1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/DerivedUser.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> UseDerefAtPointSemantics( 42 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 43 cl::desc("Deref attributes and metadata infer facts at definition only")); 44 45 //===----------------------------------------------------------------------===// 46 // Value Class 47 //===----------------------------------------------------------------------===// 48 static inline Type *checkType(Type *Ty) { 49 assert(Ty && "Value defined with a null type: Error!"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 55 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 56 IsUsedByMD(false), HasName(false), HasMetadata(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke || 62 SubclassID == Instruction::CallBr) 63 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 64 "invalid CallInst type!"); 65 else if (SubclassID != BasicBlockVal && 66 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 67 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 68 "Cannot create non-first-class values except for constants!"); 69 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 70 "Value too big"); 71 } 72 73 Value::~Value() { 74 // Notify all ValueHandles (if present) that this value is going away. 75 if (HasValueHandle) 76 ValueHandleBase::ValueIsDeleted(this); 77 if (isUsedByMetadata()) 78 ValueAsMetadata::handleDeletion(this); 79 80 // Remove associated metadata from context. 81 if (HasMetadata) 82 clearMetadata(); 83 84 #ifndef NDEBUG // Only in -g mode... 85 // Check to make sure that there are no uses of this value that are still 86 // around when the value is destroyed. If there are, then we have a dangling 87 // reference and something is wrong. This code is here to print out where 88 // the value is still being referenced. 89 // 90 // Note that use_empty() cannot be called here, as it eventually downcasts 91 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 92 // been destructed, so accessing it is UB. 93 // 94 if (!materialized_use_empty()) { 95 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 96 for (auto *U : users()) 97 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 98 } 99 #endif 100 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 101 102 // If this value is named, destroy the name. This should not be in a symtab 103 // at this point. 104 destroyValueName(); 105 } 106 107 void Value::deleteValue() { 108 switch (getValueID()) { 109 #define HANDLE_VALUE(Name) \ 110 case Value::Name##Val: \ 111 delete static_cast<Name *>(this); \ 112 break; 113 #define HANDLE_MEMORY_VALUE(Name) \ 114 case Value::Name##Val: \ 115 static_cast<DerivedUser *>(this)->DeleteValue( \ 116 static_cast<DerivedUser *>(this)); \ 117 break; 118 #define HANDLE_CONSTANT(Name) \ 119 case Value::Name##Val: \ 120 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 121 break; 122 #define HANDLE_INSTRUCTION(Name) /* nothing */ 123 #include "llvm/IR/Value.def" 124 125 #define HANDLE_INST(N, OPC, CLASS) \ 126 case Value::InstructionVal + Instruction::OPC: \ 127 delete static_cast<CLASS *>(this); \ 128 break; 129 #define HANDLE_USER_INST(N, OPC, CLASS) 130 #include "llvm/IR/Instruction.def" 131 132 default: 133 llvm_unreachable("attempting to delete unknown value kind"); 134 } 135 } 136 137 void Value::destroyValueName() { 138 ValueName *Name = getValueName(); 139 if (Name) { 140 MallocAllocator Allocator; 141 Name->Destroy(Allocator); 142 } 143 setValueName(nullptr); 144 } 145 146 bool Value::hasNUses(unsigned N) const { 147 return hasNItems(use_begin(), use_end(), N); 148 } 149 150 bool Value::hasNUsesOrMore(unsigned N) const { 151 return hasNItemsOrMore(use_begin(), use_end(), N); 152 } 153 154 bool Value::hasOneUser() const { 155 if (use_empty()) 156 return false; 157 if (hasOneUse()) 158 return true; 159 return std::equal(++user_begin(), user_end(), user_begin()); 160 } 161 162 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 163 164 Use *Value::getSingleUndroppableUse() { 165 Use *Result = nullptr; 166 for (Use &U : uses()) { 167 if (!U.getUser()->isDroppable()) { 168 if (Result) 169 return nullptr; 170 Result = &U; 171 } 172 } 173 return Result; 174 } 175 176 bool Value::hasNUndroppableUses(unsigned int N) const { 177 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 178 } 179 180 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 181 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 182 } 183 184 void Value::dropDroppableUses( 185 llvm::function_ref<bool(const Use *)> ShouldDrop) { 186 SmallVector<Use *, 8> ToBeEdited; 187 for (Use &U : uses()) 188 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 189 ToBeEdited.push_back(&U); 190 for (Use *U : ToBeEdited) 191 dropDroppableUse(*U); 192 } 193 194 void Value::dropDroppableUsesIn(User &Usr) { 195 assert(Usr.isDroppable() && "Expected a droppable