1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 42 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 43 cl::desc("Maximum size for the name of non-global values.")); 44 45 //===----------------------------------------------------------------------===// 46 // Value Class 47 //===----------------------------------------------------------------------===// 48 static inline Type *checkType(Type *Ty) { 49 assert(Ty && "Value defined with a null type: Error!"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), 55 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0), 56 NumUserOperands(0), IsUsedByMD(false), HasName(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke || 62 SubclassID == Instruction::CallBr) 63 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 64 "invalid CallInst type!"); 65 else if (SubclassID != BasicBlockVal && 66 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 67 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 68 "Cannot create non-first-class values except for constants!"); 69 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 70 "Value too big"); 71 } 72 73 Value::~Value() { 74 // Notify all ValueHandles (if present) that this value is going away. 75 if (HasValueHandle) 76 ValueHandleBase::ValueIsDeleted(this); 77 if (isUsedByMetadata()) 78 ValueAsMetadata::handleDeletion(this); 79 80 #ifndef NDEBUG // Only in -g mode... 81 // Check to make sure that there are no uses of this value that are still 82 // around when the value is destroyed. If there are, then we have a dangling 83 // reference and something is wrong. This code is here to print out where 84 // the value is still being referenced. 85 // 86 // Note that use_empty() cannot be called here, as it eventually downcasts 87 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 88 // been destructed, so accessing it is UB. 89 // 90 if (!materialized_use_empty()) { 91 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 92 for (auto *U : users()) 93 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 94 } 95 #endif 96 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 97 98 // If this value is named, destroy the name. This should not be in a symtab 99 // at this point. 100 destroyValueName(); 101 } 102 103 void Value::deleteValue() { 104 switch (getValueID()) { 105 #define HANDLE_VALUE(Name) \ 106 case Value::Name##Val: \ 107 delete static_cast<Name *>(this); \ 108 break; 109 #define HANDLE_MEMORY_VALUE(Name) \ 110 case Value::Name##Val: \ 111 static_cast<DerivedUser *>(this)->DeleteValue( \ 112 static_cast<DerivedUser *>(this)); \ 113 break; 114 #define HANDLE_CONSTANT(Name) \ 115 case Value::Name##Val: \ 116 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 117 break; 118 #define HANDLE_INSTRUCTION(Name) /* nothing */ 119 #include "llvm/IR/Value.def" 120 121 #define HANDLE_INST(N, OPC, CLASS) \ 122 case Value::InstructionVal + Instruction::OPC: \ 123 delete static_cast<CLASS *>(this); \ 124 break; 125 #define HANDLE_USER_INST(N, OPC, CLASS) 126 #include "llvm/IR/Instruction.def" 127 128 default: 129 llvm_unreachable("attempting to delete unknown value kind"); 130 } 131 } 132 133 void Value::destroyValueName() { 134 ValueName *Name = getValueName(); 135 if (Name) { 136 MallocAllocator Allocator; 137 Name->Destroy(Allocator); 138 } 139 setValueName(nullptr); 140 } 141 142 bool Value::hasNUses(unsigned N) const { 143 return hasNItems(use_begin(), use_end(), N); 144 } 145 146 bool Value::hasNUsesOrMore(unsigned N) const { 147 return hasNItemsOrMore(use_begin(), use_end(), N); 148 } 149 150 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 151 152 Use *Value::getSingleUndroppableUse() { 153 Use *Result = nullptr; 154 for (Use &U : uses()) { 155 if (!U.getUser()->isDroppable()) { 156 if (Result) 157 return nullptr; 158 Result = &U; 159 } 160 } 161 return Result; 162 } 163 164 bool Value::hasNUndroppableUses(unsigned int N) const { 165 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 166 } 167 168 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 169 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 170 } 171 172 void Value::dropDroppableUses( 173 llvm::function_ref<bool(const Use *)> ShouldDrop) { 174 SmallVector<Use *, 8> ToBeEdited; 175 for (Use &U : uses()) 176 