1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/DerivedUser.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> UseDerefAtPointSemantics( 42 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 43 cl::desc("Deref attributes and metadata infer facts at definition only")); 44 45 //===----------------------------------------------------------------------===// 46 // Value Class 47 //===----------------------------------------------------------------------===// 48 static inline Type *checkType(Type *Ty) { 49 assert(Ty && "Value defined with a null type: Error!"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 55 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 56 IsUsedByMD(false), HasName(false), HasMetadata(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 unsigned OpCode = 0; 62 if (SubclassID >= InstructionVal) 63 OpCode = SubclassID - InstructionVal; 64 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || 65 OpCode == Instruction::CallBr) 66 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 67 "invalid CallBase type!"); 68 else if (SubclassID != BasicBlockVal && 69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 70 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 71 "Cannot create non-first-class values except for constants!"); 72 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 73 "Value too big"); 74 } 75 76 Value::~Value() { 77 // Notify all ValueHandles (if present) that this value is going away. 78 if (HasValueHandle) 79 ValueHandleBase::ValueIsDeleted(this); 80 if (isUsedByMetadata()) 81 ValueAsMetadata::handleDeletion(this); 82 83 // Remove associated metadata from context. 84 if (HasMetadata) 85 clearMetadata(); 86 87 #ifndef NDEBUG // Only in -g mode... 88 // Check to make sure that there are no uses of this value that are still 89 // around when the value is destroyed. If there are, then we have a dangling 90 // reference and something is wrong. This code is here to print out where 91 // the value is still being referenced. 92 // 93 // Note that use_empty() cannot be called here, as it eventually downcasts 94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 95 // been destructed, so accessing it is UB. 96 // 97 if (!materialized_use_empty()) { 98 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 99 for (auto *U : users()) 100 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 101 } 102 #endif 103 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 104 105 // If this value is named, destroy the name. This should not be in a symtab 106 // at this point. 107 destroyValueName(); 108 } 109 110 void Value::deleteValue() { 111 switch (getValueID()) { 112 #define HANDLE_VALUE(Name) \ 113 case Value::Name##Val: \ 114 delete static_cast<Name *>(this); \ 115 break; 116 #define HANDLE_MEMORY_VALUE(Name) \ 117 case Value::Name##Val: \ 118 static_cast<DerivedUser *>(this)->DeleteValue( \ 119 static_cast<DerivedUser *>(this)); \ 120 break; 121 #define HANDLE_CONSTANT(Name) \ 122 case Value::Name##Val: \ 123 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 124 break; 125 #define HANDLE_INSTRUCTION(Name) /* nothing */ 126 #include "llvm/IR/Value.def" 127 128 #define HANDLE_INST(N, OPC, CLASS) \ 129 case Value::InstructionVal + Instruction::OPC: \ 130 delete static_cast<CLASS *>(this); \ 131 break; 132 #define HANDLE_USER_INST(N, OPC, CLASS) 133 #include "llvm/IR/Instruction.def" 134 135 default: 136 llvm_unreachable("attempting to delete unknown value kind"); 137 } 138 } 139 140 void Value::destroyValueName() { 141 ValueName *Name = getValueName(); 142 if (Name) { 143 MallocAllocator Allocator; 144 Name->Destroy(Allocator); 145 } 146 setValueName(nullptr); 147 } 148 149 bool Value::hasNUses(unsigned N) const { 150 return hasNItems(use_begin(), use_end(), N); 151 } 152 153 bool Value::hasNUsesOrMore(unsigned N) const { 154 return hasNItemsOrMore(use_begin(), use_end(), N); 155 } 156 157 bool Value::hasOneUser() const { 158 if (use_empty()) 159 return false; 160 if (hasOneUse()) 161 return true; 162 return std::equal(++user_begin(), user_end(), user_begin()); 163 } 164 165 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 166 167 Use *Value::getSingleUndroppableUse() { 168 Use *Result = nullptr; 169 for (Use &U : uses()) { 170 if (!U.getUser()->isDroppable()) { 171 if (Result) 172 return nullptr; 173 Result = &U; 174 } 175 } 176 return Result; 177 } 178 179 User *Value::getUniqueUndroppableUser() { 180 User *Result = nullptr; 181 for (auto *U : users()) { 182 if (!U->isDroppable()) { 183 if (Result && Result != U) 184 return nullptr; 185 Result = U; 186 } 187 } 188 return Result; 189 } 190 191 bool Value::hasNUndroppableUses(unsigned int N) const { 192 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 193 } 194 195 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 196 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 197 } 198 199 void Value::dropDroppableUses( 200 llvm::function_ref<bool(const Use *)> ShouldDrop) { 201 SmallVector<Use *, 8> ToBeEdited; 202 for (Use &U : uses()) 203 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 204 ToBeEdited.push_back(&U); 205 for (Use *U : ToBeEdited) 206 dropDroppableUse(*U); 207 } 208 209 void Value::dropDroppableUsesIn(User &Usr) { 210 assert(Usr.isDroppable() && "Expected a droppable user!"); 211 for (Use &UsrOp : Usr.operands()) { 212 if (UsrOp.get() == this) 213 dropDroppableUse(UsrOp); 214 } 215 } 216 217 void Value::dropDroppableUse(Use &U) { 218 U.removeFromList(); 219 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 220 unsigned OpNo = U.getOperandNo(); 221 if (OpNo == 0) 222 U.set(ConstantInt::getTrue(Assume->getContext())); 223 else { 224 U.set(UndefValue::get(U.get()->getType())); 225 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 226 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 227 } 228 return; 229 } 230 231 llvm_unreachable("unkown droppable use"); 232 } 233 234 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 235 // This can be computed either by scanning the instructions in BB, or by 236 // scanning the use list of this Value. Both lists can be very long, but 237 // usually one is quite short. 238 // 239 // Scan both lists simultaneously until one is exhausted. This limits the 240 // search to the shorter list. 241 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 242 const_user_iterator UI = user_begin(), UE = user_end(); 243 for (; BI != BE && UI != UE; ++BI, ++UI) { 244 // Scan basic block: Check if this Value is used by the instruction at BI. 245 if (is_contained(BI->operands(), this)) 246 return true; 247 // Scan use list: Check if the use at UI is in BB. 248 const auto *User = dyn_cast<Instruction>(*UI); 249 if (User && User->getParent() == BB) 250 return true; 251 } 252 return false; 253 } 254 255 unsigned Value::getNumUses() const { 256 return (unsigned)std::distance(use_begin(), use_end()); 257 } 258 259 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 260 ST = nullptr; 261 if (Instruction *I = dyn_cast<Instruction>(V)) { 262 if (BasicBlock *P = I->getParent()) 263 if (Function *PP = P->getParent()) 264 ST = PP->getValueSymbolTable(); 265 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 266 if (Function *P = BB->getParent()) 267 ST = P->getValueSymbolTable(); 268 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 269 if (Module *P = GV->getParent()) 270 ST = &P->getValueSymbolTable(); 271 } else if (Argument *A = dyn_cast<Argument>(V)) { 272 if (Function *P = A->getParent()) 273 ST = P->getValueSymbolTable(); 274 } else { 275 assert(isa<Constant>(V) && "Unknown value type!"); 276 return true; // no name is setable for this. 277 } 278 return false; 279 } 280 281 ValueName *Value::getValueName() const { 282 if (!HasName) return nullptr; 283 284 LLVMContext &Ctx = getContext(); 285 auto I = Ctx.pImpl->ValueNames.find(this); 286 assert(I != Ctx.pImpl->ValueNames.end() && 287 "No name entry found!"); 288 289 return I->second; 290 } 291 292 void Value::setValueName(ValueName *VN) { 293 LLVMContext &Ctx = getContext(); 294 295 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 296 "HasName bit out of sync!"); 297 298 if (!VN) { 299 if (HasName) 300 Ctx.pImpl->ValueNames.erase(this); 301 HasName = false; 302 return; 303 } 304 305 HasName = true; 306 Ctx.pImpl->ValueNames[this] = VN; 307 } 308 309 StringRef Value::getName() const { 310 // Make sure the empty string is still a C string. For historical reasons, 311 // some clients want to call .data() on the result and expect it to be null 312 // terminated. 313 if (!hasName()) 314 return StringRef("", 0); 315 return getValueName()->getKey(); 316 } 317 318 void Value::setNameImpl(const Twine &NewName) { 319 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 320 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 321 return; 322 323 // Fast path for common IRBuilder case of setName("") when there is no name. 324 if (NewName.isTriviallyEmpty() && !hasName()) 325 return; 326 327 SmallString<256> NameData; 328 StringRef NameRef = NewName.toStringRef(NameData); 329 assert(NameRef.find_first_of(0) == StringRef::npos && 330 "Null bytes are not allowed in names"); 331 332 // Name isn't changing? 333 if (getName() == NameRef) 334 return; 335 336 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 337 338 // Get the symbol table to update for this object. 339 ValueSymbolTable *ST; 340 if (getSymTab(this, ST)) 341 return; // Cannot set a name on this value (e.g. constant). 342 343 if (!ST) { // No symbol table to update? Just do the change. 344 if (NameRef.empty()) { 345 // Free the name for this value. 346 destroyValueName(); 347 return; 348 } 349 350 // NOTE: Could optimize for the case the name is shrinking to not deallocate 351 // then reallocated. 352 destroyValueName(); 353 354 // Create the new name. 355 MallocAllocator Allocator; 356 setValueName(ValueName::Create(NameRef, Allocator)); 357 getValueName()->setValue(this); 358 return; 359 } 360 361 // NOTE: Could optimize for the case the name is shrinking to not deallocate 362 // then reallocated. 