1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Constant.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 static cl::opt<unsigned> UseDerefAtPointSemantics( 39 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 40 cl::desc("Deref attributes and metadata infer facts at definition only")); 41 42 //===----------------------------------------------------------------------===// 43 // Value Class 44 //===----------------------------------------------------------------------===// 45 static inline Type *checkType(Type *Ty) { 46 assert(Ty && "Value defined with a null type: Error!"); 47 return Ty; 48 } 49 50 Value::Value(Type *ty, unsigned scid) 51 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 52 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 53 IsUsedByMD(false), HasName(false), HasMetadata(false) { 54 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 55 // FIXME: Why isn't this in the subclass gunk?? 56 // Note, we cannot call isa<CallInst> before the CallInst has been 57 // constructed. 58 unsigned OpCode = 0; 59 if (SubclassID >= InstructionVal) 60 OpCode = SubclassID - InstructionVal; 61 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 62 OpCode == Instruction::CallBr) 63 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 64 "invalid CallBase type!"); 65 else if (SubclassID != BasicBlockVal && 66 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 67 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 68 "Cannot create non-first-class values except for constants!"); 69 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 70 "Value too big"); 71 } 72 73 Value::~Value() { 74 // Notify all ValueHandles (if present) that this value is going away. 75 if (HasValueHandle) 76 ValueHandleBase::ValueIsDeleted(this); 77 if (isUsedByMetadata()) 78 ValueAsMetadata::handleDeletion(this); 79 80 // Remove associated metadata from context. 81 if (HasMetadata) 82 clearMetadata(); 83 84 #ifndef NDEBUG // Only in -g mode... 85 // Check to make sure that there are no uses of this value that are still 86 // around when the value is destroyed. If there are, then we have a dangling 87 // reference and something is wrong. This code is here to print out where 88 // the value is still being referenced. 89 // 90 // Note that use_empty() cannot be called here, as it eventually downcasts 91 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 92 // been destructed, so accessing it is UB. 93 // 94 if (!materialized_use_empty()) { 95 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 96 for (auto *U : users()) 97 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 98 } 99 #endif 100 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 101 102 // If this value is named, destroy the name. This should not be in a symtab 103 // at this point. 104 destroyValueName(); 105 } 106 107 void Value::deleteValue() { 108 switch (getValueID()) { 109 #define HANDLE_VALUE(Name) \ 110 case Value::Name##Val: \ 111 delete static_cast<Name *>(this); \ 112 break; 113 #define HANDLE_MEMORY_VALUE(Name) \ 114 case Value::Name##Val: \ 115 static_cast<DerivedUser *>(this)->DeleteValue( \ 116 static_cast<DerivedUser *>(this)); \ 117 break; 118 #define HANDLE_CONSTANT(Name) \ 119 case Value::Name##Val: \ 120 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 121 break; 122 #define HANDLE_INSTRUCTION(Name) /* nothing */ 123 #include "llvm/IR/Value.def" 124 125 #define HANDLE_INST(N, OPC, CLASS) \ 126 case Value::InstructionVal + Instruction::OPC: \ 127 delete static_cast<CLASS *>(this); \ 128 break; 129 #define HANDLE_USER_INST(N, OPC, CLASS) 130 #include "llvm/IR/Instruction.def" 131 132 default: 133 llvm_unreachable("attempting to delete unknown value kind"); 134 } 135 } 136 137 void Value::destroyValueName() { 138 ValueName *Name = getValueName(); 139 if (Name) { 140 MallocAllocator Allocator; 141 Name->Destroy(Allocator); 142 } 143 setValueName(nullptr); 144 } 145 146 bool Value::hasNUses(unsigned N) const { 147 return hasNItems(use_begin(), use_end(), N); 148 } 149 150 bool Value::hasNUsesOrMore(unsigned N) const { 151 return hasNItemsOrMore(use_begin(), use_end(), N); 152 } 153 154 bool Value::hasOneUser() const { 155 if (use_empty()) 156 return false; 157 if (hasOneUse()) 158 return true; 159 return std::equal(++user_begin(), user_end(), user_begin()); 160 } 161 162 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 163 164 Use *Value::getSingleUndroppableUse() { 165 Use *Result = nullptr; 166 for (Use &U : uses()) { 167 if (!U.getUser()->isDroppable()) { 168 if (Result) 169 return nullptr; 170 Result = &U; 171 } 172 } 173 return Result; 174 } 175 176 User *Value::getUniqueUndroppableUser() { 177 User *Result = nullptr; 178 for (auto *U : users()) { 179 if (!U->isDroppable()) { 180 if (Result && Result != U) 181 return nullptr; 182 Result = U; 183 } 184 } 185 return Result; 186 } 187 188 bool Value::hasNUndroppableUses(unsigned int N) const { 189 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 190 } 191 192 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 