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 177 ToBeEdited.push_back(&U); 178 for (Use *U : ToBeEdited) 179 dropDroppableUse(*U); 180 } 181 182 void Value::dropDroppableUsesIn(User &Usr) { 183 assert(Usr.isDroppable() && "Expected a droppable user!"); 184 for (Use &UsrOp : Usr.operands()) { 185 if (UsrOp.get() == this) 186 dropDroppableUse(UsrOp); 187 } 188 } 189 190 void Value::dropDroppableUse(Use &U) { 191 U.removeFromList(); 192 if (auto *Assume = dyn_cast<IntrinsicInst>(U.getUser())) { 193 assert(Assume->getIntrinsicID() == Intrinsic::assume); 194 unsigned OpNo = U.getOperandNo(); 195 if (OpNo == 0) 196 U.set(ConstantInt::getTrue(Assume->getContext())); 197 else { 198 U.set(UndefValue::get(U.get()->getType())); 199 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 200 BOI.Tag = getContext().pImpl->getOrInsertBundleTag("ignore"); 201 } 202 return; 203 } 204 205 llvm_unreachable("unkown droppable use"); 206 } 207 208 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 209 // This can be computed either by scanning the instructions in BB, or by 210 // scanning the use list of this Value. Both lists can be very long, but 211 // usually one is quite short. 212 // 213 // Scan both lists simultaneously until one is exhausted. This limits the 214 // search to the shorter list. 215 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 216 const_user_iterator UI = user_begin(), UE = user_end(); 217 for (; BI != BE && UI != UE; ++BI, ++UI) { 218 // Scan basic block: Check if this Value is used by the instruction at BI. 219 if (is_contained(BI->operands(), this)) 220 return true; 221 // Scan use list: Check if the use at UI is in BB. 222 const auto *User = dyn_cast<Instruction>(*UI); 223 if (User && User->getParent() == BB) 224 return true; 225 } 226 return false; 227 } 228 229 unsigned Value::getNumUses() const { 230 return (unsigned)std::distance(use_begin(), use_end()); 231 } 232 233 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 234 ST = nullptr; 235 if (Instruction *I = dyn_cast<Instruction>(V)) { 236 if (BasicBlock *P = I->getParent()) 237 if (Function *PP = P->getParent()) 238 ST = PP->getValueSymbolTable(); 239 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 240 if (Function *P = BB->getParent()) 241 ST = P->getValueSymbolTable(); 242 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 243 if (Module *P = GV->getParent()) 244 ST = &P->getValueSymbolTable(); 245 } else if (Argument *A = dyn_cast<Argument>(V)) { 246 if (Function *P = A->getParent()) 247 ST = P->getValueSymbolTable(); 248 } else { 249 assert(isa<Constant>(V) && "Unknown value type!"); 250 return true; // no name is setable for this. 251 } 252 return false; 253 } 254 255 ValueName *Value::getValueName() const { 256 if (!HasName) return nullptr; 257 258 LLVMContext &Ctx = getContext(); 259 auto I = Ctx.pImpl->ValueNames.find(this); 260 assert(I != Ctx.pImpl->ValueNames.end() && 261 "No name entry found!"); 262 263 return I->second; 264 } 265 266 void Value::setValueName(ValueName *VN) { 267 LLVMContext &Ctx = getContext(); 268 269 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 270 "HasName bit out of sync!"); 271 272 if (!VN) { 273 if (HasName) 274 Ctx.pImpl->ValueNames.erase(this); 275 HasName = false; 276 return; 277 } 278 279 HasName = true; 280 Ctx.pImpl->ValueNames[this] = VN; 281 } 282 283 StringRef Value::getName() const { 284 // Make sure the empty string is still a C string. For historical reasons, 285 // some clients want to call .data() on the result and expect it to be null 286 // terminated. 287 if (!hasName()) 288 return StringRef("", 0); 289 return getValueName()->getKey(); 290 } 291 292 void Value::setNameImpl(const Twine &NewName) { 293 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 294 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 295 return; 296 297 // Fast path for common IRBuilder case of setName("") when there is no name. 298 if (NewName.isTriviallyEmpty() && !hasName()) 299 return; 300 301 SmallString<256> NameData; 302 StringRef NameRef = NewName.toStringRef(NameData); 303 assert(NameRef.find_first_of(0) == StringRef::npos && 304 "Null bytes are not allowed in names"); 305 306 // Name isn't changing? 307 if (getName() == NameRef) 308 return; 309 310 // Cap the size of non-GlobalValue names. 