1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/DerivedUser.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> UseDerefAtPointSemantics( 42 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 43 cl::desc("Deref attributes and metadata infer facts at definition only")); 44 45 46 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 47 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 48 cl::desc("Maximum size for the name of non-global values.")); 49 50 //===----------------------------------------------------------------------===// 51 // Value Class 52 //===----------------------------------------------------------------------===// 53 static inline Type *checkType(Type *Ty) { 54 assert(Ty && "Value defined with a null type: Error!"); 55 return Ty; 56 } 57 58 Value::Value(Type *ty, unsigned scid) 59 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 60 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 61 IsUsedByMD(false), HasName(false), HasMetadata(false) { 62 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 63 // FIXME: Why isn't this in the subclass gunk?? 64 // Note, we cannot call isa<CallInst> before the CallInst has been 65 // constructed. 66 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke || 67 SubclassID == Instruction::CallBr) 68 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 69 "invalid CallInst type!"); 70 else if (SubclassID != BasicBlockVal && 71 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 72 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 73 "Cannot create non-first-class values except for constants!"); 74 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 75 "Value too big"); 76 } 77 78 Value::~Value() { 79 // Notify all ValueHandles (if present) that this value is going away. 80 if (HasValueHandle) 81 ValueHandleBase::ValueIsDeleted(this); 82 if (isUsedByMetadata()) 83 ValueAsMetadata::handleDeletion(this); 84 85 // Remove associated metadata from context. 86 if (HasMetadata) 87 clearMetadata(); 88 89 #ifndef NDEBUG // Only in -g mode... 90 // Check to make sure that there are no uses of this value that are still 91 // around when the value is destroyed. If there are, then we have a dangling 92 // reference and something is wrong. This code is here to print out where 93 // the value is still being referenced. 94 // 95 // Note that use_empty() cannot be called here, as it eventually downcasts 96 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 97 // been destructed, so accessing it is UB. 98 // 99 if (!materialized_use_empty()) { 100 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 101 for (auto *U : users()) 102 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 103 } 104 #endif 105 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 106 107 // If this value is named, destroy the name. This should not be in a symtab 108 // at this point. 109 destroyValueName(); 110 } 111 112 void Value::deleteValue() { 113 switch (getValueID()) { 114 #define HANDLE_VALUE(Name) \ 115 case Value::Name##Val: \ 116 delete static_cast<Name *>(this); \ 117 break; 118 #define HANDLE_MEMORY_VALUE(Name) \ 119 case Value::Name##Val: \ 120 static_cast<DerivedUser *>(this)->DeleteValue( \ 121 static_cast<DerivedUser *>(this)); \ 122 break; 123 #define HANDLE_CONSTANT(Name) \ 124 case Value::Name##Val: \ 125 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 126 break; 127 #define HANDLE_INSTRUCTION(Name) /* nothing */ 128 #include "llvm/IR/Value.def" 129 130 #define HANDLE_INST(N, OPC, CLASS) \ 131 case Value::InstructionVal + Instruction::OPC: \ 132 delete static_cast<CLASS *>(this); \ 133 break; 134 #define HANDLE_USER_INST(N, OPC, CLASS) 135 #include "llvm/IR/Instruction.def" 136 137 default: 138 llvm_unreachable("attempting to delete unknown value kind"); 139 } 140 } 141 142 void Value::destroyValueName() { 143 ValueName *Name = getValueName(); 144 if (Name) { 145 MallocAllocator Allocator; 146 Name->Destroy(Allocator); 147 } 148 setValueName(nullptr); 149 } 150 151 bool Value::hasNUses(unsigned N) const { 152 return hasNItems(use_begin(), use_end(), N); 153 } 154 155 bool Value::hasNUsesOrMore(unsigned N) const { 156 return hasNItemsOrMore(use_begin(), use_end(), N); 157 } 158 159 bool Value::hasOneUser() const { 160 if (use_empty()) 161 return false; 162 if (hasOneUse()) 163 return true; 164 return std::equal(++user_begin(), user_end(), user_begin()); 165 } 166 167 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 168 169 Use *Value::getSingleUndroppableUse() { 170 Use *Result = nullptr; 171 for (Use &U : uses()) { 172 if (!U.getUser()->isDroppable()) { 173 if (Result) 174 return nullptr; 175 Result = &U; 176 } 177 } 178 return Result; 179 } 180 181 bool Value::hasNUndroppableUses(unsigned int N) const { 182 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 183 } 184 185 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 186 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 187 } 188 189 void Value::dropDroppableUses( 