] / RHS); 1583 1584 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1585 APInt Quotient(BitWidth, 0); // to hold result. 1586 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1587 return Quotient; 1588 } 1589 1590 APInt APInt::sdiv(const APInt &RHS) const { 1591 if (isNegative()) { 1592 if (RHS.isNegative()) 1593 return (-(*this)).udiv(-RHS); 1594 return -((-(*this)).udiv(RHS)); 1595 } 1596 if (RHS.isNegative()) 1597 return -(this->udiv(-RHS)); 1598 return this->udiv(RHS); 1599 } 1600 1601 APInt APInt::sdiv(int64_t RHS) const { 1602 if (isNegative()) { 1603 if (RHS < 0) 1604 return (-(*this)).udiv(-RHS); 1605 return -((-(*this)).udiv(RHS)); 1606 } 1607 if (RHS < 0) 1608 return -(this->udiv(-RHS)); 1609 return this->udiv(RHS); 1610 } 1611 1612 APInt APInt::urem(const APInt &RHS) const { 1613 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1614 if (isSingleWord()) { 1615 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1616 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1617 } 1618 1619 // Get some facts about the LHS 1620 unsigned lhsWords = getNumWords(getActiveBits()); 1621 1622 // Get some facts about the RHS 1623 unsigned rhsBits = RHS.getActiveBits(); 1624 unsigned rhsWords = getNumWords(rhsBits); 1625 assert(rhsWords && "Performing remainder operation by zero ???"); 1626 1627 // Check the degenerate cases 1628 if (lhsWords == 0) 1629 // 0 % Y ===> 0 1630 return APInt(BitWidth, 0); 1631 if (rhsBits == 1) 1632 // X % 1 ===> 0 1633 return APInt(BitWidth, 0); 1634 if (lhsWords < rhsWords || this->ult(RHS)) 1635 // X % Y ===> X, iff X < Y 1636 return *this; 1637 if (*this == RHS) 1638 // X % X == 0; 1639 return APInt(BitWidth, 0); 1640 if (lhsWords == 1) 1641 // All high words are zero, just use native remainder 1642 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1643 1644 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1645 APInt Remainder(BitWidth, 0); 1646 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1647 return Remainder; 1648 } 1649 1650 uint64_t APInt::urem(uint64_t RHS) const { 1651 assert(RHS != 0 && "Remainder by zero?"); 1652 1653 if (isSingleWord()) 1654 return U.VAL % RHS; 1655 1656 // Get some facts about the LHS 1657 unsigned lhsWords = getNumWords(getActiveBits()); 1658 1659 // Check the degenerate cases 1660 if (lhsWords == 0) 1661 // 0 % Y ===> 0 1662 return 0; 1663 if (RHS == 1) 1664 // X % 1 ===> 0 1665 return 0; 1666 if (this->ult(RHS)) 1667 // X % Y ===> X, iff X < Y 1668 return getZExtValue(); 1669 if (*this == RHS) 1670 // X % X == 0; 1671 return 0; 1672 if (lhsWords == 1) 1673 // All high words are zero, just use native remainder 1674 return U.pVal[0] % RHS; 1675 1676 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1677 uint64_t Remainder; 1678 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1679 return Remainder; 1680 } 1681 1682 APInt APInt::srem(const APInt &RHS) const { 1683 if (isNegative()) { 1684 if (RHS.isNegative()) 1685 return -((-(*this)).urem(-RHS)); 1686 return -((-(*this)).urem(RHS)); 1687 } 1688 if (RHS.isNegative()) 1689 return this->urem(-RHS); 1690 return this->urem(RHS); 1691 } 1692 1693 int64_t APInt::srem(int64_t RHS) const { 1694 if (isNegative()) { 1695 if (RHS < 0) 1696 return -((-(*this)).urem(-RHS)); 1697 return -((-(*this)).urem(RHS)); 1698 } 1699 if (RHS < 0) 1700 return this->urem(-RHS); 1701 return this->urem(RHS); 1702 } 1703 1704 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1705 APInt &Quotient, APInt &Remainder) { 1706 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1707 unsigned BitWidth = LHS.BitWidth; 1708 1709 // First, deal with the easy case 1710 if (LHS.isSingleWord()) { 1711 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1712 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1713 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1714 Quotient = APInt(BitWidth, QuotVal); 1715 Remainder = APInt(BitWidth, RemVal); 1716 return; 1717 } 1718 1719 // Get some size facts about the