311 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this)) 312 NameRef = 313 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize)); 314 315 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 316 317 // Get the symbol table to update for this object. 318 ValueSymbolTable *ST; 319 if (getSymTab(this, ST)) 320 return; // Cannot set a name on this value (e.g. constant). 321 322 if (!ST) { // No symbol table to update? Just do the change. 323 if (NameRef.empty()) { 324 // Free the name for this value. 325 destroyValueName(); 326 return; 327 } 328 329 // NOTE: Could optimize for the case the name is shrinking to not deallocate 330 // then reallocated. 331 destroyValueName(); 332 333 // Create the new name. 334 MallocAllocator Allocator; 335 setValueName(ValueName::Create(NameRef, Allocator)); 336 getValueName()->setValue(this); 337 return; 338 } 339 340 // NOTE: Could optimize for the case the name is shrinking to not deallocate 341 // then reallocated. 342 if (hasName()) { 343 // Remove old name. 344 ST->removeValueName(getValueName()); 345 destroyValueName(); 346 347 if (NameRef.empty()) 348 return; 349 } 350 351 // Name is changing to something new. 352 setValueName(ST->createValueName(NameRef, this)); 353 } 354 355 void Value::setName(const Twine &NewName) { 356 setNameImpl(NewName); 357 if (Function *F = dyn_cast<Function>(this)) 358 F->recalculateIntrinsicID(); 359 } 360 361 void Value::takeName(Value *V) { 362 ValueSymbolTable *ST = nullptr; 363 // If this value has a name, drop it. 364 if (hasName()) { 365 // Get the symtab this is in. 366 if (getSymTab(this, ST)) { 367 // We can't set a name on this value, but we need to clear V's name if 368 // it has one. 369 if (V->hasName()) V->setName(""); 370 return; // Cannot set a name on this value (e.g. constant). 371 } 372 373 // Remove old name. 374 if (ST) 375 ST->removeValueName(getValueName()); 376 destroyValueName(); 377 } 378 379 // Now we know that this has no name. 380 381 // If V has no name either, we're done. 382 if (!V->hasName()) return; 383 384 // Get this's symtab if we didn't before. 385 if (!ST) { 386 if (getSymTab(this, ST)) { 387 // Clear V's name. 388 V->setName(""); 389 return; // Cannot set a name on this value (e.g. constant). 390 } 391 } 392 393 // Get V's ST, this should always succed, because V has a name. 394 ValueSymbolTable *VST; 395 bool Failure = getSymTab(V, VST); 396 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 397 398 // If these values are both in the same symtab, we can do this very fast. 399 // This works even if both values have no symtab yet. 400 if (ST == VST) { 401 // Take the name! 402 setValueName(V->getValueName()); 403 V->setValueName(nullptr); 404 getValueName()->setValue(this); 405 return; 406 } 407 408 // Otherwise, things are slightly more complex. Remove V's name from VST and 409 // then reinsert it into ST. 410 411 if (VST) 412 VST->removeValueName(V->getValueName()); 413 setValueName(V->getValueName()); 414 V->setValueName(nullptr); 415 getValueName()->setValue(this); 416 417 if (ST) 418 ST->reinsertValue(this); 419 } 420 421 void Value::assertModuleIsMaterializedImpl() const { 422 #ifndef NDEBUG 423 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 424 if (!GV) 425 return; 426 const Module *M = GV->getParent(); 427 if (!M) 428 return; 429 assert(M->isMaterialized()); 430 #endif 431 } 432 433 #ifndef NDEBUG 434 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 435 Constant *C) { 436 if (!Cache.insert(Expr).second) 437 return false; 438 439 for (auto &O : Expr->operands()) { 440 if (O == C) 441 return true; 442 auto *CE = dyn_cast<ConstantExpr>(O); 443 if (!CE) 444 continue; 445 if (contains(Cache, CE, C)) 446 return true; 447 } 448 return false; 449 } 450 451 static bool contains(Value *Expr, Value *V) { 452 if (Expr == V) 453 return true; 454 455 auto *C = dyn_cast<Constant>(V); 456 if (!C) 457 return false; 458 459 auto *CE = dyn_cast<ConstantExpr>(Expr); 460 if (!CE) 461 return false; 462 463 SmallPtrSet<ConstantExpr *, 4> Cache; 464 return contains(Cache, CE, C); 465 } 466 #endif // NDEBUG 467 468 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 469 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 470 assert(!contains(New, this) && 471 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 472 assert(New->getType() == getType() && 473 "replaceAllUses of value with new value of different type!"); 474 475 // Notify all ValueHandles (if present) that this value is going away. 476 if (HasValueHandle) 477 ValueHandleBase::ValueIsRAUWd(this, New); 478 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 479 ValueAsMetadata::handleRAUW(this, New); 480 481 while (!materialized_use_empty()) { 482 Use &U = *UseList; 483 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 484 // constant because they are uniqued. 