xref: /llvm-project-15.0.7/llvm/lib/IR/Value.cpp (revision bf02bcff)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 
39 using namespace llvm;
40 
41 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
42     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
43     cl::desc("Maximum size for the name of non-global values."));
44 
45 //===----------------------------------------------------------------------===//
46 //                                Value Class
47 //===----------------------------------------------------------------------===//
48 static inline Type *checkType(Type *Ty) {
49   assert(Ty && "Value defined with a null type: Error!");
50   return Ty;
51 }
52 
53 Value::Value(Type *ty, unsigned scid)
54     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
55       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
56       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
57   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58   // FIXME: Why isn't this in the subclass gunk??
59   // Note, we cannot call isa<CallInst> before the CallInst has been
60   // constructed.
61   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
62       SubclassID == Instruction::CallBr)
63     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
64            "invalid CallInst type!");
65   else if (SubclassID != BasicBlockVal &&
66            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
67     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
68            "Cannot create non-first-class values except for constants!");
69   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
70                 "Value too big");
71 }
72 
73 Value::~Value() {
74   // Notify all ValueHandles (if present) that this value is going away.
75   if (HasValueHandle)
76     ValueHandleBase::ValueIsDeleted(this);
77   if (isUsedByMetadata())
78     ValueAsMetadata::handleDeletion(this);
79 
80 #ifndef NDEBUG      // Only in -g mode...
81   // Check to make sure that there are no uses of this value that are still
82   // around when the value is destroyed.  If there are, then we have a dangling
83   // reference and something is wrong.  This code is here to print out where
84   // the value is still being referenced.
85   //
86   // Note that use_empty() cannot be called here, as it eventually downcasts
87   // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
88   // been destructed, so accessing it is UB.
89   //
90   if (!materialized_use_empty()) {
91     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
92     for (auto *U : users())
93       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
94   }
95 #endif
96   assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
97 
98   // If this value is named, destroy the name.  This should not be in a symtab
99   // at this point.
100   destroyValueName();
101 }
102 
103 void Value::deleteValue() {
104   switch (getValueID()) {
105 #define HANDLE_VALUE(Name)                                                     \
106   case Value::Name##Val:                                                       \
107     delete static_cast<Name *>(this);                                          \
108     break;
109 #define HANDLE_MEMORY_VALUE(Name)                                              \
110   case Value::Name##Val:                                                       \
111     static_cast<DerivedUser *>(this)->DeleteValue(                             \
112         static_cast<DerivedUser *>(this));                                     \
113     break;
114 #define HANDLE_INSTRUCTION(Name)  /* nothing */
115 #include "llvm/IR/Value.def"
116 
117 #define HANDLE_INST(N, OPC, CLASS)                                             \
118   case Value::InstructionVal + Instruction::OPC:                               \
119     delete static_cast<CLASS *>(this);                                         \
120     break;
121 #define HANDLE_USER_INST(N, OPC, CLASS)
122 #include "llvm/IR/Instruction.def"
123 
124   default:
125     llvm_unreachable("attempting to delete unknown value kind");
126   }
127 }
128 
129 void Value::destroyValueName() {
130   ValueName *Name = getValueName();
131   if (Name) {
132     MallocAllocator Allocator;
133     Name->Destroy(Allocator);
134   }
135   setValueName(nullptr);
136 }
137 
138 bool Value::hasNUses(unsigned N) const {
139   return hasNItems(use_begin(), use_end(), N);
140 }
141 
142 bool Value::hasNUsesOrMore(unsigned N) const {
143   return hasNItemsOrMore(use_begin(), use_end(), N);
144 }
145 
146 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
147 
148 Use *Value::getSingleUndroppableUse() {
149   Use *Result = nullptr;
150   for (Use &U : uses()) {
151     if (!U.getUser()->isDroppable()) {
152       if (Result)
153         return nullptr;
154       Result = &U;
155     }
156   }
157   return Result;
158 }
159 
160 bool Value::hasNUndroppableUses(unsigned int N) const {
161   return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
162 }
163 
164 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
165   return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
166 }
167 
168 void Value::dropDroppableUses(
169     llvm::function_ref<bool(const Use *)> ShouldDrop) {
170   SmallVector<Use *, 8> ToBeEdited;
171   for (Use &U : uses())
172     if (U.getUser()->isDroppable() && ShouldDrop(&U))
173       ToBeEdited.push_back(&U);
174   for (Use *U : ToBeEdited) {
175     U->removeFromList();
176     if (auto *Assume = dyn_cast<IntrinsicInst>(U->getUser())) {
177       assert(Assume->getIntrinsicID() == Intrinsic::assume);
178       unsigned OpNo = U->getOperandNo();
179       if (OpNo == 0)
180         Assume->setOperand(0, ConstantInt::getTrue(Assume->getContext()));
181       else {
182         Assume->setOperand(OpNo, UndefValue::get(U->get()->getType()));
183         CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
184         BOI.Tag = getContext().pImpl->getOrInsertBundleTag("ignore");
185       }
186     } else
187       llvm_unreachable("unkown droppable use");
188   }
189 }
190 
191 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
192   // This can be computed either by scanning the instructions in BB, or by
193   // scanning the use list of this Value. Both lists can be very long, but
194   // usually one is quite short.