dividend and divisor 1720 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1721 unsigned rhsBits = RHS.getActiveBits(); 1722 unsigned rhsWords = getNumWords(rhsBits); 1723 assert(rhsWords && "Performing divrem operation by zero ???"); 1724 1725 // Check the degenerate cases 1726 if (lhsWords == 0) { 1727 Quotient = 0; // 0 / Y ===> 0 1728 Remainder = 0; // 0 % Y ===> 0 1729 return; 1730 } 1731 1732 if (rhsBits == 1) { 1733 Quotient = LHS; // X / 1 ===> X 1734 Remainder = 0; // X % 1 ===> 0 1735 } 1736 1737 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1738 Remainder = LHS; // X % Y ===> X, iff X < Y 1739 Quotient = 0; // X / Y ===> 0, iff X < Y 1740 return; 1741 } 1742 1743 if (LHS == RHS) { 1744 Quotient = 1; // X / X ===> 1 1745 Remainder = 0; // X % X ===> 0; 1746 return; 1747 } 1748 1749 // Make sure there is enough space to hold the results. 1750 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1751 // change the size. This is necessary if Quotient or Remainder is aliased 1752 // with LHS or RHS. 1753 Quotient.reallocate(BitWidth); 1754 Remainder.reallocate(BitWidth); 1755 1756 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1757 // There is only one word to consider so use the native versions. 1758 uint64_t lhsValue = LHS.U.pVal[0]; 1759 uint64_t rhsValue = RHS.U.pVal[0]; 1760 Quotient = lhsValue / rhsValue; 1761 Remainder = lhsValue % rhsValue; 1762 return; 1763 } 1764 1765 // Okay, lets do it the long way 1766 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1767 Remainder.U.pVal); 1768 // Clear the rest of the Quotient and Remainder. 1769 std::memset(Quotient.U.pVal + lhsWords, 0, 1770 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1771 std::memset(Remainder.U.pVal + rhsWords, 0, 1772 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1773 } 1774 1775 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1776 uint64_t &Remainder) { 1777 assert(RHS != 0 && "Divide by zero?"); 1778 unsigned BitWidth = LHS.BitWidth; 1779 1780 // First, deal with the easy case 1781 if (LHS.isSingleWord()) { 1782 uint64_t QuotVal = LHS.U.VAL / RHS; 1783 Remainder = LHS.U.VAL % RHS; 1784 Quotient = APInt(BitWidth, QuotVal); 1785 return; 1786 } 1787 1788 // Get some size facts about the dividend and divisor 1789 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1790 1791 // Check the degenerate cases 1792 if (lhsWords == 0) { 1793 Quotient = 0; // 0 / Y ===> 0 1794 Remainder = 0; // 0 % Y ===> 0 1795 return; 1796 } 1797 1798 if (RHS == 1) { 1799 Quotient = LHS; // X / 1 ===> X 1800 Remainder = 0; // X % 1 ===> 0 1801 } 1802 1803 if (LHS.ult(RHS)) { 1804 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1805 Quotient = 0; // X / Y ===> 0, iff X < Y 1806 return; 1807 } 1808 1809 if (LHS == RHS) { 1810 Quotient = 1; // X / X ===> 1 1811 Remainder = 0; // X % X ===> 0; 1812 return; 1813 } 1814 1815 // Make sure there is enough space to hold the results. 1816 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1817 // change the size. This is necessary if Quotient is aliased with LHS. 1818 Quotient.reallocate(BitWidth); 1819 1820 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1821 // There is only one word to consider so use the native versions. 1822 uint64_t lhsValue = LHS.U.pVal[0]; 1823 Quotient = lhsValue / RHS; 1824 Remainder = lhsValue % RHS; 1825 return; 1826 } 1827 1828 // Okay, lets do it the long way 1829 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1830 // Clear the rest of the Quotient. 