190 llvm::function_ref<bool(const Use *)> ShouldDrop) { 191 SmallVector<Use *, 8> ToBeEdited; 192 for (Use &U : uses()) 193 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 194 ToBeEdited.push_back(&U); 195 for (Use *U : ToBeEdited) 196 dropDroppableUse(*U); 197 } 198 199 void Value::dropDroppableUsesIn(User &Usr) { 200 assert(Usr.isDroppable() && "Expected a droppable user!"); 201 for (Use &UsrOp : Usr.operands()) { 202 if (UsrOp.get() == this) 203 dropDroppableUse(UsrOp); 204 } 205 } 206 207 void Value::dropDroppableUse(Use &U) { 208 U.removeFromList(); 209 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 210 unsigned OpNo = U.getOperandNo(); 211 if (OpNo == 0) 212 U.set(ConstantInt::getTrue(Assume->getContext())); 213 else { 214 U.set(UndefValue::get(U.get()->getType())); 215 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 216 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 217 } 218 return; 219 } 220 221 llvm_unreachable("unkown droppable use"); 222 } 223 224 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 225 // This can be computed either by scanning the instructions in BB, or by 226 // scanning the use list of this Value. Both lists can be very long, but 227 // usually one is quite short. 228 // 229 // Scan both lists simultaneously until one is exhausted. This limits the 230 // search to the shorter list. 231 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 232 const_user_iterator UI = user_begin(), UE = user_end(); 233 for (; BI != BE && UI != UE; ++BI, ++UI) { 234 // Scan basic block: Check if this Value is used by the instruction at BI. 235 if (is_contained(BI->operands(), this)) 236 return true; 237 // Scan use list: Check if the use at UI is in BB. 238 const auto *User = dyn_cast<Instruction>(*UI); 239 if (User && User->getParent() == BB) 240 return true; 241 } 242 return false; 243 } 244 245 unsigned Value::getNumUses() const { 246 return (unsigned)std::distance(use_begin(), use_end()); 247 } 248 249 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 250 ST = nullptr; 251 if (Instruction *I = dyn_cast<Instruction>(V)) { 252 if (BasicBlock *P = I->getParent()) 253 if (Function *PP = P->getParent()) 254 ST = PP->getValueSymbolTable(); 255 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 256 if (Function *P = BB->getParent()) 257 ST = P->getValueSymbolTable(); 258 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 259 if (Module *P = GV->getParent()) 260 ST = &P->getValueSymbolTable(); 261 } else if (Argument *A = dyn_cast<Argument>(V)) { 262 if (Function *P = A->getParent()) 263 ST = P->getValueSymbolTable(); 264 } else { 265 assert(isa<Constant>(V) && "Unknown value type!"); 266 return true; // no name is setable for this. 267 } 268 return false; 269 } 270 271 ValueName *Value::getValueName() const { 272 if (!HasName) return nullptr; 273 274 LLVMContext &Ctx = getContext(); 275 auto I = Ctx.pImpl->ValueNames.find(this); 276 assert(I != Ctx.pImpl->ValueNames.end() && 277 "No name entry found!"); 278 279 return I->second; 280 } 281 282 void Value::setValueName(ValueName *VN) { 283 LLVMContext &Ctx = getContext(); 284 285 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 286 "HasName bit out of sync!"); 287 288 if (!VN) { 289 if (HasName) 290 Ctx.pImpl->ValueNames.erase(this); 291 HasName = false; 292 return; 293 } 294 295 HasName = true; 296 Ctx.pImpl->ValueNames[this] = VN; 297 } 298 299 StringRef Value::getName() const { 300 // Make sure the empty string is still a C string. For historical reasons, 301 // some clients want to call .data() on the result and expect it to be null 302 // terminated. 303 if (!hasName()) 304 return StringRef("", 0); 305 return getValueName()->getKey(); 306 } 307 308 void Value::setNameImpl(const Twine &NewName) { 309 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 310 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 311 return; 312 313 // Fast path for common IRBuilder case of setName("") when there is no name. 314 if (NewName.isTriviallyEmpty() && !hasName()) 315 return; 316 317 SmallString<256> NameData; 318 StringRef NameRef = NewName.toStringRef(NameData); 319 assert(NameRef.find_first_of(0) == StringRef::npos && 320 "Null bytes are not allowed in names"); 321 322 // Name isn't changing? 323 if (getName() == NameRef) 324 return; 325 326 // Cap the size of non-GlobalValue names. 327 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this)) 328 NameRef = 329 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize)); 330 331 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 332 333 // Get the symbol table to update for this object. 334 ValueSymbolTable *ST; 335 if (getSymTab(this, ST)) 336 return; // Cannot set a name on this value (e.g. constant). 337 338 if (!ST) { // No symbol table to update? Just do the change. 339 if (NameRef.empty()) { 340 // Free the name for this value. 341 destroyValueName(); 342 return; 343 } 344 345 // NOTE: Could optimize for the case the name is shrinking to not deallocate 346 // then reallocated. 