1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> UseDerefAtPointSemantics( 42 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 43 cl::desc("Deref attributes and metadata infer facts at definition only")); 44 45 46 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 47 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 48 cl::desc("Maximum size for the name of non-global values.")); 49 50 //===----------------------------------------------------------------------===// 51 // Value Class 52 //===----------------------------------------------------------------------===// 53 static inline Type *checkType(Type *Ty) { 54 assert(Ty && "Value defined with a null type: Error!"); 55 return Ty; 56 } 57 58 Value::Value(Type *ty, unsigned scid) 59 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 60 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 61 IsUsedByMD(false), HasName(false), HasMetadata(false) { 62 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 63 // FIXME: Why isn't this in the subclass gunk?? 64 // Note, we cannot call isa<CallInst> before the CallInst has been 65 // constructed. 66 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke || 67 SubclassID == Instruction::CallBr) 68 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 69 "invalid CallInst type!"); 70 else if (SubclassID != BasicBlockVal && 71 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 72 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 73 "Cannot create non-first-class values except for constants!"); 74 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 75 "Value too big"); 76 } 77 78 Value::~Value() { 79 // Notify all ValueHandles (if present) that this value is going away. 80 if (HasValueHandle) 81 ValueHandleBase::ValueIsDeleted(this); 82 if (isUsedByMetadata()) 83 ValueAsMetadata::handleDeletion(this); 84 85 // Remove associated metadata from context. 86 if (HasMetadata) 87 clearMetadata(); 88 89 #ifndef NDEBUG // Only in -g mode... 90 // Check to make sure that there are no uses of this value that are still 91 // around when the value is destroyed. If there are, then we have a dangling 92 // reference and something is wrong. This code is here to print out where 93 // the value is still being referenced. 94 // 95 // Note that use_empty() cannot be called here, as it eventually downcasts 96 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 97 // been destructed, so accessing it is UB. 98 // 99 if (!materialized_use_empty()) { 100 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 101 for (auto *U : users()) 102 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 103 } 104 #endif 105 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 106 107 // If this value is named, destroy the name. This should not be in a symtab 108 // at this point. 109 destroyValueName(); 110 } 111 112 void Value::deleteValue() { 113 switch (getValueID()) { 114 #define HANDLE_VALUE(Name) \ 115 case Value::Name##Val: \ 116 delete static_cast<Name *>(this); \ 117 break; 118 #define HANDLE_MEMORY_VALUE(Name) \ 119 case Value::Name##Val: \ 120 static_cast<DerivedUser *>(this)->DeleteValue( \ 121 static_cast<DerivedUser *>(this)); \ 122 break; 123 #define HANDLE_CONSTANT(Name) \ 124 case Value::Name##Val: \ 125 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 126 break; 127 #define HANDLE_INSTRUCTION(Name) /* nothing */ 128 #include "llvm/IR/Value.def" 129 130 #define HANDLE_INST(N, OPC, CLASS) \ 131 case Value::InstructionVal + Instruction::OPC: \ 132 delete static_cast<CLASS *>(this); \ 133 break; 134 #define HANDLE_USER_INST(N, OPC, CLASS) 135 #include "llvm/IR/Instruction.def" 136 137 default: 138 llvm_unreachable("attempting to delete unknown value kind"); 139 } 140 } 141 142 void Value::destroyValueName() { 143 ValueName *Name = getValueName(); 144 if (Name) { 145 MallocAllocator Allocator; 146 Name->Destroy(Allocator); 147 } 148 setValueName(nullptr); 149 } 150 151 bool Value::hasNUses(unsigned N) const { 152 return hasNItems(use_begin(), use_end(), N); 153 } 154 155 bool Value::hasNUsesOrMore(unsigned N) const { 156 return hasNItemsOrMore(use_begin(), use_end(), N); 157 } 158 159 bool Value::hasOneUser() const { 160 if (use_empty()) 161 return false; 162 if (hasOneUse()) 163 return true; 164 return std::equal(++user_begin(), user_end(), user_begin()); 165 } 166 167 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 168 169 Use *Value::getSingleUndroppableUse() { 170 Use *Result = nullptr; 171 for (Use &U : uses()) { 172 if (!U.getUser()->isDroppable()) { 173 if (Result) 174 return nullptr; 175 Result = &U; 176 } 177 } 178 return Result; 179 } 180 181 bool Value::hasNUndroppableUses(unsigned int N) const { 182 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 183 } 184 185 