1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Constant.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34
35 using namespace llvm;
36
37 static cl::opt<unsigned> UseDerefAtPointSemantics(
38 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false),
39 cl::desc("Deref attributes and metadata infer facts at definition only"));
40
41 //===----------------------------------------------------------------------===//
42 // Value Class
43 //===----------------------------------------------------------------------===//
checkType(Type * Ty)44 static inline Type *checkType(Type *Ty) {
45 assert(Ty && "Value defined with a null type: Error!");
46 return Ty;
47 }
48
Value(Type * ty,unsigned scid)49 Value::Value(Type *ty, unsigned scid)
50 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
51 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0),
52 IsUsedByMD(false), HasName(false), HasMetadata(false) {
53 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
54 // FIXME: Why isn't this in the subclass gunk??
55 // Note, we cannot call isa<CallInst> before the CallInst has been
56 // constructed.
57 unsigned OpCode = 0;
58 if (SubclassID >= InstructionVal)
59 OpCode = SubclassID - InstructionVal;
60 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke ||
61 OpCode == Instruction::CallBr)
62 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
63 "invalid CallBase type!");
64 else if (SubclassID != BasicBlockVal &&
65 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
66 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
67 "Cannot create non-first-class values except for constants!");
68 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
69 "Value too big");
70 }
71
~Value()72 Value::~Value() {
73 // Notify all ValueHandles (if present) that this value is going away.
74 if (HasValueHandle)
75 ValueHandleBase::ValueIsDeleted(this);
76 if (isUsedByMetadata())
77 ValueAsMetadata::handleDeletion(this);
78
79 // Remove associated metadata from context.
80 if (HasMetadata)
81 clearMetadata();
82
83 #ifndef NDEBUG // Only in -g mode...
84 // Check to make sure that there are no uses of this value that are still
85 // around when the value is destroyed. If there are, then we have a dangling
86 // reference and something is wrong. This code is here to print out where
87 // the value is still being referenced.
88 //
89 // Note that use_empty() cannot be called here, as it eventually downcasts
90 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
91 // been destructed, so accessing it is UB.
92 //
93 if (!materialized_use_empty()) {
94 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
95 for (auto *U : users())
96 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
97 }
98 #endif
99 assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
100
101 // If this value is named, destroy the name. This should not be in a symtab
102 // at this point.
103 destroyValueName();
104 }
105
deleteValue()106 void Value::deleteValue() {
107 switch (getValueID()) {
108 #define HANDLE_VALUE(Name) \
109 case Value::Name##Val: \
110 delete static_cast<Name *>(this); \
111 break;
112 #define HANDLE_MEMORY_VALUE(Name) \
113 case Value::Name##Val: \
114 static_cast<DerivedUser *>(this)->DeleteValue( \
115 static_cast<DerivedUser *>(this)); \
116 break;
117 #define HANDLE_CONSTANT(Name) \
118 case Value::Name##Val: \
119 llvm_unreachable("constants should be destroyed with destroyConstant"); \
120 break;
121 #define HANDLE_INSTRUCTION(Name) /* nothing */
122 #include "llvm/IR/Value.def"
123
124 #define HANDLE_INST(N, OPC, CLASS) \
125 case Value::InstructionVal + Instruction::OPC: \
126 delete static_cast<CLASS *>(this); \
127 break;
128 #define HANDLE_USER_INST(N, OPC, CLASS)
129 #include "llvm/IR/Instruction.def"
130
131 default:
132 llvm_unreachable("attempting to delete unknown value kind");
133 }
134 }
135
destroyValueName()136 void Value::destroyValueName() {
137 ValueName *Name = getValueName();
138 if (Name) {
139 MallocAllocator Allocator;
140 Name->Destroy(Allocator);
141 }
142 setValueName(nullptr);
143 }
144
hasNUses(unsigned N) const145 bool Value::hasNUses(unsigned N) const {
146 return hasNItems(use_begin(), use_end(), N);
147 }
148
hasNUsesOrMore(unsigned N) const149 bool Value::hasNUsesOrMore(unsigned N) const {
150 return hasNItemsOrMore(use_begin(), use_end(), N);
151 }
152
hasOneUser() const153 bool Value::hasOneUser() const {
154 if (use_empty())
155 return false;
156 if (hasOneUse())
157 return true;
158 return std::equal(++user_begin(), user_end(), user_begin());
159 }
160
isUnDroppableUser(const User * U)161 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
162
getSingleUndroppableUse()163 Use *Value::getSingleUndroppableUse() {
164 Use *Result = nullptr;
165 for (Use &U : uses()) {
166 if (!U.getUser()->isDroppable()) {
167 if (Result)
168 return nullptr;
169 Result = &U;
170 }
171 }
172 return Result;
173 }
174
getUniqueUndroppableUser()175 User *Value::getUniqueUndroppableUser() {
176 User *Result = nullptr;
177 for (auto *U : users()) {
178 if (!U->isDroppable()) {
179 if (Result && Result != U)
180 return nullptr;
181 Result = U;
182 }
183 }
184 return Result;
185 }
186
hasNUndroppableUses(unsigned int N) const187 bool Value::hasNUndroppableUses(unsigned int N) const {
