1 //===- InstrProfReader.cpp - Instrumented profiling reader ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for reading profiling data for clang's
10 // instrumentation based PGO and coverage.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ProfileData/InstrProfReader.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/IR/ProfileSummary.h"
20 #include "llvm/ProfileData/InstrProf.h"
21 #include "llvm/ProfileData/MemProf.h"
22 #include "llvm/ProfileData/ProfileCommon.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/ErrorOr.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/SwapByteOrder.h"
28 #include "llvm/Support/SymbolRemappingReader.h"
29 #include <algorithm>
30 #include <cstddef>
31 #include <cstdint>
32 #include <limits>
33 #include <memory>
34 #include <system_error>
35 #include <utility>
36 #include <vector>
37
38 using namespace llvm;
39
40 // Extracts the variant information from the top 8 bits in the version and
41 // returns an enum specifying the variants present.
getProfileKindFromVersion(uint64_t Version)42 static InstrProfKind getProfileKindFromVersion(uint64_t Version) {
43 InstrProfKind ProfileKind = InstrProfKind::Unknown;
44 if (Version & VARIANT_MASK_IR_PROF) {
45 ProfileKind |= InstrProfKind::IRInstrumentation;
46 }
47 if (Version & VARIANT_MASK_CSIR_PROF) {
48 ProfileKind |= InstrProfKind::ContextSensitive;
49 }
50 if (Version & VARIANT_MASK_INSTR_ENTRY) {
51 ProfileKind |= InstrProfKind::FunctionEntryInstrumentation;
52 }
53 if (Version & VARIANT_MASK_BYTE_COVERAGE) {
54 ProfileKind |= InstrProfKind::SingleByteCoverage;
55 }
56 if (Version & VARIANT_MASK_FUNCTION_ENTRY_ONLY) {
57 ProfileKind |= InstrProfKind::FunctionEntryOnly;
58 }
59 if (Version & VARIANT_MASK_MEMPROF) {
60 ProfileKind |= InstrProfKind::MemProf;
61 }
62 return ProfileKind;
63 }
64
65 static Expected<std::unique_ptr<MemoryBuffer>>
setupMemoryBuffer(const Twine & Path)66 setupMemoryBuffer(const Twine &Path) {
67 ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
68 MemoryBuffer::getFileOrSTDIN(Path, /*IsText=*/true);
69 if (std::error_code EC = BufferOrErr.getError())
70 return errorCodeToError(EC);
71 return std::move(BufferOrErr.get());
72 }
73
initializeReader(InstrProfReader & Reader)74 static Error initializeReader(InstrProfReader &Reader) {
75 return Reader.readHeader();
76 }
77
78 Expected<std::unique_ptr<InstrProfReader>>
create(const Twine & Path,const InstrProfCorrelator * Correlator)79 InstrProfReader::create(const Twine &Path,
80 const InstrProfCorrelator *Correlator) {
81 // Set up the buffer to read.
82 auto BufferOrError = setupMemoryBuffer(Path);
83 if (Error E = BufferOrError.takeError())
84 return std::move(E);
85 return InstrProfReader::create(std::move(BufferOrError.get()), Correlator);
86 }
87
88 Expected<std::unique_ptr<InstrProfReader>>
create(std::unique_ptr<MemoryBuffer> Buffer,const InstrProfCorrelator * Correlator)89 InstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer,
90 const InstrProfCorrelator *Correlator) {
91 // Sanity check the buffer.
92 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint64_t>::max())
93 return make_error<InstrProfError>(instrprof_error::too_large);
94
95 if (Buffer->getBufferSize() == 0)
96 return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
97
98 std::unique_ptr<InstrProfReader> Result;
99 // Create the reader.
100 if (IndexedInstrProfReader::hasFormat(*Buffer))
101 Result.reset(new IndexedInstrProfReader(std::move(Buffer)));
102 else if (RawInstrProfReader64::hasFormat(*Buffer))
103 Result.reset(new RawInstrProfReader64(std::move(Buffer), Correlator));
104 else if (RawInstrProfReader32::hasFormat(*Buffer))
105 Result.reset(new RawInstrProfReader32(std::move(Buffer), Correlator));
106 else if (TextInstrProfReader::hasFormat(*Buffer))
107 Result.reset(new TextInstrProfReader(std::move(Buffer)));
108 else
109 return make_error<InstrProfError>(instrprof_error::unrecognized_format);
110
111 // Initialize the reader and return the result.
112 if (Error E = initializeReader(*Result))
113 return std::move(E);
114
115 return std::move(Result);
116 }
117
118 Expected<std::unique_ptr<IndexedInstrProfReader>>
create(const Twine & Path,const Twine & RemappingPath)119 IndexedInstrProfReader::create(const Twine &Path, const Twine &RemappingPath) {
120 // Set up the buffer to read.
121 auto BufferOrError = setupMemoryBuffer(Path);
122 if (Error E = BufferOrError.takeError())
123 return std::move(E);
124
125 // Set up the remapping buffer if requested.
126 std::unique_ptr<MemoryBuffer> RemappingBuffer;
127 std::string RemappingPathStr = RemappingPath.str();
128 if (!RemappingPathStr.empty()) {
129 auto RemappingBufferOrError = setupMemoryBuffer(RemappingPathStr);
130 if (Error E = RemappingBufferOrError.takeError())
131 return std::move(E);
132 RemappingBuffer = std::move(RemappingBufferOrError.get());
133 }
134
135 return IndexedInstrProfReader::create(std::move(BufferOrError.get()),
136 std::move(RemappingBuffer));
137 }
138
139 Expected<std::unique_ptr<IndexedInstrProfReader>>
create(std::unique_ptr<MemoryBuffer> Buffer,std::unique_ptr<MemoryBuffer> RemappingBuffer)140 IndexedInstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer,
141 std::unique_ptr<MemoryBuffer> RemappingBuffer) {
142 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint64_t>::max())
143 return make_error<InstrProfError>(instrprof_error::too_large);
144
145 // Create the reader.
146 if (!IndexedInstrProfReader::hasFormat(*Buffer))
147 return make_error<InstrProfError>(instrprof_error::bad_magic);
148 auto Result = std::make_unique<IndexedInstrProfReader>(
149 std::move(Buffer), std::move(RemappingBuffer));
150
151 // Initialize the reader and return the result.