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 186 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 187 } 188 189 void Value::dropDroppableUses( 190 llvm::function_ref<bool(const Use *)> ShouldDrop) { 191 SmallVector<Use *, 8> ToBeEdited; 192 for (Use &U : uses()) 193 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 194 ToBeEdited.push_back(&U); 195 for (Use *U : ToBeEdited) 196 dropDroppableUse(*U); 197 } 198 199 void Value::dropDroppableUsesIn(User &Usr) { 200 assert(Usr.isDroppable() && "Expected a droppable user!"); 201 for (Use &UsrOp : Usr.operands()) { 202 if (UsrOp.get() == this) 203 dropDroppableUse(UsrOp); 204 } 205 } 206 207 void Value::dropDroppableUse(Use &U) { 208 U.removeFromList(); 209 if (auto *Assume = dyn_cast<IntrinsicInst>(U.getUser())) { 210 assert(Assume->getIntrinsicID() == Intrinsic::assume); 211 unsigned OpNo = U.getOperandNo(); 212 if (OpNo == 0) 213 U.set(ConstantInt::getTrue(Assume->getContext())); 214 else { 215 U.set(UndefValue::get(U.get()->getType())); 216 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 217 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 218 } 219 return; 220 } 221 222 llvm_unreachable("unkown droppable use"); 223 } 224 225 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 226 // This can be computed either by scanning the instructions in BB, or by 227 // scanning the use list of this Value. Both lists can be very long, but 228 // usually one is quite short. 229 // 230 // Scan both lists simultaneously until one is exhausted. This limits the 231 // search to the shorter list. 232 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 233 const_user_iterator UI = user_begin(), UE = user_end(); 234 for (; BI != BE && UI != UE; ++BI, ++UI) { 235 // Scan basic block: Check if this Value is used by the instruction at BI. 236 if (is_contained(BI->operands(), this)) 237 return true; 238 // Scan use list: Check if the use at UI is in BB. 239 const auto *User = dyn_cast<Instruction>(*UI); 240 if (User && User->getParent() == BB) 241 return true; 242 } 243 return false; 244 } 245 246 unsigned Value::getNumUses() const { 247 return (unsigned)std::distance(use_begin(), use_end()); 248 } 249 250 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 251 ST = nullptr; 252 if (Instruction *I = dyn_cast<Instruction>(V)) { 253 if (BasicBlock *P = I->getParent()) 254 if (Function *PP = P->getParent()) 255 ST = PP->getValueSymbolTable(); 256 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 257 if (Function *P = BB->getParent()) 258 ST = P->getValueSymbolTable(); 259 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 260 if (Module *P = GV->getParent()) 261 ST = &P->getValueSymbolTable(); 262 } else if (Argument *A = dyn_cast<Argument>(V)) { 263 if (Function *P = A->getParent()) 264 ST = P->getValueSymbolTable(); 265 } else { 266 assert(isa<Constant>(V) && "Unknown value type!"); 267 return true; // no name is setable for this. 268 } 269 return false; 270 } 271 272 ValueName *Value::getValueName() const { 273 if (!HasName) return nullptr; 274 275 LLVMContext &Ctx = getContext(); 276 auto I = Ctx.pImpl->ValueNames.find(this); 277 assert(I != Ctx.pImpl->ValueNames.end() && 278 "No name entry found!"); 279 280 return I->second; 281 } 282 283 void Value::setValueName(ValueName *VN) { 284 LLVMContext &Ctx = getContext(); 285 286 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 287 "HasName bit out of sync!"); 288 289 if (!VN) { 290 if (HasName) 291 Ctx.pImpl->ValueNames.erase(this); 292 HasName = false; 293 return; 294 } 295 296 HasName = true; 297 Ctx.pImpl->ValueNames[this] = VN; 298 } 299 300 StringRef Value::getName() const { 301 // Make sure the empty string is still a C string. For historical reasons, 302 // some clients want to call .data() on the result and expect it to be null 303 // terminated. 304 if (!hasName()) 305 return StringRef("", 0); 306 return getValueName()->getKey(); 307 } 308 309 void Value::setNameImpl(const Twine &NewName) { 310 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 311 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 312 return; 313 314 // Fast path for common IRBuilder case of setName("") when there is no name. 315 if (NewName.isTriviallyEmpty() && !hasName()) 316 return; 317 318 SmallString<256> NameData; 319 StringRef NameRef = NewName.toStringRef(NameData); 320 assert(NameRef.find_first_of(0) == StringRef::npos && 321 "Null bytes are not allowed in names"); 322 323 // Name isn't changing? 324 if (getName() == NameRef) 325 return; 326 327 // Cap the size of non-GlobalValue names. 328 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this)) 329 NameRef = 330 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize)); 331 332 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 333 334 // Get the symbol table to update for this object. 