xref: /llvm-project-15.0.7/llvm/lib/IR/Value.cpp (revision 58b29a4e)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DerivedUser.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 
39 using namespace llvm;
40 
41 static cl::opt<unsigned> UseDerefAtPointSemantics(
42     "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false),
43     cl::desc("Deref attributes and metadata infer facts at definition only"));
44 
45 //===----------------------------------------------------------------------===//
46 //                                Value Class
47 //===----------------------------------------------------------------------===//
48 static inline Type *checkType(Type *Ty) {
49   assert(Ty && "Value defined with a null type: Error!");
50   return Ty;
51 }
52 
53 Value::Value(Type *ty, unsigned scid)
54     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
55       SubclassOptionalData(0), SubclassData(0), NumUserOperands(0),
56       IsUsedByMD(false), HasName(false), HasMetadata(false) {
57   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58   // FIXME: Why isn't this in the subclass gunk??
59   // Note, we cannot call isa<CallInst> before the CallInst has been
60   // constructed.
61   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
62       SubclassID == Instruction::CallBr)
63     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
64            "invalid CallInst type!");
65   else if (SubclassID != BasicBlockVal &&
66            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
67     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
68            "Cannot create non-first-class values except for constants!");
69   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
70                 "Value too big");
71 }
72 
73 Value::~Value() {
74   // Notify all ValueHandles (if present) that this value is going away.
75   if (HasValueHandle)
76     ValueHandleBase::ValueIsDeleted(this);
77   if (isUsedByMetadata())
78     ValueAsMetadata::handleDeletion(this);
79 
80   // Remove associated metadata from context.
81   if (HasMetadata)
82     clearMetadata();
83 
84 #ifndef NDEBUG      // Only in -g mode...
85   // Check to make sure that there are no uses of this value that are still
86   // around when the value is destroyed.  If there are, then we have a dangling
87   // reference and something is wrong.  This code is here to print out where
88   // the value is still being referenced.
89   //
90   // Note that use_empty() cannot be called here, as it eventually downcasts
91   // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
92   // been destructed, so accessing it is UB.
93   //
94   if (!materialized_use_empty()) {
95     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
96     for (auto *U : users())
97       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
98   }
99 #endif
100   assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
101 
102   // If this value is named, destroy the name.  This should not be in a symtab
103   // at this point.
104   destroyValueName();
105 }
106 
107 void Value::deleteValue() {
108   switch (getValueID()) {
109 #define HANDLE_VALUE(Name)                                                     \
110   case Value::Name##Val:                                                       \
111     delete static_cast<Name *>(this);                                          \
112     break;
113 #define HANDLE_MEMORY_VALUE(Name)                                              \
114   case Value::Name##Val:                                                       \
115     static_cast<DerivedUser *>(this)->DeleteValue(                             \
116         static_cast<DerivedUser *>(this));                                     \
117     break;
118 #define HANDLE_CONSTANT(Name)                                                  \
119   case Value::Name##Val:                                                       \
120     llvm_unreachable("constants should be destroyed with destroyConstant");    \
121     break;
122 #define HANDLE_INSTRUCTION(Name)  /* nothing */
123 #include "llvm/IR/Value.def"
124 
125 #define HANDLE_INST(N, OPC, CLASS)                                             \
126   case Value::InstructionVal + Instruction::OPC:                               \
127     delete static_cast<CLASS *>(this);                                         \
128     break;
129 #define HANDLE_USER_INST(N, OPC, CLASS)
130 #include "llvm/IR/Instruction.def"
131 
132   default:
133     llvm_unreachable("attempting to delete unknown value kind");
134   }
135 }
136 
137 void Value::destroyValueName() {
138   ValueName *Name = getValueName();
139   if (Name) {
140     MallocAllocator Allocator;
141     Name->Destroy(Allocator);
142   }
143   setValueName(nullptr);
144 }
145 
146 bool Value::hasNUses(unsigned N) const {
147   return hasNItems(use_begin(), use_end(), N);
148 }
149 
150 bool Value::hasNUsesOrMore(unsigned N) const {
151   return hasNItemsOrMore(use_begin(), use_end(), N);
152 }
153 
154 bool Value::hasOneUser() const {
155   if (use_empty())
156     return false;
157   if (hasOneUse())
158     return true;
159   return std::equal(++user_begin(), user_end(), user_begin());
160 }
161 
162 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
163 
164 Use *Value::getSingleUndroppableUse() {
165   Use *Result = nullptr;
166   for (Use &U : uses()) {
167     if (!U.getUser()->isDroppable()) {
168       if (Result)
169         return nullptr;
170       Result = &U;
171     }
172   }
173   return Result;
174 }
175 
176 bool Value::hasNUndroppableUses(unsigned int N) const {
177   return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
178 }
179 
180 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
181   return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
182 }
183 
184 void Value::dropDroppableUses(
185     llvm::function_ref<bool(const Use *)> ShouldDrop) {
186   SmallVector<Use *, 8> ToBeEdited;
187   for (Use &U : uses())
188     if (U.getUser()->isDroppable() && ShouldDrop(&U))
189       ToBeEdited.push_back(&U);
190   for (Use *U : ToBeEdited)
191     dropDroppableUse(*U);
192 }
193 
194 void Value::dropDroppableUsesIn(User &Usr) {
195   assert(Usr.isDroppable() && "Expected a droppable user!");
196   for (Use &UsrOp : Usr.operands()) {
197     if (UsrOp.get() == this)
198       dropDroppableUse(UsrOp);
199   }
200 }
201 
202 void Value::dropDroppableUse(Use &U) {
203   U.removeFromList();
204   if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) {
205     unsigned OpNo = U.getOperandNo();
206     if (OpNo == 0)
207       U.set(ConstantInt::getTrue(Assume->getContext()));
208     else {
209       U.set(UndefValue::get(U.get()->getType()));
210       CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
211       BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore");
212     }
213     return;
214   }
215 
216   llvm_unreachable("unkown droppable use");
217 }
218 
219 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
220   // This can be computed either by scanning the instructions in BB, or by
221   // scanning the use list of this Value. Both lists can be very long, but
222   // usually one is quite short.