193 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 194 } 195 196 void Value::dropDroppableUses( 197 llvm::function_ref<bool(const Use *)> ShouldDrop) { 198 SmallVector<Use *, 8> ToBeEdited; 199 for (Use &U : uses()) 200 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 201 ToBeEdited.push_back(&U); 202 for (Use *U : ToBeEdited) 203 dropDroppableUse(*U); 204 } 205 206 void Value::dropDroppableUsesIn(User &Usr) { 207 assert(Usr.isDroppable() && "Expected a droppable user!"); 208 for (Use &UsrOp : Usr.operands()) { 209 if (UsrOp.get() == this) 210 dropDroppableUse(UsrOp); 211 } 212 } 213 214 void Value::dropDroppableUse(Use &U) { 215 U.removeFromList(); 216 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 217 unsigned OpNo = U.getOperandNo(); 218 if (OpNo == 0) 219 U.set(ConstantInt::getTrue(Assume->getContext())); 220 else { 221 U.set(UndefValue::get(U.get()->getType())); 222 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 223 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 224 } 225 return; 226 } 227 228 llvm_unreachable("unkown droppable use"); 229 } 230 231 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 232 // This can be computed either by scanning the instructions in BB, or by 233 // scanning the use list of this Value. Both lists can be very long, but 234 // usually one is quite short. 235 // 236 // Scan both lists simultaneously until one is exhausted. This limits the 237 // search to the shorter list. 238 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 239 const_user_iterator UI = user_begin(), UE = user_end(); 240 for (; BI != BE && UI != UE; ++BI, ++UI) { 241 // Scan basic block: Check if this Value is used by the instruction at BI. 242 if (is_contained(BI->operands(), this)) 243 return true; 244 // Scan use list: Check if the use at UI is in BB. 245 const auto *User = dyn_cast<Instruction>(*UI); 246 if (User && User->getParent() == BB) 247 return true; 248 } 249 return false; 250 } 251 252 unsigned Value::getNumUses() const { 253 return (unsigned)std::distance(use_begin(), use_end()); 254 } 255 256 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 257 ST = nullptr; 258 if (Instruction *I = dyn_cast<Instruction>(V)) { 259 if (BasicBlock *P = I->getParent()) 260 if (Function *PP = P->getParent()) 261 ST = PP->getValueSymbolTable(); 262 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 263 if (Function *P = BB->getParent()) 264 ST = P->getValueSymbolTable(); 265 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 266 if (Module *P = GV->getParent()) 267 ST = &P->getValueSymbolTable(); 268 } else if (Argument *A = dyn_cast<Argument>(V)) { 269 if (Function *P = A->getParent()) 270 ST = P->getValueSymbolTable(); 271 } else { 272 assert(isa<Constant>(V) && "Unknown value type!"); 273 return true; // no name is setable for this. 274 } 275 return false; 276 } 277 278 ValueName *Value::getValueName() const { 279 if (!HasName) return nullptr; 280 281 LLVMContext &Ctx = getContext(); 282 auto I = Ctx.pImpl->ValueNames.find(this); 283 assert(I != Ctx.pImpl->ValueNames.end() && 284 "No name entry found!"); 285 286 return I->second; 287 } 288 289 void Value::setValueName(ValueName *VN) { 290 LLVMContext &Ctx = getContext(); 291 292 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 293 "HasName bit out of sync!"); 294 295 if (!VN) { 296 if (HasName) 297 Ctx.pImpl->ValueNames.erase(this); 298 HasName = false; 299 return; 300 } 301 302 HasName = true; 303 Ctx.pImpl->ValueNames[this] = VN; 304 } 305 306 StringRef Value::getName() const { 307 // Make sure the empty string is still a C string. For historical reasons, 308 // some clients want to call .data() on the result and expect it to be null 309 // terminated. 310 if (!hasName()) 311 return StringRef("", 0); 312 return getValueName()->getKey(); 313 } 314 315 void Value::setNameImpl(const Twine &NewName) { 316 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 317 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 318 return; 319 320 // Fast path for common IRBuilder case of setName("") when there is no name. 321 if (NewName.isTriviallyEmpty() && !hasName()) 322 return; 323 324 SmallString<256> NameData; 325 StringRef NameRef = NewName.toStringRef(NameData); 326 assert(NameRef.find_first_of(0) == StringRef::npos && 327 "Null bytes are not allowed in names"); 328 329 // Name isn't changing? 330 if (getName() == NameRef) 331 return; 332 333 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 334 335 // Get the symbol table to update for this object. 336 ValueSymbolTable *ST; 337 if (getSymTab(this, ST)) 338 return; // Cannot set a name on this value (e.g. constant). 339 340 if (!ST) { // No symbol table to update? Just do the change. 341 if (NameRef.empty()) { 342 // Free the name for this value. 343 destroyValueName(); 344 return; 345 } 346 347 // NOTE: Could optimize for the case the name is shrinking to not deallocate 348 // then reallocated. 