xref: /llvm-project-15.0.7/llvm/lib/IR/Value.cpp (revision 2e97d2aa)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 
38 using namespace llvm;
39 
40 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
41     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
42     cl::desc("Maximum size for the name of non-global values."));
43 
44 //===----------------------------------------------------------------------===//
45 //                                Value Class
46 //===----------------------------------------------------------------------===//
47 static inline Type *checkType(Type *Ty) {
48   assert(Ty && "Value defined with a null type: Error!");
49   return Ty;
50 }
51 
52 Value::Value(Type *ty, unsigned scid)
53     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
54       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
55       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
56   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
57   // FIXME: Why isn't this in the subclass gunk??
58   // Note, we cannot call isa<CallInst> before the CallInst has been
59   // constructed.
60   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
61       SubclassID == Instruction::CallBr)
62     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
63            "invalid CallInst type!");
64   else if (SubclassID != BasicBlockVal &&
65            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
66     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
67            "Cannot create non-first-class values except for constants!");
68   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
69                 "Value too big");
70 }
71 
72 Value::~Value() {
73   // Notify all ValueHandles (if present) that this value is going away.
74   if (HasValueHandle)
75     ValueHandleBase::ValueIsDeleted(this);
76   if (isUsedByMetadata())
77     ValueAsMetadata::handleDeletion(this);
78 
79 #ifndef NDEBUG      // Only in -g mode...
80   // Check to make sure that there are no uses of this value that are still
81   // around when the value is destroyed.  If there are, then we have a dangling
82   // reference and something is wrong.  This code is here to print out where
83   // the value is still being referenced.
84   //
85   if (!use_empty()) {
86     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
87     for (auto *U : users())
88       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
89   }
90 #endif
91   assert(use_empty() && "Uses remain when a value is destroyed!");
92 
93   // If this value is named, destroy the name.  This should not be in a symtab
94   // at this point.
95   destroyValueName();
96 }
97 
98 void Value::deleteValue() {
99   switch (getValueID()) {
100 #define HANDLE_VALUE(Name)                                                     \
101   case Value::Name##Val:                                                       \
102     delete static_cast<Name *>(this);                                          \
103     break;
104 #define HANDLE_MEMORY_VALUE(Name)                                              \
105   case Value::Name##Val:                                                       \
106     static_cast<DerivedUser *>(this)->DeleteValue(                             \
107         static_cast<DerivedUser *>(this));                                     \
108     break;
109 #define HANDLE_INSTRUCTION(Name)  /* nothing */
110 #include "llvm/IR/Value.def"
111 
112 #define HANDLE_INST(N, OPC, CLASS)                                             \
113   case Value::InstructionVal + Instruction::OPC:                               \
114     delete static_cast<CLASS *>(this);                                         \
115     break;
116 #define HANDLE_USER_INST(N, OPC, CLASS)
117 #include "llvm/IR/Instruction.def"
118 
119   default:
120     llvm_unreachable("attempting to delete unknown value kind");
121   }
122 }
123 
124 void Value::destroyValueName() {
125   ValueName *Name = getValueName();
126   if (Name)
127     Name->Destroy();
128   setValueName(nullptr);
129 }
130 
131 bool Value::hasNUses(unsigned N) const {
132   return hasNItems(use_begin(), use_end(), N);
133 }
134 
135 bool Value::hasNUsesOrMore(unsigned N) const {
136   return hasNItemsOrMore(use_begin(), use_end(), N);
137 }
138 
139 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
140   // This can be computed either by scanning the instructions in BB, or by
141   // scanning the use list of this Value. Both lists can be very long, but
142   // usually one is quite short.
143   //
144   // Scan both lists simultaneously until one is exhausted. This limits the
145   // search to the shorter list.
146   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
147   const_user_iterator UI = user_begin(), UE = user_end();
148   for (; BI != BE && UI != UE; ++BI, ++UI) {
149     // Scan basic block: Check if this Value is used by the instruction at BI.
150     if (is_contained(BI->operands(), this))
151       return true;
152     // Scan use list: Check if the use at UI is in BB.