485 if (auto *C = dyn_cast<Constant>(U.getUser())) { 486 if (!isa<GlobalValue>(C)) { 487 C->handleOperandChange(this, New); 488 continue; 489 } 490 } 491 492 U.set(New); 493 } 494 495 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 496 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 497 } 498 499 void Value::replaceAllUsesWith(Value *New) { 500 doRAUW(New, ReplaceMetadataUses::Yes); 501 } 502 503 void Value::replaceNonMetadataUsesWith(Value *New) { 504 doRAUW(New, ReplaceMetadataUses::No); 505 } 506 507 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 508 // This routine leaves uses within BB. 509 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 510 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 511 assert(!contains(New, this) && 512 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 513 assert(New->getType() == getType() && 514 "replaceUses of value with new value of different type!"); 515 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 516 517 replaceUsesWithIf(New, [BB](Use &U) { 518 auto *I = dyn_cast<Instruction>(U.getUser()); 519 // Don't replace if it's an instruction in the BB basic block. 520 return !I || I->getParent() != BB; 521 }); 522 } 523 524 namespace { 525 // Various metrics for how much to strip off of pointers. 526 enum PointerStripKind { 527 PSK_ZeroIndices, 528 PSK_ZeroIndicesAndAliases, 529 PSK_ZeroIndicesSameRepresentation, 530 PSK_ZeroIndicesAndInvariantGroups, 531 PSK_InBoundsConstantIndices, 532 PSK_InBounds 533 }; 534 535 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 536 537 template <PointerStripKind StripKind> 538 static const Value *stripPointerCastsAndOffsets( 539 const Value *V, 540 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 541 if (!V->getType()->isPointerTy()) 542 return V; 543 544 // Even though we don't look through PHI nodes, we could be called on an 545 // instruction in an unreachable block, which may be on a cycle. 546 SmallPtrSet<const Value *, 4> Visited; 547 548 Visited.insert(V); 549 do { 550 Func(V); 551 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 552 switch (StripKind) { 553 case PSK_ZeroIndices: 554 case PSK_ZeroIndicesAndAliases: 555 case PSK_ZeroIndicesSameRepresentation: 556 case PSK_ZeroIndicesAndInvariantGroups: 557 if (!GEP->hasAllZeroIndices()) 558 return V; 559 break; 560 case PSK_InBoundsConstantIndices: 561 if (!GEP->hasAllConstantIndices()) 562 return V; 563 LLVM_FALLTHROUGH; 564 case PSK_InBounds: 565 if (!GEP->isInBounds()) 566 return V; 567 break; 568 } 569 V = GEP->getPointerOperand(); 570 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 571 V = cast<Operator>(V)->getOperand(0); 572 if (!V->getType()->isPointerTy()) 573 return V; 574 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 575 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 576 // TODO: If we know an address space cast will not change the 577 // representation we could look through it here as well. 578 V = cast<Operator>(V)->getOperand(0); 579 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 580 V = cast<GlobalAlias>(V)->getAliasee(); 581 } else { 582 if (const auto *Call = dyn_cast<CallBase>(V)) { 583 if (const Value *RV = Call->getReturnedArgOperand()) { 584 V = RV; 585 continue; 586 } 587 // The result of launder.invariant.group must alias it's argument, 588 // but it can't be marked with returned attribute, that's why it needs 589 // special case. 590 if (StripKind == PSK_ZeroIndicesAndInvariantGroups && 591 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 592 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 593 V = Call->getArgOperand(0); 594 continue; 595 } 596 } 597 return V; 598 } 599 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 