user!"); 196 for (Use &UsrOp : Usr.operands()) { 197 if (UsrOp.get() == this) 198 dropDroppableUse(UsrOp); 199 } 200 } 201 202 void Value::dropDroppableUse(Use &U) { 203 U.removeFromList(); 204 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 205 unsigned OpNo = U.getOperandNo(); 206 if (OpNo == 0) 207 U.set(ConstantInt::getTrue(Assume->getContext())); 208 else { 209 U.set(UndefValue::get(U.get()->getType())); 210 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 211 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 212 } 213 return; 214 } 215 216 llvm_unreachable("unkown droppable use"); 217 } 218 219 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 220 // This can be computed either by scanning the instructions in BB, or by 221 // scanning the use list of this Value. Both lists can be very long, but 222 // usually one is quite short. 223 // 224 // Scan both lists simultaneously until one is exhausted. This limits the 225 // search to the shorter list. 226 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 227 const_user_iterator UI = user_begin(), UE = user_end(); 228 for (; BI != BE && UI != UE; ++BI, ++UI) { 229 // Scan basic block: Check if this Value is used by the instruction at BI. 230 if (is_contained(BI->operands(), this)) 231 return true; 232 // Scan use list: Check if the use at UI is in BB. 233 const auto *User = dyn_cast<Instruction>(*UI); 234 if (User && User->getParent() == BB) 235 return true; 236 } 237 return false; 238 } 239 240 unsigned Value::getNumUses() const { 241 return (unsigned)std::distance(use_begin(), use_end()); 242 } 243 244 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 245 ST = nullptr; 246 if (Instruction *I = dyn_cast<Instruction>(V)) { 247 if (BasicBlock *P = I->getParent()) 248 if (Function *PP = P->getParent()) 249 ST = PP->getValueSymbolTable(); 250 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 251 if (Function *P = BB->getParent()) 252 ST = P->getValueSymbolTable(); 253 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 254 if (Module *P = GV->getParent()) 255 ST = &P->getValueSymbolTable(); 256 } else if (Argument *A = dyn_cast<Argument>(V)) { 257 if (Function *P = A->getParent()) 258 ST = P->getValueSymbolTable(); 259 } else { 260 assert(isa<Constant>(V) && "Unknown value type!"); 261 return true; // no name is setable for this. 262 } 263 return false; 264 } 265 266 ValueName *Value::getValueName() const { 267 if (!HasName) return nullptr; 268 269 LLVMContext &Ctx = getContext(); 270 auto I = Ctx.pImpl->ValueNames.find(this); 271 assert(I != Ctx.pImpl->ValueNames.end() && 272 "No name entry found!"); 273 274 return I->second; 275 } 276 277 void Value::setValueName(ValueName *VN) { 278 LLVMContext &Ctx = getContext(); 279 280 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 281 "HasName bit out of sync!"); 282 283 if (!VN) { 284 if (HasName) 285 Ctx.pImpl->ValueNames.erase(this); 286 HasName = false; 287 return; 288 } 289 290 HasName = true; 291 Ctx.pImpl->ValueNames[this] = VN; 292 } 293 294 StringRef Value::getName() const { 295 // Make sure the empty string is still a C string. For historical reasons, 296 // some clients want to call .data() on the result and expect it to be null 297 // terminated. 298 if (!hasName()) 299 return StringRef("", 0); 300 return getValueName()->getKey(); 301 } 302 303 void Value::setNameImpl(const Twine &NewName) { 304 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 305 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 306 return; 307 308 // Fast path for common IRBuilder case of setName("") when there is no name. 309 if (NewName.isTriviallyEmpty() && !hasName()) 310 return; 311 312 SmallString<256> NameData; 313 StringRef NameRef = NewName.toStringRef(NameData); 314 assert(NameRef.find_first_of(0) == StringRef::npos && 315 "Null bytes are not allowed in names"); 316 317 // Name isn't changing? 318 if (getName() == NameRef) 319 return; 320 321 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 322 323 // Get the symbol table to update for this object. 324 ValueSymbolTable *ST; 325 if (getSymTab(this, ST)) 326 return; // Cannot set a name on this value (e.g. constant). 327 328 if (!ST) { // No symbol table to update? Just do the change. 329 if (NameRef.empty()) { 330 // Free the name for this value. 331 destroyValueName(); 332 return; 333 } 334 335 // NOTE: Could optimize for the case the name is shrinking to not deallocate 336 // then reallocated. 337 destroyValueName(); 338 339 // Create the new name. 340 MallocAllocator Allocator; 341 setValueName(ValueName::Create(NameRef, Allocator)); 342 getValueName()->setValue(this); 343 return; 344 } 345 346 // NOTE: Could optimize for the case the name is shrinking to not deallocate 347 // then reallocated. 