1831 std::memset(Quotient.U.pVal + lhsWords, 0, 1832 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1833 } 1834 1835 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1836 APInt &Quotient, APInt &Remainder) { 1837 if (LHS.isNegative()) { 1838 if (RHS.isNegative()) 1839 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1840 else { 1841 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1842 Quotient.negate(); 1843 } 1844 Remainder.negate(); 1845 } else if (RHS.isNegative()) { 1846 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1847 Quotient.negate(); 1848 } else { 1849 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1850 } 1851 } 1852 1853 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1854 APInt &Quotient, int64_t &Remainder) { 1855 uint64_t R = Remainder; 1856 if (LHS.isNegative()) { 1857 if (RHS < 0) 1858 APInt::udivrem(-LHS, -RHS, Quotient, R); 1859 else { 1860 APInt::udivrem(-LHS, RHS, Quotient, R); 1861 Quotient.negate(); 1862 } 1863 R = -R; 1864 } else if (RHS < 0) { 1865 APInt::udivrem(LHS, -RHS, Quotient, R); 1866 Quotient.negate(); 1867 } else { 1868 APInt::udivrem(LHS, RHS, Quotient, R); 1869 } 1870 Remainder = R; 1871 } 1872 1873 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1874 APInt Res = *this+RHS; 1875 Overflow = isNonNegative() == RHS.isNonNegative() && 1876 Res.isNonNegative() != isNonNegative(); 1877 return Res; 1878 } 1879 1880 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1881 APInt Res = *this+RHS; 1882 Overflow = Res.ult(RHS); 1883 return Res; 1884 } 1885 1886 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1887 APInt Res = *this - RHS; 1888 Overflow = isNonNegative() != RHS.isNonNegative() && 1889 Res.isNonNegative() != isNonNegative(); 1890 return Res; 1891 } 1892 1893 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1894 APInt Res = *this-RHS; 1895 Overflow = Res.ugt(*this); 1896 return Res; 1897 } 1898 1899 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1900 // MININT/-1 --> overflow. 1901 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 1902 return sdiv(RHS); 1903 } 1904 1905 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1906 APInt Res = *this * RHS; 1907 1908 if (*this != 0 && RHS != 0) 1909 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 1910 else 1911 Overflow = false; 1912 return Res; 1913 } 1914 1915 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1916 APInt Res = *this * RHS; 1917 1918 if (*this != 0 && RHS != 0) 1919 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 1920 else 1921 Overflow = false; 1922 return Res; 1923 } 1924 1925 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1926 Overflow = ShAmt.uge(getBitWidth()); 1927 if (Overflow) 1928 return APInt(BitWidth, 0); 1929 1930 if (isNonNegative()) // Don't allow sign change. 1931 Overflow = ShAmt.uge(countLeadingZeros()); 1932 else 1933 Overflow = ShAmt.uge(countLeadingOnes()); 1934 1935 return *this << ShAmt; 1936 } 1937 1938 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 1939 Overflow = ShAmt.uge(getBitWidth()); 1940 if (Overflow) 1941 return APInt(BitWidth, 0); 1942 1943 Overflow = ShAmt.ugt(countLeadingZeros()); 1944 1945 return *this << ShAmt; 1946 } 1947 1948 1949 1950 1951 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 1952 // Check our assumptions here 1953 assert(!str.empty() && "Invalid string length"); 1954 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 1955 radix == 36) && 1956 "Radix should be 2, 8, 10, 16, or 36!"); 1957 1958 StringRef::iterator p = str.begin(); 1959 size_t slen = str.size(); 1960 bool isNeg = *p == '-'; 1961 if (*p == '-' || *p == '+') { 1962 p++; 1963 slen--; 1964 assert(slen && "String is only a sign, needs a value."); 1965 } 1966 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 1967 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 1968 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 1969 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 1970 "Insufficient bit width"); 1971 1972 // Allocate memory if needed 1973 if (isSingleWord()) 1974 U.VAL = 0; 1975 else 1976 U.pVal = getClearedMemory(getNumWords()); 1977 1978 // Figure out if we can shift instead of multiply 1979 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 1980 1981 // Enter digit traversal loop 1982 for (StringRef::iterator e = str.end(); p != e; ++p) { 1983 unsigned digit = getDigit(*p, radix); 1984 assert(digit < radix && "Invalid character in digit string"); 1985 1986 // Shift or multiply