153     const auto *User = dyn_cast<Instruction>(*UI);
154     if (User && User->getParent() == BB)
155       return true;
156   }
157   return false;
158 }
159 
160 unsigned Value::getNumUses() const {
161   return (unsigned)std::distance(use_begin(), use_end());
162 }
163 
164 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
165   ST = nullptr;
166   if (Instruction *I = dyn_cast<Instruction>(V)) {
167     if (BasicBlock *P = I->getParent())
168       if (Function *PP = P->getParent())
169         ST = PP->getValueSymbolTable();
170   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
171     if (Function *P = BB->getParent())
172       ST = P->getValueSymbolTable();
173   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
174     if (Module *P = GV->getParent())
175       ST = &P->getValueSymbolTable();
176   } else if (Argument *A = dyn_cast<Argument>(V)) {
177     if (Function *P = A->getParent())
178       ST = P->getValueSymbolTable();
179   } else {
180     assert(isa<Constant>(V) && "Unknown value type!");
181     return true;  // no name is setable for this.
182   }
183   return false;
184 }
185 
186 ValueName *Value::getValueName() const {
187   if (!HasName) return nullptr;
188 
189   LLVMContext &Ctx = getContext();
190   auto I = Ctx.pImpl->ValueNames.find(this);
191   assert(I != Ctx.pImpl->ValueNames.end() &&
192          "No name entry found!");
193 
194   return I->second;
195 }
196 
197 void Value::setValueName(ValueName *VN) {
198   LLVMContext &Ctx = getContext();
199 
200   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
201          "HasName bit out of sync!");
202 
203   if (!VN) {
204     if (HasName)
205       Ctx.pImpl->ValueNames.erase(this);
206     HasName = false;
207     return;
208   }
209 
210   HasName = true;
211   Ctx.pImpl->ValueNames[this] = VN;
212 }
213 
214 StringRef Value::getName() const {
215   // Make sure the empty string is still a C string. For historical reasons,
216   // some clients want to call .data() on the result and expect it to be null
217   // terminated.
218   if (!hasName())
219     return StringRef("", 0);
220   return getValueName()->getKey();
221 }
222 
223 void Value::setNameImpl(const Twine &NewName) {
224   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
225   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
226     return;
227 
228   // Fast path for common IRBuilder case of setName("") when there is no name.
229   if (NewName.isTriviallyEmpty() && !hasName())
230     return;
231 
232   SmallString<256> NameData;
233   StringRef NameRef = NewName.toStringRef(NameData);
234   assert(NameRef.find_first_of(0) == StringRef::npos &&
235          "Null bytes are not allowed in names");
236 
237   // Name isn't changing?
238   if (getName() == NameRef)
239     return;
240 
241   // Cap the size of non-GlobalValue names.
242   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
243     NameRef =
244         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
245 
246   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
247 
248   // Get the symbol table to update for this object.
249   ValueSymbolTable *ST;
250   if (getSymTab(this, ST))
251     return;  // Cannot set a name on this value (e.g. constant).
252 
253   if (!ST) { // No symbol table to update?  Just do the change.
254     if (NameRef.empty()) {
255       // Free the name for this value.
256       destroyValueName();
257       return;
258     }
259 
260     // NOTE: Could optimize for the case the name is shrinking to not deallocate
261     // then reallocated.
262     destroyValueName();
263 
264     // Create the new name.
265     setValueName(ValueName::Create(NameRef));
266     getValueName()->setValue(this);
267     return;
268   }
269 
270   // NOTE: Could optimize for the case the name is shrinking to not deallocate
271   // then reallocated.
272   if (hasName()) {
273     // Remove old name.
274     ST->removeValueName(getValueName());
275     destroyValueName();
276 
277     if (NameRef.empty())
278       return;
279   }
280 
281   // Name is changing to something new.
282   setValueName(ST->createValueName(NameRef, this));
283 }
284 
285 void Value::setName(const Twine &NewName) {
286   setNameImpl(NewName);
287   if (Function *F = dyn_cast<Function>(this))
288     F->recalculateIntrinsicID();
289 }
290 
291 void Value::takeName(Value *V) {
292   ValueSymbolTable *ST = nullptr;
293   // If this value has a name, drop it.