600 } while (Visited.insert(V).second); 601 602 return V; 603 } 604 } // end anonymous namespace 605 606 const Value *Value::stripPointerCasts() const { 607 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 608 } 609 610 const Value *Value::stripPointerCastsAndAliases() const { 611 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 612 } 613 614 const Value *Value::stripPointerCastsSameRepresentation() const { 615 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 616 } 617 618 const Value *Value::stripInBoundsConstantOffsets() const { 619 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 620 } 621 622 const Value *Value::stripPointerCastsAndInvariantGroups() const { 623 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this); 624 } 625 626 const Value *Value::stripAndAccumulateConstantOffsets( 627 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 628 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 629 if (!getType()->isPtrOrPtrVectorTy()) 630 return this; 631 632 unsigned BitWidth = Offset.getBitWidth(); 633 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 634 "The offset bit width does not match the DL specification."); 635 636 // Even though we don't look through PHI nodes, we could be called on an 637 // instruction in an unreachable block, which may be on a cycle. 638 SmallPtrSet<const Value *, 4> Visited; 639 Visited.insert(this); 640 const Value *V = this; 641 do { 642 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 643 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 644 if (!AllowNonInbounds && !GEP->isInBounds()) 645 return V; 646 647 // If one of the values we have visited is an addrspacecast, then 648 // the pointer type of this GEP may be different from the type 649 // of the Ptr parameter which was passed to this function. This 650 // means when we construct GEPOffset, we need to use the size 651 // of GEP's pointer type rather than the size of the original 652 // pointer type. 653 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 654 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 655 return V; 656 657 // Stop traversal if the pointer offset wouldn't fit in the bit-width 658 // provided by the Offset argument. This can happen due to AddrSpaceCast 659 // stripping. 660 if (GEPOffset.getMinSignedBits() > BitWidth) 661 return V; 662 663 // External Analysis can return a result higher/lower than the value 664 // represents. We need to detect overflow/underflow. 665 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 666 if (!ExternalAnalysis) { 667 Offset += GEPOffsetST; 668 } else { 669 bool Overflow = false; 670 APInt OldOffset = Offset; 671 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 672 if (Overflow) { 673 Offset = OldOffset; 674 return V; 675 } 676 } 677 V = GEP->getPointerOperand(); 678 } else if (Operator::getOpcode(V) == Instruction::BitCast || 679 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 680 V = cast<Operator>(V)->getOperand(0); 681 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 682 if (!GA->isInterposable()) 683 V = GA->getAliasee(); 684 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 685 if (const Value *RV = Call->getReturnedArgOperand()) 686 V = RV; 687 } 688 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 689 } while (Visited.insert(V).second); 690 691 return V; 692 } 693 694 const Value * 695 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 696 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 697 } 698 699 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 700 bool &CanBeNull) const { 701 assert(getType()->isPointerTy() && "must be pointer"); 702 703 uint64_t DerefBytes = 0; 704 CanBeNull = false; 705 if (const Argument *A = dyn_cast<Argument>(this)) { 706 DerefBytes = A->getDereferenceableBytes(); 707 if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) { 708 Type *PT = cast<PointerType>(A->getType())->getElementType(); 709 if (PT->isSized()) 710 DerefBytes = DL.getTypeStoreSize(PT).getKnownMinSize(); 711 } 712 if (DerefBytes == 0) { 713 DerefBytes = A->getDereferenceableOrNullBytes(); 714 CanBeNull = true; 715 } 716 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 717 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 718 if (DerefBytes == 