348 if (hasName()) { 349 // Remove old name. 350 ST->removeValueName(getValueName()); 351 destroyValueName(); 352 353 if (NameRef.empty()) 354 return; 355 } 356 357 // Name is changing to something new. 358 setValueName(ST->createValueName(NameRef, this)); 359 } 360 361 void Value::setName(const Twine &NewName) { 362 setNameImpl(NewName); 363 if (Function *F = dyn_cast<Function>(this)) 364 F->recalculateIntrinsicID(); 365 } 366 367 void Value::takeName(Value *V) { 368 ValueSymbolTable *ST = nullptr; 369 // If this value has a name, drop it. 370 if (hasName()) { 371 // Get the symtab this is in. 372 if (getSymTab(this, ST)) { 373 // We can't set a name on this value, but we need to clear V's name if 374 // it has one. 375 if (V->hasName()) V->setName(""); 376 return; // Cannot set a name on this value (e.g. constant). 377 } 378 379 // Remove old name. 380 if (ST) 381 ST->removeValueName(getValueName()); 382 destroyValueName(); 383 } 384 385 // Now we know that this has no name. 386 387 // If V has no name either, we're done. 388 if (!V->hasName()) return; 389 390 // Get this's symtab if we didn't before. 391 if (!ST) { 392 if (getSymTab(this, ST)) { 393 // Clear V's name. 394 V->setName(""); 395 return; // Cannot set a name on this value (e.g. constant). 396 } 397 } 398 399 // Get V's ST, this should always succed, because V has a name. 400 ValueSymbolTable *VST; 401 bool Failure = getSymTab(V, VST); 402 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 403 404 // If these values are both in the same symtab, we can do this very fast. 405 // This works even if both values have no symtab yet. 406 if (ST == VST) { 407 // Take the name! 408 setValueName(V->getValueName()); 409 V->setValueName(nullptr); 410 getValueName()->setValue(this); 411 return; 412 } 413 414 // Otherwise, things are slightly more complex. Remove V's name from VST and 415 // then reinsert it into ST. 416 417 if (VST) 418 VST->removeValueName(V->getValueName()); 419 setValueName(V->getValueName()); 420 V->setValueName(nullptr); 421 getValueName()->setValue(this); 422 423 if (ST) 424 ST->reinsertValue(this); 425 } 426 427 #ifndef NDEBUG 428 std::string Value::getNameOrAsOperand() const { 429 if (!getName().empty()) 430 return std::string(getName()); 431 432 std::string BBName; 433 raw_string_ostream OS(BBName); 434 printAsOperand(OS, false); 435 return OS.str(); 436 } 437 #endif 438 439 void Value::assertModuleIsMaterializedImpl() const { 440 #ifndef NDEBUG 441 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 442 if (!GV) 443 return; 444 const Module *M = GV->getParent(); 445 if (!M) 446 return; 447 assert(M->isMaterialized()); 448 #endif 449 } 450 451 #ifndef NDEBUG 452 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 453 Constant *C) { 454 if (!Cache.insert(Expr).second) 455 return false; 456 457 for (auto &O : Expr->operands()) { 458 if (O == C) 459 return true; 460 auto *CE = dyn_cast<ConstantExpr>(O); 461 if (!CE) 462 continue; 463 if (contains(Cache, CE, C)) 464 return true; 465 } 466 return false; 467 } 468 469 static bool contains(Value *Expr, Value *V) { 470 if (Expr == V) 471 return true; 472 473 auto *C = dyn_cast<Constant>(V); 474 if (!C) 475 return false; 476 477 auto *CE = dyn_cast<ConstantExpr>(Expr); 478 if (!CE) 479 return false; 480 481 SmallPtrSet<ConstantExpr *, 4> Cache; 482 return contains(Cache, CE, C); 483 } 484 #endif // NDEBUG 485 486 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 487 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 488 assert(!contains(New, this) && 489 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 490 assert(New->getType() == getType() && 491 "replaceAllUses of value with new value of different type!"); 492 493 // Notify all ValueHandles (if present) that this value is going away. 494 if (HasValueHandle) 495 ValueHandleBase::ValueIsRAUWd(this, New); 496 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 497 ValueAsMetadata::handleRAUW(this, New); 498 499 while (!materialized_use_empty()) { 500 Use &U = *UseList; 501 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 502 // constant because they are uniqued. 503 if (auto *C = dyn_cast<Constant>(U.getUser())) { 504 if (!isa<GlobalValue>(C)) { 505 C->handleOperandChange(this, New); 506 continue; 507 } 508 } 509 510 U.set(New); 511 } 512 513 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 514 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 515 } 516 517 void Value::replaceAllUsesWith(Value *New) { 518 doRAUW(New, ReplaceMetadataUses::Yes); 519 } 520 521 void Value::replaceNonMetadataUsesWith(Value *New) { 522 doRAUW(New, ReplaceMetadataUses::No); 523 } 524 525 void Value::replaceUsesWithIf(Value *New, 526 llvm::function_ref<bool(Use &U)> ShouldReplace) { 527 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 528 assert(New->getType() == getType() && 529 "replaceUses of value with new value of different type!"); 530 531 for (use_iterator UI = use_begin(), E = use_end(); UI != E;) { 532 Use &U = *UI; 533 ++UI; 534 if (!ShouldReplace(U)) 535 continue; 536 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 537 // constant because they are uniqued. 