195   //
196   // Scan both lists simultaneously until one is exhausted. This limits the
197   // search to the shorter list.
198   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
199   const_user_iterator UI = user_begin(), UE = user_end();
200   for (; BI != BE && UI != UE; ++BI, ++UI) {
201     // Scan basic block: Check if this Value is used by the instruction at BI.
202     if (is_contained(BI->operands(), this))
203       return true;
204     // Scan use list: Check if the use at UI is in BB.
205     const auto *User = dyn_cast<Instruction>(*UI);
206     if (User && User->getParent() == BB)
207       return true;
208   }
209   return false;
210 }
211 
212 unsigned Value::getNumUses() const {
213   return (unsigned)std::distance(use_begin(), use_end());
214 }
215 
216 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
217   ST = nullptr;
218   if (Instruction *I = dyn_cast<Instruction>(V)) {
219     if (BasicBlock *P = I->getParent())
220       if (Function *PP = P->getParent())
221         ST = PP->getValueSymbolTable();
222   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
223     if (Function *P = BB->getParent())
224       ST = P->getValueSymbolTable();
225   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
226     if (Module *P = GV->getParent())
227       ST = &P->getValueSymbolTable();
228   } else if (Argument *A = dyn_cast<Argument>(V)) {
229     if (Function *P = A->getParent())
230       ST = P->getValueSymbolTable();
231   } else {
232     assert(isa<Constant>(V) && "Unknown value type!");
233     return true;  // no name is setable for this.
234   }
235   return false;
236 }
237 
238 ValueName *Value::getValueName() const {
239   if (!HasName) return nullptr;
240 
241   LLVMContext &Ctx = getContext();
242   auto I = Ctx.pImpl->ValueNames.find(this);
243   assert(I != Ctx.pImpl->ValueNames.end() &&
244          "No name entry found!");
245 
246   return I->second;
247 }
248 
249 void Value::setValueName(ValueName *VN) {
250   LLVMContext &Ctx = getContext();
251 
252   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
253          "HasName bit out of sync!");
254 
255   if (!VN) {
256     if (HasName)
257       Ctx.pImpl->ValueNames.erase(this);
258     HasName = false;
259     return;
260   }
261 
262   HasName = true;
263   Ctx.pImpl->ValueNames[this] = VN;
264 }
265 
266 StringRef Value::getName() const {
267   // Make sure the empty string is still a C string. For historical reasons,
268   // some clients want to call .data() on the result and expect it to be null
269   // terminated.
270   if (!hasName())
271     return StringRef("", 0);
272   return getValueName()->getKey();
273 }
274 
275 void Value::setNameImpl(const Twine &NewName) {
276   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
277   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
278     return;
279 
280   // Fast path for common IRBuilder case of setName("") when there is no name.
