xref: /llvm-project-15.0.7/llvm/lib/IR/Value.cpp (revision dcc8fc9e)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/DerivedUser.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/Statepoint.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace llvm;
41 
42 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
43     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
44     cl::desc("Maximum size for the name of non-global values."));
45 
46 //===----------------------------------------------------------------------===//
47 //                                Value Class
48 //===----------------------------------------------------------------------===//
49 static inline Type *checkType(Type *Ty) {
50   assert(Ty && "Value defined with a null type: Error!");
51   return Ty;
52 }
53 
54 Value::Value(Type *ty, unsigned scid)
55     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
56       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
57       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
58   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
59   // FIXME: Why isn't this in the subclass gunk??
60   // Note, we cannot call isa<CallInst> before the CallInst has been
61   // constructed.
62   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
63     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
64            "invalid CallInst type!");
65   else if (SubclassID != BasicBlockVal &&
66            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
67     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
68            "Cannot create non-first-class values except for constants!");
69   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
70                 "Value too big");
71 }
72 
73 Value::~Value() {
74   // Notify all ValueHandles (if present) that this value is going away.
75   if (HasValueHandle)
76     ValueHandleBase::ValueIsDeleted(this);
77   if (isUsedByMetadata())
78     ValueAsMetadata::handleDeletion(this);
79 
80 #ifndef NDEBUG      // Only in -g mode...
81   // Check to make sure that there are no uses of this value that are still
82   // around when the value is destroyed.  If there are, then we have a dangling
83   // reference and something is wrong.  This code is here to print out where
84   // the value is still being referenced.
85   //
86   if (!use_empty()) {
87     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
88     for (auto *U : users())
89       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
90   }
91 #endif
92   assert(use_empty() && "Uses remain when a value is destroyed!");
93 
94   // If this value is named, destroy the name.  This should not be in a symtab
95   // at this point.
96   destroyValueName();
97 }
98 
99 void Value::deleteValue() {
100   switch (getValueID()) {
101 #define HANDLE_VALUE(Name)                                                     \
102   case Value::Name##Val:                                                       \
103     delete static_cast<Name *>(this);                                          \
104     break;
105 #define HANDLE_MEMORY_VALUE(Name)                                              \
106   case Value::Name##Val:                                                       \
107     static_cast<DerivedUser *>(this)->DeleteValue(                             \
108         static_cast<DerivedUser *>(this));                                     \
109     break;
110 #define HANDLE_INSTRUCTION(Name)  /* nothing */
111 #include "llvm/IR/Value.def"
112 
113 #define HANDLE_INST(N, OPC, CLASS)                                             \
114   case Value::InstructionVal + Instruction::OPC:                               \
115     delete static_cast<CLASS *>(this);                                         \
116     break;
117 #define HANDLE_USER_INST(N, OPC, CLASS)
118 #include "llvm/IR/Instruction.def"
119 
120   default:
121     llvm_unreachable("attempting to delete unknown value kind");
122   }
123 }
124 
125 void Value::destroyValueName() {
126   ValueName *Name = getValueName();
127   if (Name)
128     Name->Destroy();
129   setValueName(nullptr);
130 }
131 
132 bool Value::hasNUses(unsigned N) const {
133   return hasNItems(use_begin(), use_end(), N);
134 }
135 
136 bool Value::hasNUsesOrMore(unsigned N) const {
137   return hasNItemsOrMore(use_begin(), use_end(), N);
138 }
139 
140 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
141   // This can be computed either by scanning the instructions in BB, or by
142   // scanning the use list of this Value. Both lists can be very long, but
143   // usually one is quite short.
144   //
145   // Scan both lists simultaneously until one is exhausted. This limits the
146   // search to the shorter list.
147   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
148   const_user_iterator UI = user_begin(), UE = user_end();
149   for (; BI != BE && UI != UE; ++BI, ++UI) {
150     // Scan basic block: Check if this Value is used by the instruction at BI.
151     if (is_contained(BI->operands(), this))
152       return true;
153     // Scan use list: Check if the use at UI is in BB.
