1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Value, ValueHandle, and User classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Value.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DerivedUser.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/ManagedStatic.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 38 using namespace llvm; 39 40 static cl::opt<unsigned> UseDerefAtPointSemantics( 41 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), 42 cl::desc("Deref attributes and metadata infer facts at definition only")); 43 44 45 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 46 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 47 cl::desc("Maximum size for the name of non-global values.")); 48 49 //===----------------------------------------------------------------------===// 50 // Value Class 51 //===----------------------------------------------------------------------===// 52 static inline Type *checkType(Type *Ty) { 53 assert(Ty && "Value defined with a null type: Error!"); 54 return Ty; 55 } 56 57 Value::Value(Type *ty, unsigned scid) 58 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), 59 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), 60 IsUsedByMD(false), HasName(false), HasMetadata(false) { 61 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 62 // FIXME: Why isn't this in the subclass gunk?? 63 // Note, we cannot call isa<CallInst> before the CallInst has been 64 // constructed. 65 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke || 66 SubclassID == Instruction::CallBr) 67 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 68 "invalid CallInst type!"); 69 else if (SubclassID != BasicBlockVal && 70 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 71 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 72 "Cannot create non-first-class values except for constants!"); 73 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 74 "Value too big"); 75 } 76 77 Value::~Value() { 78 // Notify all ValueHandles (if present) that this value is going away. 79 if (HasValueHandle) 80 ValueHandleBase::ValueIsDeleted(this); 81 if (isUsedByMetadata()) 82 ValueAsMetadata::handleDeletion(this); 83 84 // Remove associated metadata from context. 85 if (HasMetadata) 86 clearMetadata(); 87 88 #ifndef NDEBUG // Only in -g mode... 89 // Check to make sure that there are no uses of this value that are still 90 // around when the value is destroyed. If there are, then we have a dangling 91 // reference and something is wrong. This code is here to print out where 92 // the value is still being referenced. 93 // 94 // Note that use_empty() cannot be called here, as it eventually downcasts 95 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already 96 // been destructed, so accessing it is UB. 97 // 98 if (!materialized_use_empty()) { 99 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 100 for (auto *U : users()) 101 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 102 } 103 #endif 104 assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); 105 106 // If this value is named, destroy the name. This should not be in a symtab 107 // at this point. 108 destroyValueName(); 109 } 110 111 void Value::deleteValue() { 112 switch (getValueID()) { 113 #define HANDLE_VALUE(Name) \ 114 case Value::Name##Val: \ 115 delete static_cast<Name *>(this); \ 116 break; 117 #define HANDLE_MEMORY_VALUE(Name) \ 118 case Value::Name##Val: \ 119 static_cast<DerivedUser *>(this)->DeleteValue( \ 120 static_cast<DerivedUser *>(this)); \ 121 break; 122 #define HANDLE_CONSTANT(Name) \ 123 case Value::Name##Val: \ 124 llvm_unreachable("constants should be destroyed with destroyConstant"); \ 125 break; 126 #define HANDLE_INSTRUCTION(Name) /* nothing */ 127 #include "llvm/IR/Value.def" 128 129 #define HANDLE_INST(N, OPC, CLASS) \ 130 case Value::InstructionVal + Instruction::OPC: \ 131 delete static_cast<CLASS *>(this); \ 132 break; 133 #define HANDLE_USER_INST(N, OPC, CLASS) 134 #include "llvm/IR/Instruction.def" 135 136 default: 137 llvm_unreachable("attempting to delete unknown value kind"); 138 } 139 } 140 141 void Value::destroyValueName() { 142 ValueName *Name = getValueName(); 143 if (Name) { 144 MallocAllocator Allocator; 145 Name->Destroy(Allocator); 146 } 147 setValueName(nullptr); 148 } 149 150 bool Value::hasNUses(unsigned N) const { 151 return hasNItems(use_begin(), use_end(), N); 152 } 153 154 bool Value::hasNUsesOrMore(unsigned N) const { 155 return hasNItemsOrMore(use_begin(), use_end(), N); 156 } 157 158 bool Value::hasOneUser() const { 159 if (use_empty()) 160 return false; 161 if (hasOneUse()) 162 return true; 163 return std::equal(++user_begin(), user_end(), user_begin()); 164 } 165 166 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } 167 168 Use *Value::getSingleUndroppableUse() { 169 Use *Result = nullptr; 170 for (Use &U : uses()) { 171 if (!U.getUser()->isDroppable()) { 172 if (Result) 173 return nullptr; 174 Result = &U; 175 } 176 } 177 return Result; 178 } 179 180 bool Value::hasNUndroppableUses(unsigned int N) const { 181 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); 182 } 183 184 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { 185 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); 186 } 187 188 void Value::dropDroppableUses( 189 llvm::function_ref<bool(const Use *)> ShouldDrop) { 190 SmallVector<Use *, 8> ToBeEdited; 191 for (Use &U : uses()) 192 if (U.getUser()->isDroppable() && ShouldDrop(&U)) 193 ToBeEdited.push_back(&U); 194 for (Use *U : ToBeEdited) 195 dropDroppableUse(*U); 196 } 197 198 void Value::dropDroppableUsesIn(User &Usr) { 199 assert(Usr.isDroppable() && "Expected a droppable user!"); 200 for (Use &UsrOp : Usr.operands()) { 201 if (UsrOp.get() == this) 202 dropDroppableUse(UsrOp); 203 } 204 } 205 206 void Value::dropDroppableUse(Use &U) { 207 U.removeFromList(); 208 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { 209 unsigned OpNo = U.getOperandNo(); 210 if (OpNo == 0) 211 U.set(ConstantInt::getTrue(Assume->getContext())); 212 else { 213 U.set(UndefValue::get(U.get()->getType())); 214 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); 215 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); 216 } 217 return; 218 } 219 220 llvm_unreachable("unkown droppable use"); 221 } 222 223 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 224 // This can be computed either by scanning the instructions in BB, or by 225 // scanning the use list of this Value. Both lists can be very long, but 226 // usually one is quite short. 227 // 228 // Scan both lists simultaneously until one is exhausted. This limits the 229 // search to the shorter list. 230 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 231 const_user_iterator UI = user_begin(), UE = user_end(); 232 for (; BI != BE && UI != UE; ++BI, ++UI) { 233 // Scan basic block: Check if this Value is used by the instruction at BI. 234 if (is_contained(BI->operands(), this)) 235 return true; 236 // Scan use list: Check if the use at UI is in BB. 237 const auto *User = dyn_cast<Instruction>(*UI); 238 if (User && User->getParent() == BB) 239 return true; 240 } 241 return false; 242 } 243 244 unsigned Value::getNumUses() const { 245 return (unsigned)std::distance(use_begin(), use_end()); 246 } 247 248 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 249 ST = nullptr; 250 if (Instruction *I = dyn_cast<Instruction>(V)) { 251 if (BasicBlock *P = I->getParent()) 252 if (Function *PP = P->getParent()) 253 ST = PP->getValueSymbolTable(); 254 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 255 if (Function *P = BB->getParent()) 256 ST = P->getValueSymbolTable(); 257 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 258 if (Module *P = GV->getParent()) 259 ST = &P->getValueSymbolTable(); 260 } else if (Argument *A = dyn_cast<Argument>(V)) { 261 if (Function *P = A->getParent()) 262 ST = P->getValueSymbolTable(); 263 } else { 264 assert(isa<Constant>(V) && "Unknown value type!"); 265 return true; // no name is setable for this. 266 } 267 return false; 268 } 269 270 ValueName *Value::getValueName() const { 271 if (!HasName) return nullptr; 272 273 LLVMContext &Ctx = getContext(); 274 auto I = Ctx.pImpl->ValueNames.find(this); 275 assert(I != Ctx.pImpl->ValueNames.end() && 276 "No name entry found!"); 277 278 return I->second; 279 } 280 281 void Value::setValueName(ValueName *VN) { 282 LLVMContext &Ctx = getContext(); 283 284 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 285 "HasName bit out of sync!"); 286 287 if (!VN) { 288 if (HasName) 289 Ctx.pImpl->ValueNames.erase(this); 290 HasName = false; 291 return; 292 } 293 294 HasName = true; 295 Ctx.pImpl->ValueNames[this] = VN; 296 } 297 298 StringRef Value::getName() const { 299 // Make sure the empty string is still a C string. For historical reasons, 300 // some clients want to call .data() on the result and expect it to be null 301 // terminated. 302 if (!hasName()) 303 return StringRef("", 0); 304 return getValueName()->getKey(); 305 } 306 307 void Value::setNameImpl(const Twine &NewName) { 308 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 309 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 310 return; 311 312 // Fast path for common IRBuilder case of setName("") when there is no name. 313 if (NewName.isTriviallyEmpty() && !hasName()) 314 return; 315 316 SmallString<256> NameData; 317 StringRef NameRef = NewName.toStringRef(NameData); 318 assert(NameRef.find_first_of(0) == StringRef::npos && 319 "Null bytes are not allowed in names"); 320 321 // Name isn't changing? 