152 if (Error E = initializeReader(*Result))
153 return std::move(E);
154
155 return std::move(Result);
156 }
157
hasFormat(const MemoryBuffer & Buffer)158 bool TextInstrProfReader::hasFormat(const MemoryBuffer &Buffer) {
159 // Verify that this really looks like plain ASCII text by checking a
160 // 'reasonable' number of characters (up to profile magic size).
161 size_t count = std::min(Buffer.getBufferSize(), sizeof(uint64_t));
162 StringRef buffer = Buffer.getBufferStart();
163 return count == 0 ||
164 std::all_of(buffer.begin(), buffer.begin() + count,
165 [](char c) { return isPrint(c) || isSpace(c); });
166 }
167
168 // Read the profile variant flag from the header: ":FE" means this is a FE
169 // generated profile. ":IR" means this is an IR level profile. Other strings
170 // with a leading ':' will be reported an error format.
readHeader()171 Error TextInstrProfReader::readHeader() {
172 Symtab.reset(new InstrProfSymtab());
173
174 while (Line->startswith(":")) {
175 StringRef Str = Line->substr(1);
176 if (Str.equals_insensitive("ir"))
177 ProfileKind |= InstrProfKind::IRInstrumentation;
178 else if (Str.equals_insensitive("fe"))
179 ProfileKind |= InstrProfKind::FrontendInstrumentation;
180 else if (Str.equals_insensitive("csir")) {
181 ProfileKind |= InstrProfKind::IRInstrumentation;
182 ProfileKind |= InstrProfKind::ContextSensitive;
183 } else if (Str.equals_insensitive("entry_first"))
184 ProfileKind |= InstrProfKind::FunctionEntryInstrumentation;
185 else if (Str.equals_insensitive("not_entry_first"))
186 ProfileKind &= ~InstrProfKind::FunctionEntryInstrumentation;
187 else
188 return error(instrprof_error::bad_header);
189 ++Line;
190 }
191 return success();
192 }
193
194 Error
readValueProfileData(InstrProfRecord & Record)195 TextInstrProfReader::readValueProfileData(InstrProfRecord &Record) {
196
197 #define CHECK_LINE_END(Line) \
198 if (Line.is_at_end()) \
199 return error(instrprof_error::truncated);
200 #define READ_NUM(Str, Dst) \
201 if ((Str).getAsInteger(10, (Dst))) \
202 return error(instrprof_error::malformed);
203 #define VP_READ_ADVANCE(Val) \
204 CHECK_LINE_END(Line); \
205 uint32_t Val; \
206 READ_NUM((*Line), (Val)); \
207 Line++;
208
209 if (Line.is_at_end())
210 return success();
211
212 uint32_t NumValueKinds;
213 if (Line->getAsInteger(10, NumValueKinds)) {
214 // No value profile data
215 return success();
216 }
217 if (NumValueKinds == 0 || NumValueKinds > IPVK_Last + 1)
218 return error(instrprof_error::malformed,
219 "number of value kinds is invalid");
220 Line++;
221
222 for (uint32_t VK = 0; VK < NumValueKinds; VK++) {
223 VP_READ_ADVANCE(ValueKind);
224 if (ValueKind > IPVK_Last)
225 return error(instrprof_error::malformed, "value kind is invalid");
226 ;
227 VP_READ_ADVANCE(NumValueSites);
228 if (!NumValueSites)
229 continue;
230
231 Record.reserveSites(VK, NumValueSites);
232 for (uint32_t S = 0; S < NumValueSites; S++) {
233 VP_READ_ADVANCE(NumValueData);
234
235 std::vector<InstrProfValueData> CurrentValues;
236 for (uint32_t V = 0; V < NumValueData; V++) {
237 CHECK_LINE_END(Line);
238 std::pair<StringRef, StringRef> VD = Line->rsplit(':');
239 uint64_t TakenCount, Value;
240 if (ValueKind == IPVK_IndirectCallTarget) {
241 if (InstrProfSymtab::isExternalSymbol(VD.first)) {
242 Value = 0;
243 } else {
244 if (Error E = Symtab->addFuncName(VD.first))
245 return E;
246 Value = IndexedInstrProf::ComputeHash(VD.first);
247 }
248 } else {
249 READ_NUM(VD.first, Value);
250 }
251 READ_NUM(VD.second, TakenCount);
252 CurrentValues.push_back({Value, TakenCount});
253 Line++;
254 }
255 Record.addValueData(ValueKind, S, CurrentValues.data(), NumValueData,
256 nullptr);
257 }
258 }
259 return success();
260
261 #undef CHECK_LINE_END
262 #undef READ_NUM
263 #undef VP_READ_ADVANCE
264 }
265
readNextRecord(NamedInstrProfRecord & Record)266 Error TextInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) {
267 // Skip empty lines and comments.
268 while (!Line.is_at_end() && (Line->empty() || Line->startswith("#")))
269 ++Line;
270 // If we hit EOF while looking for a name, we're done.
271 if (Line.is_at_end()) {
272 return error(instrprof_error::eof);
273 }
274
275 // Read the function name.
276 Record.Name = *Line++;
277 if (Error E = Symtab->addFuncName(Record.Name))
278 return error(std::move(E));
279
280 // Read the function hash.
281 if (Line.is_at_end())
282 return error(instrprof_error::truncated);
283 if ((Line++)->getAsInteger(0, Record.Hash))
284 return error(instrprof_error::malformed,
285 "function hash is not a valid integer");
286
287 // Read the number of counters.
288 uint64_t NumCounters;
289 if (Line.is_at_end())
290 return error(instrprof_error::truncated);
291 if ((Line++)->getAsInteger(10, NumCounters))
292 return error(instrprof_error::malformed,
293 "number of counters is not a valid integer");
294 if (NumCounters == 0)
295 return error(instrprof_error::malformed, "number of counters is zero");
296
297 // Read each counter and fill our internal storage with the values.
298 Record.Clear();
299 Record.Counts.reserve(NumCounters);
300 for (uint64_t I = 0; I < NumCounters; ++I) {
301 if (Line.is_at_end())
302 return error(instrprof_error::truncated);
303 uint64_t Count;
304 if ((Line++)->getAsInteger(10, Count))
305 return error(instrprof_error::malformed, "count is invalid");
306 Record.Counts.push_back(Count);
307 }
308
309 // Check if value profile data exists and read it if so.
