xref: /llvm-project-15.0.7/llvm/lib/IR/Value.cpp (revision f489e2bf)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/DerivedUser.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/Statepoint.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace llvm;
41 
42 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
43     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
44     cl::desc("Maximum size for the name of non-global values."));
45 
46 //===----------------------------------------------------------------------===//
47 //                                Value Class
48 //===----------------------------------------------------------------------===//
49 static inline Type *checkType(Type *Ty) {
50   assert(Ty && "Value defined with a null type: Error!");
51   return Ty;
52 }
53 
54 Value::Value(Type *ty, unsigned scid)
55     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
56       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
57       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
58   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
59   // FIXME: Why isn't this in the subclass gunk??
60   // Note, we cannot call isa<CallInst> before the CallInst has been
61   // constructed.
62   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
63     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
64            "invalid CallInst type!");
65   else if (SubclassID != BasicBlockVal &&
66            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
67     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
68            "Cannot create non-first-class values except for constants!");
69   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
70                 "Value too big");
71 }
72 
73 Value::~Value() {
74   // Notify all ValueHandles (if present) that this value is going away.
75   if (HasValueHandle)
76     ValueHandleBase::ValueIsDeleted(this);
77   if (isUsedByMetadata())
78     ValueAsMetadata::handleDeletion(this);
79 
80 #ifndef NDEBUG      // Only in -g mode...
81   // Check to make sure that there are no uses of this value that are still
82   // around when the value is destroyed.  If there are, then we have a dangling
83   // reference and something is wrong.  This code is here to print out where
84   // the value is still being referenced.
85   //
86   if (!use_empty()) {
87     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
88     for (auto *U : users())
89       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
90   }
91 #endif
92   assert(use_empty() && "Uses remain when a value is destroyed!");
93 
94   // If this value is named, destroy the name.  This should not be in a symtab
95   // at this point.
96   destroyValueName();
97 }
98 
99 void Value::deleteValue() {
100   switch (getValueID()) {
101 #define HANDLE_VALUE(Name)                                                     \
102   case Value::Name##Val:                                                       \
103     delete static_cast<Name *>(this);                                          \
104     break;
105 #define HANDLE_MEMORY_VALUE(Name)                                              \
106   case Value::Name##Val:                                                       \
107     static_cast<DerivedUser *>(this)->DeleteValue(                             \
108         static_cast<DerivedUser *>(this));                                     \
109     break;
110 #define HANDLE_INSTRUCTION(Name)  /* nothing */
111 #include "llvm/IR/Value.def"
112 
113 #define HANDLE_INST(N, OPC, CLASS)                                             \
114   case Value::InstructionVal + Instruction::OPC:                               \
115     delete static_cast<CLASS *>(this);                                         \
116     break;
117 #define HANDLE_USER_INST(N, OPC, CLASS)
118 #include "llvm/IR/Instruction.def"
119 
120   default:
121     llvm_unreachable("attempting to delete unknown value kind");
122   }
123 }
124 
125 void Value::destroyValueName() {
126   ValueName *Name = getValueName();
127   if (Name)
128     Name->Destroy();
129   setValueName(nullptr);
130 }
131 
132 bool Value::hasNUses(unsigned N) const {
133   const_use_iterator UI = use_begin(), E = use_end();
134 
135   for (; N; --N, ++UI)
136     if (UI == E) return false;  // Too few.
137   return UI == E;
138 }
139 
140 bool Value::hasNUsesOrMore(unsigned N) const {
141   const_use_iterator UI = use_begin(), E = use_end();
142 
143   for (; N; --N, ++UI)
144     if (UI == E) return false;  // Too few.
145 
146   return true;
147 }
148 
149 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
150   // This can be computed either by scanning the instructions in BB, or by
151   // scanning the use list of this Value. Both lists can be very long, but
152   // usually one is quite short.
153   //
154   // Scan both lists simultaneously until one is exhausted. This limits the
155   // search to the shorter list.
156   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
157   const_user_iterator UI = user_begin(), UE = user_end();
158   for (; BI != BE && UI != UE; ++BI, ++UI) {
159     // Scan basic block: Check if this Value is used by the instruction at BI.