322 if (getName() == NameRef) 323 return; 324 325 // Cap the size of non-GlobalValue names. 326 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this)) 327 NameRef = 328 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize)); 329 330 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 331 332 // Get the symbol table to update for this object. 333 ValueSymbolTable *ST; 334 if (getSymTab(this, ST)) 335 return; // Cannot set a name on this value (e.g. constant). 336 337 if (!ST) { // No symbol table to update? Just do the change. 338 if (NameRef.empty()) { 339 // Free the name for this value. 340 destroyValueName(); 341 return; 342 } 343 344 // NOTE: Could optimize for the case the name is shrinking to not deallocate 345 // then reallocated. 346 destroyValueName(); 347 348 // Create the new name. 349 MallocAllocator Allocator; 350 setValueName(ValueName::Create(NameRef, Allocator)); 351 getValueName()->setValue(this); 352 return; 353 } 354 355 // NOTE: Could optimize for the case the name is shrinking to not deallocate 356 // then reallocated. 357 if (hasName()) { 358 // Remove old name. 359 ST->removeValueName(getValueName()); 360 destroyValueName(); 361 362 if (NameRef.empty()) 363 return; 364 } 365 366 // Name is changing to something new. 367 setValueName(ST->createValueName(NameRef, this)); 368 } 369 370 void Value::setName(const Twine &NewName) { 371 setNameImpl(NewName); 372 if (Function *F = dyn_cast<Function>(this)) 373 F->recalculateIntrinsicID(); 374 } 375 376 void Value::takeName(Value *V) { 377 ValueSymbolTable *ST = nullptr; 378 // If this value has a name, drop it. 379 if (hasName()) { 380 // Get the symtab this is in. 381 if (getSymTab(this, ST)) { 382 // We can't set a name on this value, but we need to clear V's name if 383 // it has one. 384 if (V->hasName()) V->setName(""); 385 return; // Cannot set a name on this value (e.g. constant). 386 } 387 388 // Remove old name. 389 if (ST) 390 ST->removeValueName(getValueName()); 391 destroyValueName(); 392 } 393 394 // Now we know that this has no name. 395 396 // If V has no name either, we're done. 397 if (!V->hasName()) return; 398 399 // Get this's symtab if we didn't before. 400 if (!ST) { 401 if (getSymTab(this, ST)) { 402 // Clear V's name. 403 V->setName(""); 404 return; // Cannot set a name on this value (e.g. constant). 405 } 406 } 407 408 // Get V's ST, this should always succed, because V has a name. 409 ValueSymbolTable *VST; 410 bool Failure = getSymTab(V, VST); 411 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 412 413 // If these values are both in the same symtab, we can do this very fast. 414 // This works even if both values have no symtab yet. 415 if (ST == VST) { 416 // Take the name! 417 setValueName(V->getValueName()); 418 V->setValueName(nullptr); 419 getValueName()->setValue(this); 420 return; 421 } 422 423 // Otherwise, things are slightly more complex. Remove V's name from VST and 424 // then reinsert it into ST. 425 426 if (VST) 427 VST->removeValueName(V->getValueName()); 428 setValueName(V->getValueName()); 429 V->setValueName(nullptr); 430 getValueName()->setValue(this); 431 432 if (ST) 433 ST->reinsertValue(this); 434 } 435 436 #ifndef NDEBUG 437 std::string Value::getNameOrAsOperand() const { 438 if (!getName().empty()) 439 return std::string(getName()); 440 441 std::string BBName; 442 raw_string_ostream OS(BBName); 443 printAsOperand(OS, false); 444 return OS.str(); 445 } 446 #endif 447 448 void Value::assertModuleIsMaterializedImpl() const { 449 #ifndef NDEBUG 450 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 451 if (!GV) 452 return; 453 const Module *M = GV->getParent(); 454 if (!M) 455 return; 456 assert(M->isMaterialized()); 457 #endif 458 } 459 460 #ifndef NDEBUG 461 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 462 Constant *C) { 463 if (!Cache.insert(Expr).second) 464 return false; 465 466 for (auto &O : Expr->operands()) { 467 if (O == C) 468 return true; 469 auto *CE = dyn_cast<ConstantExpr>(O); 470 if (!CE) 471 continue; 472 if (contains(Cache, CE, C)) 473 return true; 474 } 475 return false; 476 } 477 478 static bool contains(Value *Expr, Value *V) { 479 if (Expr == V) 480 return true; 481 482 auto *C = dyn_cast<Constant>(V); 483 if (!C) 484 return false; 485 486 auto *CE = dyn_cast<ConstantExpr>(Expr); 487 if (!CE) 488 return false; 489 490 SmallPtrSet<ConstantExpr *, 4> Cache; 491 return contains(Cache, CE, C); 492 } 493 #endif // NDEBUG 494 495 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 496 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 497 assert(!contains(New, this) && 498 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 499 assert(New->getType() == getType() && 500 "replaceAllUses of value with new value of different type!"); 501 502 // Notify all ValueHandles (if present) that this value is going away. 503 if (HasValueHandle) 504 ValueHandleBase::ValueIsRAUWd(this, New); 505 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 506 ValueAsMetadata::handleRAUW(this, New); 507 508 while (!materialized_use_empty()) { 509 Use &U = *UseList; 510 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 511 // constant because they are uniqued. 