310 if (Error E = readValueProfileData(Record))
311 return error(std::move(E));
312
313 return success();
314 }
315
316 template <class IntPtrT>
getProfileKind() const317 InstrProfKind RawInstrProfReader<IntPtrT>::getProfileKind() const {
318 return getProfileKindFromVersion(Version);
319 }
320
321 template <class IntPtrT>
hasFormat(const MemoryBuffer & DataBuffer)322 bool RawInstrProfReader<IntPtrT>::hasFormat(const MemoryBuffer &DataBuffer) {
323 if (DataBuffer.getBufferSize() < sizeof(uint64_t))
324 return false;
325 uint64_t Magic =
326 *reinterpret_cast<const uint64_t *>(DataBuffer.getBufferStart());
327 return RawInstrProf::getMagic<IntPtrT>() == Magic ||
328 sys::getSwappedBytes(RawInstrProf::getMagic<IntPtrT>()) == Magic;
329 }
330
331 template <class IntPtrT>
readHeader()332 Error RawInstrProfReader<IntPtrT>::readHeader() {
333 if (!hasFormat(*DataBuffer))
334 return error(instrprof_error::bad_magic);
335 if (DataBuffer->getBufferSize() < sizeof(RawInstrProf::Header))
336 return error(instrprof_error::bad_header);
337 auto *Header = reinterpret_cast<const RawInstrProf::Header *>(
338 DataBuffer->getBufferStart());
339 ShouldSwapBytes = Header->Magic != RawInstrProf::getMagic<IntPtrT>();
340 return readHeader(*Header);
341 }
342
343 template <class IntPtrT>
readNextHeader(const char * CurrentPos)344 Error RawInstrProfReader<IntPtrT>::readNextHeader(const char *CurrentPos) {
345 const char *End = DataBuffer->getBufferEnd();
346 // Skip zero padding between profiles.
347 while (CurrentPos != End && *CurrentPos == 0)
348 ++CurrentPos;
349 // If there's nothing left, we're done.
350 if (CurrentPos == End)
351 return make_error<InstrProfError>(instrprof_error::eof);
352 // If there isn't enough space for another header, this is probably just
353 // garbage at the end of the file.
354 if (CurrentPos + sizeof(RawInstrProf::Header) > End)
355 return make_error<InstrProfError>(instrprof_error::malformed,
356 "not enough space for another header");
357 // The writer ensures each profile is padded to start at an aligned address.
358 if (reinterpret_cast<size_t>(CurrentPos) % alignof(uint64_t))
359 return make_error<InstrProfError>(instrprof_error::malformed,
360 "insufficient padding");
361 // The magic should have the same byte order as in the previous header.
362 uint64_t Magic = *reinterpret_cast<const uint64_t *>(CurrentPos);
363 if (Magic != swap(RawInstrProf::getMagic<IntPtrT>()))
364 return make_error<InstrProfError>(instrprof_error::bad_magic);
365
366 // There's another profile to read, so we need to process the header.
367 auto *Header = reinterpret_cast<const RawInstrProf::Header *>(CurrentPos);
368 return readHeader(*Header);
369 }
370
371 template <class IntPtrT>
createSymtab(InstrProfSymtab & Symtab)372 Error RawInstrProfReader<IntPtrT>::createSymtab(InstrProfSymtab &Symtab) {
373 if (Error E = Symtab.create(StringRef(NamesStart, NamesEnd - NamesStart)))
374 return error(std::move(E));
375 for (const RawInstrProf::ProfileData<IntPtrT> *I = Data; I != DataEnd; ++I) {
376 const IntPtrT FPtr = swap(I->FunctionPointer);
377 if (!FPtr)
378 continue;
379 Symtab.mapAddress(FPtr, I->NameRef);
380 }
381 return success();
382 }
383
384 template <class IntPtrT>
readHeader(const RawInstrProf::Header & Header)385 Error RawInstrProfReader<IntPtrT>::readHeader(
386 const RawInstrProf::Header &Header) {
387 Version = swap(Header.Version);
388 if (GET_VERSION(Version) != RawInstrProf::Version)
389 return error(instrprof_error::unsupported_version);
390 if (useDebugInfoCorrelate() && !Correlator)
391 return error(instrprof_error::missing_debug_info_for_correlation);
392 if (!useDebugInfoCorrelate() && Correlator)
393 return error(instrprof_error::unexpected_debug_info_for_correlation);
394
395 BinaryIdsSize = swap(Header.BinaryIdsSize);
396 if (BinaryIdsSize % sizeof(uint64_t))
397 return error(instrprof_error::bad_header);
398
399 CountersDelta = swap(Header.CountersDelta);
400 NamesDelta = swap(Header.NamesDelta);
401 auto NumData = swap(Header.DataSize);
402 auto PaddingBytesBeforeCounters = swap(Header.PaddingBytesBeforeCounters);
403 auto CountersSize = swap(Header.CountersSize) * getCounterTypeSize();
404 auto PaddingBytesAfterCounters = swap(Header.PaddingBytesAfterCounters);
405 auto NamesSize = swap(Header.NamesSize);
406 ValueKindLast = swap(Header.ValueKindLast);
407
408 auto DataSize = NumData * sizeof(RawInstrProf::ProfileData<IntPtrT>);
409 auto PaddingSize = getNumPaddingBytes(NamesSize);
410
411 // Profile data starts after profile header and binary ids if exist.
412 ptrdiff_t DataOffset = sizeof(RawInstrProf::Header) + BinaryIdsSize;
413 ptrdiff_t CountersOffset = DataOffset + DataSize + PaddingBytesBeforeCounters;
414 ptrdiff_t NamesOffset =
415 CountersOffset + CountersSize + PaddingBytesAfterCounters;
416 ptrdiff_t ValueDataOffset = NamesOffset + NamesSize + PaddingSize;
417
418 auto *Start = reinterpret_cast<const char *>(&Header);
419 if (Start + ValueDataOffset > DataBuffer->getBufferEnd())
420 return error(instrprof_error::bad_header);
421
422 if (Correlator) {
423 // These sizes in the raw file are zero because we constructed them in the
424 // Correlator.
425 assert(DataSize == 0 && NamesSize == 0);
426 assert(CountersDelta == 0 && NamesDelta == 0);
427 Data = Correlator->getDataPointer();
428 DataEnd = Data + Correlator->getDataSize();
429 NamesStart = Correlator->getNamesPointer();
430 NamesEnd = NamesStart + Correlator->getNamesSize();
431 } else {
432 Data = reinterpret_cast<const RawInstrProf::ProfileData<IntPtrT> *>(
433 Start + DataOffset);
434 DataEnd = Data + NumData;
435 NamesStart = Start + NamesOffset;
436 NamesEnd = NamesStart + NamesSize;
437 }
438
439 // Binary ids start just after the header.
