1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/IR/AutoUpgrade.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DebugInfoMetadata.h"
18 #include "llvm/IR/DiagnosticPrinter.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GVMaterializer.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PseudoProbe.h"
25 #include "llvm/IR/TypeFinder.h"
26 #include "llvm/Object/ModuleSymbolTable.h"
27 #include "llvm/Support/Error.h"
28 #include "llvm/Support/Path.h"
29 #include "llvm/Transforms/Utils/ValueMapper.h"
30 #include <utility>
31 using namespace llvm;
32
33 //===----------------------------------------------------------------------===//
34 // TypeMap implementation.
35 //===----------------------------------------------------------------------===//
36
37 namespace {
38 class TypeMapTy : public ValueMapTypeRemapper {
39 /// This is a mapping from a source type to a destination type to use.
40 DenseMap<Type *, Type *> MappedTypes;
41
42 /// When checking to see if two subgraphs are isomorphic, we speculatively
43 /// add types to MappedTypes, but keep track of them here in case we need to
44 /// roll back.
45 SmallVector<Type *, 16> SpeculativeTypes;
46
47 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
48
49 /// This is a list of non-opaque structs in the source module that are mapped
50 /// to an opaque struct in the destination module.
51 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
52
53 /// This is the set of opaque types in the destination modules who are
54 /// getting a body from the source module.
55 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
56
57 public:
TypeMapTy(IRMover::IdentifiedStructTypeSet & DstStructTypesSet)58 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
59 : DstStructTypesSet(DstStructTypesSet) {}
60
61 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
62 /// Indicate that the specified type in the destination module is conceptually
63 /// equivalent to the specified type in the source module.
64 void addTypeMapping(Type *DstTy, Type *SrcTy);
65
66 /// Produce a body for an opaque type in the dest module from a type
67 /// definition in the source module.
68 void linkDefinedTypeBodies();
69
70 /// Return the mapped type to use for the specified input type from the
71 /// source module.
72 Type *get(Type *SrcTy);
73 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
74
75 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
76
get(FunctionType * T)77 FunctionType *get(FunctionType *T) {
78 return cast<FunctionType>(get((Type *)T));
79 }
80
81 private:
remapType(Type * SrcTy)82 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
83
84 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
85 };
86 }
87
addTypeMapping(Type * DstTy,Type * SrcTy)88 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
89 assert(SpeculativeTypes.empty());
90 assert(SpeculativeDstOpaqueTypes.empty());
91
92 // Check to see if these types are recursively isomorphic and establish a
93 // mapping between them if so.
94 if (!areTypesIsomorphic(DstTy, SrcTy)) {
95 // Oops, they aren't isomorphic. Just discard this request by rolling out
96 // any speculative mappings we've established.
97 for (Type *Ty : SpeculativeTypes)
98 MappedTypes.erase(Ty);
99
100 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
101 SpeculativeDstOpaqueTypes.size());
102 for (StructType *Ty : SpeculativeDstOpaqueTypes)
103 DstResolvedOpaqueTypes.erase(Ty);
104 } else {
105 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
106 // and all its descendants to lower amount of renaming in LLVM context
107 // Renaming occurs because we load all source modules to the same context
108 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
109 // As a result we may get several different types in the destination
110 // module, which are in fact the same.
111 for (Type *Ty : SpeculativeTypes)
112 if (auto *STy = dyn_cast<StructType>(Ty))
113 if (STy->hasName())
114 STy->setName("");
115 }
116 SpeculativeTypes.clear();
117 SpeculativeDstOpaqueTypes.clear();
118 }
119
120 /// Recursively walk this pair of types, returning true if they are isomorphic,
121 /// false if they are not.
areTypesIsomorphic(Type * DstTy,Type * SrcTy)122 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
123 // Two types with differing kinds are clearly not isomorphic.
124 if (DstTy->getTypeID() != SrcTy->getTypeID())
125 return false;
126
127 // If we have an entry in the MappedTypes table, then we have our answer.
128 Type *&Entry = MappedTypes[SrcTy];
129 if (Entry)
130 return Entry == DstTy;
131
132 // Two identical types are clearly isomorphic. Remember this
133 // non-speculatively.
134 if (DstTy == SrcTy) {
135 Entry = DstTy;
136 return true;
137 }
138
139 // Okay, we have two types with identical kinds that we haven't seen before.
140
141 // If this is an opaque struct type, special case it.
142 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
143 // Mapping an opaque type to any struct, just keep the dest struct.
144 if (SSTy->isOpaque()) {
145 Entry = DstTy;
146 SpeculativeTypes.push_back(SrcTy);
147 return true;
148 }
149
150 // Mapping a non-opaque source type to an opaque dest. If this is the first
151 // type that we're mapping onto this destination type then we succeed. Keep
152 // the dest, but fill it in later. If this is the second (different) type
153 // that we're trying to map onto the same opaque type then we fail.
154 if (cast<StructType>(DstTy)->isOpaque()) {
155 // We can only map one source type onto the opaque destination type.
156 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
157 return false;
158 SrcDefinitionsToResolve.push_back(SSTy);
159 SpeculativeTypes.push_back(SrcTy);
160 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
161 Entry = DstTy;
162 return true;
163 }
164 }
165
166 // If the number of subtypes disagree between the two types, then we fail.
167 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
168 return false;
169
170 // Fail if any of the extra properties (e.g. array size) of the type disagree.
171 if (isa<IntegerType>(DstTy))
172 return false; // bitwidth disagrees.
173 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
174 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
175 return false;
176 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
177 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
178 return false;
179 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
180 StructType *SSTy = cast<StructType>(SrcTy);
181 if (DSTy->isLiteral() != SSTy->isLiteral() ||
182 DSTy->isPacked() != SSTy->isPacked())
183 return false;
184 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
185 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
186 return false;
187 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
188 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
189 return false;
190 }
191
192 // Otherwise, we speculate that these two types will line up and recursively
193 // check the subelements.
194 Entry = DstTy;
195 SpeculativeTypes.push_back(SrcTy);
196
197 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
198 if (!areTypesIsomorphic(DstTy->getContainedType(I),
199 SrcTy->getContainedType(I)))
200 return false;
201
202 // If everything seems to have lined up, then everything is great.
203 return true;
204 }
205
linkDefinedTypeBodies()206 void TypeMapTy::linkDefinedTypeBodies() {
207 SmallVector<Type *, 16> Elements;
208 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
209 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
210 assert(DstSTy->isOpaque());
211
212 // Map the body of the source type over to a new body for the dest type.
213 Elements.resize(SrcSTy->getNumElements());
214 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
215 Elements[I] = get(SrcSTy->getElementType(I));
216
217 DstSTy->setBody(Elements, SrcSTy->isPacked());
218 DstStructTypesSet.switchToNonOpaque(DstSTy);
219 }
220 SrcDefinitionsToResolve.clear();
221 DstResolvedOpaqueTypes.clear();
222 }
223
finishType(StructType * DTy,StructType * STy,ArrayRef<Type * > ETypes)224 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
225 ArrayRef<Type *> ETypes) {
226 DTy->setBody(ETypes, STy->isPacked());
227
228 // Steal STy's name.
