1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ExecutionEngine/RuntimeDyld.h" 14 #include "RuntimeDyldCOFF.h" 15 #include "RuntimeDyldELF.h" 16 #include "RuntimeDyldImpl.h" 17 #include "RuntimeDyldMachO.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/MSVCErrorWorkarounds.h" 21 #include "llvm/Support/ManagedStatic.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/MutexGuard.h" 24 25 #include <future> 26 27 using namespace llvm; 28 using namespace llvm::object; 29 30 #define DEBUG_TYPE "dyld" 31 32 namespace { 33 34 enum RuntimeDyldErrorCode { 35 GenericRTDyldError = 1 36 }; 37 38 // FIXME: This class is only here to support the transition to llvm::Error. It 39 // will be removed once this transition is complete. Clients should prefer to 40 // deal with the Error value directly, rather than converting to error_code. 41 class RuntimeDyldErrorCategory : public std::error_category { 42 public: 43 const char *name() const noexcept override { return "runtimedyld"; } 44 45 std::string message(int Condition) const override { 46 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 47 case GenericRTDyldError: return "Generic RuntimeDyld error"; 48 } 49 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 50 } 51 }; 52 53 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 54 55 } 56 57 char RuntimeDyldError::ID = 0; 58 59 void RuntimeDyldError::log(raw_ostream &OS) const { 60 OS << ErrMsg << "\n"; 61 } 62 63 std::error_code RuntimeDyldError::convertToErrorCode() const { 64 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 65 } 66 67 // Empty out-of-line virtual destructor as the key function. 68 RuntimeDyldImpl::~RuntimeDyldImpl() {} 69 70 // Pin LoadedObjectInfo's vtables to this file. 71 void RuntimeDyld::LoadedObjectInfo::anchor() {} 72 73 namespace llvm { 74 75 void RuntimeDyldImpl::registerEHFrames() {} 76 77 void RuntimeDyldImpl::deregisterEHFrames() { 78 MemMgr.deregisterEHFrames(); 79 } 80 81 #ifndef NDEBUG 82 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 83 dbgs() << "----- Contents of section " << S.getName() << " " << State 84 << " -----"; 85 86 if (S.getAddress() == nullptr) { 87 dbgs() << "\n <section not emitted>\n"; 88 return; 89 } 90 91 const unsigned ColsPerRow = 16; 92 93 uint8_t *DataAddr = S.getAddress(); 94 uint64_t LoadAddr = S.getLoadAddress(); 95 96 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 97 unsigned BytesRemaining = S.getSize(); 98 99 if (StartPadding) { 100 dbgs() << "\n" << format("0x%016" PRIx64, 101 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 102 while (StartPadding--) 103 dbgs() << " "; 104 } 105 106 while (BytesRemaining > 0) { 107 if ((LoadAddr & (ColsPerRow - 1)) == 0) 108 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 109 110 dbgs() << " " << format("%02x", *DataAddr); 111 112 ++DataAddr; 113 ++LoadAddr; 114 --BytesRemaining; 115 } 116 117 dbgs() << "\n"; 118 } 119 #endif 120 121 // Resolve the relocations for all symbols we currently know about. 122 void RuntimeDyldImpl::resolveRelocations() { 123 MutexGuard locked(lock); 124 125 // Print out the sections prior to relocation. 126 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 127 dumpSectionMemory(Sections[i], "before relocations");); 128 129 // First, resolve relocations associated with external symbols. 130 if (auto Err = resolveExternalSymbols()) { 131 HasError = true; 132 ErrorStr = toString(std::move(Err)); 133 } 134 135 resolveLocalRelocations(); 136 137 // Print out sections after relocation. 138 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 139 dumpSectionMemory(Sections[i], "after relocations");); 140 } 141 142 void RuntimeDyldImpl::resolveLocalRelocations() { 143 // Iterate over all outstanding relocations 144 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 145 // The Section here (Sections[i]) refers to the section in which the 146 // symbol for the relocation is located. The SectionID in the relocation 147 // entry provides the section to which the relocation will be applied. 148 int Idx = it->first; 149 uint64_t Addr = Sections[Idx].getLoadAddress(); 150 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 151 << format("%p", (uintptr_t)Addr) << "\n"); 152 resolveRelocationList(it->second, Addr); 153 } 154 Relocations.clear(); 155 } 156 157 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 158 uint64_t TargetAddress) { 159 MutexGuard locked(lock); 160 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 161 if (Sections[i].getAddress() == LocalAddress) { 162 reassignSectionAddress(i, TargetAddress); 163 return; 164 } 165 } 166 llvm_unreachable("Attempting to remap address of unknown section!"); 167 } 168 169 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 170 uint64_t &Result) { 171 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 172 if (!AddressOrErr) 173 return AddressOrErr.takeError(); 174 Result = *AddressOrErr - Sec.getAddress(); 175 return Error::success(); 176 } 177 178 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 179 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 180 MutexGuard locked(lock); 181 182 // Save information about our target 183 Arch = (Triple::ArchType)Obj.getArch(); 184 IsTargetLittleEndian = Obj.isLittleEndian(); 185 setMipsABI(Obj); 186 187 // Compute the memory size required to load all sections to be loaded 188 // and pass this information to the memory manager 189 if (MemMgr.needsToReserveAllocationSpace()) { 190 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 191 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 192 if (auto Err = computeTotalAllocSize(Obj, 193 CodeSize, CodeAlign, 194 RODataSize, RODataAlign, 195 RWDataSize, RWDataAlign)) 196 return std::move(Err); 197 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 198 RWDataSize, RWDataAlign); 199 } 200 201 // Used sections from the object file 202 ObjSectionToIDMap LocalSections; 203 204 // Common symbols requiring allocation, with their sizes and alignments 205 CommonSymbolList CommonSymbolsToAllocate; 206 207 uint64_t CommonSize = 0; 208 uint32_t CommonAlign = 0; 209 210 // First, collect all weak and common symbols. We need to know if stronger 211 // definitions occur elsewhere. 