154     const auto *User = dyn_cast<Instruction>(*UI);
155     if (User && User->getParent() == BB)
156       return true;
157   }
158   return false;
159 }
160 
161 unsigned Value::getNumUses() const {
162   return (unsigned)std::distance(use_begin(), use_end());
163 }
164 
165 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
166   ST = nullptr;
167   if (Instruction *I = dyn_cast<Instruction>(V)) {
168     if (BasicBlock *P = I->getParent())
169       if (Function *PP = P->getParent())
170         ST = PP->getValueSymbolTable();
171   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
172     if (Function *P = BB->getParent())
173       ST = P->getValueSymbolTable();
174   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
175     if (Module *P = GV->getParent())
176       ST = &P->getValueSymbolTable();
177   } else if (Argument *A = dyn_cast<Argument>(V)) {
178     if (Function *P = A->getParent())
179       ST = P->getValueSymbolTable();
180   } else {
181     assert(isa<Constant>(V) && "Unknown value type!");
182     return true;  // no name is setable for this.
183   }
184   return false;
185 }
186 
187 ValueName *Value::getValueName() const {
188   if (!HasName) return nullptr;
189 
190   LLVMContext &Ctx = getContext();
191   auto I = Ctx.pImpl->ValueNames.find(this);
192   assert(I != Ctx.pImpl->ValueNames.end() &&
193          "No name entry found!");
194 
195   return I->second;
196 }
197 
198 void Value::setValueName(ValueName *VN) {
199   LLVMContext &Ctx = getContext();
200 
201   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
202          "HasName bit out of sync!");
203 
204   if (!VN) {
205     if (HasName)
206       Ctx.pImpl->ValueNames.erase(this);
207     HasName = false;
208     return;
209   }
210 
211   HasName = true;
212   Ctx.pImpl->ValueNames[this] = VN;
213 }
214 
215 StringRef Value::getName() const {
216   // Make sure the empty string is still a C string. For historical reasons,
217   // some clients want to call .data() on the result and expect it to be null
218   // terminated.
219   if (!hasName())
220     return StringRef("", 0);
221   return getValueName()->getKey();
222 }
223 
224 void Value::setNameImpl(const Twine &NewName) {
225   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
226   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
227     return;
228 
229   // Fast path for common IRBuilder case of setName("") when there is no name.
230   if (NewName.isTriviallyEmpty() && !hasName())
231     return;
232 
233   SmallString<256> NameData;
234   StringRef NameRef = NewName.toStringRef(NameData);
235   assert(NameRef.find_first_of(0) == StringRef::npos &&
236          "Null bytes are not allowed in names");
237 
238   // Name isn't changing?
239   if (getName() == NameRef)
240     return;
241 
242   // Cap the size of non-GlobalValue names.
243   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
244     NameRef =
245         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
246 
247   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
248 
249   // Get the symbol table to update for this object.
250   ValueSymbolTable *ST;
251   if (getSymTab(this, ST))
252     return;  // Cannot set a name on this value (e.g. constant).
253 
254   if (!ST) { // No symbol table to update?  Just do the change.
255     if (NameRef.empty()) {
256       // Free the name for this value.
257       destroyValueName();
258       return;
259     }
260 
261     // NOTE: Could optimize for the case the name is shrinking to not deallocate
262     // then reallocated.
263     destroyValueName();
264 
265     // Create the new name.
266     setValueName(ValueName::Create(NameRef));
267     getValueName()->setValue(this);
268     return;
269   }
270 
271   // NOTE: Could optimize for the case the name is shrinking to not deallocate
272   // then reallocated.
273   if (hasName()) {
274     // Remove old name.
275     ST->removeValueName(getValueName());
276     destroyValueName();
277 
278     if (NameRef.empty())
279       return;
280   }
281 
282   // Name is changing to something new.