160     if (is_contained(BI->operands(), this))
161       return true;
162     // Scan use list: Check if the use at UI is in BB.
163     const auto *User = dyn_cast<Instruction>(*UI);
164     if (User && User->getParent() == BB)
165       return true;
166   }
167   return false;
168 }
169 
170 unsigned Value::getNumUses() const {
171   return (unsigned)std::distance(use_begin(), use_end());
172 }
173 
174 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
175   ST = nullptr;
176   if (Instruction *I = dyn_cast<Instruction>(V)) {
177     if (BasicBlock *P = I->getParent())
178       if (Function *PP = P->getParent())
179         ST = PP->getValueSymbolTable();
180   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
181     if (Function *P = BB->getParent())
182       ST = P->getValueSymbolTable();
183   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
184     if (Module *P = GV->getParent())
185       ST = &P->getValueSymbolTable();
186   } else if (Argument *A = dyn_cast<Argument>(V)) {
187     if (Function *P = A->getParent())
188       ST = P->getValueSymbolTable();
189   } else {
190     assert(isa<Constant>(V) && "Unknown value type!");
191     return true;  // no name is setable for this.
192   }
193   return false;
194 }
195 
196 ValueName *Value::getValueName() const {
197   if (!HasName) return nullptr;
198 
199   LLVMContext &Ctx = getContext();
200   auto I = Ctx.pImpl->ValueNames.find(this);
201   assert(I != Ctx.pImpl->ValueNames.end() &&
202          "No name entry found!");
203 
204   return I->second;
205 }
206 
207 void Value::setValueName(ValueName *VN) {
208   LLVMContext &Ctx = getContext();
209 
210   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
211          "HasName bit out of sync!");
212 
213   if (!VN) {
214     if (HasName)
215       Ctx.pImpl->ValueNames.erase(this);
216     HasName = false;
217     return;
218   }
219 
220   HasName = true;
221   Ctx.pImpl->ValueNames[this] = VN;
222 }
223 
224 StringRef Value::getName() const {
225   // Make sure the empty string is still a C string. For historical reasons,
226   // some clients want to call .data() on the result and expect it to be null
227   // terminated.
228   if (!hasName())
229     return StringRef("", 0);
230   return getValueName()->getKey();
231 }
232 
233 void Value::setNameImpl(const Twine &NewName) {
234   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
235   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
236     return;
237 
238   // Fast path for common IRBuilder case of setName("") when there is no name.
239   if (NewName.isTriviallyEmpty() && !hasName())
240     return;
241 
242   SmallString<256> NameData;
243   StringRef NameRef = NewName.toStringRef(NameData);
244   assert(NameRef.find_first_of(0) == StringRef::npos &&
245          "Null bytes are not allowed in names");
246 
247   // Name isn't changing?
248   if (getName() == NameRef)
249     return;
250 
251   // Cap the size of non-GlobalValue names.
252   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
253     NameRef =
254         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
255 
256   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
257 
258   // Get the symbol table to update for this object.
259   ValueSymbolTable *ST;
260   if (getSymTab(this, ST))
261     return;  // Cannot set a name on this value (e.g. constant).
262 
263   if (!ST) { // No symbol table to update?  Just do the change.
264     if (NameRef.empty()) {
265       // Free the name for this value.
266       destroyValueName();
267       return;
268     }
269 
270     // NOTE: Could optimize for the case the name is shrinking to not deallocate
271     // then reallocated.
272     destroyValueName();
273 
274     // Create the new name.
275     setValueName(ValueName::Create(NameRef));
276     getValueName()->setValue(this);
277     return;
278   }
279 
280   // NOTE: Could optimize for the case the name is shrinking to not deallocate
281   // then reallocated.
282   if (hasName()) {
283     // Remove old name.
284     ST->removeValueName(getValueName());
285     destroyValueName();
286 
287     if (NameRef.empty())
288       return;
289   }
290 
291   // Name is changing to something new.
292   setValueName(ST->createValueName(NameRef, this));
293 }
294 
295 void Value::setName(const Twine &NewName) {
296   setNameImpl(NewName);
297   if (Function *F = dyn_cast<Function>(this))
298     F->recalculateIntrinsicID();
299 }
300 
301 void Value::takeName(Value *V) {
302   ValueSymbolTable *ST = nullptr;
303   // If this value has a name, drop it.