335 ValueSymbolTable *ST; 336 if (getSymTab(this, ST)) 337 return; // Cannot set a name on this value (e.g. constant). 338 339 if (!ST) { // No symbol table to update? Just do the change. 340 if (NameRef.empty()) { 341 // Free the name for this value. 342 destroyValueName(); 343 return; 344 } 345 346 // NOTE: Could optimize for the case the name is shrinking to not deallocate 347 // then reallocated. 348 destroyValueName(); 349 350 // Create the new name. 351 MallocAllocator Allocator; 352 setValueName(ValueName::Create(NameRef, Allocator)); 353 getValueName()->setValue(this); 354 return; 355 } 356 357 // NOTE: Could optimize for the case the name is shrinking to not deallocate 358 // then reallocated. 359 if (hasName()) { 360 // Remove old name. 361 ST->removeValueName(getValueName()); 362 destroyValueName(); 363 364 if (NameRef.empty()) 365 return; 366 } 367 368 // Name is changing to something new. 369 setValueName(ST->createValueName(NameRef, this)); 370 } 371 372 void Value::setName(const Twine &NewName) { 373 setNameImpl(NewName); 374 if (Function *F = dyn_cast<Function>(this)) 375 F->recalculateIntrinsicID(); 376 } 377 378 void Value::takeName(Value *V) { 379 ValueSymbolTable *ST = nullptr; 380 // If this value has a name, drop it. 381 if (hasName()) { 382 // Get the symtab this is in. 383 if (getSymTab(this, ST)) { 384 // We can't set a name on this value, but we need to clear V's name if 385 // it has one. 386 if (V->hasName()) V->setName(""); 387 return; // Cannot set a name on this value (e.g. constant). 388 } 389 390 // Remove old name. 391 if (ST) 392 ST->removeValueName(getValueName()); 393 destroyValueName(); 394 } 395 396 // Now we know that this has no name. 397 398 // If V has no name either, we're done. 399 if (!V->hasName()) return; 400 401 // Get this's symtab if we didn't before. 402 if (!ST) { 403 if (getSymTab(this, ST)) { 404 // Clear V's name. 405 V->setName(""); 406 return; // Cannot set a name on this value (e.g. constant). 407 } 408 } 409 410 // Get V's ST, this should always succed, because V has a name. 411 ValueSymbolTable *VST; 412 bool Failure = getSymTab(V, VST); 413 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 414 415 // If these values are both in the same symtab, we can do this very fast. 416 // This works even if both values have no symtab yet. 417 if (ST == VST) { 418 // Take the name! 419 setValueName(V->getValueName()); 420 V->setValueName(nullptr); 421 getValueName()->setValue(this); 422 return; 423 } 424 425 // Otherwise, things are slightly more complex. Remove V's name from VST and 426 // then reinsert it into ST. 427 428 if (VST) 429 VST->removeValueName(V->getValueName()); 430 setValueName(V->getValueName()); 431 V->setValueName(nullptr); 432 getValueName()->setValue(this); 433 434 if (ST) 435 ST->reinsertValue(this); 436 } 437 438 #ifndef NDEBUG 439 std::string Value::getNameOrAsOperand() const { 440 if (!getName().empty()) 441 return std::string(getName()); 442 443 std::string BBName; 444 raw_string_ostream OS(BBName); 445 printAsOperand(OS, false); 446 return OS.str(); 447 } 448 #endif 449 450 void Value::assertModuleIsMaterializedImpl() const { 451 #ifndef NDEBUG 452 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 453 if (!GV) 454 return; 455 const Module *M = GV->getParent(); 456 if (!M) 457 return; 458 assert(M->isMaterialized()); 459 #endif 460 } 461 462 #ifndef NDEBUG 463 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 464 Constant *C) { 465 if (!Cache.insert(Expr).second) 466 return false; 467 468 for (auto &O : Expr->operands()) { 469 if (O == C) 470 return true; 471 auto *CE = dyn_cast<ConstantExpr>(O); 472 if (!CE) 473 continue; 474 if (contains(Cache, CE, C)) 475 return true; 476 } 477 return false; 478 } 479 480 static bool contains(Value *Expr, Value *V) { 481 if (Expr == V) 482 return true; 483 484 auto *C = dyn_cast<Constant>(V); 485 if (!C) 486 return false; 487 488 auto *CE = dyn_cast<ConstantExpr>(Expr); 489 if (!CE) 490 return false; 491 492 SmallPtrSet<ConstantExpr *, 4> Cache; 493 return contains(Cache, CE, C); 494 } 495 #endif // NDEBUG 496 497 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 498 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 499 assert(!contains(New, this) && 500 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 501 assert(New->getType() == getType() && 502 "replaceAllUses of value with new value of different type!"); 503 504 // Notify all ValueHandles (if present) that this value is going away. 505 if (HasValueHandle) 506 ValueHandleBase::ValueIsRAUWd(this, New); 507 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 508 ValueAsMetadata::handleRAUW(this, New); 509 510 while (!materialized_use_empty()) { 511 Use &U = *UseList; 512 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 513 // constant because they are uniqued. 