349 destroyValueName(); 350 351 // Create the new name. 352 MallocAllocator Allocator; 353 setValueName(ValueName::Create(NameRef, Allocator)); 354 getValueName()->setValue(this); 355 return; 356 } 357 358 // NOTE: Could optimize for the case the name is shrinking to not deallocate 359 // then reallocated. 360 if (hasName()) { 361 // Remove old name. 362 ST->removeValueName(getValueName()); 363 destroyValueName(); 364 365 if (NameRef.empty()) 366 return; 367 } 368 369 // Name is changing to something new. 370 setValueName(ST->createValueName(NameRef, this)); 371 } 372 373 void Value::setName(const Twine &NewName) { 374 setNameImpl(NewName); 375 if (Function *F = dyn_cast<Function>(this)) 376 F->recalculateIntrinsicID(); 377 } 378 379 void Value::takeName(Value *V) { 380 assert(V != this && "Illegal call to this->takeName(this)!"); 381 ValueSymbolTable *ST = nullptr; 382 // If this value has a name, drop it. 383 if (hasName()) { 384 // Get the symtab this is in. 385 if (getSymTab(this, ST)) { 386 // We can't set a name on this value, but we need to clear V's name if 387 // it has one. 388 if (V->hasName()) V->setName(""); 389 return; // Cannot set a name on this value (e.g. constant). 390 } 391 392 // Remove old name. 393 if (ST) 394 ST->removeValueName(getValueName()); 395 destroyValueName(); 396 } 397 398 // Now we know that this has no name. 399 400 // If V has no name either, we're done. 401 if (!V->hasName()) return; 402 403 // Get this's symtab if we didn't before. 404 if (!ST) { 405 if (getSymTab(this, ST)) { 406 // Clear V's name. 407 V->setName(""); 408 return; // Cannot set a name on this value (e.g. constant). 409 } 410 } 411 412 // Get V's ST, this should always succed, because V has a name. 413 ValueSymbolTable *VST; 414 bool Failure = getSymTab(V, VST); 415 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 416 417 // If these values are both in the same symtab, we can do this very fast. 418 // This works even if both values have no symtab yet. 419 if (ST == VST) { 420 // Take the name! 421 setValueName(V->getValueName()); 422 V->setValueName(nullptr); 423 getValueName()->setValue(this); 424 return; 425 } 426 427 // Otherwise, things are slightly more complex. Remove V's name from VST and 428 // then reinsert it into ST. 429 430 if (VST) 431 VST->removeValueName(V->getValueName()); 432 setValueName(V->getValueName()); 433 V->setValueName(nullptr); 434 getValueName()->setValue(this); 435 436 if (ST) 437 ST->reinsertValue(this); 438 } 439 440 #ifndef NDEBUG 441 std::string Value::getNameOrAsOperand() const { 442 if (!getName().empty()) 443 return std::string(getName()); 444 445 std::string BBName; 446 raw_string_ostream OS(BBName); 447 printAsOperand(OS, false); 448 return OS.str(); 449 } 450 #endif 451 452 void Value::assertModuleIsMaterializedImpl() const { 453 #ifndef NDEBUG 454 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 455 if (!GV) 456 return; 457 const Module *M = GV->getParent(); 458 if (!M) 459 return; 460 assert(M->isMaterialized()); 461 #endif 462 } 463 464 #ifndef NDEBUG 465 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 466 Constant *C) { 467 if (!Cache.insert(Expr).second) 468 return false; 469 470 for (auto &O : Expr->operands()) { 471 if (O == C) 472 return true; 473 auto *CE = dyn_cast<ConstantExpr>(O); 474 if (!CE) 475 continue; 476 if (contains(Cache, CE, C)) 477 return true; 478 } 479 return false; 480 } 481 482 static bool contains(Value *Expr, Value *V) { 483 if (Expr == V) 484 return true; 485 486 auto *C = dyn_cast<Constant>(V); 487 if (!C) 488 return false; 489 490 auto *CE = dyn_cast<ConstantExpr>(Expr); 491 if (!CE) 492 return false; 493 494 SmallPtrSet<ConstantExpr *, 4> Cache; 495 return contains(Cache, CE, C); 496 } 497 #endif // NDEBUG 498 499 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 500 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 501 assert(!contains(New, this) && 502 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 503 assert(New->getType() == getType() && 504 "replaceAllUses of value with new value of different type!"); 505 506 // Notify all ValueHandles (if present) that this value is going away. 507 if (HasValueHandle) 508 ValueHandleBase::ValueIsRAUWd(this, New); 509 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 510 ValueAsMetadata::handleRAUW(this, New); 511 512 while (!materialized_use_empty()) { 513 Use &U = *UseList; 514 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 515 // constant because they are uniqued. 516 if (auto *C = dyn_cast<Constant>(U.getUser())) { 517 if (!isa<GlobalValue>(C)) { 518 C->handleOperandChange(this, New); 519 continue; 520 } 521 } 522 523 U.set(New); 524 } 525 526 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 527 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 528 } 529 530 void Value::replaceAllUsesWith(Value *New) { 531 doRAUW(New, ReplaceMetadataUses::Yes); 532 } 533 534 void Value::replaceNonMetadataUsesWith(Value *New) { 535 doRAUW(New, ReplaceMetadataUses::No); 536 } 537 538 void Value::replaceUsesWithIf(Value *New, 539 llvm::function_ref<bool(Use &U)> ShouldReplace) { 540 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 541 assert(New->getType() == getType() && 542 "replaceUses of value with new value of different type!"); 543 544 SmallVector<TrackingVH<Constant>, 8> Consts; 545 SmallPtrSet<Constant *, 8> Visited; 546 547 for (Use &U : llvm::make_early_inc_range(uses())) { 548 if (!ShouldReplace(U)) 549 continue; 550 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 551 // constant because they are uniqued. 