223   //
224   // Scan both lists simultaneously until one is exhausted. This limits the
225   // search to the shorter list.
226   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
227   const_user_iterator UI = user_begin(), UE = user_end();
228   for (; BI != BE && UI != UE; ++BI, ++UI) {
229     // Scan basic block: Check if this Value is used by the instruction at BI.
230     if (is_contained(BI->operands(), this))
231       return true;
232     // Scan use list: Check if the use at UI is in BB.
233     const auto *User = dyn_cast<Instruction>(*UI);
234     if (User && User->getParent() == BB)
235       return true;
236   }
237   return false;
238 }
239 
240 unsigned Value::getNumUses() const {
241   return (unsigned)std::distance(use_begin(), use_end());
242 }
243 
244 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
245   ST = nullptr;
246   if (Instruction *I = dyn_cast<Instruction>(V)) {
247     if (BasicBlock *P = I->getParent())
248       if (Function *PP = P->getParent())
249         ST = PP->getValueSymbolTable();
250   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
251     if (Function *P = BB->getParent())
252       ST = P->getValueSymbolTable();
253   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
254     if (Module *P = GV->getParent())
255       ST = &P->getValueSymbolTable();
256   } else if (Argument *A = dyn_cast<Argument>(V)) {
257     if (Function *P = A->getParent())
258       ST = P->getValueSymbolTable();
259   } else {
260     assert(isa<Constant>(V) && "Unknown value type!");
261     return true;  // no name is setable for this.
262   }
263   return false;
264 }
265 
266 ValueName *Value::getValueName() const {
267   if (!HasName) return nullptr;
268 
269   LLVMContext &Ctx = getContext();
270   auto I = Ctx.pImpl->ValueNames.find(this);
271   assert(I != Ctx.pImpl->ValueNames.end() &&
272          "No name entry found!");
273 
274   return I->second;
275 }
276 
277 void Value::setValueName(ValueName *VN) {
278   LLVMContext &Ctx = getContext();
279 
280   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
281          "HasName bit out of sync!");
282 
283   if (!VN) {
284     if (HasName)
285       Ctx.pImpl->ValueNames.erase(this);
286     HasName = false;
287     return;
288   }
289 
290   HasName = true;
291   Ctx.pImpl->ValueNames[this] = VN;
292 }
293 
294 StringRef Value::getName() const {
295   // Make sure the empty string is still a C string. For historical reasons,
296   // some clients want to call .data() on the result and expect it to be null
297   // terminated.
298   if (!hasName())
299     return StringRef("", 0);
300   return getValueName()->getKey();
301 }
302 
303 void Value::setNameImpl(const Twine &NewName) {
304   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
305   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
306     return;
307 
308   // Fast path for common IRBuilder case of setName("") when there is no name.
309   if (NewName.isTriviallyEmpty() && !hasName())
310     return;
311 
312   SmallString<256> NameData;
313   StringRef NameRef = NewName.toStringRef(NameData);
314   assert(NameRef.find_first_of(0) == StringRef::npos &&
315          "Null bytes are not allowed in names");
316 
317   // Name isn't changing?
318   if (getName() == NameRef)
319     return;
320 
321   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
322 
323   // Get the symbol table to update for this object.
324   ValueSymbolTable *ST;
325   if (getSymTab(this, ST))
326     return;  // Cannot set a name on this value (e.g. constant).
327 
328   if (!ST) { // No symbol table to update?  Just do the change.