538 if (auto *C = dyn_cast<Constant>(U.getUser())) { 539 if (!isa<GlobalValue>(C)) { 540 C->handleOperandChange(this, New); 541 continue; 542 } 543 } 544 U.set(New); 545 } 546 } 547 548 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 549 /// with New. 550 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 551 SmallVector<DbgVariableIntrinsic *> DbgUsers; 552 findDbgUsers(DbgUsers, V); 553 for (auto *DVI : DbgUsers) { 554 if (DVI->getParent() != BB) 555 DVI->replaceVariableLocationOp(V, New); 556 } 557 } 558 559 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 560 // This routine leaves uses within BB. 561 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 562 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 563 assert(!contains(New, this) && 564 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 565 assert(New->getType() == getType() && 566 "replaceUses of value with new value of different type!"); 567 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 568 569 replaceDbgUsesOutsideBlock(this, New, BB); 570 replaceUsesWithIf(New, [BB](Use &U) { 571 auto *I = dyn_cast<Instruction>(U.getUser()); 572 // Don't replace if it's an instruction in the BB basic block. 573 return !I || I->getParent() != BB; 574 }); 575 } 576 577 namespace { 578 // Various metrics for how much to strip off of pointers. 579 enum PointerStripKind { 580 PSK_ZeroIndices, 581 PSK_ZeroIndicesAndAliases, 582 PSK_ZeroIndicesSameRepresentation, 583 PSK_ForAliasAnalysis, 584 PSK_InBoundsConstantIndices, 585 PSK_InBounds 586 }; 587 588 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 589 590 template <PointerStripKind StripKind> 591 static const Value *stripPointerCastsAndOffsets( 592 const Value *V, 593 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 594 if (!V->getType()->isPointerTy()) 595 return V; 596 597 // Even though we don't look through PHI nodes, we could be called on an 598 // instruction in an unreachable block, which may be on a cycle. 599 SmallPtrSet<const Value *, 4> Visited; 600 601 Visited.insert(V); 602 do { 603 Func(V); 604 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 605 switch (StripKind) { 606 case PSK_ZeroIndices: 607 case PSK_ZeroIndicesAndAliases: 608 case PSK_ZeroIndicesSameRepresentation: 609 case PSK_ForAliasAnalysis: 610 if (!GEP->hasAllZeroIndices()) 611 return V; 612 break; 613 case PSK_InBoundsConstantIndices: 614 if (!GEP->hasAllConstantIndices()) 615 return V; 616 LLVM_FALLTHROUGH; 617 case PSK_InBounds: 618 if (!GEP->isInBounds()) 619 return V; 620 break; 621 } 622 V = GEP->getPointerOperand(); 623 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 624 V = cast<Operator>(V)->getOperand(0); 625 if (!V->getType()->isPointerTy()) 626 return V; 627 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 628 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 629 // TODO: If we know an address space cast will not change the 630 // representation we could look through it here as well. 631 V = cast<Operator>(V)->getOperand(0); 632 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 633 V = cast<GlobalAlias>(V)->getAliasee(); 634 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 635 cast<PHINode>(V)->getNumIncomingValues() == 1) { 636 V = cast<PHINode>(V)->getIncomingValue(0); 637 } else { 638 if (const auto *Call = dyn_cast<CallBase>(V)) { 639 if (const Value *RV = Call->getReturnedArgOperand()) { 640 V = RV; 641 continue; 642 } 643 // The result of launder.invariant.group must alias it's argument, 644 // but it can't be marked with returned attribute, that's why it needs 645 // special case. 646 if (StripKind == PSK_ForAliasAnalysis && 647 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 648 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 649 V = Call->getArgOperand(0); 650 continue; 651 } 652 } 653 return V; 654 } 655 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 656 } while (Visited.insert(V).second); 657 658 return V; 659 } 660 } // end anonymous namespace 661 662 const Value *Value::stripPointerCasts() const { 663 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 664 } 665 666 const Value *Value::stripPointerCastsAndAliases() const { 667 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 668 } 669 670 const Value *Value::stripPointerCastsSameRepresentation() const { 671 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 672 } 673 674 const Value *Value::stripInBoundsConstantOffsets() const { 675 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 676 } 677 678 const Value *Value::stripPointerCastsForAliasAnalysis() const { 679 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 680 } 681 682 const Value *Value::stripAndAccumulateConstantOffsets( 683 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 684 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 685 if (!getType()->isPtrOrPtrVectorTy()) 686 return this; 687 688 unsigned BitWidth = Offset.getBitWidth(); 689 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 690 "The offset bit width does not match the DL specification."); 691 692 // Even though we don't look through PHI nodes, we could be called on an 693 // instruction in an unreachable block, which may be on a cycle. 