229 if (STy->hasName()) {
230 SmallString<16> TmpName = STy->getName();
231 STy->setName("");
232 DTy->setName(TmpName);
233 }
234
235 DstStructTypesSet.addNonOpaque(DTy);
236 }
237
get(Type * Ty)238 Type *TypeMapTy::get(Type *Ty) {
239 SmallPtrSet<StructType *, 8> Visited;
240 return get(Ty, Visited);
241 }
242
get(Type * Ty,SmallPtrSet<StructType *,8> & Visited)243 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
244 // If we already have an entry for this type, return it.
245 Type **Entry = &MappedTypes[Ty];
246 if (*Entry)
247 return *Entry;
248
249 // These are types that LLVM itself will unique.
250 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
251
252 if (!IsUniqued) {
253 #ifndef NDEBUG
254 for (auto &Pair : MappedTypes) {
255 assert(!(Pair.first != Ty && Pair.second == Ty) &&
256 "mapping to a source type");
257 }
258 #endif
259
260 if (!Visited.insert(cast<StructType>(Ty)).second) {
261 StructType *DTy = StructType::create(Ty->getContext());
262 return *Entry = DTy;
263 }
264 }
265
266 // If this is not a recursive type, then just map all of the elements and
267 // then rebuild the type from inside out.
268 SmallVector<Type *, 4> ElementTypes;
269
270 // If there are no element types to map, then the type is itself. This is
271 // true for the anonymous {} struct, things like 'float', integers, etc.
272 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
273 return *Entry = Ty;
274
275 // Remap all of the elements, keeping track of whether any of them change.
276 bool AnyChange = false;
277 ElementTypes.resize(Ty->getNumContainedTypes());
278 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
279 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
280 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
281 }
282
283 // If we found our type while recursively processing stuff, just use it.
284 Entry = &MappedTypes[Ty];
285 if (*Entry) {
286 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
287 if (DTy->isOpaque()) {
288 auto *STy = cast<StructType>(Ty);
289 finishType(DTy, STy, ElementTypes);
290 }
291 }
292 return *Entry;
293 }
294
295 // If all of the element types mapped directly over and the type is not
296 // a named struct, then the type is usable as-is.
297 if (!AnyChange && IsUniqued)
298 return *Entry = Ty;
299
300 // Otherwise, rebuild a modified type.
301 switch (Ty->getTypeID()) {
302 default:
303 llvm_unreachable("unknown derived type to remap");
304 case Type::ArrayTyID:
305 return *Entry = ArrayType::get(ElementTypes[0],
306 cast<ArrayType>(Ty)->getNumElements());
307 case Type::ScalableVectorTyID:
308 case Type::FixedVectorTyID:
309 return *Entry = VectorType::get(ElementTypes[0],
310 cast<VectorType>(Ty)->getElementCount());
311 case Type::PointerTyID:
312 return *Entry = PointerType::get(ElementTypes[0],
313 cast<PointerType>(Ty)->getAddressSpace());
314 case Type::FunctionTyID:
315 return *Entry = FunctionType::get(ElementTypes[0],
316 makeArrayRef(ElementTypes).slice(1),
317 cast<FunctionType>(Ty)->isVarArg());
318 case Type::StructTyID: {
319 auto *STy = cast<StructType>(Ty);
320 bool IsPacked = STy->isPacked();
321 if (IsUniqued)
322 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
323
324 // If the type is opaque, we can just use it directly.
325 if (STy->isOpaque()) {
326 DstStructTypesSet.addOpaque(STy);
327 return *Entry = Ty;
328 }
329
330 if (StructType *OldT =
331 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
332 STy->setName("");
333 return *Entry = OldT;
334 }
335
336 if (!AnyChange) {
337 DstStructTypesSet.addNonOpaque(STy);
338 return *Entry = Ty;
339 }
340
341 StructType *DTy = StructType::create(Ty->getContext());
342 finishType(DTy, STy, ElementTypes);
343 return *Entry = DTy;
344 }
345 }
346 }
347
LinkDiagnosticInfo(DiagnosticSeverity Severity,const Twine & Msg)348 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
349 const Twine &Msg)
350 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
print(DiagnosticPrinter & DP) const351 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
352
353 //===----------------------------------------------------------------------===//
354 // IRLinker implementation.
355 //===----------------------------------------------------------------------===//
356
357 namespace {
358 class IRLinker;
359
360 /// Creates prototypes for functions that are lazily linked on the fly. This
361 /// speeds up linking for modules with many/ lazily linked functions of which
362 /// few get used.
363 class GlobalValueMaterializer final : public ValueMaterializer {
364 IRLinker &TheIRLinker;
365
366 public:
GlobalValueMaterializer(IRLinker & TheIRLinker)367 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
368 Value *materialize(Value *V) override;
369 };
370
371 class LocalValueMaterializer final : public ValueMaterializer {
372 IRLinker &TheIRLinker;
373
374 public:
LocalValueMaterializer(IRLinker & TheIRLinker)375 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
376 Value *materialize(Value *V) override;
377 };
378
379 /// Type of the Metadata map in \a ValueToValueMapTy.
380 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
381
382 /// This is responsible for keeping track of the state used for moving data
383 /// from SrcM to DstM.
384 class IRLinker {
385 Module &DstM;
386 std::unique_ptr<Module> SrcM;
387
388 /// See IRMover::move().
389 IRMover::LazyCallback AddLazyFor;
390
391 TypeMapTy TypeMap;
392 GlobalValueMaterializer GValMaterializer;
393 LocalValueMaterializer LValMaterializer;
394
395 /// A metadata map that's shared between IRLinker instances.
396 MDMapT &SharedMDs;
397
398 /// Mapping of values from what they used to be in Src, to what they are now
399 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
400 /// due to the use of Value handles which the Linker doesn't actually need,
401 /// but this allows us to reuse the ValueMapper code.
402 ValueToValueMapTy ValueMap;
403 ValueToValueMapTy IndirectSymbolValueMap;
404
405 DenseSet<GlobalValue *> ValuesToLink;
406 std::vector<GlobalValue *> Worklist;
407 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
408
maybeAdd(GlobalValue * GV)409 void maybeAdd(GlobalValue *GV) {
410 if (ValuesToLink.insert(GV).second)
411 Worklist.push_back(GV);
412 }
413
414 /// Whether we are importing globals for ThinLTO, as opposed to linking the
415 /// source module. If this flag is set, it means that we can rely on some
416 /// other object file to define any non-GlobalValue entities defined by the
417 /// source module. This currently causes us to not link retained types in
418 /// debug info metadata and module inline asm.
419 bool IsPerformingImport;
420
421 /// Set to true when all global value body linking is complete (including
422 /// lazy linking). Used to prevent metadata linking from creating new
423 /// references.
424 bool DoneLinkingBodies = false;
425
426 /// The Error encountered during materialization. We use an Optional here to
427 /// avoid needing to manage an unconsumed success value.
428 Optional<Error> FoundError;
setError(Error E)429 void setError(Error E) {
430 if (E)
431 FoundError = std::move(E);
432 }
433
434 /// Most of the errors produced by this module are inconvertible StringErrors.
435 /// This convenience function lets us return one of those more easily.
stringErr(const Twine & T)436 Error stringErr(const Twine &T) {
437 return make_error<StringError>(T, inconvertibleErrorCode());
438 }
439
440 /// Entry point for mapping values and alternate context for mapping aliases.
441 ValueMapper Mapper;
442 unsigned IndirectSymbolMCID;
443
444 /// Handles cloning of a global values from the source module into
445 /// the destination module, including setting the attributes and visibility.