0) { 719 DerefBytes = 720 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 721 CanBeNull = true; 722 } 723 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 724 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 725 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 726 DerefBytes = CI->getLimitedValue(); 727 } 728 if (DerefBytes == 0) { 729 if (MDNode *MD = 730 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 731 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 732 DerefBytes = CI->getLimitedValue(); 733 } 734 CanBeNull = true; 735 } 736 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 737 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 738 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 739 DerefBytes = CI->getLimitedValue(); 740 } 741 if (DerefBytes == 0) { 742 if (MDNode *MD = 743 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 744 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 745 DerefBytes = CI->getLimitedValue(); 746 } 747 CanBeNull = true; 748 } 749 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 750 if (!AI->isArrayAllocation()) { 751 DerefBytes = 752 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 753 CanBeNull = false; 754 } 755 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 756 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 757 // TODO: Don't outright reject hasExternalWeakLinkage but set the 758 // CanBeNull flag. 759 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 760 CanBeNull = false; 761 } 762 } 763 return DerefBytes; 764 } 765 766 Align Value::getPointerAlignment(const DataLayout &DL) const { 767 assert(getType()->isPointerTy() && "must be pointer"); 768 if (auto *GO = dyn_cast<GlobalObject>(this)) { 769 if (isa<Function>(GO)) { 770 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 771 switch (DL.getFunctionPtrAlignType()) { 772 case DataLayout::FunctionPtrAlignType::Independent: 773 return FunctionPtrAlign; 774 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 775 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 776 } 777 llvm_unreachable("Unhandled FunctionPtrAlignType"); 778 } 779 const MaybeAlign Alignment(GO->getAlignment()); 780 if (!Alignment) { 781 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 782 Type *ObjectType = GVar->getValueType(); 783 if (ObjectType->isSized()) { 784 // If the object is defined in the current Module, we'll be giving 785 // it the preferred alignment. Otherwise, we have to assume that it 786 // may only have the minimum ABI alignment. 787 if (GVar->isStrongDefinitionForLinker()) 788 return DL.getPreferredAlign(GVar); 789 else 790 return DL.getABITypeAlign(ObjectType); 791 } 792 } 793 } 794 return Alignment.valueOrOne(); 795 } else if (const Argument *A = dyn_cast<Argument>(this)) { 796 const MaybeAlign Alignment = A->getParamAlign(); 797 if (!Alignment && A->hasStructRetAttr()) { 798 // An sret parameter has at least the ABI alignment of the return type. 799 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 800 if (EltTy->isSized()) 801 return DL.getABITypeAlign(EltTy); 802 } 803 return Alignment.valueOrOne(); 804 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 805 return AI->getAlign(); 806 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 807 MaybeAlign Alignment = Call->getRetAlign(); 808 if (!Alignment && Call->getCalledFunction()) 809 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 810 return Alignment.valueOrOne(); 811 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 812 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 813 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 814 return Align(CI->getLimitedValue()); 815 } 816 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 817 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 818 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 819 /*OnlyIfReduced=*/true))) { 820 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 821 // While the actual alignment may be large, elsewhere we have 822 // an arbitrary upper alignmet limit, so let's clamp to it. 823 return Align(TrailingZeros < Value::MaxAlignmentExponent 824 ? uint64_t(1) << TrailingZeros 825 : Value::MaximumAlignment); 826 } 827 } 828 return Align(1); 829 } 830 831 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 