514 if (auto *C = dyn_cast<Constant>(U.getUser())) { 515 if (!isa<GlobalValue>(C)) { 516 C->handleOperandChange(this, New); 517 continue; 518 } 519 } 520 521 U.set(New); 522 } 523 524 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 525 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 526 } 527 528 void Value::replaceAllUsesWith(Value *New) { 529 doRAUW(New, ReplaceMetadataUses::Yes); 530 } 531 532 void Value::replaceNonMetadataUsesWith(Value *New) { 533 doRAUW(New, ReplaceMetadataUses::No); 534 } 535 536 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 537 // This routine leaves uses within BB. 538 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 539 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 540 assert(!contains(New, this) && 541 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 542 assert(New->getType() == getType() && 543 "replaceUses of value with new value of different type!"); 544 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 545 546 replaceUsesWithIf(New, [BB](Use &U) { 547 auto *I = dyn_cast<Instruction>(U.getUser()); 548 // Don't replace if it's an instruction in the BB basic block. 549 return !I || I->getParent() != BB; 550 }); 551 } 552 553 namespace { 554 // Various metrics for how much to strip off of pointers. 555 enum PointerStripKind { 556 PSK_ZeroIndices, 557 PSK_ZeroIndicesAndAliases, 558 PSK_ZeroIndicesSameRepresentation, 559 PSK_ForAliasAnalysis, 560 PSK_InBoundsConstantIndices, 561 PSK_InBounds 562 }; 563 564 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 565 566 template <PointerStripKind StripKind> 567 static const Value *stripPointerCastsAndOffsets( 568 const Value *V, 569 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 570 if (!V->getType()->isPointerTy()) 571 return V; 572 573 // Even though we don't look through PHI nodes, we could be called on an 574 // instruction in an unreachable block, which may be on a cycle. 575 SmallPtrSet<const Value *, 4> Visited; 576 577 Visited.insert(V); 578 do { 579 Func(V); 580 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 581 switch (StripKind) { 582 case PSK_ZeroIndices: 583 case PSK_ZeroIndicesAndAliases: 584 case PSK_ZeroIndicesSameRepresentation: 585 case PSK_ForAliasAnalysis: 586 if (!GEP->hasAllZeroIndices()) 587 return V; 588 break; 589 case PSK_InBoundsConstantIndices: 590 if (!GEP->hasAllConstantIndices()) 591 return V; 592 LLVM_FALLTHROUGH; 593 case PSK_InBounds: 594 if (!GEP->isInBounds()) 595 return V; 596 break; 597 } 598 V = GEP->getPointerOperand(); 599 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 600 V = cast<Operator>(V)->getOperand(0); 601 if (!V->getType()->isPointerTy()) 602 return V; 603 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 604 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 605 // TODO: If we know an address space cast will not change the 606 // representation we could look through it here as well. 607 V = cast<Operator>(V)->getOperand(0); 608 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 609 V = cast<GlobalAlias>(V)->getAliasee(); 610 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 611 cast<PHINode>(V)->getNumIncomingValues() == 1) { 612 V = cast<PHINode>(V)->getIncomingValue(0); 613 } else { 614 if (const auto *Call = dyn_cast<CallBase>(V)) { 615 if (const Value *RV = Call->getReturnedArgOperand()) { 616 V = RV; 617 continue; 618 } 619 // The result of launder.invariant.group must alias it's argument, 620 // but it can't be marked with returned attribute, that's why it needs 621 // special case. 622 if (StripKind == PSK_ForAliasAnalysis && 623 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 624 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 625 V = Call->getArgOperand(0); 626 continue; 627 } 628 } 629 return V; 630 } 631 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 632 } while (Visited.insert(V).second); 633 634 return V; 635 } 636 } // end anonymous namespace 637 638 const Value *Value::stripPointerCasts() const { 639 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 640 } 641 642 const Value *Value::stripPointerCastsAndAliases() const { 643 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 644 } 645 646 const Value *Value::stripPointerCastsSameRepresentation() const { 647 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 648 } 649 650 const Value *Value::stripInBoundsConstantOffsets() const { 651 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 652 } 653 654 const Value *Value::stripPointerCastsForAliasAnalysis() const { 655 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 656 } 657 658 const Value *Value::stripAndAccumulateConstantOffsets( 659 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 660 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 661 if (!getType()->isPtrOrPtrVectorTy()) 662 return this; 663 664 unsigned BitWidth = Offset.getBitWidth(); 665 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 666 "The offset bit width does not match the DL specification."); 667 668 // Even though we don't look through PHI nodes, we could be called on an 669 // instruction in an unreachable block, which may be on a cycle. 