512 if (auto *C = dyn_cast<Constant>(U.getUser())) { 513 if (!isa<GlobalValue>(C)) { 514 C->handleOperandChange(this, New); 515 continue; 516 } 517 } 518 519 U.set(New); 520 } 521 522 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 523 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 524 } 525 526 void Value::replaceAllUsesWith(Value *New) { 527 doRAUW(New, ReplaceMetadataUses::Yes); 528 } 529 530 void Value::replaceNonMetadataUsesWith(Value *New) { 531 doRAUW(New, ReplaceMetadataUses::No); 532 } 533 534 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 535 // This routine leaves uses within BB. 536 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 537 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 538 assert(!contains(New, this) && 539 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 540 assert(New->getType() == getType() && 541 "replaceUses of value with new value of different type!"); 542 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 543 544 replaceUsesWithIf(New, [BB](Use &U) { 545 auto *I = dyn_cast<Instruction>(U.getUser()); 546 // Don't replace if it's an instruction in the BB basic block. 547 return !I || I->getParent() != BB; 548 }); 549 } 550 551 namespace { 552 // Various metrics for how much to strip off of pointers. 553 enum PointerStripKind { 554 PSK_ZeroIndices, 555 PSK_ZeroIndicesAndAliases, 556 PSK_ZeroIndicesSameRepresentation, 557 PSK_ForAliasAnalysis, 558 PSK_InBoundsConstantIndices, 559 PSK_InBounds 560 }; 561 562 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} 563 564 template <PointerStripKind StripKind> 565 static const Value *stripPointerCastsAndOffsets( 566 const Value *V, 567 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { 568 if (!V->getType()->isPointerTy()) 569 return V; 570 571 // Even though we don't look through PHI nodes, we could be called on an 572 // instruction in an unreachable block, which may be on a cycle. 573 SmallPtrSet<const Value *, 4> Visited; 574 575 Visited.insert(V); 576 do { 577 Func(V); 578 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 579 switch (StripKind) { 580 case PSK_ZeroIndices: 581 case PSK_ZeroIndicesAndAliases: 582 case PSK_ZeroIndicesSameRepresentation: 583 case PSK_ForAliasAnalysis: 584 if (!GEP->hasAllZeroIndices()) 585 return V; 586 break; 587 case PSK_InBoundsConstantIndices: 588 if (!GEP->hasAllConstantIndices()) 589 return V; 590 LLVM_FALLTHROUGH; 591 case PSK_InBounds: 592 if (!GEP->isInBounds()) 593 return V; 594 break; 595 } 596 V = GEP->getPointerOperand(); 597 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 598 V = cast<Operator>(V)->getOperand(0); 599 if (!V->getType()->isPointerTy()) 600 return V; 601 } else if (StripKind != PSK_ZeroIndicesSameRepresentation && 602 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 603 // TODO: If we know an address space cast will not change the 604 // representation we could look through it here as well. 605 V = cast<Operator>(V)->getOperand(0); 606 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { 607 V = cast<GlobalAlias>(V)->getAliasee(); 608 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && 609 cast<PHINode>(V)->getNumIncomingValues() == 1) { 610 V = cast<PHINode>(V)->getIncomingValue(0); 611 } else { 612 if (const auto *Call = dyn_cast<CallBase>(V)) { 613 if (const Value *RV = Call->getReturnedArgOperand()) { 614 V = RV; 615 continue; 616 } 617 // The result of launder.invariant.group must alias it's argument, 618 // but it can't be marked with returned attribute, that's why it needs 619 // special case. 620 if (StripKind == PSK_ForAliasAnalysis && 621 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 622 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 623 V = Call->getArgOperand(0); 624 continue; 625 } 626 } 627 return V; 628 } 629 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 630 } while (Visited.insert(V).second); 631 632 return V; 633 } 634 } // end anonymous namespace 635 636 const Value *Value::stripPointerCasts() const { 637 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 638 } 639 640 const Value *Value::stripPointerCastsAndAliases() const { 641 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 642 } 643 644 const Value *Value::stripPointerCastsSameRepresentation() const { 645 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); 646 } 647 648 const Value *Value::stripInBoundsConstantOffsets() const { 