363 if (hasName()) { 364 // Remove old name. 365 ST->removeValueName(getValueName()); 366 destroyValueName(); 367 368 if (NameRef.empty()) 369 return; 370 } 371 372 // Name is changing to something new. 373 setValueName(ST->createValueName(NameRef, this)); 374 } 375 376 void Value::setName(const Twine &NewName) { 377 setNameImpl(NewName); 378 if (Function *F = dyn_cast<Function>(this)) 379 F->recalculateIntrinsicID(); 380 } 381 382 void Value::takeName(Value *V) { 383 ValueSymbolTable *ST = nullptr; 384 // If this value has a name, drop it. 385 if (hasName()) { 386 // Get the symtab this is in. 387 if (getSymTab(this, ST)) { 388 // We can't set a name on this value, but we need to clear V's name if 389 // it has one. 390 if (V->hasName()) V->setName(""); 391 return; // Cannot set a name on this value (e.g. constant). 392 } 393 394 // Remove old name. 395 if (ST) 396 ST->removeValueName(getValueName()); 397 destroyValueName(); 398 } 399 400 // Now we know that this has no name. 401 402 // If V has no name either, we're done. 403 if (!V->hasName()) return; 404 405 // Get this's symtab if we didn't before. 406 if (!ST) { 407 if (getSymTab(this, ST)) { 408 // Clear V's name. 409 V->setName(""); 410 return; // Cannot set a name on this value (e.g. constant). 411 } 412 } 413 414 // Get V's ST, this should always succed, because V has a name. 415 ValueSymbolTable *VST; 416 bool Failure = getSymTab(V, VST); 417 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 418 419 // If these values are both in the same symtab, we can do this very fast. 420 // This works even if both values have no symtab yet. 421 if (ST == VST) { 422 // Take the name! 423 setValueName(V->getValueName()); 424 V->setValueName(nullptr); 425 getValueName()->setValue(this); 426 return; 427 } 428 429 // Otherwise, things are slightly more complex. Remove V's name from VST and 430 // then reinsert it into ST. 431 432 if (VST) 433 VST->removeValueName(V->getValueName()); 434 setValueName(V->getValueName()); 435 V->setValueName(nullptr); 436 getValueName()->setValue(this); 437 438 if (ST) 439 ST->reinsertValue(this); 440 } 441 442 #ifndef NDEBUG 443 std::string Value::getNameOrAsOperand() const { 444 if (!getName().empty()) 445 return std::string(getName()); 446 447 std::string BBName; 448 raw_string_ostream OS(BBName); 449 printAsOperand(OS, false); 450 return OS.str(); 451 } 452 #endif 453 454 void Value::assertModuleIsMaterializedImpl() const { 455 #ifndef NDEBUG 456 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 457 if (!GV) 458 return; 459 const Module *M = GV->getParent(); 460 if (!M) 461 return; 462 assert(M->isMaterialized()); 463 #endif 464 } 465 466 #ifndef NDEBUG 467 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 468 Constant *C) { 469 if (!Cache.insert(Expr).second) 470 return false; 471 472 for (auto &O : Expr->operands()) { 473 if (O == C) 474 return true; 475 auto *CE = dyn_cast<ConstantExpr>(O); 476 if (!CE) 477 continue; 478 if (contains(Cache, CE, C)) 479 return true; 480 } 481 return false; 482 } 483 484 static bool contains(Value *Expr, Value *V) { 485 if (Expr == V) 486 return true; 487 488 auto *C = dyn_cast<Constant>(V); 489 if (!C) 490 return false; 491 492 auto *CE = dyn_cast<ConstantExpr>(Expr); 493 if (!CE) 494 return false; 495 496 SmallPtrSet<ConstantExpr *, 4> Cache; 497 return contains(Cache, CE, C); 498 } 499 #endif // NDEBUG 500 501 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 502 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 503 assert(!contains(New, this) && 504 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 505 assert(New->getType() == getType() && 506 "replaceAllUses of value with new value of different type!"); 507 508 // Notify all ValueHandles (if present) that this value is going away. 509 if (HasValueHandle) 510 ValueHandleBase::ValueIsRAUWd(this, New); 511 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 512 ValueAsMetadata::handleRAUW(this, New); 513 514 while (!materialized_use_empty()) { 515 Use &U = *UseList; 516 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 517 // constant because they are uniqued. 518 if (auto *C = dyn_cast<Constant>(U.getUser())) { 519 if (!isa<GlobalValue>(C)) { 520 C->handleOperandChange(this, New); 521 continue; 522 } 523 } 524 525 U.set(New); 526 } 527 528 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 529 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 530 } 531 532 void Value::replaceAllUsesWith(Value *New) { 533 doRAUW(New, ReplaceMetadataUses::Yes); 534 } 535 536 void Value::replaceNonMetadataUsesWith(Value *New) { 537 doRAUW(New, ReplaceMetadataUses::No); 538 } 539 540 void Value::replaceUsesWithIf(Value *New, 541 llvm::function_ref<bool(Use &U)> ShouldReplace) { 542 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); 543 assert(New->getType() == getType() && 544 "replaceUses of value with new value of different type!"); 545 546 SmallVector<TrackingVH<Constant>, 8> Consts; 547 SmallPtrSet<Constant *, 8> Visited; 548 549 for (use_iterator UI = use_begin(), E = use_end(); UI != E;) { 550 Use &U = *UI; 551 ++UI; 552 if (!ShouldReplace(U)) 553 continue; 554 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 555 // constant because they are uniqued. 