1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/MathExtras.h"
23 #include <mutex>
24
25 #include <future>
26
27 using namespace llvm;
28 using namespace llvm::object;
29
30 #define DEBUG_TYPE "dyld"
31
32 namespace {
33
34 enum RuntimeDyldErrorCode {
35 GenericRTDyldError = 1
36 };
37
38 // FIXME: This class is only here to support the transition to llvm::Error. It
39 // will be removed once this transition is complete. Clients should prefer to
40 // deal with the Error value directly, rather than converting to error_code.
41 class RuntimeDyldErrorCategory : public std::error_category {
42 public:
name() const43 const char *name() const noexcept override { return "runtimedyld"; }
44
message(int Condition) const45 std::string message(int Condition) const override {
46 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
47 case GenericRTDyldError: return "Generic RuntimeDyld error";
48 }
49 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
50 }
51 };
52
53 }
54
55 char RuntimeDyldError::ID = 0;
56
log(raw_ostream & OS) const57 void RuntimeDyldError::log(raw_ostream &OS) const {
58 OS << ErrMsg << "\n";
59 }
60
convertToErrorCode() const61 std::error_code RuntimeDyldError::convertToErrorCode() const {
62 static RuntimeDyldErrorCategory RTDyldErrorCategory;
63 return std::error_code(GenericRTDyldError, RTDyldErrorCategory);
64 }
65
66 // Empty out-of-line virtual destructor as the key function.
67 RuntimeDyldImpl::~RuntimeDyldImpl() = default;
68
69 // Pin LoadedObjectInfo's vtables to this file.
anchor()70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
71
72 namespace llvm {
73
registerEHFrames()74 void RuntimeDyldImpl::registerEHFrames() {}
75
deregisterEHFrames()76 void RuntimeDyldImpl::deregisterEHFrames() {
77 MemMgr.deregisterEHFrames();
78 }
79
80 #ifndef NDEBUG
dumpSectionMemory(const SectionEntry & S,StringRef State)81 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
82 dbgs() << "----- Contents of section " << S.getName() << " " << State
83 << " -----";
84
85 if (S.getAddress() == nullptr) {
86 dbgs() << "\n <section not emitted>\n";
87 return;
88 }
89
90 const unsigned ColsPerRow = 16;
91
92 uint8_t *DataAddr = S.getAddress();
93 uint64_t LoadAddr = S.getLoadAddress();
94
95 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
96 unsigned BytesRemaining = S.getSize();
97
98 if (StartPadding) {
99 dbgs() << "\n" << format("0x%016" PRIx64,
100 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
101 while (StartPadding--)
102 dbgs() << " ";
103 }
104
105 while (BytesRemaining > 0) {
106 if ((LoadAddr & (ColsPerRow - 1)) == 0)
107 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
108
109 dbgs() << " " << format("%02x", *DataAddr);
110
111 ++DataAddr;
112 ++LoadAddr;
113 --BytesRemaining;
114 }
115
116 dbgs() << "\n";
117 }
118 #endif
119
120 // Resolve the relocations for all symbols we currently know about.
resolveRelocations()121 void RuntimeDyldImpl::resolveRelocations() {
122 std::lock_guard<sys::Mutex> locked(lock);
123
124 // Print out the sections prior to relocation.
125 LLVM_DEBUG({
126 for (SectionEntry &S : Sections)
127 dumpSectionMemory(S, "before relocations");
128 });
129
130 // First, resolve relocations associated with external symbols.
131 if (auto Err = resolveExternalSymbols()) {
132 HasError = true;
133 ErrorStr = toString(std::move(Err));
134 }
135
136 resolveLocalRelocations();
137
138 // Print out sections after relocation.
139 LLVM_DEBUG({
140 for (SectionEntry &S : Sections)
141 dumpSectionMemory(S, "after relocations");
142 });
143 }
144
resolveLocalRelocations()145 void RuntimeDyldImpl::resolveLocalRelocations() {
146 // Iterate over all outstanding relocations
147 for (const auto &Rel : Relocations) {
148 // The Section here (Sections[i]) refers to the section in which the
149 // symbol for the relocation is located. The SectionID in the relocation
150 // entry provides the section to which the relocation will be applied.
