1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80 "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81 cl::desc("Maximum size for the name of non-global values."));
82
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86
Argument(Type * Ty,const Twine & Name,Function * Par,unsigned ArgNo)87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89 setName(Name);
90 }
91
setParent(Function * parent)92 void Argument::setParent(Function *parent) {
93 Parent = parent;
94 }
95
hasNonNullAttr(bool AllowUndefOrPoison) const96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97 if (!getType()->isPointerTy()) return false;
98 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99 (AllowUndefOrPoison ||
100 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101 return true;
102 else if (getDereferenceableBytes() > 0 &&
103 !NullPointerIsDefined(getParent(),
104 getType()->getPointerAddressSpace()))
105 return true;
106 return false;
107 }
108
hasByValAttr() const109 bool Argument::hasByValAttr() const {
110 if (!getType()->isPointerTy()) return false;
111 return hasAttribute(Attribute::ByVal);
112 }
113
hasByRefAttr() const114 bool Argument::hasByRefAttr() const {
115 if (!getType()->isPointerTy())
116 return false;
117 return hasAttribute(Attribute::ByRef);
118 }
119
hasSwiftSelfAttr() const120 bool Argument::hasSwiftSelfAttr() const {
121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123
hasSwiftErrorAttr() const124 bool Argument::hasSwiftErrorAttr() const {
125 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127
hasInAllocaAttr() const128 bool Argument::hasInAllocaAttr() const {
129 if (!getType()->isPointerTy()) return false;
130 return hasAttribute(Attribute::InAlloca);
131 }
132
hasPreallocatedAttr() const133 bool Argument::hasPreallocatedAttr() const {
134 if (!getType()->isPointerTy())
135 return false;
136 return hasAttribute(Attribute::Preallocated);
137 }
138
hasPassPointeeByValueCopyAttr() const139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140 if (!getType()->isPointerTy()) return false;
141 AttributeList Attrs = getParent()->getAttributes();
142 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146
hasPointeeInMemoryValueAttr() const147 bool Argument::hasPointeeInMemoryValueAttr() const {
148 if (!getType()->isPointerTy())
149 return false;
150 AttributeList Attrs = getParent()->getAttributes();
151 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
getMemoryParamAllocType(AttributeSet ParamAttrs)160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161 // FIXME: All the type carrying attributes are mutually exclusive, so there
162 // should be a single query to get the stored type that handles any of them.
163 if (Type *ByValTy = ParamAttrs.getByValType())
164 return ByValTy;
165 if (Type *ByRefTy = ParamAttrs.getByRefType())
166 return ByRefTy;
167 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168 return PreAllocTy;
169 if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170 return InAllocaTy;
171 if (Type *SRetTy = ParamAttrs.getStructRetType())
172 return SRetTy;
173
174 return nullptr;
175 }
176
getPassPointeeByValueCopySize(const DataLayout & DL) const177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178 AttributeSet ParamAttrs =
179 getParent()->getAttributes().getParamAttrs(getArgNo());
180 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181 return DL.getTypeAllocSize(MemTy);
182 return 0;
183 }
184
getPointeeInMemoryValueType() const185 Type *Argument::getPointeeInMemoryValueType() const {
186 AttributeSet ParamAttrs =
187 getParent()->getAttributes().getParamAttrs(getArgNo());
188 return getMemoryParamAllocType(ParamAttrs);
189 }
190
getParamAlignment() const191 uint64_t Argument::getParamAlignment() const {
192 assert(getType()->isPointerTy() && "Only pointers have alignments");
193 return getParent()->getParamAlignment(getArgNo());
194 }
195
getParamAlign() const196 MaybeAlign Argument::getParamAlign() const {
197 assert(getType()->isPointerTy() && "Only pointers have alignments");
198 return getParent()->getParamAlign(getArgNo());
199 }
200
getParamStackAlign() const201 MaybeAlign Argument::getParamStackAlign() const {
202 return getParent()->getParamStackAlign(getArgNo());
203 }
204
getParamByValType() const205 Type *Argument::getParamByValType() const {
206 assert(getType()->isPointerTy() && "Only pointers have byval types");
207 return getParent()->getParamByValType(getArgNo());
208 }
209
getParamStructRetType() const210 Type *Argument::getParamStructRetType() const {
211 assert(getType()->isPointerTy() && "Only pointers have sret types");
212 return getParent()->getParamStructRetType(getArgNo());
213 }
214
getParamByRefType() const215 Type *Argument::getParamByRefType() const {
216 assert(getType()->isPointerTy() && "Only pointers have byref types");
217 return getParent()->getParamByRefType(getArgNo());
218 }
219
getParamInAllocaType() const220 Type *Argument::getParamInAllocaType() const {
221 assert(getType()->isPointerTy() && "Only pointers have inalloca types");
222 return getParent()->getParamInAllocaType(getArgNo());
223 }
224
getDereferenceableBytes() const225 uint64_t Argument::getDereferenceableBytes() const {
226 assert(getType()->isPointerTy() &&
227 "Only pointers have dereferenceable bytes");
228 return getParent()->getParamDereferenceableBytes(getArgNo());
229 }
230
getDereferenceableOrNullBytes() const231 uint64_t Argument::getDereferenceableOrNullBytes() const {
232 assert(getType()->isPointerTy() &&
233 "Only pointers have dereferenceable bytes");
234 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
235 }
236
hasNestAttr() const237 bool Argument::hasNestAttr() const {
238 if (!getType()->isPointerTy()) return false;
239 return hasAttribute(Attribute::Nest);
240 }
241
hasNoAliasAttr() const242 bool Argument::hasNoAliasAttr() const {
243 if (!getType()->isPointerTy()) return false;
244 return hasAttribute(Attribute::NoAlias);
245 }
246
hasNoCaptureAttr() const247 bool Argument::hasNoCaptureAttr() const {
248 if (!getType()->isPointerTy()) return false;
249 return hasAttribute(Attribute::NoCapture);
250 }
251
hasNoFreeAttr() const252 bool Argument::hasNoFreeAttr() const {
253 if (!getType()->isPointerTy()) return false;
254 return hasAttribute(Attribute::NoFree);
255 }
256
hasStructRetAttr() const257 bool Argument::hasStructRetAttr() const {
258 if (!getType()->isPointerTy()) return false;
259 return hasAttribute(Attribute::StructRet);
260 }
261
hasInRegAttr() const262 bool Argument::hasInRegAttr() const {
263 return hasAttribute(Attribute::InReg);
264 }
265
hasReturnedAttr() const266 bool Argument::hasReturnedAttr() const {
267 return hasAttribute(Attribute::Returned);
268 }
269
hasZExtAttr() const270 bool Argument::hasZExtAttr() const {
271 return hasAttribute(Attribute::ZExt);
272 }
273
hasSExtAttr() const274 bool Argument::hasSExtAttr() const {
275 return hasAttribute(Attribute::SExt);
276 }
277
onlyReadsMemory() const278 bool Argument::onlyReadsMemory() const {
279 AttributeList Attrs = getParent()->getAttributes();
280 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
281 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
282 }
283
addAttrs(AttrBuilder & B)284 void Argument::addAttrs(AttrBuilder &B) {
285 AttributeList AL = getParent()->getAttributes();
286 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
287 getParent()->setAttributes(AL);
288 }
289
addAttr(Attribute::AttrKind Kind)290 void Argument::addAttr(Attribute::AttrKind Kind) {
291 getParent()->addParamAttr(getArgNo(), Kind);
292 }
293
addAttr(Attribute Attr)294 void Argument::addAttr(Attribute Attr) {
295 getParent()->addParamAttr(getArgNo(), Attr);
296 }
297
removeAttr(Attribute::AttrKind Kind)298 void Argument::removeAttr(Attribute::AttrKind Kind) {
299 getParent()->removeParamAttr(getArgNo(), Kind);
300 }
301
removeAttrs(const AttributeMask & AM)302 void Argument::removeAttrs(const AttributeMask &AM) {
303 AttributeList AL = getParent()->getAttributes();
304 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
305 getParent()->setAttributes(AL);
306 }
307
hasAttribute(Attribute::AttrKind Kind) const308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
309 return getParent()->hasParamAttribute(getArgNo(), Kind);
310 }
311
getAttribute(Attribute::AttrKind Kind) const312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
313 return getParent()->getParamAttribute(getArgNo(), Kind);
314 }
315
316 //===----------------------------------------------------------------------===//
317 // Helper Methods in Function
318 //===----------------------------------------------------------------------===//
319
getContext() const320 LLVMContext &Function::getContext() const {
321 return getType()->getContext();
322 }
323
getInstructionCount() const324 unsigned Function::getInstructionCount() const {
325 unsigned NumInstrs = 0;
326 for (const BasicBlock &BB : BasicBlocks)
327 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
328 BB.instructionsWithoutDebug().end());
329 return NumInstrs;
330 }
331
Create(FunctionType * Ty,LinkageTypes Linkage,const Twine & N,Module & M)332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
333 const Twine &N, Module &M) {
334 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
335 }
336
createWithDefaultAttr(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & N,Module * M)337 Function *Function::createWithDefaultAttr(FunctionType *Ty,
338 LinkageTypes Linkage,
339 unsigned AddrSpace, const Twine &N,
340 Module *M) {
341 auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
342 AttrBuilder B(F->getContext());
343 UWTableKind UWTable = M->getUwtable();
344 if (UWTable != UWTableKind::None)
345 B.addUWTableAttr(UWTable);
346 switch (M->getFramePointer()) {
347 case FramePointerKind::None:
348 // 0 ("none") is the default.