304   if (hasName()) {
305     // Get the symtab this is in.
306     if (getSymTab(this, ST)) {
307       // We can't set a name on this value, but we need to clear V's name if
308       // it has one.
309       if (V->hasName()) V->setName("");
310       return;  // Cannot set a name on this value (e.g. constant).
311     }
312 
313     // Remove old name.
314     if (ST)
315       ST->removeValueName(getValueName());
316     destroyValueName();
317   }
318 
319   // Now we know that this has no name.
320 
321   // If V has no name either, we're done.
322   if (!V->hasName()) return;
323 
324   // Get this's symtab if we didn't before.
325   if (!ST) {
326     if (getSymTab(this, ST)) {
327       // Clear V's name.
328       V->setName("");
329       return;  // Cannot set a name on this value (e.g. constant).
330     }
331   }
332 
333   // Get V's ST, this should always succed, because V has a name.
334   ValueSymbolTable *VST;
335   bool Failure = getSymTab(V, VST);
336   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
337 
338   // If these values are both in the same symtab, we can do this very fast.
339   // This works even if both values have no symtab yet.
340   if (ST == VST) {
341     // Take the name!
342     setValueName(V->getValueName());
343     V->setValueName(nullptr);
344     getValueName()->setValue(this);
345     return;
346   }
347 
348   // Otherwise, things are slightly more complex.  Remove V's name from VST and
349   // then reinsert it into ST.
350 
351   if (VST)
352     VST->removeValueName(V->getValueName());
353   setValueName(V->getValueName());
354   V->setValueName(nullptr);
355   getValueName()->setValue(this);
356 
357   if (ST)
358     ST->reinsertValue(this);
359 }
360 
361 void Value::assertModuleIsMaterializedImpl() const {
362 #ifndef NDEBUG
363   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
364   if (!GV)
365     return;
366   const Module *M = GV->getParent();
367   if (!M)
368     return;
369   assert(M->isMaterialized());
370 #endif
371 }
372 
373 #ifndef NDEBUG
374 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
375                      Constant *C) {
376   if (!Cache.insert(Expr).second)
377     return false;
378 
379   for (auto &O : Expr->operands()) {
380     if (O == C)
381       return true;
382     auto *CE = dyn_cast<ConstantExpr>(O);
383     if (!CE)
384       continue;
385     if (contains(Cache, CE, C))
386       return true;
387   }
388   return false;
389 }
390 
391 static bool contains(Value *Expr, Value *V) {
392   if (Expr == V)
393     return true;
394 
395   auto *C = dyn_cast<Constant>(V);
396   if (!C)
397     return false;
398 
399   auto *CE = dyn_cast<ConstantExpr>(Expr);
400   if (!CE)
401     return false;
402 
403   SmallPtrSet<ConstantExpr *, 4> Cache;
404   return contains(Cache, CE, C);
405 }
406 #endif // NDEBUG
407 
408 void Value::doRAUW(Value *New, bool NoMetadata) {
409   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
410   assert(!contains(New, this) &&
411          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
412   assert(New->getType() == getType() &&
413          "replaceAllUses of value with new value of different type!");
414 
415   // Notify all ValueHandles (if present) that this value is going away.
416   if (HasValueHandle)
417     ValueHandleBase::ValueIsRAUWd(this, New);
418   if (!NoMetadata && isUsedByMetadata())
419     ValueAsMetadata::handleRAUW(this, New);
420 
421   while (!materialized_use_empty()) {
422     Use &U = *UseList;
423     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
424     // constant because they are uniqued.
425     if (auto *C = dyn_cast<Constant>(U.getUser())) {
426       if (!isa<GlobalValue>(C)) {
427         C->handleOperandChange(this, New);
428         continue;
429       }
430     }
431 
432     U.set(New);
433   }
434 
435   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
436     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
437 }
438 
439 void Value::replaceAllUsesWith(Value *New) {
440   doRAUW(New, false /* NoMetadata */);
441 }
442 
443 void Value::replaceNonMetadataUsesWith(Value *New) {
444   doRAUW(New, true /* NoMetadata */);
445 }
446 
447 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
448 // This routine leaves uses within BB.