188 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
189 }
190
hasNUndroppableUsesOrMore(unsigned int N) const191 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
192 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
193 }
194
dropDroppableUses(llvm::function_ref<bool (const Use *)> ShouldDrop)195 void Value::dropDroppableUses(
196 llvm::function_ref<bool(const Use *)> ShouldDrop) {
197 SmallVector<Use *, 8> ToBeEdited;
198 for (Use &U : uses())
199 if (U.getUser()->isDroppable() && ShouldDrop(&U))
200 ToBeEdited.push_back(&U);
201 for (Use *U : ToBeEdited)
202 dropDroppableUse(*U);
203 }
204
dropDroppableUsesIn(User & Usr)205 void Value::dropDroppableUsesIn(User &Usr) {
206 assert(Usr.isDroppable() && "Expected a droppable user!");
207 for (Use &UsrOp : Usr.operands()) {
208 if (UsrOp.get() == this)
209 dropDroppableUse(UsrOp);
210 }
211 }
212
dropDroppableUse(Use & U)213 void Value::dropDroppableUse(Use &U) {
214 U.removeFromList();
215 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) {
216 unsigned OpNo = U.getOperandNo();
217 if (OpNo == 0)
218 U.set(ConstantInt::getTrue(Assume->getContext()));
219 else {
220 U.set(UndefValue::get(U.get()->getType()));
221 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
222 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore");
223 }
224 return;
225 }
226
227 llvm_unreachable("unkown droppable use");
228 }
229
isUsedInBasicBlock(const BasicBlock * BB) const230 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
231 // This can be computed either by scanning the instructions in BB, or by
232 // scanning the use list of this Value. Both lists can be very long, but
233 // usually one is quite short.
234 //
235 // Scan both lists simultaneously until one is exhausted. This limits the
236 // search to the shorter list.
237 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
238 const_user_iterator UI = user_begin(), UE = user_end();
239 for (; BI != BE && UI != UE; ++BI, ++UI) {
240 // Scan basic block: Check if this Value is used by the instruction at BI.
241 if (is_contained(BI->operands(), this))
242 return true;
243 // Scan use list: Check if the use at UI is in BB.
244 const auto *User = dyn_cast<Instruction>(*UI);
245 if (User && User->getParent() == BB)
246 return true;
247 }
248 return false;
249 }
250
getNumUses() const251 unsigned Value::getNumUses() const {
252 return (unsigned)std::distance(use_begin(), use_end());
253 }
254
getSymTab(Value * V,ValueSymbolTable * & ST)255 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
256 ST = nullptr;
257 if (Instruction *I = dyn_cast<Instruction>(V)) {
258 if (BasicBlock *P = I->getParent())
259 if (Function *PP = P->getParent())
260 ST = PP->getValueSymbolTable();
261 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
262 if (Function *P = BB->getParent())
263 ST = P->getValueSymbolTable();
264 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
265 if (Module *P = GV->getParent())
266 ST = &P->getValueSymbolTable();
267 } else if (Argument *A = dyn_cast<Argument>(V)) {
268 if (Function *P = A->getParent())
269 ST = P->getValueSymbolTable();
270 } else {
271 assert(isa<Constant>(V) && "Unknown value type!");
272 return true; // no name is setable for this.
273 }
274 return false;
275 }
276
getValueName() const277 ValueName *Value::getValueName() const {
278 if (!HasName) return nullptr;
279
280 LLVMContext &Ctx = getContext();
281 auto I = Ctx.pImpl->ValueNames.find(this);
282 assert(I != Ctx.pImpl->ValueNames.end() &&
283 "No name entry found!");
284
285 return I->second;
286 }
287
setValueName(ValueName * VN)288 void Value::setValueName(ValueName *VN) {
289 LLVMContext &Ctx = getContext();
290
291 assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
292 "HasName bit out of sync!");
293
294 if (!VN) {
295 if (HasName)
296 Ctx.pImpl->ValueNames.erase(this);
297 HasName = false;
298 return;
299 }
300
301 HasName = true;
302 Ctx.pImpl->ValueNames[this] = VN;
303 }
304
getName() const305 StringRef Value::getName() const {
306 // Make sure the empty string is still a C string. For historical reasons,
307 // some clients want to call .data() on the result and expect it to be null
308 // terminated.
309 if (!hasName())
310 return StringRef("", 0);
311 return getValueName()->getKey();
312 }
313
setNameImpl(const Twine & NewName)314 void Value::setNameImpl(const Twine &NewName) {
315 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
316 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
317 return;
318
319 // Fast path for common IRBuilder case of setName("") when there is no name.
320 if (NewName.isTriviallyEmpty() && !hasName())
321 return;
322
323 SmallString<256> NameData;
324 StringRef NameRef = NewName.toStringRef(NameData);
325 assert(NameRef.find_first_of(0) == StringRef::npos &&
326 "Null bytes are not allowed in names");
327
328 // Name isn't changing?
329 if (getName() == NameRef)
330 return;
331
332 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
333
334 // Get the symbol table to update for this object.
335 ValueSymbolTable *ST;
336 if (getSymTab(this, ST))
337 return; // Cannot set a name on this value (e.g. constant).
338
339 if (!ST) { // No symbol table to update? Just do the change.