446 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
447
emitWarning(const Twine & Message)448 void emitWarning(const Twine &Message) {
449 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
450 }
451
452 /// Given a global in the source module, return the global in the
453 /// destination module that is being linked to, if any.
getLinkedToGlobal(const GlobalValue * SrcGV)454 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
455 // If the source has no name it can't link. If it has local linkage,
456 // there is no name match-up going on.
457 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
458 return nullptr;
459
460 // Otherwise see if we have a match in the destination module's symtab.
461 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
462 if (!DGV)
463 return nullptr;
464
465 // If we found a global with the same name in the dest module, but it has
466 // internal linkage, we are really not doing any linkage here.
467 if (DGV->hasLocalLinkage())
468 return nullptr;
469
470 // If we found an intrinsic declaration with mismatching prototypes, we
471 // probably had a nameclash. Don't use that version.
472 if (auto *FDGV = dyn_cast<Function>(DGV))
473 if (FDGV->isIntrinsic())
474 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV))
475 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType()))
476 return nullptr;
477
478 // Otherwise, we do in fact link to the destination global.
479 return DGV;
480 }
481
482 void computeTypeMapping();
483
484 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
485 const GlobalVariable *SrcGV);
486
487 /// Given the GlobaValue \p SGV in the source module, and the matching
488 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
489 /// into the destination module.
490 ///
491 /// Note this code may call the client-provided \p AddLazyFor.
492 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
493 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
494 bool ForIndirectSymbol);
495
496 Error linkModuleFlagsMetadata();
497
498 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
499 Error linkFunctionBody(Function &Dst, Function &Src);
500 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src);
501 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src);
502 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
503
504 /// Replace all types in the source AttributeList with the
505 /// corresponding destination type.
506 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
507
508 /// Functions that take care of cloning a specific global value type
509 /// into the destination module.
510 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
511 Function *copyFunctionProto(const Function *SF);
512 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV);
513
514 /// Perform "replace all uses with" operations. These work items need to be
515 /// performed as part of materialization, but we postpone them to happen after
516 /// materialization is done. The materializer called by ValueMapper is not
517 /// expected to delete constants, as ValueMapper is holding pointers to some
518 /// of them, but constant destruction may be indirectly triggered by RAUW.
519 /// Hence, the need to move this out of the materialization call chain.
520 void flushRAUWWorklist();
521
522 /// When importing for ThinLTO, prevent importing of types listed on
523 /// the DICompileUnit that we don't need a copy of in the importing
524 /// module.
525 void prepareCompileUnitsForImport();
526 void linkNamedMDNodes();
527
528 public:
IRLinker(Module & DstM,MDMapT & SharedMDs,IRMover::IdentifiedStructTypeSet & Set,std::unique_ptr<Module> SrcM,ArrayRef<GlobalValue * > ValuesToLink,IRMover::LazyCallback AddLazyFor,bool IsPerformingImport)529 IRLinker(Module &DstM, MDMapT &SharedMDs,
530 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
531 ArrayRef<GlobalValue *> ValuesToLink,
532 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport)
533 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
534 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
535 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
536 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals,
537 &TypeMap, &GValMaterializer),
538 IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
539 IndirectSymbolValueMap, &LValMaterializer)) {
540 ValueMap.getMDMap() = std::move(SharedMDs);
541 for (GlobalValue *GV : ValuesToLink)
542 maybeAdd(GV);
543 if (IsPerformingImport)
544 prepareCompileUnitsForImport();
545 }
~IRLinker()546 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
547
548 Error run();
549 Value *materialize(Value *V, bool ForIndirectSymbol);
550 };
551 }
552
553 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
554 /// table. This is good for all clients except for us. Go through the trouble
555 /// to force this back.
forceRenaming(GlobalValue * GV,StringRef Name)556 static void forceRenaming(GlobalValue *GV, StringRef Name) {
557 // If the global doesn't force its name or if it already has the right name,
558 // there is nothing for us to do.
559 if (GV->hasLocalLinkage() || GV->getName() == Name)
560 return;
561
562 Module *M = GV->getParent();
563
564 // If there is a conflict, rename the conflict.
565 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
566 GV->takeName(ConflictGV);
567 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
568 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
569 } else {
570 GV->setName(Name); // Force the name back
571 }
572 }
573
materialize(Value * SGV)574 Value *GlobalValueMaterializer::materialize(Value *SGV) {
575 return TheIRLinker.materialize(SGV, false);
576 }
577
materialize(Value * SGV)578 Value *LocalValueMaterializer::materialize(Value *SGV) {
579 return TheIRLinker.materialize(SGV, true);
580 }
581
materialize(Value * V,bool ForIndirectSymbol)582 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
583 auto *SGV = dyn_cast<GlobalValue>(V);
584 if (!SGV)
585 return nullptr;
586
587 // When linking a global from other modules than source & dest, skip
588 // materializing it because it would be mapped later when its containing
589 // module is linked. Linking it now would potentially pull in many types that
590 // may not be mapped properly.
591 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
592 return nullptr;
593
594 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
595 if (!NewProto) {
596 setError(NewProto.takeError());
597 return nullptr;
598 }
599 if (!*NewProto)
600 return nullptr;
601
602 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
603 if (!New)
604 return *NewProto;
605
606 // If we already created the body, just return.
607 if (auto *F = dyn_cast<Function>(New)) {
608 if (!F->isDeclaration())
609 return New;
610 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
611 if (V->hasInitializer() || V->hasAppendingLinkage())
612 return New;
613 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) {
614 if (GA->getAliasee())
615 return New;
616 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) {
617 if (GI->getResolver())
618 return New;
619 } else {
620 llvm_unreachable("Invalid GlobalValue type");
621 }
622
623 // If the global is being linked for an indirect symbol, it may have already
624 // been scheduled to satisfy a regular symbol. Similarly, a global being linked
625 // for a regular symbol may have already been scheduled for an indirect
626 // symbol. Check for these cases by looking in the other value map and
627 // confirming the same value has been scheduled. If there is an entry in the
628 // ValueMap but the value is different, it means that the value already had a
629 // definition in the destination module (linkonce for instance), but we need a
630 // new definition for the indirect symbol ("New" will be different).
631 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) ||
632 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New))
633 return New;
634
635 if (ForIndirectSymbol || shouldLink(New, *SGV))
636 setError(linkGlobalValueBody(*New, *SGV));
637
638 return New;
639 }
640
641 /// Loop through the global variables in the src module and merge them into the
642 /// dest module.
copyGlobalVariableProto(const GlobalVariable * SGVar)643 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
644 // No linking to be performed or linking from the source: simply create an
645 // identical version of the symbol over in the dest module... the
646 // initializer will be filled in later by LinkGlobalInits.
647 GlobalVariable *NewDGV =
648 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
649 SGVar->isConstant(), GlobalValue::ExternalLinkage,
650 /*init*/ nullptr, SGVar->getName(),
651 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
652 SGVar->getAddressSpace());
653 NewDGV->setAlignment(SGVar->getAlign());
654 NewDGV->copyAttributesFrom(SGVar);
655 return NewDGV;
656 }
657
mapAttributeTypes(LLVMContext & C,AttributeList Attrs)658 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
659 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
660 for (int AttrIdx = Attribute::FirstTypeAttr;
661 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
662 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
663 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) {
664 if (Type *Ty =
665 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
666 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
667 TypeMap.get(Ty));
668 break;
669 }
670 }
671 }
672 }
673 return Attrs;
674 }
675
676 /// Link the function in the source module into the destination module if
677 /// needed, setting up mapping information.
copyFunctionProto(const Function * SF)678 Function *IRLinker::copyFunctionProto(const Function *SF) {
679 // If there is no linkage to be performed or we are linking from the source,
680 // bring SF over.