212 JITSymbolResolver::LookupSet ResponsibilitySet; 213 { 214 JITSymbolResolver::LookupSet Symbols; 215 for (auto &Sym : Obj.symbols()) { 216 uint32_t Flags = Sym.getFlags(); 217 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) { 218 // Get symbol name. 219 if (auto NameOrErr = Sym.getName()) 220 Symbols.insert(*NameOrErr); 221 else 222 return NameOrErr.takeError(); 223 } 224 } 225 226 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) 227 ResponsibilitySet = std::move(*ResultOrErr); 228 else 229 return ResultOrErr.takeError(); 230 } 231 232 // Parse symbols 233 LLVM_DEBUG(dbgs() << "Parse symbols:\n"); 234 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 235 ++I) { 236 uint32_t Flags = I->getFlags(); 237 238 // Skip undefined symbols. 239 if (Flags & SymbolRef::SF_Undefined) 240 continue; 241 242 // Get the symbol type. 243 object::SymbolRef::Type SymType; 244 if (auto SymTypeOrErr = I->getType()) 245 SymType = *SymTypeOrErr; 246 else 247 return SymTypeOrErr.takeError(); 248 249 // Get symbol name. 250 StringRef Name; 251 if (auto NameOrErr = I->getName()) 252 Name = *NameOrErr; 253 else 254 return NameOrErr.takeError(); 255 256 // Compute JIT symbol flags. 257 auto JITSymFlags = getJITSymbolFlags(*I); 258 if (!JITSymFlags) 259 return JITSymFlags.takeError(); 260 261 // If this is a weak definition, check to see if there's a strong one. 262 // If there is, skip this symbol (we won't be providing it: the strong 263 // definition will). If there's no strong definition, make this definition 264 // strong. 265 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { 266 // First check whether there's already a definition in this instance. 267 if (GlobalSymbolTable.count(Name)) 268 continue; 269 270 // If we're not responsible for this symbol, skip it. 271 if (!ResponsibilitySet.count(Name)) 272 continue; 273 274 // Otherwise update the flags on the symbol to make this definition 275 // strong. 276 if (JITSymFlags->isWeak()) 277 *JITSymFlags &= ~JITSymbolFlags::Weak; 278 if (JITSymFlags->isCommon()) { 279 *JITSymFlags &= ~JITSymbolFlags::Common; 280 uint32_t Align = I->getAlignment(); 281 uint64_t Size = I->getCommonSize(); 282 if (!CommonAlign) 283 CommonAlign = Align; 284 CommonSize = alignTo(CommonSize, Align) + Size; 285 CommonSymbolsToAllocate.push_back(*I); 286 } 287 } 288 289 if (Flags & SymbolRef::SF_Absolute && 290 SymType != object::SymbolRef::ST_File) { 291 uint64_t Addr = 0; 292 if (auto AddrOrErr = I->getAddress()) 293 Addr = *AddrOrErr; 294 else 295 return AddrOrErr.takeError(); 296 297 unsigned SectionID = AbsoluteSymbolSection; 298 299 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 300 << " SID: " << SectionID 301 << " Offset: " << format("%p", (uintptr_t)Addr) 302 << " flags: " << Flags << "\n"); 303 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags); 304 } else if (SymType == object::SymbolRef::ST_Function || 305 SymType == object::SymbolRef::ST_Data || 306 SymType == object::SymbolRef::ST_Unknown || 307 SymType == object::SymbolRef::ST_Other) { 308 309 section_iterator SI = Obj.section_end(); 310 if (auto SIOrErr = I->getSection()) 311 SI = *SIOrErr; 312 else 313 return SIOrErr.takeError(); 314 315 if (SI == Obj.section_end()) 316 continue; 317 318 // Get symbol offset. 319 uint64_t SectOffset; 320 if (auto Err = getOffset(*I, *SI, SectOffset)) 321 return std::move(Err); 322 323 bool IsCode = SI->isText(); 324 unsigned SectionID; 325 if (auto SectionIDOrErr = 326 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 327 SectionID = *SectionIDOrErr; 328 else 329 return SectionIDOrErr.takeError(); 330 331 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 332 << " SID: " << SectionID 333 << " Offset: " << format("%p", (uintptr_t)SectOffset) 334 << " flags: " << Flags << "\n"); 335 GlobalSymbolTable[Name] = 336 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); 337 } 338 } 339 340 // Allocate common symbols 341 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 342 CommonAlign)) 343 return std::move(Err); 344 345 // Parse and process relocations 346 LLVM_DEBUG(dbgs() << "Parse relocations:\n"); 347 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 348 SI != SE; ++SI) { 349 StubMap Stubs; 350 section_iterator RelocatedSection = SI->getRelocatedSection(); 351 352 if (RelocatedSection == SE) 353 continue; 354 355 relocation_iterator I = SI->relocation_begin(); 356 relocation_iterator E = SI->relocation_end(); 357 358 if (I == E && !ProcessAllSections) 359 continue; 360 361 bool IsCode = RelocatedSection->isText(); 362 unsigned SectionID = 0; 363 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 364 LocalSections)) 365 SectionID = *SectionIDOrErr; 366 else 367 return SectionIDOrErr.takeError(); 368 369 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 370 371 for (; I != E;) 372 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 373 I = *IOrErr; 374 else 375 return IOrErr.takeError(); 376 377 // If there is a NotifyStubEmitted callback set, call it to register any 378 // stubs created for this section. 379 if (NotifyStubEmitted) { 380 StringRef FileName = Obj.getFileName(); 381 StringRef SectionName = Sections[SectionID].getName(); 382 for (auto &KV : Stubs) { 383 384 auto &VR = KV.first; 385 uint64_t StubAddr = KV.second; 386 387 // If this is a named stub, just call NotifyStubEmitted. 388 if (VR.SymbolName) { 389 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, 390 StubAddr); 391 continue; 392 } 393 394 // Otherwise we will have to try a reverse lookup on the globla symbol table. 