440 BinaryIdsStart =
441 reinterpret_cast<const uint8_t *>(&Header) + sizeof(RawInstrProf::Header);
442 CountersStart = Start + CountersOffset;
443 CountersEnd = CountersStart + CountersSize;
444 ValueDataStart = reinterpret_cast<const uint8_t *>(Start + ValueDataOffset);
445
446 const uint8_t *BufferEnd = (const uint8_t *)DataBuffer->getBufferEnd();
447 if (BinaryIdsStart + BinaryIdsSize > BufferEnd)
448 return error(instrprof_error::bad_header);
449
450 std::unique_ptr<InstrProfSymtab> NewSymtab = std::make_unique<InstrProfSymtab>();
451 if (Error E = createSymtab(*NewSymtab))
452 return E;
453
454 Symtab = std::move(NewSymtab);
455 return success();
456 }
457
458 template <class IntPtrT>
readName(NamedInstrProfRecord & Record)459 Error RawInstrProfReader<IntPtrT>::readName(NamedInstrProfRecord &Record) {
460 Record.Name = getName(Data->NameRef);
461 return success();
462 }
463
464 template <class IntPtrT>
readFuncHash(NamedInstrProfRecord & Record)465 Error RawInstrProfReader<IntPtrT>::readFuncHash(NamedInstrProfRecord &Record) {
466 Record.Hash = swap(Data->FuncHash);
467 return success();
468 }
469
470 template <class IntPtrT>
readRawCounts(InstrProfRecord & Record)471 Error RawInstrProfReader<IntPtrT>::readRawCounts(
472 InstrProfRecord &Record) {
473 uint32_t NumCounters = swap(Data->NumCounters);
474 if (NumCounters == 0)
475 return error(instrprof_error::malformed, "number of counters is zero");
476
477 ptrdiff_t CounterBaseOffset = swap(Data->CounterPtr) - CountersDelta;
478 if (CounterBaseOffset < 0)
479 return error(
480 instrprof_error::malformed,
481 ("counter offset " + Twine(CounterBaseOffset) + " is negative").str());
482
483 if (CounterBaseOffset >= CountersEnd - CountersStart)
484 return error(instrprof_error::malformed,
485 ("counter offset " + Twine(CounterBaseOffset) +
486 " is greater than the maximum counter offset " +
487 Twine(CountersEnd - CountersStart - 1))
488 .str());
489
490 uint64_t MaxNumCounters =
491 (CountersEnd - (CountersStart + CounterBaseOffset)) /
492 getCounterTypeSize();
493 if (NumCounters > MaxNumCounters)
494 return error(instrprof_error::malformed,
495 ("number of counters " + Twine(NumCounters) +
496 " is greater than the maximum number of counters " +
497 Twine(MaxNumCounters))
498 .str());
499
500 Record.Counts.clear();
501 Record.Counts.reserve(NumCounters);
502 for (uint32_t I = 0; I < NumCounters; I++) {
503 const char *Ptr =
504 CountersStart + CounterBaseOffset + I * getCounterTypeSize();
505 if (hasSingleByteCoverage()) {
506 // A value of zero signifies the block is covered.
507 Record.Counts.push_back(*Ptr == 0 ? 1 : 0);
508 } else {
509 const auto *CounterValue = reinterpret_cast<const uint64_t *>(Ptr);
510 Record.Counts.push_back(swap(*CounterValue));
511 }
512 }
513
514 return success();
515 }
516
517 template <class IntPtrT>
readValueProfilingData(InstrProfRecord & Record)518 Error RawInstrProfReader<IntPtrT>::readValueProfilingData(
519 InstrProfRecord &Record) {
520 Record.clearValueData();
521 CurValueDataSize = 0;
522 // Need to match the logic in value profile dumper code in compiler-rt:
523 uint32_t NumValueKinds = 0;
524 for (uint32_t I = 0; I < IPVK_Last + 1; I++)
525 NumValueKinds += (Data->NumValueSites[I] != 0);
526
527 if (!NumValueKinds)
528 return success();
529
530 Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr =
531 ValueProfData::getValueProfData(
532 ValueDataStart, (const unsigned char *)DataBuffer->getBufferEnd(),
533 getDataEndianness());
534
535 if (Error E = VDataPtrOrErr.takeError())
536 return E;
537
538 // Note that besides deserialization, this also performs the conversion for
539 // indirect call targets. The function pointers from the raw profile are
540 // remapped into function name hashes.
541 VDataPtrOrErr.get()->deserializeTo(Record, Symtab.get());
542 CurValueDataSize = VDataPtrOrErr.get()->getSize();
543 return success();
544 }
545
546 template <class IntPtrT>
readNextRecord(NamedInstrProfRecord & Record)547 Error RawInstrProfReader<IntPtrT>::readNextRecord(NamedInstrProfRecord &Record) {
548 if (atEnd())
549 // At this point, ValueDataStart field points to the next header.
550 if (Error E = readNextHeader(getNextHeaderPos()))
551 return error(std::move(E));
552
553 // Read name ad set it in Record.
554 if (Error E = readName(Record))
555 return error(std::move(E));
556
557 // Read FuncHash and set it in Record.
558 if (Error E = readFuncHash(Record))
559 return error(std::move(E));
560
561 // Read raw counts and set Record.
562 if (Error E = readRawCounts(Record))
563 return error(std::move(E));
564
565 // Read value data and set Record.
566 if (Error E = readValueProfilingData(Record))
567 return error(std::move(E));
568
569 // Iterate.
570 advanceData();
571 return success();
572 }
573
RoundUp(size_t size,size_t align)574 static size_t RoundUp(size_t size, size_t align) {
575 return (size + align - 1) & ~(align - 1);
576 }
577
578 template <class IntPtrT>
printBinaryIds(raw_ostream & OS)579 Error RawInstrProfReader<IntPtrT>::printBinaryIds(raw_ostream &OS) {
580 if (BinaryIdsSize == 0)
581 return success();
582
583 OS << "Binary IDs: \n";
584 const uint8_t *BI = BinaryIdsStart;
585 const uint8_t *BIEnd = BinaryIdsStart + BinaryIdsSize;
586 while (BI < BIEnd) {
587 size_t Remaining = BIEnd - BI;
588
589 // There should be enough left to read the binary ID size field.