556 if (auto *C = dyn_cast<Constant>(U.getUser())) { 557 if (!isa<GlobalValue>(C)) { 558 if (Visited.insert(C).second) 559 Consts.push_back(TrackingVH<Constant>(C)); 560 continue; 561 } 562 } 563 U.set(New); 564 } 565 566 while (!Consts.empty()) { 567 // FIXME: handleOperandChange() updates all the uses in a given Constant, 568 // not just the one passed to ShouldReplace 569 Consts.pop_back_val()->handleOperandChange(this, New); 570 } 571 } 572 573 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB 574 /// with New. 575 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { 576 SmallVector<DbgVariableIntrinsic *> DbgUsers; 577 findDbgUsers(DbgUsers, V); 578 for (auto *DVI : DbgUsers) { 579 if (DVI->getParent() != BB) 580 DVI->replaceVariableLocationOp(V, New); 581 } 582 } 583 584 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 585 // This routine leaves uses within BB. 586 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 587 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 588 assert(!contains(New, this) && 589 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 590 assert(New->getType() == getType() && 591 "replaceUses of value with new value of different type!"); 592 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 593 594 replaceDbgUsesOutsideBlock(this, New, BB); 595 replaceUsesWithIf(New, [BB](Use &U) { 596 auto *I = dyn_cast<Instruction>(U.getUser()); 597 // Don't replace if it's an instruction in the BB basic block. 598 return !I || I->getParent() != BB; 599 }); 600 } 601 602 namespace { 603 // Various metrics for how much to strip off of pointers. 604 enum PointerStripKind { 605 PSK_ZeroIndices, 606 PSK_ZeroIndicesAndAliases, 607 PSK_ZeroIndicesSameRepresentation, 608 PSK_ForAliasAnalysis, 609 PSK_InBoundsConstantIndices, 610 PSK_InBounds 611 }; 612 613 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 614 615 template <PointerStripKind StripKind> 616 static const Value *stripPointerCastsAndOffsets( 617 const Value *V, 618 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 619 if (!V->getType()->isPointerTy()) 620 return V; 621 622 // Even though we don't look through PHI nodes, we could be called on an 623 // instruction in an unreachable block, which may be on a cycle. 624 SmallPtrSet<const Value *, 4> Visited; 625 626 Visited.insert(V); 627 do { 628 Func(V); 629 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 630 switch (StripKind) { 631 case PSK_ZeroIndices: 632 case PSK_ZeroIndicesAndAliases: 633 case PSK_ZeroIndicesSameRepresentation: 634 case PSK_ForAliasAnalysis: 635 if (!GEP->hasAllZeroIndices()) 636 return V; 637 break; 638 case PSK_InBoundsConstantIndices: 639 if (!GEP->hasAllConstantIndices()) 640 return V; 641 LLVM_FALLTHROUGH; 642 case PSK_InBounds: 643 if (!GEP->isInBounds()) 644 return V; 645 break; 646 } 647 V = GEP->getPointerOperand(); 648 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 649 V = cast<Operator>(V)->getOperand(0); 650 if (!V->getType()->isPointerTy()) 651 return V; 652 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 653 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 654 // TODO: If we know an address space cast will not change the 655 // representation we could look through it here as well. 656 V = cast<Operator>(V)->getOperand(0); 657 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 658 V = cast<GlobalAlias>(V)->getAliasee(); 659 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 660 cast<PHINode>(V)->getNumIncomingValues() == 1) { 661 V = cast<PHINode>(V)->getIncomingValue(0); 662 } else { 663 if (const auto *Call = dyn_cast<CallBase>(V)) { 664 if (const Value *RV = Call->getReturnedArgOperand()) { 665 V = RV; 666 continue; 667 } 668 // The result of launder.invariant.group must alias it's argument, 669 // but it can't be marked with returned attribute, that's why it needs 670 // special case. 671 if (StripKind == PSK_ForAliasAnalysis && 672 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 673 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 674 V = Call->getArgOperand(0); 675 continue; 676 } 677 } 678 return V; 679 } 680 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 681 } while (Visited.insert(V).second); 682 683 return V; 684 } 685 } // end anonymous namespace 686 687 const Value *Value::stripPointerCasts() const { 688 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 689 } 690 691 const Value *Value::stripPointerCastsAndAliases() const { 692 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 693 } 694 695 const Value *Value::stripPointerCastsSameRepresentation() const { 696 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 697 } 698 699 const Value *Value::stripInBoundsConstantOffsets() const { 700 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 701 } 702 703 const Value *Value::stripPointerCastsForAliasAnalysis() const { 704 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 705 } 706 707 const Value *Value::stripAndAccumulateConstantOffsets( 708 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 709 bool AllowInvariantGroup, 710 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 711 if (!getType()->isPtrOrPtrVectorTy()) 712 return this; 713 714 unsigned BitWidth = Offset.getBitWidth(); 715 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 716 "The offset bit width does not match the DL specification."); 717 718 // Even though we don't look through PHI nodes, we could be called on an 719 // instruction in an unreachable block, which may be on a cycle. 