347 destroyValueName(); 348 349 // Create the new name. 350 MallocAllocator Allocator; 351 setValueName(ValueName::Create(NameRef, Allocator)); 352 getValueName()->setValue(this); 353 return; 354 } 355 356 // NOTE: Could optimize for the case the name is shrinking to not deallocate 357 // then reallocated. 358 if (hasName()) { 359 // Remove old name. 360 ST->removeValueName(getValueName()); 361 destroyValueName(); 362 363 if (NameRef.empty()) 364 return; 365 } 366 367 // Name is changing to something new. 368 setValueName(ST->createValueName(NameRef, this)); 369 } 370 371 void Value::setName(const Twine &NewName) { 372 setNameImpl(NewName); 373 if (Function *F = dyn_cast<Function>(this)) 374 F->recalculateIntrinsicID(); 375 } 376 377 void Value::takeName(Value *V) { 378 ValueSymbolTable *ST = nullptr; 379 // If this value has a name, drop it. 380 if (hasName()) { 381 // Get the symtab this is in. 382 if (getSymTab(this, ST)) { 383 // We can't set a name on this value, but we need to clear V's name if 384 // it has one. 385 if (V->hasName()) V->setName(""); 386 return; // Cannot set a name on this value (e.g. constant). 387 } 388 389 // Remove old name. 390 if (ST) 391 ST->removeValueName(getValueName()); 392 destroyValueName(); 393 } 394 395 // Now we know that this has no name. 396 397 // If V has no name either, we're done. 398 if (!V->hasName()) return; 399 400 // Get this's symtab if we didn't before. 401 if (!ST) { 402 if (getSymTab(this, ST)) { 403 // Clear V's name. 404 V->setName(""); 405 return; // Cannot set a name on this value (e.g. constant). 406 } 407 } 408 409 // Get V's ST, this should always succed, because V has a name. 410 ValueSymbolTable *VST; 411 bool Failure = getSymTab(V, VST); 412 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 413 414 // If these values are both in the same symtab, we can do this very fast. 415 // This works even if both values have no symtab yet. 416 if (ST == VST) { 417 // Take the name! 418 setValueName(V->getValueName()); 419 V->setValueName(nullptr); 420 getValueName()->setValue(this); 421 return; 422 } 423 424 // Otherwise, things are slightly more complex. Remove V's name from VST and 425 // then reinsert it into ST. 426 427 if (VST) 428 VST->removeValueName(V->getValueName()); 429 setValueName(V->getValueName()); 430 V->setValueName(nullptr); 431 getValueName()->setValue(this); 432 433 if (ST) 434 ST->reinsertValue(this); 435 } 436 437 #ifndef NDEBUG 438 std::string Value::getNameOrAsOperand() const { 439 if (!getName().empty()) 440 return std::string(getName()); 441 442 std::string BBName; 443 raw_string_ostream OS(BBName); 444 printAsOperand(OS, false); 445 return OS.str(); 446 } 447 #endif 448 449 void Value::assertModuleIsMaterializedImpl() const { 450 #ifndef NDEBUG 451 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 452 if (!GV) 453 return; 454 const Module *M = GV->getParent(); 455 if (!M) 456 return; 457 assert(M->isMaterialized()); 458 #endif 459 } 460 461 #ifndef NDEBUG 462 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 463 Constant *C) { 464 if (!Cache.insert(Expr).second) 465 return false; 466 467 for (auto &O : Expr->operands()) { 468 if (O == C) 469 return true; 470 auto *CE = dyn_cast<ConstantExpr>(O); 471 if (!CE) 472 continue; 473 if (contains(Cache, CE, C)) 474 return true; 475 } 476 return false; 477 } 478 479 static bool contains(Value *Expr, Value *V) { 480 if (Expr == V) 481 return true; 482 483 auto *C = dyn_cast<Constant>(V); 484 if (!C) 485 return false; 486 487 auto *CE = dyn_cast<ConstantExpr>(Expr); 488 if (!CE) 489 return false; 490 491 SmallPtrSet<ConstantExpr *, 4> Cache; 492 return contains(Cache, CE, C); 493 } 494 #endif // NDEBUG 495 496 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 497 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 498 assert(!contains(New, this) && 499 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 500 assert(New->getType() == getType() && 501 "replaceAllUses of value with new value of different type!"); 502 503 // Notify all ValueHandles (if present) that this value is going away. 504 if (HasValueHandle) 505 ValueHandleBase::ValueIsRAUWd(this, New); 506 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 507 ValueAsMetadata::handleRAUW(this, New); 508 509 while (!materialized_use_empty()) { 510 Use &U = *UseList; 511 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 512 // constant because they are uniqued. 513 if (auto *C = dyn_cast<Constant>(U.getUser())) { 514 if (!isa<GlobalValue>(C)) { 515 C->handleOperandChange(this, New); 516 continue; 517 } 518 } 519 520 U.set(New); 521 } 522 523 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 524 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 525 } 526 527 void Value::replaceAllUsesWith(Value *New) { 528 doRAUW(New, ReplaceMetadataUses::Yes); 529 } 530 531 void Value::replaceNonMetadataUsesWith(Value *New) { 532 doRAUW(New, ReplaceMetadataUses::No); 533 } 534 535 void Value::replaceUsesWithIf(Value *New, 536 llvm::function_ref<bool(Use &U)> ShouldReplace) { 537 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 538 assert(New->getType() == getType() && 539 "replaceUses of value with new value of different type!"); 540 541 for (use_iterator UI = use_begin(), E = use_end(); UI != E;) { 542 Use &U = *UI; 543 ++UI; 544 if (!ShouldReplace(U)) 545 continue; 546 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 547 // constant because they are uniqued. 