329     if (NameRef.empty()) {
330       // Free the name for this value.
331       destroyValueName();
332       return;
333     }
334 
335     // NOTE: Could optimize for the case the name is shrinking to not deallocate
336     // then reallocated.
337     destroyValueName();
338 
339     // Create the new name.
340     MallocAllocator Allocator;
341     setValueName(ValueName::Create(NameRef, Allocator));
342     getValueName()->setValue(this);
343     return;
344   }
345 
346   // NOTE: Could optimize for the case the name is shrinking to not deallocate
347   // then reallocated.
348   if (hasName()) {
349     // Remove old name.
350     ST->removeValueName(getValueName());
351     destroyValueName();
352 
353     if (NameRef.empty())
354       return;
355   }
356 
357   // Name is changing to something new.
358   setValueName(ST->createValueName(NameRef, this));
359 }
360 
361 void Value::setName(const Twine &NewName) {
362   setNameImpl(NewName);
363   if (Function *F = dyn_cast<Function>(this))
364     F->recalculateIntrinsicID();
365 }
366 
367 void Value::takeName(Value *V) {
368   ValueSymbolTable *ST = nullptr;
369   // If this value has a name, drop it.
370   if (hasName()) {
371     // Get the symtab this is in.
372     if (getSymTab(this, ST)) {
373       // We can't set a name on this value, but we need to clear V's name if
374       // it has one.
375       if (V->hasName()) V->setName("");
376       return;  // Cannot set a name on this value (e.g. constant).
377     }
378 
379     // Remove old name.
380     if (ST)
381       ST->removeValueName(getValueName());
382     destroyValueName();
383   }
384 
385   // Now we know that this has no name.
386 
387   // If V has no name either, we're done.
388   if (!V->hasName()) return;
389 
390   // Get this's symtab if we didn't before.
391   if (!ST) {
392     if (getSymTab(this, ST)) {
393       // Clear V's name.
394       V->setName("");
395       return;  // Cannot set a name on this value (e.g. constant).
396     }
397   }
398 
399   // Get V's ST, this should always succed, because V has a name.
400   ValueSymbolTable *VST;
401   bool Failure = getSymTab(V, VST);
402   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
403 
404   // If these values are both in the same symtab, we can do this very fast.
405   // This works even if both values have no symtab yet.
406   if (ST == VST) {
407     // Take the name!
408     setValueName(V->getValueName());
409     V->setValueName(nullptr);
410     getValueName()->setValue(this);
411     return;
412   }
413 
414   // Otherwise, things are slightly more complex.  Remove V's name from VST and
415   // then reinsert it into ST.
416 
417   if (VST)
418     VST->removeValueName(V->getValueName());
419   setValueName(V->getValueName());
420   V->setValueName(nullptr);
421   getValueName()->setValue(this);
422 
423   if (ST)
424     ST->reinsertValue(this);
425 }
426 
427 #ifndef NDEBUG
428 std::string Value::getNameOrAsOperand() const {
429   if (!getName().empty())
430     return std::string(getName());
431 
432   std::string BBName;
433   raw_string_ostream OS(BBName);
434   printAsOperand(OS, false);
435   return OS.str();
436 }
437 #endif
438 
439 void Value::assertModuleIsMaterializedImpl() const {
440 #ifndef NDEBUG
441   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
442   if (!GV)
443     return;
444   const Module *M = GV->getParent();
445   if (!M)
446     return;
447   assert(M->isMaterialized());
448 #endif
449 }
450 
451 #ifndef NDEBUG
452 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
453                      Constant *C) {
454   if (!Cache.insert(Expr).second)
455     return false;
456 
457   for (auto &O : Expr->operands()) {
458     if (O == C)
459       return true;
460     auto *CE = dyn_cast<ConstantExpr>(O);
461     if (!CE)
462       continue;
463     if (contains(Cache, CE, C))
464       return true;
465   }
466   return false;
467 }
468 
469 static bool contains(Value *Expr, Value *V) {
470   if (Expr == V)
471     return true;
472 
473   auto *C = dyn_cast<Constant>(V);
474   if (!C)
475     return false;
476 
477   auto *CE = dyn_cast<ConstantExpr>(Expr);
478   if (!CE)
479     return false;
480 
481   SmallPtrSet<ConstantExpr *, 4> Cache;
482   return contains(Cache, CE, C);
483 }
484 #endif // NDEBUG
485 
486 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
487   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
488   assert(!contains(New, this) &&
489          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
490   assert(New->getType() == getType() &&
491          "replaceAllUses of value with new value of different type!");
492 
493   // Notify all ValueHandles (if present) that this value is going away.
494   if (HasValueHandle)
495     ValueHandleBase::ValueIsRAUWd(this, New);
496   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
497     ValueAsMetadata::handleRAUW(this, New);
498 
499   while (!materialized_use_empty()) {
500     Use &U = *UseList;
501     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
502     // constant because they are uniqued.