720 SmallPtrSet<const Value *, 4> Visited; 721 Visited.insert(this); 722 const Value *V = this; 723 do { 724 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 725 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 726 if (!AllowNonInbounds && !GEP->isInBounds()) 727 return V; 728 729 // If one of the values we have visited is an addrspacecast, then 730 // the pointer type of this GEP may be different from the type 731 // of the Ptr parameter which was passed to this function. This 732 // means when we construct GEPOffset, we need to use the size 733 // of GEP's pointer type rather than the size of the original 734 // pointer type. 735 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 736 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 737 return V; 738 739 // Stop traversal if the pointer offset wouldn't fit in the bit-width 740 // provided by the Offset argument. This can happen due to AddrSpaceCast 741 // stripping. 742 if (GEPOffset.getMinSignedBits() > BitWidth) 743 return V; 744 745 // External Analysis can return a result higher/lower than the value 746 // represents. We need to detect overflow/underflow. 747 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 748 if (!ExternalAnalysis) { 749 Offset += GEPOffsetST; 750 } else { 751 bool Overflow = false; 752 APInt OldOffset = Offset; 753 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 754 if (Overflow) { 755 Offset = OldOffset; 756 return V; 757 } 758 } 759 V = GEP->getPointerOperand(); 760 } else if (Operator::getOpcode(V) == Instruction::BitCast || 761 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 762 V = cast<Operator>(V)->getOperand(0); 763 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 764 if (!GA->isInterposable()) 765 V = GA->getAliasee(); 766 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 767 if (const Value *RV = Call->getReturnedArgOperand()) 768 V = RV; 769 if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) 770 V = Call->getArgOperand(0); 771 } 772 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 773 } while (Visited.insert(V).second); 774 775 return V; 776 } 777 778 const Value * 779 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 780 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 781 } 782 783 bool Value::canBeFreed() const { 784 assert(getType()->isPointerTy()); 785 786 // Cases that can simply never be deallocated 787 // *) Constants aren't allocated per se, thus not deallocated either. 788 if (isa<Constant>(this)) 789 return false; 790 791 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 792 // lifetime is guaranteed to be longer than the callee's lifetime. 793 if (auto *A = dyn_cast<Argument>(this)) { 794 if (A->hasPointeeInMemoryValueAttr()) 795 return false; 796 // A pointer to an object in a function which neither frees, nor can arrange 797 // for another thread to free on its behalf, can not be freed in the scope 798 // of the function. Note that this logic is restricted to memory 799 // allocations in existance before the call; a nofree function *is* allowed 800 // to free memory it allocated. 801 const Function *F = A->getParent(); 802 if (F->doesNotFreeMemory() && F->hasNoSync()) 803 return false; 804 } 805 806 const Function *F = nullptr; 807 if (auto *I = dyn_cast<Instruction>(this)) 808 F = I->getFunction(); 809 if (auto *A = dyn_cast<Argument>(this)) 810 F = A->getParent(); 811 812 if (!F) 813 return true; 814 815 // With garbage collection, deallocation typically occurs solely at or after 816 // safepoints. If we're compiling for a collector which uses the 817 // gc.statepoint infrastructure, safepoints aren't explicitly present 818 // in the IR until after lowering from abstract to physical machine model. 819 // The collector could chose to mix explicit deallocation and gc'd objects 820 // which is why we need the explicit opt in on a per collector basis. 821 if (!F->hasGC()) 822 return true; 823 824 const auto &GCName = F->getGC(); 825 if (GCName == "statepoint-example") { 826 auto *PT = cast<PointerType>(this->getType()); 827 if (PT->getAddressSpace() != 1) 828 // For the sake of this example GC, we arbitrarily pick addrspace(1) as 829 // our GC managed heap. This must match the same check in 830 // RewriteStatepointsForGC (and probably needs better factored.) 