395 for (auto &GSTMapEntry : GlobalSymbolTable) { 396 StringRef SymbolName = GSTMapEntry.first(); 397 auto &GSTEntry = GSTMapEntry.second; 398 if (GSTEntry.getSectionID() == VR.SectionID && 399 GSTEntry.getOffset() == VR.Offset) { 400 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, 401 StubAddr); 402 break; 403 } 404 } 405 } 406 } 407 } 408 409 // Process remaining sections 410 if (ProcessAllSections) { 411 LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); 412 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 413 SI != SE; ++SI) { 414 415 /* Ignore already loaded sections */ 416 if (LocalSections.find(*SI) != LocalSections.end()) 417 continue; 418 419 bool IsCode = SI->isText(); 420 if (auto SectionIDOrErr = 421 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 422 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); 423 else 424 return SectionIDOrErr.takeError(); 425 } 426 } 427 428 // Give the subclasses a chance to tie-up any loose ends. 429 if (auto Err = finalizeLoad(Obj, LocalSections)) 430 return std::move(Err); 431 432 // for (auto E : LocalSections) 433 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 434 435 return LocalSections; 436 } 437 438 // A helper method for computeTotalAllocSize. 439 // Computes the memory size required to allocate sections with the given sizes, 440 // assuming that all sections are allocated with the given alignment 441 static uint64_t 442 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 443 uint64_t Alignment) { 444 uint64_t TotalSize = 0; 445 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 446 uint64_t AlignedSize = 447 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 448 TotalSize += AlignedSize; 449 } 450 return TotalSize; 451 } 452 453 static bool isRequiredForExecution(const SectionRef Section) { 454 const ObjectFile *Obj = Section.getObject(); 455 if (isa<object::ELFObjectFileBase>(Obj)) 456 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 457 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 458 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 459 // Avoid loading zero-sized COFF sections. 460 // In PE files, VirtualSize gives the section size, and SizeOfRawData 461 // may be zero for sections with content. In Obj files, SizeOfRawData 462 // gives the section size, and VirtualSize is always zero. Hence 463 // the need to check for both cases below. 464 bool HasContent = 465 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 466 bool IsDiscardable = 467 CoffSection->Characteristics & 468 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 469 return HasContent && !IsDiscardable; 470 } 471 472 assert(isa<MachOObjectFile>(Obj)); 473 return true; 474 } 475 476 static bool isReadOnlyData(const SectionRef Section) { 477 const ObjectFile *Obj = Section.getObject(); 478 if (isa<object::ELFObjectFileBase>(Obj)) 479 return !(ELFSectionRef(Section).getFlags() & 480 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 481 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 482 return ((COFFObj->getCOFFSection(Section)->Characteristics & 483 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 484 | COFF::IMAGE_SCN_MEM_READ 485 | COFF::IMAGE_SCN_MEM_WRITE)) 486 == 487 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 488 | COFF::IMAGE_SCN_MEM_READ)); 489 490 assert(isa<MachOObjectFile>(Obj)); 491 return false; 492 } 493 494 static bool isZeroInit(const SectionRef Section) { 495 const ObjectFile *Obj = Section.getObject(); 496 if (isa<object::ELFObjectFileBase>(Obj)) 497 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 498 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 499 return COFFObj->getCOFFSection(Section)->Characteristics & 500 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 501 502 auto *MachO = cast<MachOObjectFile>(Obj); 503 unsigned SectionType = MachO->getSectionType(Section); 504 return SectionType == MachO::S_ZEROFILL || 505 SectionType == MachO::S_GB_ZEROFILL; 506 } 507 508 // Compute an upper bound of the memory size that is required to load all 509 // sections 510 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 511 uint64_t &CodeSize, 512 uint32_t &CodeAlign, 513 uint64_t &RODataSize, 514 uint32_t &RODataAlign, 515 uint64_t &RWDataSize, 516 uint32_t &RWDataAlign) { 517 // Compute the size of all sections required for execution 518 std::vector<uint64_t> CodeSectionSizes; 519 std::vector<uint64_t> ROSectionSizes; 520 std::vector<uint64_t> RWSectionSizes; 521 522 // Collect sizes of all sections to be loaded; 523 // also determine the max alignment of all sections 524 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 525 SI != SE; ++SI) { 526 const SectionRef &Section = *SI; 527 528 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 529 530 // Consider only the sections that are required to be loaded for execution 531 if (IsRequired) { 532 uint64_t DataSize = Section.getSize(); 533 uint64_t Alignment64 = Section.getAlignment(); 534 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 535 bool IsCode = Section.isText(); 536 bool IsReadOnly = isReadOnlyData(Section); 537 538 StringRef Name; 539 if (auto EC = Section.getName(Name)) 540 return errorCodeToError(EC); 541 542 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 543 uint64_t SectionSize = DataSize + StubBufSize; 544 545 // The .eh_frame section (at least on Linux) needs an extra four bytes 546 // padded 547 // with zeroes added at the end. For MachO objects, this section has a 548 // slightly different name, so this won't have any effect for MachO 549 // objects. 550 if (Name == ".eh_frame") 551 SectionSize += 4; 552 553 if (!SectionSize) 554 SectionSize = 1; 555 556 if (IsCode) { 557 CodeAlign = std::max(CodeAlign, Alignment); 558 CodeSectionSizes.push_back(SectionSize); 559 } else if (IsReadOnly) { 560 RODataAlign = std::max(RODataAlign, Alignment); 561 ROSectionSizes.push_back(SectionSize); 562 } else { 563 RWDataAlign = std::max(RWDataAlign, Alignment); 564 RWSectionSizes.push_back(SectionSize); 565 } 566 } 567 } 568 569 // Compute Global Offset Table size. If it is not zero we 570 // also update alignment, which is equal to a size of a 571 // single GOT entry. 