349 break;
350 case FramePointerKind::NonLeaf:
351 B.addAttribute("frame-pointer", "non-leaf");
352 break;
353 case FramePointerKind::All:
354 B.addAttribute("frame-pointer", "all");
355 break;
356 }
357 if (M->getModuleFlag("function_return_thunk_extern"))
358 B.addAttribute(Attribute::FnRetThunkExtern);
359 F->addFnAttrs(B);
360 return F;
361 }
362
removeFromParent()363 void Function::removeFromParent() {
364 getParent()->getFunctionList().remove(getIterator());
365 }
366
eraseFromParent()367 void Function::eraseFromParent() {
368 getParent()->getFunctionList().erase(getIterator());
369 }
370
371 //===----------------------------------------------------------------------===//
372 // Function Implementation
373 //===----------------------------------------------------------------------===//
374
computeAddrSpace(unsigned AddrSpace,Module * M)375 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
376 // If AS == -1 and we are passed a valid module pointer we place the function
377 // in the program address space. Otherwise we default to AS0.
378 if (AddrSpace == static_cast<unsigned>(-1))
379 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
380 return AddrSpace;
381 }
382
Function(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & name,Module * ParentModule)383 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
384 const Twine &name, Module *ParentModule)
385 : GlobalObject(Ty, Value::FunctionVal,
386 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
387 computeAddrSpace(AddrSpace, ParentModule)),
388 NumArgs(Ty->getNumParams()) {
389 assert(FunctionType::isValidReturnType(getReturnType()) &&
390 "invalid return type");
391 setGlobalObjectSubClassData(0);
392
393 // We only need a symbol table for a function if the context keeps value names
394 if (!getContext().shouldDiscardValueNames())
395 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
396
397 // If the function has arguments, mark them as lazily built.
398 if (Ty->getNumParams())
399 setValueSubclassData(1); // Set the "has lazy arguments" bit.
400
401 if (ParentModule)
402 ParentModule->getFunctionList().push_back(this);
403
404 HasLLVMReservedName = getName().startswith("llvm.");
405 // Ensure intrinsics have the right parameter attributes.
406 // Note, the IntID field will have been set in Value::setName if this function
407 // name is a valid intrinsic ID.
408 if (IntID)
409 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
410 }
411
~Function()412 Function::~Function() {
413 dropAllReferences(); // After this it is safe to delete instructions.
414
415 // Delete all of the method arguments and unlink from symbol table...
416 if (Arguments)
417 clearArguments();
418
419 // Remove the function from the on-the-side GC table.
420 clearGC();
421 }
422
BuildLazyArguments() const423 void Function::BuildLazyArguments() const {
424 // Create the arguments vector, all arguments start out unnamed.
425 auto *FT = getFunctionType();
426 if (NumArgs > 0) {
427 Arguments = std::allocator<Argument>().allocate(NumArgs);
428 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
429 Type *ArgTy = FT->getParamType(i);
430 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
431 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
432 }
433 }
434
435 // Clear the lazy arguments bit.
436 unsigned SDC = getSubclassDataFromValue();
437 SDC &= ~(1 << 0);
438 const_cast<Function*>(this)->setValueSubclassData(SDC);
439 assert(!hasLazyArguments());
440 }
441
makeArgArray(Argument * Args,size_t Count)442 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
443 return MutableArrayRef<Argument>(Args, Count);
444 }
445
isConstrainedFPIntrinsic() const446 bool Function::isConstrainedFPIntrinsic() const {
447 switch (getIntrinsicID()) {
448 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
449 case Intrinsic::INTRINSIC:
450 #include "llvm/IR/ConstrainedOps.def"
451 return true;
452 #undef INSTRUCTION
453 default:
454 return false;
455 }
456 }
457
clearArguments()458 void Function::clearArguments() {
459 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
460 A.setName("");
461 A.~Argument();
462 }
463 std::allocator<Argument>().deallocate(Arguments, NumArgs);
464 Arguments = nullptr;
465 }
466
stealArgumentListFrom(Function & Src)467 void Function::stealArgumentListFrom(Function &Src) {
468 assert(isDeclaration() && "Expected no references to current arguments");
469
470 // Drop the current arguments, if any, and set the lazy argument bit.
471 if (!hasLazyArguments()) {
472 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
473 [](const Argument &A) { return A.use_empty(); }) &&
474 "Expected arguments to be unused in declaration");
475 clearArguments();
476 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
477 }
478
479 // Nothing to steal if Src has lazy arguments.
480 if (Src.hasLazyArguments())
481 return;
482
483 // Steal arguments from Src, and fix the lazy argument bits.
484 assert(arg_size() == Src.arg_size());
485 Arguments = Src.Arguments;
486 Src.Arguments = nullptr;
487 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
488 // FIXME: This does the work of transferNodesFromList inefficiently.
489 SmallString<128> Name;
490 if (A.hasName())
491 Name = A.getName();
492 if (!Name.empty())
493 A.setName("");
494 A.setParent(this);
495 if (!Name.empty())
496 A.setName(Name);
497 }
498
499 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
500 assert(!hasLazyArguments());
501 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
502 }
503
504 // dropAllReferences() - This function causes all the subinstructions to "let
505 // go" of all references that they are maintaining. This allows one to
506 // 'delete' a whole class at a time, even though there may be circular
507 // references... first all references are dropped, and all use counts go to
508 // zero. Then everything is deleted for real. Note that no operations are
509 // valid on an object that has "dropped all references", except operator
510 // delete.
511 //
dropAllReferences()512 void Function::dropAllReferences() {
513 setIsMaterializable(false);
514
515 for (BasicBlock &BB : *this)
516 BB.dropAllReferences();
517
518 // Delete all basic blocks. They are now unused, except possibly by
519 // blockaddresses, but BasicBlock's destructor takes care of those.
520 while (!BasicBlocks.empty())
521 BasicBlocks.begin()->eraseFromParent();
522
523 // Drop uses of any optional data (real or placeholder).
524 if (getNumOperands()) {
525 User::dropAllReferences();
526 setNumHungOffUseOperands(0);
527 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
528 }
529
530 // Metadata is stored in a side-table.