294   if (hasName()) {
295     // Get the symtab this is in.
296     if (getSymTab(this, ST)) {
297       // We can't set a name on this value, but we need to clear V's name if
298       // it has one.
299       if (V->hasName()) V->setName("");
300       return;  // Cannot set a name on this value (e.g. constant).
301     }
302 
303     // Remove old name.
304     if (ST)
305       ST->removeValueName(getValueName());
306     destroyValueName();
307   }
308 
309   // Now we know that this has no name.
310 
311   // If V has no name either, we're done.
312   if (!V->hasName()) return;
313 
314   // Get this's symtab if we didn't before.
315   if (!ST) {
316     if (getSymTab(this, ST)) {
317       // Clear V's name.
318       V->setName("");
319       return;  // Cannot set a name on this value (e.g. constant).
320     }
321   }
322 
323   // Get V's ST, this should always succed, because V has a name.
324   ValueSymbolTable *VST;
325   bool Failure = getSymTab(V, VST);
326   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
327 
328   // If these values are both in the same symtab, we can do this very fast.
329   // This works even if both values have no symtab yet.
330   if (ST == VST) {
331     // Take the name!
332     setValueName(V->getValueName());
333     V->setValueName(nullptr);
334     getValueName()->setValue(this);
335     return;
336   }
337 
338   // Otherwise, things are slightly more complex.  Remove V's name from VST and
339   // then reinsert it into ST.
340 
341   if (VST)
342     VST->removeValueName(V->getValueName());
343   setValueName(V->getValueName());
344   V->setValueName(nullptr);
345   getValueName()->setValue(this);
346 
347   if (ST)
348     ST->reinsertValue(this);
349 }
350 
351 void Value::assertModuleIsMaterializedImpl() const {
352 #ifndef NDEBUG
353   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
354   if (!GV)
355     return;
356   const Module *M = GV->getParent();
357   if (!M)
358     return;
359   assert(M->isMaterialized());
360 #endif
361 }
362 
363 #ifndef NDEBUG
364 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
365                      Constant *C) {
366   if (!Cache.insert(Expr).second)
367     return false;
368 
369   for (auto &O : Expr->operands()) {
370     if (O == C)
371       return true;
372     auto *CE = dyn_cast<ConstantExpr>(O);
373     if (!CE)
374       continue;
375     if (contains(Cache, CE, C))
376       return true;
377   }
378   return false;
379 }
380 
381 static bool contains(Value *Expr, Value *V) {
382   if (Expr == V)
383     return true;
384 
385   auto *C = dyn_cast<Constant>(V);
386   if (!C)
387     return false;
388 
389   auto *CE = dyn_cast<ConstantExpr>(Expr);
390   if (!CE)
391     return false;
392 
393   SmallPtrSet<ConstantExpr *, 4> Cache;
394   return contains(Cache, CE, C);
395 }
396 #endif // NDEBUG
397 
398 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
399   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
400   assert(!contains(New, this) &&
401          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
402   assert(New->getType() == getType() &&
403          "replaceAllUses of value with new value of different type!");
404 
405   // Notify all ValueHandles (if present) that this value is going away.
406   if (HasValueHandle)
407     ValueHandleBase::ValueIsRAUWd(this, New);
408   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
409     ValueAsMetadata::handleRAUW(this, New);
410 
411   while (!materialized_use_empty()) {
412     Use &U = *UseList;
413     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
414     // constant because they are uniqued.
415     if (auto *C = dyn_cast<Constant>(U.getUser())) {
416       if (!isa<GlobalValue>(C)) {
417         C->handleOperandChange(this, New);
418         continue;
419       }
420     }
421 
422     U.set(New);
423   }
424 
425   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
426     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
427 }
428 
429 void Value::replaceAllUsesWith(Value *New) {
430   doRAUW(New, ReplaceMetadataUses::Yes);
431 }
432 
433 void Value::replaceNonMetadataUsesWith(Value *New) {
434   doRAUW(New, ReplaceMetadataUses::No);
435 }
436 
437 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
438 // This routine leaves uses within BB.