572 if (unsigned GotSize = computeGOTSize(Obj)) { 573 RWSectionSizes.push_back(GotSize); 574 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); 575 } 576 577 // Compute the size of all common symbols 578 uint64_t CommonSize = 0; 579 uint32_t CommonAlign = 1; 580 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 581 ++I) { 582 uint32_t Flags = I->getFlags(); 583 if (Flags & SymbolRef::SF_Common) { 584 // Add the common symbols to a list. We'll allocate them all below. 585 uint64_t Size = I->getCommonSize(); 586 uint32_t Align = I->getAlignment(); 587 // If this is the first common symbol, use its alignment as the alignment 588 // for the common symbols section. 589 if (CommonSize == 0) 590 CommonAlign = Align; 591 CommonSize = alignTo(CommonSize, Align) + Size; 592 } 593 } 594 if (CommonSize != 0) { 595 RWSectionSizes.push_back(CommonSize); 596 RWDataAlign = std::max(RWDataAlign, CommonAlign); 597 } 598 599 // Compute the required allocation space for each different type of sections 600 // (code, read-only data, read-write data) assuming that all sections are 601 // allocated with the max alignment. Note that we cannot compute with the 602 // individual alignments of the sections, because then the required size 603 // depends on the order, in which the sections are allocated. 604 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 605 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 606 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 607 608 return Error::success(); 609 } 610 611 // compute GOT size 612 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 613 size_t GotEntrySize = getGOTEntrySize(); 614 if (!GotEntrySize) 615 return 0; 616 617 size_t GotSize = 0; 618 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 619 SI != SE; ++SI) { 620 621 for (const RelocationRef &Reloc : SI->relocations()) 622 if (relocationNeedsGot(Reloc)) 623 GotSize += GotEntrySize; 624 } 625 626 return GotSize; 627 } 628 629 // compute stub buffer size for the given section 630 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 631 const SectionRef &Section) { 632 unsigned StubSize = getMaxStubSize(); 633 if (StubSize == 0) { 634 return 0; 635 } 636 // FIXME: this is an inefficient way to handle this. We should computed the 637 // necessary section allocation size in loadObject by walking all the sections 638 // once. 639 unsigned StubBufSize = 0; 640 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 641 SI != SE; ++SI) { 642 section_iterator RelSecI = SI->getRelocatedSection(); 643 if (!(RelSecI == Section)) 644 continue; 645 646 for (const RelocationRef &Reloc : SI->relocations()) 647 if (relocationNeedsStub(Reloc)) 648 StubBufSize += StubSize; 649 } 650 651 // Get section data size and alignment 652 uint64_t DataSize = Section.getSize(); 653 uint64_t Alignment64 = Section.getAlignment(); 654 655 // Add stubbuf size alignment 656 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 657 unsigned StubAlignment = getStubAlignment(); 658 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 659 if (StubAlignment > EndAlignment) 660 StubBufSize += StubAlignment - EndAlignment; 661 return StubBufSize; 662 } 663 664 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 665 unsigned Size) const { 666 uint64_t Result = 0; 667 if (IsTargetLittleEndian) { 668 Src += Size - 1; 669 while (Size--) 670 Result = (Result << 8) | *Src--; 671 } else 672 while (Size--) 673 Result = (Result << 8) | *Src++; 674 675 return Result; 676 } 677 678 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 679 unsigned Size) const { 680 if (IsTargetLittleEndian) { 681 while (Size--) { 682 *Dst++ = Value & 0xFF; 683 Value >>= 8; 684 } 685 } else { 686 Dst += Size - 1; 687 while (Size--) { 688 *Dst-- = Value & 0xFF; 689 Value >>= 8; 690 } 691 } 692 } 693 694 Expected<JITSymbolFlags> 695 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { 696 return JITSymbolFlags::fromObjectSymbol(SR); 697 } 698 699 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 700 CommonSymbolList &SymbolsToAllocate, 701 uint64_t CommonSize, 702 uint32_t CommonAlign) { 703 if (SymbolsToAllocate.empty()) 704 return Error::success(); 705 706 // Allocate memory for the section 707 unsigned SectionID = Sections.size(); 708 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 709 "<common symbols>", false); 710 if (!Addr) 711 report_fatal_error("Unable to allocate memory for common symbols!"); 712 uint64_t Offset = 0; 713 Sections.push_back( 714 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 715 memset(Addr, 0, CommonSize); 716 717 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID 718 << " new addr: " << format("%p", Addr) 719 << " DataSize: " << CommonSize << "\n"); 720 721 // Assign the address of each symbol 722 for (auto &Sym : SymbolsToAllocate) { 723 uint32_t Align = Sym.getAlignment(); 724 uint64_t Size = Sym.getCommonSize(); 725 StringRef Name; 726 if (auto NameOrErr = Sym.getName()) 727 Name = *NameOrErr; 728 else 729 return NameOrErr.takeError(); 730 if (Align) { 731 // This symbol has an alignment requirement. 732 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 733 Addr += AlignOffset; 734 Offset += AlignOffset; 735 } 736 auto JITSymFlags = getJITSymbolFlags(Sym); 737 738 if (!JITSymFlags) 739 return JITSymFlags.takeError(); 740 741 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 742 << format("%p", Addr) << "\n"); 743 GlobalSymbolTable[Name] = 744 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); 745 Offset += Size; 746 Addr += Size; 747 } 748 749 return Error::success(); 750 } 751 752 Expected<unsigned> 753 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 754 const SectionRef &Section, 755 bool IsCode) { 756 StringRef data; 757 uint64_t Alignment64 = Section.getAlignment(); 758 759 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 760 unsigned PaddingSize = 0; 761 unsigned StubBufSize = 0; 762 bool IsRequired = isRequiredForExecution(Section); 763 bool IsVirtual = Section.isVirtual(); 764 bool IsZeroInit = isZeroInit(Section); 765 bool IsReadOnly = isReadOnlyData(Section); 766 uint64_t DataSize = Section.getSize(); 767 768 // An alignment of 0 (at least with ELF) is identical to an alignment of 1, 769 // while being more "polite". Other formats do not support 0-aligned sections 770 // anyway, so we should guarantee that the alignment is always at least 1. 