531 clearMetadata();
532 }
533
addAttributeAtIndex(unsigned i,Attribute Attr)534 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
535 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
536 }
537
addFnAttr(Attribute::AttrKind Kind)538 void Function::addFnAttr(Attribute::AttrKind Kind) {
539 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
540 }
541
addFnAttr(StringRef Kind,StringRef Val)542 void Function::addFnAttr(StringRef Kind, StringRef Val) {
543 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
544 }
545
addFnAttr(Attribute Attr)546 void Function::addFnAttr(Attribute Attr) {
547 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
548 }
549
addFnAttrs(const AttrBuilder & Attrs)550 void Function::addFnAttrs(const AttrBuilder &Attrs) {
551 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
552 }
553
addRetAttr(Attribute::AttrKind Kind)554 void Function::addRetAttr(Attribute::AttrKind Kind) {
555 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
556 }
557
addRetAttr(Attribute Attr)558 void Function::addRetAttr(Attribute Attr) {
559 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
560 }
561
addRetAttrs(const AttrBuilder & Attrs)562 void Function::addRetAttrs(const AttrBuilder &Attrs) {
563 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
564 }
565
addParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)566 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
567 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
568 }
569
addParamAttr(unsigned ArgNo,Attribute Attr)570 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
571 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
572 }
573
addParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)574 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
575 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
576 }
577
removeAttributeAtIndex(unsigned i,Attribute::AttrKind Kind)578 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
579 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
580 }
581
removeAttributeAtIndex(unsigned i,StringRef Kind)582 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
583 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
584 }
585
removeFnAttr(Attribute::AttrKind Kind)586 void Function::removeFnAttr(Attribute::AttrKind Kind) {
587 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
588 }
589
removeFnAttr(StringRef Kind)590 void Function::removeFnAttr(StringRef Kind) {
591 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
592 }
593
removeFnAttrs(const AttributeMask & AM)594 void Function::removeFnAttrs(const AttributeMask &AM) {
595 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
596 }
597
removeRetAttr(Attribute::AttrKind Kind)598 void Function::removeRetAttr(Attribute::AttrKind Kind) {
599 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
600 }
601
removeRetAttr(StringRef Kind)602 void Function::removeRetAttr(StringRef Kind) {
603 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
604 }
605
removeRetAttrs(const AttributeMask & Attrs)606 void Function::removeRetAttrs(const AttributeMask &Attrs) {
607 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
608 }
609
removeParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)610 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
611 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
612 }
613
removeParamAttr(unsigned ArgNo,StringRef Kind)614 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
615 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
616 }
617
removeParamAttrs(unsigned ArgNo,const AttributeMask & Attrs)618 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
619 AttributeSets =
620 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
621 }
622
addDereferenceableParamAttr(unsigned ArgNo,uint64_t Bytes)623 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
624 AttributeSets =
625 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
626 }
627
hasFnAttribute(Attribute::AttrKind Kind) const628 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
629 return AttributeSets.hasFnAttr(Kind);
630 }
631
hasFnAttribute(StringRef Kind) const632 bool Function::hasFnAttribute(StringRef Kind) const {
633 return AttributeSets.hasFnAttr(Kind);
634 }
635
hasRetAttribute(Attribute::AttrKind Kind) const636 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
637 return AttributeSets.hasRetAttr(Kind);
638 }
639
hasParamAttribute(unsigned ArgNo,Attribute::AttrKind Kind) const640 bool Function::hasParamAttribute(unsigned ArgNo,
641 Attribute::AttrKind Kind) const {
642 return AttributeSets.hasParamAttr(ArgNo, Kind);
643 }
644
getAttributeAtIndex(unsigned i,Attribute::AttrKind Kind) const645 Attribute Function::getAttributeAtIndex(unsigned i,
646 Attribute::AttrKind Kind) const {
647 return AttributeSets.getAttributeAtIndex(i, Kind);
648 }
649
getAttributeAtIndex(unsigned i,StringRef Kind) const650 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
651 return AttributeSets.getAttributeAtIndex(i, Kind);
652 }
653
getFnAttribute(Attribute::AttrKind Kind) const654 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
655 return AttributeSets.getFnAttr(Kind);
656 }
657
getFnAttribute(StringRef Kind) const658 Attribute Function::getFnAttribute(StringRef Kind) const {
659 return AttributeSets.getFnAttr(Kind);
660 }
661
662 /// gets the specified attribute from the list of attributes.
getParamAttribute(unsigned ArgNo,Attribute::AttrKind Kind) const663 Attribute Function::getParamAttribute(unsigned ArgNo,
664 Attribute::AttrKind Kind) const {
665 return AttributeSets.getParamAttr(ArgNo, Kind);
666 }
667
addDereferenceableOrNullParamAttr(unsigned ArgNo,uint64_t Bytes)668 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
669 uint64_t Bytes) {
670 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
671 ArgNo, Bytes);
672 }
673
getDenormalMode(const fltSemantics & FPType) const674 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
675 if (&FPType == &APFloat::IEEEsingle()) {
676 Attribute Attr = getFnAttribute("denormal-fp-math-f32");
677 StringRef Val = Attr.getValueAsString();
678 if (!Val.empty())
679 return parseDenormalFPAttribute(Val);
680
681 // If the f32 variant of the attribute isn't specified, try to use the
682 // generic one.
683 }
684
685 Attribute Attr = getFnAttribute("denormal-fp-math");
686 return parseDenormalFPAttribute(Attr.getValueAsString());
687 }
688
getGC() const689 const std::string &Function::getGC() const {
690 assert(hasGC() && "Function has no collector");
691 return getContext().getGC(*this);
692 }
693
setGC(std::string Str)694 void Function::setGC(std::string Str) {
695 setValueSubclassDataBit(14, !Str.empty());
696 getContext().setGC(*this, std::move(Str));
697 }
698
clearGC()699 void Function::clearGC() {
700 if (!hasGC())
701 return;
702 getContext().deleteGC(*this);
703 setValueSubclassDataBit(14, false);
704 }
705
hasStackProtectorFnAttr() const706 bool Function::hasStackProtectorFnAttr() const {
707 return hasFnAttribute(Attribute::StackProtect) ||
708 hasFnAttribute(Attribute::StackProtectStrong) ||
709 hasFnAttribute(Attribute::StackProtectReq);
710 }
711
712 /// Copy all additional attributes (those not needed to create a Function) from
713 /// the Function Src to this one.
copyAttributesFrom(const Function * Src)714 void Function::copyAttributesFrom(const Function *Src) {
715 GlobalObject::copyAttributesFrom(Src);
716 setCallingConv(Src->getCallingConv());
717 setAttributes(Src->getAttributes());
718 if (Src->hasGC())
719 setGC(Src->getGC());
720 else
721 clearGC();
722 if (Src->hasPersonalityFn())
723 setPersonalityFn(Src->getPersonalityFn());
724 if (Src->hasPrefixData())
725 setPrefixData(Src->getPrefixData());
726 if (Src->hasPrologueData())
727 setPrologueData(Src->getPrologueData());
728 }
729
730 /// Table of string intrinsic names indexed by enum value.
731 static const char * const IntrinsicNameTable[] = {
732 "not_intrinsic",
733 #define GET_INTRINSIC_NAME_TABLE
734 #include "llvm/IR/IntrinsicImpl.inc"
735 #undef GET_INTRINSIC_NAME_TABLE
736 };
737
738 /// Table of per-target intrinsic name tables.
739 #define GET_INTRINSIC_TARGET_DATA
740 #include "llvm/IR/IntrinsicImpl.inc"
741 #undef GET_INTRINSIC_TARGET_DATA
742
isTargetIntrinsic(Intrinsic::ID IID)743 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
744 return IID > TargetInfos[0].Count;
745 }
746
isTargetIntrinsic() const747 bool Function::isTargetIntrinsic() const {
748 return isTargetIntrinsic(IntID);
749 }
750
751 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
752 /// target as \c Name, or the generic table if \c Name is not target specific.
753 ///
754 /// Returns the relevant slice of \c IntrinsicNameTable
findTargetSubtable(StringRef Name)755 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
756 assert(Name.startswith("llvm."));
757
758 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
759 // Drop "llvm." and take the first dotted component. That will be the target
760 // if this is target specific.
761 StringRef Target = Name.drop_front(5).split('.').first;
762 auto It = partition_point(
763 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
764 // We've either found the target or just fall back to the generic set, which
765 // is always first.
766 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
767 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
768 }
769
770 /// This does the actual lookup of an intrinsic ID which
771 /// matches the given function name.
lookupIntrinsicID(StringRef Name)772 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
773 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
774 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
775 if (Idx == -1)
776 return Intrinsic::not_intrinsic;
777
778 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
779 // an index into a sub-table.
780 int Adjust = NameTable.data() - IntrinsicNameTable;
781 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
782
783 // If the intrinsic is not overloaded, require an exact match. If it is
784 // overloaded, require either exact or prefix match.
785 const auto MatchSize = strlen(NameTable[Idx]);
786 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
787 bool IsExactMatch = Name.size() == MatchSize;
788 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
789 : Intrinsic::not_intrinsic;
790 }
791
recalculateIntrinsicID()792 void Function::recalculateIntrinsicID() {
793 StringRef Name = getName();
794 if (!Name.startswith("llvm.")) {
795 HasLLVMReservedName = false;
796 IntID = Intrinsic::not_intrinsic;
797 return;
798 }
799 HasLLVMReservedName = true;
800 IntID = lookupIntrinsicID(Name);
801 }
802
803 /// Returns a stable mangling for the type specified for use in the name
804 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
805 /// of named types is simply their name. Manglings for unnamed types consist
806 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
807 /// combined with the mangling of their component types. A vararg function
808 /// type will have a suffix of 'vararg'. Since function types can contain
809 /// other function types, we close a function type mangling with suffix 'f'
810 /// which can't be confused with it's prefix. This ensures we don't have
811 /// collisions between two unrelated function types. Otherwise, you might
812 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
813 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
814 /// indicating that extra care must be taken to ensure a unique name.
getMangledTypeStr(Type * Ty,bool & HasUnnamedType)815 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
816 std::string Result;
817 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
818 Result += "p" + utostr(PTyp->getAddressSpace());
819 // Opaque pointer doesn't have pointee type information, so we just mangle
820 // address space for opaque pointer.