590 if (Remaining < sizeof(uint64_t))
591 return make_error<InstrProfError>(
592 instrprof_error::malformed,
593 "not enough data to read binary id length");
594
595 uint64_t BinaryIdLen = swap(*reinterpret_cast<const uint64_t *>(BI));
596
597 // There should be enough left to read the binary ID size field, and the
598 // binary ID.
599 if (Remaining < sizeof(BinaryIdLen) + BinaryIdLen)
600 return make_error<InstrProfError>(
601 instrprof_error::malformed, "not enough data to read binary id data");
602
603 // Increment by binary id length data type size.
604 BI += sizeof(BinaryIdLen);
605 if (BI > (const uint8_t *)DataBuffer->getBufferEnd())
606 return make_error<InstrProfError>(
607 instrprof_error::malformed,
608 "binary id that is read is bigger than buffer size");
609
610 for (uint64_t I = 0; I < BinaryIdLen; I++)
611 OS << format("%02x", BI[I]);
612 OS << "\n";
613
614 // Increment by binary id data length, rounded to the next 8 bytes. This
615 // accounts for the zero-padding after each build ID.
616 BI += RoundUp(BinaryIdLen, sizeof(uint64_t));
617 if (BI > (const uint8_t *)DataBuffer->getBufferEnd())
618 return make_error<InstrProfError>(instrprof_error::malformed);
619 }
620
621 return success();
622 }
623
624 namespace llvm {
625
626 template class RawInstrProfReader<uint32_t>;
627 template class RawInstrProfReader<uint64_t>;
628
629 } // end namespace llvm
630
631 InstrProfLookupTrait::hash_value_type
ComputeHash(StringRef K)632 InstrProfLookupTrait::ComputeHash(StringRef K) {
633 return IndexedInstrProf::ComputeHash(HashType, K);
634 }
635
636 using data_type = InstrProfLookupTrait::data_type;
637 using offset_type = InstrProfLookupTrait::offset_type;
638
readValueProfilingData(const unsigned char * & D,const unsigned char * const End)639 bool InstrProfLookupTrait::readValueProfilingData(
640 const unsigned char *&D, const unsigned char *const End) {
641 Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr =
642 ValueProfData::getValueProfData(D, End, ValueProfDataEndianness);
643
644 if (VDataPtrOrErr.takeError())
645 return false;
646
647 VDataPtrOrErr.get()->deserializeTo(DataBuffer.back(), nullptr);
648 D += VDataPtrOrErr.get()->TotalSize;
649
650 return true;
651 }
652
ReadData(StringRef K,const unsigned char * D,offset_type N)653 data_type InstrProfLookupTrait::ReadData(StringRef K, const unsigned char *D,
654 offset_type N) {
655 using namespace support;
656
657 // Check if the data is corrupt. If so, don't try to read it.
658 if (N % sizeof(uint64_t))
659 return data_type();
660
661 DataBuffer.clear();
662 std::vector<uint64_t> CounterBuffer;
663
664 const unsigned char *End = D + N;
665 while (D < End) {
666 // Read hash.
667 if (D + sizeof(uint64_t) >= End)
668 return data_type();
669 uint64_t Hash = endian::readNext<uint64_t, little, unaligned>(D);
670
671 // Initialize number of counters for GET_VERSION(FormatVersion) == 1.
672 uint64_t CountsSize = N / sizeof(uint64_t) - 1;
673 // If format version is different then read the number of counters.
674 if (GET_VERSION(FormatVersion) != IndexedInstrProf::ProfVersion::Version1) {
675 if (D + sizeof(uint64_t) > End)
676 return data_type();
677 CountsSize = endian::readNext<uint64_t, little, unaligned>(D);
678 }
679 // Read counter values.
680 if (D + CountsSize * sizeof(uint64_t) > End)
681 return data_type();
682
683 CounterBuffer.clear();
684 CounterBuffer.reserve(CountsSize);
685 for (uint64_t J = 0; J < CountsSize; ++J)
686 CounterBuffer.push_back(endian::readNext<uint64_t, little, unaligned>(D));
687
688 DataBuffer.emplace_back(K, Hash, std::move(CounterBuffer));
689
690 // Read value profiling data.
691 if (GET_VERSION(FormatVersion) > IndexedInstrProf::ProfVersion::Version2 &&
692 !readValueProfilingData(D, End)) {
693 DataBuffer.clear();
694 return data_type();
695 }
696 }
697 return DataBuffer;
698 }
699
700 template <typename HashTableImpl>
getRecords(StringRef FuncName,ArrayRef<NamedInstrProfRecord> & Data)701 Error InstrProfReaderIndex<HashTableImpl>::getRecords(
702 StringRef FuncName, ArrayRef<NamedInstrProfRecord> &Data) {
703 auto Iter = HashTable->find(FuncName);
704 if (Iter == HashTable->end())
705 return make_error<InstrProfError>(instrprof_error::unknown_function);
706
707 Data = (*Iter);
708 if (Data.empty())
709 return make_error<InstrProfError>(instrprof_error::malformed,
710 "profile data is empty");
711
712 return Error::success();
713 }
714
715 template <typename HashTableImpl>
getRecords(ArrayRef<NamedInstrProfRecord> & Data)716 Error InstrProfReaderIndex<HashTableImpl>::getRecords(
717 ArrayRef<NamedInstrProfRecord> &Data) {
718 if (atEnd())
719 return make_error<InstrProfError>(instrprof_error::eof);
720
721 Data = *RecordIterator;
722
723 if (Data.empty())
724 return make_error<InstrProfError>(instrprof_error::malformed,
725 "profile data is empty");
726
727 return Error::success();
728 }
729
730 template <typename HashTableImpl>
InstrProfReaderIndex(const unsigned char * Buckets,const unsigned char * const Payload,const unsigned char * const Base,IndexedInstrProf::HashT HashType,uint64_t Version)731 InstrProfReaderIndex<HashTableImpl>::InstrProfReaderIndex(
732 const unsigned char *Buckets, const unsigned char *const Payload,
733 const unsigned char *const Base, IndexedInstrProf::HashT HashType,
734 uint64_t Version) {
735 FormatVersion = Version;
736 HashTable.reset(HashTableImpl::Create(
737 Buckets, Payload, Base,
738 typename HashTableImpl::InfoType(HashType, Version)));
739 RecordIterator = HashTable->data_begin();
740 }
741
742 template <typename HashTableImpl>
getProfileKind() const743 InstrProfKind InstrProfReaderIndex<HashTableImpl>::getProfileKind() const {
744 return getProfileKindFromVersion(FormatVersion);
745 }
746
747 namespace {
748 /// A remapper that does not apply any remappings.