670 SmallPtrSet<const Value *, 4> Visited; 671 Visited.insert(this); 672 const Value *V = this; 673 do { 674 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 675 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 676 if (!AllowNonInbounds && !GEP->isInBounds()) 677 return V; 678 679 // If one of the values we have visited is an addrspacecast, then 680 // the pointer type of this GEP may be different from the type 681 // of the Ptr parameter which was passed to this function. This 682 // means when we construct GEPOffset, we need to use the size 683 // of GEP's pointer type rather than the size of the original 684 // pointer type. 685 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 686 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 687 return V; 688 689 // Stop traversal if the pointer offset wouldn't fit in the bit-width 690 // provided by the Offset argument. This can happen due to AddrSpaceCast 691 // stripping. 692 if (GEPOffset.getMinSignedBits() > BitWidth) 693 return V; 694 695 // External Analysis can return a result higher/lower than the value 696 // represents. We need to detect overflow/underflow. 697 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 698 if (!ExternalAnalysis) { 699 Offset += GEPOffsetST; 700 } else { 701 bool Overflow = false; 702 APInt OldOffset = Offset; 703 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 704 if (Overflow) { 705 Offset = OldOffset; 706 return V; 707 } 708 } 709 V = GEP->getPointerOperand(); 710 } else if (Operator::getOpcode(V) == Instruction::BitCast || 711 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 712 V = cast<Operator>(V)->getOperand(0); 713 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 714 if (!GA->isInterposable()) 715 V = GA->getAliasee(); 716 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 717 if (const Value *RV = Call->getReturnedArgOperand()) 718 V = RV; 719 } 720 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 721 } while (Visited.insert(V).second); 722 723 return V; 724 } 725 726 const Value * 727 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 728 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 729 } 730 731 // Return true if the memory object referred to by V can by freed in the scope 732 // for which the SSA value defining the allocation is statically defined. E.g. 733 // deallocation after the static scope of a value does not count. 734 static bool canBeFreed(const Value *V) { 735 assert(V->getType()->isPointerTy()); 736 737 // Cases that can simply never be deallocated 738 // *) Constants aren't allocated per se, thus not deallocated either. 739 if (isa<Constant>(V)) 740 return false; 741 742 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 743 // lifetime is guaranteed to be longer than the callee's lifetime. 744 if (auto *A = dyn_cast<Argument>(V)) 745 if (A->hasPointeeInMemoryValueAttr()) 746 return false; 747 748 const Function *F = nullptr; 749 if (auto *I = dyn_cast<Instruction>(V)) 750 F = I->getFunction(); 751 if (auto *A = dyn_cast<Argument>(V)) 752 F = A->getParent(); 753 754 if (!F) 755 return true; 756 757 // A pointer to an object in a function which neither frees, nor can arrange 758 // for another thread to free on its behalf, can not be freed in the scope 759 // of the function. 760 if (F->doesNotFreeMemory() && F->hasNoSync()) 761 return false; 762 763 // With garbage collection, deallocation typically occurs solely at or after 764 // safepoints. If we're compiling for a collector which uses the 765 // gc.statepoint infrastructure, safepoints aren't explicitly present 766 // in the IR until after lowering from abstract to physical machine model. 767 // The collector could chose to mix explicit deallocation and gc'd objects 768 // which is why we need the explicit opt in on a per collector basis. 769 if (!F->hasGC()) 770 return true; 771 772 const auto &GCName = F->getGC(); 773 const StringRef StatepointExampleName("statepoint-example"); 774 if (GCName != StatepointExampleName) 775 return true; 776 777 auto *PT = cast<PointerType>(V->getType()); 778 if (PT->getAddressSpace() != 1) 779 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 780 // GC managed heap. This must match the same check in 781 // RewriteStatepointsForGC (and probably needs better factored.) 