281   if (NewName.isTriviallyEmpty() && !hasName())
282     return;
283 
284   SmallString<256> NameData;
285   StringRef NameRef = NewName.toStringRef(NameData);
286   assert(NameRef.find_first_of(0) == StringRef::npos &&
287          "Null bytes are not allowed in names");
288 
289   // Name isn't changing?
290   if (getName() == NameRef)
291     return;
292 
293   // Cap the size of non-GlobalValue names.
294   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
295     NameRef =
296         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
297 
298   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
299 
300   // Get the symbol table to update for this object.
301   ValueSymbolTable *ST;
302   if (getSymTab(this, ST))
303     return;  // Cannot set a name on this value (e.g. constant).
304 
305   if (!ST) { // No symbol table to update?  Just do the change.
306     if (NameRef.empty()) {
307       // Free the name for this value.
308       destroyValueName();
309       return;
310     }
311 
312     // NOTE: Could optimize for the case the name is shrinking to not deallocate
313     // then reallocated.
314     destroyValueName();
315 
316     // Create the new name.
317     MallocAllocator Allocator;
318     setValueName(ValueName::Create(NameRef, Allocator));
319     getValueName()->setValue(this);
320     return;
321   }
322 
323   // NOTE: Could optimize for the case the name is shrinking to not deallocate
324   // then reallocated.
325   if (hasName()) {
326     // Remove old name.
327     ST->removeValueName(getValueName());
328     destroyValueName();
329 
330     if (NameRef.empty())
331       return;
332   }
333 
334   // Name is changing to something new.
335   setValueName(ST->createValueName(NameRef, this));
336 }
337 
338 void Value::setName(const Twine &NewName) {
339   setNameImpl(NewName);
340   if (Function *F = dyn_cast<Function>(this))
341     F->recalculateIntrinsicID();
342 }
343 
344 void Value::takeName(Value *V) {
345   ValueSymbolTable *ST = nullptr;
346   // If this value has a name, drop it.
347   if (hasName()) {
348     // Get the symtab this is in.
349     if (getSymTab(this, ST)) {
350       // We can't set a name on this value, but we need to clear V's name if
351       // it has one.
352       if (V->hasName()) V->setName("");
353       return;  // Cannot set a name on this value (e.g. constant).
354     }
355 
356     // Remove old name.
357     if (ST)
358       ST->removeValueName(getValueName());
359     destroyValueName();
360   }
361 
362   // Now we know that this has no name.
363 
364   // If V has no name either, we're done.
365   if (!V->hasName()) return;
366 
367   // Get this's symtab if we didn't before.
368   if (!ST) {
369     if (getSymTab(this, ST)) {
370       // Clear V's name.
371       V->setName("");
372       return;  // Cannot set a name on this value (e.g. constant).
373     }
374   }
375 
376   // Get V's ST, this should always succed, because V has a name.
377   ValueSymbolTable *VST;
378   bool Failure = getSymTab(V, VST);
379   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
380 
381   // If these values are both in the same symtab, we can do this very fast.
382   // This works even if both values have no symtab yet.
383   if (ST == VST) {
384     // Take the name!
385     setValueName(V->getValueName());
386     V->setValueName(nullptr);
387     getValueName()->setValue(this);
388     return;
389   }
390 
391   // Otherwise, things are slightly more complex.  Remove V's name from VST and
392   // then reinsert it into ST.
393 
394   if (VST)
395     VST->removeValueName(V->getValueName());
396   setValueName(V->getValueName());
397   V->setValueName(nullptr);
398   getValueName()->setValue(this);
399 
400   if (ST)
401     ST->reinsertValue(this);
402 }
403 
404 void Value::assertModuleIsMaterializedImpl() const {
405 #ifndef NDEBUG
406   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
407   if (!GV)
408     return;
409   const Module *M = GV->getParent();
410   if (!M)
411     return;
412   assert(M->isMaterialized());
413 #endif
414 }
415 
416 #ifndef NDEBUG
417 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
418                      Constant *C) {
419   if (!Cache.insert(Expr).second)
420     return false;
421 
422   for (auto &O : Expr->operands()) {
423     if (O == C)
424       return true;
425     auto *CE = dyn_cast<ConstantExpr>(O);
426     if (!CE)
427       continue;
428     if (contains(Cache, CE, C))
429       return true;
430   }
431   return false;
432 }
433 
434 static bool contains(Value *Expr, Value *V) {
435   if (Expr == V)
436     return true;
437 
438   auto *C = dyn_cast<Constant>(V);
439   if (!C)
440     return false;
441 
442   auto *CE = dyn_cast<ConstantExpr>(Expr);
443   if (!CE)
444     return false;
445 
446   SmallPtrSet<ConstantExpr *, 4> Cache;
447   return contains(Cache, CE, C);
448 }
449 #endif // NDEBUG
450 
451 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
452   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
453   assert(!contains(New, this) &&
454          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
455   assert(New->getType() == getType() &&
456          "replaceAllUses of value with new value of different type!");
457 
458   // Notify all ValueHandles (if present) that this value is going away.