694 SmallPtrSet<const Value *, 4> Visited; 695 Visited.insert(this); 696 const Value *V = this; 697 do { 698 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 699 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 700 if (!AllowNonInbounds && !GEP->isInBounds()) 701 return V; 702 703 // If one of the values we have visited is an addrspacecast, then 704 // the pointer type of this GEP may be different from the type 705 // of the Ptr parameter which was passed to this function. This 706 // means when we construct GEPOffset, we need to use the size 707 // of GEP's pointer type rather than the size of the original 708 // pointer type. 709 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 710 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 711 return V; 712 713 // Stop traversal if the pointer offset wouldn't fit in the bit-width 714 // provided by the Offset argument. This can happen due to AddrSpaceCast 715 // stripping. 716 if (GEPOffset.getMinSignedBits() > BitWidth) 717 return V; 718 719 // External Analysis can return a result higher/lower than the value 720 // represents. We need to detect overflow/underflow. 721 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 722 if (!ExternalAnalysis) { 723 Offset += GEPOffsetST; 724 } else { 725 bool Overflow = false; 726 APInt OldOffset = Offset; 727 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 728 if (Overflow) { 729 Offset = OldOffset; 730 return V; 731 } 732 } 733 V = GEP->getPointerOperand(); 734 } else if (Operator::getOpcode(V) == Instruction::BitCast || 735 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 736 V = cast<Operator>(V)->getOperand(0); 737 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 738 if (!GA->isInterposable()) 739 V = GA->getAliasee(); 740 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 741 if (const Value *RV = Call->getReturnedArgOperand()) 742 V = RV; 743 } 744 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 745 } while (Visited.insert(V).second); 746 747 return V; 748 } 749 750 const Value * 751 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 752 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 753 } 754 755 bool Value::canBeFreed() const { 756 assert(getType()->isPointerTy()); 757 758 // Cases that can simply never be deallocated 759 // *) Constants aren't allocated per se, thus not deallocated either. 760 if (isa<Constant>(this)) 761 return false; 762 763 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 764 // lifetime is guaranteed to be longer than the callee's lifetime. 765 if (auto *A = dyn_cast<Argument>(this)) { 766 if (A->hasPointeeInMemoryValueAttr()) 767 return false; 768 // A pointer to an object in a function which neither frees, nor can arrange 769 // for another thread to free on its behalf, can not be freed in the scope 770 // of the function. Note that this logic is restricted to memory 771 // allocations in existance before the call; a nofree function *is* allowed 772 // to free memory it allocated. 773 const Function *F = A->getParent(); 774 if (F->doesNotFreeMemory() && F->hasNoSync()) 775 return false; 776 } 777 778 const Function *F = nullptr; 779 if (auto *I = dyn_cast<Instruction>(this)) 780 F = I->getFunction(); 781 if (auto *A = dyn_cast<Argument>(this)) 782 F = A->getParent(); 783 784 if (!F) 785 return true; 786 787 // With garbage collection, deallocation typically occurs solely at or after 788 // safepoints. If we're compiling for a collector which uses the 789 // gc.statepoint infrastructure, safepoints aren't explicitly present 790 // in the IR until after lowering from abstract to physical machine model. 791 // The collector could chose to mix explicit deallocation and gc'd objects 792 // which is why we need the explicit opt in on a per collector basis. 793 if (!F->hasGC()) 794 return true; 795 796 const auto &GCName = F->getGC(); 797 if (GCName == "statepoint-example") { 798 auto *PT = cast<PointerType>(this->getType()); 799 if (PT->getAddressSpace() != 1) 800 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 801 // our GC managed heap. This must match the same check in 802 // RewriteStatepointsForGC (and probably needs better factored.) 