503     if (auto *C = dyn_cast<Constant>(U.getUser())) {
504       if (!isa<GlobalValue>(C)) {
505         C->handleOperandChange(this, New);
506         continue;
507       }
508     }
509 
510     U.set(New);
511   }
512 
513   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
514     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
515 }
516 
517 void Value::replaceAllUsesWith(Value *New) {
518   doRAUW(New, ReplaceMetadataUses::Yes);
519 }
520 
521 void Value::replaceNonMetadataUsesWith(Value *New) {
522   doRAUW(New, ReplaceMetadataUses::No);
523 }
524 
525 void Value::replaceUsesWithIf(Value *New,
526                               llvm::function_ref<bool(Use &U)> ShouldReplace) {
527   assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
528   assert(New->getType() == getType() &&
529          "replaceUses of value with new value of different type!");
530 
531   for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
532     Use &U = *UI;
533     ++UI;
534     if (!ShouldReplace(U))
535       continue;
536     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
537     // constant because they are uniqued.
538     if (auto *C = dyn_cast<Constant>(U.getUser())) {
539       if (!isa<GlobalValue>(C)) {
540         C->handleOperandChange(this, New);
541         continue;
542       }
543     }
544     U.set(New);
545   }
546 }
547 
548 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
549 /// with New.
550 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) {
551   SmallVector<DbgVariableIntrinsic *> DbgUsers;
552   findDbgUsers(DbgUsers, V);
553   for (auto *DVI : DbgUsers) {
554     if (DVI->getParent() != BB)
555       DVI->replaceVariableLocationOp(V, New);
556   }
557 }
558 
559 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
560 // This routine leaves uses within BB.
561 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
562   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
563   assert(!contains(New, this) &&
564          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
565   assert(New->getType() == getType() &&
566          "replaceUses of value with new value of different type!");
567   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
568 
569   replaceDbgUsesOutsideBlock(this, New, BB);
570   replaceUsesWithIf(New, [BB](Use &U) {
571     auto *I = dyn_cast<Instruction>(U.getUser());
572     // Don't replace if it's an instruction in the BB basic block.
573     return !I || I->getParent() != BB;
574   });
575 }
576 
577 namespace {
578 // Various metrics for how much to strip off of pointers.
579 enum PointerStripKind {
580   PSK_ZeroIndices,
581   PSK_ZeroIndicesAndAliases,
582   PSK_ZeroIndicesSameRepresentation,
583   PSK_ForAliasAnalysis,
584   PSK_InBoundsConstantIndices,
585   PSK_InBounds
586 };
587 
588 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}
589 
590 template <PointerStripKind StripKind>
591 static const Value *stripPointerCastsAndOffsets(
592     const Value *V,
593     function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
594   if (!V->getType()->isPointerTy())
595     return V;
596 
597   // Even though we don't look through PHI nodes, we could be called on an
598   // instruction in an unreachable block, which may be on a cycle.
599   SmallPtrSet<const Value *, 4> Visited;
600 
601   Visited.insert(V);
602   do {
603     Func(V);
604     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
605       switch (StripKind) {
606       case PSK_ZeroIndices:
607       case PSK_ZeroIndicesAndAliases:
608       case PSK_ZeroIndicesSameRepresentation:
609       case PSK_ForAliasAnalysis:
610         if (!GEP->hasAllZeroIndices())
611           return V;
612         break;
613       case PSK_InBoundsConstantIndices:
614         if (!GEP->hasAllConstantIndices())
615           return V;
616         LLVM_FALLTHROUGH;
617       case PSK_InBounds:
618         if (!GEP->isInBounds())
619           return V;
620         break;
621       }
622       V = GEP->getPointerOperand();
623     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
624       V = cast<Operator>(V)->getOperand(0);
625       if (!V->getType()->isPointerTy())
626         return V;
627     } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
628                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
629       // TODO: If we know an address space cast will not change the
630       //       representation we could look through it here as well.
631       V = cast<Operator>(V)->getOperand(0);
632     } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
633       V = cast<GlobalAlias>(V)->getAliasee();
634     } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) &&
635                cast<PHINode>(V)->getNumIncomingValues() == 1) {
636       V = cast<PHINode>(V)->getIncomingValue(0);
637     } else {
638       if (const auto *Call = dyn_cast<CallBase>(V)) {
639         if (const Value *RV = Call->getReturnedArgOperand()) {
640           V = RV;
641           continue;
642         }
643         // The result of launder.invariant.group must alias it's argument,
644         // but it can't be marked with returned attribute, that's why it needs
645         // special case.