459   if (HasValueHandle)
460     ValueHandleBase::ValueIsRAUWd(this, New);
461   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
462     ValueAsMetadata::handleRAUW(this, New);
463 
464   while (!materialized_use_empty()) {
465     Use &U = *UseList;
466     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
467     // constant because they are uniqued.
468     if (auto *C = dyn_cast<Constant>(U.getUser())) {
469       if (!isa<GlobalValue>(C)) {
470         C->handleOperandChange(this, New);
471         continue;
472       }
473     }
474 
475     U.set(New);
476   }
477 
478   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
479     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
480 }
481 
482 void Value::replaceAllUsesWith(Value *New) {
483   doRAUW(New, ReplaceMetadataUses::Yes);
484 }
485 
486 void Value::replaceNonMetadataUsesWith(Value *New) {
487   doRAUW(New, ReplaceMetadataUses::No);
488 }
489 
490 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
491 // This routine leaves uses within BB.
492 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
493   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
494   assert(!contains(New, this) &&
495          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
496   assert(New->getType() == getType() &&
497          "replaceUses of value with new value of different type!");
498   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
499 
500   replaceUsesWithIf(New, [BB](Use &U) {
501     auto *I = dyn_cast<Instruction>(U.getUser());
502     // Don't replace if it's an instruction in the BB basic block.
503     return !I || I->getParent() != BB;
504   });
505 }
506 
507 namespace {
508 // Various metrics for how much to strip off of pointers.
509 enum PointerStripKind {
510   PSK_ZeroIndices,
511   PSK_ZeroIndicesAndAliases,
512   PSK_ZeroIndicesSameRepresentation,
513   PSK_ZeroIndicesAndInvariantGroups,
514   PSK_InBoundsConstantIndices,
515   PSK_InBounds
516 };
517 
518 template <PointerStripKind StripKind>
519 static const Value *stripPointerCastsAndOffsets(const Value *V) {
520   if (!V->getType()->isPointerTy())
521     return V;
522 
523   // Even though we don't look through PHI nodes, we could be called on an
524   // instruction in an unreachable block, which may be on a cycle.
525   SmallPtrSet<const Value *, 4> Visited;
526 
527   Visited.insert(V);
528   do {
529     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
530       switch (StripKind) {
531       case PSK_ZeroIndices:
532       case PSK_ZeroIndicesAndAliases:
533       case PSK_ZeroIndicesSameRepresentation:
534       case PSK_ZeroIndicesAndInvariantGroups:
535         if (!GEP->hasAllZeroIndices())
536           return V;
537         break;
538       case PSK_InBoundsConstantIndices:
539         if (!GEP->hasAllConstantIndices())
540           return V;
541         LLVM_FALLTHROUGH;
542       case PSK_InBounds:
543         if (!GEP->isInBounds())
544           return V;
545         break;
546       }
547       V = GEP->getPointerOperand();
548     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
549       V = cast<Operator>(V)->getOperand(0);
550     } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
551                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
552       // TODO: If we know an address space cast will not change the
553       //       representation we could look through it here as well.