782 return true; 783 784 // It is cheaper to scan for a declaration than to scan for a use in this 785 // function. Note that gc.statepoint is a type overloaded function so the 786 // usual trick of requesting declaration of the intrinsic from the module 787 // doesn't work. 788 for (auto &Fn : *F->getParent()) 789 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 790 return true; 791 return false; 792 } 793 794 795 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 796 bool &CanBeNull, 797 bool &CanBeFreed) const { 798 assert(getType()->isPointerTy() && "must be pointer"); 799 800 uint64_t DerefBytes = 0; 801 CanBeNull = false; 802 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(this); 803 if (const Argument *A = dyn_cast<Argument>(this)) { 804 DerefBytes = A->getDereferenceableBytes(); 805 if (DerefBytes == 0) { 806 // Handle byval/byref/inalloca/preallocated arguments 807 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 808 if (ArgMemTy->isSized()) { 809 // FIXME: Why isn't this the type alloc size? 810 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 811 } 812 } 813 } 814 815 if (DerefBytes == 0) { 816 DerefBytes = A->getDereferenceableOrNullBytes(); 817 CanBeNull = true; 818 } 819 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 820 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 821 if (DerefBytes == 0) { 822 DerefBytes = 823 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 824 CanBeNull = true; 825 } 826 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 827 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 828 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 829 DerefBytes = CI->getLimitedValue(); 830 } 831 if (DerefBytes == 0) { 832 if (MDNode *MD = 833 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 834 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 835 DerefBytes = CI->getLimitedValue(); 836 } 837 CanBeNull = true; 838 } 839 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 840 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 841 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 842 DerefBytes = CI->getLimitedValue(); 843 } 844 if (DerefBytes == 0) { 845 if (MDNode *MD = 846 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 847 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 848 DerefBytes = CI->getLimitedValue(); 849 } 850 CanBeNull = true; 851 } 852 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 853 if (!AI->isArrayAllocation()) { 854 DerefBytes = 855 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 856 CanBeNull = false; 857 CanBeFreed = false; 858 } 859 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 860 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 861 // TODO: Don't outright reject hasExternalWeakLinkage but set the 862 // CanBeNull flag. 863 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 864 CanBeNull = false; 865 } 866 } 867 return DerefBytes; 868 } 869 870 Align Value::getPointerAlignment(const DataLayout &DL) const { 871 assert(getType()->isPointerTy() && "must be pointer"); 872 if (auto *GO = dyn_cast<GlobalObject>(this)) { 873 if (isa<Function>(GO)) { 874 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 875 switch (DL.getFunctionPtrAlignType()) { 876 case DataLayout::FunctionPtrAlignType::Independent: 877 return FunctionPtrAlign; 878 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 879 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 880 } 881 llvm_unreachable("Unhandled FunctionPtrAlignType"); 882 } 883 const MaybeAlign Alignment(GO->getAlignment()); 884 if (!Alignment) { 885 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 886 Type *ObjectType = GVar->getValueType(); 887 if (ObjectType->isSized()) { 888 // If the object is defined in the current Module, we'll be giving 889 // it the preferred alignment. Otherwise, we have to assume that it 890 // may only have the minimum ABI alignment. 891 if (GVar->isStrongDefinitionForLinker()) 892 return DL.getPreferredAlign(GVar); 893 else 894 return DL.getABITypeAlign(ObjectType); 895 } 896 } 897 } 898 return Alignment.valueOrOne(); 899 } else if (const Argument *A = dyn_cast<Argument>(this)) { 900 const MaybeAlign Alignment = A->getParamAlign(); 901 if (!Alignment && A->hasStructRetAttr()) { 902 // An sret parameter has at least the ABI alignment of the return type. 903 Type *EltTy = A->getParamStructRetType(); 904 if (EltTy->isSized()) 905 return DL.getABITypeAlign(EltTy); 906 } 907 return Alignment.valueOrOne(); 908 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 909 return AI->getAlign(); 910 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 911 MaybeAlign Alignment = Call->getRetAlign(); 912 if (!Alignment && Call->getCalledFunction()) 