449 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
450   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
451   assert(!contains(New, this) &&
452          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
453   assert(New->getType() == getType() &&
454          "replaceUses of value with new value of different type!");
455   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
456 
457   use_iterator UI = use_begin(), E = use_end();
458   for (; UI != E;) {
459     Use &U = *UI;
460     ++UI;
461     auto *Usr = dyn_cast<Instruction>(U.getUser());
462     if (Usr && Usr->getParent() == BB)
463       continue;
464     U.set(New);
465   }
466 }
467 
468 void Value::replaceUsesExceptBlockAddr(Value *New) {
469   SmallSetVector<Constant *, 4> Constants;
470   use_iterator UI = use_begin(), E = use_end();
471   for (; UI != E;) {
472     Use &U = *UI;
473     ++UI;
474 
475     if (isa<BlockAddress>(U.getUser()))
476       continue;
477 
478     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
479     // constant because they are uniqued.
480     if (auto *C = dyn_cast<Constant>(U.getUser())) {
481       if (!isa<GlobalValue>(C)) {
482         // Save unique users to avoid processing operand replacement
483         // more than once.
484         Constants.insert(C);
485         continue;
486       }
487     }
488 
489     U.set(New);
490   }
491 
492   // Process operand replacement of saved constants.
493   for (auto *C : Constants)
494     C->handleOperandChange(this, New);
495 }
496 
497 namespace {
498 // Various metrics for how much to strip off of pointers.
499 enum PointerStripKind {
500   PSK_ZeroIndices,
501   PSK_ZeroIndicesAndAliases,
502   PSK_ZeroIndicesAndAliasesAndInvariantGroups,
503   PSK_InBoundsConstantIndices,
504   PSK_InBounds
505 };
506 
507 template <PointerStripKind StripKind>
508 static const Value *stripPointerCastsAndOffsets(const Value *V) {
509   if (!V->getType()->isPointerTy())
510     return V;
511 
512   // Even though we don't look through PHI nodes, we could be called on an
513   // instruction in an unreachable block, which may be on a cycle.
514   SmallPtrSet<const Value *, 4> Visited;
515 
516   Visited.insert(V);
517   do {
518     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
519       switch (StripKind) {
520       case PSK_ZeroIndicesAndAliases:
521       case PSK_ZeroIndicesAndAliasesAndInvariantGroups:
522       case PSK_ZeroIndices:
523         if (!GEP->hasAllZeroIndices())
524           return V;
525         break;
526       case PSK_InBoundsConstantIndices:
527         if (!GEP->hasAllConstantIndices())
528           return V;
529         LLVM_FALLTHROUGH;
530       case PSK_InBounds:
531         if (!GEP->isInBounds())
532           return V;
533         break;
534       }
535       V = GEP->getPointerOperand();
536     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
537                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
538       V = cast<Operator>(V)->getOperand(0);
539     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
540       if (StripKind == PSK_ZeroIndices || GA->isInterposable())
541         return V;
542       V = GA->getAliasee();
543     } else {
544       if (auto CS = ImmutableCallSite(V)) {
545         if (const Value *RV = CS.getReturnedArgOperand()) {
546           V = RV;
547           continue;
548         }
549         // The result of launder.invariant.group must alias it's argument,
550         // but it can't be marked with returned attribute, that's why it needs
551         // special case.
552         if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups &&
553             CS.getIntrinsicID() == Intrinsic::launder_invariant_group) {
554           V = CS.getArgOperand(0);
555           continue;
556         }
557       }
558       return V;
559     }
560     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
561   } while (Visited.insert(V).second);
562 
563   return V;
564 }
565 } // end anonymous namespace
566 
567 const Value *Value::stripPointerCasts() const {
568   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
569 }
570 
571 const Value *Value::stripPointerCastsNoFollowAliases() const {
572   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
573 }
574 
575 const Value *Value::stripInBoundsConstantOffsets() const {
576   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
577 }
578 
579 const Value *Value::stripPointerCastsAndInvariantGroups() const {
580   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>(
581       this);
582 }
583 
584 const Value *
585 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
586                                                  APInt &Offset) const {
587   if (!getType()->isPointerTy())
588     return this;
589 
590   assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>(
591                                      getType())->getAddressSpace()) &&
592          "The offset bit width does not match the DL specification.");
593 
594   // Even though we don't look through PHI nodes, we could be called on an
595   // instruction in an unreachable block, which may be on a cycle.