439 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
440   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
441   assert(!contains(New, this) &&
442          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
443   assert(New->getType() == getType() &&
444          "replaceUses of value with new value of different type!");
445   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
446 
447   use_iterator UI = use_begin(), E = use_end();
448   for (; UI != E;) {
449     Use &U = *UI;
450     ++UI;
451     auto *Usr = dyn_cast<Instruction>(U.getUser());
452     if (Usr && Usr->getParent() == BB)
453       continue;
454     U.set(New);
455   }
456 }
457 
458 namespace {
459 // Various metrics for how much to strip off of pointers.
460 enum PointerStripKind {
461   PSK_ZeroIndices,
462   PSK_ZeroIndicesAndAliases,
463   PSK_ZeroIndicesAndAliasesSameRepresentation,
464   PSK_ZeroIndicesAndAliasesAndInvariantGroups,
465   PSK_InBoundsConstantIndices,
466   PSK_InBounds
467 };
468 
469 template <PointerStripKind StripKind>
470 static const Value *stripPointerCastsAndOffsets(const Value *V) {
471   if (!V->getType()->isPointerTy())
472     return V;
473 
474   // Even though we don't look through PHI nodes, we could be called on an
475   // instruction in an unreachable block, which may be on a cycle.
476   SmallPtrSet<const Value *, 4> Visited;
477 
478   Visited.insert(V);
479   do {
480     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
481       switch (StripKind) {
482       case PSK_ZeroIndicesAndAliases:
483       case PSK_ZeroIndicesAndAliasesSameRepresentation:
484       case PSK_ZeroIndicesAndAliasesAndInvariantGroups:
485       case PSK_ZeroIndices:
486         if (!GEP->hasAllZeroIndices())
487           return V;
488         break;
489       case PSK_InBoundsConstantIndices:
490         if (!GEP->hasAllConstantIndices())
491           return V;
492         LLVM_FALLTHROUGH;
493       case PSK_InBounds:
494         if (!GEP->isInBounds())
495           return V;
496         break;
497       }
498       V = GEP->getPointerOperand();
499     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
500       V = cast<Operator>(V)->getOperand(0);
501     } else if (StripKind != PSK_ZeroIndicesAndAliasesSameRepresentation &&
502                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
503       // TODO: If we know an address space cast will not change the
504       //       representation we could look through it here as well.
505       V = cast<Operator>(V)->getOperand(0);
506     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
507       if (StripKind == PSK_ZeroIndices || GA->isInterposable())
508         return V;
509       V = GA->getAliasee();
510     } else {
511       if (const auto *Call = dyn_cast<CallBase>(V)) {
512         if (const Value *RV = Call->getReturnedArgOperand()) {
513           V = RV;
514           continue;
515         }
516         // The result of launder.invariant.group must alias it's argument,
517         // but it can't be marked with returned attribute, that's why it needs
518         // special case.
519         if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups &&
520             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
521              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
522           V = Call->getArgOperand(0);
523           continue;
524         }
525       }
526       return V;
527     }
528     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
529   } while (Visited.insert(V).second);
530 
531   return V;
532 }
533 } // end anonymous namespace
534 
535 const Value *Value::stripPointerCasts() const {
536   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
537 }
538 
539 const Value *Value::stripPointerCastsSameRepresentation() const {
540   return stripPointerCastsAndOffsets<
541       PSK_ZeroIndicesAndAliasesSameRepresentation>(this);
542 }
543 
544 const Value *Value::stripPointerCastsNoFollowAliases() const {
545   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
546 }
547 
548 const Value *Value::stripInBoundsConstantOffsets() const {
549   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
550 }
551 
552 const Value *Value::stripPointerCastsAndInvariantGroups() const {
553   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>(
554       this);
555 }
556 
557 const Value *
558 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
559                                                  APInt &Offset) const {
560   if (!getType()->isPointerTy())
561     return this;
562 
563   assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>(
564                                      getType())->getAddressSpace()) &&
565          "The offset bit width does not match the DL specification.");
566 
567   // Even though we don't look through PHI nodes, we could be called on an
568   // instruction in an unreachable block, which may be on a cycle.