548 if (auto *C = dyn_cast<Constant>(U.getUser())) { 549 if (!isa<GlobalValue>(C)) { 550 C->handleOperandChange(this, New); 551 continue; 552 } 553 } 554 U.set(New); 555 } 556 } 557 558 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 559 /// with New. 560 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 561 SmallVector<DbgVariableIntrinsic *> DbgUsers; 562 findDbgUsers(DbgUsers, V); 563 for (auto *DVI : DbgUsers) { 564 if (DVI->getParent() != BB) 565 DVI->replaceVariableLocationOp(V, New); 566 } 567 } 568 569 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 570 // This routine leaves uses within BB. 571 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 572 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 573 assert(!contains(New, this) && 574 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 575 assert(New->getType() == getType() && 576 "replaceUses of value with new value of different type!"); 577 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 578 579 replaceDbgUsesOutsideBlock(this, New, BB); 580 replaceUsesWithIf(New, [BB](Use &U) { 581 auto *I = dyn_cast<Instruction>(U.getUser()); 582 // Don't replace if it's an instruction in the BB basic block. 583 return !I || I->getParent() != BB; 584 }); 585 } 586 587 namespace { 588 // Various metrics for how much to strip off of pointers. 589 enum PointerStripKind { 590 PSK_ZeroIndices, 591 PSK_ZeroIndicesAndAliases, 592 PSK_ZeroIndicesSameRepresentation, 593 PSK_ForAliasAnalysis, 594 PSK_InBoundsConstantIndices, 595 PSK_InBounds 596 }; 597 598 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 599 600 template <PointerStripKind StripKind> 601 static const Value *stripPointerCastsAndOffsets( 602 const Value *V, 603 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 604 if (!V->getType()->isPointerTy()) 605 return V; 606 607 // Even though we don't look through PHI nodes, we could be called on an 608 // instruction in an unreachable block, which may be on a cycle. 609 SmallPtrSet<const Value *, 4> Visited; 610 611 Visited.insert(V); 612 do { 613 Func(V); 614 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 615 switch (StripKind) { 616 case PSK_ZeroIndices: 617 case PSK_ZeroIndicesAndAliases: 618 case PSK_ZeroIndicesSameRepresentation: 619 case PSK_ForAliasAnalysis: 620 if (!GEP->hasAllZeroIndices()) 621 return V; 622 break; 623 case PSK_InBoundsConstantIndices: 624 if (!GEP->hasAllConstantIndices()) 625 return V; 626 LLVM_FALLTHROUGH; 627 case PSK_InBounds: 628 if (!GEP->isInBounds()) 629 return V; 630 break; 631 } 632 V = GEP->getPointerOperand(); 633 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 634 V = cast<Operator>(V)->getOperand(0); 635 if (!V->getType()->isPointerTy()) 636 return V; 637 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 638 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 639 // TODO: If we know an address space cast will not change the 640 // representation we could look through it here as well. 641 V = cast<Operator>(V)->getOperand(0); 642 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 643 V = cast<GlobalAlias>(V)->getAliasee(); 644 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 645 cast<PHINode>(V)->getNumIncomingValues() == 1) { 646 V = cast<PHINode>(V)->getIncomingValue(0); 647 } else { 648 if (const auto *Call = dyn_cast<CallBase>(V)) { 649 if (const Value *RV = Call->getReturnedArgOperand()) { 650 V = RV; 651 continue; 652 } 653 // The result of launder.invariant.group must alias it's argument, 654 // but it can't be marked with returned attribute, that's why it needs 655 // special case. 656 if (StripKind == PSK_ForAliasAnalysis && 657 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 658 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 659 V = Call->getArgOperand(0); 660 continue; 661 } 662 } 663 return V; 664 } 665 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 666 } while (Visited.insert(V).second); 667 668 return V; 669 } 670 } // end anonymous namespace 671 672 const Value *Value::stripPointerCasts() const { 673 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 674 } 675 676 const Value *Value::stripPointerCastsAndAliases() const { 677 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 678 } 679 680 const Value *Value::stripPointerCastsSameRepresentation() const { 681 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 682 } 683 684 const Value *Value::stripInBoundsConstantOffsets() const { 685 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 686 } 687 688 const Value *Value::stripPointerCastsForAliasAnalysis() const { 689 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 690 } 691 692 const Value *Value::stripAndAccumulateConstantOffsets( 693 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 694 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 695 if (!getType()->isPtrOrPtrVectorTy()) 696 return this; 697 698 unsigned BitWidth = Offset.getBitWidth(); 699 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 700 "The offset bit width does not match the DL specification."); 701 702 // Even though we don't look through PHI nodes, we could be called on an 703 // instruction in an unreachable block, which may be on a cycle. 