649 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 650 } 651 652 const Value *Value::stripPointerCastsForAliasAnalysis() const { 653 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); 654 } 655 656 const Value *Value::stripAndAccumulateConstantOffsets( 657 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, 658 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 659 if (!getType()->isPtrOrPtrVectorTy()) 660 return this; 661 662 unsigned BitWidth = Offset.getBitWidth(); 663 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && 664 "The offset bit width does not match the DL specification."); 665 666 // Even though we don't look through PHI nodes, we could be called on an 667 // instruction in an unreachable block, which may be on a cycle. 668 SmallPtrSet<const Value *, 4> Visited; 669 Visited.insert(this); 670 const Value *V = this; 671 do { 672 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 673 // If in-bounds was requested, we do not strip non-in-bounds GEPs. 674 if (!AllowNonInbounds && !GEP->isInBounds()) 675 return V; 676 677 // If one of the values we have visited is an addrspacecast, then 678 // the pointer type of this GEP may be different from the type 679 // of the Ptr parameter which was passed to this function. This 680 // means when we construct GEPOffset, we need to use the size 681 // of GEP's pointer type rather than the size of the original 682 // pointer type. 683 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); 684 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) 685 return V; 686 687 // Stop traversal if the pointer offset wouldn't fit in the bit-width 688 // provided by the Offset argument. This can happen due to AddrSpaceCast 689 // stripping. 690 if (GEPOffset.getMinSignedBits() > BitWidth) 691 return V; 692 693 // External Analysis can return a result higher/lower than the value 694 // represents. We need to detect overflow/underflow. 695 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); 696 if (!ExternalAnalysis) { 697 Offset += GEPOffsetST; 698 } else { 699 bool Overflow = false; 700 APInt OldOffset = Offset; 701 Offset = Offset.sadd_ov(GEPOffsetST, Overflow); 702 if (Overflow) { 703 Offset = OldOffset; 704 return V; 705 } 706 } 707 V = GEP->getPointerOperand(); 708 } else if (Operator::getOpcode(V) == Instruction::BitCast || 709 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 710 V = cast<Operator>(V)->getOperand(0); 711 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 712 if (!GA->isInterposable()) 713 V = GA->getAliasee(); 714 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 715 if (const Value *RV = Call->getReturnedArgOperand()) 716 V = RV; 717 } 718 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 719 } while (Visited.insert(V).second); 720 721 return V; 722 } 723 724 const Value * 725 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { 726 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); 727 } 728 729 bool Value::canBeFreed() const { 730 assert(getType()->isPointerTy()); 731 732 // Cases that can simply never be deallocated 733 // *) Constants aren't allocated per se, thus not deallocated either. 734 if (isa<Constant>(this)) 735 return false; 736 737 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage 738 // lifetime is guaranteed to be longer than the callee's lifetime. 739 if (auto *A = dyn_cast<Argument>(this)) 740 if (A->hasPointeeInMemoryValueAttr()) 741 return false; 742 743 const Function *F = nullptr; 744 if (auto *I = dyn_cast<Instruction>(this)) 745 F = I->getFunction(); 746 if (auto *A = dyn_cast<Argument>(this)) 747 F = A->getParent(); 748 749 if (!F) 750 return true; 751 752 // A pointer to an object in a function which neither frees, nor can arrange 753 // for another thread to free on its behalf, can not be freed in the scope 754 // of the function. 755 if (F->doesNotFreeMemory() && F->hasNoSync()) 756 return false; 757 758 // With garbage collection, deallocation typically occurs solely at or after 759 // safepoints. If we're compiling for a collector which uses the 760 // gc.statepoint infrastructure, safepoints aren't explicitly present 761 // in the IR until after lowering from abstract to physical machine model. 762 // The collector could chose to mix explicit deallocation and gc'd objects 763 // which is why we need the explicit opt in on a per collector basis. 764 if (!F->hasGC()) 765 return true; 766 767 const auto &GCName = F->getGC(); 768 const StringRef StatepointExampleName("statepoint-example"); 769 if (GCName != StatepointExampleName) 770 return true; 771 772 auto *PT = cast<PointerType>(this->getType()); 773 if (PT->getAddressSpace() != 1) 774 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 775 // GC managed heap. This must match the same check in 776 // RewriteStatepointsForGC (and probably needs better factored.) 