771 Alignment = std::max(1u, Alignment); 772 773 StringRef Name; 774 if (auto EC = Section.getName(Name)) 775 return errorCodeToError(EC); 776 777 StubBufSize = computeSectionStubBufSize(Obj, Section); 778 779 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 780 // with zeroes added at the end. For MachO objects, this section has a 781 // slightly different name, so this won't have any effect for MachO objects. 782 if (Name == ".eh_frame") 783 PaddingSize = 4; 784 785 uintptr_t Allocate; 786 unsigned SectionID = Sections.size(); 787 uint8_t *Addr; 788 const char *pData = nullptr; 789 790 // If this section contains any bits (i.e. isn't a virtual or bss section), 791 // grab a reference to them. 792 if (!IsVirtual && !IsZeroInit) { 793 // In either case, set the location of the unrelocated section in memory, 794 // since we still process relocations for it even if we're not applying them. 795 if (Expected<StringRef> E = Section.getContents()) 796 data = *E; 797 else 798 return E.takeError(); 799 pData = data.data(); 800 } 801 802 // Code section alignment needs to be at least as high as stub alignment or 803 // padding calculations may by incorrect when the section is remapped to a 804 // higher alignment. 805 if (IsCode) { 806 Alignment = std::max(Alignment, getStubAlignment()); 807 if (StubBufSize > 0) 808 PaddingSize += getStubAlignment() - 1; 809 } 810 811 // Some sections, such as debug info, don't need to be loaded for execution. 812 // Process those only if explicitly requested. 813 if (IsRequired || ProcessAllSections) { 814 Allocate = DataSize + PaddingSize + StubBufSize; 815 if (!Allocate) 816 Allocate = 1; 817 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 818 Name) 819 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 820 Name, IsReadOnly); 821 if (!Addr) 822 report_fatal_error("Unable to allocate section memory!"); 823 824 // Zero-initialize or copy the data from the image 825 if (IsZeroInit || IsVirtual) 826 memset(Addr, 0, DataSize); 827 else 828 memcpy(Addr, pData, DataSize); 829 830 // Fill in any extra bytes we allocated for padding 831 if (PaddingSize != 0) { 832 memset(Addr + DataSize, 0, PaddingSize); 833 // Update the DataSize variable to include padding. 834 DataSize += PaddingSize; 835 836 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 837 // have been increased above to account for this). 838 if (StubBufSize > 0) 839 DataSize &= ~(getStubAlignment() - 1); 840 } 841 842 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " 843 << Name << " obj addr: " << format("%p", pData) 844 << " new addr: " << format("%p", Addr) << " DataSize: " 845 << DataSize << " StubBufSize: " << StubBufSize 846 << " Allocate: " << Allocate << "\n"); 847 } else { 848 // Even if we didn't load the section, we need to record an entry for it 849 // to handle later processing (and by 'handle' I mean don't do anything 850 // with these sections). 851 Allocate = 0; 852 Addr = nullptr; 853 LLVM_DEBUG( 854 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 855 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 856 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 857 << " Allocate: " << Allocate << "\n"); 858 } 859 860 Sections.push_back( 861 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 862 863 // Debug info sections are linked as if their load address was zero 864 if (!IsRequired) 865 Sections.back().setLoadAddress(0); 866 867 return SectionID; 868 } 869 870 Expected<unsigned> 871 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 872 const SectionRef &Section, 873 bool IsCode, 874 ObjSectionToIDMap &LocalSections) { 875 876 unsigned SectionID = 0; 877 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 878 if (i != LocalSections.end()) 879 SectionID = i->second; 880 else { 881 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 882 SectionID = *SectionIDOrErr; 883 else 884 return SectionIDOrErr.takeError(); 885 LocalSections[Section] = SectionID; 886 } 887 return SectionID; 888 } 889 890 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 891 unsigned SectionID) { 892 Relocations[SectionID].push_back(RE); 893 } 894 895 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 896 StringRef SymbolName) { 897 // Relocation by symbol. If the symbol is found in the global symbol table, 898 // create an appropriate section relocation. Otherwise, add it to 899 // ExternalSymbolRelocations. 900 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 901 if (Loc == GlobalSymbolTable.end()) { 902 ExternalSymbolRelocations[SymbolName].push_back(RE); 903 } else { 904 // Copy the RE since we want to modify its addend. 905 RelocationEntry RECopy = RE; 906 const auto &SymInfo = Loc->second; 907 RECopy.Addend += SymInfo.getOffset(); 908 Relocations[SymInfo.getSectionID()].push_back(RECopy); 909 } 910 } 911 912 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 913 unsigned AbiVariant) { 914 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 915 // This stub has to be able to access the full address space, 916 // since symbol lookup won't necessarily find a handy, in-range, 917 // PLT stub for functions which could be anywhere. 918 // Stub can use ip0 (== x16) to calculate address 919 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 920 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 921 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 922 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 923 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 924 925 return Addr; 926 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 927 // TODO: There is only ARM far stub now. We should add the Thumb stub, 928 // and stubs for branches Thumb - ARM and ARM - Thumb. 