681 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
682 GlobalValue::ExternalLinkage,
683 SF->getAddressSpace(), SF->getName(), &DstM);
684 F->copyAttributesFrom(SF);
685 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
686 return F;
687 }
688
689 /// Set up prototypes for any indirect symbols that come over from the source
690 /// module.
copyIndirectSymbolProto(const GlobalValue * SGV)691 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) {
692 // If there is no linkage to be performed or we're linking from the source,
693 // bring over SGA.
694 auto *Ty = TypeMap.get(SGV->getValueType());
695
696 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) {
697 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(),
698 GlobalValue::ExternalLinkage,
699 SGV->getName(), &DstM);
700 DGA->copyAttributesFrom(GA);
701 return DGA;
702 }
703
704 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) {
705 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(),
706 GlobalValue::ExternalLinkage,
707 SGV->getName(), nullptr, &DstM);
708 DGI->copyAttributesFrom(GI);
709 return DGI;
710 }
711
712 llvm_unreachable("Invalid source global value type");
713 }
714
copyGlobalValueProto(const GlobalValue * SGV,bool ForDefinition)715 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
716 bool ForDefinition) {
717 GlobalValue *NewGV;
718 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
719 NewGV = copyGlobalVariableProto(SGVar);
720 } else if (auto *SF = dyn_cast<Function>(SGV)) {
721 NewGV = copyFunctionProto(SF);
722 } else {
723 if (ForDefinition)
724 NewGV = copyIndirectSymbolProto(SGV);
725 else if (SGV->getValueType()->isFunctionTy())
726 NewGV =
727 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
728 GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
729 SGV->getName(), &DstM);
730 else
731 NewGV =
732 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
733 /*isConstant*/ false, GlobalValue::ExternalLinkage,
734 /*init*/ nullptr, SGV->getName(),
735 /*insertbefore*/ nullptr,
736 SGV->getThreadLocalMode(), SGV->getAddressSpace());
737 }
738
739 if (ForDefinition)
740 NewGV->setLinkage(SGV->getLinkage());
741 else if (SGV->hasExternalWeakLinkage())
742 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
743
744 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
745 // Metadata for global variables and function declarations is copied eagerly.
746 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
747 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
748 }
749
750 // Remove these copied constants in case this stays a declaration, since
751 // they point to the source module. If the def is linked the values will
752 // be mapped in during linkFunctionBody.
753 if (auto *NewF = dyn_cast<Function>(NewGV)) {
754 NewF->setPersonalityFn(nullptr);
755 NewF->setPrefixData(nullptr);
756 NewF->setPrologueData(nullptr);
757 }
758
759 return NewGV;
760 }
761
getTypeNamePrefix(StringRef Name)762 static StringRef getTypeNamePrefix(StringRef Name) {
763 size_t DotPos = Name.rfind('.');
764 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
765 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
766 ? Name
767 : Name.substr(0, DotPos);
768 }
769
770 /// Loop over all of the linked values to compute type mappings. For example,
771 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
772 /// types 'Foo' but one got renamed when the module was loaded into the same
773 /// LLVMContext.
computeTypeMapping()774 void IRLinker::computeTypeMapping() {
775 for (GlobalValue &SGV : SrcM->globals()) {
776 GlobalValue *DGV = getLinkedToGlobal(&SGV);
777 if (!DGV)
778 continue;
779
780 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
781 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
782 continue;
783 }
784
785 // Unify the element type of appending arrays.
786 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
787 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
788 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
789 }
790
791 for (GlobalValue &SGV : *SrcM)
792 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
793 if (DGV->getType() == SGV.getType()) {
794 // If the types of DGV and SGV are the same, it means that DGV is from
795 // the source module and got added to DstM from a shared metadata. We
796 // shouldn't map this type to itself in case the type's components get
797 // remapped to a new type from DstM (for instance, during the loop over
798 // SrcM->getIdentifiedStructTypes() below).
799 continue;
800 }
801
802 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
803 }
804
805 for (GlobalValue &SGV : SrcM->aliases())
806 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
807 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
808
809 // Incorporate types by name, scanning all the types in the source module.
810 // At this point, the destination module may have a type "%foo = { i32 }" for
811 // example. When the source module got loaded into the same LLVMContext, if
812 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
813 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
814 for (StructType *ST : Types) {
815 if (!ST->hasName())
816 continue;
817
818 if (TypeMap.DstStructTypesSet.hasType(ST)) {
819 // This is actually a type from the destination module.
820 // getIdentifiedStructTypes() can have found it by walking debug info
821 // metadata nodes, some of which get linked by name when ODR Type Uniquing
822 // is enabled on the Context, from the source to the destination module.
823 continue;
824 }
825
826 auto STTypePrefix = getTypeNamePrefix(ST->getName());
827 if (STTypePrefix.size() == ST->getName().size())
828 continue;
829
830 // Check to see if the destination module has a struct with the prefix name.
831 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
832 if (!DST)
833 continue;
834
835 // Don't use it if this actually came from the source module. They're in
836 // the same LLVMContext after all. Also don't use it unless the type is
837 // actually used in the destination module. This can happen in situations
838 // like this:
839 //
840 // Module A Module B
841 // -------- --------
842 // %Z = type { %A } %B = type { %C.1 }
843 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
844 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
845 // %C = type { i8* } %B.3 = type { %C.1 }
846 //
847 // When we link Module B with Module A, the '%B' in Module B is
848 // used. However, that would then use '%C.1'. But when we process '%C.1',
849 // we prefer to take the '%C' version. So we are then left with both
850 // '%C.1' and '%C' being used for the same types. This leads to some
851 // variables using one type and some using the other.
852 if (TypeMap.DstStructTypesSet.hasType(DST))
853 TypeMap.addTypeMapping(DST, ST);
854 }
855
856 // Now that we have discovered all of the type equivalences, get a body for
857 // any 'opaque' types in the dest module that are now resolved.
858 TypeMap.linkDefinedTypeBodies();
859 }
860
getArrayElements(const Constant * C,SmallVectorImpl<Constant * > & Dest)861 static void getArrayElements(const Constant *C,
862 SmallVectorImpl<Constant *> &Dest) {
863 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
864
865 for (unsigned i = 0; i != NumElements; ++i)
866 Dest.push_back(C->getAggregateElement(i));
867 }
868
869 /// If there were any appending global variables, link them together now.
870 Expected<Constant *>
linkAppendingVarProto(GlobalVariable * DstGV,const GlobalVariable * SrcGV)871 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
872 const GlobalVariable *SrcGV) {
873 // Check that both variables have compatible properties.
874 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
875 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
876 return stringErr(
877 "Linking globals named '" + SrcGV->getName() +
878 "': can only link appending global with another appending "
879 "global!");
880
881 if (DstGV->isConstant() != SrcGV->isConstant())
882 return stringErr("Appending variables linked with different const'ness!");
883
884 if (DstGV->getAlign() != SrcGV->getAlign())
885 return stringErr(
886 "Appending variables with different alignment need to be linked!");
887
888 if (DstGV->getVisibility() != SrcGV->getVisibility())
889 return stringErr(
890 "Appending variables with different visibility need to be linked!");
891
892 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
893 return stringErr(
894 "Appending variables with different unnamed_addr need to be linked!");
895
896 if (DstGV->getSection() != SrcGV->getSection())
897 return stringErr(
898 "Appending variables with different section name need to be linked!");
899 }
900
901 // Do not need to do anything if source is a declaration.