the value by the radix 1987 if (slen > 1) { 1988 if (shift) 1989 *this <<= shift; 1990 else 1991 *this *= radix; 1992 } 1993 1994 // Add in the digit we just interpreted 1995 *this += digit; 1996 } 1997 // If its negative, put it in two's complement form 1998 if (isNeg) 1999 this->negate(); 2000 } 2001 2002 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2003 bool Signed, bool formatAsCLiteral) const { 2004 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2005 Radix == 36) && 2006 "Radix should be 2, 8, 10, 16, or 36!"); 2007 2008 const char *Prefix = ""; 2009 if (formatAsCLiteral) { 2010 switch (Radix) { 2011 case 2: 2012 // Binary literals are a non-standard extension added in gcc 4.3: 2013 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2014 Prefix = "0b"; 2015 break; 2016 case 8: 2017 Prefix = "0"; 2018 break; 2019 case 10: 2020 break; // No prefix 2021 case 16: 2022 Prefix = "0x"; 2023 break; 2024 default: 2025 llvm_unreachable("Invalid radix!"); 2026 } 2027 } 2028 2029 // First, check for a zero value and just short circuit the logic below. 2030 if (*this == 0) { 2031 while (*Prefix) { 2032 Str.push_back(*Prefix); 2033 ++Prefix; 2034 }; 2035 Str.push_back('0'); 2036 return; 2037 } 2038 2039 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2040 2041 if (isSingleWord()) { 2042 char Buffer[65]; 2043 char *BufPtr = std::end(Buffer); 2044 2045 uint64_t N; 2046 if (!Signed) { 2047 N = getZExtValue(); 2048 } else { 2049 int64_t I = getSExtValue(); 2050 if (I >= 0) { 2051 N = I; 2052 } else { 2053 Str.push_back('-'); 2054 N = -(uint64_t)I; 2055 } 2056 } 2057 2058 while (*Prefix) { 2059 Str.push_back(*Prefix); 2060 ++Prefix; 2061 }; 2062 2063 while (N) { 2064 *--BufPtr = Digits[N % Radix]; 2065 N /= Radix; 2066 } 2067 Str.append(BufPtr, std::end(Buffer)); 2068 return; 2069 } 2070 2071 APInt Tmp(*this); 2072 2073 if (Signed && isNegative()) { 2074 // They want to print the signed version and it is a negative value 2075 // Flip the bits and add one to turn it into the equivalent positive 2076 // value and put a '-' in the result. 2077 Tmp.negate(); 2078 Str.push_back('-'); 2079 } 2080 2081 while (*Prefix) { 2082 Str.push_back(*Prefix); 2083 ++Prefix; 2084 }; 2085 2086 // We insert the digits backward, then reverse them to get the right order. 2087 unsigned StartDig = Str.size(); 2088 2089 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2090 // because the number of bits per digit (1, 3 and 4 respectively) divides 2091 // equally. We just shift until the value is zero. 2092 if (Radix == 2 || Radix == 8 || Radix == 16) { 2093 // Just shift tmp right for each digit width until it becomes zero 2094 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2095 unsigned MaskAmt = Radix - 1; 2096 2097 while (Tmp.getBoolValue()) { 2098 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2099 Str.push_back(Digits[Digit]); 2100 Tmp.lshrInPlace(ShiftAmt); 2101 } 2102 } else { 2103 while (Tmp.getBoolValue()) { 2104 uint64_t Digit; 2105 udivrem(Tmp, Radix, Tmp, Digit); 2106 assert(Digit < Radix && "divide failed"); 2107 Str.push_back(Digits[Digit]); 2108 } 2109 } 2110 2111 // Reverse the digits before returning. 2112 std::reverse(Str.begin()+StartDig, Str.end()); 2113 } 2114 2115 /// Returns the APInt as a std::string. Note that this is an inefficient method. 2116 /// It is better to pass in a SmallVector/SmallString to the methods above. 2117 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2118 SmallString<40> S; 2119 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2120 return S.str(); 2121 } 2122 2123 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2124 LLVM_DUMP_METHOD void APInt::dump() const { 2125 SmallString<40> S, U; 2126 this->toStringUnsigned(U); 2127 this->toStringSigned(S); 2128 dbgs() << "APInt(" << BitWidth << "b, " 2129 << U << "u " << S << "s)\n"; 2130 } 2131 #endif 2132 2133 void APInt::print(raw_ostream &OS, bool isSigned) const { 2134 SmallString<40> S; 2135 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2136 OS << S; 2137 } 2138 2139 // This implements a variety of operations on a representation of 2140 // arbitrary precision, two's-complement, bignum integer values. 