283   setValueName(ST->createValueName(NameRef, this));
284 }
285 
286 void Value::setName(const Twine &NewName) {
287   setNameImpl(NewName);
288   if (Function *F = dyn_cast<Function>(this))
289     F->recalculateIntrinsicID();
290 }
291 
292 void Value::takeName(Value *V) {
293   ValueSymbolTable *ST = nullptr;
294   // If this value has a name, drop it.
295   if (hasName()) {
296     // Get the symtab this is in.
297     if (getSymTab(this, ST)) {
298       // We can't set a name on this value, but we need to clear V's name if
299       // it has one.
300       if (V->hasName()) V->setName("");
301       return;  // Cannot set a name on this value (e.g. constant).
302     }
303 
304     // Remove old name.
305     if (ST)
306       ST->removeValueName(getValueName());
307     destroyValueName();
308   }
309 
310   // Now we know that this has no name.
311 
312   // If V has no name either, we're done.
313   if (!V->hasName()) return;
314 
315   // Get this's symtab if we didn't before.
316   if (!ST) {
317     if (getSymTab(this, ST)) {
318       // Clear V's name.
319       V->setName("");
320       return;  // Cannot set a name on this value (e.g. constant).
321     }
322   }
323 
324   // Get V's ST, this should always succed, because V has a name.
325   ValueSymbolTable *VST;
326   bool Failure = getSymTab(V, VST);
327   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
328 
329   // If these values are both in the same symtab, we can do this very fast.
330   // This works even if both values have no symtab yet.
331   if (ST == VST) {
332     // Take the name!
333     setValueName(V->getValueName());
334     V->setValueName(nullptr);
335     getValueName()->setValue(this);
336     return;
337   }
338 
339   // Otherwise, things are slightly more complex.  Remove V's name from VST and
340   // then reinsert it into ST.
341 
342   if (VST)
343     VST->removeValueName(V->getValueName());
344   setValueName(V->getValueName());
345   V->setValueName(nullptr);
346   getValueName()->setValue(this);
347 
348   if (ST)
349     ST->reinsertValue(this);
350 }
351 
352 void Value::assertModuleIsMaterializedImpl() const {
353 #ifndef NDEBUG
354   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
355   if (!GV)
356     return;
357   const Module *M = GV->getParent();
358   if (!M)
359     return;
360   assert(M->isMaterialized());
361 #endif
362 }
363 
364 #ifndef NDEBUG
365 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
366                      Constant *C) {
367   if (!Cache.insert(Expr).second)
368     return false;
369 
370   for (auto &O : Expr->operands()) {
371     if (O == C)
372       return true;
373     auto *CE = dyn_cast<ConstantExpr>(O);
374     if (!CE)
375       continue;
376     if (contains(Cache, CE, C))
377       return true;
378   }
379   return false;
380 }
381 
382 static bool contains(Value *Expr, Value *V) {
383   if (Expr == V)
384     return true;
385 
386   auto *C = dyn_cast<Constant>(V);
387   if (!C)
388     return false;
389 
390   auto *CE = dyn_cast<ConstantExpr>(Expr);
391   if (!CE)
392     return false;
393 
394   SmallPtrSet<ConstantExpr *, 4> Cache;
395   return contains(Cache, CE, C);
396 }
397 #endif // NDEBUG
398 
399 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
400   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
401   assert(!contains(New, this) &&
402          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
403   assert(New->getType() == getType() &&
404          "replaceAllUses of value with new value of different type!");
405 
406   // Notify all ValueHandles (if present) that this value is going away.
407   if (HasValueHandle)
408     ValueHandleBase::ValueIsRAUWd(this, New);
409   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
410     ValueAsMetadata::handleRAUW(this, New);
411 
412   while (!materialized_use_empty()) {
413     Use &U = *UseList;
414     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
415     // constant because they are uniqued.
416     if (auto *C = dyn_cast<Constant>(U.getUser())) {
417       if (!isa<GlobalValue>(C)) {
418         C->handleOperandChange(this, New);
419         continue;
420       }
421     }
422 
423     U.set(New);
424   }
425 
426   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
427     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
428 }
429 
430 void Value::replaceAllUsesWith(Value *New) {
431   doRAUW(New, ReplaceMetadataUses::Yes);
432 }
433 
434 void Value::replaceNonMetadataUsesWith(Value *New) {
435   doRAUW(New, ReplaceMetadataUses::No);
436 }
437 
438 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
439 // This routine leaves uses within BB.