803 return true; 804 805 // It is cheaper to scan for a declaration than to scan for a use in this 806 // function. Note that gc.statepoint is a type overloaded function so the 807 // usual trick of requesting declaration of the intrinsic from the module 808 // doesn't work. 809 for (auto &Fn : *F->getParent()) 810 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 811 return true; 812 return false; 813 } 814 return true; 815 } 816 817 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 818 bool &CanBeNull, 819 bool &CanBeFreed) const { 820 assert(getType()->isPointerTy() && "must be pointer"); 821 822 uint64_t DerefBytes = 0; 823 CanBeNull = false; 824 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 825 if (const Argument *A = dyn_cast<Argument>(this)) { 826 DerefBytes = A->getDereferenceableBytes(); 827 if (DerefBytes == 0) { 828 // Handle byval/byref/inalloca/preallocated arguments 829 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 830 if (ArgMemTy->isSized()) { 831 // FIXME: Why isn't this the type alloc size? 832 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 833 } 834 } 835 } 836 837 if (DerefBytes == 0) { 838 DerefBytes = A->getDereferenceableOrNullBytes(); 839 CanBeNull = true; 840 } 841 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 842 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 843 if (DerefBytes == 0) { 844 DerefBytes = 845 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 846 CanBeNull = true; 847 } 848 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 849 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 850 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 851 DerefBytes = CI->getLimitedValue(); 852 } 853 if (DerefBytes == 0) { 854 if (MDNode *MD = 855 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 856 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 857 DerefBytes = CI->getLimitedValue(); 858 } 859 CanBeNull = true; 860 } 861 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 862 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 863 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 864 DerefBytes = CI->getLimitedValue(); 865 } 866 if (DerefBytes == 0) { 867 if (MDNode *MD = 868 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 869 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 870 DerefBytes = CI->getLimitedValue(); 871 } 872 CanBeNull = true; 873 } 874 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 875 if (!AI->isArrayAllocation()) { 876 DerefBytes = 877 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 878 CanBeNull = false; 879 CanBeFreed = false; 880 } 881 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 882 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 883 // TODO: Don't outright reject hasExternalWeakLinkage but set the 884 // CanBeNull flag. 885 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 886 CanBeNull = false; 887 } 888 } 889 return DerefBytes; 890 } 891 892 Align Value::getPointerAlignment(const DataLayout &DL) const { 893 assert(getType()->isPointerTy() && "must be pointer"); 894 if (auto *GO = dyn_cast<GlobalObject>(this)) { 895 if (isa<Function>(GO)) { 896 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 897 switch (DL.getFunctionPtrAlignType()) { 898 case DataLayout::FunctionPtrAlignType::Independent: 899 return FunctionPtrAlign; 900 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 901 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 902 } 903 llvm_unreachable("Unhandled FunctionPtrAlignType"); 904 } 905 const MaybeAlign Alignment(GO->getAlignment()); 906 if (!Alignment) { 907 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 908 Type *ObjectType = GVar->getValueType(); 909 if (ObjectType->isSized()) { 910 // If the object is defined in the current Module, we'll be giving 911 // it the preferred alignment. Otherwise, we have to assume that it 912 // may only have the minimum ABI alignment. 913 if (GVar->isStrongDefinitionForLinker()) 914 return DL.getPreferredAlign(GVar); 915 else 916 return DL.getABITypeAlign(ObjectType); 917 } 918 } 919 } 920 return Alignment.valueOrOne(); 921 } else if (const Argument *A = dyn_cast<Argument>(this)) { 922 const MaybeAlign Alignment = A->getParamAlign(); 923 if (!Alignment && A->hasStructRetAttr()) { 924 // An sret parameter has at least the ABI alignment of the return type. 925 Type *EltTy = A->getParamStructRetType(); 926 if (EltTy->isSized()) 927 return DL.getABITypeAlign(EltTy); 928 } 929 return Alignment.valueOrOne(); 930 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 931 return AI->getAlign(); 932 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 933 MaybeAlign Alignment = Call->getRetAlign(); 934 if (!Alignment && Call->getCalledFunction()) 935 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 936 return Alignment.valueOrOne(); 937 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 938 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 939 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 940 return Align(CI->getLimitedValue()); 941 } 942 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 943 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 944 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 