777 return true; 778 779 // It is cheaper to scan for a declaration than to scan for a use in this 780 // function. Note that gc.statepoint is a type overloaded function so the 781 // usual trick of requesting declaration of the intrinsic from the module 782 // doesn't work. 783 for (auto &Fn : *F->getParent()) 784 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) 785 return true; 786 return false; 787 } 788 789 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 790 bool &CanBeNull, 791 bool &CanBeFreed) const { 792 assert(getType()->isPointerTy() && "must be pointer"); 793 794 uint64_t DerefBytes = 0; 795 CanBeNull = false; 796 CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); 797 if (const Argument *A = dyn_cast<Argument>(this)) { 798 DerefBytes = A->getDereferenceableBytes(); 799 if (DerefBytes == 0) { 800 // Handle byval/byref/inalloca/preallocated arguments 801 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { 802 if (ArgMemTy->isSized()) { 803 // FIXME: Why isn't this the type alloc size? 804 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); 805 } 806 } 807 } 808 809 if (DerefBytes == 0) { 810 DerefBytes = A->getDereferenceableOrNullBytes(); 811 CanBeNull = true; 812 } 813 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 814 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 815 if (DerefBytes == 0) { 816 DerefBytes = 817 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 818 CanBeNull = true; 819 } 820 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 821 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 822 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 823 DerefBytes = CI->getLimitedValue(); 824 } 825 if (DerefBytes == 0) { 826 if (MDNode *MD = 827 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 828 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 829 DerefBytes = CI->getLimitedValue(); 830 } 831 CanBeNull = true; 832 } 833 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { 834 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { 835 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 836 DerefBytes = CI->getLimitedValue(); 837 } 838 if (DerefBytes == 0) { 839 if (MDNode *MD = 840 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 841 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 842 DerefBytes = CI->getLimitedValue(); 843 } 844 CanBeNull = true; 845 } 846 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 847 if (!AI->isArrayAllocation()) { 848 DerefBytes = 849 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); 850 CanBeNull = false; 851 CanBeFreed = false; 852 } 853 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 854 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 855 // TODO: Don't outright reject hasExternalWeakLinkage but set the 856 // CanBeNull flag. 857 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); 858 CanBeNull = false; 859 } 860 } 861 return DerefBytes; 862 } 863 864 Align Value::getPointerAlignment(const DataLayout &DL) const { 865 assert(getType()->isPointerTy() && "must be pointer"); 866 if (auto *GO = dyn_cast<GlobalObject>(this)) { 867 if (isa<Function>(GO)) { 868 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); 869 switch (DL.getFunctionPtrAlignType()) { 870 case DataLayout::FunctionPtrAlignType::Independent: 871 return FunctionPtrAlign; 872 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: 873 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); 874 } 875 llvm_unreachable("Unhandled FunctionPtrAlignType"); 876 } 877 const MaybeAlign Alignment(GO->getAlignment()); 878 if (!Alignment) { 879 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 880 Type *ObjectType = GVar->getValueType(); 881 if (ObjectType->isSized()) { 882 // If the object is defined in the current Module, we'll be giving 883 // it the preferred alignment. Otherwise, we have to assume that it 884 // may only have the minimum ABI alignment. 885 if (GVar->isStrongDefinitionForLinker()) 886 return DL.getPreferredAlign(GVar); 887 else 888 return DL.getABITypeAlign(ObjectType); 889 } 890 } 891 } 892 return Alignment.valueOrOne(); 893 } else if (const Argument *A = dyn_cast<Argument>(this)) { 894 const MaybeAlign Alignment = A->getParamAlign(); 895 if (!Alignment && A->hasStructRetAttr()) { 896 // An sret parameter has at least the ABI alignment of the return type. 897 Type *EltTy = A->getParamStructRetType(); 898 if (EltTy->isSized()) 899 return DL.getABITypeAlign(EltTy); 900 } 901 return Alignment.valueOrOne(); 902 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 903 return AI->getAlign(); 904 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 905 MaybeAlign Alignment = Call->getRetAlign(); 906 if (!Alignment && Call->getCalledFunction()) 