440 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
441   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
442   assert(!contains(New, this) &&
443          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
444   assert(New->getType() == getType() &&
445          "replaceUses of value with new value of different type!");
446   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
447 
448   use_iterator UI = use_begin(), E = use_end();
449   for (; UI != E;) {
450     Use &U = *UI;
451     ++UI;
452     auto *Usr = dyn_cast<Instruction>(U.getUser());
453     if (Usr && Usr->getParent() == BB)
454       continue;
455     U.set(New);
456   }
457 }
458 
459 namespace {
460 // Various metrics for how much to strip off of pointers.
461 enum PointerStripKind {
462   PSK_ZeroIndices,
463   PSK_ZeroIndicesAndAliases,
464   PSK_ZeroIndicesAndAliasesAndInvariantGroups,
465   PSK_InBoundsConstantIndices,
466   PSK_InBounds
467 };
468 
469 template <PointerStripKind StripKind>
470 static const Value *stripPointerCastsAndOffsets(const Value *V) {
471   if (!V->getType()->isPointerTy())
472     return V;
473 
474   // Even though we don't look through PHI nodes, we could be called on an
475   // instruction in an unreachable block, which may be on a cycle.
476   SmallPtrSet<const Value *, 4> Visited;
477 
478   Visited.insert(V);
479   do {
480     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
481       switch (StripKind) {
482       case PSK_ZeroIndicesAndAliases:
483       case PSK_ZeroIndicesAndAliasesAndInvariantGroups:
484       case PSK_ZeroIndices:
485         if (!GEP->hasAllZeroIndices())
486           return V;
487         break;
488       case PSK_InBoundsConstantIndices:
489         if (!GEP->hasAllConstantIndices())
490           return V;
491         LLVM_FALLTHROUGH;
492       case PSK_InBounds:
493         if (!GEP->isInBounds())
494           return V;
495         break;
496       }
497       V = GEP->getPointerOperand();
498     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
499                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
500       V = cast<Operator>(V)->getOperand(0);
501     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
502       if (StripKind == PSK_ZeroIndices || GA->isInterposable())
503         return V;
504       V = GA->getAliasee();
505     } else {
506       if (auto CS = ImmutableCallSite(V)) {
507         if (const Value *RV = CS.getReturnedArgOperand()) {
508           V = RV;
509           continue;
510         }
511         // The result of launder.invariant.group must alias it's argument,
512         // but it can't be marked with returned attribute, that's why it needs
513         // special case.
514         if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups &&
515             (CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
516              CS.getIntrinsicID() == Intrinsic::strip_invariant_group)) {
517           V = CS.getArgOperand(0);
518           continue;
519         }
520       }
521       return V;
522     }
523     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
524   } while (Visited.insert(V).second);
525 
526   return V;
527 }
528 } // end anonymous namespace
529 
530 const Value *Value::stripPointerCasts() const {
531   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
532 }
533 
534 const Value *Value::stripPointerCastsNoFollowAliases() const {
535   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
536 }
537 
538 const Value *Value::stripInBoundsConstantOffsets() const {
539   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
540 }
541 
542 const Value *Value::stripPointerCastsAndInvariantGroups() const {
543   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>(
544       this);
545 }
546 
547 const Value *
548 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
549                                                  APInt &Offset) const {
550   if (!getType()->isPointerTy())
551     return this;
552 
553   assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>(
554                                      getType())->getAddressSpace()) &&
555          "The offset bit width does not match the DL specification.");
556 
557   // Even though we don't look through PHI nodes, we could be called on an
558   // instruction in an unreachable block, which may be on a cycle.