151 unsigned Idx = Rel.first;
152 uint64_t Addr = getSectionLoadAddress(Idx);
153 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
154 << format("%p", (uintptr_t)Addr) << "\n");
155 resolveRelocationList(Rel.second, Addr);
156 }
157 Relocations.clear();
158 }
159
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)160 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
161 uint64_t TargetAddress) {
162 std::lock_guard<sys::Mutex> locked(lock);
163 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
164 if (Sections[i].getAddress() == LocalAddress) {
165 reassignSectionAddress(i, TargetAddress);
166 return;
167 }
168 }
169 llvm_unreachable("Attempting to remap address of unknown section!");
170 }
171
getOffset(const SymbolRef & Sym,SectionRef Sec,uint64_t & Result)172 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
173 uint64_t &Result) {
174 Expected<uint64_t> AddressOrErr = Sym.getAddress();
175 if (!AddressOrErr)
176 return AddressOrErr.takeError();
177 Result = *AddressOrErr - Sec.getAddress();
178 return Error::success();
179 }
180
181 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
loadObjectImpl(const object::ObjectFile & Obj)182 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
183 std::lock_guard<sys::Mutex> locked(lock);
184
185 // Save information about our target
186 Arch = (Triple::ArchType)Obj.getArch();
187 IsTargetLittleEndian = Obj.isLittleEndian();
188 setMipsABI(Obj);
189
190 // Compute the memory size required to load all sections to be loaded
191 // and pass this information to the memory manager
192 if (MemMgr.needsToReserveAllocationSpace()) {
193 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
194 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
195 if (auto Err = computeTotalAllocSize(Obj,
196 CodeSize, CodeAlign,
197 RODataSize, RODataAlign,
198 RWDataSize, RWDataAlign))
199 return std::move(Err);
200 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
201 RWDataSize, RWDataAlign);
202 }
203
204 // Used sections from the object file
205 ObjSectionToIDMap LocalSections;
206
207 // Common symbols requiring allocation, with their sizes and alignments
208 CommonSymbolList CommonSymbolsToAllocate;
209
210 uint64_t CommonSize = 0;
211 uint32_t CommonAlign = 0;
212
213 // First, collect all weak and common symbols. We need to know if stronger
214 // definitions occur elsewhere.
215 JITSymbolResolver::LookupSet ResponsibilitySet;
216 {
217 JITSymbolResolver::LookupSet Symbols;
218 for (auto &Sym : Obj.symbols()) {
219 Expected<uint32_t> FlagsOrErr = Sym.getFlags();
220 if (!FlagsOrErr)
221 // TODO: Test this error.
222 return FlagsOrErr.takeError();
223 if ((*FlagsOrErr & SymbolRef::SF_Common) ||
224 (*FlagsOrErr & SymbolRef::SF_Weak)) {
225 // Get symbol name.
226 if (auto NameOrErr = Sym.getName())
227 Symbols.insert(*NameOrErr);
228 else
229 return NameOrErr.takeError();
230 }
231 }
232
233 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
234 ResponsibilitySet = std::move(*ResultOrErr);
235 else
236 return ResultOrErr.takeError();
237 }
238
239 // Parse symbols
240 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
241 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
242 ++I) {
243 Expected<uint32_t> FlagsOrErr = I->getFlags();
244 if (!FlagsOrErr)
245 // TODO: Test this error.
246 return FlagsOrErr.takeError();
247
248 // Skip undefined symbols.
249 if (*FlagsOrErr & SymbolRef::SF_Undefined)
250 continue;
251
252 // Get the symbol type.
253 object::SymbolRef::Type SymType;
254 if (auto SymTypeOrErr = I->getType())
255 SymType = *SymTypeOrErr;
256 else
257 return SymTypeOrErr.takeError();
258
259 // Get symbol name.
260 StringRef Name;
261 if (auto NameOrErr = I->getName())
262 Name = *NameOrErr;
263 else
264 return NameOrErr.takeError();
265
266 // Compute JIT symbol flags.