821 if (!PTyp->isOpaque())
822 Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
823 HasUnnamedType);
824 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
825 Result += "a" + utostr(ATyp->getNumElements()) +
826 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
827 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
828 if (!STyp->isLiteral()) {
829 Result += "s_";
830 if (STyp->hasName())
831 Result += STyp->getName();
832 else
833 HasUnnamedType = true;
834 } else {
835 Result += "sl_";
836 for (auto Elem : STyp->elements())
837 Result += getMangledTypeStr(Elem, HasUnnamedType);
838 }
839 // Ensure nested structs are distinguishable.
840 Result += "s";
841 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
842 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
843 for (size_t i = 0; i < FT->getNumParams(); i++)
844 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
845 if (FT->isVarArg())
846 Result += "vararg";
847 // Ensure nested function types are distinguishable.
848 Result += "f";
849 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
850 ElementCount EC = VTy->getElementCount();
851 if (EC.isScalable())
852 Result += "nx";
853 Result += "v" + utostr(EC.getKnownMinValue()) +
854 getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
855 } else if (Ty) {
856 switch (Ty->getTypeID()) {
857 default: llvm_unreachable("Unhandled type");
858 case Type::VoidTyID: Result += "isVoid"; break;
859 case Type::MetadataTyID: Result += "Metadata"; break;
860 case Type::HalfTyID: Result += "f16"; break;
861 case Type::BFloatTyID: Result += "bf16"; break;
862 case Type::FloatTyID: Result += "f32"; break;
863 case Type::DoubleTyID: Result += "f64"; break;
864 case Type::X86_FP80TyID: Result += "f80"; break;
865 case Type::FP128TyID: Result += "f128"; break;
866 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
867 case Type::X86_MMXTyID: Result += "x86mmx"; break;
868 case Type::X86_AMXTyID: Result += "x86amx"; break;
869 case Type::IntegerTyID:
870 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
871 break;
872 }
873 }
874 return Result;
875 }
876
getBaseName(ID id)877 StringRef Intrinsic::getBaseName(ID id) {
878 assert(id < num_intrinsics && "Invalid intrinsic ID!");
879 return IntrinsicNameTable[id];
880 }
881
getName(ID id)882 StringRef Intrinsic::getName(ID id) {
883 assert(id < num_intrinsics && "Invalid intrinsic ID!");
884 assert(!Intrinsic::isOverloaded(id) &&
885 "This version of getName does not support overloading");
886 return getBaseName(id);
887 }
888
getIntrinsicNameImpl(Intrinsic::ID Id,ArrayRef<Type * > Tys,Module * M,FunctionType * FT,bool EarlyModuleCheck)889 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
890 Module *M, FunctionType *FT,
891 bool EarlyModuleCheck) {
892
893 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
894 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
895 "This version of getName is for overloaded intrinsics only");
896 (void)EarlyModuleCheck;
897 assert((!EarlyModuleCheck || M ||
898 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
899 "Intrinsic overloading on pointer types need to provide a Module");
900 bool HasUnnamedType = false;
901 std::string Result(Intrinsic::getBaseName(Id));
902 for (Type *Ty : Tys)
903 Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
904 if (HasUnnamedType) {
905 assert(M && "unnamed types need a module");
906 if (!FT)
907 FT = Intrinsic::getType(M->getContext(), Id, Tys);
908 else
909 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
910 "Provided FunctionType must match arguments");
911 return M->getUniqueIntrinsicName(Result, Id, FT);
912 }
913 return Result;
914 }
915
getName(ID Id,ArrayRef<Type * > Tys,Module * M,FunctionType * FT)916 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
917 FunctionType *FT) {
918 assert(M && "We need to have a Module");
919 return getIntrinsicNameImpl(Id, Tys, M, FT, true);
920 }
921
getNameNoUnnamedTypes(ID Id,ArrayRef<Type * > Tys)922 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
923 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
924 }
925
926 /// IIT_Info - These are enumerators that describe the entries returned by the
927 /// getIntrinsicInfoTableEntries function.
928 ///
929 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
930 enum IIT_Info {
931 // Common values should be encoded with 0-15.
932 IIT_Done = 0,
933 IIT_I1 = 1,
934 IIT_I8 = 2,
935 IIT_I16 = 3,
936 IIT_I32 = 4,
937 IIT_I64 = 5,
938 IIT_F16 = 6,
939 IIT_F32 = 7,
940 IIT_F64 = 8,
941 IIT_V2 = 9,
942 IIT_V4 = 10,
943 IIT_V8 = 11,
944 IIT_V16 = 12,
945 IIT_V32 = 13,
946 IIT_PTR = 14,
947 IIT_ARG = 15,
948
949 // Values from 16+ are only encodable with the inefficient encoding.
950 IIT_V64 = 16,
951 IIT_MMX = 17,
952 IIT_TOKEN = 18,
953 IIT_METADATA = 19,
954 IIT_EMPTYSTRUCT = 20,
955 IIT_STRUCT2 = 21,
956 IIT_STRUCT3 = 22,
957 IIT_STRUCT4 = 23,
958 IIT_STRUCT5 = 24,
959 IIT_EXTEND_ARG = 25,
960 IIT_TRUNC_ARG = 26,
961 IIT_ANYPTR = 27,
962 IIT_V1 = 28,
963 IIT_VARARG = 29,
964 IIT_HALF_VEC_ARG = 30,
965 IIT_SAME_VEC_WIDTH_ARG = 31,
966 IIT_PTR_TO_ARG = 32,
967 IIT_PTR_TO_ELT = 33,
968 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
969 IIT_I128 = 35,
970 IIT_V512 = 36,
971 IIT_V1024 = 37,
972 IIT_STRUCT6 = 38,
973 IIT_STRUCT7 = 39,
974 IIT_STRUCT8 = 40,
975 IIT_F128 = 41,
976 IIT_VEC_ELEMENT = 42,
977 IIT_SCALABLE_VEC = 43,
978 IIT_SUBDIVIDE2_ARG = 44,
979 IIT_SUBDIVIDE4_ARG = 45,
980 IIT_VEC_OF_BITCASTS_TO_INT = 46,
981 IIT_V128 = 47,
982 IIT_BF16 = 48,
983 IIT_STRUCT9 = 49,
984 IIT_V256 = 50,
985 IIT_AMX = 51,
986 IIT_PPCF128 = 52,
987 IIT_V3 = 53,
988 IIT_EXTERNREF = 54,
989 IIT_FUNCREF = 55,
990 IIT_ANYPTR_TO_ELT = 56,
991 IIT_I2 = 57,
992 IIT_I4 = 58,
993 };
994
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,IIT_Info LastInfo,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)995 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
996 IIT_Info LastInfo,
997 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
998 using namespace Intrinsic;
999
1000 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1001
1002 IIT_Info Info = IIT_Info(Infos[NextElt++]);
1003 unsigned StructElts = 2;
1004
1005 switch (Info) {
1006 case IIT_Done:
1007 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1008 return;
1009 case IIT_VARARG:
1010 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1011 return;
1012 case IIT_MMX:
1013 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1014 return;
1015 case IIT_AMX:
1016 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1017 return;
1018 case IIT_TOKEN:
1019 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1020 return;
1021 case IIT_METADATA:
1022 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1023 return;
1024 case IIT_F16:
1025 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1026 return;
1027 case IIT_BF16:
1028 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1029 return;
1030 case IIT_F32:
1031 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1032 return;
1033 case IIT_F64:
1034 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1035 return;
1036 case IIT_F128:
1037 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1038 return;
1039 case IIT_PPCF128:
1040 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1041 return;
1042 case IIT_I1:
1043 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1044 return;
1045 case IIT_I2:
1046 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1047 return;
1048 case IIT_I4:
1049 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1050 return;
1051 case IIT_I8:
1052 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1053 return;
1054 case IIT_I16:
1055 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1056 return;
1057 case IIT_I32:
1058 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1059 return;
1060 case IIT_I64:
1061 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1062 return;
1063 case IIT_I128:
1064 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1065 return;
1066 case IIT_V1:
1067 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1068 DecodeIITType(NextElt, Infos, Info, OutputTable);
1069 return;
1070 case IIT_V2:
1071 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1072 DecodeIITType(NextElt, Infos, Info, OutputTable);
1073 return;
1074 case IIT_V3:
1075 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1076 DecodeIITType(NextElt, Infos, Info, OutputTable);
1077 return;
1078 case IIT_V4:
1079 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1080 DecodeIITType(NextElt, Infos, Info, OutputTable);
1081 return;
1082 case IIT_V8:
1083 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1084 DecodeIITType(NextElt, Infos, Info, OutputTable);
1085 return;
1086 case IIT_V16:
1087 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1088 DecodeIITType(NextElt, Infos, Info, OutputTable);
1089 return;
1090 case IIT_V32:
1091 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1092 DecodeIITType(NextElt, Infos, Info, OutputTable);
1093 return;
1094 case IIT_V64:
1095 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1096 DecodeIITType(NextElt, Infos, Info, OutputTable);
1097 return;
1098 case IIT_V128:
1099 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1100 DecodeIITType(NextElt, Infos, Info, OutputTable);
1101 return;
1102 case IIT_V256:
1103 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1104 DecodeIITType(NextElt, Infos, Info, OutputTable);
1105 return;
1106 case IIT_V512:
1107 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1108 DecodeIITType(NextElt, Infos, Info, OutputTable);
1109 return;
1110 case IIT_V1024:
1111 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1112 DecodeIITType(NextElt, Infos, Info, OutputTable);
1113 return;
1114 case IIT_EXTERNREF:
1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1116 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1117 return;
1118 case IIT_FUNCREF:
1119 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1120 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1121 return;
1122 case IIT_PTR:
1123 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1124 DecodeIITType(NextElt, Infos, Info, OutputTable);
1125 return;
1126 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1128 Infos[NextElt++]));
1129 DecodeIITType(NextElt, Infos, Info, OutputTable);
1130 return;
1131 }
1132 case IIT_ARG: {
1133 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1134 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1135 return;
1136 }
1137 case IIT_EXTEND_ARG: {
1138 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1140 ArgInfo));
1141 return;
1142 }
1143 case IIT_TRUNC_ARG: {
1144 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1145 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1146 ArgInfo));
1147 return;
1148 }
1149 case IIT_HALF_VEC_ARG: {
1150 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1151 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1152 ArgInfo));
1153 return;
1154 }
1155 case IIT_SAME_VEC_WIDTH_ARG: {
1156 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1157 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1158 ArgInfo));
1159 return;
1160 }
1161 case IIT_PTR_TO_ARG: {
1162 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1163 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1164 ArgInfo));
1165 return;
1166 }
1167 case IIT_PTR_TO_ELT: {
1168 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1169 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1170 return;
1171 }
1172 case IIT_ANYPTR_TO_ELT: {
1173 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1174 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1175 OutputTable.push_back(
1176 IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1177 return;
1178 }
1179 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1180 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1181 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1182 OutputTable.push_back(
1183 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1184 return;
1185 }
1186 case IIT_EMPTYSTRUCT:
1187 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1188 return;
1189 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1190 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1191 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1192 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1193 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1194 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1195 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1196 case IIT_STRUCT2: {
1197 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1198
1199 for (unsigned i = 0; i != StructElts; ++i)
1200 DecodeIITType(NextElt, Infos, Info, OutputTable);
1201 return;
1202 }
1203 case IIT_SUBDIVIDE2_ARG: {
1204 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1205 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1206 ArgInfo));
1207 return;
1208 }
1209 case IIT_SUBDIVIDE4_ARG: {
1210 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1211 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1212 ArgInfo));
1213 return;
1214 }
1215 case IIT_VEC_ELEMENT: {
1216 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1217 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1218 ArgInfo));
1219 return;
1220 }
1221 case IIT_SCALABLE_VEC: {
1222 DecodeIITType(NextElt, Infos, Info, OutputTable);
1223 return;
1224 }
1225 case IIT_VEC_OF_BITCASTS_TO_INT: {
1226 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1227 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1228 ArgInfo));
1229 return;
1230 }
1231 }
1232 llvm_unreachable("unhandled");
1233 }
1234
1235 #define GET_INTRINSIC_GENERATOR_GLOBAL
1236 #include "llvm/IR/IntrinsicImpl.inc"
1237 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1238
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)1239 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1240 SmallVectorImpl<IITDescriptor> &T){
1241 // Check to see if the intrinsic's type was expressible by the table.
1242 unsigned TableVal = IIT_Table[id-1];
1243
1244 // Decode the TableVal into an array of IITValues.
1245 SmallVector<unsigned char, 8> IITValues;
1246 ArrayRef<unsigned char> IITEntries;
1247 unsigned NextElt = 0;
1248 if ((TableVal >> 31) != 0) {
1249 // This is an offset into the IIT_LongEncodingTable.
1250 IITEntries = IIT_LongEncodingTable;
1251
1252 // Strip sentinel bit.
1253 NextElt = (TableVal << 1) >> 1;
1254 } else {
1255 // Decode the TableVal into an array of IITValues. If the entry was encoded
1256 // into a single word in the table itself, decode it now.
1257 do {
1258 IITValues.push_back(TableVal & 0xF);
1259 TableVal >>= 4;
1260 } while (TableVal);
1261
1262 IITEntries = IITValues;
1263 NextElt = 0;
1264 }
1265
1266 // Okay, decode the table into the output vector of IITDescriptors.
1267 DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1268 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1269 DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1270 }
1271
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)1272 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1273 ArrayRef<Type*> Tys, LLVMContext &Context) {
1274 using namespace Intrinsic;
1275
1276 IITDescriptor D = Infos.front();
1277 Infos = Infos.slice(1);
1278
1279 switch (D.Kind) {
1280 case IITDescriptor::Void: return Type::getVoidTy(Context);
1281 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1282 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1283 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1284 case IITDescriptor::Token: return Type::getTokenTy(Context);
1285 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1286 case IITDescriptor::Half: return Type::getHalfTy(Context);
1287 case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1288 case IITDescriptor::Float: return Type::getFloatTy(Context);
1289 case IITDescriptor::Double: return Type::getDoubleTy(Context);
1290 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1291 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1292
1293 case IITDescriptor::Integer:
1294 return IntegerType::get(Context, D.Integer_Width);
1295 case IITDescriptor::Vector:
1296 return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1297 D.Vector_Width);
1298 case IITDescriptor::Pointer:
1299 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1300 D.Pointer_AddressSpace);
1301 case IITDescriptor::Struct: {
1302 SmallVector<Type *, 8> Elts;
1303 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1304 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1305 return StructType::get(Context, Elts);
1306 }
1307 case IITDescriptor::Argument:
1308 return Tys[D.getArgumentNumber()];
1309 case IITDescriptor::ExtendArgument: {
1310 Type *Ty = Tys[D.getArgumentNumber()];
1311 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1312 return VectorType::getExtendedElementVectorType(VTy);
1313
1314 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1315 }
1316 case IITDescriptor::TruncArgument: {
1317 Type *Ty = Tys[D.getArgumentNumber()];
1318 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1319 return VectorType::getTruncatedElementVectorType(VTy);
1320
1321 IntegerType *ITy = cast<IntegerType>(Ty);
1322 assert(ITy->getBitWidth() % 2 == 0);
1323 return IntegerType::get(Context, ITy->getBitWidth() / 2);
1324 }
1325 case IITDescriptor::Subdivide2Argument:
1326 case IITDescriptor::Subdivide4Argument: {
1327 Type *Ty = Tys[D.getArgumentNumber()];
1328 VectorType *VTy = dyn_cast<VectorType>(Ty);
1329 assert(VTy && "Expected an argument of Vector Type");
1330 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1331 return VectorType::getSubdividedVectorType(VTy, SubDivs);
1332 }
1333 case IITDescriptor::HalfVecArgument:
1334 return VectorType::getHalfElementsVectorType(cast<VectorType>(
1335 Tys[D.getArgumentNumber()]));
1336 case IITDescriptor::SameVecWidthArgument: {
1337 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1338 Type *Ty = Tys[D.getArgumentNumber()];
1339 if (auto *VTy = dyn_cast<VectorType>(Ty))
1340 return VectorType::get(EltTy, VTy->getElementCount());
1341 return EltTy;
1342 }