749 class InstrProfReaderNullRemapper : public InstrProfReaderRemapper {
750 InstrProfReaderIndexBase &Underlying;
751
752 public:
InstrProfReaderNullRemapper(InstrProfReaderIndexBase & Underlying)753 InstrProfReaderNullRemapper(InstrProfReaderIndexBase &Underlying)
754 : Underlying(Underlying) {}
755
getRecords(StringRef FuncName,ArrayRef<NamedInstrProfRecord> & Data)756 Error getRecords(StringRef FuncName,
757 ArrayRef<NamedInstrProfRecord> &Data) override {
758 return Underlying.getRecords(FuncName, Data);
759 }
760 };
761 } // namespace
762
763 /// A remapper that applies remappings based on a symbol remapping file.
764 template <typename HashTableImpl>
765 class llvm::InstrProfReaderItaniumRemapper
766 : public InstrProfReaderRemapper {
767 public:
InstrProfReaderItaniumRemapper(std::unique_ptr<MemoryBuffer> RemapBuffer,InstrProfReaderIndex<HashTableImpl> & Underlying)768 InstrProfReaderItaniumRemapper(
769 std::unique_ptr<MemoryBuffer> RemapBuffer,
770 InstrProfReaderIndex<HashTableImpl> &Underlying)
771 : RemapBuffer(std::move(RemapBuffer)), Underlying(Underlying) {
772 }
773
774 /// Extract the original function name from a PGO function name.
extractName(StringRef Name)775 static StringRef extractName(StringRef Name) {
776 // We can have multiple :-separated pieces; there can be pieces both
777 // before and after the mangled name. Find the first part that starts
778 // with '_Z'; we'll assume that's the mangled name we want.
779 std::pair<StringRef, StringRef> Parts = {StringRef(), Name};
780 while (true) {
781 Parts = Parts.second.split(':');
782 if (Parts.first.startswith("_Z"))
783 return Parts.first;
784 if (Parts.second.empty())
785 return Name;
786 }
787 }
788
789 /// Given a mangled name extracted from a PGO function name, and a new
790 /// form for that mangled name, reconstitute the name.
reconstituteName(StringRef OrigName,StringRef ExtractedName,StringRef Replacement,SmallVectorImpl<char> & Out)791 static void reconstituteName(StringRef OrigName, StringRef ExtractedName,
792 StringRef Replacement,
793 SmallVectorImpl<char> &Out) {
794 Out.reserve(OrigName.size() + Replacement.size() - ExtractedName.size());
795 Out.insert(Out.end(), OrigName.begin(), ExtractedName.begin());
796 Out.insert(Out.end(), Replacement.begin(), Replacement.end());
797 Out.insert(Out.end(), ExtractedName.end(), OrigName.end());
798 }
799
populateRemappings()800 Error populateRemappings() override {
801 if (Error E = Remappings.read(*RemapBuffer))
802 return E;
803 for (StringRef Name : Underlying.HashTable->keys()) {
804 StringRef RealName = extractName(Name);
805 if (auto Key = Remappings.insert(RealName)) {
806 // FIXME: We could theoretically map the same equivalence class to
807 // multiple names in the profile data. If that happens, we should
808 // return NamedInstrProfRecords from all of them.
809 MappedNames.insert({Key, RealName});
810 }
811 }
812 return Error::success();
813 }
814
getRecords(StringRef FuncName,ArrayRef<NamedInstrProfRecord> & Data)815 Error getRecords(StringRef FuncName,
816 ArrayRef<NamedInstrProfRecord> &Data) override {
817 StringRef RealName = extractName(FuncName);
818 if (auto Key = Remappings.lookup(RealName)) {
819 StringRef Remapped = MappedNames.lookup(Key);
820 if (!Remapped.empty()) {
821 if (RealName.begin() == FuncName.begin() &&
822 RealName.end() == FuncName.end())
823 FuncName = Remapped;
824 else {
825 // Try rebuilding the name from the given remapping.
826 SmallString<256> Reconstituted;
827 reconstituteName(FuncName, RealName, Remapped, Reconstituted);
828 Error E = Underlying.getRecords(Reconstituted, Data);
829 if (!E)
830 return E;
831
832 // If we failed because the name doesn't exist, fall back to asking
833 // about the original name.
834 if (Error Unhandled = handleErrors(
835 std::move(E), [](std::unique_ptr<InstrProfError> Err) {
836 return Err->get() == instrprof_error::unknown_function
837 ? Error::success()
838 : Error(std::move(Err));
839 }))
840 return Unhandled;
841 }
842 }
843 }
844 return Underlying.getRecords(FuncName, Data);
845 }
846
847 private:
848 /// The memory buffer containing the remapping configuration. Remappings
849 /// holds pointers into this buffer.
850 std::unique_ptr<MemoryBuffer> RemapBuffer;
851
852 /// The mangling remapper.
853 SymbolRemappingReader Remappings;
854
855 /// Mapping from mangled name keys to the name used for the key in the
856 /// profile data.
857 /// FIXME: Can we store a location within the on-disk hash table instead of
858 /// redoing lookup?
859 DenseMap<SymbolRemappingReader::Key, StringRef> MappedNames;
860
861 /// The real profile data reader.
862 InstrProfReaderIndex<HashTableImpl> &Underlying;
863 };
864
hasFormat(const MemoryBuffer & DataBuffer)865 bool IndexedInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) {
866 using namespace support;
867
868 if (DataBuffer.getBufferSize() < 8)
869 return false;
870 uint64_t Magic =
871 endian::read<uint64_t, little, aligned>(DataBuffer.getBufferStart());
872 // Verify that it's magical.