945 /*OnlyIfReduced=*/true))) { 946 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 947 // While the actual alignment may be large, elsewhere we have 948 // an arbitrary upper alignmet limit, so let's clamp to it. 949 return Align(TrailingZeros < Value::MaxAlignmentExponent 950 ? uint64_t(1) << TrailingZeros 951 : Value::MaximumAlignment); 952 } 953 } 954 return Align(1); 955 } 956 957 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 958 const BasicBlock *PredBB) const { 959 auto *PN = dyn_cast<PHINode>(this); 960 if (PN && PN->getParent() == CurBB) 961 return PN->getIncomingValueForBlock(PredBB); 962 return this; 963 } 964 965 LLVMContext &Value::getContext() const { return VTy->getContext(); } 966 967 void Value::reverseUseList() { 968 if (!UseList || !UseList->Next) 969 // No need to reverse 0 or 1 uses. 970 return; 971 972 Use *Head = UseList; 973 Use *Current = UseList->Next; 974 Head->Next = nullptr; 975 while (Current) { 976 Use *Next = Current->Next; 977 Current->Next = Head; 978 Head->Prev = &Current->Next; 979 Head = Current; 980 Current = Next; 981 } 982 UseList = Head; 983 Head->Prev = &UseList; 984 } 985 986 bool Value::isSwiftError() const { 987 auto *Arg = dyn_cast<Argument>(this); 988 if (Arg) 989 return Arg->hasSwiftErrorAttr(); 990 auto *Alloca = dyn_cast<AllocaInst>(this); 991 if (!Alloca) 992 return false; 993 return Alloca->isSwiftError(); 994 } 995 996 bool Value::isTransitiveUsedByMetadataOnly() const { 997 if (use_empty()) 998 return false; 999 llvm::SmallVector<const User *, 32> WorkList; 1000 llvm::SmallPtrSet<const User *, 32> Visited; 1001 WorkList.insert(WorkList.begin(), user_begin(), user_end()); 1002 while (!WorkList.empty()) { 1003 const User *U = WorkList.back(); 1004 WorkList.pop_back(); 1005 Visited.insert(U); 1006 // If it is transitively used by a global value or a non-constant value, 1007 // it's obviously not only used by metadata. 1008 if (!isa<Constant>(U) || isa<GlobalValue>(U)) 1009 return false; 1010 for (const User *UU : U->users()) 1011 if (!Visited.count(UU)) 1012 WorkList.push_back(UU); 1013 } 1014 return true; 1015 } 1016 1017 //===----------------------------------------------------------------------===// 1018 // ValueHandleBase Class 1019 //===----------------------------------------------------------------------===// 1020 1021 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1022 assert(List && "Handle list is null?"); 1023 1024 // Splice ourselves into the list. 1025 Next = *List; 1026 *List = this; 1027 setPrevPtr(List); 1028 if (Next) { 1029 Next->setPrevPtr(&Next); 1030 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1031 } 1032 } 1033 1034 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1035 assert(List && "Must insert after existing node"); 1036 1037 Next = List->Next; 1038 setPrevPtr(&List->Next); 1039 List->Next = this; 1040 if (Next) 1041 Next->setPrevPtr(&Next); 1042 } 1043 1044 void ValueHandleBase::AddToUseList() { 1045 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1046 1047 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1048 1049 if (getValPtr()->HasValueHandle) { 1050 // If this value already has a ValueHandle, then it must be in the 1051 // ValueHandles map already. 1052 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1053 assert(Entry && "Value doesn't have any handles?"); 1054 AddToExistingUseList(&Entry); 1055 return; 1056 } 1057 1058 // Ok, it doesn't have any handles yet, so we must insert it into the 1059 // DenseMap. However, doing this insertion could cause the DenseMap to 1060 // reallocate itself, which would invalidate all of the PrevP pointers that 1061 // point into the old table. Handle this by checking for reallocation and 1062 // updating the stale pointers only if needed. 1063 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1064 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1065 1066 ValueHandleBase *&Entry = Handles[getValPtr()]; 1067 assert(!Entry && "Value really did already have handles?"); 1068 AddToExistingUseList(&Entry); 1069 getValPtr()->HasValueHandle = true; 1070 1071 // If reallocation didn't happen or if this was the first insertion, don't 1072 // walk the table. 1073 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1074 Handles.size() == 1) { 1075 return; 1076 } 1077 1078 // Okay, reallocation did happen. Fix the Prev Pointers. 