1343 case IITDescriptor::PtrToArgument: {
1344 Type *Ty = Tys[D.getArgumentNumber()];
1345 return PointerType::getUnqual(Ty);
1346 }
1347 case IITDescriptor::PtrToElt: {
1348 Type *Ty = Tys[D.getArgumentNumber()];
1349 VectorType *VTy = dyn_cast<VectorType>(Ty);
1350 if (!VTy)
1351 llvm_unreachable("Expected an argument of Vector Type");
1352 Type *EltTy = VTy->getElementType();
1353 return PointerType::getUnqual(EltTy);
1354 }
1355 case IITDescriptor::VecElementArgument: {
1356 Type *Ty = Tys[D.getArgumentNumber()];
1357 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1358 return VTy->getElementType();
1359 llvm_unreachable("Expected an argument of Vector Type");
1360 }
1361 case IITDescriptor::VecOfBitcastsToInt: {
1362 Type *Ty = Tys[D.getArgumentNumber()];
1363 VectorType *VTy = dyn_cast<VectorType>(Ty);
1364 assert(VTy && "Expected an argument of Vector Type");
1365 return VectorType::getInteger(VTy);
1366 }
1367 case IITDescriptor::VecOfAnyPtrsToElt:
1368 // Return the overloaded type (which determines the pointers address space)
1369 return Tys[D.getOverloadArgNumber()];
1370 case IITDescriptor::AnyPtrToElt:
1371 // Return the overloaded type (which determines the pointers address space)
1372 return Tys[D.getOverloadArgNumber()];
1373 }
1374 llvm_unreachable("unhandled");
1375 }
1376
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)1377 FunctionType *Intrinsic::getType(LLVMContext &Context,
1378 ID id, ArrayRef<Type*> Tys) {
1379 SmallVector<IITDescriptor, 8> Table;
1380 getIntrinsicInfoTableEntries(id, Table);
1381
1382 ArrayRef<IITDescriptor> TableRef = Table;
1383 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1384
1385 SmallVector<Type*, 8> ArgTys;
1386 while (!TableRef.empty())
1387 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1388
1389 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1390 // If we see void type as the type of the last argument, it is vararg intrinsic
1391 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1392 ArgTys.pop_back();
1393 return FunctionType::get(ResultTy, ArgTys, true);
1394 }
1395 return FunctionType::get(ResultTy, ArgTys, false);
1396 }
1397
isOverloaded(ID id)1398 bool Intrinsic::isOverloaded(ID id) {
1399 #define GET_INTRINSIC_OVERLOAD_TABLE
1400 #include "llvm/IR/IntrinsicImpl.inc"
1401 #undef GET_INTRINSIC_OVERLOAD_TABLE
1402 }
1403
isLeaf(ID id)1404 bool Intrinsic::isLeaf(ID id) {
1405 switch (id) {
1406 default:
1407 return true;
1408
1409 case Intrinsic::experimental_gc_statepoint:
1410 case Intrinsic::experimental_patchpoint_void:
1411 case Intrinsic::experimental_patchpoint_i64:
1412 return false;
1413 }
1414 }
1415
1416 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1417 #define GET_INTRINSIC_ATTRIBUTES
1418 #include "llvm/IR/IntrinsicImpl.inc"
1419 #undef GET_INTRINSIC_ATTRIBUTES
1420
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)1421 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1422 // There can never be multiple globals with the same name of different types,
1423 // because intrinsics must be a specific type.
1424 auto *FT = getType(M->getContext(), id, Tys);
1425 return cast<Function>(
1426 M->getOrInsertFunction(Tys.empty() ? getName(id)
1427 : getName(id, Tys, M, FT),
1428 getType(M->getContext(), id, Tys))
1429 .getCallee());
1430 }
1431
1432 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1433 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1434 #include "llvm/IR/IntrinsicImpl.inc"
1435 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1436
1437 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1438 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1439 #include "llvm/IR/IntrinsicImpl.inc"
1440 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1441
1442 using DeferredIntrinsicMatchPair =
1443 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1444
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys,SmallVectorImpl<DeferredIntrinsicMatchPair> & DeferredChecks,bool IsDeferredCheck)1445 static bool matchIntrinsicType(
1446 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1447 SmallVectorImpl<Type *> &ArgTys,
1448 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1449 bool IsDeferredCheck) {
1450 using namespace Intrinsic;
1451
1452 // If we ran out of descriptors, there are too many arguments.
1453 if (Infos.empty()) return true;
1454
1455 // Do this before slicing off the 'front' part
1456 auto InfosRef = Infos;
1457 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1458 DeferredChecks.emplace_back(T, InfosRef);
1459 return false;
1460 };
1461
1462 IITDescriptor D = Infos.front();
1463 Infos = Infos.slice(1);
1464
1465 switch (D.Kind) {
1466 case IITDescriptor::Void: return !Ty->isVoidTy();
1467 case IITDescriptor::VarArg: return true;
1468 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1469 case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
1470 case IITDescriptor::Token: return !Ty->isTokenTy();
1471 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1472 case IITDescriptor::Half: return !Ty->isHalfTy();
1473 case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1474 case IITDescriptor::Float: return !Ty->isFloatTy();
1475 case IITDescriptor::Double: return !Ty->isDoubleTy();
1476 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1477 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1478 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1479 case IITDescriptor::Vector: {
1480 VectorType *VT = dyn_cast<VectorType>(Ty);
1481 return !VT || VT->getElementCount() != D.Vector_Width ||
1482 matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1483 DeferredChecks, IsDeferredCheck);
1484 }
1485 case IITDescriptor::Pointer: {
1486 PointerType *PT = dyn_cast<PointerType>(Ty);
1487 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1488 return true;
1489 if (!PT->isOpaque()) {
1490 /* Manually consume a pointer to empty struct descriptor, which is
1491 * used for externref. We don't want to enforce that the struct is
1492 * anonymous in this case. (This renders externref intrinsics
1493 * non-unique, but this will go away with opaque pointers anyway.) */
1494 if (Infos.front().Kind == IITDescriptor::Struct &&
1495 Infos.front().Struct_NumElements == 0) {
1496 Infos = Infos.slice(1);
1497 return false;
1498 }
1499 return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1500 ArgTys, DeferredChecks, IsDeferredCheck);
1501 }
1502 // Consume IIT descriptors relating to the pointer element type.
1503 // FIXME: Intrinsic type matching of nested single value types or even
1504 // aggregates doesn't work properly with opaque pointers but hopefully
1505 // doesn't happen in practice.
1506 while (Infos.front().Kind == IITDescriptor::Pointer ||
1507 Infos.front().Kind == IITDescriptor::Vector)
1508 Infos = Infos.slice(1);
1509 assert((Infos.front().Kind != IITDescriptor::Argument ||
1510 Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1511 "Unsupported polymorphic pointer type with opaque pointer");
1512 Infos = Infos.slice(1);
1513 return false;
1514 }
1515
1516 case IITDescriptor::Struct: {
1517 StructType *ST = dyn_cast<StructType>(Ty);
1518 if (!ST || !ST->isLiteral() || ST->isPacked() ||
1519 ST->getNumElements() != D.Struct_NumElements)
1520 return true;
1521
1522 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1523 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1524 DeferredChecks, IsDeferredCheck))
1525 return true;
1526 return false;
1527 }
1528
1529 case IITDescriptor::Argument:
1530 // If this is the second occurrence of an argument,
1531 // verify that the later instance matches the previous instance.
1532 if (D.getArgumentNumber() < ArgTys.size())
1533 return Ty != ArgTys[D.getArgumentNumber()];
1534
1535 if (D.getArgumentNumber() > ArgTys.size() ||
1536 D.getArgumentKind() == IITDescriptor::AK_MatchType)
1537 return IsDeferredCheck || DeferCheck(Ty);
1538
1539 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1540 "Table consistency error");
1541 ArgTys.push_back(Ty);
1542
1543 switch (D.getArgumentKind()) {
1544 case IITDescriptor::AK_Any: return false; // Success
1545 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1546 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1547 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1548 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1549 default: break;
1550 }
1551 llvm_unreachable("all argument kinds not covered");
1552
1553 case IITDescriptor::ExtendArgument: {
1554 // If this is a forward reference, defer the check for later.
1555 if (D.getArgumentNumber() >= ArgTys.size())
1556 return IsDeferredCheck || DeferCheck(Ty);
1557
1558 Type *NewTy = ArgTys[D.getArgumentNumber()];
1559 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1560 NewTy = VectorType::getExtendedElementVectorType(VTy);
1561 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1562 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1563 else
1564 return true;
1565
1566 return Ty != NewTy;
1567 }
1568 case IITDescriptor::TruncArgument: {
1569 // If this is a forward reference, defer the check for later.