554       V = cast<Operator>(V)->getOperand(0);
555     } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
556       V = cast<GlobalAlias>(V)->getAliasee();
557     } else {
558       if (const auto *Call = dyn_cast<CallBase>(V)) {
559         if (const Value *RV = Call->getReturnedArgOperand()) {
560           V = RV;
561           continue;
562         }
563         // The result of launder.invariant.group must alias it's argument,
564         // but it can't be marked with returned attribute, that's why it needs
565         // special case.
566         if (StripKind == PSK_ZeroIndicesAndInvariantGroups &&
567             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
568              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
569           V = Call->getArgOperand(0);
570           continue;
571         }
572       }
573       return V;
574     }
575     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
576   } while (Visited.insert(V).second);
577 
578   return V;
579 }
580 } // end anonymous namespace
581 
582 const Value *Value::stripPointerCasts() const {
583   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
584 }
585 
586 const Value *Value::stripPointerCastsAndAliases() const {
587   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
588 }
589 
590 const Value *Value::stripPointerCastsSameRepresentation() const {
591   return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
592 }
593 
594 const Value *Value::stripInBoundsConstantOffsets() const {
595   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
596 }
597 
598 const Value *Value::stripPointerCastsAndInvariantGroups() const {
599   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this);
600 }
601 
602 const Value *Value::stripAndAccumulateConstantOffsets(
603     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
604     function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
605   if (!getType()->isPtrOrPtrVectorTy())
606     return this;
607 
608   unsigned BitWidth = Offset.getBitWidth();
609   assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
610          "The offset bit width does not match the DL specification.");
611 
612   // Even though we don't look through PHI nodes, we could be called on an
613   // instruction in an unreachable block, which may be on a cycle.
614   SmallPtrSet<const Value *, 4> Visited;
615   Visited.insert(this);
616   const Value *V = this;
617   do {
618     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
619       // If in-bounds was requested, we do not strip non-in-bounds GEPs.
620       if (!AllowNonInbounds && !GEP->isInBounds())
621         return V;
622 
623       // If one of the values we have visited is an addrspacecast, then
624       // the pointer type of this GEP may be different from the type
625       // of the Ptr parameter which was passed to this function.  This
626       // means when we construct GEPOffset, we need to use the size
627       // of GEP's pointer type rather than the size of the original
628       // pointer type.
629       APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
630       if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
631         return V;
632 
633       // Stop traversal if the pointer offset wouldn't fit in the bit-width
634       // provided by the Offset argument. This can happen due to AddrSpaceCast
635       // stripping.
636       if (GEPOffset.getMinSignedBits() > BitWidth)
637         return V;
638 
639       // External Analysis can return a result higher/lower than the value
640       // represents. We need to detect overflow/underflow.
641       APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
642       if (!ExternalAnalysis) {
643         Offset += GEPOffsetST;
644       } else {
645         bool Overflow = false;
646         APInt OldOffset = Offset;
647         Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
648         if (Overflow) {
649           Offset = OldOffset;
650           return V;
651         }
652       }
653       V = GEP->getPointerOperand();
654     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
655                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
656       V = cast<Operator>(V)->getOperand(0);
657     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
658       if (!GA->isInterposable())
659         V = GA->getAliasee();
660     } else if (const auto *Call = dyn_cast<CallBase>(V)) {
661         if (const Value *RV = Call->getReturnedArgOperand())
662           V = RV;
663     }
664     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
665   } while (Visited.insert(V).second);
666 
667   return V;
668 }
669 
670 const Value *Value::stripInBoundsOffsets() const {
671   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
672 }
673 
674 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
675                                                bool &CanBeNull) const {
676   assert(getType()->isPointerTy() && "must be pointer");
677 
678   uint64_t DerefBytes = 0;
679   CanBeNull = false;
680   if (const Argument *A = dyn_cast<Argument>(this)) {
681     DerefBytes = A->getDereferenceableBytes();
682     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
683       Type *PT = cast<PointerType>(A->getType())->getElementType();
684       if (PT->isSized())
685         DerefBytes = DL.getTypeStoreSize(PT).getKnownMinSize();
686     }
687     if (DerefBytes == 0) {
688       DerefBytes = A->getDereferenceableOrNullBytes();
689       CanBeNull = true;
690     }
691   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
692     DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
693     if (DerefBytes == 0) {
694       DerefBytes =
695           Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
696       CanBeNull = true;
697     }
698   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
699     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
700       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
701       DerefBytes = CI->getLimitedValue();
702     }
703     if (DerefBytes == 0) {
704       if (MDNode *MD =
705               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
706         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
707         DerefBytes = CI->getLimitedValue();
708       }
709       CanBeNull = true;
710     }
711   } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
712     if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
713       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
714       DerefBytes = CI->getLimitedValue();
715     }
716     if (DerefBytes == 0) {
717       if (MDNode *MD =
718               IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
719         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
720         DerefBytes = CI->getLimitedValue();
721       }
722       CanBeNull = true;
723     }
724   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
725     if (!AI->isArrayAllocation()) {
726       DerefBytes =
727           DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize();
728       CanBeNull = false;
729     }
730   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
731     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
732       // TODO: Don't outright reject hasExternalWeakLinkage but set the
733       // CanBeNull flag.