873 return Magic == IndexedInstrProf::Magic;
874 }
875
876 const unsigned char *
readSummary(IndexedInstrProf::ProfVersion Version,const unsigned char * Cur,bool UseCS)877 IndexedInstrProfReader::readSummary(IndexedInstrProf::ProfVersion Version,
878 const unsigned char *Cur, bool UseCS) {
879 using namespace IndexedInstrProf;
880 using namespace support;
881
882 if (Version >= IndexedInstrProf::Version4) {
883 const IndexedInstrProf::Summary *SummaryInLE =
884 reinterpret_cast<const IndexedInstrProf::Summary *>(Cur);
885 uint64_t NFields =
886 endian::byte_swap<uint64_t, little>(SummaryInLE->NumSummaryFields);
887 uint64_t NEntries =
888 endian::byte_swap<uint64_t, little>(SummaryInLE->NumCutoffEntries);
889 uint32_t SummarySize =
890 IndexedInstrProf::Summary::getSize(NFields, NEntries);
891 std::unique_ptr<IndexedInstrProf::Summary> SummaryData =
892 IndexedInstrProf::allocSummary(SummarySize);
893
894 const uint64_t *Src = reinterpret_cast<const uint64_t *>(SummaryInLE);
895 uint64_t *Dst = reinterpret_cast<uint64_t *>(SummaryData.get());
896 for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
897 Dst[I] = endian::byte_swap<uint64_t, little>(Src[I]);
898
899 SummaryEntryVector DetailedSummary;
900 for (unsigned I = 0; I < SummaryData->NumCutoffEntries; I++) {
901 const IndexedInstrProf::Summary::Entry &Ent = SummaryData->getEntry(I);
902 DetailedSummary.emplace_back((uint32_t)Ent.Cutoff, Ent.MinBlockCount,
903 Ent.NumBlocks);
904 }
905 std::unique_ptr<llvm::ProfileSummary> &Summary =
906 UseCS ? this->CS_Summary : this->Summary;
907
908 // initialize InstrProfSummary using the SummaryData from disk.
909 Summary = std::make_unique<ProfileSummary>(
910 UseCS ? ProfileSummary::PSK_CSInstr : ProfileSummary::PSK_Instr,
911 DetailedSummary, SummaryData->get(Summary::TotalBlockCount),
912 SummaryData->get(Summary::MaxBlockCount),
913 SummaryData->get(Summary::MaxInternalBlockCount),
914 SummaryData->get(Summary::MaxFunctionCount),
915 SummaryData->get(Summary::TotalNumBlocks),
916 SummaryData->get(Summary::TotalNumFunctions));
917 return Cur + SummarySize;
918 } else {
919 // The older versions do not support a profile summary. This just computes
920 // an empty summary, which will not result in accurate hot/cold detection.
921 // We would need to call addRecord for all NamedInstrProfRecords to get the
922 // correct summary. However, this version is old (prior to early 2016) and
923 // has not been supporting an accurate summary for several years.
924 InstrProfSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
925 Summary = Builder.getSummary();
926 return Cur;
927 }
928 }
929
readHeader()930 Error IndexedInstrProfReader::readHeader() {
931 using namespace support;
932
933 const unsigned char *Start =
934 (const unsigned char *)DataBuffer->getBufferStart();
935 const unsigned char *Cur = Start;
936 if ((const unsigned char *)DataBuffer->getBufferEnd() - Cur < 24)
937 return error(instrprof_error::truncated);
938
939 auto HeaderOr = IndexedInstrProf::Header::readFromBuffer(Start);
940 if (!HeaderOr)
941 return HeaderOr.takeError();
942
943 const IndexedInstrProf::Header *Header = &HeaderOr.get();
944 Cur += Header->size();
945
946 Cur = readSummary((IndexedInstrProf::ProfVersion)Header->formatVersion(), Cur,
947 /* UseCS */ false);
948 if (Header->formatVersion() & VARIANT_MASK_CSIR_PROF)
949 Cur = readSummary((IndexedInstrProf::ProfVersion)Header->formatVersion(), Cur,
950 /* UseCS */ true);
951
952 // Read the hash type and start offset.
953 IndexedInstrProf::HashT HashType = static_cast<IndexedInstrProf::HashT>(
954 endian::byte_swap<uint64_t, little>(Header->HashType));
955 if (HashType > IndexedInstrProf::HashT::Last)
956 return error(instrprof_error::unsupported_hash_type);
957
958 uint64_t HashOffset = endian::byte_swap<uint64_t, little>(Header->HashOffset);
959
960 // The hash table with profile counts comes next.
961 auto IndexPtr = std::make_unique<InstrProfReaderIndex<OnDiskHashTableImplV3>>(
962 Start + HashOffset, Cur, Start, HashType, Header->formatVersion());
963
964 // The MemProfOffset field in the header is only valid when the format version
965 // is higher than 8 (when it was introduced).
966 if (GET_VERSION(Header->formatVersion()) >= 8 &&
967 Header->formatVersion() & VARIANT_MASK_MEMPROF) {
968 uint64_t MemProfOffset =
969 endian::byte_swap<uint64_t, little>(Header->MemProfOffset);
970
971 const unsigned char *Ptr = Start + MemProfOffset;
972 // The value returned from RecordTableGenerator.Emit.
973 const uint64_t RecordTableOffset =
974 support::endian::readNext<uint64_t, little, unaligned>(Ptr);
975 // The offset in the stream right before invoking FrameTableGenerator.Emit.
976 const uint64_t FramePayloadOffset =
977 support::endian::readNext<uint64_t, little, unaligned>(Ptr);
978 // The value returned from FrameTableGenerator.Emit.
979 const uint64_t FrameTableOffset =
980 support::endian::readNext<uint64_t, little, unaligned>(Ptr);
981
982 // Read the schema.
983 auto SchemaOr = memprof::readMemProfSchema(Ptr);
984 if (!SchemaOr)
985 return SchemaOr.takeError();
986 Schema = SchemaOr.get();
987
988 // Now initialize the table reader with a pointer into data buffer.
989 MemProfRecordTable.reset(MemProfRecordHashTable::Create(
990 /*Buckets=*/Start + RecordTableOffset,
991 /*Payload=*/Ptr,
992 /*Base=*/Start, memprof::RecordLookupTrait(Schema)));
993
994 // Initialize the frame table reader with the payload and bucket offsets.
995 MemProfFrameTable.reset(MemProfFrameHashTable::Create(
996 /*Buckets=*/Start + FrameTableOffset,
997 /*Payload=*/Start + FramePayloadOffset,
998 /*Base=*/Start, memprof::FrameLookupTrait()));
999 }
1000
1001 // Load the remapping table now if requested.