913 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 914 return Alignment.valueOrOne(); 915 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 916 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 917 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 918 return Align(CI->getLimitedValue()); 919 } 920 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 921 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 922 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 923 /*OnlyIfReduced=*/true))) { 924 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 925 // While the actual alignment may be large, elsewhere we have 926 // an arbitrary upper alignmet limit, so let's clamp to it. 927 return Align(TrailingZeros < Value::MaxAlignmentExponent 928 ? uint64_t(1) << TrailingZeros 929 : Value::MaximumAlignment); 930 } 931 } 932 return Align(1); 933 } 934 935 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 936 const BasicBlock *PredBB) const { 937 auto *PN = dyn_cast<PHINode>(this); 938 if (PN && PN->getParent() == CurBB) 939 return PN->getIncomingValueForBlock(PredBB); 940 return this; 941 } 942 943 LLVMContext &Value::getContext() const { return VTy->getContext(); } 944 945 void Value::reverseUseList() { 946 if (!UseList || !UseList->Next) 947 // No need to reverse 0 or 1 uses. 948 return; 949 950 Use *Head = UseList; 951 Use *Current = UseList->Next; 952 Head->Next = nullptr; 953 while (Current) { 954 Use *Next = Current->Next; 955 Current->Next = Head; 956 Head->Prev = &Current->Next; 957 Head = Current; 958 Current = Next; 959 } 960 UseList = Head; 961 Head->Prev = &UseList; 962 } 963 964 bool Value::isSwiftError() const { 965 auto *Arg = dyn_cast<Argument>(this); 966 if (Arg) 967 return Arg->hasSwiftErrorAttr(); 968 auto *Alloca = dyn_cast<AllocaInst>(this); 969 if (!Alloca) 970 return false; 971 return Alloca->isSwiftError(); 972 } 973 974 //===----------------------------------------------------------------------===// 975 // ValueHandleBase Class 976 //===----------------------------------------------------------------------===// 977 978 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 979 assert(List && "Handle list is null?"); 980 981 // Splice ourselves into the list. 982 Next = *List; 983 *List = this; 984 setPrevPtr(List); 985 if (Next) { 986 Next->setPrevPtr(&Next); 987 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 988 } 989 } 990 991 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 992 assert(List && "Must insert after existing node"); 993 994 Next = List->Next; 995 setPrevPtr(&List->Next); 996 List->Next = this; 997 if (Next) 998 Next->setPrevPtr(&Next); 999 } 1000 1001 void ValueHandleBase::AddToUseList() { 1002 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1003 1004 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1005 1006 if (getValPtr()->HasValueHandle) { 1007 // If this value already has a ValueHandle, then it must be in the 1008 // ValueHandles map already. 1009 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1010 assert(Entry && "Value doesn't have any handles?"); 1011 AddToExistingUseList(&Entry); 1012 return; 1013 } 1014 1015 // Ok, it doesn't have any handles yet, so we must insert it into the 1016 // DenseMap. However, doing this insertion could cause the DenseMap to 1017 // reallocate itself, which would invalidate all of the PrevP pointers that 1018 // point into the old table. Handle this by checking for reallocation and 1019 // updating the stale pointers only if needed. 1020 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1021 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1022 1023 ValueHandleBase *&Entry = Handles[getValPtr()]; 1024 assert(!Entry && "Value really did already have handles?"); 1025 AddToExistingUseList(&Entry); 1026 getValPtr()->HasValueHandle = true; 1027 1028 // If reallocation didn't happen or if this was the first insertion, don't 1029 // walk the table. 1030 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1031 Handles.size() == 1) { 1032 return; 1033 } 1034 1035 // Okay, reallocation did happen. Fix the Prev Pointers. 