734       DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize();
735       CanBeNull = false;
736     }
737   }
738   return DerefBytes;
739 }
740 
741 MaybeAlign Value::getPointerAlignment(const DataLayout &DL) const {
742   assert(getType()->isPointerTy() && "must be pointer");
743   if (auto *GO = dyn_cast<GlobalObject>(this)) {
744     if (isa<Function>(GO)) {
745       const MaybeAlign FunctionPtrAlign = DL.getFunctionPtrAlign();
746       switch (DL.getFunctionPtrAlignType()) {
747       case DataLayout::FunctionPtrAlignType::Independent:
748         return FunctionPtrAlign;
749       case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
750         return std::max(FunctionPtrAlign, MaybeAlign(GO->getAlignment()));
751       }
752       llvm_unreachable("Unhandled FunctionPtrAlignType");
753     }
754     const MaybeAlign Alignment(GO->getAlignment());
755     if (!Alignment) {
756       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
757         Type *ObjectType = GVar->getValueType();
758         if (ObjectType->isSized()) {
759           // If the object is defined in the current Module, we'll be giving
760           // it the preferred alignment. Otherwise, we have to assume that it
761           // may only have the minimum ABI alignment.
762           if (GVar->isStrongDefinitionForLinker())
763             return MaybeAlign(DL.getPreferredAlignment(GVar));
764           else
765             return DL.getABITypeAlign(ObjectType);
766         }
767       }
768     }
769     return Alignment;
770   } else if (const Argument *A = dyn_cast<Argument>(this)) {
771     const MaybeAlign Alignment = A->getParamAlign();
772     if (!Alignment && A->hasStructRetAttr()) {
773       // An sret parameter has at least the ABI alignment of the return type.
774       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
775       if (EltTy->isSized())
776         return DL.getABITypeAlign(EltTy);
777     }
778     return Alignment;
779   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
780     const MaybeAlign Alignment = AI->getAlign();
781     if (!Alignment) {
782       Type *AllocatedType = AI->getAllocatedType();
783       if (AllocatedType->isSized())
784         return MaybeAlign(DL.getPrefTypeAlignment(AllocatedType));
785     }
786     return Alignment;
787   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
788     const MaybeAlign Alignment = Call->getRetAlign();
789     if (!Alignment && Call->getCalledFunction())
790       return MaybeAlign(
791           Call->getCalledFunction()->getAttributes().getRetAlignment());
792     return Alignment;
793   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
794     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
795       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
796       return MaybeAlign(CI->getLimitedValue());
797     }
798   } else if (auto *CstPtr = dyn_cast<Constant>(this)) {
799     if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
800             const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
801             /*OnlyIfReduced=*/true))) {
802       size_t TrailingZeros = CstInt->getValue().countTrailingZeros();
803       // While the actual alignment may be large, elsewhere we have
804       // an arbitrary upper alignmet limit, so let's clamp to it.