704 SmallPtrSet<const Value *, 4> Visited; 705 Visited.insert(this); 706 const Value *V = this; 707 do { 708 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 709 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 710 if (!AllowNonInbounds && !GEP->isInBounds()) 711 return V; 712 713 // If one of the values we have visited is an addrspacecast, then 714 // the pointer type of this GEP may be different from the type 715 // of the Ptr parameter which was passed to this function. This 716 // means when we construct GEPOffset, we need to use the size 717 // of GEP's pointer type rather than the size of the original 718 // pointer type. 719 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 720 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 721 return V; 722 723 // Stop traversal if the pointer offset wouldn't fit in the bit-width 724 // provided by the Offset argument. This can happen due to AddrSpaceCast 725 // stripping. 726 if (GEPOffset.getMinSignedBits() > BitWidth) 727 return V; 728 729 // External Analysis can return a result higher/lower than the value 730 // represents. We need to detect overflow/underflow. 731 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 732 if (!ExternalAnalysis) { 733 Offset += GEPOffsetST; 734 } else { 735 bool Overflow = false; 736 APInt OldOffset = Offset; 737 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 738 if (Overflow) { 739 Offset = OldOffset; 740 return V; 741 } 742 } 743 V = GEP->getPointerOperand(); 744 } else if (Operator::getOpcode(V) == Instruction::BitCast || 745 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 746 V = cast<Operator>(V)->getOperand(0); 747 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 748 if (!GA->isInterposable()) 749 V = GA->getAliasee(); 750 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 751 if (const Value *RV = Call->getReturnedArgOperand()) 752 V = RV; 753 } 754 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 755 } while (Visited.insert(V).second); 756 757 return V; 758 } 759 760 const Value * 761 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 762 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 763 } 764 765 bool Value::canBeFreed() const { 766 assert(getType()->isPointerTy()); 767 768 // Cases that can simply never be deallocated 769 // *) Constants aren't allocated per se, thus not deallocated either. 770 if (isa<Constant>(this)) 771 return false; 772 773 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 774 // lifetime is guaranteed to be longer than the callee's lifetime. 775 if (auto *A = dyn_cast<Argument>(this)) { 776 if (A->hasPointeeInMemoryValueAttr()) 777 return false; 778 // A pointer to an object in a function which neither frees, nor can arrange 779 // for another thread to free on its behalf, can not be freed in the scope 780 // of the function. Note that this logic is restricted to memory 781 // allocations in existance before the call; a nofree function *is* allowed 782 // to free memory it allocated. 783 const Function *F = A->getParent(); 784 if (F->doesNotFreeMemory() && F->hasNoSync()) 785 return false; 786 } 787 788 const Function *F = nullptr; 789 if (auto *I = dyn_cast<Instruction>(this)) 790 F = I->getFunction(); 791 if (auto *A = dyn_cast<Argument>(this)) 792 F = A->getParent(); 793 794 if (!F) 795 return true; 796 797 // With garbage collection, deallocation typically occurs solely at or after 798 // safepoints. If we're compiling for a collector which uses the 799 // gc.statepoint infrastructure, safepoints aren't explicitly present 800 // in the IR until after lowering from abstract to physical machine model. 801 // The collector could chose to mix explicit deallocation and gc'd objects 802 // which is why we need the explicit opt in on a per collector basis. 803 if (!F->hasGC()) 804 return true; 805 806 const auto &GCName = F->getGC(); 807 if (GCName == "statepoint-example") { 808 auto *PT = cast<PointerType>(this->getType()); 809 if (PT->getAddressSpace() != 1) 810 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 811 // our GC managed heap. This must match the same check in 812 // RewriteStatepointsForGC (and probably needs better factored.) 