340 if (NameRef.empty()) {
341 // Free the name for this value.
342 destroyValueName();
343 return;
344 }
345
346 // NOTE: Could optimize for the case the name is shrinking to not deallocate
347 // then reallocated.
348 destroyValueName();
349
350 // Create the new name.
351 MallocAllocator Allocator;
352 setValueName(ValueName::Create(NameRef, Allocator));
353 getValueName()->setValue(this);
354 return;
355 }
356
357 // NOTE: Could optimize for the case the name is shrinking to not deallocate
358 // then reallocated.
359 if (hasName()) {
360 // Remove old name.
361 ST->removeValueName(getValueName());
362 destroyValueName();
363
364 if (NameRef.empty())
365 return;
366 }
367
368 // Name is changing to something new.
369 setValueName(ST->createValueName(NameRef, this));
370 }
371
setName(const Twine & NewName)372 void Value::setName(const Twine &NewName) {
373 setNameImpl(NewName);
374 if (Function *F = dyn_cast<Function>(this))
375 F->recalculateIntrinsicID();
376 }
377
takeName(Value * V)378 void Value::takeName(Value *V) {
379 assert(V != this && "Illegal call to this->takeName(this)!");
380 ValueSymbolTable *ST = nullptr;
381 // If this value has a name, drop it.
382 if (hasName()) {
383 // Get the symtab this is in.
384 if (getSymTab(this, ST)) {
385 // We can't set a name on this value, but we need to clear V's name if
386 // it has one.
387 if (V->hasName()) V->setName("");
388 return; // Cannot set a name on this value (e.g. constant).
389 }
390
391 // Remove old name.
392 if (ST)
393 ST->removeValueName(getValueName());
394 destroyValueName();
395 }
396
397 // Now we know that this has no name.
398
399 // If V has no name either, we're done.
400 if (!V->hasName()) return;
401
402 // Get this's symtab if we didn't before.
403 if (!ST) {
404 if (getSymTab(this, ST)) {
405 // Clear V's name.
406 V->setName("");
407 return; // Cannot set a name on this value (e.g. constant).
408 }
409 }
410
411 // Get V's ST, this should always succeed, because V has a name.
412 ValueSymbolTable *VST;
413 bool Failure = getSymTab(V, VST);
414 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
415
416 // If these values are both in the same symtab, we can do this very fast.
417 // This works even if both values have no symtab yet.
418 if (ST == VST) {
419 // Take the name!
420 setValueName(V->getValueName());
421 V->setValueName(nullptr);
422 getValueName()->setValue(this);
423 return;
424 }
425
426 // Otherwise, things are slightly more complex. Remove V's name from VST and
427 // then reinsert it into ST.
428
429 if (VST)
430 VST->removeValueName(V->getValueName());
431 setValueName(V->getValueName());
432 V->setValueName(nullptr);
433 getValueName()->setValue(this);
434
435 if (ST)
436 ST->reinsertValue(this);
437 }
438
439 #ifndef NDEBUG
getNameOrAsOperand() const440 std::string Value::getNameOrAsOperand() const {
441 if (!getName().empty())
442 return std::string(getName());
443
444 std::string BBName;
445 raw_string_ostream OS(BBName);
446 printAsOperand(OS, false);
447 return OS.str();
448 }
449 #endif
450
assertModuleIsMaterializedImpl() const451 void Value::assertModuleIsMaterializedImpl() const {
452 #ifndef NDEBUG
453 const GlobalValue *GV = dyn_cast<GlobalValue>(this);
454 if (!GV)
455 return;
456 const Module *M = GV->getParent();
457 if (!M)
458 return;
459 assert(M->isMaterialized());
460 #endif
461 }
462
463 #ifndef NDEBUG
contains(SmallPtrSetImpl<ConstantExpr * > & Cache,ConstantExpr * Expr,Constant * C)464 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
465 Constant *C) {
466 if (!Cache.insert(Expr).second)
467 return false;
468
469 for (auto &O : Expr->operands()) {
470 if (O == C)
471 return true;
472 auto *CE = dyn_cast<ConstantExpr>(O);
473 if (!CE)
474 continue;
475 if (contains(Cache, CE, C))
476 return true;
477 }
478 return false;
479 }
480
contains(Value * Expr,Value * V)481 static bool contains(Value *Expr, Value *V) {
482 if (Expr == V)
483 return true;
484
485 auto *C = dyn_cast<Constant>(V);
486 if (!C)
487 return false;
488
489 auto *CE = dyn_cast<ConstantExpr>(Expr);
490 if (!CE)
491 return false;
492
493 SmallPtrSet<ConstantExpr *, 4> Cache;
494 return contains(Cache, CE, C);
495 }
496 #endif // NDEBUG
497
doRAUW(Value * New,ReplaceMetadataUses ReplaceMetaUses)498 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
499 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
500 assert(!contains(New, this) &&
501 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
502 assert(New->getType() == getType() &&
503 "replaceAllUses of value with new value of different type!");
504
505 // Notify all ValueHandles (if present) that this value is going away.
506 if (HasValueHandle)
507 ValueHandleBase::ValueIsRAUWd(this, New);
508 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
509 ValueAsMetadata::handleRAUW(this, New);
510
511 while (!materialized_use_empty()) {
512 Use &U = *UseList;
513 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
514 // constant because they are uniqued.