646         if (StripKind == PSK_ForAliasAnalysis &&
647             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
648              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
649           V = Call->getArgOperand(0);
650           continue;
651         }
652       }
653       return V;
654     }
655     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
656   } while (Visited.insert(V).second);
657 
658   return V;
659 }
660 } // end anonymous namespace
661 
662 const Value *Value::stripPointerCasts() const {
663   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
664 }
665 
666 const Value *Value::stripPointerCastsAndAliases() const {
667   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
668 }
669 
670 const Value *Value::stripPointerCastsSameRepresentation() const {
671   return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
672 }
673 
674 const Value *Value::stripInBoundsConstantOffsets() const {
675   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
676 }
677 
678 const Value *Value::stripPointerCastsForAliasAnalysis() const {
679   return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this);
680 }
681 
682 const Value *Value::stripAndAccumulateConstantOffsets(
683     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
684     function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
685   if (!getType()->isPtrOrPtrVectorTy())
686     return this;
687 
688   unsigned BitWidth = Offset.getBitWidth();
689   assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
690          "The offset bit width does not match the DL specification.");
691 
692   // Even though we don't look through PHI nodes, we could be called on an
693   // instruction in an unreachable block, which may be on a cycle.
694   SmallPtrSet<const Value *, 4> Visited;
695   Visited.insert(this);
696   const Value *V = this;
697   do {
698     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
699       // If in-bounds was requested, we do not strip non-in-bounds GEPs.
700       if (!AllowNonInbounds && !GEP->isInBounds())
701         return V;
702 
703       // If one of the values we have visited is an addrspacecast, then
704       // the pointer type of this GEP may be different from the type
705       // of the Ptr parameter which was passed to this function.  This
706       // means when we construct GEPOffset, we need to use the size
707       // of GEP's pointer type rather than the size of the original
708       // pointer type.
709       APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
710       if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
711         return V;
712 
713       // Stop traversal if the pointer offset wouldn't fit in the bit-width
714       // provided by the Offset argument. This can happen due to AddrSpaceCast
715       // stripping.
716       if (GEPOffset.getMinSignedBits() > BitWidth)
717         return V;
718 
719       // External Analysis can return a result higher/lower than the value
720       // represents. We need to detect overflow/underflow.
721       APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
722       if (!ExternalAnalysis) {
723         Offset += GEPOffsetST;
724       } else {
725         bool Overflow = false;
726         APInt OldOffset = Offset;
727         Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
728         if (Overflow) {
729           Offset = OldOffset;
730           return V;
731         }
732       }
733       V = GEP->getPointerOperand();
734     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
735                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
736       V = cast<Operator>(V)->getOperand(0);
737     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
738       if (!GA->isInterposable())
739         V = GA->getAliasee();
740     } else if (const auto *Call = dyn_cast<CallBase>(V)) {
741         if (const Value *RV = Call->getReturnedArgOperand())
742           V = RV;
743     }
744     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
745   } while (Visited.insert(V).second);
746 
747   return V;
748 }
749 
750 const Value *
751 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
752   return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func);
753 }
754 
755 bool Value::canBeFreed() const {
756   assert(getType()->isPointerTy());
757 
758   // Cases that can simply never be deallocated
759   // *) Constants aren't allocated per se, thus not deallocated either.
760   if (isa<Constant>(this))
761     return false;
762 
763   // Handle byval/byref/sret/inalloca/preallocated arguments.  The storage
764   // lifetime is guaranteed to be longer than the callee's lifetime.
765   if (auto *A = dyn_cast<Argument>(this)) {
766     if (A->hasPointeeInMemoryValueAttr())
767       return false;
768     // A pointer to an object in a function which neither frees, nor can arrange
769     // for another thread to free on its behalf, can not be freed in the scope
770     // of the function.  Note that this logic is restricted to memory
771     // allocations in existance before the call; a nofree function *is* allowed
772     // to free memory it allocated.
773     const Function *F = A->getParent();
774     if (F->doesNotFreeMemory() && F->hasNoSync())
775       return false;
776   }
777 
778   const Function *F = nullptr;
779   if (auto *I = dyn_cast<Instruction>(this))
780     F = I->getFunction();
781   if (auto *A = dyn_cast<Argument>(this))
782     F = A->getParent();
783 
784   if (!F)
785     return true;
786 
787   // With garbage collection, deallocation typically occurs solely at or after
788   // safepoints.  If we're compiling for a collector which uses the
789   // gc.statepoint infrastructure, safepoints aren't explicitly present
790   // in the IR until after lowering from abstract to physical machine model.
791   // The collector could chose to mix explicit deallocation and gc'd objects
792   // which is why we need the explicit opt in on a per collector basis.
793   if (!F->hasGC())
794     return true;
795 
796   const auto &GCName = F->getGC();
797   if (GCName == "statepoint-example") {
798     auto *PT = cast<PointerType>(this->getType());
799     if (PT->getAddressSpace() != 1)
800       // For the sake of this example GC, we arbitrarily pick addrspace(1) as
801       // our GC managed heap.  This must match the same check in
802       // RewriteStatepointsForGC (and probably needs better factored.)