832 const BasicBlock *PredBB) const { 833 auto *PN = dyn_cast<PHINode>(this); 834 if (PN && PN->getParent() == CurBB) 835 return PN->getIncomingValueForBlock(PredBB); 836 return this; 837 } 838 839 LLVMContext &Value::getContext() const { return VTy->getContext(); } 840 841 void Value::reverseUseList() { 842 if (!UseList || !UseList->Next) 843 // No need to reverse 0 or 1 uses. 844 return; 845 846 Use *Head = UseList; 847 Use *Current = UseList->Next; 848 Head->Next = nullptr; 849 while (Current) { 850 Use *Next = Current->Next; 851 Current->Next = Head; 852 Head->Prev = &Current->Next; 853 Head = Current; 854 Current = Next; 855 } 856 UseList = Head; 857 Head->Prev = &UseList; 858 } 859 860 bool Value::isSwiftError() const { 861 auto *Arg = dyn_cast<Argument>(this); 862 if (Arg) 863 return Arg->hasSwiftErrorAttr(); 864 auto *Alloca = dyn_cast<AllocaInst>(this); 865 if (!Alloca) 866 return false; 867 return Alloca->isSwiftError(); 868 } 869 870 //===----------------------------------------------------------------------===// 871 // ValueHandleBase Class 872 //===----------------------------------------------------------------------===// 873 874 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 875 assert(List && "Handle list is null?"); 876 877 // Splice ourselves into the list. 878 Next = *List; 879 *List = this; 880 setPrevPtr(List); 881 if (Next) { 882 Next->setPrevPtr(&Next); 883 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 884 } 885 } 886 887 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 888 assert(List && "Must insert after existing node"); 889 890 Next = List->Next; 891 setPrevPtr(&List->Next); 892 List->Next = this; 893 if (Next) 894 Next->setPrevPtr(&Next); 895 } 896 897 void ValueHandleBase::AddToUseList() { 898 assert(getValPtr() && "Null pointer doesn't have a use list!"); 899 900 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 901 902 if (getValPtr()->HasValueHandle) { 903 // If this value already has a ValueHandle, then it must be in the 904 // ValueHandles map already. 905 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 906 assert(Entry && "Value doesn't have any handles?"); 907 AddToExistingUseList(&Entry); 908 return; 909 } 910 911 // Ok, it doesn't have any handles yet, so we must insert it into the 912 // DenseMap. However, doing this insertion could cause the DenseMap to 913 // reallocate itself, which would invalidate all of the PrevP pointers that 914 // point into the old table. Handle this by checking for reallocation and 915 // updating the stale pointers only if needed. 916 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 917 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 918 919 ValueHandleBase *&Entry = Handles[getValPtr()]; 920 assert(!Entry && "Value really did already have handles?"); 921 AddToExistingUseList(&Entry); 922 getValPtr()->HasValueHandle = true; 923 924 // If reallocation didn't happen or if this was the first insertion, don't 925 // walk the table. 926 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 927 Handles.size() == 1) { 928 return; 929 } 930 931 // Okay, reallocation did happen. Fix the Prev Pointers. 932 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 933 E = Handles.end(); I != E; ++I) { 934 assert(I->second && I->first == I->second->getValPtr() && 935 "List invariant broken!"); 936 I->second->setPrevPtr(&I->second); 937 } 938 } 939 940 void ValueHandleBase::RemoveFromUseList() { 941 assert(getValPtr() && getValPtr()->HasValueHandle && 942 "Pointer doesn't have a use list!"); 943 944 // Unlink this from its use list. 945 ValueHandleBase **PrevPtr = getPrevPtr(); 946 assert(*PrevPtr == this && "List invariant broken"); 947 948 *PrevPtr = Next; 949 if (Next) { 950 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 951 Next->setPrevPtr(PrevPtr); 952 return; 953 } 954 955 // If the Next pointer was null, then it is possible that this was the last 956 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 957 // map. 958 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 959 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 960 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 961 Handles.erase(getValPtr()); 962 getValPtr()->HasValueHandle = false; 963 } 964 } 965 966 