552 if (auto *C = dyn_cast<Constant>(U.getUser())) { 553 if (!isa<GlobalValue>(C)) { 554 if (Visited.insert(C).second) 555 Consts.push_back(TrackingVH<Constant>(C)); 556 continue; 557 } 558 } 559 U.set(New); 560 } 561 562 while (!Consts.empty()) { 563 // FIXME: handleOperandChange() updates all the uses in a given Constant, 564 // not just the one passed to ShouldReplace 565 Consts.pop_back_val()->handleOperandChange(this, New); 566 } 567 } 568 569 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 570 /// with New. 571 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 572 SmallVector<DbgVariableIntrinsic *> DbgUsers; 573 findDbgUsers(DbgUsers, V); 574 for (auto *DVI : DbgUsers) { 575 if (DVI->getParent() != BB) 576 DVI->replaceVariableLocationOp(V, New); 577 } 578 } 579 580 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 581 // This routine leaves uses within BB. 582 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 583 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 584 assert(!contains(New, this) && 585 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 586 assert(New->getType() == getType() && 587 "replaceUses of value with new value of different type!"); 588 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 589 590 replaceDbgUsesOutsideBlock(this, New, BB); 591 replaceUsesWithIf(New, [BB](Use &U) { 592 auto *I = dyn_cast<Instruction>(U.getUser()); 593 // Don't replace if it's an instruction in the BB basic block. 594 return !I || I->getParent() != BB; 595 }); 596 } 597 598 namespace { 599 // Various metrics for how much to strip off of pointers. 600 enum PointerStripKind { 601 PSK_ZeroIndices, 602 PSK_ZeroIndicesAndAliases, 603 PSK_ZeroIndicesSameRepresentation, 604 PSK_ForAliasAnalysis, 605 PSK_InBoundsConstantIndices, 606 PSK_InBounds 607 }; 608 609 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 610 611 template <PointerStripKind StripKind> 612 static const Value *stripPointerCastsAndOffsets( 613 const Value *V, 614 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 615 if (!V->getType()->isPointerTy()) 616 return V; 617 618 // Even though we don't look through PHI nodes, we could be called on an 619 // instruction in an unreachable block, which may be on a cycle. 620 SmallPtrSet<const Value *, 4> Visited; 621 622 Visited.insert(V); 623 do { 624 Func(V); 625 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 626 switch (StripKind) { 627 case PSK_ZeroIndices: 628 case PSK_ZeroIndicesAndAliases: 629 case PSK_ZeroIndicesSameRepresentation: 630 case PSK_ForAliasAnalysis: 631 if (!GEP->hasAllZeroIndices()) 632 return V; 633 break; 634 case PSK_InBoundsConstantIndices: 635 if (!GEP->hasAllConstantIndices()) 636 return V; 637 LLVM_FALLTHROUGH; 638 case PSK_InBounds: 639 if (!GEP->isInBounds()) 640 return V; 641 break; 642 } 643 V = GEP->getPointerOperand(); 644 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 645 V = cast<Operator>(V)->getOperand(0); 646 if (!V->getType()->isPointerTy()) 647 return V; 648 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 649 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 650 // TODO: If we know an address space cast will not change the 651 // representation we could look through it here as well. 652 V = cast<Operator>(V)->getOperand(0); 653 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 654 V = cast<GlobalAlias>(V)->getAliasee(); 655 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 656 cast<PHINode>(V)->getNumIncomingValues() == 1) { 657 V = cast<PHINode>(V)->getIncomingValue(0); 658 } else { 659 if (const auto *Call = dyn_cast<CallBase>(V)) { 660 if (const Value *RV = Call->getReturnedArgOperand()) { 661 V = RV; 662 continue; 663 } 664 // The result of launder.invariant.group must alias it's argument, 665 // but it can't be marked with returned attribute, that's why it needs 666 // special case. 667 if (StripKind == PSK_ForAliasAnalysis && 668 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 669 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 670 V = Call->getArgOperand(0); 671 continue; 672 } 673 } 674 return V; 675 } 676 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 677 } while (Visited.insert(V).second); 678 679 return V; 680 } 681 } // end anonymous namespace 682 683 const Value *Value::stripPointerCasts() const { 684 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 685 } 686 687 const Value *Value::stripPointerCastsAndAliases() const { 688 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 689 } 690 691 const Value *Value::stripPointerCastsSameRepresentation() const { 692 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 