267 auto JITSymFlags = getJITSymbolFlags(*I);
268 if (!JITSymFlags)
269 return JITSymFlags.takeError();
270
271 // If this is a weak definition, check to see if there's a strong one.
272 // If there is, skip this symbol (we won't be providing it: the strong
273 // definition will). If there's no strong definition, make this definition
274 // strong.
275 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
276 // First check whether there's already a definition in this instance.
277 if (GlobalSymbolTable.count(Name))
278 continue;
279
280 // If we're not responsible for this symbol, skip it.
281 if (!ResponsibilitySet.count(Name))
282 continue;
283
284 // Otherwise update the flags on the symbol to make this definition
285 // strong.
286 if (JITSymFlags->isWeak())
287 *JITSymFlags &= ~JITSymbolFlags::Weak;
288 if (JITSymFlags->isCommon()) {
289 *JITSymFlags &= ~JITSymbolFlags::Common;
290 uint32_t Align = I->getAlignment();
291 uint64_t Size = I->getCommonSize();
292 if (!CommonAlign)
293 CommonAlign = Align;
294 CommonSize = alignTo(CommonSize, Align) + Size;
295 CommonSymbolsToAllocate.push_back(*I);
296 }
297 }
298
299 if (*FlagsOrErr & SymbolRef::SF_Absolute &&
300 SymType != object::SymbolRef::ST_File) {
301 uint64_t Addr = 0;
302 if (auto AddrOrErr = I->getAddress())
303 Addr = *AddrOrErr;
304 else
305 return AddrOrErr.takeError();
306
307 unsigned SectionID = AbsoluteSymbolSection;
308
309 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
310 << " SID: " << SectionID
311 << " Offset: " << format("%p", (uintptr_t)Addr)
312 << " flags: " << *FlagsOrErr << "\n");
313 if (!Name.empty()) // Skip absolute symbol relocations.
314 GlobalSymbolTable[Name] =
315 SymbolTableEntry(SectionID, Addr, *JITSymFlags);
316 } else if (SymType == object::SymbolRef::ST_Function ||
317 SymType == object::SymbolRef::ST_Data ||
318 SymType == object::SymbolRef::ST_Unknown ||
319 SymType == object::SymbolRef::ST_Other) {
320
321 section_iterator SI = Obj.section_end();
322 if (auto SIOrErr = I->getSection())
323 SI = *SIOrErr;
324 else
325 return SIOrErr.takeError();
326
327 if (SI == Obj.section_end())
328 continue;
329
330 // Get symbol offset.
331 uint64_t SectOffset;
332 if (auto Err = getOffset(*I, *SI, SectOffset))
333 return std::move(Err);
334
335 bool IsCode = SI->isText();
336 unsigned SectionID;
337 if (auto SectionIDOrErr =
338 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
339 SectionID = *SectionIDOrErr;
340 else
341 return SectionIDOrErr.takeError();
342
343 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
344 << " SID: " << SectionID
345 << " Offset: " << format("%p", (uintptr_t)SectOffset)
346 << " flags: " << *FlagsOrErr << "\n");
347 if (!Name.empty()) // Skip absolute symbol relocations
348 GlobalSymbolTable[Name] =
349 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
350 }
351 }
352
353 // Allocate common symbols
354 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
355 CommonAlign))
356 return std::move(Err);
357
358 // Parse and process relocations
359 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
360 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
361 SI != SE; ++SI) {
362 StubMap Stubs;
363
364 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
365 if (!RelSecOrErr)
366 return RelSecOrErr.takeError();
367
368 section_iterator RelocatedSection = *RelSecOrErr;
369 if (RelocatedSection == SE)
370 continue;
371
372 relocation_iterator I = SI->relocation_begin();
373 relocation_iterator E = SI->relocation_end();
374
375 if (I == E && !ProcessAllSections)
376 continue;
377
378 bool IsCode = RelocatedSection->isText();
379 unsigned SectionID = 0;
380 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
381 LocalSections))
382 SectionID = *SectionIDOrErr;
383 else
384 return SectionIDOrErr.takeError();
385
386 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
387
388 for (; I != E;)
389 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
390 I = *IOrErr;
391 else
392 return IOrErr.takeError();
393
394 // If there is a NotifyStubEmitted callback set, call it to register any
395 // stubs created for this section.