596   SmallPtrSet<const Value *, 4> Visited;
597   Visited.insert(this);
598   const Value *V = this;
599   do {
600     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
601       if (!GEP->isInBounds())
602         return V;
603       APInt GEPOffset(Offset);
604       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
605         return V;
606       Offset = GEPOffset;
607       V = GEP->getPointerOperand();
608     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
609       V = cast<Operator>(V)->getOperand(0);
610     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
611       V = GA->getAliasee();
612     } else {
613       if (auto CS = ImmutableCallSite(V))
614         if (const Value *RV = CS.getReturnedArgOperand()) {
615           V = RV;
616           continue;
617         }
618 
619       return V;
620     }
621     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
622   } while (Visited.insert(V).second);
623 
624   return V;
625 }
626 
627 const Value *Value::stripInBoundsOffsets() const {
628   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
629 }
630 
631 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
632                                                bool &CanBeNull) const {
633   assert(getType()->isPointerTy() && "must be pointer");
634 
635   uint64_t DerefBytes = 0;
636   CanBeNull = false;
637   if (const Argument *A = dyn_cast<Argument>(this)) {
638     DerefBytes = A->getDereferenceableBytes();
639     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
640       Type *PT = cast<PointerType>(A->getType())->getElementType();
641       if (PT->isSized())
642         DerefBytes = DL.getTypeStoreSize(PT);
643     }
644     if (DerefBytes == 0) {
645       DerefBytes = A->getDereferenceableOrNullBytes();
646       CanBeNull = true;
647     }
648   } else if (auto CS = ImmutableCallSite(this)) {
649     DerefBytes = CS.getDereferenceableBytes(AttributeList::ReturnIndex);
650     if (DerefBytes == 0) {
651       DerefBytes = CS.getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
652       CanBeNull = true;
653     }
654   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
655     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
656       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
657       DerefBytes = CI->getLimitedValue();
658     }
659     if (DerefBytes == 0) {
660       if (MDNode *MD =
661               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
662         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
663         DerefBytes = CI->getLimitedValue();
664       }
665       CanBeNull = true;
666     }
667   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
668     if (!AI->isArrayAllocation()) {
669       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
670       CanBeNull = false;
671     }
672   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
673     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
674       // TODO: Don't outright reject hasExternalWeakLinkage but set the
675       // CanBeNull flag.
676       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
677       CanBeNull = false;
678     }
679   }
680   return DerefBytes;
681 }
682 
683 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
684   assert(getType()->isPointerTy() && "must be pointer");
685 
686   unsigned Align = 0;
687   if (auto *GO = dyn_cast<GlobalObject>(this)) {
688     // Don't make any assumptions about function pointer alignment. Some
689     // targets use the LSBs to store additional information.
690     if (isa<Function>(GO))
691       return 0;
692     Align = GO->getAlignment();
693     if (Align == 0) {
694       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
695         Type *ObjectType = GVar->getValueType();
696         if (ObjectType->isSized()) {
697           // If the object is defined in the current Module, we'll be giving
698           // it the preferred alignment. Otherwise, we have to assume that it
699           // may only have the minimum ABI alignment.
700           if (GVar->isStrongDefinitionForLinker())
701             Align = DL.getPreferredAlignment(GVar);
702           else
703             Align = DL.getABITypeAlignment(ObjectType);
704         }
705       }
706     }
707   } else if (const Argument *A = dyn_cast<Argument>(this)) {
708     Align = A->getParamAlignment();
709 
710     if (!Align && A->hasStructRetAttr()) {
711       // An sret parameter has at least the ABI alignment of the return type.