693 } 694 695 const Value *Value::stripInBoundsConstantOffsets() const { 696 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 697 } 698 699 const Value *Value::stripPointerCastsForAliasAnalysis() const { 700 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 701 } 702 703 const Value *Value::stripAndAccumulateConstantOffsets( 704 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 705 bool AllowInvariantGroup, 706 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 707 if (!getType()->isPtrOrPtrVectorTy()) 708 return this; 709 710 unsigned BitWidth = Offset.getBitWidth(); 711 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 712 "The offset bit width does not match the DL specification."); 713 714 // Even though we don't look through PHI nodes, we could be called on an 715 // instruction in an unreachable block, which may be on a cycle. 716 SmallPtrSet<const Value *, 4> Visited; 717 Visited.insert(this); 718 const Value *V = this; 719 do { 720 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 721 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 722 if (!AllowNonInbounds && !GEP->isInBounds()) 723 return V; 724 725 // If one of the values we have visited is an addrspacecast, then 726 // the pointer type of this GEP may be different from the type 727 // of the Ptr parameter which was passed to this function. This 728 // means when we construct GEPOffset, we need to use the size 729 // of GEP's pointer type rather than the size of the original 730 // pointer type. 731 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 732 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 733 return V; 734 735 // Stop traversal if the pointer offset wouldn't fit in the bit-width 736 // provided by the Offset argument. This can happen due to AddrSpaceCast 737 // stripping. 738 if (GEPOffset.getMinSignedBits() > BitWidth) 739 return V; 740 741 // External Analysis can return a result higher/lower than the value 742 // represents. We need to detect overflow/underflow. 743 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 744 if (!ExternalAnalysis) { 745 Offset += GEPOffsetST; 746 } else { 747 bool Overflow = false; 748 APInt OldOffset = Offset; 749 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 750 if (Overflow) { 751 Offset = OldOffset; 752 return V; 753 } 754 } 755 V = GEP->getPointerOperand(); 756 } else if (Operator::getOpcode(V) == Instruction::BitCast || 757 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 758 V = cast<Operator>(V)->getOperand(0); 759 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 760 if (!GA->isInterposable()) 761 V = GA->getAliasee(); 762 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 763 if (const Value *RV = Call->getReturnedArgOperand()) 764 V = RV; 765 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) 766 V = Call->getArgOperand(0); 767 } 768 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 769 } while (Visited.insert(V).second); 770 771 return V; 772 } 773 774 const Value * 775 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 776 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 777 } 778 779 bool Value::canBeFreed() const { 780 assert(getType()->isPointerTy()); 781 782 // Cases that can simply never be deallocated 783 // *) Constants aren't allocated per se, thus not deallocated either. 784 if (isa<Constant>(this)) 785 return false; 786 787 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 788 // lifetime is guaranteed to be longer than the callee's lifetime. 789 if (auto *A = dyn_cast<Argument>(this)) { 790 if (A->hasPointeeInMemoryValueAttr()) 791 return false; 792 // A pointer to an object in a function which neither frees, nor can arrange 793 // for another thread to free on its behalf, can not be freed in the scope 794 // of the function. Note that this logic is restricted to memory 795 // allocations in existance before the call; a nofree function *is* allowed 796 // to free memory it allocated. 797 const Function *F = A->getParent(); 798 if (F->doesNotFreeMemory() && F->hasNoSync()) 799 return false; 800 } 801 802 const Function *F = nullptr; 803 if (auto *I = dyn_cast<Instruction>(this)) 804 F = I->getFunction(); 805 if (auto *A = dyn_cast<Argument>(this)) 806 F = A->getParent(); 807 808 if (!F) 809 return true; 810 811 // With garbage collection, deallocation typically occurs solely at or after 812 // safepoints. If we're compiling for a collector which uses the 813 // gc.statepoint infrastructure, safepoints aren't explicitly present 814 // in the IR until after lowering from abstract to physical machine model. 815 // The collector could chose to mix explicit deallocation and gc'd objects 816 // which is why we need the explicit opt in on a per collector basis. 817 if (!F->hasGC()) 818 return true; 819 820 const auto &GCName = F->getGC(); 821 if (GCName == "statepoint-example") { 822 auto *PT = cast<PointerType>(this->getType()); 823 if (PT->getAddressSpace() != 1) 824 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 825 // our GC managed heap. This must match the same check in 826 // RewriteStatepointsForGC (and probably needs better factored.) 