929 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 930 return Addr + 4; 931 } else if (IsMipsO32ABI || IsMipsN32ABI) { 932 // 0: 3c190000 lui t9,%hi(addr). 933 // 4: 27390000 addiu t9,t9,%lo(addr). 934 // 8: 03200008 jr t9. 935 // c: 00000000 nop. 936 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 937 const unsigned NopInstr = 0x0; 938 unsigned JrT9Instr = 0x03200008; 939 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 940 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 941 JrT9Instr = 0x03200009; 942 943 writeBytesUnaligned(LuiT9Instr, Addr, 4); 944 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 945 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 946 writeBytesUnaligned(NopInstr, Addr + 12, 4); 947 return Addr; 948 } else if (IsMipsN64ABI) { 949 // 0: 3c190000 lui t9,%highest(addr). 950 // 4: 67390000 daddiu t9,t9,%higher(addr). 951 // 8: 0019CC38 dsll t9,t9,16. 952 // c: 67390000 daddiu t9,t9,%hi(addr). 953 // 10: 0019CC38 dsll t9,t9,16. 954 // 14: 67390000 daddiu t9,t9,%lo(addr). 955 // 18: 03200008 jr t9. 956 // 1c: 00000000 nop. 957 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 958 DsllT9Instr = 0x19CC38; 959 const unsigned NopInstr = 0x0; 960 unsigned JrT9Instr = 0x03200008; 961 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 962 JrT9Instr = 0x03200009; 963 964 writeBytesUnaligned(LuiT9Instr, Addr, 4); 965 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 966 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 967 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 968 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 969 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 970 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 971 writeBytesUnaligned(NopInstr, Addr + 28, 4); 972 return Addr; 973 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 974 // Depending on which version of the ELF ABI is in use, we need to 975 // generate one of two variants of the stub. They both start with 976 // the same sequence to load the target address into r12. 977 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 978 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 979 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 980 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 981 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 982 if (AbiVariant == 2) { 983 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 984 // The address is already in r12 as required by the ABI. Branch to it. 985 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 986 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 987 writeInt32BE(Addr+28, 0x4E800420); // bctr 988 } else { 989 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 990 // Load the function address on r11 and sets it to control register. Also 991 // loads the function TOC in r2 and environment pointer to r11. 992 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 993 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 994 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 995 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 996 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 997 writeInt32BE(Addr+40, 0x4E800420); // bctr 998 } 999 return Addr; 1000 } else if (Arch == Triple::systemz) { 1001 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 1002 writeInt16BE(Addr+2, 0x0000); 1003 writeInt16BE(Addr+4, 0x0004); 1004 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 1005 // 8-byte address stored at Addr + 8 1006 return Addr; 1007 } else if (Arch == Triple::x86_64) { 1008 *Addr = 0xFF; // jmp 1009 *(Addr+1) = 0x25; // rip 1010 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 1011 } else if (Arch == Triple::x86) { 1012 *Addr = 0xE9; // 32-bit pc-relative jump. 1013 } 1014 return Addr; 1015 } 1016 1017 // Assign an address to a symbol name and resolve all the relocations 1018 // associated with it. 1019 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 1020 uint64_t Addr) { 1021 // The address to use for relocation resolution is not 1022 // the address of the local section buffer. We must be doing 1023 // a remote execution environment of some sort. Relocations can't 1024 // be applied until all the sections have been moved. The client must 1025 // trigger this with a call to MCJIT::finalize() or 1026 // RuntimeDyld::resolveRelocations(). 1027 // 1028 // Addr is a uint64_t because we can't assume the pointer width 1029 // of the target is the same as that of the host. Just use a generic 1030 // "big enough" type. 1031 LLVM_DEBUG( 1032 dbgs() << "Reassigning address for section " << SectionID << " (" 1033 << Sections[SectionID].getName() << "): " 1034 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 1035 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 1036 Sections[SectionID].setLoadAddress(Addr); 1037 } 1038 1039 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 1040 uint64_t Value) { 1041 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1042 const RelocationEntry &RE = Relocs[i]; 1043 // Ignore relocations for sections that were not loaded 1044 if (Sections[RE.SectionID].getAddress() == nullptr) 1045 continue; 1046 resolveRelocation(RE, Value); 1047 } 1048 } 1049 1050 void RuntimeDyldImpl::applyExternalSymbolRelocations( 1051 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { 1052 while (!ExternalSymbolRelocations.empty()) { 1053 1054 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 1055 1056 StringRef Name = i->first(); 1057 if (Name.size() == 0) { 1058 // This is an absolute symbol, use an address of zero. 1059 LLVM_DEBUG(dbgs() << "Resolving absolute relocations." 1060 << "\n"); 1061 RelocationList &Relocs = i->second; 1062 resolveRelocationList(Relocs, 0); 1063 } else { 1064 uint64_t Addr = 0; 1065 JITSymbolFlags Flags; 1066 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1067 if (Loc == GlobalSymbolTable.end()) { 1068 auto RRI = ExternalSymbolMap.find(Name); 1069 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1070 Addr = RRI->second.getAddress(); 1071 Flags = RRI->second.getFlags(); 1072 // The call to getSymbolAddress may have caused additional modules to 1073 // be loaded, which may have added new entries to the 1074 // ExternalSymbolRelocations map. Consquently, we need to update our 1075 // iterator. This is also why retrieval of the relocation list 1076 // associated with this symbol is deferred until below this point. 