902 if (SrcGV->isDeclaration())
903 return DstGV;
904
905 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
906 ->getElementType();
907
908 // FIXME: This upgrade is done during linking to support the C API. Once the
909 // old form is deprecated, we should move this upgrade to
910 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
911 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
912 StringRef Name = SrcGV->getName();
913 bool IsNewStructor = false;
914 bool IsOldStructor = false;
915 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
916 if (cast<StructType>(EltTy)->getNumElements() == 3)
917 IsNewStructor = true;
918 else
919 IsOldStructor = true;
920 }
921
922 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
923 if (IsOldStructor) {
924 auto &ST = *cast<StructType>(EltTy);
925 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
926 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
927 }
928
929 uint64_t DstNumElements = 0;
930 if (DstGV && !DstGV->isDeclaration()) {
931 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
932 DstNumElements = DstTy->getNumElements();
933
934 // Check to see that they two arrays agree on type.
935 if (EltTy != DstTy->getElementType())
936 return stringErr("Appending variables with different element types!");
937 }
938
939 SmallVector<Constant *, 16> SrcElements;
940 getArrayElements(SrcGV->getInitializer(), SrcElements);
941
942 if (IsNewStructor) {
943 erase_if(SrcElements, [this](Constant *E) {
944 auto *Key =
945 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
946 if (!Key)
947 return false;
948 GlobalValue *DGV = getLinkedToGlobal(Key);
949 return !shouldLink(DGV, *Key);
950 });
951 }
952 uint64_t NewSize = DstNumElements + SrcElements.size();
953 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
954
955 // Create the new global variable.
956 GlobalVariable *NG = new GlobalVariable(
957 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
958 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
959 SrcGV->getAddressSpace());
960
961 NG->copyAttributesFrom(SrcGV);
962 forceRenaming(NG, SrcGV->getName());
963
964 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
965
966 Mapper.scheduleMapAppendingVariable(
967 *NG,
968 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
969 IsOldStructor, SrcElements);
970
971 // Replace any uses of the two global variables with uses of the new
972 // global.
973 if (DstGV) {
974 RAUWWorklist.push_back(
975 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
976 }
977
978 return Ret;
979 }
980
shouldLink(GlobalValue * DGV,GlobalValue & SGV)981 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
982 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
983 return true;
984
985 if (DGV && !DGV->isDeclarationForLinker())
986 return false;
987
988 if (SGV.isDeclaration() || DoneLinkingBodies)
989 return false;
990
991 // Callback to the client to give a chance to lazily add the Global to the
992 // list of value to link.
993 bool LazilyAdded = false;
994 if (AddLazyFor)
995 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
996 maybeAdd(&GV);
997 LazilyAdded = true;
998 });
999 return LazilyAdded;
1000 }
1001
linkGlobalValueProto(GlobalValue * SGV,bool ForIndirectSymbol)1002 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
1003 bool ForIndirectSymbol) {
1004 GlobalValue *DGV = getLinkedToGlobal(SGV);
1005
1006 bool ShouldLink = shouldLink(DGV, *SGV);
1007
1008 // just missing from map
1009 if (ShouldLink) {
1010 auto I = ValueMap.find(SGV);
1011 if (I != ValueMap.end())
1012 return cast<Constant>(I->second);
1013
1014 I = IndirectSymbolValueMap.find(SGV);
1015 if (I != IndirectSymbolValueMap.end())
1016 return cast<Constant>(I->second);
1017 }
1018
1019 if (!ShouldLink && ForIndirectSymbol)
1020 DGV = nullptr;
1021
1022 // Handle the ultra special appending linkage case first.
1023 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
1024 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
1025 cast<GlobalVariable>(SGV));
1026
1027 bool NeedsRenaming = false;
1028 GlobalValue *NewGV;
1029 if (DGV && !ShouldLink) {
1030 NewGV = DGV;
1031 } else {
1032 // If we are done linking global value bodies (i.e. we are performing
1033 // metadata linking), don't link in the global value due to this
1034 // reference, simply map it to null.
1035 if (DoneLinkingBodies)
1036 return nullptr;
1037
1038 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
1039 if (ShouldLink || !ForIndirectSymbol)
1040 NeedsRenaming = true;
1041 }
1042
1043 // Overloaded intrinsics have overloaded types names as part of their
1044 // names. If we renamed overloaded types we should rename the intrinsic
1045 // as well.
1046 if (Function *F = dyn_cast<Function>(NewGV))
1047 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
1048 NewGV->eraseFromParent();
1049 NewGV = *Remangled;
1050 NeedsRenaming = false;
1051 }
1052
1053 if (NeedsRenaming)
1054 forceRenaming(NewGV, SGV->getName());
1055
1056 if (ShouldLink || ForIndirectSymbol) {
1057 if (const Comdat *SC = SGV->getComdat()) {
1058 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
1059 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
1060 DC->setSelectionKind(SC->getSelectionKind());
1061 GO->setComdat(DC);
1062 }
1063 }
1064 }
1065
1066 if (!ShouldLink && ForIndirectSymbol)
1067 NewGV->setLinkage(GlobalValue::InternalLinkage);
1068
1069 Constant *C = NewGV;
1070 // Only create a bitcast if necessary. In particular, with
1071 // DebugTypeODRUniquing we may reach metadata in the destination module
1072 // containing a GV from the source module, in which case SGV will be
1073 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1074 // assumes it is being invoked on a type in the source module.
1075 if (DGV && NewGV != SGV) {
1076 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1077 NewGV, TypeMap.get(SGV->getType()));
1078 }
1079
1080 if (DGV && NewGV != DGV) {
1081 // Schedule "replace all uses with" to happen after materializing is
1082 // done. It is not safe to do it now, since ValueMapper may be holding
1083 // pointers to constants that will get deleted if RAUW runs.
1084 RAUWWorklist.push_back(std::make_pair(
1085 DGV,
1086 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1087 }
1088
1089 return C;
1090 }
1091
1092 /// Update the initializers in the Dest module now that all globals that may be
1093 /// referenced are in Dest.
linkGlobalVariable(GlobalVariable & Dst,GlobalVariable & Src)1094 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1095 // Figure out what the initializer looks like in the dest module.
1096 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1097 }
1098
1099 /// Copy the source function over into the dest function and fix up references
1100 /// to values. At this point we know that Dest is an external function, and
1101 /// that Src is not.
linkFunctionBody(Function & Dst,Function & Src)1102 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1103 assert(Dst.isDeclaration() && !Src.isDeclaration());
1104
1105 // Materialize if needed.
1106 if (Error Err = Src.materialize())
1107 return Err;
1108
1109 // Link in the operands without remapping.
1110 if (Src.hasPrefixData())
1111 Dst.setPrefixData(Src.getPrefixData());
1112 if (Src.hasPrologueData())
1113 Dst.setPrologueData(Src.getPrologueData());
1114 if (Src.hasPersonalityFn())
1115 Dst.setPersonalityFn(Src.getPersonalityFn());
1116
1117 // Copy over the metadata attachments without remapping.
1118 Dst.copyMetadata(&Src, 0);
1119
1120 // Steal arguments and splice the body of Src into Dst.