907 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); 908 return Alignment.valueOrOne(); 909 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 910 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 911 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 912 return Align(CI->getLimitedValue()); 913 } 914 } else if (auto *CstPtr = dyn_cast<Constant>(this)) { 915 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( 916 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), 917 /*OnlyIfReduced=*/true))) { 918 size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); 919 // While the actual alignment may be large, elsewhere we have 920 // an arbitrary upper alignmet limit, so let's clamp to it. 921 return Align(TrailingZeros < Value::MaxAlignmentExponent 922 ? uint64_t(1) << TrailingZeros 923 : Value::MaximumAlignment); 924 } 925 } 926 return Align(1); 927 } 928 929 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 930 const BasicBlock *PredBB) const { 931 auto *PN = dyn_cast<PHINode>(this); 932 if (PN && PN->getParent() == CurBB) 933 return PN->getIncomingValueForBlock(PredBB); 934 return this; 935 } 936 937 LLVMContext &Value::getContext() const { return VTy->getContext(); } 938 939 void Value::reverseUseList() { 940 if (!UseList || !UseList->Next) 941 // No need to reverse 0 or 1 uses. 942 return; 943 944 Use *Head = UseList; 945 Use *Current = UseList->Next; 946 Head->Next = nullptr; 947 while (Current) { 948 Use *Next = Current->Next; 949 Current->Next = Head; 950 Head->Prev = &Current->Next; 951 Head = Current; 952 Current = Next; 953 } 954 UseList = Head; 955 Head->Prev = &UseList; 956 } 957 958 bool Value::isSwiftError() const { 959 auto *Arg = dyn_cast<Argument>(this); 960 if (Arg) 961 return Arg->hasSwiftErrorAttr(); 962 auto *Alloca = dyn_cast<AllocaInst>(this); 963 if (!Alloca) 964 return false; 965 return Alloca->isSwiftError(); 966 } 967 968 //===----------------------------------------------------------------------===// 969 // ValueHandleBase Class 970 //===----------------------------------------------------------------------===// 971 972 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 973 assert(List && "Handle list is null?"); 974 975 // Splice ourselves into the list. 976 Next = *List; 977 *List = this; 978 setPrevPtr(List); 979 if (Next) { 980 Next->setPrevPtr(&Next); 981 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 982 } 983 } 984 985 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 986 assert(List && "Must insert after existing node"); 987 988 Next = List->Next; 989 setPrevPtr(&List->Next); 990 List->Next = this; 991 if (Next) 992 Next->setPrevPtr(&Next); 993 } 994 995 void ValueHandleBase::AddToUseList() { 996 assert(getValPtr() && "Null pointer doesn't have a use list!"); 997 998 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 999 1000 if (getValPtr()->HasValueHandle) { 1001 // If this value already has a ValueHandle, then it must be in the 1002 // ValueHandles map already. 1003 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 1004 assert(Entry && "Value doesn't have any handles?"); 1005 AddToExistingUseList(&Entry); 1006 return; 1007 } 1008 1009 // Ok, it doesn't have any handles yet, so we must insert it into the 1010 // DenseMap. However, doing this insertion could cause the DenseMap to 1011 // reallocate itself, which would invalidate all of the PrevP pointers that 1012 // point into the old table. Handle this by checking for reallocation and 1013 // updating the stale pointers only if needed. 1014 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1015 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 1016 1017 ValueHandleBase *&Entry = Handles[getValPtr()]; 1018 assert(!Entry && "Value really did already have handles?"); 1019 AddToExistingUseList(&Entry); 1020 getValPtr()->HasValueHandle = true; 1021 1022 // If reallocation didn't happen or if this was the first insertion, don't 1023 // walk the table. 1024 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 1025 Handles.size() == 1) { 1026 return; 1027 } 1028 1029 // Okay, reallocation did happen. Fix the Prev Pointers. 