559   SmallPtrSet<const Value *, 4> Visited;
560   Visited.insert(this);
561   const Value *V = this;
562   do {
563     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
564       if (!GEP->isInBounds())
565         return V;
566       APInt GEPOffset(Offset);
567       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
568         return V;
569       Offset = GEPOffset;
570       V = GEP->getPointerOperand();
571     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
572       V = cast<Operator>(V)->getOperand(0);
573     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
574       V = GA->getAliasee();
575     } else {
576       if (auto CS = ImmutableCallSite(V))
577         if (const Value *RV = CS.getReturnedArgOperand()) {
578           V = RV;
579           continue;
580         }
581 
582       return V;
583     }
584     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
585   } while (Visited.insert(V).second);
586 
587   return V;
588 }
589 
590 const Value *Value::stripInBoundsOffsets() const {
591   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
592 }
593 
594 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
595                                                bool &CanBeNull) const {
596   assert(getType()->isPointerTy() && "must be pointer");
597 
598   uint64_t DerefBytes = 0;
599   CanBeNull = false;
600   if (const Argument *A = dyn_cast<Argument>(this)) {
601     DerefBytes = A->getDereferenceableBytes();
602     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
603       Type *PT = cast<PointerType>(A->getType())->getElementType();
604       if (PT->isSized())
605         DerefBytes = DL.getTypeStoreSize(PT);
606     }
607     if (DerefBytes == 0) {
608       DerefBytes = A->getDereferenceableOrNullBytes();
609       CanBeNull = true;
610     }
611   } else if (auto CS = ImmutableCallSite(this)) {
612     DerefBytes = CS.getDereferenceableBytes(AttributeList::ReturnIndex);
613     if (DerefBytes == 0) {
614       DerefBytes = CS.getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
615       CanBeNull = true;
616     }
617   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
618     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
619       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
620       DerefBytes = CI->getLimitedValue();
621     }
622     if (DerefBytes == 0) {
623       if (MDNode *MD =
624               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
625         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
626         DerefBytes = CI->getLimitedValue();
627       }
628       CanBeNull = true;
629     }
630   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
631     if (!AI->isArrayAllocation()) {
632       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
633       CanBeNull = false;
634     }
635   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
636     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
637       // TODO: Don't outright reject hasExternalWeakLinkage but set the
638       // CanBeNull flag.
639       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
640       CanBeNull = false;
641     }
642   }
643   return DerefBytes;
644 }
645 
646 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
647   assert(getType()->isPointerTy() && "must be pointer");
648 
649   unsigned Align = 0;
650   if (auto *GO = dyn_cast<GlobalObject>(this)) {
651     // Don't make any assumptions about function pointer alignment. Some
652     // targets use the LSBs to store additional information.
653     if (isa<Function>(GO))
654       return 0;
655     Align = GO->getAlignment();
656     if (Align == 0) {
657       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
658         Type *ObjectType = GVar->getValueType();
659         if (ObjectType->isSized()) {
660           // If the object is defined in the current Module, we'll be giving
661           // it the preferred alignment. Otherwise, we have to assume that it
662           // may only have the minimum ABI alignment.
663           if (GVar->isStrongDefinitionForLinker())
664             Align = DL.getPreferredAlignment(GVar);
665           else
666             Align = DL.getABITypeAlignment(ObjectType);
667         }
668       }
669     }
670   } else if (const Argument *A = dyn_cast<Argument>(this)) {
671     Align = A->getParamAlignment();
672 
673     if (!Align && A->hasStructRetAttr()) {
674       // An sret parameter has at least the ABI alignment of the return type.
675       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
676       if (EltTy->isSized())
677         Align = DL.getABITypeAlignment(EltTy);
678     }
679   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
680     Align = AI->getAlignment();
681     if (Align == 0) {
682       Type *AllocatedType = AI->getAllocatedType();
683       if (AllocatedType->isSized())
684         Align = DL.getPrefTypeAlignment(AllocatedType);
685     }
686   } else if (auto CS = ImmutableCallSite(this))
687     Align = CS.getAttributes().getRetAlignment();
688   else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
689     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
690       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
691       Align = CI->getLimitedValue();
692     }
693 
694   return Align;
695 }
696 
697 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
698                                      const BasicBlock *PredBB) const {
699   auto *PN = dyn_cast<PHINode>(this);
700   if (PN && PN->getParent() == CurBB)
701     return PN->getIncomingValueForBlock(PredBB);
702   return this;
703 }
704 
705 LLVMContext &Value::getContext() const { return VTy->getContext(); }
706 
707 void Value::reverseUseList() {
708   if (!UseList || !UseList->Next)
709     // No need to reverse 0 or 1 uses.