569   SmallPtrSet<const Value *, 4> Visited;
570   Visited.insert(this);
571   const Value *V = this;
572   do {
573     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
574       if (!GEP->isInBounds())
575         return V;
576       APInt GEPOffset(Offset);
577       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
578         return V;
579       Offset = GEPOffset;
580       V = GEP->getPointerOperand();
581     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
582       V = cast<Operator>(V)->getOperand(0);
583     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
584       V = GA->getAliasee();
585     } else {
586       if (const auto *Call = dyn_cast<CallBase>(V))
587         if (const Value *RV = Call->getReturnedArgOperand()) {
588           V = RV;
589           continue;
590         }
591 
592       return V;
593     }
594     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
595   } while (Visited.insert(V).second);
596 
597   return V;
598 }
599 
600 const Value *Value::stripInBoundsOffsets() const {
601   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
602 }
603 
604 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
605                                                bool &CanBeNull) const {
606   assert(getType()->isPointerTy() && "must be pointer");
607 
608   uint64_t DerefBytes = 0;
609   CanBeNull = false;
610   if (const Argument *A = dyn_cast<Argument>(this)) {
611     DerefBytes = A->getDereferenceableBytes();
612     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
613       Type *PT = cast<PointerType>(A->getType())->getElementType();
614       if (PT->isSized())
615         DerefBytes = DL.getTypeStoreSize(PT);
616     }
617     if (DerefBytes == 0) {
618       DerefBytes = A->getDereferenceableOrNullBytes();
619       CanBeNull = true;
620     }
621   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
622     DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
623     if (DerefBytes == 0) {
624       DerefBytes =
625           Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
626       CanBeNull = true;
627     }
628   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
629     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
630       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
631       DerefBytes = CI->getLimitedValue();
632     }
633     if (DerefBytes == 0) {
634       if (MDNode *MD =
635               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
636         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
637         DerefBytes = CI->getLimitedValue();
638       }
639       CanBeNull = true;
640     }
641   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
642     if (!AI->isArrayAllocation()) {
643       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
644       CanBeNull = false;
645     }
646   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
647     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
648       // TODO: Don't outright reject hasExternalWeakLinkage but set the
649       // CanBeNull flag.
650       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
651       CanBeNull = false;
652     }
653   }
654   return DerefBytes;
655 }
656 
657 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
658   assert(getType()->isPointerTy() && "must be pointer");
659 
660   unsigned Align = 0;
661   if (auto *GO = dyn_cast<GlobalObject>(this)) {
662     if (isa<Function>(GO)) {
663       switch (DL.getFunctionPtrAlignType()) {
664       case DataLayout::FunctionPtrAlignType::Independent:
665         return DL.getFunctionPtrAlign();
666       case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
667         return std::max(DL.getFunctionPtrAlign(), GO->getAlignment());
668       }
669     }
670     Align = GO->getAlignment();
671     if (Align == 0) {
672       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
673         Type *ObjectType = GVar->getValueType();
674         if (ObjectType->isSized()) {
675           // If the object is defined in the current Module, we'll be giving
676           // it the preferred alignment. Otherwise, we have to assume that it
677           // may only have the minimum ABI alignment.
678           if (GVar->isStrongDefinitionForLinker())
679             Align = DL.getPreferredAlignment(GVar);
680           else
681             Align = DL.getABITypeAlignment(ObjectType);
682         }
683       }
684     }
685   } else if (const Argument *A = dyn_cast<Argument>(this)) {
686     Align = A->getParamAlignment();
687 
688     if (!Align && A->hasStructRetAttr()) {
689       // An sret parameter has at least the ABI alignment of the return type.