1570 if (D.getArgumentNumber() >= ArgTys.size())
1571 return IsDeferredCheck || DeferCheck(Ty);
1572
1573 Type *NewTy = ArgTys[D.getArgumentNumber()];
1574 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1575 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1576 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1577 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1578 else
1579 return true;
1580
1581 return Ty != NewTy;
1582 }
1583 case IITDescriptor::HalfVecArgument:
1584 // If this is a forward reference, defer the check for later.
1585 if (D.getArgumentNumber() >= ArgTys.size())
1586 return IsDeferredCheck || DeferCheck(Ty);
1587 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1588 VectorType::getHalfElementsVectorType(
1589 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1590 case IITDescriptor::SameVecWidthArgument: {
1591 if (D.getArgumentNumber() >= ArgTys.size()) {
1592 // Defer check and subsequent check for the vector element type.
1593 Infos = Infos.slice(1);
1594 return IsDeferredCheck || DeferCheck(Ty);
1595 }
1596 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1597 auto *ThisArgType = dyn_cast<VectorType>(Ty);
1598 // Both must be vectors of the same number of elements or neither.
1599 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1600 return true;
1601 Type *EltTy = Ty;
1602 if (ThisArgType) {
1603 if (ReferenceType->getElementCount() !=
1604 ThisArgType->getElementCount())
1605 return true;
1606 EltTy = ThisArgType->getElementType();
1607 }
1608 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1609 IsDeferredCheck);
1610 }
1611 case IITDescriptor::PtrToArgument: {
1612 if (D.getArgumentNumber() >= ArgTys.size())
1613 return IsDeferredCheck || DeferCheck(Ty);
1614 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1615 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1616 return (!ThisArgType ||
1617 !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1618 }
1619 case IITDescriptor::PtrToElt: {
1620 if (D.getArgumentNumber() >= ArgTys.size())
1621 return IsDeferredCheck || DeferCheck(Ty);
1622 VectorType * ReferenceType =
1623 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1624 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1625
1626 if (!ThisArgType || !ReferenceType)
1627 return true;
1628 return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1629 ReferenceType->getElementType());
1630 }
1631 case IITDescriptor::AnyPtrToElt: {
1632 unsigned RefArgNumber = D.getRefArgNumber();
1633 if (RefArgNumber >= ArgTys.size()) {
1634 if (IsDeferredCheck)
1635 return true;
1636 // If forward referencing, already add the pointer type and
1637 // defer the checks for later.
1638 ArgTys.push_back(Ty);
1639 return DeferCheck(Ty);
1640 }
1641
1642 if (!IsDeferredCheck) {
1643 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1644 "Table consistency error");
1645 ArgTys.push_back(Ty);
1646 }
1647
1648 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1649 auto *ThisArgType = dyn_cast<PointerType>(Ty);
1650 if (!ThisArgType || !ReferenceType)
1651 return true;
1652 return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1653 ReferenceType->getElementType());
1654 }
1655 case IITDescriptor::VecOfAnyPtrsToElt: {
1656 unsigned RefArgNumber = D.getRefArgNumber();
1657 if (RefArgNumber >= ArgTys.size()) {
1658 if (IsDeferredCheck)
1659 return true;
1660 // If forward referencing, already add the pointer-vector type and
1661 // defer the checks for later.
1662 ArgTys.push_back(Ty);
1663 return DeferCheck(Ty);
1664 }
1665
1666 if (!IsDeferredCheck){
1667 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1668 "Table consistency error");
1669 ArgTys.push_back(Ty);
1670 }
1671
1672 // Verify the overloaded type "matches" the Ref type.
1673 // i.e. Ty is a vector with the same width as Ref.
1674 // Composed of pointers to the same element type as Ref.
1675 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1676 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1677 if (!ThisArgVecTy || !ReferenceType ||
1678 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1679 return true;
1680 PointerType *ThisArgEltTy =
1681 dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1682 if (!ThisArgEltTy)
1683 return true;
1684 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1685 ReferenceType->getElementType());
1686 }
1687 case IITDescriptor::VecElementArgument: {
1688 if (D.getArgumentNumber() >= ArgTys.size())
1689 return IsDeferredCheck ? true : DeferCheck(Ty);
1690 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1691 return !ReferenceType || Ty != ReferenceType->getElementType();
1692 }
1693 case IITDescriptor::Subdivide2Argument:
1694 case IITDescriptor::Subdivide4Argument: {
1695 // If this is a forward reference, defer the check for later.
1696 if (D.getArgumentNumber() >= ArgTys.size())
1697 return IsDeferredCheck || DeferCheck(Ty);
1698
1699 Type *NewTy = ArgTys[D.getArgumentNumber()];
1700 if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1701 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1702 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1703 return Ty != NewTy;
1704 }
1705 return true;
1706 }
1707 case IITDescriptor::VecOfBitcastsToInt: {
1708 if (D.getArgumentNumber() >= ArgTys.size())
1709 return IsDeferredCheck || DeferCheck(Ty);
1710 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1711 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1712 if (!ThisArgVecTy || !ReferenceType)
1713 return true;
1714 return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1715 }
1716 }
1717 llvm_unreachable("unhandled");
1718 }
1719
1720 Intrinsic::MatchIntrinsicTypesResult
matchIntrinsicSignature(FunctionType * FTy,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1721 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1722 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1723 SmallVectorImpl<Type *> &ArgTys) {
1724 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1725 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1726 false))
1727 return MatchIntrinsicTypes_NoMatchRet;
1728
1729 unsigned NumDeferredReturnChecks = DeferredChecks.size();
1730
1731 for (auto Ty : FTy->params())
1732 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1733 return MatchIntrinsicTypes_NoMatchArg;
1734
1735 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1736 DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1737 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1738 true))
1739 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1740 : MatchIntrinsicTypes_NoMatchArg;
1741 }
1742
1743 return MatchIntrinsicTypes_Match;
1744 }
1745
1746 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1747 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1748 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1749 // If there are no descriptors left, then it can't be a vararg.
1750 if (Infos.empty())
1751 return isVarArg;
1752
1753 // There should be only one descriptor remaining at this point.
1754 if (Infos.size() != 1)
1755 return true;
1756
1757 // Check and verify the descriptor.
1758 IITDescriptor D = Infos.front();
1759 Infos = Infos.slice(1);
1760 if (D.Kind == IITDescriptor::VarArg)
1761 return !isVarArg;
1762
1763 return true;
1764 }
1765
getIntrinsicSignature(Function * F,SmallVectorImpl<Type * > & ArgTys)1766 bool Intrinsic::getIntrinsicSignature(Function *F,
1767 SmallVectorImpl<Type *> &ArgTys) {
1768 Intrinsic::ID ID = F->getIntrinsicID();
1769 if (!ID)
1770 return false;
1771
1772 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1773 getIntrinsicInfoTableEntries(ID, Table);
1774 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1775
1776 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1777 ArgTys) !=
1778 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1779 return false;
1780 }
1781 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1782 TableRef))
1783 return false;
1784 return true;
1785 }
1786
remangleIntrinsicFunction(Function * F)1787 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1788 SmallVector<Type *, 4> ArgTys;
1789 if (!getIntrinsicSignature(F, ArgTys))
1790 return None;
1791
1792 Intrinsic::ID ID = F->getIntrinsicID();
1793 StringRef Name = F->getName();
1794 std::string WantedName =
1795 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1796 if (Name == WantedName)
1797 return None;
1798
1799 Function *NewDecl = [&] {
1800 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1801 if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1802 if (ExistingF->getFunctionType() == F->getFunctionType())
1803 return ExistingF;
1804
1805 // The name already exists, but is not a function or has the wrong
1806 // prototype. Make place for the new one by renaming the old version.
1807 // Either this old version will be removed later on or the module is
1808 // invalid and we'll get an error.