710     return;
711 
712   Use *Head = UseList;
713   Use *Current = UseList->Next;
714   Head->Next = nullptr;
715   while (Current) {
716     Use *Next = Current->Next;
717     Current->Next = Head;
718     Head->setPrev(&Current->Next);
719     Head = Current;
720     Current = Next;
721   }
722   UseList = Head;
723   Head->setPrev(&UseList);
724 }
725 
726 bool Value::isSwiftError() const {
727   auto *Arg = dyn_cast<Argument>(this);
728   if (Arg)
729     return Arg->hasSwiftErrorAttr();
730   auto *Alloca = dyn_cast<AllocaInst>(this);
731   if (!Alloca)
732     return false;
733   return Alloca->isSwiftError();
734 }
735 
736 //===----------------------------------------------------------------------===//
737 //                             ValueHandleBase Class
738 //===----------------------------------------------------------------------===//
739 
740 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
741   assert(List && "Handle list is null?");
742 
743   // Splice ourselves into the list.
744   Next = *List;
745   *List = this;
746   setPrevPtr(List);
747   if (Next) {
748     Next->setPrevPtr(&Next);
749     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
750   }
751 }
752 
753 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
754   assert(List && "Must insert after existing node");
755 
756   Next = List->Next;
757   setPrevPtr(&List->Next);
758   List->Next = this;
759   if (Next)
760     Next->setPrevPtr(&Next);
761 }
762 
763 void ValueHandleBase::AddToUseList() {
764   assert(getValPtr() && "Null pointer doesn't have a use list!");
765 
766   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
767 
768   if (getValPtr()->HasValueHandle) {
769     // If this value already has a ValueHandle, then it must be in the
770     // ValueHandles map already.
771     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
772     assert(Entry && "Value doesn't have any handles?");
773     AddToExistingUseList(&Entry);
774     return;
775   }
776 
777   // Ok, it doesn't have any handles yet, so we must insert it into the
778   // DenseMap.  However, doing this insertion could cause the DenseMap to
779   // reallocate itself, which would invalidate all of the PrevP pointers that
780   // point into the old table.  Handle this by checking for reallocation and
781   // updating the stale pointers only if needed.
782   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
783   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
784 
785   ValueHandleBase *&Entry = Handles[getValPtr()];
786   assert(!Entry && "Value really did already have handles?");
787   AddToExistingUseList(&Entry);
788   getValPtr()->HasValueHandle = true;
789 
790   // If reallocation didn't happen or if this was the first insertion, don't
791   // walk the table.
792   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
793       Handles.size() == 1) {
794     return;
795   }
796 
797   // Okay, reallocation did happen.  Fix the Prev Pointers.
798   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
799        E = Handles.end(); I != E; ++I) {
800     assert(I->second && I->first == I->second->getValPtr() &&
801            "List invariant broken!");
802     I->second->setPrevPtr(&I->second);
803   }
804 }
805 
806 void ValueHandleBase::RemoveFromUseList() {
807   assert(getValPtr() && getValPtr()->HasValueHandle &&
808          "Pointer doesn't have a use list!");
809 
810   // Unlink this from its use list.
811   ValueHandleBase **PrevPtr = getPrevPtr();
812   assert(*PrevPtr == this && "List invariant broken");
813 
814   *PrevPtr = Next;
815   if (Next) {
816     assert(Next->getPrevPtr() == &Next && "List invariant broken");
817     Next->setPrevPtr(PrevPtr);
818     return;
819   }
820 
821   // If the Next pointer was null, then it is possible that this was the last
822   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
823   // map.