396 if (NotifyStubEmitted) {
397 StringRef FileName = Obj.getFileName();
398 StringRef SectionName = Sections[SectionID].getName();
399 for (auto &KV : Stubs) {
400
401 auto &VR = KV.first;
402 uint64_t StubAddr = KV.second;
403
404 // If this is a named stub, just call NotifyStubEmitted.
405 if (VR.SymbolName) {
406 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
407 StubAddr);
408 continue;
409 }
410
411 // Otherwise we will have to try a reverse lookup on the globla symbol table.
412 for (auto &GSTMapEntry : GlobalSymbolTable) {
413 StringRef SymbolName = GSTMapEntry.first();
414 auto &GSTEntry = GSTMapEntry.second;
415 if (GSTEntry.getSectionID() == VR.SectionID &&
416 GSTEntry.getOffset() == VR.Offset) {
417 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
418 StubAddr);
419 break;
420 }
421 }
422 }
423 }
424 }
425
426 // Process remaining sections
427 if (ProcessAllSections) {
428 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
429 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
430 SI != SE; ++SI) {
431
432 /* Ignore already loaded sections */
433 if (LocalSections.find(*SI) != LocalSections.end())
434 continue;
435
436 bool IsCode = SI->isText();
437 if (auto SectionIDOrErr =
438 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
439 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
440 else
441 return SectionIDOrErr.takeError();
442 }
443 }
444
445 // Give the subclasses a chance to tie-up any loose ends.
446 if (auto Err = finalizeLoad(Obj, LocalSections))
447 return std::move(Err);
448
449 // for (auto E : LocalSections)
450 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
451
452 return LocalSections;
453 }
454
455 // A helper method for computeTotalAllocSize.
456 // Computes the memory size required to allocate sections with the given sizes,
457 // assuming that all sections are allocated with the given alignment
458 static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> & SectionSizes,uint64_t Alignment)459 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
460 uint64_t Alignment) {
461 uint64_t TotalSize = 0;
462 for (uint64_t SectionSize : SectionSizes) {
463 uint64_t AlignedSize =
464 (SectionSize + Alignment - 1) / Alignment * Alignment;
465 TotalSize += AlignedSize;
466 }
467 return TotalSize;
468 }
469
isRequiredForExecution(const SectionRef Section)470 static bool isRequiredForExecution(const SectionRef Section) {
471 const ObjectFile *Obj = Section.getObject();
472 if (isa<object::ELFObjectFileBase>(Obj))
473 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
474 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
475 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
476 // Avoid loading zero-sized COFF sections.
477 // In PE files, VirtualSize gives the section size, and SizeOfRawData
478 // may be zero for sections with content. In Obj files, SizeOfRawData
479 // gives the section size, and VirtualSize is always zero. Hence
480 // the need to check for both cases below.