515 if (auto *C = dyn_cast<Constant>(U.getUser())) {
516 if (!isa<GlobalValue>(C)) {
517 C->handleOperandChange(this, New);
518 continue;
519 }
520 }
521
522 U.set(New);
523 }
524
525 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
526 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
527 }
528
replaceAllUsesWith(Value * New)529 void Value::replaceAllUsesWith(Value *New) {
530 doRAUW(New, ReplaceMetadataUses::Yes);
531 }
532
replaceNonMetadataUsesWith(Value * New)533 void Value::replaceNonMetadataUsesWith(Value *New) {
534 doRAUW(New, ReplaceMetadataUses::No);
535 }
536
replaceUsesWithIf(Value * New,llvm::function_ref<bool (Use & U)> ShouldReplace)537 void Value::replaceUsesWithIf(Value *New,
538 llvm::function_ref<bool(Use &U)> ShouldReplace) {
539 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
540 assert(New->getType() == getType() &&
541 "replaceUses of value with new value of different type!");
542
543 SmallVector<TrackingVH<Constant>, 8> Consts;
544 SmallPtrSet<Constant *, 8> Visited;
545
546 for (Use &U : llvm::make_early_inc_range(uses())) {
547 if (!ShouldReplace(U))
548 continue;
549 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
550 // constant because they are uniqued.
551 if (auto *C = dyn_cast<Constant>(U.getUser())) {
552 if (!isa<GlobalValue>(C)) {
553 if (Visited.insert(C).second)
554 Consts.push_back(TrackingVH<Constant>(C));
555 continue;
556 }
557 }
558 U.set(New);
559 }
560
561 while (!Consts.empty()) {
562 // FIXME: handleOperandChange() updates all the uses in a given Constant,
563 // not just the one passed to ShouldReplace
564 Consts.pop_back_val()->handleOperandChange(this, New);
565 }
566 }
567
568 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
569 /// with New.
replaceDbgUsesOutsideBlock(Value * V,Value * New,BasicBlock * BB)570 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) {
571 SmallVector<DbgVariableIntrinsic *> DbgUsers;
572 findDbgUsers(DbgUsers, V);
573 for (auto *DVI : DbgUsers) {
574 if (DVI->getParent() != BB)
575 DVI->replaceVariableLocationOp(V, New);
576 }
577 }
578
579 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
580 // This routine leaves uses within BB.
replaceUsesOutsideBlock(Value * New,BasicBlock * BB)581 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
582 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
583 assert(!contains(New, this) &&
584 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
585 assert(New->getType() == getType() &&
586 "replaceUses of value with new value of different type!");
587 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
588
589 replaceDbgUsesOutsideBlock(this, New, BB);
590 replaceUsesWithIf(New, [BB](Use &U) {
591 auto *I = dyn_cast<Instruction>(U.getUser());
592 // Don't replace if it's an instruction in the BB basic block.
593 return !I || I->getParent() != BB;
594 });
595 }
596
597 namespace {
598 // Various metrics for how much to strip off of pointers.
599 enum PointerStripKind {
600 PSK_ZeroIndices,
601 PSK_ZeroIndicesAndAliases,
602 PSK_ZeroIndicesSameRepresentation,
603 PSK_ForAliasAnalysis,
604 PSK_InBoundsConstantIndices,
605 PSK_InBounds
606 };
607
NoopCallback(const Value *)608 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}
609
610 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(const Value * V,function_ref<void (const Value *)> Func=NoopCallback<StripKind>)611 static const Value *stripPointerCastsAndOffsets(
612 const Value *V,
613 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
614 if (!V->getType()->isPointerTy())
615 return V;
616
617 // Even though we don't look through PHI nodes, we could be called on an
618 // instruction in an unreachable block, which may be on a cycle.
619 SmallPtrSet<const Value *, 4> Visited;
620
621 Visited.insert(V);
622 do {
623 Func(V);
624 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
625 switch (StripKind) {
626 case PSK_ZeroIndices:
627 case PSK_ZeroIndicesAndAliases:
628 case PSK_ZeroIndicesSameRepresentation:
629 case PSK_ForAliasAnalysis:
630 if (!GEP->hasAllZeroIndices())
631 return V;
632 break;
633 case PSK_InBoundsConstantIndices:
634 if (!GEP->hasAllConstantIndices())
635 return V;
636 LLVM_FALLTHROUGH;
637 case PSK_InBounds:
638 if (!GEP->isInBounds())
639 return V;
640 break;
641 }
642 V = GEP->getPointerOperand();
643 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
644 V = cast<Operator>(V)->getOperand(0);
645 if (!V->getType()->isPointerTy())
646 return V;
647 } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
648 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
649 // TODO: If we know an address space cast will not change the
650 // representation we could look through it here as well.
651 V = cast<Operator>(V)->getOperand(0);
652 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
653 V = cast<GlobalAlias>(V)->getAliasee();
654 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) &&
655 cast<PHINode>(V)->getNumIncomingValues() == 1) {
656 V = cast<PHINode>(V)->getIncomingValue(0);
657 } else {
658 if (const auto *Call = dyn_cast<CallBase>(V)) {
659 if (const Value *RV = Call->getReturnedArgOperand()) {
660 V = RV;
661 continue;
662 }
663 // The result of launder.invariant.group must alias it's argument,
664 // but it can't be marked with returned attribute, that's why it needs
665 // special case.