831 return true; 832 833 // It is cheaper to scan for a declaration than to scan for a use in this 834 // function. Note that gc.statepoint is a type overloaded function so the 835 // usual trick of requesting declaration of the intrinsic from the module 836 // doesn't work. 837 for (auto &Fn : *F->getParent()) 838 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 839 return true; 840 return false; 841 } 842 return true; 843 } 844 845 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 846 bool &CanBeNull, 847 bool &CanBeFreed) const { 848 assert(getType()->isPointerTy() && "must be pointer"); 849 850 uint64_t DerefBytes = 0; 851 CanBeNull = false; 852 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 853 if (const Argument *A = dyn_cast<Argument>(this)) { 854 DerefBytes = A->getDereferenceableBytes(); 855 if (DerefBytes == 0) { 856 // Handle byval/byref/inalloca/preallocated arguments 857 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 858 if (ArgMemTy->isSized()) { 859 // FIXME: Why isn't this the type alloc size? 860 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 861 } 862 } 863 } 864 865 if (DerefBytes == 0) { 866 DerefBytes = A->getDereferenceableOrNullBytes(); 867 CanBeNull = true; 868 } 869 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 870 DerefBytes = Call->getRetDereferenceableBytes(); 871 if (DerefBytes == 0) { 872 DerefBytes = Call->getRetDereferenceableOrNullBytes(); 873 CanBeNull = true; 874 } 875 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 876 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 877 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 878 DerefBytes = CI->getLimitedValue(); 879 } 880 if (DerefBytes == 0) { 881 if (MDNode *MD = 882 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 883 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 884 DerefBytes = CI->getLimitedValue(); 885 } 886 CanBeNull = true; 887 } 888 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 889 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 890 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 891 DerefBytes = CI->getLimitedValue(); 892 } 893 if (DerefBytes == 0) { 894 if (MDNode *MD = 895 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 896 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 897 DerefBytes = CI->getLimitedValue(); 898 } 899 CanBeNull = true; 900 } 901 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 902 if (!AI->isArrayAllocation()) { 903 DerefBytes = 904 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 905 CanBeNull = false; 906 CanBeFreed = false; 907 } 908 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 909 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 910 // TODO: Don't outright reject hasExternalWeakLinkage but set the 911 // CanBeNull flag. 912 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 913 CanBeNull = false; 914 CanBeFreed = false; 915 } 916 } 917 return DerefBytes; 918 } 919 920 Align Value::getPointerAlignment(const DataLayout &DL) const { 921 assert(getType()->isPointerTy() && "must be pointer"); 922 if (auto *GO = dyn_cast<GlobalObject>(this)) { 923 if (isa<Function>(GO)) { 924 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 925 switch (DL.getFunctionPtrAlignType()) { 926 case DataLayout::FunctionPtrAlignType::Independent: 927 return FunctionPtrAlign; 928 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 929 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 930 } 931 llvm_unreachable("Unhandled FunctionPtrAlignType"); 932 } 933 const MaybeAlign Alignment(GO->getAlignment()); 934 if (!Alignment) { 935 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 936 Type *ObjectType = GVar->getValueType(); 937 if (ObjectType->isSized()) { 938 // If the object is defined in the current Module, we'll be giving 939 // it the preferred alignment. Otherwise, we have to assume that it 940 // may only have the minimum ABI alignment. 941 if (GVar->isStrongDefinitionForLinker()) 942 return DL.getPreferredAlign(GVar); 943 else 944 return DL.getABITypeAlign(ObjectType); 945 } 946 } 947 } 948 return Alignment.valueOrOne(); 949 } else if (const Argument *A = dyn_cast<Argument>(this)) { 950 const MaybeAlign Alignment = A->getParamAlign(); 951 if (!Alignment && A->hasStructRetAttr()) { 952 // An sret parameter has at least the ABI alignment of the return type. 953 Type *EltTy = A->getParamStructRetType(); 954 if (EltTy->isSized()) 955 return DL.getABITypeAlign(EltTy); 956 } 957 return Alignment.valueOrOne(); 958 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 959 return AI->getAlign(); 960 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 961 MaybeAlign Alignment = Call->getRetAlign(); 962 if (!Alignment && Call->getCalledFunction()) 963 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 964 return Alignment.valueOrOne(); 965 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 966 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 967 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 