803       return true;
804 
805     // It is cheaper to scan for a declaration than to scan for a use in this
806     // function.  Note that gc.statepoint is a type overloaded function so the
807     // usual trick of requesting declaration of the intrinsic from the module
808     // doesn't work.
809     for (auto &Fn : *F->getParent())
810       if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
811         return true;
812     return false;
813   }
814   return true;
815 }
816 
817 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
818                                                bool &CanBeNull,
819                                                bool &CanBeFreed) const {
820   assert(getType()->isPointerTy() && "must be pointer");
821 
822   uint64_t DerefBytes = 0;
823   CanBeNull = false;
824   CanBeFreed = UseDerefAtPointSemantics && canBeFreed();
825   if (const Argument *A = dyn_cast<Argument>(this)) {
826     DerefBytes = A->getDereferenceableBytes();
827     if (DerefBytes == 0) {
828       // Handle byval/byref/inalloca/preallocated arguments
829       if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
830         if (ArgMemTy->isSized()) {
831           // FIXME: Why isn't this the type alloc size?
832           DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize();
833         }
834       }
835     }
836 
837     if (DerefBytes == 0) {
838       DerefBytes = A->getDereferenceableOrNullBytes();
839       CanBeNull = true;
840     }
841   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
842     DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
843     if (DerefBytes == 0) {
844       DerefBytes =
845           Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
846       CanBeNull = true;
847     }
848   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
849     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
850       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
851       DerefBytes = CI->getLimitedValue();
852     }
853     if (DerefBytes == 0) {
854       if (MDNode *MD =
855               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
856         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
857         DerefBytes = CI->getLimitedValue();
858       }
859       CanBeNull = true;
860     }
861   } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
862     if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
863       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
864       DerefBytes = CI->getLimitedValue();
865     }
866     if (DerefBytes == 0) {
867       if (MDNode *MD =
868               IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
869         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
870         DerefBytes = CI->getLimitedValue();
871       }
872       CanBeNull = true;
873     }
874   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
875     if (!AI->isArrayAllocation()) {
876       DerefBytes =
877           DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize();
878       CanBeNull = false;
879       CanBeFreed = false;
880     }
881   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
882     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
883       // TODO: Don't outright reject hasExternalWeakLinkage but set the
884       // CanBeNull flag.
885       DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize();
886       CanBeNull = false;
887     }
888   }
889   return DerefBytes;
890 }
891 
892 Align Value::getPointerAlignment(const DataLayout &DL) const {
893   assert(getType()->isPointerTy() && "must be pointer");
894   if (auto *GO = dyn_cast<GlobalObject>(this)) {
895     if (isa<Function>(GO)) {
896       Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
897       switch (DL.getFunctionPtrAlignType()) {
898       case DataLayout::FunctionPtrAlignType::Independent:
899         return FunctionPtrAlign;
900       case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
901         return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne());
902       }
903       llvm_unreachable("Unhandled FunctionPtrAlignType");
904     }
905     const MaybeAlign Alignment(GO->getAlignment());
906     if (!Alignment) {
907       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
908         Type *ObjectType = GVar->getValueType();
909         if (ObjectType->isSized()) {
910           // If the object is defined in the current Module, we'll be giving
911           // it the preferred alignment. Otherwise, we have to assume that it
912           // may only have the minimum ABI alignment.
913           if (GVar->isStrongDefinitionForLinker())
914             return DL.getPreferredAlign(GVar);
915           else
916             return DL.getABITypeAlign(ObjectType);
917         }
918       }
919     }
920     return Alignment.valueOrOne();
921   } else if (const Argument *A = dyn_cast<Argument>(this)) {
922     const MaybeAlign Alignment = A->getParamAlign();
923     if (!Alignment && A->hasStructRetAttr()) {
924       // An sret parameter has at least the ABI alignment of the return type.
925       Type *EltTy = A->getParamStructRetType();
926       if (EltTy->isSized())
927         return DL.getABITypeAlign(EltTy);
928     }
929     return Alignment.valueOrOne();
930   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
931     return AI->getAlign();
932   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
933     MaybeAlign Alignment = Call->getRetAlign();
934     if (!Alignment && Call->getCalledFunction())
935       Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
936     return Alignment.valueOrOne();
937   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
938     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
939       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
940       return Align(CI->getLimitedValue());
941     }
942   } else if (auto *CstPtr = dyn_cast<Constant>(this)) {
943     if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
944             const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
945             /*OnlyIfReduced=*/true))) {
946       size_t TrailingZeros = CstInt->getValue().countTrailingZeros();
947       // While the actual alignment may be large, elsewhere we have
948       // an arbitrary upper alignmet limit, so let's clamp to it.