1121 Dst.stealArgumentListFrom(Src);
1122 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1123
1124 // Everything has been moved over. Remap it.
1125 Mapper.scheduleRemapFunction(Dst);
1126 return Error::success();
1127 }
1128
linkAliasAliasee(GlobalAlias & Dst,GlobalAlias & Src)1129 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) {
1130 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID);
1131 }
1132
linkIFuncResolver(GlobalIFunc & Dst,GlobalIFunc & Src)1133 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) {
1134 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID);
1135 }
1136
linkGlobalValueBody(GlobalValue & Dst,GlobalValue & Src)1137 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1138 if (auto *F = dyn_cast<Function>(&Src))
1139 return linkFunctionBody(cast<Function>(Dst), *F);
1140 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1141 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1142 return Error::success();
1143 }
1144 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) {
1145 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA);
1146 return Error::success();
1147 }
1148 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src));
1149 return Error::success();
1150 }
1151
flushRAUWWorklist()1152 void IRLinker::flushRAUWWorklist() {
1153 for (const auto &Elem : RAUWWorklist) {
1154 GlobalValue *Old;
1155 Value *New;
1156 std::tie(Old, New) = Elem;
1157
1158 Old->replaceAllUsesWith(New);
1159 Old->eraseFromParent();
1160 }
1161 RAUWWorklist.clear();
1162 }
1163
prepareCompileUnitsForImport()1164 void IRLinker::prepareCompileUnitsForImport() {
1165 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1166 if (!SrcCompileUnits)
1167 return;
1168 // When importing for ThinLTO, prevent importing of types listed on
1169 // the DICompileUnit that we don't need a copy of in the importing
1170 // module. They will be emitted by the originating module.
1171 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1172 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1173 assert(CU && "Expected valid compile unit");
1174 // Enums, macros, and retained types don't need to be listed on the
1175 // imported DICompileUnit. This means they will only be imported
1176 // if reached from the mapped IR.
1177 CU->replaceEnumTypes(nullptr);
1178 CU->replaceMacros(nullptr);
1179 CU->replaceRetainedTypes(nullptr);
1180
1181 // The original definition (or at least its debug info - if the variable is
1182 // internalized and optimized away) will remain in the source module, so
1183 // there's no need to import them.
1184 // If LLVM ever does more advanced optimizations on global variables
1185 // (removing/localizing write operations, for instance) that can track
1186 // through debug info, this decision may need to be revisited - but do so
1187 // with care when it comes to debug info size. Emitting small CUs containing
1188 // only a few imported entities into every destination module may be very
1189 // size inefficient.
1190 CU->replaceGlobalVariables(nullptr);
1191
1192 // Imported entities only need to be mapped in if they have local
1193 // scope, as those might correspond to an imported entity inside a
1194 // function being imported (any locally scoped imported entities that
1195 // don't end up referenced by an imported function will not be emitted
1196 // into the object). Imported entities not in a local scope
1197 // (e.g. on the namespace) only need to be emitted by the originating
1198 // module. Create a list of the locally scoped imported entities, and
1199 // replace the source CUs imported entity list with the new list, so
1200 // only those are mapped in.
1201 // FIXME: Locally-scoped imported entities could be moved to the
1202 // functions they are local to instead of listing them on the CU, and
1203 // we would naturally only link in those needed by function importing.
1204 SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1205 bool ReplaceImportedEntities = false;
1206 for (auto *IE : CU->getImportedEntities()) {
1207 DIScope *Scope = IE->getScope();
1208 assert(Scope && "Invalid Scope encoding!");
1209 if (isa<DILocalScope>(Scope))
1210 AllImportedModules.emplace_back(IE);
1211 else
1212 ReplaceImportedEntities = true;
1213 }
1214 if (ReplaceImportedEntities) {
1215 if (!AllImportedModules.empty())
1216 CU->replaceImportedEntities(MDTuple::get(
1217 CU->getContext(),
1218 SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1219 AllImportedModules.end())));
1220 else
1221 // If there were no local scope imported entities, we can map
1222 // the whole list to nullptr.
1223 CU->replaceImportedEntities(nullptr);
1224 }
1225 }
1226 }
1227
1228 /// Insert all of the named MDNodes in Src into the Dest module.
linkNamedMDNodes()1229 void IRLinker::linkNamedMDNodes() {
1230 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1231 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1232 // Don't link module flags here. Do them separately.
1233 if (&NMD == SrcModFlags)
1234 continue;
1235 // Don't import pseudo probe descriptors here for thinLTO. They will be
1236 // emitted by the originating module.
1237 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) {
1238 if (!DstM.getNamedMetadata(NMD.getName()))
1239 emitWarning("Pseudo-probe ignored: source module '" +
1240 SrcM->getModuleIdentifier() +
1241 "' is compiled with -fpseudo-probe-for-profiling while "
1242 "destination module '" +
1243 DstM.getModuleIdentifier() + "' is not\n");
1244 continue;
1245 }
1246 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1247 // Add Src elements into Dest node.
1248 for (const MDNode *Op : NMD.operands())
1249 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1250 }
1251 }
1252
1253 /// Merge the linker flags in Src into the Dest module.
linkModuleFlagsMetadata()1254 Error IRLinker::linkModuleFlagsMetadata() {
1255 // If the source module has no module flags, we are done.
1256 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1257 if (!SrcModFlags)
1258 return Error::success();
1259
1260 // Check for module flag for updates before do anything.
1261 UpgradeModuleFlags(*SrcM);
1262
1263 // If the destination module doesn't have module flags yet, then just copy
1264 // over the source module's flags.
1265 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1266 if (DstModFlags->getNumOperands() == 0) {
1267 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1268 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1269
1270 return Error::success();
1271 }
1272
1273 // First build a map of the existing module flags and requirements.
1274 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1275 SmallSetVector<MDNode *, 16> Requirements;
1276 SmallVector<unsigned, 0> Mins;
1277 DenseSet<MDString *> SeenMin;
1278 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1279 MDNode *Op = DstModFlags->getOperand(I);
1280 uint64_t Behavior =
1281 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue();
1282 MDString *ID = cast<MDString>(Op->getOperand(1));
1283
1284 if (Behavior == Module::Require) {
1285 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1286 } else {
1287 if (Behavior == Module::Min)
1288 Mins.push_back(I);
1289 Flags[ID] = std::make_pair(Op, I);
1290 }
1291 }
1292
1293 // Merge in the flags from the source module, and also collect its set of
1294 // requirements.
1295 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1296 MDNode *SrcOp = SrcModFlags->getOperand(I);
1297 ConstantInt *SrcBehavior =
1298 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1299 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1300 MDNode *DstOp;
1301 unsigned DstIndex;
1302 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1303 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1304 SeenMin.insert(ID);
1305
1306 // If this is a requirement, add it and continue.
1307 if (SrcBehaviorValue == Module::Require) {
1308 // If the destination module does not already have this requirement, add
1309 // it.
1310 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1311 DstModFlags->addOperand(SrcOp);
1312 }
1313 continue;
1314 }
1315
1316 // If there is no existing flag with this ID, just add it.
1317 if (!DstOp) {
1318 if (SrcBehaviorValue == Module::Min) {
1319 Mins.push_back(DstModFlags->getNumOperands());
1320 SeenMin.erase(ID);
1321 }
1322 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1323 DstModFlags->addOperand(SrcOp);
1324 continue;
1325 }
1326
1327 // Otherwise, perform a merge.