827 return true; 828 829 // It is cheaper to scan for a declaration than to scan for a use in this 830 // function. Note that gc.statepoint is a type overloaded function so the 831 // usual trick of requesting declaration of the intrinsic from the module 832 // doesn't work. 833 for (auto &Fn : *F->getParent()) 834 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 835 return true; 836 return false; 837 } 838 return true; 839 } 840 841 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 842 bool &CanBeNull, 843 bool &CanBeFreed) const { 844 assert(getType()->isPointerTy() && "must be pointer"); 845 846 uint64_t DerefBytes = 0; 847 CanBeNull = false; 848 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 849 if (const Argument *A = dyn_cast<Argument>(this)) { 850 DerefBytes = A->getDereferenceableBytes(); 851 if (DerefBytes == 0) { 852 // Handle byval/byref/inalloca/preallocated arguments 853 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 854 if (ArgMemTy->isSized()) { 855 // FIXME: Why isn't this the type alloc size? 856 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 857 } 858 } 859 } 860 861 if (DerefBytes == 0) { 862 DerefBytes = A->getDereferenceableOrNullBytes(); 863 CanBeNull = true; 864 } 865 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 866 DerefBytes = Call->getRetDereferenceableBytes(); 867 if (DerefBytes == 0) { 868 DerefBytes = Call->getRetDereferenceableOrNullBytes(); 869 CanBeNull = true; 870 } 871 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 872 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 873 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 874 DerefBytes = CI->getLimitedValue(); 875 } 876 if (DerefBytes == 0) { 877 if (MDNode *MD = 878 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 879 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 880 DerefBytes = CI->getLimitedValue(); 881 } 882 CanBeNull = true; 883 } 884 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 885 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 886 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 887 DerefBytes = CI->getLimitedValue(); 888 } 889 if (DerefBytes == 0) { 890 if (MDNode *MD = 891 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 892 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 893 DerefBytes = CI->getLimitedValue(); 894 } 895 CanBeNull = true; 896 } 897 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 898 if (!AI->isArrayAllocation()) { 899 DerefBytes = 900 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 901 CanBeNull = false; 902 CanBeFreed = false; 903 } 904 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 905 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 906 // TODO: Don't outright reject hasExternalWeakLinkage but set the 907 // CanBeNull flag. 908 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 909 CanBeNull = false; 910 CanBeFreed = false; 911 } 912 } 913 return DerefBytes; 914 } 915 916 Align Value::getPointerAlignment(const DataLayout &DL) const { 917 assert(getType()->isPointerTy() && "must be pointer"); 918 if (auto *GO = dyn_cast<GlobalObject>(this)) { 919 if (isa<Function>(GO)) { 920 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 921 switch (DL.getFunctionPtrAlignType()) { 922 case DataLayout::FunctionPtrAlignType::Independent: 923 return FunctionPtrAlign; 924 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 925 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 926 } 927 llvm_unreachable("Unhandled FunctionPtrAlignType"); 928 } 929 const MaybeAlign Alignment(GO->getAlign()); 930 if (!Alignment) { 931 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 932 Type *ObjectType = GVar->getValueType(); 933 if (ObjectType->isSized()) { 934 // If the object is defined in the current Module, we'll be giving 935 // it the preferred alignment. Otherwise, we have to assume that it 936 // may only have the minimum ABI alignment. 937 if (GVar->isStrongDefinitionForLinker()) 938 return DL.getPreferredAlign(GVar); 939 else 940 return DL.getABITypeAlign(ObjectType); 941 } 942 } 943 } 944 return Alignment.valueOrOne(); 945 } else if (const Argument *A = dyn_cast<Argument>(this)) { 946 const MaybeAlign Alignment = A->getParamAlign(); 947 if (!Alignment && A->hasStructRetAttr()) { 948 // An sret parameter has at least the ABI alignment of the return type. 949 Type *EltTy = A->getParamStructRetType(); 950 if (EltTy->isSized()) 951 return DL.getABITypeAlign(EltTy); 952 } 953 return Alignment.valueOrOne(); 954 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 955 return AI->getAlign(); 956 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 957 MaybeAlign Alignment = Call->getRetAlign(); 958 if (!Alignment && Call->getCalledFunction()) 959 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 960 return Alignment.valueOrOne(); 961 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 962 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 