712       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
713       if (EltTy->isSized())
714         Align = DL.getABITypeAlignment(EltTy);
715     }
716   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
717     Align = AI->getAlignment();
718     if (Align == 0) {
719       Type *AllocatedType = AI->getAllocatedType();
720       if (AllocatedType->isSized())
721         Align = DL.getPrefTypeAlignment(AllocatedType);
722     }
723   } else if (auto CS = ImmutableCallSite(this))
724     Align = CS.getAttributes().getRetAlignment();
725   else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
726     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
727       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
728       Align = CI->getLimitedValue();
729     }
730 
731   return Align;
732 }
733 
734 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
735                                      const BasicBlock *PredBB) const {
736   auto *PN = dyn_cast<PHINode>(this);
737   if (PN && PN->getParent() == CurBB)
738     return PN->getIncomingValueForBlock(PredBB);
739   return this;
740 }
741 
742 LLVMContext &Value::getContext() const { return VTy->getContext(); }
743 
744 void Value::reverseUseList() {
745   if (!UseList || !UseList->Next)
746     // No need to reverse 0 or 1 uses.
747     return;
748 
749   Use *Head = UseList;
750   Use *Current = UseList->Next;
751   Head->Next = nullptr;
752   while (Current) {
753     Use *Next = Current->Next;
754     Current->Next = Head;
755     Head->setPrev(&Current->Next);
756     Head = Current;
757     Current = Next;
758   }
759   UseList = Head;
760   Head->setPrev(&UseList);
761 }
762 
763 bool Value::isSwiftError() const {
764   auto *Arg = dyn_cast<Argument>(this);
765   if (Arg)
766     return Arg->hasSwiftErrorAttr();
767   auto *Alloca = dyn_cast<AllocaInst>(this);
768   if (!Alloca)
769     return false;
770   return Alloca->isSwiftError();
771 }
772 
773 //===----------------------------------------------------------------------===//
774 //                             ValueHandleBase Class
775 //===----------------------------------------------------------------------===//
776 
777 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
778   assert(List && "Handle list is null?");
779 
780   // Splice ourselves into the list.
781   Next = *List;
782   *List = this;
783   setPrevPtr(List);
784   if (Next) {
785     Next->setPrevPtr(&Next);
786     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
787   }
788 }
789 
790 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
791   assert(List && "Must insert after existing node");
792 
793   Next = List->Next;
794   setPrevPtr(&List->Next);
795   List->Next = this;
796   if (Next)
797     Next->setPrevPtr(&Next);
798 }
799 
800 void ValueHandleBase::AddToUseList() {
801   assert(getValPtr() && "Null pointer doesn't have a use list!");
802 
803   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
804 
805   if (getValPtr()->HasValueHandle) {
806     // If this value already has a ValueHandle, then it must be in the
807     // ValueHandles map already.
808     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
809     assert(Entry && "Value doesn't have any handles?");
810     AddToExistingUseList(&Entry);
811     return;
812   }
813 
814   // Ok, it doesn't have any handles yet, so we must insert it into the
815   // DenseMap.  However, doing this insertion could cause the DenseMap to
816   // reallocate itself, which would invalidate all of the PrevP pointers that
817   // point into the old table.  Handle this by checking for reallocation and
818   // updating the stale pointers only if needed.
819   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
820   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
821 
822   ValueHandleBase *&Entry = Handles[getValPtr()];
823   assert(!Entry && "Value really did already have handles?");
824   AddToExistingUseList(&Entry);
825   getValPtr()->HasValueHandle = true;
826 
827   // If reallocation didn't happen or if this was the first insertion, don't
828   // walk the table.
829   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
830       Handles.size() == 1) {
831     return;
832   }
833 
834   // Okay, reallocation did happen.  Fix the Prev Pointers.
835   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
836        E = Handles.end(); I != E; ++I) {
837     assert(I->second && I->first == I->second->getValPtr() &&
838            "List invariant broken!");
839     I->second->setPrevPtr(&I->second);
840   }
841 }
842 
843 void ValueHandleBase::RemoveFromUseList() {
844   assert(getValPtr() && getValPtr()->HasValueHandle &&
845          "Pointer doesn't have a use list!");
846 
847   // Unlink this from its use list.
848   ValueHandleBase **PrevPtr = getPrevPtr();
849   assert(*PrevPtr == this && "List invariant broken");
850 
851   *PrevPtr = Next;
852   if (Next) {
853     assert(Next->getPrevPtr() == &Next && "List invariant broken");
854     Next->setPrevPtr(PrevPtr);
855     return;
856   }
857 
858   // If the Next pointer was null, then it is possible that this was the last
859   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
860   // map.