1809 ExistingGV->setName(WantedName + ".renamed");
1810 }
1811 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1812 }();
1813
1814 NewDecl->setCallingConv(F->getCallingConv());
1815 assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1816 "Shouldn't change the signature");
1817 return NewDecl;
1818 }
1819
1820 /// hasAddressTaken - returns true if there are any uses of this function
1821 /// other than direct calls or invokes to it. Optionally ignores callback
1822 /// uses, assume like pointer annotation calls, and references in llvm.used
1823 /// and llvm.compiler.used variables.
hasAddressTaken(const User ** PutOffender,bool IgnoreCallbackUses,bool IgnoreAssumeLikeCalls,bool IgnoreLLVMUsed,bool IgnoreARCAttachedCall) const1824 bool Function::hasAddressTaken(const User **PutOffender,
1825 bool IgnoreCallbackUses,
1826 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1827 bool IgnoreARCAttachedCall) const {
1828 for (const Use &U : uses()) {
1829 const User *FU = U.getUser();
1830 if (isa<BlockAddress>(FU))
1831 continue;
1832
1833 if (IgnoreCallbackUses) {
1834 AbstractCallSite ACS(&U);
1835 if (ACS && ACS.isCallbackCall())
1836 continue;
1837 }
1838
1839 const auto *Call = dyn_cast<CallBase>(FU);
1840 if (!Call) {
1841 if (IgnoreAssumeLikeCalls) {
1842 if (const auto *FI = dyn_cast<Instruction>(FU)) {
1843 if (FI->isCast() && !FI->user_empty() &&
1844 llvm::all_of(FU->users(), [](const User *U) {
1845 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1846 return I->isAssumeLikeIntrinsic();
1847 return false;
1848 }))
1849 continue;
1850 }
1851 }
1852 if (IgnoreLLVMUsed && !FU->user_empty()) {
1853 const User *FUU = FU;
1854 if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1855 !FU->user_begin()->user_empty())
1856 FUU = *FU->user_begin();
1857 if (llvm::all_of(FUU->users(), [](const User *U) {
1858 if (const auto *GV = dyn_cast<GlobalVariable>(U))
1859 return GV->hasName() &&
1860 (GV->getName().equals("llvm.compiler.used") ||
1861 GV->getName().equals("llvm.used"));
1862 return false;
1863 }))
1864 continue;
1865 }
1866 if (PutOffender)
1867 *PutOffender = FU;
1868 return true;
1869 }
1870 if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1871 if (IgnoreARCAttachedCall &&
1872 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1873 U.getOperandNo()))
1874 continue;
1875
1876 if (PutOffender)
1877 *PutOffender = FU;
1878 return true;
1879 }
1880 }
1881 return false;
1882 }
1883
isDefTriviallyDead() const1884 bool Function::isDefTriviallyDead() const {
1885 // Check the linkage
1886 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1887 !hasAvailableExternallyLinkage())
1888 return false;
1889
1890 // Check if the function is used by anything other than a blockaddress.
1891 for (const User *U : users())
1892 if (!isa<BlockAddress>(U))
1893 return false;
1894
1895 return true;
1896 }
1897
1898 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1899 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1900 bool Function::callsFunctionThatReturnsTwice() const {
1901 for (const Instruction &I : instructions(this))
1902 if (const auto *Call = dyn_cast<CallBase>(&I))
1903 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1904 return true;
1905
1906 return false;
1907 }
1908
getPersonalityFn() const1909 Constant *Function::getPersonalityFn() const {
1910 assert(hasPersonalityFn() && getNumOperands());
1911 return cast<Constant>(Op<0>());
1912 }
1913
setPersonalityFn(Constant * Fn)1914 void Function::setPersonalityFn(Constant *Fn) {
1915 setHungoffOperand<0>(Fn);
1916 setValueSubclassDataBit(3, Fn != nullptr);
1917 }
1918
getPrefixData() const1919 Constant *Function::getPrefixData() const {
1920 assert(hasPrefixData() && getNumOperands());
1921 return cast<Constant>(Op<1>());
1922 }
1923
setPrefixData(Constant * PrefixData)1924 void Function::setPrefixData(Constant *PrefixData) {
1925 setHungoffOperand<1>(PrefixData);
1926 setValueSubclassDataBit(1, PrefixData != nullptr);
1927 }
1928
getPrologueData() const1929 Constant *Function::getPrologueData() const {
1930 assert(hasPrologueData() && getNumOperands());
1931 return cast<Constant>(Op<2>());
1932 }
1933
setPrologueData(Constant * PrologueData)1934 void Function::setPrologueData(Constant *PrologueData) {
1935 setHungoffOperand<2>(PrologueData);
1936 setValueSubclassDataBit(2, PrologueData != nullptr);
1937 }
1938
allocHungoffUselist()1939 void Function::allocHungoffUselist() {
1940 // If we've already allocated a uselist, stop here.
1941 if (getNumOperands())
1942 return;
1943
1944 allocHungoffUses(3, /*IsPhi=*/ false);
1945 setNumHungOffUseOperands(3);
1946
1947 // Initialize the uselist with placeholder operands to allow traversal.
1948 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1949 Op<0>().set(CPN);
1950 Op<1>().set(CPN);
1951 Op<2>().set(CPN);
1952 }
1953
1954 template <int Idx>
setHungoffOperand(Constant * C)1955 void Function::setHungoffOperand(Constant *C) {
1956 if (C) {
1957 allocHungoffUselist();
1958 Op<Idx>().set(C);
1959 } else if (getNumOperands()) {
1960 Op<Idx>().set(
1961 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1962 }
1963 }
1964
setValueSubclassDataBit(unsigned Bit,bool On)1965 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1966 assert(Bit < 16 && "SubclassData contains only 16 bits");
1967 if (On)
1968 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1969 else
1970 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1971 }
1972
setEntryCount(ProfileCount Count,const DenseSet<GlobalValue::GUID> * S)1973 void Function::setEntryCount(ProfileCount Count,
1974 const DenseSet<GlobalValue::GUID> *S) {
1975 #if !defined(NDEBUG)
1976 auto PrevCount = getEntryCount();
1977 assert(!PrevCount || PrevCount->getType() == Count.getType());
1978 #endif
1979
1980 auto ImportGUIDs = getImportGUIDs();
1981 if (S == nullptr && ImportGUIDs.size())
1982 S = &ImportGUIDs;
1983
1984 MDBuilder MDB(getContext());
1985 setMetadata(
1986 LLVMContext::MD_prof,
1987 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1988 }
1989
setEntryCount(uint64_t Count,Function::ProfileCountType Type,const DenseSet<GlobalValue::GUID> * Imports)1990 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1991 const DenseSet<GlobalValue::GUID> *Imports) {
1992 setEntryCount(ProfileCount(Count, Type), Imports);
1993 }
1994
getEntryCount(bool AllowSynthetic) const1995 Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1996 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1997 if (MD && MD->getOperand(0))
1998 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1999 if (MDS->getString().equals("function_entry_count")) {
2000 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2001 uint64_t Count = CI->getValue().getZExtValue();
2002 // A value of -1 is used for SamplePGO when there were no samples.
2003 // Treat this the same as unknown.
2004 if (Count == (uint64_t)-1)
2005 return None;
2006 return ProfileCount(Count, PCT_Real);
2007 } else if (AllowSynthetic &&
2008 MDS->getString().equals("synthetic_function_entry_count")) {
2009 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2010 uint64_t Count = CI->getValue().getZExtValue();
2011 return ProfileCount(Count, PCT_Synthetic);
2012 }
2013 }
2014 return None;
2015 }
2016
getImportGUIDs() const2017 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2018 DenseSet<GlobalValue::GUID> R;
2019 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2020 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2021 if (MDS->getString().equals("function_entry_count"))
2022 for (unsigned i = 2; i < MD->getNumOperands(); i++)
2023 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2024 ->getValue()
2025 .getZExtValue());
2026 return R;
2027 }
2028
setSectionPrefix(StringRef Prefix)2029 void Function::setSectionPrefix(StringRef Prefix) {
2030 MDBuilder MDB(getContext());
2031 setMetadata(LLVMContext::MD_section_prefix,
2032 MDB.createFunctionSectionPrefix(Prefix));
2033 }
2034
getSectionPrefix() const2035 Optional<StringRef> Function::getSectionPrefix() const {
2036 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2037 assert(cast<MDString>(MD->getOperand(0))
2038 ->getString()
2039 .equals("function_section_prefix") &&
2040 "Metadata not match");
2041 return cast<MDString>(MD->getOperand(1))->getString();
2042 }
2043 return None;
2044 }
2045
nullPointerIsDefined() const2046 bool Function::nullPointerIsDefined() const {
2047 return hasFnAttribute(Attribute::NullPointerIsValid);
2048 }
2049
NullPointerIsDefined(const Function * F,unsigned AS)2050 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2051 if (F && F->nullPointerIsDefined())
2052 return true;
2053
2054 if (AS != 0)
2055 return true;
2056
2057 return false;
2058 }
2059