949       return Align(TrailingZeros < Value::MaxAlignmentExponent
950                        ? uint64_t(1) << TrailingZeros
951                        : Value::MaximumAlignment);
952     }
953   }
954   return Align(1);
955 }
956 
957 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
958                                      const BasicBlock *PredBB) const {
959   auto *PN = dyn_cast<PHINode>(this);
960   if (PN && PN->getParent() == CurBB)
961     return PN->getIncomingValueForBlock(PredBB);
962   return this;
963 }
964 
965 LLVMContext &Value::getContext() const { return VTy->getContext(); }
966 
967 void Value::reverseUseList() {
968   if (!UseList || !UseList->Next)
969     // No need to reverse 0 or 1 uses.
970     return;
971 
972   Use *Head = UseList;
973   Use *Current = UseList->Next;
974   Head->Next = nullptr;
975   while (Current) {
976     Use *Next = Current->Next;
977     Current->Next = Head;
978     Head->Prev = &Current->Next;
979     Head = Current;
980     Current = Next;
981   }
982   UseList = Head;
983   Head->Prev = &UseList;
984 }
985 
986 bool Value::isSwiftError() const {
987   auto *Arg = dyn_cast<Argument>(this);
988   if (Arg)
989     return Arg->hasSwiftErrorAttr();
990   auto *Alloca = dyn_cast<AllocaInst>(this);
991   if (!Alloca)
992     return false;
993   return Alloca->isSwiftError();
994 }
995 
996 bool Value::isTransitiveUsedByMetadataOnly() const {
997   if (use_empty())
998     return false;
999   llvm::SmallVector<const User *, 32> WorkList;
1000   llvm::SmallPtrSet<const User *, 32> Visited;
1001   WorkList.insert(WorkList.begin(), user_begin(), user_end());
1002   while (!WorkList.empty()) {
1003     const User *U = WorkList.back();
1004     WorkList.pop_back();
1005     Visited.insert(U);
1006     // If it is transitively used by a global value or a non-constant value,
1007     // it's obviously not only used by metadata.
1008     if (!isa<Constant>(U) || isa<GlobalValue>(U))
1009       return false;
1010     for (const User *UU : U->users())
1011       if (!Visited.count(UU))
1012         WorkList.push_back(UU);
1013   }
1014   return true;
1015 }
1016 
1017 //===----------------------------------------------------------------------===//
1018 //                             ValueHandleBase Class
1019 //===----------------------------------------------------------------------===//
1020 
1021 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
1022   assert(List && "Handle list is null?");
1023 
1024   // Splice ourselves into the list.
1025   Next = *List;
1026   *List = this;
1027   setPrevPtr(List);
1028   if (Next) {
1029     Next->setPrevPtr(&Next);
1030     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
1031   }
1032 }
1033 
1034 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
1035   assert(List && "Must insert after existing node");
1036 
1037   Next = List->Next;
1038   setPrevPtr(&List->Next);
1039   List->Next = this;
1040   if (Next)
1041     Next->setPrevPtr(&Next);
1042 }
1043 
1044 void ValueHandleBase::AddToUseList() {
1045   assert(getValPtr() && "Null pointer doesn't have a use list!");
1046 
1047   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1048 
1049   if (getValPtr()->HasValueHandle) {
1050     // If this value already has a ValueHandle, then it must be in the
1051     // ValueHandles map already.
1052     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
1053     assert(Entry && "Value doesn't have any handles?");
1054     AddToExistingUseList(&Entry);
1055     return;
1056   }
1057 
1058   // Ok, it doesn't have any handles yet, so we must insert it into the
1059   // DenseMap.  However, doing this insertion could cause the DenseMap to
1060   // reallocate itself, which would invalidate all of the PrevP pointers that
1061   // point into the old table.  Handle this by checking for reallocation and
1062   // updating the stale pointers only if needed.
1063   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1064   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
1065 
1066   ValueHandleBase *&Entry = Handles[getValPtr()];
1067   assert(!Entry && "Value really did already have handles?");
1068   AddToExistingUseList(&Entry);
1069   getValPtr()->HasValueHandle = true;
1070 
1071   // If reallocation didn't happen or if this was the first insertion, don't
1072   // walk the table.
1073   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
1074       Handles.size() == 1) {
1075     return;
1076   }
1077 
1078   // Okay, reallocation did happen.  Fix the Prev Pointers.
1079   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
1080        E = Handles.end(); I != E; ++I) {
1081     assert(I->second && I->first == I->second->getValPtr() &&
1082            "List invariant broken!");
1083     I->second->setPrevPtr(&I->second);
1084   }
1085 }
1086 
1087 void ValueHandleBase::RemoveFromUseList() {
1088   assert(getValPtr() && getValPtr()->HasValueHandle &&
1089          "Pointer doesn't have a use list!");
1090 
1091   // Unlink this from its use list.