666 if (StripKind == PSK_ForAliasAnalysis &&
667 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
668 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
669 V = Call->getArgOperand(0);
670 continue;
671 }
672 }
673 return V;
674 }
675 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
676 } while (Visited.insert(V).second);
677
678 return V;
679 }
680 } // end anonymous namespace
681
stripPointerCasts() const682 const Value *Value::stripPointerCasts() const {
683 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
684 }
685
stripPointerCastsAndAliases() const686 const Value *Value::stripPointerCastsAndAliases() const {
687 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
688 }
689
stripPointerCastsSameRepresentation() const690 const Value *Value::stripPointerCastsSameRepresentation() const {
691 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
692 }
693
stripInBoundsConstantOffsets() const694 const Value *Value::stripInBoundsConstantOffsets() const {
695 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
696 }
697
stripPointerCastsForAliasAnalysis() const698 const Value *Value::stripPointerCastsForAliasAnalysis() const {
699 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this);
700 }
701
stripAndAccumulateConstantOffsets(const DataLayout & DL,APInt & Offset,bool AllowNonInbounds,bool AllowInvariantGroup,function_ref<bool (Value &,APInt &)> ExternalAnalysis) const702 const Value *Value::stripAndAccumulateConstantOffsets(
703 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
704 bool AllowInvariantGroup,
705 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
706 if (!getType()->isPtrOrPtrVectorTy())
707 return this;
708
709 unsigned BitWidth = Offset.getBitWidth();
710 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
711 "The offset bit width does not match the DL specification.");
712
713 // Even though we don't look through PHI nodes, we could be called on an
714 // instruction in an unreachable block, which may be on a cycle.
715 SmallPtrSet<const Value *, 4> Visited;
716 Visited.insert(this);
717 const Value *V = this;
718 do {
719 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
720 // If in-bounds was requested, we do not strip non-in-bounds GEPs.
721 if (!AllowNonInbounds && !GEP->isInBounds())
722 return V;
723
724 // If one of the values we have visited is an addrspacecast, then
725 // the pointer type of this GEP may be different from the type
726 // of the Ptr parameter which was passed to this function. This
727 // means when we construct GEPOffset, we need to use the size
728 // of GEP's pointer type rather than the size of the original
729 // pointer type.
730 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
731 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
732 return V;
733
734 // Stop traversal if the pointer offset wouldn't fit in the bit-width
735 // provided by the Offset argument. This can happen due to AddrSpaceCast
736 // stripping.
737 if (GEPOffset.getMinSignedBits() > BitWidth)
738 return V;
739
740 // External Analysis can return a result higher/lower than the value
741 // represents. We need to detect overflow/underflow.
742 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
743 if (!ExternalAnalysis) {
744 Offset += GEPOffsetST;
745 } else {
746 bool Overflow = false;
747 APInt OldOffset = Offset;
748 Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
749 if (Overflow) {
750 Offset = OldOffset;
751 return V;
752 }
753 }
754 V = GEP->getPointerOperand();
755 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
756 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
757 V = cast<Operator>(V)->getOperand(0);
758 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
759 if (!GA->isInterposable())
760 V = GA->getAliasee();
761 } else if (const auto *Call = dyn_cast<CallBase>(V)) {
762 if (const Value *RV = Call->getReturnedArgOperand())
763 V = RV;
764 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup())
765 V = Call->getArgOperand(0);
766 }
767 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
768 } while (Visited.insert(V).second);
769
770 return V;
771 }
772
773 const Value *
stripInBoundsOffsets(function_ref<void (const Value *)> Func) const774 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
775 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func);
776 }
777
canBeFreed() const778 bool Value::canBeFreed() const {
779 assert(getType()->isPointerTy());
780
781 // Cases that can simply never be deallocated
782 // *) Constants aren't allocated per se, thus not deallocated either.
783 if (isa<Constant>(this))
784 return false;
785
786 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage
787 // lifetime is guaranteed to be longer than the callee's lifetime.
788 if (auto *A = dyn_cast<Argument>(this)) {
789 if (A->hasPointeeInMemoryValueAttr())
790 return false;
791 // A pointer to an object in a function which neither frees, nor can arrange
792 // for another thread to free on its behalf, can not be freed in the scope
793 // of the function. Note that this logic is restricted to memory
794 // allocations in existance before the call; a nofree function *is* allowed
795 // to free memory it allocated.
796 const Function *F = A->getParent();
797 if (F->doesNotFreeMemory() && F->hasNoSync())
798 return false;
799 }
800
801 const Function *F = nullptr;
802 if (auto *I = dyn_cast<Instruction>(this))
803 F = I->getFunction();
804 if (auto *A = dyn_cast<Argument>(this))
805 F = A->getParent();
806
807 if (!F)
808 return true;
809
810 // With garbage collection, deallocation typically occurs solely at or after
811 // safepoints. If we're compiling for a collector which uses the
812 // gc.statepoint infrastructure, safepoints aren't explicitly present
813 // in the IR until after lowering from abstract to physical machine model.