1328 ConstantInt *DstBehavior =
1329 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1330 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1331
1332 auto overrideDstValue = [&]() {
1333 DstModFlags->setOperand(DstIndex, SrcOp);
1334 Flags[ID].first = SrcOp;
1335 };
1336
1337 // If either flag has override behavior, handle it first.
1338 if (DstBehaviorValue == Module::Override) {
1339 // Diagnose inconsistent flags which both have override behavior.
1340 if (SrcBehaviorValue == Module::Override &&
1341 SrcOp->getOperand(2) != DstOp->getOperand(2))
1342 return stringErr("linking module flags '" + ID->getString() +
1343 "': IDs have conflicting override values in '" +
1344 SrcM->getModuleIdentifier() + "' and '" +
1345 DstM.getModuleIdentifier() + "'");
1346 continue;
1347 } else if (SrcBehaviorValue == Module::Override) {
1348 // Update the destination flag to that of the source.
1349 overrideDstValue();
1350 continue;
1351 }
1352
1353 // Diagnose inconsistent merge behavior types.
1354 if (SrcBehaviorValue != DstBehaviorValue) {
1355 bool MinAndWarn = (SrcBehaviorValue == Module::Min &&
1356 DstBehaviorValue == Module::Warning) ||
1357 (DstBehaviorValue == Module::Min &&
1358 SrcBehaviorValue == Module::Warning);
1359 bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1360 DstBehaviorValue == Module::Warning) ||
1361 (DstBehaviorValue == Module::Max &&
1362 SrcBehaviorValue == Module::Warning);
1363 if (!(MaxAndWarn || MinAndWarn))
1364 return stringErr("linking module flags '" + ID->getString() +
1365 "': IDs have conflicting behaviors in '" +
1366 SrcM->getModuleIdentifier() + "' and '" +
1367 DstM.getModuleIdentifier() + "'");
1368 }
1369
1370 auto ensureDistinctOp = [&](MDNode *DstValue) {
1371 assert(isa<MDTuple>(DstValue) &&
1372 "Expected MDTuple when appending module flags");
1373 if (DstValue->isDistinct())
1374 return dyn_cast<MDTuple>(DstValue);
1375 ArrayRef<MDOperand> DstOperands = DstValue->operands();
1376 MDTuple *New = MDTuple::getDistinct(
1377 DstM.getContext(),
1378 SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end()));
1379 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1380 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps);
1381 DstModFlags->setOperand(DstIndex, Flag);
1382 Flags[ID].first = Flag;
1383 return New;
1384 };
1385
1386 // Emit a warning if the values differ and either source or destination
1387 // request Warning behavior.
1388 if ((DstBehaviorValue == Module::Warning ||
1389 SrcBehaviorValue == Module::Warning) &&
1390 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1391 std::string Str;
1392 raw_string_ostream(Str)
1393 << "linking module flags '" << ID->getString()
1394 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1395 << "' from " << SrcM->getModuleIdentifier() << " with '"
1396 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1397 << ')';
1398 emitWarning(Str);
1399 }
1400
1401 // Choose the minimum if either source or destination request Min behavior.
1402 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) {
1403 ConstantInt *DstValue =
1404 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1405 ConstantInt *SrcValue =
1406 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1407
1408 // The resulting flag should have a Min behavior, and contain the minimum
1409 // value from between the source and destination values.
1410 Metadata *FlagOps[] = {
1411 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID,
1412 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp)
1413 ->getOperand(2)};
1414 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1415 DstModFlags->setOperand(DstIndex, Flag);
1416 Flags[ID].first = Flag;
1417 continue;
1418 }
1419
1420 // Choose the maximum if either source or destination request Max behavior.
1421 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1422 ConstantInt *DstValue =
1423 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1424 ConstantInt *SrcValue =
1425 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1426
1427 // The resulting flag should have a Max behavior, and contain the maximum
1428 // value from between the source and destination values.
1429 Metadata *FlagOps[] = {
1430 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1431 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1432 ->getOperand(2)};
1433 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1434 DstModFlags->setOperand(DstIndex, Flag);
1435 Flags[ID].first = Flag;
1436 continue;
1437 }
1438
1439 // Perform the merge for standard behavior types.
1440 switch (SrcBehaviorValue) {
1441 case Module::Require:
1442 case Module::Override:
1443 llvm_unreachable("not possible");
1444 case Module::Error: {
1445 // Emit an error if the values differ.
1446 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1447 return stringErr("linking module flags '" + ID->getString() +
1448 "': IDs have conflicting values in '" +
1449 SrcM->getModuleIdentifier() + "' and '" +
1450 DstM.getModuleIdentifier() + "'");
1451 continue;
1452 }
1453 case Module::Warning: {
1454 break;
1455 }
1456 case Module::Max: {
1457 break;
1458 }
1459 case Module::Append: {
1460 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1461 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1462 for (const auto &O : SrcValue->operands())
1463 DstValue->push_back(O);
1464 break;
1465 }
1466 case Module::AppendUnique: {
1467 SmallSetVector<Metadata *, 16> Elts;
1468 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1469 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1470 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1471 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1472 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++)
1473 DstValue->push_back(Elts[I]);
1474 break;
1475 }
1476 }
1477
1478 }
1479
1480 // For the Min behavior, set the value to 0 if either module does not have the
1481 // flag.
1482 for (auto Idx : Mins) {
1483 MDNode *Op = DstModFlags->getOperand(Idx);
1484 MDString *ID = cast<MDString>(Op->getOperand(1));
1485 if (!SeenMin.count(ID)) {
1486 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2));
1487 Metadata *FlagOps[] = {
1488 Op->getOperand(0), ID,
1489 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))};
1490 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps));
1491 }
1492 }
1493
1494 // Check all of the requirements.
1495 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1496 MDNode *Requirement = Requirements[I];
1497 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1498 Metadata *ReqValue = Requirement->getOperand(1);
1499
1500 MDNode *Op = Flags[Flag].first;
1501 if (!Op || Op->getOperand(2) != ReqValue)
1502 return stringErr("linking module flags '" + Flag->getString() +
1503 "': does not have the required value");
1504 }
1505 return Error::success();
1506 }
1507
1508 /// Return InlineAsm adjusted with target-specific directives if required.
1509 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1510 /// to support mixing module-level inline assembly from ARM and Thumb modules.
adjustInlineAsm(const std::string & InlineAsm,const Triple & Triple)1511 static std::string adjustInlineAsm(const std::string &InlineAsm,
1512 const Triple &Triple) {
1513 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1514 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1515 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1516 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1517 return InlineAsm;
1518 }
1519
run()1520 Error IRLinker::run() {
1521 // Ensure metadata materialized before value mapping.
1522 if (SrcM->getMaterializer())
1523 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1524 return Err;
1525
1526 // Inherit the target data from the source module if the destination module
1527 // doesn't have one already.
1528 if (DstM.getDataLayout().isDefault())
1529 DstM.setDataLayout(SrcM->getDataLayout());
1530
1531 // Copy the target triple from the source to dest if the dest's is empty.
1532 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1533 DstM.setTargetTriple(SrcM->getTargetTriple());
1534
1535 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1536
1537 // During CUDA compilation we have to link with the bitcode supplied with
1538 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
1539 // the layout that is different from the one used by LLVM/clang (it does not
1540 // include i128). Issuing a warning is not very helpful as there's not much
1541 // the user can do about it.