861   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
862   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
863   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
864     Handles.erase(getValPtr());
865     getValPtr()->HasValueHandle = false;
866   }
867 }
868 
869 void ValueHandleBase::ValueIsDeleted(Value *V) {
870   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
871 
872   // Get the linked list base, which is guaranteed to exist since the
873   // HasValueHandle flag is set.
874   LLVMContextImpl *pImpl = V->getContext().pImpl;
875   ValueHandleBase *Entry = pImpl->ValueHandles[V];
876   assert(Entry && "Value bit set but no entries exist");
877 
878   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
879   // and remove themselves from the list without breaking our iteration.  This
880   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
881   // Note that we deliberately do not the support the case when dropping a value
882   // handle results in a new value handle being permanently added to the list
883   // (as might occur in theory for CallbackVH's): the new value handle will not
884   // be processed and the checking code will mete out righteous punishment if
885   // the handle is still present once we have finished processing all the other
886   // value handles (it is fine to momentarily add then remove a value handle).
887   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
888     Iterator.RemoveFromUseList();
889     Iterator.AddToExistingUseListAfter(Entry);
890     assert(Entry->Next == &Iterator && "Loop invariant broken.");
891 
892     switch (Entry->getKind()) {
893     case Assert:
894       break;
895     case Weak:
896     case WeakTracking:
897       // WeakTracking and Weak just go to null, which unlinks them
898       // from the list.
899       Entry->operator=(nullptr);
900       break;
901     case Callback:
902       // Forward to the subclass's implementation.
903       static_cast<CallbackVH*>(Entry)->deleted();
904       break;
905     }
906   }
907 
908   // All callbacks, weak references, and assertingVHs should be dropped by now.
909   if (V->HasValueHandle) {
910 #ifndef NDEBUG      // Only in +Asserts mode...
911     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
912            << "\n";
913     if (pImpl->ValueHandles[V]->getKind() == Assert)
914       llvm_unreachable("An asserting value handle still pointed to this"
915                        " value!");
916 
917 #endif
918     llvm_unreachable("All references to V were not removed?");
919   }
920 }
921 
922 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
923   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
924   assert(Old != New && "Changing value into itself!");
925   assert(Old->getType() == New->getType() &&
926          "replaceAllUses of value with new value of different type!");
927 
928   // Get the linked list base, which is guaranteed to exist since the
929   // HasValueHandle flag is set.
930   LLVMContextImpl *pImpl = Old->getContext().pImpl;
931   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
932 
933   assert(Entry && "Value bit set but no entries exist");
934 
935   // We use a local ValueHandleBase as an iterator so that
936   // ValueHandles can add and remove themselves from the list without
937   // breaking our iteration.  This is not really an AssertingVH; we
938   // just have to give ValueHandleBase some kind.
939   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
940     Iterator.RemoveFromUseList();
941     Iterator.AddToExistingUseListAfter(Entry);
942     assert(Entry->Next == &Iterator && "Loop invariant broken.");
943 
944     switch (Entry->getKind()) {
945     case Assert:
946     case Weak:
947       // Asserting and Weak handles do not follow RAUW implicitly.
948       break;
949     case WeakTracking:
950       // Weak goes to the new value, which will unlink it from Old's list.
951       Entry->operator=(New);
952       break;
953     case Callback:
954       // Forward to the subclass's implementation.
955       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
956       break;
957     }
958   }
959 
960 #ifndef NDEBUG
961   // If any new weak value handles were added while processing the
962   // list, then complain about it now.
963   if (Old->HasValueHandle)
964     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
965       switch (Entry->getKind()) {
966       case WeakTracking:
967         dbgs() << "After RAUW from " << *Old->getType() << " %"
968                << Old->getName() << " to " << *New->getType() << " %"
969                << New->getName() << "\n";
970         llvm_unreachable(
971             "A weak tracking value handle still pointed to the  old value!\n");
972       default:
973         break;
974       }
975 #endif
976 }
977 
978 // Pin the vtable to this file.
979 void CallbackVH::anchor() {}
980