813 return true; 814 815 // It is cheaper to scan for a declaration than to scan for a use in this 816 // function. Note that gc.statepoint is a type overloaded function so the 817 // usual trick of requesting declaration of the intrinsic from the module 818 // doesn't work. 819 for (auto &Fn : *F->getParent()) 820 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 821 return true; 822 return false; 823 } 824 return true; 825 } 826 827 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 828 bool &CanBeNull, 829 bool &CanBeFreed) const { 830 assert(getType()->isPointerTy() && "must be pointer"); 831 832 uint64_t DerefBytes = 0; 833 CanBeNull = false; 834 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 835 if (const Argument *A = dyn_cast<Argument>(this)) { 836 DerefBytes = A->getDereferenceableBytes(); 837 if (DerefBytes == 0) { 838 // Handle byval/byref/inalloca/preallocated arguments 839 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 840 if (ArgMemTy->isSized()) { 841 // FIXME: Why isn't this the type alloc size? 842 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 843 } 844 } 845 } 846 847 if (DerefBytes == 0) { 848 DerefBytes = A->getDereferenceableOrNullBytes(); 849 CanBeNull = true; 850 } 851 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 852 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 853 if (DerefBytes == 0) { 854 DerefBytes = 855 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 856 CanBeNull = true; 857 } 858 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 859 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 860 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 861 DerefBytes = CI->getLimitedValue(); 862 } 863 if (DerefBytes == 0) { 864 if (MDNode *MD = 865 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 866 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 867 DerefBytes = CI->getLimitedValue(); 868 } 869 CanBeNull = true; 870 } 871 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 872 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 873 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 874 DerefBytes = CI->getLimitedValue(); 875 } 876 if (DerefBytes == 0) { 877 if (MDNode *MD = 878 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 879 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 880 DerefBytes = CI->getLimitedValue(); 881 } 882 CanBeNull = true; 883 } 884 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 885 if (!AI->isArrayAllocation()) { 886 DerefBytes = 887 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 888 CanBeNull = false; 889 CanBeFreed = false; 890 } 891 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 892 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 893 // TODO: Don't outright reject hasExternalWeakLinkage but set the 894 // CanBeNull flag. 895 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 896 CanBeNull = false; 897 } 898 } 899 return DerefBytes; 900 } 901 902 Align Value::getPointerAlignment(const DataLayout &DL) const { 903 assert(getType()->isPointerTy() && "must be pointer"); 904 if (auto *GO = dyn_cast<GlobalObject>(this)) { 905 if (isa<Function>(GO)) { 906 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 907 switch (DL.getFunctionPtrAlignType()) { 908 case DataLayout::FunctionPtrAlignType::Independent: 909 return FunctionPtrAlign; 910 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 911 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 912 } 913 llvm_unreachable("Unhandled FunctionPtrAlignType"); 914 } 915 const MaybeAlign Alignment(GO->getAlignment()); 916 if (!Alignment) { 917 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 918 Type *ObjectType = GVar->getValueType(); 919 if (ObjectType->isSized()) { 920 // If the object is defined in the current Module, we'll be giving 921 // it the preferred alignment. Otherwise, we have to assume that it 922 // may only have the minimum ABI alignment. 923 if (GVar->isStrongDefinitionForLinker()) 924 return DL.getPreferredAlign(GVar); 925 else 926 return DL.getABITypeAlign(ObjectType); 927 } 928 } 929 } 930 return Alignment.valueOrOne(); 931 } else if (const Argument *A = dyn_cast<Argument>(this)) { 932 const MaybeAlign Alignment = A->getParamAlign(); 933 if (!Alignment && A->hasStructRetAttr()) { 934 // An sret parameter has at least the ABI alignment of the return type. 935 Type *EltTy = A->getParamStructRetType(); 936 if (EltTy->isSized()) 937 return DL.getABITypeAlign(EltTy); 938 } 939 return Alignment.valueOrOne(); 940 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 941 return AI->getAlign(); 942 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 943 MaybeAlign Alignment = Call->getRetAlign(); 944 if (!Alignment && Call->getCalledFunction()) 945 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 946 return Alignment.valueOrOne(); 947 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 948 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 949 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 950 return Align(CI->getLimitedValue()); 951 } 952 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 953 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 954 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 955 /*OnlyIfReduced=*/true))) { 956 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 957 // While the actual alignment may be large, elsewhere we have 958 // an arbitrary upper alignmet limit, so let's clamp to it. 959 return Align(TrailingZeros < Value::MaxAlignmentExponent 960 ? uint64_t(1) << TrailingZeros 961 : Value::MaximumAlignment); 962 } 963 } 964 return Align(1); 965 } 966 967 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 968 const BasicBlock *PredBB) const { 969 auto *PN = dyn_cast<PHINode>(this); 970 if (PN && PN->getParent() == CurBB) 971 return PN->getIncomingValueForBlock(PredBB); 972 return this; 973 } 974 975 LLVMContext &Value::getContext() const { return VTy->getContext(); } 976 977 void Value::reverseUseList() { 978 if (!UseList || !UseList->Next) 979 // No need to reverse 0 or 1 uses. 980 return; 981 982 Use *Head = UseList; 983 Use *Current = UseList->Next; 984 Head->Next = nullptr; 985 while (Current) { 986 Use *Next = Current->Next; 987 Current->Next = Head; 988 Head->Prev = &Current->Next; 989 Head = Current; 990 Current = Next; 991 } 992 UseList = Head; 993 Head->Prev = &UseList; 994 } 995 996 bool Value::isSwiftError() const { 997 auto *Arg = dyn_cast<Argument>(this); 998 if (Arg) 999 return Arg->hasSwiftErrorAttr(); 1000 auto *Alloca = dyn_cast<AllocaInst>(this); 1001 if (!Alloca) 1002 return false; 1003 return Alloca->isSwiftError(); 1004 } 1005 1006 bool Value::isTransitiveUsedByMetadataOnly() const { 1007 if (use_empty()) 1008 return false; 1009 llvm::SmallVector<const User *, 32> WorkList; 1010 llvm::SmallPtrSet<const User *, 32> Visited; 1011 WorkList.insert(WorkList.begin(), user_begin(), user_end()); 1012 while (!WorkList.empty()) { 1013 const User *U = WorkList.back(); 1014 WorkList.pop_back(); 1015 Visited.insert(U); 1016 // If it is transitively used by a global value or a non-constant value, 1017 // it's obviously not only used by metadata. 1018 if (!isa<Constant>(U) || isa<GlobalValue>(U)) 1019 return false; 1020 for (const User *UU : U->users()) 1021 if (!Visited.count(UU)) 1022 WorkList.push_back(UU); 1023 } 1024 return true; 1025 } 1026 1027 //===----------------------------------------------------------------------===// 1028 // ValueHandleBase Class 1029 //===----------------------------------------------------------------------===// 1030 1031 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1032 assert(List && "Handle list is null?"); 1033 1034 // Splice ourselves into the list. 1035 Next = *List; 1036 *List = this; 1037 setPrevPtr(List); 1038 if (Next) { 1039 Next->setPrevPtr(&Next); 1040 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1041 } 1042 } 1043 1044 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1045 assert(List && "Must insert after existing node"); 1046 1047 Next = List->Next; 1048 setPrevPtr(&List->Next); 1049 List->Next = this; 1050 if (Next) 1051 Next->setPrevPtr(&Next); 1052 } 1053 1054 void ValueHandleBase::AddToUseList() { 1055 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1056 1057 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1058 1059 if (getValPtr()->HasValueHandle) { 1060 // If this value already has a ValueHandle, then it must be in the 1061 // ValueHandles map already. 1062 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1063 assert(Entry && "Value doesn't have any handles?"); 1064 AddToExistingUseList(&Entry); 1065 return; 1066 } 1067 1068 // Ok, it doesn't have any handles yet, so we must insert it into the 1069 // DenseMap. However, doing this insertion could cause the DenseMap to 1070 // reallocate itself, which would invalidate all of the PrevP pointers that 1071 // point into the old table. Handle this by checking for reallocation and 1072 // updating the stale pointers only if needed. 1073 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1074 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1075 1076 ValueHandleBase *&Entry = Handles[getValPtr()]; 1077 assert(!Entry && "Value really did already have handles?"); 1078 AddToExistingUseList(&Entry); 1079 getValPtr()->HasValueHandle = true; 1080 1081 // If reallocation didn't happen or if this was the first insertion, don't 1082 // walk the table. 1083 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1084 Handles.size() == 1) { 1085 return; 1086 } 1087 1088 // Okay, reallocation did happen. Fix the Prev Pointers. 