963 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 964 return Align(CI->getLimitedValue()); 965 } 966 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 967 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 968 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 969 /*OnlyIfReduced=*/true))) { 970 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 971 // While the actual alignment may be large, elsewhere we have 972 // an arbitrary upper alignmet limit, so let's clamp to it. 973 return Align(TrailingZeros < Value::MaxAlignmentExponent 974 ? uint64_t(1) << TrailingZeros 975 : Value::MaximumAlignment); 976 } 977 } 978 return Align(1); 979 } 980 981 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 982 const BasicBlock *PredBB) const { 983 auto *PN = dyn_cast<PHINode>(this); 984 if (PN && PN->getParent() == CurBB) 985 return PN->getIncomingValueForBlock(PredBB); 986 return this; 987 } 988 989 LLVMContext &Value::getContext() const { return VTy->getContext(); } 990 991 void Value::reverseUseList() { 992 if (!UseList || !UseList->Next) 993 // No need to reverse 0 or 1 uses. 994 return; 995 996 Use *Head = UseList; 997 Use *Current = UseList->Next; 998 Head->Next = nullptr; 999 while (Current) { 1000 Use *Next = Current->Next; 1001 Current->Next = Head; 1002 Head->Prev = &Current->Next; 1003 Head = Current; 1004 Current = Next; 1005 } 1006 UseList = Head; 1007 Head->Prev = &UseList; 1008 } 1009 1010 bool Value::isSwiftError() const { 1011 auto *Arg = dyn_cast<Argument>(this); 1012 if (Arg) 1013 return Arg->hasSwiftErrorAttr(); 1014 auto *Alloca = dyn_cast<AllocaInst>(this); 1015 if (!Alloca) 1016 return false; 1017 return Alloca->isSwiftError(); 1018 } 1019 1020 bool Value::isTransitiveUsedByMetadataOnly() const { 1021 if (use_empty()) 1022 return false; 1023 llvm::SmallVector<const User *, 32> WorkList; 1024 llvm::SmallPtrSet<const User *, 32> Visited; 1025 WorkList.insert(WorkList.begin(), user_begin(), user_end()); 1026 while (!WorkList.empty()) { 1027 const User *U = WorkList.pop_back_val(); 1028 Visited.insert(U); 1029 // If it is transitively used by a global value or a non-constant value, 1030 // it's obviously not only used by metadata. 1031 if (!isa<Constant>(U) || isa<GlobalValue>(U)) 1032 return false; 1033 for (const User *UU : U->users()) 1034 if (!Visited.count(UU)) 1035 WorkList.push_back(UU); 1036 } 1037 return true; 1038 } 1039 1040 //===----------------------------------------------------------------------===// 1041 // ValueHandleBase Class 1042 //===----------------------------------------------------------------------===// 1043 1044 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1045 assert(List && "Handle list is null?"); 1046 1047 // Splice ourselves into the list. 1048 Next = *List; 1049 *List = this; 1050 setPrevPtr(List); 1051 if (Next) { 1052 Next->setPrevPtr(&Next); 1053 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1054 } 1055 } 1056 1057 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1058 assert(List && "Must insert after existing node"); 1059 1060 Next = List->Next; 1061 setPrevPtr(&List->Next); 1062 List->Next = this; 1063 if (Next) 1064 Next->setPrevPtr(&Next); 1065 } 1066 1067 void ValueHandleBase::AddToUseList() { 1068 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1069 1070 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1071 1072 if (getValPtr()->HasValueHandle) { 1073 // If this value already has a ValueHandle, then it must be in the 1074 // ValueHandles map already. 1075 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1076 assert(Entry && "Value doesn't have any handles?"); 1077 AddToExistingUseList(&Entry); 1078 return; 1079 } 1080 1081 // Ok, it doesn't have any handles yet, so we must insert it into the 1082 // DenseMap. However, doing this insertion could cause the DenseMap to 1083 // reallocate itself, which would invalidate all of the PrevP pointers that 1084 // point into the old table. Handle this by checking for reallocation and 1085 // updating the stale pointers only if needed. 1086 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1087 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1088 1089 ValueHandleBase *&Entry = Handles[getValPtr()]; 1090 assert(!Entry && "Value really did already have handles?"); 1091 AddToExistingUseList(&Entry); 1092 getValPtr()->HasValueHandle = true; 1093 1094 // If reallocation didn't happen or if this was the first insertion, don't 1095 // walk the table. 1096 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1097 Handles.size() == 1) { 1098 return; 1099 } 1100 1101 // Okay, reallocation did happen. Fix the Prev Pointers. 