1542 bool EnableDLWarning = true;
1543 bool EnableTripleWarning = true;
1544 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) {
1545 std::string ModuleId = SrcM->getModuleIdentifier();
1546 StringRef FileName = llvm::sys::path::filename(ModuleId);
1547 bool SrcIsLibDevice =
1548 FileName.startswith("libdevice") && FileName.endswith(".10.bc");
1549 bool SrcHasLibDeviceDL =
1550 (SrcM->getDataLayoutStr().empty() ||
1551 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
1552 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
1553 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
1554 // all NVPTX variants.
1555 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA &&
1556 SrcTriple.getOSName() == "gpulibs") ||
1557 (SrcTriple.getVendorName() == "unknown" &&
1558 SrcTriple.getOSName() == "unknown");
1559 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple);
1560 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL);
1561 }
1562
1563 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) {
1564 emitWarning("Linking two modules of different data layouts: '" +
1565 SrcM->getModuleIdentifier() + "' is '" +
1566 SrcM->getDataLayoutStr() + "' whereas '" +
1567 DstM.getModuleIdentifier() + "' is '" +
1568 DstM.getDataLayoutStr() + "'\n");
1569 }
1570
1571 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() &&
1572 !SrcTriple.isCompatibleWith(DstTriple))
1573 emitWarning("Linking two modules of different target triples: '" +
1574 SrcM->getModuleIdentifier() + "' is '" +
1575 SrcM->getTargetTriple() + "' whereas '" +
1576 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1577 "'\n");
1578
1579 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1580
1581 // Loop over all of the linked values to compute type mappings.
1582 computeTypeMapping();
1583
1584 std::reverse(Worklist.begin(), Worklist.end());
1585 while (!Worklist.empty()) {
1586 GlobalValue *GV = Worklist.back();
1587 Worklist.pop_back();
1588
1589 // Already mapped.
1590 if (ValueMap.find(GV) != ValueMap.end() ||
1591 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1592 continue;
1593
1594 assert(!GV->isDeclaration());
1595 Mapper.mapValue(*GV);
1596 if (FoundError)
1597 return std::move(*FoundError);
1598 flushRAUWWorklist();
1599 }
1600
1601 // Note that we are done linking global value bodies. This prevents
1602 // metadata linking from creating new references.
1603 DoneLinkingBodies = true;
1604 Mapper.addFlags(RF_NullMapMissingGlobalValues);
1605
1606 // Remap all of the named MDNodes in Src into the DstM module. We do this
1607 // after linking GlobalValues so that MDNodes that reference GlobalValues
1608 // are properly remapped.
1609 linkNamedMDNodes();
1610
1611 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1612 // Append the module inline asm string.
1613 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
1614 SrcTriple));
1615 } else if (IsPerformingImport) {
1616 // Import any symver directives for symbols in DstM.
1617 ModuleSymbolTable::CollectAsmSymvers(*SrcM,
1618 [&](StringRef Name, StringRef Alias) {
1619 if (DstM.getNamedValue(Name)) {
1620 SmallString<256> S(".symver ");
1621 S += Name;
1622 S += ", ";
1623 S += Alias;
1624 DstM.appendModuleInlineAsm(S);
1625 }
1626 });
1627 }
1628
1629 // Reorder the globals just added to the destination module to match their
1630 // original order in the source module.
1631 Module::GlobalListType &Globals = DstM.getGlobalList();
1632 for (GlobalVariable &GV : SrcM->globals()) {
1633 if (GV.hasAppendingLinkage())
1634 continue;
1635 Value *NewValue = Mapper.mapValue(GV);
1636 if (NewValue) {
1637 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts());
1638 if (NewGV)
1639 Globals.splice(Globals.end(), Globals, NewGV->getIterator());
1640 }
1641 }
1642
1643 // Merge the module flags into the DstM module.
1644 return linkModuleFlagsMetadata();
1645 }
1646
KeyTy(ArrayRef<Type * > E,bool P)1647 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1648 : ETypes(E), IsPacked(P) {}
1649
KeyTy(const StructType * ST)1650 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1651 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1652
operator ==(const KeyTy & That) const1653 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1654 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1655 }
1656
operator !=(const KeyTy & That) const1657 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1658 return !this->operator==(That);
1659 }
1660
getEmptyKey()1661 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1662 return DenseMapInfo<StructType *>::getEmptyKey();
1663 }
1664
getTombstoneKey()1665 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1666 return DenseMapInfo<StructType *>::getTombstoneKey();
1667 }
1668
getHashValue(const KeyTy & Key)1669 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1670 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1671 Key.IsPacked);
1672 }
1673
getHashValue(const StructType * ST)1674 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1675 return getHashValue(KeyTy(ST));
1676 }
1677
isEqual(const KeyTy & LHS,const StructType * RHS)1678 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1679 const StructType *RHS) {
1680 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1681 return false;
1682 return LHS == KeyTy(RHS);
1683 }
1684
isEqual(const StructType * LHS,const StructType * RHS)1685 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1686 const StructType *RHS) {
1687 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1688 return LHS == RHS;
1689 return KeyTy(LHS) == KeyTy(RHS);
1690 }
1691
addNonOpaque(StructType * Ty)1692 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1693 assert(!Ty->isOpaque());
1694 NonOpaqueStructTypes.insert(Ty);
1695 }
1696
switchToNonOpaque(StructType * Ty)1697 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1698 assert(!Ty->isOpaque());
1699 NonOpaqueStructTypes.insert(Ty);
1700 bool Removed = OpaqueStructTypes.erase(Ty);
1701 (void)Removed;
1702 assert(Removed);
1703 }
1704
addOpaque(StructType * Ty)1705 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1706 assert(Ty->isOpaque());
1707 OpaqueStructTypes.insert(Ty);
1708 }
1709
1710 StructType *
findNonOpaque(ArrayRef<Type * > ETypes,bool IsPacked)1711 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1712 bool IsPacked) {
1713 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1714 auto I = NonOpaqueStructTypes.find_as(Key);
1715 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1716 }
1717
hasType(StructType * Ty)1718 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1719 if (Ty->isOpaque())
1720 return OpaqueStructTypes.count(Ty);
1721 auto I = NonOpaqueStructTypes.find(Ty);
1722 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1723 }
1724
IRMover(Module & M)1725 IRMover::IRMover(Module &M) : Composite(M) {
1726 TypeFinder StructTypes;
1727 StructTypes.run(M, /* OnlyNamed */ false);
1728 for (StructType *Ty : StructTypes) {
1729 if (Ty->isOpaque())
1730 IdentifiedStructTypes.addOpaque(Ty);
1731 else
1732 IdentifiedStructTypes.addNonOpaque(Ty);
1733 }
1734 // Self-map metadatas in the destination module. This is needed when
1735 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1736 // destination module may be reached from the source module.
1737 for (auto *MD : StructTypes.getVisitedMetadata()) {
1738 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1739 }
1740 }
1741
move(std::unique_ptr<Module> Src,ArrayRef<GlobalValue * > ValuesToLink,LazyCallback AddLazyFor,bool IsPerformingImport)1742 Error IRMover::move(std::unique_ptr<Module> Src,
1743 ArrayRef<GlobalValue *> ValuesToLink,
1744 LazyCallback AddLazyFor, bool IsPerformingImport) {
1745 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1746 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1747 IsPerformingImport);
1748 Error E = TheIRLinker.run();
1749 Composite.dropTriviallyDeadConstantArrays();
1750 return E;
1751 }
1752