805       return Align(TrailingZeros < Value::MaxAlignmentExponent
806                        ? uint64_t(1) << TrailingZeros
807                        : Value::MaximumAlignment);
808     }
809   }
810   return llvm::None;
811 }
812 
813 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
814                                      const BasicBlock *PredBB) const {
815   auto *PN = dyn_cast<PHINode>(this);
816   if (PN && PN->getParent() == CurBB)
817     return PN->getIncomingValueForBlock(PredBB);
818   return this;
819 }
820 
821 LLVMContext &Value::getContext() const { return VTy->getContext(); }
822 
823 void Value::reverseUseList() {
824   if (!UseList || !UseList->Next)
825     // No need to reverse 0 or 1 uses.
826     return;
827 
828   Use *Head = UseList;
829   Use *Current = UseList->Next;
830   Head->Next = nullptr;
831   while (Current) {
832     Use *Next = Current->Next;
833     Current->Next = Head;
834     Head->setPrev(&Current->Next);
835     Head = Current;
836     Current = Next;
837   }
838   UseList = Head;
839   Head->setPrev(&UseList);
840 }
841 
842 bool Value::isSwiftError() const {
843   auto *Arg = dyn_cast<Argument>(this);
844   if (Arg)
845     return Arg->hasSwiftErrorAttr();
846   auto *Alloca = dyn_cast<AllocaInst>(this);
847   if (!Alloca)
848     return false;
849   return Alloca->isSwiftError();
850 }
851 
852 //===----------------------------------------------------------------------===//
853 //                             ValueHandleBase Class
854 //===----------------------------------------------------------------------===//
855 
856 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
857   assert(List && "Handle list is null?");
858 
859   // Splice ourselves into the list.
860   Next = *List;
861   *List = this;
862   setPrevPtr(List);
863   if (Next) {
864     Next->setPrevPtr(&Next);
865     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
866   }
867 }
868 
869 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
870   assert(List && "Must insert after existing node");
871 
872   Next = List->Next;
873   setPrevPtr(&List->Next);
874   List->Next = this;
875   if (Next)
876     Next->setPrevPtr(&Next);
877 }
878 
879 void ValueHandleBase::AddToUseList() {
880   assert(getValPtr() && "Null pointer doesn't have a use list!");
881 
882   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
883 
884   if (getValPtr()->HasValueHandle) {
885     // If this value already has a ValueHandle, then it must be in the
886     // ValueHandles map already.
887     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
888     assert(Entry && "Value doesn't have any handles?");
889     AddToExistingUseList(&Entry);
890     return;
891   }
892 
893   // Ok, it doesn't have any handles yet, so we must insert it into the
894   // DenseMap.  However, doing this insertion could cause the DenseMap to
895   // reallocate itself, which would invalidate all of the PrevP pointers that
896   // point into the old table.  Handle this by checking for reallocation and
897   // updating the stale pointers only if needed.
898   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
899   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
900 
901   ValueHandleBase *&Entry = Handles[getValPtr()];
902   assert(!Entry && "Value really did already have handles?");
903   AddToExistingUseList(&Entry);
904   getValPtr()->HasValueHandle = true;
905 
906   // If reallocation didn't happen or if this was the first insertion, don't
907   // walk the table.
908   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
909       Handles.size() == 1) {
910     return;
911   }
912 
913   // Okay, reallocation did happen.  Fix the Prev Pointers.
914   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
915        E = Handles.end(); I != E; ++I) {
916     assert(I->second && I->first == I->second->getValPtr() &&
917            "List invariant broken!");
918     I->second->setPrevPtr(&I->second);
919   }
920 }
921 
922 void ValueHandleBase::RemoveFromUseList() {
923   assert(getValPtr() && getValPtr()->HasValueHandle &&
924          "Pointer doesn't have a use list!");
925 
926   // Unlink this from its use list.
927   ValueHandleBase **PrevPtr = getPrevPtr();
928   assert(*PrevPtr == this && "List invariant broken");
929 
930   *PrevPtr = Next;
931   if (Next) {
932     assert(Next->getPrevPtr() == &Next && "List invariant broken");
933     Next->setPrevPtr(PrevPtr);
934     return;
935   }
936 
937   // If the Next pointer was null, then it is possible that this was the last
938   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
939   // map.