481 bool HasContent =
482 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
483 bool IsDiscardable =
484 CoffSection->Characteristics &
485 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
486 return HasContent && !IsDiscardable;
487 }
488
489 assert(isa<MachOObjectFile>(Obj));
490 return true;
491 }
492
isReadOnlyData(const SectionRef Section)493 static bool isReadOnlyData(const SectionRef Section) {
494 const ObjectFile *Obj = Section.getObject();
495 if (isa<object::ELFObjectFileBase>(Obj))
496 return !(ELFSectionRef(Section).getFlags() &
497 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
498 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
499 return ((COFFObj->getCOFFSection(Section)->Characteristics &
500 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
501 | COFF::IMAGE_SCN_MEM_READ
502 | COFF::IMAGE_SCN_MEM_WRITE))
503 ==
504 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
505 | COFF::IMAGE_SCN_MEM_READ));
506
507 assert(isa<MachOObjectFile>(Obj));
508 return false;
509 }
510
isZeroInit(const SectionRef Section)511 static bool isZeroInit(const SectionRef Section) {
512 const ObjectFile *Obj = Section.getObject();
513 if (isa<object::ELFObjectFileBase>(Obj))
514 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
515 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
516 return COFFObj->getCOFFSection(Section)->Characteristics &
517 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
518
519 auto *MachO = cast<MachOObjectFile>(Obj);
520 unsigned SectionType = MachO->getSectionType(Section);
521 return SectionType == MachO::S_ZEROFILL ||
522 SectionType == MachO::S_GB_ZEROFILL;
523 }
524
isTLS(const SectionRef Section)525 static bool isTLS(const SectionRef Section) {
526 const ObjectFile *Obj = Section.getObject();
527 if (isa<object::ELFObjectFileBase>(Obj))
528 return ELFSectionRef(Section).getFlags() & ELF::SHF_TLS;
529 return false;
530 }
531
532 // Compute an upper bound of the memory size that is required to load all
533 // sections
computeTotalAllocSize(const ObjectFile & Obj,uint64_t & CodeSize,uint32_t & CodeAlign,uint64_t & RODataSize,uint32_t & RODataAlign,uint64_t & RWDataSize,uint32_t & RWDataAlign)534 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
535 uint64_t &CodeSize,
536 uint32_t &CodeAlign,
537 uint64_t &RODataSize,
538 uint32_t &RODataAlign,
539 uint64_t &RWDataSize,
540 uint32_t &RWDataAlign) {
541 // Compute the size of all sections required for execution
542 std::vector<uint64_t> CodeSectionSizes;
543 std::vector<uint64_t> ROSectionSizes;
544 std::vector<uint64_t> RWSectionSizes;
545
546 // Collect sizes of all sections to be loaded;
547 // also determine the max alignment of all sections
548 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
549 SI != SE; ++SI) {
550 const SectionRef &Section = *SI;
551
552 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
553
554 // Consider only the sections that are required to be loaded for execution
555 if (IsRequired) {
556 uint64_t DataSize = Section.getSize();
557 uint64_t Alignment64 = Section.getAlignment();
558 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
559 bool IsCode = Section.isText();
560 bool IsReadOnly = isReadOnlyData(Section);
561 bool IsTLS = isTLS(Section);
562
563 Expected<StringRef> NameOrErr = Section.getName();
564 if (!NameOrErr)
565 return NameOrErr.takeError();
566 StringRef Name = *NameOrErr;
567
568 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
569
570 uint64_t PaddingSize = 0;
571 if (Name == ".eh_frame")
572 PaddingSize += 4;
573 if (StubBufSize != 0)
574 PaddingSize += getStubAlignment() - 1;
575
576 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
577
578 // The .eh_frame section (at least on Linux) needs an extra four bytes
579 // padded
580 // with zeroes added at the end. For MachO objects, this section has a
581 // slightly different name, so this won't have any effect for MachO
582 // objects.
583 if (Name == ".eh_frame")
584 SectionSize += 4;
585
586 if (!SectionSize)
587 SectionSize = 1;
588
589 if (IsCode) {
590 CodeAlign = std::max(CodeAlign, Alignment);
591 CodeSectionSizes.push_back(SectionSize);
592 } else if (IsReadOnly) {
593 RODataAlign = std::max(RODataAlign, Alignment);
594 ROSectionSizes.push_back(SectionSize);
595 } else if (!IsTLS) {
596 RWDataAlign = std::max(RWDataAlign, Alignment);
597 RWSectionSizes.push_back(SectionSize);
598 }
599 }
600 }
601
602 // Compute Global Offset Table size. If it is not zero we
603 // also update alignment, which is equal to a size of a
604 // single GOT entry.
605 if (unsigned GotSize = computeGOTSize(Obj)) {
606 RWSectionSizes.push_back(GotSize);
607 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
608 }
609
610 // Compute the size of all common symbols
611 uint64_t CommonSize = 0;
612 uint32_t CommonAlign = 1;
613 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
614 ++I) {
615 Expected<uint32_t> FlagsOrErr = I->getFlags();
616 if (!FlagsOrErr)
617 // TODO: Test this error.
618 return FlagsOrErr.takeError();
619 if (*FlagsOrErr & SymbolRef::SF_Common) {
620 // Add the common symbols to a list. We'll allocate them all below.