2141 2142 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2143 // and unrestricting assumption. 2144 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2145 "Part width must be divisible by 2!"); 2146 2147 /* Some handy functions local to this file. */ 2148 2149 /* Returns the integer part with the least significant BITS set. 2150 BITS cannot be zero. */ 2151 static inline APInt::WordType lowBitMask(unsigned bits) { 2152 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2153 2154 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2155 } 2156 2157 /* Returns the value of the lower half of PART. */ 2158 static inline APInt::WordType lowHalf(APInt::WordType part) { 2159 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2160 } 2161 2162 /* Returns the value of the upper half of PART. */ 2163 static inline APInt::WordType highHalf(APInt::WordType part) { 2164 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2165 } 2166 2167 /* Returns the bit number of the most significant set bit of a part. 2168 If the input number has no bits set -1U is returned. */ 2169 static unsigned partMSB(APInt::WordType value) { 2170 return findLastSet(value, ZB_Max); 2171 } 2172 2173 /* Returns the bit number of the least significant set bit of a 2174 part. If the input number has no bits set -1U is returned. */ 2175 static unsigned partLSB(APInt::WordType value) { 2176 return findFirstSet(value, ZB_Max); 2177 } 2178 2179 /* Sets the least significant part of a bignum to the input value, and 2180 zeroes out higher parts. */ 2181 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2182 assert(parts > 0); 2183 2184 dst[0] = part; 2185 for (unsigned i = 1; i < parts; i++) 2186 dst[i] = 0; 2187 } 2188 2189 /* Assign one bignum to another. */ 2190 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2191 for (unsigned i = 0; i < parts; i++) 2192 dst[i] = src[i]; 2193 } 2194 2195 /* Returns true if a bignum is zero, false otherwise. */ 2196 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2197 for (unsigned i = 0; i < parts; i++) 2198 if (src[i]) 2199 return false; 2200 2201 return true; 2202 } 2203 2204 /* Extract the given bit of a bignum; returns 0 or 1. */ 2205 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2206 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2207 } 2208 2209 /* Set the given bit of a bignum. */ 2210 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2211 parts[whichWord(bit)] |= maskBit(bit); 2212 } 2213 2214 /* Clears the given bit of a bignum. */ 2215 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2216 parts[whichWord(bit)] &= ~maskBit(bit); 2217 } 2218 2219 /* Returns the bit number of the least significant set bit of a 2220 number. If the input number has no bits set -1U is returned. */ 2221 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2222 for (unsigned i = 0; i < n; i++) { 2223 if (parts[i] != 0) { 2224 unsigned lsb = partLSB(parts[i]); 2225 2226 return lsb + i * APINT_BITS_PER_WORD; 2227 } 2228 } 2229 2230 return -1U; 2231 } 2232 2233 /* Returns the bit number of the most significant set bit of a number. 2234 If the input number has no bits set -1U is returned. */ 2235 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2236 do { 2237 --n; 2238 2239 if (parts[n] != 0) { 2240 unsigned msb = partMSB(parts[n]); 2241 2242 return msb + n * APINT_BITS_PER_WORD; 2243 } 2244 } while (n); 2245 2246 return -1U; 2247 } 2248 2249 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2250 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2251 the least significant bit of DST. All high bits above srcBITS in 2252 DST are zero-filled. */ 2253 void 2254 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2255 unsigned srcBits, unsigned srcLSB) { 2256 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2257 