1030 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 1031 E = Handles.end(); I != E; ++I) { 1032 assert(I->second && I->first == I->second->getValPtr() && 1033 "List invariant broken!"); 1034 I->second->setPrevPtr(&I->second); 1035 } 1036 } 1037 1038 void ValueHandleBase::RemoveFromUseList() { 1039 assert(getValPtr() && getValPtr()->HasValueHandle && 1040 "Pointer doesn't have a use list!"); 1041 1042 // Unlink this from its use list. 1043 ValueHandleBase **PrevPtr = getPrevPtr(); 1044 assert(*PrevPtr == this && "List invariant broken"); 1045 1046 *PrevPtr = Next; 1047 if (Next) { 1048 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 1049 Next->setPrevPtr(PrevPtr); 1050 return; 1051 } 1052 1053 // If the Next pointer was null, then it is possible that this was the last 1054 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 1055 // map. 1056 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 1057 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 1058 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 1059 Handles.erase(getValPtr()); 1060 getValPtr()->HasValueHandle = false; 1061 } 1062 } 1063 1064 void ValueHandleBase::ValueIsDeleted(Value *V) { 1065 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 1066 1067 // Get the linked list base, which is guaranteed to exist since the 1068 // HasValueHandle flag is set. 1069 LLVMContextImpl *pImpl = V->getContext().pImpl; 1070 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 1071 assert(Entry && "Value bit set but no entries exist"); 1072 1073 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 1074 // and remove themselves from the list without breaking our iteration. This 1075 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 1076 // Note that we deliberately do not the support the case when dropping a value 1077 // handle results in a new value handle being permanently added to the list 1078 // (as might occur in theory for CallbackVH's): the new value handle will not 1079 // be processed and the checking code will mete out righteous punishment if 1080 // the handle is still present once we have finished processing all the other 1081 // value handles (it is fine to momentarily add then remove a value handle). 1082 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1083 Iterator.RemoveFromUseList(); 1084 Iterator.AddToExistingUseListAfter(Entry); 1085 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1086 1087 switch (Entry->getKind()) { 1088 case Assert: 1089 break; 1090 case Weak: 1091 case WeakTracking: 1092 // WeakTracking and Weak just go to null, which unlinks them 1093 // from the list. 1094 Entry->operator=(nullptr); 1095 break; 1096 case Callback: 1097 // Forward to the subclass's implementation. 1098 static_cast<CallbackVH*>(Entry)->deleted(); 1099 break; 1100 } 1101 } 1102 1103 // All callbacks, weak references, and assertingVHs should be dropped by now. 1104 if (V->HasValueHandle) { 1105 #ifndef NDEBUG // Only in +Asserts mode... 1106 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 1107 << "\n"; 1108 if (pImpl->ValueHandles[V]->getKind() == Assert) 1109 llvm_unreachable("An asserting value handle still pointed to this" 1110 " value!"); 1111 1112 #endif 1113 llvm_unreachable("All references to V were not removed?"); 1114 } 1115 } 1116 1117 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 1118 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 1119 assert(Old != New && "Changing value into itself!"); 1120 assert(Old->getType() == New->getType() && 1121 "replaceAllUses of value with new value of different type!"); 1122 1123 // Get the linked list base, which is guaranteed to exist since the 1124 // HasValueHandle flag is set. 1125 LLVMContextImpl *pImpl = Old->getContext().pImpl; 1126 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 1127 1128 assert(Entry && "Value bit set but no entries exist"); 1129 1130 // We use a local ValueHandleBase as an iterator so that 1131 // ValueHandles can add and remove themselves from the list without 1132 // breaking our iteration. This is not really an AssertingVH; we 1133 // just have to give ValueHandleBase some kind. 1134 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 1135 Iterator.RemoveFromUseList(); 1136 Iterator.AddToExistingUseListAfter(Entry); 1137 assert(Entry->Next == &Iterator && "Loop invariant broken."); 1138 1139 switch (Entry->getKind()) { 1140 case Assert: 1141 case Weak: 1142 // Asserting and Weak handles do not follow RAUW implicitly. 1143 break; 1144 case WeakTracking: 1145 // Weak goes to the new value, which will unlink it from Old's list. 1146 Entry->operator=(New); 1147 break; 1148 case Callback: 1149 // Forward to the subclass's implementation. 1150 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 1151 break; 1152 } 1153 } 1154 1155 #ifndef NDEBUG 1156 // If any new weak value handles were added while processing the 1157 // list, then complain about it now. 1158 if (Old->HasValueHandle) 1159 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 1160 switch (Entry->getKind()) { 1161 case WeakTracking: 1162 dbgs() << "After RAUW from " << *Old->getType() << " %" 1163 << Old->getName() << " to " << *New->getType() << " %" 1164 << New->getName() << "\n"; 1165 llvm_unreachable( 1166 "A weak tracking value handle still pointed to the old value!\n"); 1167 default: 1168 break; 1169 } 1170 #endif 1171 } 1172 1173 // Pin the vtable to this file. 1174 void CallbackVH::anchor() {} 1175