814 // The collector could chose to mix explicit deallocation and gc'd objects
815 // which is why we need the explicit opt in on a per collector basis.
816 if (!F->hasGC())
817 return true;
818
819 const auto &GCName = F->getGC();
820 if (GCName == "statepoint-example") {
821 auto *PT = cast<PointerType>(this->getType());
822 if (PT->getAddressSpace() != 1)
823 // For the sake of this example GC, we arbitrarily pick addrspace(1) as
824 // our GC managed heap. This must match the same check in
825 // RewriteStatepointsForGC (and probably needs better factored.)
826 return true;
827
828 // It is cheaper to scan for a declaration than to scan for a use in this
829 // function. Note that gc.statepoint is a type overloaded function so the
830 // usual trick of requesting declaration of the intrinsic from the module
831 // doesn't work.
832 for (auto &Fn : *F->getParent())
833 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
834 return true;
835 return false;
836 }
837 return true;
838 }
839
getPointerDereferenceableBytes(const DataLayout & DL,bool & CanBeNull,bool & CanBeFreed) const840 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
841 bool &CanBeNull,
842 bool &CanBeFreed) const {
843 assert(getType()->isPointerTy() && "must be pointer");
844
845 uint64_t DerefBytes = 0;
846 CanBeNull = false;
847 CanBeFreed = UseDerefAtPointSemantics && canBeFreed();
848 if (const Argument *A = dyn_cast<Argument>(this)) {
849 DerefBytes = A->getDereferenceableBytes();
850 if (DerefBytes == 0) {
851 // Handle byval/byref/inalloca/preallocated arguments
852 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
853 if (ArgMemTy->isSized()) {
854 // FIXME: Why isn't this the type alloc size?
855 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize();
856 }
857 }
858 }
859
860 if (DerefBytes == 0) {
861 DerefBytes = A->getDereferenceableOrNullBytes();
862 CanBeNull = true;
863 }
864 } else if (const auto *Call = dyn_cast<CallBase>(this)) {
865 DerefBytes = Call->getRetDereferenceableBytes();
866 if (DerefBytes == 0) {
867 DerefBytes = Call->getRetDereferenceableOrNullBytes();
868 CanBeNull = true;
869 }
870 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
871 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
872 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
873 DerefBytes = CI->getLimitedValue();
874 }
875 if (DerefBytes == 0) {
876 if (MDNode *MD =
877 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
878 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
879 DerefBytes = CI->getLimitedValue();
880 }
881 CanBeNull = true;
882 }
883 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
884 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
885 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
886 DerefBytes = CI->getLimitedValue();
887 }
888 if (DerefBytes == 0) {
889 if (MDNode *MD =
890 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
891 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
892 DerefBytes = CI->getLimitedValue();
893 }
894 CanBeNull = true;
895 }
896 } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
897 if (!AI->isArrayAllocation()) {
898 DerefBytes =
899 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize();
900 CanBeNull = false;
901 CanBeFreed = false;
902 }
903 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
904 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
905 // TODO: Don't outright reject hasExternalWeakLinkage but set the
906 // CanBeNull flag.
907 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize();
908 CanBeNull = false;
909 CanBeFreed = false;
910 }
911 }
912 return DerefBytes;
913 }
914
getPointerAlignment(const DataLayout & DL) const915 Align Value::getPointerAlignment(const DataLayout &DL) const {
916 assert(getType()->isPointerTy() && "must be pointer");
917 if (auto *GO = dyn_cast<GlobalObject>(this)) {
918 if (isa<Function>(GO)) {
919 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
920 switch (DL.getFunctionPtrAlignType()) {
921 case DataLayout::FunctionPtrAlignType::Independent:
922 return FunctionPtrAlign;
923 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
924 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne());
925 }
926 llvm_unreachable("Unhandled FunctionPtrAlignType");
927 }
928 const MaybeAlign Alignment(GO->getAlign());
929 if (!Alignment) {
930 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
931 Type *ObjectType = GVar->getValueType();
932 if (ObjectType->isSized()) {
933 // If the object is defined in the current Module, we'll be giving
934 // it the preferred alignment. Otherwise, we have to assume that it
935 // may only have the minimum ABI alignment.
936 if (GVar->isStrongDefinitionForLinker())
937 return DL.getPreferredAlign(GVar);
938 else
939 return DL.getABITypeAlign(ObjectType);
940 }
941 }
942 }
943 return Alignment.valueOrOne();
944 } else if (const Argument *A = dyn_cast<Argument>(this)) {
945 const MaybeAlign Alignment = A->getParamAlign();
946 if (!Alignment && A->hasStructRetAttr()) {
947 // An sret parameter has at least the ABI alignment of the return type.
948 Type *EltTy = A->getParamStructRetType();
949 if (EltTy->isSized())
950 return DL.getABITypeAlign(EltTy);
951 }
952 return Alignment.valueOrOne();
953 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
954 return AI->getAlign();
955 } else if (const auto *Call = dyn_cast<CallBase>(this)) {
956 MaybeAlign Alignment = Call->getRetAlign();
957 if (!Alignment && Call->getCalledFunction())
958 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
959 return Alignment.valueOrOne();
960 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
961 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
962 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
963 return Align(CI->getLimitedValue());
964 }
965 } else if (auto *CstPtr = dyn_cast<Constant>(this)) {
966 // Strip pointer casts to avoid creating unnecessary ptrtoint expression
967 // if the only "reduction" is combining a bitcast + ptrtoint.