assert(dstParts <= dstCount); 2258 2259 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2260 tcAssign (dst, src + firstSrcPart, dstParts); 2261 2262 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2263 tcShiftRight (dst, dstParts, shift); 2264 2265 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2266 in DST. If this is less that srcBits, append the rest, else 2267 clear the high bits. */ 2268 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2269 if (n < srcBits) { 2270 WordType mask = lowBitMask (srcBits - n); 2271 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2272 << n % APINT_BITS_PER_WORD); 2273 } else if (n > srcBits) { 2274 if (srcBits % APINT_BITS_PER_WORD) 2275 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2276 } 2277 2278 /* Clear high parts. */ 2279 while (dstParts < dstCount) 2280 dst[dstParts++] = 0; 2281 } 2282 2283 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2284 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2285 WordType c, unsigned parts) { 2286 assert(c <= 1); 2287 2288 for (unsigned i = 0; i < parts; i++) { 2289 WordType l = dst[i]; 2290 if (c) { 2291 dst[i] += rhs[i] + 1; 2292 c = (dst[i] <= l); 2293 } else { 2294 dst[i] += rhs[i]; 2295 c = (dst[i] < l); 2296 } 2297 } 2298 2299 return c; 2300 } 2301 2302 /// This function adds a single "word" integer, src, to the multiple 2303 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2304 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2305 /// @returns the carry of the addition. 2306 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2307 unsigned parts) { 2308 for (unsigned i = 0; i < parts; ++i) { 2309 dst[i] += src; 2310 if (dst[i] >= src) 2311 return 0; // No need to carry so exit early. 2312 src = 1; // Carry one to next digit. 2313 } 2314 2315 return 1; 2316 } 2317 2318 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2319 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2320 WordType c, unsigned parts) { 2321 assert(c <= 1); 2322 2323 for (unsigned i = 0; i < parts; i++) { 2324 WordType l = dst[i]; 2325 if (c) { 2326 dst[i] -= rhs[i] + 1; 2327 c = (dst[i] >= l); 2328 } else { 2329 dst[i] -= rhs[i]; 2330 c = (dst[i] > l); 2331 } 2332 } 2333 2334 return c; 2335 } 2336 2337 /// This function subtracts a single "word" (64-bit word), src, from 2338 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2339 /// no further borrowing is needed or it runs out of "words" in dst. The result 2340 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2341 /// exhausted. In other words, if src > dst then this function returns 1, 2342 /// otherwise 0. 2343 /// @returns the borrow out of the subtraction 2344 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2345 unsigned parts) { 2346 for (unsigned i = 0; i < parts; ++i) { 2347 WordType Dst = dst[i]; 2348 dst[i] -= src; 2349 if (src <= Dst) 2350 return 0; // No need to borrow so exit early. 2351 src = 1; // We have to "borrow 1" from next "word" 2352 } 2353 2354 return 1; 2355 } 2356 2357 /* Negate a bignum in-place. */ 2358 void APInt::tcNegate(WordType *dst, unsigned parts) { 2359 tcComplement(dst, parts); 2360 tcIncrement(dst, parts); 2361 } 2362 2363 /* DST += SRC * MULTIPLIER + CARRY if add is true 2364 DST = SRC * MULTIPLIER + CARRY if add is false 2365 2366 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2367 they must start at the same point, i.e. DST == SRC. 2368 2369 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2370 returned. Otherwise DST is filled with the least significant 2371 DSTPARTS parts of the result, and if all of the omitted higher 2372 parts were zero return zero, otherwise overflow occurred and 2373 return one. */ 2374 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2375 WordType multiplier, WordType carry, 2376 unsigned srcParts, unsigned dstParts, 2377 bool add) { 2378 /* Otherwise our writes of DST kill our later reads of SRC. */ 2379 assert(dst <= src || dst >= src + srcParts); 2380 assert(dstParts <= srcParts + 1); 2381 2382 /* N loops; minimum of dstParts and srcParts. */ 2383 unsigned n = std::min(dstParts, srcParts); 2384 2385 for (unsigned i = 0; i < n; i++) { 2386 WordType low, mid, high, srcPart; 2387 2388 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2389 2390 This cannot overflow, because 2391 2392 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2393 2394 which is less than n^2. */ 2395 2396 srcPart = src[i]; 2397 2398 if (multiplier == 0 || srcPart == 0) { 2399 low = carry; 2400 high = 0; 2401 } else { 2402 low = lowHalf(srcPart) * lowHalf(multiplier); 2403 high = highHalf(srcPart) * highHalf(multiplier); 2404 2405 mid = lowHalf(srcPart) * highHalf(multiplier); 2406 high += highHalf(mid); 2407 mid <<= APINT_BITS_PER_WORD / 2; 2408 if (low + mid < low) 2409 high++; 2410 low += mid; 2411 2412 mid = highHalf(srcPart) * lowHalf(multiplier); 2413 high += highHalf(mid); 2414 mid <<= APINT_BITS_PER_WORD / 2; 2415 if (low + mid < low) 2416 high++; 2417 low += mid; 2418 2419 /* Now add carry. */ 2420 if (low + carry < low) 2421 high++; 2422 low += carry; 2423 } 2424 2425 if (add) { 2426 /* And now DST[i], and store the new low part there. */ 2427 if (low + dst[i] < low) 2428 high++; 2429 dst[i] += low; 2430 } else 2431 dst[i] = low; 2432 2433 carry = high; 2434 } 2435 2436 if (srcParts < dstParts) { 2437 /* Full multiplication, there is no overflow. */ 2438 assert(srcParts + 1 == dstParts); 2439 dst[srcParts] = carry; 2440 return 0; 2441 } 2442 2443 /* We overflowed if there is carry. */ 2444 if (carry) 2445 return 1; 2446 2447 /* We would overflow if any significant unwritten parts would be 2448 non-zero. This is true if any remaining src parts are non-zero 2449 and the multiplier is non-zero. */ 2450 if (multiplier) 2451 for (unsigned i = dstParts; i < srcParts; i++) 2452 if (src[i]) 2453 return 1; 2454 2455 /* We fitted in the narrow destination. */ 2456 return 0; 2457 } 2458 2459 /* DST = LHS * RHS, where DST has the same width as the operands and 2460 is filled with the least significant parts of the result. Returns 2461 one if overflow occurred, otherwise zero. DST must be disjoint 2462 from both operands. */ 2463 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2464 const WordType *rhs, unsigned parts) { 2465 assert(dst != lhs && dst != rhs); 2466 2467 int overflow = 0; 2468 tcSet(dst, 0, parts); 2469 2470 for (unsigned i = 0; i < parts; i++) 2471 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2472 parts - i, true); 2473 2474 return overflow; 2475 } 2476 2477 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2478 /// operands. No overflow occurs. DST must be disjoint from both operands. 2479 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2480 const WordType *rhs, unsigned lhsParts, 2481 unsigned rhsParts) { 2482 /* Put the narrower number on the LHS for less loops below. */ 2483 if (lhsParts > rhsParts) 2484 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2485 2486 assert(dst != lhs && dst != rhs); 2487 2488 tcSet(dst, 0, rhsParts); 2489 2490 for (unsigned i = 0; i < lhsParts; i++) 2491 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2492 } 2493 2494 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2495 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2496 set REMAINDER to the remainder, return zero. i.e. 2497 2498 OLD_LHS = RHS * LHS + REMAINDER 2499 2500 SCRATCH is a bignum of the same size as the operands and result for 2501 use by the routine; its contents need not be initialized and are 2502 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2503 */ 2504 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2505 WordType *remainder, WordType *srhs, 2506 unsigned parts) { 2507 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2508 2509 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2510 if (shiftCount == 0) 2511 return true; 2512 2513 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2514 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2515 