1077 // New entries may have been added to the relocation list. 1078 i = ExternalSymbolRelocations.find(Name); 1079 } else { 1080 // We found the symbol in our global table. It was probably in a 1081 // Module that we loaded previously. 1082 const auto &SymInfo = Loc->second; 1083 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1084 SymInfo.getOffset(); 1085 Flags = SymInfo.getFlags(); 1086 } 1087 1088 // FIXME: Implement error handling that doesn't kill the host program! 1089 if (!Addr) 1090 report_fatal_error("Program used external function '" + Name + 1091 "' which could not be resolved!"); 1092 1093 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1094 // manually and we shouldn't resolve its relocations. 1095 if (Addr != UINT64_MAX) { 1096 1097 // Tweak the address based on the symbol flags if necessary. 1098 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1099 // if the target symbol is Thumb. 1100 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1101 1102 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1103 << format("0x%lx", Addr) << "\n"); 1104 // This list may have been updated when we called getSymbolAddress, so 1105 // don't change this code to get the list earlier. 1106 RelocationList &Relocs = i->second; 1107 resolveRelocationList(Relocs, Addr); 1108 } 1109 } 1110 1111 ExternalSymbolRelocations.erase(i); 1112 } 1113 } 1114 1115 Error RuntimeDyldImpl::resolveExternalSymbols() { 1116 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 1117 1118 // Resolution can trigger emission of more symbols, so iterate until 1119 // we've resolved *everything*. 1120 { 1121 JITSymbolResolver::LookupSet ResolvedSymbols; 1122 1123 while (true) { 1124 JITSymbolResolver::LookupSet NewSymbols; 1125 1126 for (auto &RelocKV : ExternalSymbolRelocations) { 1127 StringRef Name = RelocKV.first(); 1128 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1129 !ResolvedSymbols.count(Name)) 1130 NewSymbols.insert(Name); 1131 } 1132 1133 if (NewSymbols.empty()) 1134 break; 1135 1136 #ifdef _MSC_VER 1137 using ExpectedLookupResult = 1138 MSVCPExpected<JITSymbolResolver::LookupResult>; 1139 #else 1140 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; 1141 #endif 1142 1143 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); 1144 auto NewSymbolsF = NewSymbolsP->get_future(); 1145 Resolver.lookup(NewSymbols, 1146 [=](Expected<JITSymbolResolver::LookupResult> Result) { 1147 NewSymbolsP->set_value(std::move(Result)); 1148 }); 1149 1150 auto NewResolverResults = NewSymbolsF.get(); 1151 1152 if (!NewResolverResults) 1153 return NewResolverResults.takeError(); 1154 1155 assert(NewResolverResults->size() == NewSymbols.size() && 1156 "Should have errored on unresolved symbols"); 1157 1158 for (auto &RRKV : *NewResolverResults) { 1159 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1160 ExternalSymbolMap.insert(RRKV); 1161 ResolvedSymbols.insert(RRKV.first); 1162 } 1163 } 1164 } 1165 1166 applyExternalSymbolRelocations(ExternalSymbolMap); 1167 1168 return Error::success(); 1169 } 1170 1171 void RuntimeDyldImpl::finalizeAsync( 1172 std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted, 1173 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) { 1174 1175 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have 1176 // c++14. 1177 auto SharedUnderlyingBuffer = 1178 std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer)); 1179 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); 1180 auto PostResolveContinuation = 1181 [SharedThis, OnEmitted, SharedUnderlyingBuffer]( 1182 Expected<JITSymbolResolver::LookupResult> Result) { 1183 if (!Result) { 1184 OnEmitted(Result.takeError()); 1185 return; 1186 } 1187 1188 /// Copy the result into a StringMap, where the keys are held by value. 1189 StringMap<JITEvaluatedSymbol> Resolved; 1190 for (auto &KV : *Result) 1191 Resolved[KV.first] = KV.second; 1192 1193 SharedThis->applyExternalSymbolRelocations(Resolved); 1194 SharedThis->resolveLocalRelocations(); 1195 SharedThis->registerEHFrames(); 1196 std::string ErrMsg; 1197 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) 1198 OnEmitted(make_error<StringError>(std::move(ErrMsg), 1199 inconvertibleErrorCode())); 1200 else 1201 OnEmitted(Error::success()); 1202 }; 1203 1204 JITSymbolResolver::LookupSet Symbols; 1205 1206 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { 1207 StringRef Name = RelocKV.first(); 1208 assert(!Name.empty() && "Symbol has no name?"); 1209 assert(!SharedThis->GlobalSymbolTable.count(Name) && 1210 "Name already processed. RuntimeDyld instances can not be re-used " 1211 "when finalizing with finalizeAsync."); 1212 Symbols.insert(Name); 1213 } 1214 1215 if (!Symbols.empty()) { 1216 SharedThis->Resolver.lookup(Symbols, PostResolveContinuation); 1217 } else 1218 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); 1219 } 1220 1221 //===----------------------------------------------------------------------===// 1222 // RuntimeDyld class implementation 1223 1224 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1225 const object::SectionRef &Sec) const { 1226 1227 auto I = ObjSecToIDMap.find(Sec); 1228 if (I != ObjSecToIDMap.end()) 1229 return RTDyld.Sections[I->second].getLoadAddress(); 1230 1231 return 0; 1232 } 1233 1234 void RuntimeDyld::MemoryManager::anchor() {} 1235 void JITSymbolResolver::anchor() {} 1236 void LegacyJITSymbolResolver::anchor() {} 1237 1238 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1239 JITSymbolResolver &Resolver) 1240 : MemMgr(MemMgr), Resolver(Resolver) { 1241 // FIXME: There's a potential issue lurking here if a single instance of 1242 // RuntimeDyld is used to load multiple objects. The current implementation 1243 // associates a single memory manager with a RuntimeDyld instance. Even 1244 // though the public class spawns a new 'impl' instance for each load, 1245 // they share a single memory manager. This can become a problem when page 1246 // permissions are applied. 