968 CstPtr = CstPtr->stripPointerCasts();
969 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
970 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
971 /*OnlyIfReduced=*/true))) {
972 size_t TrailingZeros = CstInt->getValue().countTrailingZeros();
973 // While the actual alignment may be large, elsewhere we have
974 // an arbitrary upper alignmet limit, so let's clamp to it.
975 return Align(TrailingZeros < Value::MaxAlignmentExponent
976 ? uint64_t(1) << TrailingZeros
977 : Value::MaximumAlignment);
978 }
979 }
980 return Align(1);
981 }
982
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB) const983 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
984 const BasicBlock *PredBB) const {
985 auto *PN = dyn_cast<PHINode>(this);
986 if (PN && PN->getParent() == CurBB)
987 return PN->getIncomingValueForBlock(PredBB);
988 return this;
989 }
990
getContext() const991 LLVMContext &Value::getContext() const { return VTy->getContext(); }
992
reverseUseList()993 void Value::reverseUseList() {
994 if (!UseList || !UseList->Next)
995 // No need to reverse 0 or 1 uses.
996 return;
997
998 Use *Head = UseList;
999 Use *Current = UseList->Next;
1000 Head->Next = nullptr;
1001 while (Current) {
1002 Use *Next = Current->Next;
1003 Current->Next = Head;
1004 Head->Prev = &Current->Next;
1005 Head = Current;
1006 Current = Next;
1007 }
1008 UseList = Head;
1009 Head->Prev = &UseList;
1010 }
1011
isSwiftError() const1012 bool Value::isSwiftError() const {
1013 auto *Arg = dyn_cast<Argument>(this);
1014 if (Arg)
1015 return Arg->hasSwiftErrorAttr();
1016 auto *Alloca = dyn_cast<AllocaInst>(this);
1017 if (!Alloca)
1018 return false;
1019 return Alloca->isSwiftError();
1020 }
1021
isTransitiveUsedByMetadataOnly() const1022 bool Value::isTransitiveUsedByMetadataOnly() const {
1023 SmallVector<const User *, 32> WorkList(user_begin(), user_end());
1024 SmallPtrSet<const User *, 32> Visited(user_begin(), user_end());
1025 while (!WorkList.empty()) {
1026 const User *U = WorkList.pop_back_val();
1027 // If it is transitively used by a global value or a non-constant value,
1028 // it's obviously not only used by metadata.
1029 if (!isa<Constant>(U) || isa<GlobalValue>(U))
1030 return false;
1031 for (const User *UU : U->users())
1032 if (Visited.insert(UU).second)
1033 WorkList.push_back(UU);
1034 }
1035 return true;
1036 }
1037
1038 //===----------------------------------------------------------------------===//
1039 // ValueHandleBase Class
1040 //===----------------------------------------------------------------------===//
1041
AddToExistingUseList(ValueHandleBase ** List)1042 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
1043 assert(List && "Handle list is null?");
1044
1045 // Splice ourselves into the list.
1046 Next = *List;
1047 *List = this;
1048 setPrevPtr(List);
1049 if (Next) {
1050 Next->setPrevPtr(&Next);
1051 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
1052 }
1053 }
1054
AddToExistingUseListAfter(ValueHandleBase * List)1055 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
1056 assert(List && "Must insert after existing node");
1057
1058 Next = List->Next;
1059 setPrevPtr(&List->Next);
1060 List->Next = this;
1061 if (Next)
1062 Next->setPrevPtr(&Next);
1063 }
1064
AddToUseList()1065 void ValueHandleBase::AddToUseList() {
1066 assert(getValPtr() && "Null pointer doesn't have a use list!");
1067
1068 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1069
1070 if (getValPtr()->HasValueHandle) {
1071 // If this value already has a ValueHandle, then it must be in the
1072 // ValueHandles map already.
1073 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
1074 assert(Entry && "Value doesn't have any handles?");
1075 AddToExistingUseList(&Entry);
1076 return;
1077 }
1078
1079 // Ok, it doesn't have any handles yet, so we must insert it into the
1080 // DenseMap. However, doing this insertion could cause the DenseMap to
1081 // reallocate itself, which would invalidate all of the PrevP pointers that
1082 // point into the old table. Handle this by checking for reallocation and
1083 // updating the stale pointers only if needed.
1084 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1085 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
1086
1087 ValueHandleBase *&Entry = Handles[getValPtr()];
1088 assert(!Entry && "Value really did already have handles?");
1089 AddToExistingUseList(&Entry);
1090 getValPtr()->HasValueHandle = true;
1091
1092 // If reallocation didn't happen or if this was the first insertion, don't
1093 // walk the table.
1094 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
1095 Handles.size() == 1) {
1096 return;
1097 }
1098
1099 // Okay, reallocation did happen. Fix the Prev Pointers.