690       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
691       if (EltTy->isSized())
692         Align = DL.getABITypeAlignment(EltTy);
693     }
694   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
695     Align = AI->getAlignment();
696     if (Align == 0) {
697       Type *AllocatedType = AI->getAllocatedType();
698       if (AllocatedType->isSized())
699         Align = DL.getPrefTypeAlignment(AllocatedType);
700     }
701   } else if (const auto *Call = dyn_cast<CallBase>(this))
702     Align = Call->getAttributes().getRetAlignment();
703   else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
704     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
705       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
706       Align = CI->getLimitedValue();
707     }
708 
709   return Align;
710 }
711 
712 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
713                                      const BasicBlock *PredBB) const {
714   auto *PN = dyn_cast<PHINode>(this);
715   if (PN && PN->getParent() == CurBB)
716     return PN->getIncomingValueForBlock(PredBB);
717   return this;
718 }
719 
720 LLVMContext &Value::getContext() const { return VTy->getContext(); }
721 
722 void Value::reverseUseList() {
723   if (!UseList || !UseList->Next)
724     // No need to reverse 0 or 1 uses.
725     return;
726 
727   Use *Head = UseList;
728   Use *Current = UseList->Next;
729   Head->Next = nullptr;
730   while (Current) {
731     Use *Next = Current->Next;
732     Current->Next = Head;
733     Head->setPrev(&Current->Next);
734     Head = Current;
735     Current = Next;
736   }
737   UseList = Head;
738   Head->setPrev(&UseList);
739 }
740 
741 bool Value::isSwiftError() const {
742   auto *Arg = dyn_cast<Argument>(this);
743   if (Arg)
744     return Arg->hasSwiftErrorAttr();
745   auto *Alloca = dyn_cast<AllocaInst>(this);
746   if (!Alloca)
747     return false;
748   return Alloca->isSwiftError();
749 }
750 
751 //===----------------------------------------------------------------------===//
752 //                             ValueHandleBase Class
753 //===----------------------------------------------------------------------===//
754 
755 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
756   assert(List && "Handle list is null?");
757 
758   // Splice ourselves into the list.
759   Next = *List;
760   *List = this;
761   setPrevPtr(List);
762   if (Next) {
763     Next->setPrevPtr(&Next);
764     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
765   }
766 }
767 
768 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
769   assert(List && "Must insert after existing node");
770 
771   Next = List->Next;
772   setPrevPtr(&List->Next);
773   List->Next = this;
774   if (Next)
775     Next->setPrevPtr(&Next);
776 }
777 
778 void ValueHandleBase::AddToUseList() {
779   assert(getValPtr() && "Null pointer doesn't have a use list!");
780 
781   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
782 
783   if (getValPtr()->HasValueHandle) {
784     // If this value already has a ValueHandle, then it must be in the
785     // ValueHandles map already.
786     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
787     assert(Entry && "Value doesn't have any handles?");
788     AddToExistingUseList(&Entry);
789     return;
790   }
791 
792   // Ok, it doesn't have any handles yet, so we must insert it into the
793   // DenseMap.  However, doing this insertion could cause the DenseMap to
794   // reallocate itself, which would invalidate all of the PrevP pointers that
795   // point into the old table.  Handle this by checking for reallocation and
796   // updating the stale pointers only if needed.
797   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
798   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
799 
800   ValueHandleBase *&Entry = Handles[getValPtr()];
801   assert(!Entry && "Value really did already have handles?");
802   AddToExistingUseList(&Entry);
803   getValPtr()->HasValueHandle = true;
804 
805   // If reallocation didn't happen or if this was the first insertion, don't
806   // walk the table.
807   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
808       Handles.size() == 1) {
809     return;
810   }
811 
812   // Okay, reallocation did happen.  Fix the Prev Pointers.
813   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
814        E = Handles.end(); I != E; ++I) {
815     assert(I->second && I->first == I->second->getValPtr() &&
816            "List invariant broken!");
817     I->second->setPrevPtr(&I->second);
818   }
819 }
820 
821 void ValueHandleBase::RemoveFromUseList() {
822   assert(getValPtr() && getValPtr()->HasValueHandle &&
823          "Pointer doesn't have a use list!");
824 
825   // Unlink this from its use list.
826   ValueHandleBase **PrevPtr = getPrevPtr();
827   assert(*PrevPtr == this && "List invariant broken");
828 
829   *PrevPtr = Next;
830   if (Next) {
831     assert(Next->getPrevPtr() == &Next && "List invariant broken");
832     Next->setPrevPtr(PrevPtr);
833     return;
834   }
835 
836   // If the Next pointer was null, then it is possible that this was the last
837   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
838   // map.