968 return Align(CI->getLimitedValue()); 969 } 970 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 971 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 972 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 973 /*OnlyIfReduced=*/true))) { 974 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 975 // While the actual alignment may be large, elsewhere we have 976 // an arbitrary upper alignmet limit, so let's clamp to it. 977 return Align(TrailingZeros < Value::MaxAlignmentExponent 978 ? uint64_t(1) << TrailingZeros 979 : Value::MaximumAlignment); 980 } 981 } 982 return Align(1); 983 } 984 985 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 986 const BasicBlock *PredBB) const { 987 auto *PN = dyn_cast<PHINode>(this); 988 if (PN && PN->getParent() == CurBB) 989 return PN->getIncomingValueForBlock(PredBB); 990 return this; 991 } 992 993 LLVMContext &Value::getContext() const { return VTy->getContext(); } 994 995 void Value::reverseUseList() { 996 if (!UseList || !UseList->Next) 997 // No need to reverse 0 or 1 uses. 998 return; 999 1000 Use *Head = UseList; 1001 Use *Current = UseList->Next; 1002 Head->Next = nullptr; 1003 while (Current) { 1004 Use *Next = Current->Next; 1005 Current->Next = Head; 1006 Head->Prev = &Current->Next; 1007 Head = Current; 1008 Current = Next; 1009 } 1010 UseList = Head; 1011 Head->Prev = &UseList; 1012 } 1013 1014 bool Value::isSwiftError() const { 1015 auto *Arg = dyn_cast<Argument>(this); 1016 if (Arg) 1017 return Arg->hasSwiftErrorAttr(); 1018 auto *Alloca = dyn_cast<AllocaInst>(this); 1019 if (!Alloca) 1020 return false; 1021 return Alloca->isSwiftError(); 1022 } 1023 1024 bool Value::isTransitiveUsedByMetadataOnly() const { 1025 if (use_empty()) 1026 return false; 1027 llvm::SmallVector<const User *, 32> WorkList; 1028 llvm::SmallPtrSet<const User *, 32> Visited; 1029 WorkList.insert(WorkList.begin(), user_begin(), user_end()); 1030 while (!WorkList.empty()) { 1031 const User *U = WorkList.pop_back_val(); 1032 Visited.insert(U); 1033 // If it is transitively used by a global value or a non-constant value, 1034 // it's obviously not only used by metadata. 1035 if (!isa<Constant>(U) || isa<GlobalValue>(U)) 1036 return false; 1037 for (const User *UU : U->users()) 1038 if (!Visited.count(UU)) 1039 WorkList.push_back(UU); 1040 } 1041 return true; 1042 } 1043 1044 //===----------------------------------------------------------------------===// 1045 // ValueHandleBase Class 1046 //===----------------------------------------------------------------------===// 1047 1048 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 1049 assert(List && "Handle list is null?"); 1050 1051 // Splice ourselves into the list. 1052 Next = *List; 1053 *List = this; 1054 setPrevPtr(List); 1055 if (Next) { 1056 Next->setPrevPtr(&Next); 1057 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 1058 } 1059 } 1060 1061 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 1062 assert(List && "Must insert after existing node"); 1063 1064 Next = List->Next; 1065 setPrevPtr(&List->Next); 1066 List->Next = this; 1067 if (Next) 1068 Next->setPrevPtr(&Next); 1069 } 1070 1071 void ValueHandleBase::AddToUseList() { 1072 assert(getValPtr() && "Null pointer doesn't have a use list!"); 1073 1074 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1075 1076 if (getValPtr()->HasValueHandle) { 1077 // If this value already has a ValueHandle, then it must be in the 1078 // ValueHandles map already. 1079 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1080 assert(Entry && "Value doesn't have any handles?"); 1081 AddToExistingUseList(&Entry); 1082 return; 1083 } 1084 1085 // Ok, it doesn't have any handles yet, so we must insert it into the 1086 // DenseMap. However, doing this insertion could cause the DenseMap to 1087 // reallocate itself, which would invalidate all of the PrevP pointers that 1088 // point into the old table. Handle this by checking for reallocation and 1089 // updating the stale pointers only if needed. 1090 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1091 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1092 1093 ValueHandleBase *&Entry = Handles[getValPtr()]; 1094 assert(!Entry && "Value really did already have handles?"); 1095 AddToExistingUseList(&Entry); 1096 getValPtr()->HasValueHandle = true; 1097 1098 // If reallocation didn't happen or if this was the first insertion, don't 1099 // walk the table. 1100 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1101 Handles.size() == 1) { 1102 return; 1103 } 1104 1105 // Okay, reallocation did happen. Fix the Prev Pointers. 