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2516 2517 tcAssign(srhs, rhs, parts); 2518 tcShiftLeft(srhs, parts, shiftCount); 2519 tcAssign(remainder, lhs, parts); 2520 tcSet(lhs, 0, parts); 2521 2522 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2523 the total. */ 2524 for (;;) { 2525 int compare = tcCompare(remainder, srhs, parts); 2526 if (compare >= 0) { 2527 tcSubtract(remainder, srhs, 0, parts); 2528 lhs[n] |= mask; 2529 } 2530 2531 if (shiftCount == 0) 2532 break; 2533 shiftCount--; 2534 tcShiftRight(srhs, parts, 1); 2535 if ((mask >>= 1) == 0) { 2536 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2537 n--; 2538 } 2539 } 2540 2541 return false; 2542 } 2543 2544 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2545 /// no restrictions on Count. 2546 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2547 // Don't bother performing a no-op shift. 2548 if (!Count) 2549 return; 2550 2551 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2552 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2553 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2554 2555 // Fastpath for moving by whole words. 2556 if (BitShift == 0) { 2557 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2558 } else { 2559 while (Words-- > WordShift) { 2560 Dst[Words] = Dst[Words - WordShift] << BitShift; 2561 if (Words > WordShift) 2562 Dst[Words] |= 2563 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2564 } 2565 } 2566 2567 // Fill in the remainder with 0s. 2568 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2569 } 2570 2571 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2572 /// are no restrictions on Count. 2573 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2574 // Don't bother performing a no-op shift. 2575 if (!Count) 2576 return; 2577 2578 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2579 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2580 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2581 2582 unsigned WordsToMove = Words - WordShift; 2583 // Fastpath for moving by whole words. 2584 if (BitShift == 0) { 2585 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2586 } else { 2587 for (unsigned i = 0; i != WordsToMove; ++i) { 2588 Dst[i] = Dst[i + WordShift] >> BitShift; 2589 if (i + 1 != WordsToMove) 2590 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2591 } 2592 } 2593 2594 // Fill in the remainder with 0s. 2595 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2596 } 2597 2598 /* Bitwise and of two bignums. */ 2599 void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) { 2600 for (unsigned i = 0; i < parts; i++) 2601 dst[i] &= rhs[i]; 2602 } 2603 2604 /* Bitwise inclusive or of two bignums. */ 2605 void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) { 2606 for (unsigned i = 0; i < parts; i++) 2607 dst[i] |= rhs[i]; 2608 } 2609 2610 /* Bitwise exclusive or of two bignums. */ 2611 void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) { 2612 for (unsigned i = 0; i < parts; i++) 2613 dst[i] ^= rhs[i]; 2614 } 2615 2616 /* Complement a bignum in-place. */ 2617 void APInt::tcComplement(WordType *dst, unsigned parts) { 2618 for (unsigned i = 0; i < parts; i++) 2619 dst[i] = ~dst[i]; 2620 } 2621 2622 /* Comparison (unsigned) of two bignums. */ 2623 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2624 unsigned parts) { 2625 while (parts) { 2626 parts--; 2627 if (lhs[parts] != rhs[parts]) 2628 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2629 } 2630 2631 return 0; 2632 } 2633 2634 /* Set the least significant BITS bits of a bignum, clear the 2635 rest. */ 2636 void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts, 2637 unsigned bits) { 2638 unsigned i = 0; 2639 while (bits > APINT_BITS_PER_WORD) { 2640 dst[i++] = ~(WordType) 0; 2641 bits -= APINT_BITS_PER_WORD; 2642 } 2643 2644 if (bits) 2645 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits); 2646 2647 while (i < parts) 2648 dst[i++] = 0; 2649 } 2650