1002 if (RemappingBuffer) {
1003 Remapper = std::make_unique<
1004 InstrProfReaderItaniumRemapper<OnDiskHashTableImplV3>>(
1005 std::move(RemappingBuffer), *IndexPtr);
1006 if (Error E = Remapper->populateRemappings())
1007 return E;
1008 } else {
1009 Remapper = std::make_unique<InstrProfReaderNullRemapper>(*IndexPtr);
1010 }
1011 Index = std::move(IndexPtr);
1012
1013 return success();
1014 }
1015
getSymtab()1016 InstrProfSymtab &IndexedInstrProfReader::getSymtab() {
1017 if (Symtab)
1018 return *Symtab;
1019
1020 std::unique_ptr<InstrProfSymtab> NewSymtab = std::make_unique<InstrProfSymtab>();
1021 if (Error E = Index->populateSymtab(*NewSymtab)) {
1022 consumeError(error(InstrProfError::take(std::move(E))));
1023 }
1024
1025 Symtab = std::move(NewSymtab);
1026 return *Symtab;
1027 }
1028
getInstrProfRecord(StringRef FuncName,uint64_t FuncHash,uint64_t * MismatchedFuncSum)1029 Expected<InstrProfRecord> IndexedInstrProfReader::getInstrProfRecord(
1030 StringRef FuncName, uint64_t FuncHash, uint64_t *MismatchedFuncSum) {
1031 ArrayRef<NamedInstrProfRecord> Data;
1032 uint64_t FuncSum = 0;
1033 Error Err = Remapper->getRecords(FuncName, Data);
1034 if (Err)
1035 return std::move(Err);
1036 // Found it. Look for counters with the right hash.
1037
1038 // A flag to indicate if the records are from the same type
1039 // of profile (i.e cs vs nocs).
1040 bool CSBitMatch = false;
1041 auto getFuncSum = [](const std::vector<uint64_t> &Counts) {
1042 uint64_t ValueSum = 0;
1043 for (unsigned I = 0, S = Counts.size(); I < S; I++) {
1044 uint64_t CountValue = Counts[I];
1045 if (CountValue == (uint64_t)-1)
1046 continue;
1047 // Handle overflow -- if that happens, return max.
1048 if (std::numeric_limits<uint64_t>::max() - CountValue <= ValueSum)
1049 return std::numeric_limits<uint64_t>::max();
1050 ValueSum += CountValue;
1051 }
1052 return ValueSum;
1053 };
1054
1055 for (const NamedInstrProfRecord &I : Data) {
1056 // Check for a match and fill the vector if there is one.
1057 if (I.Hash == FuncHash)
1058 return std::move(I);
1059 if (NamedInstrProfRecord::hasCSFlagInHash(I.Hash) ==
1060 NamedInstrProfRecord::hasCSFlagInHash(FuncHash)) {
1061 CSBitMatch = true;
1062 if (MismatchedFuncSum == nullptr)
1063 continue;
1064 FuncSum = std::max(FuncSum, getFuncSum(I.Counts));
1065 }
1066 }
1067 if (CSBitMatch) {
1068 if (MismatchedFuncSum != nullptr)
1069 *MismatchedFuncSum = FuncSum;
1070 return error(instrprof_error::hash_mismatch);
1071 }
1072 return error(instrprof_error::unknown_function);
1073 }
1074
1075 Expected<memprof::MemProfRecord>
getMemProfRecord(const uint64_t FuncNameHash)1076 IndexedInstrProfReader::getMemProfRecord(const uint64_t FuncNameHash) {
1077 // TODO: Add memprof specific errors.
1078 if (MemProfRecordTable == nullptr)
1079 return make_error<InstrProfError>(instrprof_error::invalid_prof,
1080 "no memprof data available in profile");
1081 auto Iter = MemProfRecordTable->find(FuncNameHash);
1082 if (Iter == MemProfRecordTable->end())
1083 return make_error<InstrProfError>(
1084 instrprof_error::unknown_function,
1085 "memprof record not found for function hash " + Twine(FuncNameHash));
1086
1087 // Setup a callback to convert from frame ids to frame using the on-disk
1088 // FrameData hash table.
1089 memprof::FrameId LastUnmappedFrameId = 0;
1090 bool HasFrameMappingError = false;
1091 auto IdToFrameCallback = [&](const memprof::FrameId Id) {
1092 auto FrIter = MemProfFrameTable->find(Id);
1093 if (FrIter == MemProfFrameTable->end()) {
1094 LastUnmappedFrameId = Id;
1095 HasFrameMappingError = true;
1096 return memprof::Frame(0, 0, 0, false);
1097 }
1098 return *FrIter;
1099 };
1100
1101 memprof::MemProfRecord Record(*Iter, IdToFrameCallback);
1102
1103 // Check that all frame ids were successfully converted to frames.
1104 if (HasFrameMappingError) {
1105 return make_error<InstrProfError>(instrprof_error::hash_mismatch,
1106 "memprof frame not found for frame id " +
1107 Twine(LastUnmappedFrameId));
1108 }
1109 return Record;
1110 }
1111
getFunctionCounts(StringRef FuncName,uint64_t FuncHash,std::vector<uint64_t> & Counts)1112 Error IndexedInstrProfReader::getFunctionCounts(StringRef FuncName,
1113 uint64_t FuncHash,
1114 std::vector<uint64_t> &Counts) {
1115 Expected<InstrProfRecord> Record = getInstrProfRecord(FuncName, FuncHash);
1116 if (Error E = Record.takeError())
1117 return error(std::move(E));
1118
1119 Counts = Record.get().Counts;
1120 return success();
1121 }
1122
readNextRecord(NamedInstrProfRecord & Record)1123 Error IndexedInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) {
1124 ArrayRef<NamedInstrProfRecord> Data;
1125
1126 Error E = Index->getRecords(Data);
1127 if (E)
1128 return error(std::move(E));
1129
1130 Record = Data[RecordIndex++];
1131 if (RecordIndex >= Data.size()) {
1132 Index->advanceToNextKey();
1133 RecordIndex = 0;
1134 }
1135 return success();
1136 }
1137
accumulateCounts(CountSumOrPercent & Sum,bool IsCS)1138 void InstrProfReader::accumulateCounts(CountSumOrPercent &Sum, bool IsCS) {
1139 uint64_t NumFuncs = 0;
1140 for (const auto &Func : *this) {
1141 if (isIRLevelProfile()) {
1142 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
1143 if (FuncIsCS != IsCS)
1144 continue;
1145 }
1146 Func.accumulateCounts(Sum);
1147 ++NumFuncs;
1148 }
1149 Sum.NumEntries = NumFuncs;
1150 }
1151