621 uint64_t Size = I->getCommonSize();
622 uint32_t Align = I->getAlignment();
623 // If this is the first common symbol, use its alignment as the alignment
624 // for the common symbols section.
625 if (CommonSize == 0)
626 CommonAlign = Align;
627 CommonSize = alignTo(CommonSize, Align) + Size;
628 }
629 }
630 if (CommonSize != 0) {
631 RWSectionSizes.push_back(CommonSize);
632 RWDataAlign = std::max(RWDataAlign, CommonAlign);
633 }
634
635 // Compute the required allocation space for each different type of sections
636 // (code, read-only data, read-write data) assuming that all sections are
637 // allocated with the max alignment. Note that we cannot compute with the
638 // individual alignments of the sections, because then the required size
639 // depends on the order, in which the sections are allocated.
640 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
641 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
642 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
643
644 return Error::success();
645 }
646
647 // compute GOT size
computeGOTSize(const ObjectFile & Obj)648 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
649 size_t GotEntrySize = getGOTEntrySize();
650 if (!GotEntrySize)
651 return 0;
652
653 size_t GotSize = 0;
654 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
655 SI != SE; ++SI) {
656
657 for (const RelocationRef &Reloc : SI->relocations())
658 if (relocationNeedsGot(Reloc))
659 GotSize += GotEntrySize;
660 }
661
662 return GotSize;
663 }
664
665 // compute stub buffer size for the given section
computeSectionStubBufSize(const ObjectFile & Obj,const SectionRef & Section)666 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
667 const SectionRef &Section) {
668 if (!MemMgr.allowStubAllocation()) {
669 return 0;
670 }
671
672 unsigned StubSize = getMaxStubSize();
673 if (StubSize == 0) {
674 return 0;
675 }
676 // FIXME: this is an inefficient way to handle this. We should computed the
677 // necessary section allocation size in loadObject by walking all the sections
678 // once.
679 unsigned StubBufSize = 0;
680 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
681 SI != SE; ++SI) {
682
683 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
684 if (!RelSecOrErr)
685 report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
686
687 section_iterator RelSecI = *RelSecOrErr;
688 if (!(RelSecI == Section))
689 continue;
690
691 for (const RelocationRef &Reloc : SI->relocations())
692 if (relocationNeedsStub(Reloc))
693 StubBufSize += StubSize;
694 }
695
696 // Get section data size and alignment
697 uint64_t DataSize = Section.getSize();
698 uint64_t Alignment64 = Section.getAlignment();
699
700 // Add stubbuf size alignment
701 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
702 unsigned StubAlignment = getStubAlignment();
703 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
704 if (StubAlignment > EndAlignment)
705 StubBufSize += StubAlignment - EndAlignment;
706 return StubBufSize;
707 }
708
readBytesUnaligned(uint8_t * Src,unsigned Size) const709 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
710 unsigned Size) const {
711 uint64_t Result = 0;
712 if (IsTargetLittleEndian) {
713 Src += Size - 1;
714 while (Size--)
715 Result = (Result << 8) | *Src--;
716 } else
717 while (Size--)
718 Result = (Result << 8) | *Src++;
719
720 return Result;
721 }
722
writeBytesUnaligned(uint64_t Value,uint8_t * Dst,unsigned Size) const723 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
724 unsigned Size) const {
725 if (IsTargetLittleEndian) {
726 while (Size--) {
727 *Dst++ = Value & 0xFF;
728 Value >>= 8;
729 }
730 } else {
731 Dst += Size - 1;
732 while (Size--) {
733 *Dst-- = Value & 0xFF;
734 Value >>= 8;
735 }
736 }
737 }
738
739 Expected<JITSymbolFlags>
getJITSymbolFlags(const SymbolRef & SR)740 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
741 return JITSymbolFlags::fromObjectSymbol(SR);
742 }
743
emitCommonSymbols(const ObjectFile & Obj,CommonSymbolList & SymbolsToAllocate,uint64_t CommonSize,uint32_t CommonAlign)744 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
745 CommonSymbolList &SymbolsToAllocate,
746 uint64_t CommonSize,
747 uint32_t CommonAlign) {
748 if (SymbolsToAllocate.empty())
749 return Error::success();
750
751 // Allocate memory for the section
752 unsigned SectionID = Sections.size();
753 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
754 "<common symbols>", false);
755 if (!Addr)
756 report_fatal_error("Unable to allocate memory for common symbols!");
757 uint64_t Offset = 0;
758 Sections.push_back(
759 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
760 memset(Addr, 0, CommonSize);
761
762 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
763 << " new addr: " << format("%p", Addr)
764 << " DataSize: " << CommonSize << "\n");
765
766 // Assign the address of each symbol
767 for (auto &Sym : SymbolsToAllocate) {
768 uint32_t Alignment = Sym.getAlignment();
769 uint64_t Size = Sym.getCommonSize();
770 StringRef Name;
771 if (auto NameOrErr = Sym.getName())
772 Name = *NameOrErr;
773 else
774 return NameOrErr.takeError();
775 if (Alignment) {
776 // This symbol has an alignment requirement.