824   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
825   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
826   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
827     Handles.erase(getValPtr());
828     getValPtr()->HasValueHandle = false;
829   }
830 }
831 
832 void ValueHandleBase::ValueIsDeleted(Value *V) {
833   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
834 
835   // Get the linked list base, which is guaranteed to exist since the
836   // HasValueHandle flag is set.
837   LLVMContextImpl *pImpl = V->getContext().pImpl;
838   ValueHandleBase *Entry = pImpl->ValueHandles[V];
839   assert(Entry && "Value bit set but no entries exist");
840 
841   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
842   // and remove themselves from the list without breaking our iteration.  This
843   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
844   // Note that we deliberately do not the support the case when dropping a value
845   // handle results in a new value handle being permanently added to the list
846   // (as might occur in theory for CallbackVH's): the new value handle will not
847   // be processed and the checking code will mete out righteous punishment if
848   // the handle is still present once we have finished processing all the other
849   // value handles (it is fine to momentarily add then remove a value handle).
850   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
851     Iterator.RemoveFromUseList();
852     Iterator.AddToExistingUseListAfter(Entry);
853     assert(Entry->Next == &Iterator && "Loop invariant broken.");
854 
855     switch (Entry->getKind()) {
856     case Assert:
857       break;
858     case Weak:
859     case WeakTracking:
860       // WeakTracking and Weak just go to null, which unlinks them
861       // from the list.
862       Entry->operator=(nullptr);
863       break;
864     case Callback:
865       // Forward to the subclass's implementation.
866       static_cast<CallbackVH*>(Entry)->deleted();
867       break;
868     }
869   }
870 
871   // All callbacks, weak references, and assertingVHs should be dropped by now.
872   if (V->HasValueHandle) {
873 #ifndef NDEBUG      // Only in +Asserts mode...
874     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
875            << "\n";
876     if (pImpl->ValueHandles[V]->getKind() == Assert)
877       llvm_unreachable("An asserting value handle still pointed to this"
878                        " value!");
879 
880 #endif
881     llvm_unreachable("All references to V were not removed?");
882   }
883 }
884 
885 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
886   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
887   assert(Old != New && "Changing value into itself!");
888   assert(Old->getType() == New->getType() &&
889          "replaceAllUses of value with new value of different type!");
890 
891   // Get the linked list base, which is guaranteed to exist since the
892   // HasValueHandle flag is set.
893   LLVMContextImpl *pImpl = Old->getContext().pImpl;
894   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
895 
896   assert(Entry && "Value bit set but no entries exist");
897 
898   // We use a local ValueHandleBase as an iterator so that
899   // ValueHandles can add and remove themselves from the list without
900   // breaking our iteration.  This is not really an AssertingVH; we
901   // just have to give ValueHandleBase some kind.
902   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
903     Iterator.RemoveFromUseList();
904     Iterator.AddToExistingUseListAfter(Entry);
905     assert(Entry->Next == &Iterator && "Loop invariant broken.");
906 
907     switch (Entry->getKind()) {
908     case Assert:
909     case Weak:
910       // Asserting and Weak handles do not follow RAUW implicitly.
911       break;
912     case WeakTracking:
913       // Weak goes to the new value, which will unlink it from Old's list.
914       Entry->operator=(New);
915       break;
916     case Callback:
917       // Forward to the subclass's implementation.
918       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
919       break;
920     }
921   }
922 
923 #ifndef NDEBUG
924   // If any new weak value handles were added while processing the
925   // list, then complain about it now.
926   if (Old->HasValueHandle)
927     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
928       switch (Entry->getKind()) {
929       case WeakTracking:
930         dbgs() << "After RAUW from " << *Old->getType() << " %"
931                << Old->getName() << " to " << *New->getType() << " %"
932                << New->getName() << "\n";
933         llvm_unreachable(
934             "A weak tracking value handle still pointed to the  old value!\n");
935       default:
936         break;
937       }
938 #endif
939 }
940 
941 // Pin the vtable to this file.
942 void CallbackVH::anchor() {}
943