void ValueHandleBase::ValueIsDeleted(Value *V) { 967 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 968 969 // Get the linked list base, which is guaranteed to exist since the 970 // HasValueHandle flag is set. 971 LLVMContextImpl *pImpl = V->getContext().pImpl; 972 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 973 assert(Entry && "Value bit set but no entries exist"); 974 975 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 976 // and remove themselves from the list without breaking our iteration. This 977 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 978 // Note that we deliberately do not the support the case when dropping a value 979 // handle results in a new value handle being permanently added to the list 980 // (as might occur in theory for CallbackVH's): the new value handle will not 981 // be processed and the checking code will mete out righteous punishment if 982 // the handle is still present once we have finished processing all the other 983 // value handles (it is fine to momentarily add then remove a value handle). 984 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 985 Iterator.RemoveFromUseList(); 986 Iterator.AddToExistingUseListAfter(Entry); 987 assert(Entry->Next == &Iterator && "Loop invariant broken."); 988 989 switch (Entry->getKind()) { 990 case Assert: 991 break; 992 case Weak: 993 case WeakTracking: 994 // WeakTracking and Weak just go to null, which unlinks them 995 // from the list. 996 Entry->operator=(nullptr); 997 break; 998 case Callback: 999 // Forward to the subclass's implementation. 1000 static_cast<CallbackVH*>(Entry)->deleted(); 1001 break; 1002 } 1003 } 1004 1005 // All callbacks, weak references, and assertingVHs should be dropped by now. 1006 if (V->HasValueHandle) { 1007 #ifndef NDEBUG // Only in +Asserts mode... 1008 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1009 << "\n"; 1010 if (pImpl->ValueHandles[V]->getKind() == Assert) 1011 llvm_unreachable("An asserting value handle still pointed to this" 1012 " value!"); 1013 1014 #endif 1015 llvm_unreachable("All references to V were not removed?"); 1016 } 1017 } 1018 1019 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1020 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1021 assert(Old != New && "Changing value into itself!"); 1022 assert(Old->getType() == New->getType() && 1023 "replaceAllUses of value with new value of different type!"); 1024 1025 // Get the linked list base, which is guaranteed to exist since the 1026 // HasValueHandle flag is set. 1027 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1028 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1029 1030 assert(Entry && "Value bit set but no entries exist"); 1031 1032 // We use a local ValueHandleBase as an iterator so that 1033 // ValueHandles can add and remove themselves from the list without 1034 // breaking our iteration. This is not really an AssertingVH; we 1035 // just have to give ValueHandleBase some kind. 1036 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1037 Iterator.RemoveFromUseList(); 1038 Iterator.AddToExistingUseListAfter(Entry); 1039 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1040 1041 switch (Entry->getKind()) { 1042 case Assert: 1043 case Weak: 1044 // Asserting and Weak handles do not follow RAUW implicitly. 1045 break; 1046 case WeakTracking: 1047 // Weak goes to the new value, which will unlink it from Old's list. 1048 Entry->operator=(New); 1049 break; 1050 case Callback: 1051 // Forward to the subclass's implementation. 1052 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1053 break; 1054 } 1055 } 1056 1057 #ifndef NDEBUG 1058 // If any new weak value handles were added while processing the 1059 // list, then complain about it now. 1060 if (Old->HasValueHandle) 1061 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1062 switch (Entry->getKind()) { 1063 case WeakTracking: 1064 dbgs() << "After RAUW from " << *Old->getType() << " %" 1065 << Old->getName() << " to " << *New->getType() << " %" 1066 << New->getName() << "\n"; 1067 llvm_unreachable( 1068 "A weak tracking value handle still pointed to the old value!\n"); 1069 default: 1070 break; 1071 } 1072 #endif 1073 } 1074 1075 // Pin the vtable to this file. 1076 void CallbackVH::anchor() {} 1077