1092   ValueHandleBase **PrevPtr = getPrevPtr();
1093   assert(*PrevPtr == this && "List invariant broken");
1094 
1095   *PrevPtr = Next;
1096   if (Next) {
1097     assert(Next->getPrevPtr() == &Next && "List invariant broken");
1098     Next->setPrevPtr(PrevPtr);
1099     return;
1100   }
1101 
1102   // If the Next pointer was null, then it is possible that this was the last
1103   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
1104   // map.
1105   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1106   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1107   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
1108     Handles.erase(getValPtr());
1109     getValPtr()->HasValueHandle = false;
1110   }
1111 }
1112 
1113 void ValueHandleBase::ValueIsDeleted(Value *V) {
1114   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
1115 
1116   // Get the linked list base, which is guaranteed to exist since the
1117   // HasValueHandle flag is set.
1118   LLVMContextImpl *pImpl = V->getContext().pImpl;
1119   ValueHandleBase *Entry = pImpl->ValueHandles[V];
1120   assert(Entry && "Value bit set but no entries exist");
1121 
1122   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
1123   // and remove themselves from the list without breaking our iteration.  This
1124   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
1125   // Note that we deliberately do not the support the case when dropping a value
1126   // handle results in a new value handle being permanently added to the list
1127   // (as might occur in theory for CallbackVH's): the new value handle will not
1128   // be processed and the checking code will mete out righteous punishment if
1129   // the handle is still present once we have finished processing all the other
1130   // value handles (it is fine to momentarily add then remove a value handle).
1131   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1132     Iterator.RemoveFromUseList();
1133     Iterator.AddToExistingUseListAfter(Entry);
1134     assert(Entry->Next == &Iterator && "Loop invariant broken.");
1135 
1136     switch (Entry->getKind()) {
1137     case Assert:
1138       break;
1139     case Weak:
1140     case WeakTracking:
1141       // WeakTracking and Weak just go to null, which unlinks them
1142       // from the list.
1143       Entry->operator=(nullptr);
1144       break;
1145     case Callback:
1146       // Forward to the subclass's implementation.
1147       static_cast<CallbackVH*>(Entry)->deleted();
1148       break;
1149     }
1150   }
1151 
1152   // All callbacks, weak references, and assertingVHs should be dropped by now.
1153   if (V->HasValueHandle) {
1154 #ifndef NDEBUG      // Only in +Asserts mode...
1155     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
1156            << "\n";
1157     if (pImpl->ValueHandles[V]->getKind() == Assert)
1158       llvm_unreachable("An asserting value handle still pointed to this"
1159                        " value!");
1160 
1161 #endif
1162     llvm_unreachable("All references to V were not removed?");
1163   }
1164 }
1165 
1166 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
1167   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
1168   assert(Old != New && "Changing value into itself!");
1169   assert(Old->getType() == New->getType() &&
1170          "replaceAllUses of value with new value of different type!");
1171 
1172   // Get the linked list base, which is guaranteed to exist since the
1173   // HasValueHandle flag is set.
1174   LLVMContextImpl *pImpl = Old->getContext().pImpl;
1175   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
1176 
1177   assert(Entry && "Value bit set but no entries exist");
1178 
1179   // We use a local ValueHandleBase as an iterator so that
1180   // ValueHandles can add and remove themselves from the list without
1181   // breaking our iteration.  This is not really an AssertingVH; we
1182   // just have to give ValueHandleBase some kind.
1183   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1184     Iterator.RemoveFromUseList();
1185     Iterator.AddToExistingUseListAfter(Entry);
1186     assert(Entry->Next == &Iterator && "Loop invariant broken.");
1187 
1188     switch (Entry->getKind()) {
1189     case Assert:
1190     case Weak:
1191       // Asserting and Weak handles do not follow RAUW implicitly.
1192       break;
1193     case WeakTracking:
1194       // Weak goes to the new value, which will unlink it from Old's list.
1195       Entry->operator=(New);
1196       break;
1197     case Callback:
1198       // Forward to the subclass's implementation.
1199       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
1200       break;
1201     }
1202   }
1203 
1204 #ifndef NDEBUG
1205   // If any new weak value handles were added while processing the
1206   // list, then complain about it now.
1207   if (Old->HasValueHandle)
1208     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
1209       switch (Entry->getKind()) {
1210       case WeakTracking:
1211         dbgs() << "After RAUW from " << *Old->getType() << " %"
1212                << Old->getName() << " to " << *New->getType() << " %"
1213                << New->getName() << "\n";
1214         llvm_unreachable(
1215             "A weak tracking value handle still pointed to the old value!\n");
1216       default:
1217         break;
1218       }
1219 #endif
1220 }
1221 
1222 // Pin the vtable to this file.
1223 void CallbackVH::anchor() {}
1224