1089 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1090 E = Handles.end(); I != E; ++I) { 1091 assert(I->second && I->first == I->second->getValPtr() && 1092 "List invariant broken!"); 1093 I->second->setPrevPtr(&I->second); 1094 } 1095 } 1096 1097 void ValueHandleBase::RemoveFromUseList() { 1098 assert(getValPtr() && getValPtr()->HasValueHandle && 1099 "Pointer doesn't have a use list!"); 1100 1101 // Unlink this from its use list. 1102 ValueHandleBase **PrevPtr = getPrevPtr(); 1103 assert(*PrevPtr == this && "List invariant broken"); 1104 1105 *PrevPtr = Next; 1106 if (Next) { 1107 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1108 Next->setPrevPtr(PrevPtr); 1109 return; 1110 } 1111 1112 // If the Next pointer was null, then it is possible that this was the last 1113 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1114 // map. 1115 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1116 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1117 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1118 Handles.erase(getValPtr()); 1119 getValPtr()->HasValueHandle = false; 1120 } 1121 } 1122 1123 void ValueHandleBase::ValueIsDeleted(Value *V) { 1124 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1125 1126 // Get the linked list base, which is guaranteed to exist since the 1127 // HasValueHandle flag is set. 1128 LLVMContextImpl *pImpl = V->getContext().pImpl; 1129 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1130 assert(Entry && "Value bit set but no entries exist"); 1131 1132 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1133 // and remove themselves from the list without breaking our iteration. This 1134 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1135 // Note that we deliberately do not the support the case when dropping a value 1136 // handle results in a new value handle being permanently added to the list 1137 // (as might occur in theory for CallbackVH's): the new value handle will not 1138 // be processed and the checking code will mete out righteous punishment if 1139 // the handle is still present once we have finished processing all the other 1140 // value handles (it is fine to momentarily add then remove a value handle). 1141 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1142 Iterator.RemoveFromUseList(); 1143 Iterator.AddToExistingUseListAfter(Entry); 1144 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1145 1146 switch (Entry->getKind()) { 1147 case Assert: 1148 break; 1149 case Weak: 1150 case WeakTracking: 1151 // WeakTracking and Weak just go to null, which unlinks them 1152 // from the list. 1153 Entry->operator=(nullptr); 1154 break; 1155 case Callback: 1156 // Forward to the subclass's implementation. 1157 static_cast<CallbackVH*>(Entry)->deleted(); 1158 break; 1159 } 1160 } 1161 1162 // All callbacks, weak references, and assertingVHs should be dropped by now. 1163 if (V->HasValueHandle) { 1164 #ifndef NDEBUG // Only in +Asserts mode... 1165 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1166 << "\n"; 1167 if (pImpl->ValueHandles[V]->getKind() == Assert) 1168 llvm_unreachable("An asserting value handle still pointed to this" 1169 " value!"); 1170 1171 #endif 1172 llvm_unreachable("All references to V were not removed?"); 1173 } 1174 } 1175 1176 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1177 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1178 assert(Old != New && "Changing value into itself!"); 1179 assert(Old->getType() == New->getType() && 1180 "replaceAllUses of value with new value of different type!"); 1181 1182 // Get the linked list base, which is guaranteed to exist since the 1183 // HasValueHandle flag is set. 1184 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1185 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1186 1187 assert(Entry && "Value bit set but no entries exist"); 1188 1189 // We use a local ValueHandleBase as an iterator so that 1190 // ValueHandles can add and remove themselves from the list without 1191 // breaking our iteration. This is not really an AssertingVH; we 1192 // just have to give ValueHandleBase some kind. 1193 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1194 Iterator.RemoveFromUseList(); 1195 Iterator.AddToExistingUseListAfter(Entry); 1196 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1197 1198 switch (Entry->getKind()) { 1199 case Assert: 1200 case Weak: 1201 // Asserting and Weak handles do not follow RAUW implicitly. 1202 break; 1203 case WeakTracking: 1204 // Weak goes to the new value, which will unlink it from Old's list. 1205 Entry->operator=(New); 1206 break; 1207 case Callback: 1208 // Forward to the subclass's implementation. 1209 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1210 break; 1211 } 1212 } 1213 1214 #ifndef NDEBUG 1215 // If any new weak value handles were added while processing the 1216 // list, then complain about it now. 1217 if (Old->HasValueHandle) 1218 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1219 switch (Entry->getKind()) { 1220 case WeakTracking: 1221 dbgs() << "After RAUW from " << *Old->getType() << " %" 1222 << Old->getName() << " to " << *New->getType() << " %" 1223 << New->getName() << "\n"; 1224 llvm_unreachable( 1225 "A weak tracking value handle still pointed to the old value!\n"); 1226 default: 1227 break; 1228 } 1229 #endif 1230 } 1231 1232 // Pin the vtable to this file. 1233 void CallbackVH::anchor() {} 1234