1247 Dyld = nullptr; 1248 ProcessAllSections = false; 1249 } 1250 1251 RuntimeDyld::~RuntimeDyld() {} 1252 1253 static std::unique_ptr<RuntimeDyldCOFF> 1254 createRuntimeDyldCOFF( 1255 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1256 JITSymbolResolver &Resolver, bool ProcessAllSections, 1257 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1258 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1259 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1260 Dyld->setProcessAllSections(ProcessAllSections); 1261 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1262 return Dyld; 1263 } 1264 1265 static std::unique_ptr<RuntimeDyldELF> 1266 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1267 JITSymbolResolver &Resolver, bool ProcessAllSections, 1268 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1269 std::unique_ptr<RuntimeDyldELF> Dyld = 1270 RuntimeDyldELF::create(Arch, MM, Resolver); 1271 Dyld->setProcessAllSections(ProcessAllSections); 1272 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1273 return Dyld; 1274 } 1275 1276 static std::unique_ptr<RuntimeDyldMachO> 1277 createRuntimeDyldMachO( 1278 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1279 JITSymbolResolver &Resolver, 1280 bool ProcessAllSections, 1281 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1282 std::unique_ptr<RuntimeDyldMachO> Dyld = 1283 RuntimeDyldMachO::create(Arch, MM, Resolver); 1284 Dyld->setProcessAllSections(ProcessAllSections); 1285 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1286 return Dyld; 1287 } 1288 1289 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1290 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1291 if (!Dyld) { 1292 if (Obj.isELF()) 1293 Dyld = 1294 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1295 MemMgr, Resolver, ProcessAllSections, 1296 std::move(NotifyStubEmitted)); 1297 else if (Obj.isMachO()) 1298 Dyld = createRuntimeDyldMachO( 1299 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1300 ProcessAllSections, std::move(NotifyStubEmitted)); 1301 else if (Obj.isCOFF()) 1302 Dyld = createRuntimeDyldCOFF( 1303 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1304 ProcessAllSections, std::move(NotifyStubEmitted)); 1305 else 1306 report_fatal_error("Incompatible object format!"); 1307 } 1308 1309 if (!Dyld->isCompatibleFile(Obj)) 1310 report_fatal_error("Incompatible object format!"); 1311 1312 auto LoadedObjInfo = Dyld->loadObject(Obj); 1313 MemMgr.notifyObjectLoaded(*this, Obj); 1314 return LoadedObjInfo; 1315 } 1316 1317 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1318 if (!Dyld) 1319 return nullptr; 1320 return Dyld->getSymbolLocalAddress(Name); 1321 } 1322 1323 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { 1324 assert(Dyld && "No RuntimeDyld instance attached"); 1325 return Dyld->getSymbolSectionID(Name); 1326 } 1327 1328 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1329 if (!Dyld) 1330 return nullptr; 1331 return Dyld->getSymbol(Name); 1332 } 1333 1334 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1335 if (!Dyld) 1336 return std::map<StringRef, JITEvaluatedSymbol>(); 1337 return Dyld->getSymbolTable(); 1338 } 1339 1340 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1341 1342 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1343 Dyld->reassignSectionAddress(SectionID, Addr); 1344 } 1345 1346 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1347 uint64_t TargetAddress) { 1348 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1349 } 1350 1351 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1352 1353 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1354 1355 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1356 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1357 MemMgr.FinalizationLocked = true; 1358 resolveRelocations(); 1359 registerEHFrames(); 1360 if (!MemoryFinalizationLocked) { 1361 MemMgr.finalizeMemory(); 1362 MemMgr.FinalizationLocked = false; 1363 } 1364 } 1365 1366 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { 1367 assert(Dyld && "No Dyld instance attached"); 1368 return Dyld->getSectionContent(SectionID); 1369 } 1370 1371 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { 1372 assert(Dyld && "No Dyld instance attached"); 1373 return Dyld->getSectionLoadAddress(SectionID); 1374 } 1375 1376 void RuntimeDyld::registerEHFrames() { 1377 if (Dyld) 1378 Dyld->registerEHFrames(); 1379 } 1380 1381 void RuntimeDyld::deregisterEHFrames() { 1382 if (Dyld) 1383 Dyld->deregisterEHFrames(); 1384 } 1385 // FIXME: Kill this with fire once we have a new JIT linker: this is only here 1386 // so that we can re-use RuntimeDyld's implementation without twisting the 1387 // interface any further for ORC's purposes. 1388 void jitLinkForORC(object::ObjectFile &Obj, 1389 std::unique_ptr<MemoryBuffer> UnderlyingBuffer, 1390 RuntimeDyld::MemoryManager &MemMgr, 1391 JITSymbolResolver &Resolver, bool ProcessAllSections, 1392 std::function<Error( 1393 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj, 1394 std::map<StringRef, JITEvaluatedSymbol>)> 1395 OnLoaded, 1396 std::function<void(Error)> OnEmitted) { 1397 1398 RuntimeDyld RTDyld(MemMgr, Resolver); 1399 RTDyld.setProcessAllSections(ProcessAllSections); 1400 1401 auto Info = RTDyld.loadObject(Obj); 1402 1403 if (RTDyld.hasError()) { 1404 OnEmitted(make_error<StringError>(RTDyld.getErrorString(), 1405 inconvertibleErrorCode())); 1406 return; 1407 } 1408 1409 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable())) 1410 OnEmitted(std::move(Err)); 1411 1412 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), 1413 std::move(UnderlyingBuffer)); 1414 } 1415 1416 } // end namespace llvm 1417