1036 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1037 E = Handles.end(); I != E; ++I) { 1038 assert(I->second && I->first == I->second->getValPtr() && 1039 "List invariant broken!"); 1040 I->second->setPrevPtr(&I->second); 1041 } 1042 } 1043 1044 void ValueHandleBase::RemoveFromUseList() { 1045 assert(getValPtr() && getValPtr()->HasValueHandle && 1046 "Pointer doesn't have a use list!"); 1047 1048 // Unlink this from its use list. 1049 ValueHandleBase **PrevPtr = getPrevPtr(); 1050 assert(*PrevPtr == this && "List invariant broken"); 1051 1052 *PrevPtr = Next; 1053 if (Next) { 1054 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1055 Next->setPrevPtr(PrevPtr); 1056 return; 1057 } 1058 1059 // If the Next pointer was null, then it is possible that this was the last 1060 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1061 // map. 1062 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1063 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1064 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1065 Handles.erase(getValPtr()); 1066 getValPtr()->HasValueHandle = false; 1067 } 1068 } 1069 1070 void ValueHandleBase::ValueIsDeleted(Value *V) { 1071 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1072 1073 // Get the linked list base, which is guaranteed to exist since the 1074 // HasValueHandle flag is set. 1075 LLVMContextImpl *pImpl = V->getContext().pImpl; 1076 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1077 assert(Entry && "Value bit set but no entries exist"); 1078 1079 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1080 // and remove themselves from the list without breaking our iteration. This 1081 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1082 // Note that we deliberately do not the support the case when dropping a value 1083 // handle results in a new value handle being permanently added to the list 1084 // (as might occur in theory for CallbackVH's): the new value handle will not 1085 // be processed and the checking code will mete out righteous punishment if 1086 // the handle is still present once we have finished processing all the other 1087 // value handles (it is fine to momentarily add then remove a value handle). 1088 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1089 Iterator.RemoveFromUseList(); 1090 Iterator.AddToExistingUseListAfter(Entry); 1091 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1092 1093 switch (Entry->getKind()) { 1094 case Assert: 1095 break; 1096 case Weak: 1097 case WeakTracking: 1098 // WeakTracking and Weak just go to null, which unlinks them 1099 // from the list. 1100 Entry->operator=(nullptr); 1101 break; 1102 case Callback: 1103 // Forward to the subclass's implementation. 1104 static_cast<CallbackVH*>(Entry)->deleted(); 1105 break; 1106 } 1107 } 1108 1109 // All callbacks, weak references, and assertingVHs should be dropped by now. 1110 if (V->HasValueHandle) { 1111 #ifndef NDEBUG // Only in +Asserts mode... 1112 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1113 << "\n"; 1114 if (pImpl->ValueHandles[V]->getKind() == Assert) 1115 llvm_unreachable("An asserting value handle still pointed to this" 1116 " value!"); 1117 1118 #endif 1119 llvm_unreachable("All references to V were not removed?"); 1120 } 1121 } 1122 1123 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1124 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1125 assert(Old != New && "Changing value into itself!"); 1126 assert(Old->getType() == New->getType() && 1127 "replaceAllUses of value with new value of different type!"); 1128 1129 // Get the linked list base, which is guaranteed to exist since the 1130 // HasValueHandle flag is set. 1131 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1132 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1133 1134 assert(Entry && "Value bit set but no entries exist"); 1135 1136 // We use a local ValueHandleBase as an iterator so that 1137 // ValueHandles can add and remove themselves from the list without 1138 // breaking our iteration. This is not really an AssertingVH; we 1139 // just have to give ValueHandleBase some kind. 1140 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1141 Iterator.RemoveFromUseList(); 1142 Iterator.AddToExistingUseListAfter(Entry); 1143 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1144 1145 switch (Entry->getKind()) { 1146 case Assert: 1147 case Weak: 1148 // Asserting and Weak handles do not follow RAUW implicitly. 1149 break; 1150 case WeakTracking: 1151 // Weak goes to the new value, which will unlink it from Old's list. 1152 Entry->operator=(New); 1153 break; 1154 case Callback: 1155 // Forward to the subclass's implementation. 1156 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1157 break; 1158 } 1159 } 1160 1161 #ifndef NDEBUG 1162 // If any new weak value handles were added while processing the 1163 // list, then complain about it now. 1164 if (Old->HasValueHandle) 1165 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1166 switch (Entry->getKind()) { 1167 case WeakTracking: 1168 dbgs() << "After RAUW from " << *Old->getType() << " %" 1169 << Old->getName() << " to " << *New->getType() << " %" 1170 << New->getName() << "\n"; 1171 llvm_unreachable( 1172 "A weak tracking value handle still pointed to the old value!\n"); 1173 default: 1174 break; 1175 } 1176 #endif 1177 } 1178 1179 // Pin the vtable to this file. 1180 void CallbackVH::anchor() {} 1181