1106 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1107 E = Handles.end(); I != E; ++I) { 1108 assert(I->second && I->first == I->second->getValPtr() && 1109 "List invariant broken!"); 1110 I->second->setPrevPtr(&I->second); 1111 } 1112 } 1113 1114 void ValueHandleBase::RemoveFromUseList() { 1115 assert(getValPtr() && getValPtr()->HasValueHandle && 1116 "Pointer doesn't have a use list!"); 1117 1118 // Unlink this from its use list. 1119 ValueHandleBase **PrevPtr = getPrevPtr(); 1120 assert(*PrevPtr == this && "List invariant broken"); 1121 1122 *PrevPtr = Next; 1123 if (Next) { 1124 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1125 Next->setPrevPtr(PrevPtr); 1126 return; 1127 } 1128 1129 // If the Next pointer was null, then it is possible that this was the last 1130 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1131 // map. 1132 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1133 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1134 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1135 Handles.erase(getValPtr()); 1136 getValPtr()->HasValueHandle = false; 1137 } 1138 } 1139 1140 void ValueHandleBase::ValueIsDeleted(Value *V) { 1141 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1142 1143 // Get the linked list base, which is guaranteed to exist since the 1144 // HasValueHandle flag is set. 1145 LLVMContextImpl *pImpl = V->getContext().pImpl; 1146 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1147 assert(Entry && "Value bit set but no entries exist"); 1148 1149 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1150 // and remove themselves from the list without breaking our iteration. This 1151 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1152 // Note that we deliberately do not the support the case when dropping a value 1153 // handle results in a new value handle being permanently added to the list 1154 // (as might occur in theory for CallbackVH's): the new value handle will not 1155 // be processed and the checking code will mete out righteous punishment if 1156 // the handle is still present once we have finished processing all the other 1157 // value handles (it is fine to momentarily add then remove a value handle). 1158 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1159 Iterator.RemoveFromUseList(); 1160 Iterator.AddToExistingUseListAfter(Entry); 1161 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1162 1163 switch (Entry->getKind()) { 1164 case Assert: 1165 break; 1166 case Weak: 1167 case WeakTracking: 1168 // WeakTracking and Weak just go to null, which unlinks them 1169 // from the list. 1170 Entry->operator=(nullptr); 1171 break; 1172 case Callback: 1173 // Forward to the subclass's implementation. 1174 static_cast<CallbackVH*>(Entry)->deleted(); 1175 break; 1176 } 1177 } 1178 1179 // All callbacks, weak references, and assertingVHs should be dropped by now. 1180 if (V->HasValueHandle) { 1181 #ifndef NDEBUG // Only in +Asserts mode... 1182 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1183 << "\n"; 1184 if (pImpl->ValueHandles[V]->getKind() == Assert) 1185 llvm_unreachable("An asserting value handle still pointed to this" 1186 " value!"); 1187 1188 #endif 1189 llvm_unreachable("All references to V were not removed?"); 1190 } 1191 } 1192 1193 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1194 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1195 assert(Old != New && "Changing value into itself!"); 1196 assert(Old->getType() == New->getType() && 1197 "replaceAllUses of value with new value of different type!"); 1198 1199 // Get the linked list base, which is guaranteed to exist since the 1200 // HasValueHandle flag is set. 1201 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1202 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1203 1204 assert(Entry && "Value bit set but no entries exist"); 1205 1206 // We use a local ValueHandleBase as an iterator so that 1207 // ValueHandles can add and remove themselves from the list without 1208 // breaking our iteration. This is not really an AssertingVH; we 1209 // just have to give ValueHandleBase some kind. 1210 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1211 Iterator.RemoveFromUseList(); 1212 Iterator.AddToExistingUseListAfter(Entry); 1213 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1214 1215 switch (Entry->getKind()) { 1216 case Assert: 1217 case Weak: 1218 // Asserting and Weak handles do not follow RAUW implicitly. 1219 break; 1220 case WeakTracking: 1221 // Weak goes to the new value, which will unlink it from Old's list. 1222 Entry->operator=(New); 1223 break; 1224 case Callback: 1225 // Forward to the subclass's implementation. 1226 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1227 break; 1228 } 1229 } 1230 1231 #ifndef NDEBUG 1232 // If any new weak value handles were added while processing the 1233 // list, then complain about it now. 1234 if (Old->HasValueHandle) 1235 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1236 switch (Entry->getKind()) { 1237 case WeakTracking: 1238 dbgs() << "After RAUW from " << *Old->getType() << " %" 1239 << Old->getName() << " to " << *New->getType() << " %" 1240 << New->getName() << "\n"; 1241 llvm_unreachable( 1242 "A weak tracking value handle still pointed to the old value!\n"); 1243 default: 1244 break; 1245 } 1246 #endif 1247 } 1248 1249 // Pin the vtable to this file. 1250 void CallbackVH::anchor() {} 1251