1100 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
1101 E = Handles.end(); I != E; ++I) {
1102 assert(I->second && I->first == I->second->getValPtr() &&
1103 "List invariant broken!");
1104 I->second->setPrevPtr(&I->second);
1105 }
1106 }
1107
RemoveFromUseList()1108 void ValueHandleBase::RemoveFromUseList() {
1109 assert(getValPtr() && getValPtr()->HasValueHandle &&
1110 "Pointer doesn't have a use list!");
1111
1112 // Unlink this from its use list.
1113 ValueHandleBase **PrevPtr = getPrevPtr();
1114 assert(*PrevPtr == this && "List invariant broken");
1115
1116 *PrevPtr = Next;
1117 if (Next) {
1118 assert(Next->getPrevPtr() == &Next && "List invariant broken");
1119 Next->setPrevPtr(PrevPtr);
1120 return;
1121 }
1122
1123 // If the Next pointer was null, then it is possible that this was the last
1124 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
1125 // map.
1126 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1127 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1128 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
1129 Handles.erase(getValPtr());
1130 getValPtr()->HasValueHandle = false;
1131 }
1132 }
1133
ValueIsDeleted(Value * V)1134 void ValueHandleBase::ValueIsDeleted(Value *V) {
1135 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
1136
1137 // Get the linked list base, which is guaranteed to exist since the
1138 // HasValueHandle flag is set.
1139 LLVMContextImpl *pImpl = V->getContext().pImpl;
1140 ValueHandleBase *Entry = pImpl->ValueHandles[V];
1141 assert(Entry && "Value bit set but no entries exist");
1142
1143 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
1144 // and remove themselves from the list without breaking our iteration. This
1145 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
1146 // Note that we deliberately do not the support the case when dropping a value
1147 // handle results in a new value handle being permanently added to the list
1148 // (as might occur in theory for CallbackVH's): the new value handle will not
1149 // be processed and the checking code will mete out righteous punishment if
1150 // the handle is still present once we have finished processing all the other
1151 // value handles (it is fine to momentarily add then remove a value handle).
1152 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1153 Iterator.RemoveFromUseList();
1154 Iterator.AddToExistingUseListAfter(Entry);
1155 assert(Entry->Next == &Iterator && "Loop invariant broken.");
1156
1157 switch (Entry->getKind()) {
1158 case Assert:
1159 break;
1160 case Weak:
1161 case WeakTracking:
1162 // WeakTracking and Weak just go to null, which unlinks them
1163 // from the list.
1164 Entry->operator=(nullptr);
1165 break;
1166 case Callback:
1167 // Forward to the subclass's implementation.
1168 static_cast<CallbackVH*>(Entry)->deleted();
1169 break;
1170 }
1171 }
1172
1173 // All callbacks, weak references, and assertingVHs should be dropped by now.
1174 if (V->HasValueHandle) {
1175 #ifndef NDEBUG // Only in +Asserts mode...
1176 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
1177 << "\n";
1178 if (pImpl->ValueHandles[V]->getKind() == Assert)
1179 llvm_unreachable("An asserting value handle still pointed to this"
1180 " value!");
1181
1182 #endif
1183 llvm_unreachable("All references to V were not removed?");
1184 }
1185 }
1186
ValueIsRAUWd(Value * Old,Value * New)1187 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
1188 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
1189 assert(Old != New && "Changing value into itself!");
1190 assert(Old->getType() == New->getType() &&
1191 "replaceAllUses of value with new value of different type!");
1192
1193 // Get the linked list base, which is guaranteed to exist since the
1194 // HasValueHandle flag is set.
1195 LLVMContextImpl *pImpl = Old->getContext().pImpl;
1196 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
1197
1198 assert(Entry && "Value bit set but no entries exist");
1199
1200 // We use a local ValueHandleBase as an iterator so that
1201 // ValueHandles can add and remove themselves from the list without
1202 // breaking our iteration. This is not really an AssertingVH; we
1203 // just have to give ValueHandleBase some kind.
1204 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1205 Iterator.RemoveFromUseList();
1206 Iterator.AddToExistingUseListAfter(Entry);
1207 assert(Entry->Next == &Iterator && "Loop invariant broken.");
1208
1209 switch (Entry->getKind()) {
1210 case Assert:
1211 case Weak:
1212 // Asserting and Weak handles do not follow RAUW implicitly.
1213 break;
1214 case WeakTracking:
1215 // Weak goes to the new value, which will unlink it from Old's list.
1216 Entry->operator=(New);
1217 break;
1218 case Callback:
1219 // Forward to the subclass's implementation.
1220 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
1221 break;
1222 }
1223 }
1224
1225 #ifndef NDEBUG
1226 // If any new weak value handles were added while processing the
1227 // list, then complain about it now.
1228 if (Old->HasValueHandle)
1229 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
1230 switch (Entry->getKind()) {
1231 case WeakTracking:
1232 dbgs() << "After RAUW from " << *Old->getType() << " %"
1233 << Old->getName() << " to " << *New->getType() << " %"
1234 << New->getName() << "\n";
1235 llvm_unreachable(
1236 "A weak tracking value handle still pointed to the old value!\n");
1237 default:
1238 break;
1239 }
1240 #endif
1241 }
1242
1243 // Pin the vtable to this file.
anchor()1244 void CallbackVH::anchor() {}
1245