940   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
941   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
942   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
943     Handles.erase(getValPtr());
944     getValPtr()->HasValueHandle = false;
945   }
946 }
947 
948 void ValueHandleBase::ValueIsDeleted(Value *V) {
949   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
950 
951   // Get the linked list base, which is guaranteed to exist since the
952   // HasValueHandle flag is set.
953   LLVMContextImpl *pImpl = V->getContext().pImpl;
954   ValueHandleBase *Entry = pImpl->ValueHandles[V];
955   assert(Entry && "Value bit set but no entries exist");
956 
957   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
958   // and remove themselves from the list without breaking our iteration.  This
959   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
960   // Note that we deliberately do not the support the case when dropping a value
961   // handle results in a new value handle being permanently added to the list
962   // (as might occur in theory for CallbackVH's): the new value handle will not
963   // be processed and the checking code will mete out righteous punishment if
964   // the handle is still present once we have finished processing all the other
965   // value handles (it is fine to momentarily add then remove a value handle).
966   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
967     Iterator.RemoveFromUseList();
968     Iterator.AddToExistingUseListAfter(Entry);
969     assert(Entry->Next == &Iterator && "Loop invariant broken.");
970 
971     switch (Entry->getKind()) {
972     case Assert:
973       break;
974     case Weak:
975     case WeakTracking:
976       // WeakTracking and Weak just go to null, which unlinks them
977       // from the list.
978       Entry->operator=(nullptr);
979       break;
980     case Callback:
981       // Forward to the subclass's implementation.
982       static_cast<CallbackVH*>(Entry)->deleted();
983       break;
984     }
985   }
986 
987   // All callbacks, weak references, and assertingVHs should be dropped by now.
988   if (V->HasValueHandle) {
989 #ifndef NDEBUG      // Only in +Asserts mode...
990     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
991            << "\n";
992     if (pImpl->ValueHandles[V]->getKind() == Assert)
993       llvm_unreachable("An asserting value handle still pointed to this"
994                        " value!");
995 
996 #endif
997     llvm_unreachable("All references to V were not removed?");
998   }
999 }
1000 
1001 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
1002   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
1003   assert(Old != New && "Changing value into itself!");
1004   assert(Old->getType() == New->getType() &&
1005          "replaceAllUses of value with new value of different type!");
1006 
1007   // Get the linked list base, which is guaranteed to exist since the
1008   // HasValueHandle flag is set.
1009   LLVMContextImpl *pImpl = Old->getContext().pImpl;
1010   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
1011 
1012   assert(Entry && "Value bit set but no entries exist");
1013 
1014   // We use a local ValueHandleBase as an iterator so that
1015   // ValueHandles can add and remove themselves from the list without
1016   // breaking our iteration.  This is not really an AssertingVH; we
1017   // just have to give ValueHandleBase some kind.
1018   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1019     Iterator.RemoveFromUseList();
1020     Iterator.AddToExistingUseListAfter(Entry);
1021     assert(Entry->Next == &Iterator && "Loop invariant broken.");
1022 
1023     switch (Entry->getKind()) {
1024     case Assert:
1025     case Weak:
1026       // Asserting and Weak handles do not follow RAUW implicitly.
1027       break;
1028     case WeakTracking:
1029       // Weak goes to the new value, which will unlink it from Old's list.
1030       Entry->operator=(New);
1031       break;
1032     case Callback:
1033       // Forward to the subclass's implementation.
1034       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
1035       break;
1036     }
1037   }
1038 
1039 #ifndef NDEBUG
1040   // If any new weak value handles were added while processing the
1041   // list, then complain about it now.
1042   if (Old->HasValueHandle)
1043     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
1044       switch (Entry->getKind()) {
1045       case WeakTracking:
1046         dbgs() << "After RAUW from " << *Old->getType() << " %"
1047                << Old->getName() << " to " << *New->getType() << " %"
1048                << New->getName() << "\n";
1049         llvm_unreachable(
1050             "A weak tracking value handle still pointed to the old value!\n");
1051       default:
1052         break;
1053       }
1054 #endif
1055 }
1056 
1057 // Pin the vtable to this file.
1058 void CallbackVH::anchor() {}
1059