839   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
840   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
841   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
842     Handles.erase(getValPtr());
843     getValPtr()->HasValueHandle = false;
844   }
845 }
846 
847 void ValueHandleBase::ValueIsDeleted(Value *V) {
848   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
849 
850   // Get the linked list base, which is guaranteed to exist since the
851   // HasValueHandle flag is set.
852   LLVMContextImpl *pImpl = V->getContext().pImpl;
853   ValueHandleBase *Entry = pImpl->ValueHandles[V];
854   assert(Entry && "Value bit set but no entries exist");
855 
856   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
857   // and remove themselves from the list without breaking our iteration.  This
858   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
859   // Note that we deliberately do not the support the case when dropping a value
860   // handle results in a new value handle being permanently added to the list
861   // (as might occur in theory for CallbackVH's): the new value handle will not
862   // be processed and the checking code will mete out righteous punishment if
863   // the handle is still present once we have finished processing all the other
864   // value handles (it is fine to momentarily add then remove a value handle).
865   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
866     Iterator.RemoveFromUseList();
867     Iterator.AddToExistingUseListAfter(Entry);
868     assert(Entry->Next == &Iterator && "Loop invariant broken.");
869 
870     switch (Entry->getKind()) {
871     case Assert:
872       break;
873     case Weak:
874     case WeakTracking:
875       // WeakTracking and Weak just go to null, which unlinks them
876       // from the list.
877       Entry->operator=(nullptr);
878       break;
879     case Callback:
880       // Forward to the subclass's implementation.
881       static_cast<CallbackVH*>(Entry)->deleted();
882       break;
883     }
884   }
885 
886   // All callbacks, weak references, and assertingVHs should be dropped by now.
887   if (V->HasValueHandle) {
888 #ifndef NDEBUG      // Only in +Asserts mode...
889     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
890            << "\n";
891     if (pImpl->ValueHandles[V]->getKind() == Assert)
892       llvm_unreachable("An asserting value handle still pointed to this"
893                        " value!");
894 
895 #endif
896     llvm_unreachable("All references to V were not removed?");
897   }
898 }
899 
900 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
901   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
902   assert(Old != New && "Changing value into itself!");
903   assert(Old->getType() == New->getType() &&
904          "replaceAllUses of value with new value of different type!");
905 
906   // Get the linked list base, which is guaranteed to exist since the
907   // HasValueHandle flag is set.
908   LLVMContextImpl *pImpl = Old->getContext().pImpl;
909   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
910 
911   assert(Entry && "Value bit set but no entries exist");
912 
913   // We use a local ValueHandleBase as an iterator so that
914   // ValueHandles can add and remove themselves from the list without
915   // breaking our iteration.  This is not really an AssertingVH; we
916   // just have to give ValueHandleBase some kind.
917   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
918     Iterator.RemoveFromUseList();
919     Iterator.AddToExistingUseListAfter(Entry);
920     assert(Entry->Next == &Iterator && "Loop invariant broken.");
921 
922     switch (Entry->getKind()) {
923     case Assert:
924     case Weak:
925       // Asserting and Weak handles do not follow RAUW implicitly.
926       break;
927     case WeakTracking:
928       // Weak goes to the new value, which will unlink it from Old's list.
929       Entry->operator=(New);
930       break;
931     case Callback:
932       // Forward to the subclass's implementation.
933       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
934       break;
935     }
936   }
937 
938 #ifndef NDEBUG
939   // If any new weak value handles were added while processing the
940   // list, then complain about it now.
941   if (Old->HasValueHandle)
942     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
943       switch (Entry->getKind()) {
944       case WeakTracking:
945         dbgs() << "After RAUW from " << *Old->getType() << " %"
946                << Old->getName() << " to " << *New->getType() << " %"
947                << New->getName() << "\n";
948         llvm_unreachable(
949             "A weak tracking value handle still pointed to the old value!\n");
950       default:
951         break;
952       }
953 #endif
954 }
955 
956 // Pin the vtable to this file.
957 void CallbackVH::anchor() {}
958