1079 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1080 E = Handles.end(); I != E; ++I) { 1081 assert(I->second && I->first == I->second->getValPtr() && 1082 "List invariant broken!"); 1083 I->second->setPrevPtr(&I->second); 1084 } 1085 } 1086 1087 void ValueHandleBase::RemoveFromUseList() { 1088 assert(getValPtr() && getValPtr()->HasValueHandle && 1089 "Pointer doesn't have a use list!"); 1090 1091 // Unlink this from its use list. 1092 ValueHandleBase **PrevPtr = getPrevPtr(); 1093 assert(*PrevPtr == this && "List invariant broken"); 1094 1095 *PrevPtr = Next; 1096 if (Next) { 1097 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1098 Next->setPrevPtr(PrevPtr); 1099 return; 1100 } 1101 1102 // If the Next pointer was null, then it is possible that this was the last 1103 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1104 // map. 1105 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1106 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1107 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1108 Handles.erase(getValPtr()); 1109 getValPtr()->HasValueHandle = false; 1110 } 1111 } 1112 1113 void ValueHandleBase::ValueIsDeleted(Value *V) { 1114 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1115 1116 // Get the linked list base, which is guaranteed to exist since the 1117 // HasValueHandle flag is set. 1118 LLVMContextImpl *pImpl = V->getContext().pImpl; 1119 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1120 assert(Entry && "Value bit set but no entries exist"); 1121 1122 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1123 // and remove themselves from the list without breaking our iteration. This 1124 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1125 // Note that we deliberately do not the support the case when dropping a value 1126 // handle results in a new value handle being permanently added to the list 1127 // (as might occur in theory for CallbackVH's): the new value handle will not 1128 // be processed and the checking code will mete out righteous punishment if 1129 // the handle is still present once we have finished processing all the other 1130 // value handles (it is fine to momentarily add then remove a value handle). 1131 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1132 Iterator.RemoveFromUseList(); 1133 Iterator.AddToExistingUseListAfter(Entry); 1134 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1135 1136 switch (Entry->getKind()) { 1137 case Assert: 1138 break; 1139 case Weak: 1140 case WeakTracking: 1141 // WeakTracking and Weak just go to null, which unlinks them 1142 // from the list. 1143 Entry->operator=(nullptr); 1144 break; 1145 case Callback: 1146 // Forward to the subclass's implementation. 1147 static_cast<CallbackVH*>(Entry)->deleted(); 1148 break; 1149 } 1150 } 1151 1152 // All callbacks, weak references, and assertingVHs should be dropped by now. 1153 if (V->HasValueHandle) { 1154 #ifndef NDEBUG // Only in +Asserts mode... 1155 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1156 << "\n"; 1157 if (pImpl->ValueHandles[V]->getKind() == Assert) 1158 llvm_unreachable("An asserting value handle still pointed to this" 1159 " value!"); 1160 1161 #endif 1162 llvm_unreachable("All references to V were not removed?"); 1163 } 1164 } 1165 1166 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1167 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1168 assert(Old != New && "Changing value into itself!"); 1169 assert(Old->getType() == New->getType() && 1170 "replaceAllUses of value with new value of different type!"); 1171 1172 // Get the linked list base, which is guaranteed to exist since the 1173 // HasValueHandle flag is set. 1174 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1175 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1176 1177 assert(Entry && "Value bit set but no entries exist"); 1178 1179 // We use a local ValueHandleBase as an iterator so that 1180 // ValueHandles can add and remove themselves from the list without 1181 // breaking our iteration. This is not really an AssertingVH; we 1182 // just have to give ValueHandleBase some kind. 1183 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1184 Iterator.RemoveFromUseList(); 1185 Iterator.AddToExistingUseListAfter(Entry); 1186 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1187 1188 switch (Entry->getKind()) { 1189 case Assert: 1190 case Weak: 1191 // Asserting and Weak handles do not follow RAUW implicitly. 1192 break; 1193 case WeakTracking: 1194 // Weak goes to the new value, which will unlink it from Old's list. 1195 Entry->operator=(New); 1196 break; 1197 case Callback: 1198 // Forward to the subclass's implementation. 1199 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1200 break; 1201 } 1202 } 1203 1204 #ifndef NDEBUG 1205 // If any new weak value handles were added while processing the 1206 // list, then complain about it now. 1207 if (Old->HasValueHandle) 1208 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1209 switch (Entry->getKind()) { 1210 case WeakTracking: 1211 dbgs() << "After RAUW from " << *Old->getType() << " %" 1212 << Old->getName() << " to " << *New->getType() << " %" 1213 << New->getName() << "\n"; 1214 llvm_unreachable( 1215 "A weak tracking value handle still pointed to the old value!\n"); 1216 default: 1217 break; 1218 } 1219 #endif 1220 } 1221 1222 // Pin the vtable to this file. 1223 void CallbackVH::anchor() {} 1224