1102 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1103 E = Handles.end(); I != E; ++I) { 1104 assert(I->second && I->first == I->second->getValPtr() && 1105 "List invariant broken!"); 1106 I->second->setPrevPtr(&I->second); 1107 } 1108 } 1109 1110 void ValueHandleBase::RemoveFromUseList() { 1111 assert(getValPtr() && getValPtr()->HasValueHandle && 1112 "Pointer doesn't have a use list!"); 1113 1114 // Unlink this from its use list. 1115 ValueHandleBase **PrevPtr = getPrevPtr(); 1116 assert(*PrevPtr == this && "List invariant broken"); 1117 1118 *PrevPtr = Next; 1119 if (Next) { 1120 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1121 Next->setPrevPtr(PrevPtr); 1122 return; 1123 } 1124 1125 // If the Next pointer was null, then it is possible that this was the last 1126 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1127 // map. 1128 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1129 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1130 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1131 Handles.erase(getValPtr()); 1132 getValPtr()->HasValueHandle = false; 1133 } 1134 } 1135 1136 void ValueHandleBase::ValueIsDeleted(Value *V) { 1137 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1138 1139 // Get the linked list base, which is guaranteed to exist since the 1140 // HasValueHandle flag is set. 1141 LLVMContextImpl *pImpl = V->getContext().pImpl; 1142 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1143 assert(Entry && "Value bit set but no entries exist"); 1144 1145 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1146 // and remove themselves from the list without breaking our iteration. This 1147 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1148 // Note that we deliberately do not the support the case when dropping a value 1149 // handle results in a new value handle being permanently added to the list 1150 // (as might occur in theory for CallbackVH's): the new value handle will not 1151 // be processed and the checking code will mete out righteous punishment if 1152 // the handle is still present once we have finished processing all the other 1153 // value handles (it is fine to momentarily add then remove a value handle). 1154 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1155 Iterator.RemoveFromUseList(); 1156 Iterator.AddToExistingUseListAfter(Entry); 1157 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1158 1159 switch (Entry->getKind()) { 1160 case Assert: 1161 break; 1162 case Weak: 1163 case WeakTracking: 1164 // WeakTracking and Weak just go to null, which unlinks them 1165 // from the list. 1166 Entry->operator=(nullptr); 1167 break; 1168 case Callback: 1169 // Forward to the subclass's implementation. 1170 static_cast<CallbackVH*>(Entry)->deleted(); 1171 break; 1172 } 1173 } 1174 1175 // All callbacks, weak references, and assertingVHs should be dropped by now. 1176 if (V->HasValueHandle) { 1177 #ifndef NDEBUG // Only in +Asserts mode... 1178 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1179 << "\n"; 1180 if (pImpl->ValueHandles[V]->getKind() == Assert) 1181 llvm_unreachable("An asserting value handle still pointed to this" 1182 " value!"); 1183 1184 #endif 1185 llvm_unreachable("All references to V were not removed?"); 1186 } 1187 } 1188 1189 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1190 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1191 assert(Old != New && "Changing value into itself!"); 1192 assert(Old->getType() == New->getType() && 1193 "replaceAllUses of value with new value of different type!"); 1194 1195 // Get the linked list base, which is guaranteed to exist since the 1196 // HasValueHandle flag is set. 1197 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1198 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1199 1200 assert(Entry && "Value bit set but no entries exist"); 1201 1202 // We use a local ValueHandleBase as an iterator so that 1203 // ValueHandles can add and remove themselves from the list without 1204 // breaking our iteration. This is not really an AssertingVH; we 1205 // just have to give ValueHandleBase some kind. 1206 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1207 Iterator.RemoveFromUseList(); 1208 Iterator.AddToExistingUseListAfter(Entry); 1209 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1210 1211 switch (Entry->getKind()) { 1212 case Assert: 1213 case Weak: 1214 // Asserting and Weak handles do not follow RAUW implicitly. 1215 break; 1216 case WeakTracking: 1217 // Weak goes to the new value, which will unlink it from Old's list. 1218 Entry->operator=(New); 1219 break; 1220 case Callback: 1221 // Forward to the subclass's implementation. 1222 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1223 break; 1224 } 1225 } 1226 1227 #ifndef NDEBUG 1228 // If any new weak value handles were added while processing the 1229 // list, then complain about it now. 1230 if (Old->HasValueHandle) 1231 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1232 switch (Entry->getKind()) { 1233 case WeakTracking: 1234 dbgs() << "After RAUW from " << *Old->getType() << " %" 1235 << Old->getName() << " to " << *New->getType() << " %" 1236 << New->getName() << "\n"; 1237 llvm_unreachable( 1238 "A weak tracking value handle still pointed to the old value!\n"); 1239 default: 1240 break; 1241 } 1242 #endif 1243 } 1244 1245 // Pin the vtable to this file. 1246 void CallbackVH::anchor() {} 1247