777 uint64_t AlignOffset =
778 offsetToAlignment((uint64_t)Addr, Align(Alignment));
779 Addr += AlignOffset;
780 Offset += AlignOffset;
781 }
782 auto JITSymFlags = getJITSymbolFlags(Sym);
783
784 if (!JITSymFlags)
785 return JITSymFlags.takeError();
786
787 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
788 << format("%p", Addr) << "\n");
789 if (!Name.empty()) // Skip absolute symbol relocations.
790 GlobalSymbolTable[Name] =
791 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
792 Offset += Size;
793 Addr += Size;
794 }
795
796 return Error::success();
797 }
798
799 Expected<unsigned>
emitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode)800 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
801 const SectionRef &Section,
802 bool IsCode) {
803 StringRef data;
804 uint64_t Alignment64 = Section.getAlignment();
805
806 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
807 unsigned PaddingSize = 0;
808 unsigned StubBufSize = 0;
809 bool IsRequired = isRequiredForExecution(Section);
810 bool IsVirtual = Section.isVirtual();
811 bool IsZeroInit = isZeroInit(Section);
812 bool IsReadOnly = isReadOnlyData(Section);
813 bool IsTLS = isTLS(Section);
814 uint64_t DataSize = Section.getSize();
815
816 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
817 // while being more "polite". Other formats do not support 0-aligned sections
818 // anyway, so we should guarantee that the alignment is always at least 1.
819 Alignment = std::max(1u, Alignment);
820
821 Expected<StringRef> NameOrErr = Section.getName();
822 if (!NameOrErr)
823 return NameOrErr.takeError();
824 StringRef Name = *NameOrErr;
825
826 StubBufSize = computeSectionStubBufSize(Obj, Section);
827
828 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
829 // with zeroes added at the end. For MachO objects, this section has a
830 // slightly different name, so this won't have any effect for MachO objects.
831 if (Name == ".eh_frame")
832 PaddingSize = 4;
833
834 uintptr_t Allocate;
835 unsigned SectionID = Sections.size();
836 uint8_t *Addr;
837 uint64_t LoadAddress = 0;
838 const char *pData = nullptr;
839
840 // If this section contains any bits (i.e. isn't a virtual or bss section),
841 // grab a reference to them.
842 if (!IsVirtual && !IsZeroInit) {
843 // In either case, set the location of the unrelocated section in memory,
844 // since we still process relocations for it even if we're not applying them.
845 if (Expected<StringRef> E = Section.getContents())
846 data = *E;
847 else
848 return E.takeError();
849 pData = data.data();
850 }
851
852 // If there are any stubs then the section alignment needs to be at least as
853 // high as stub alignment or padding calculations may by incorrect when the
854 // section is remapped.
855 if (StubBufSize != 0) {
856 Alignment = std::max(Alignment, getStubAlignment());
857 PaddingSize += getStubAlignment() - 1;
858 }
859
860 // Some sections, such as debug info, don't need to be loaded for execution.
861 // Process those only if explicitly requested.
862 if (IsRequired || ProcessAllSections) {
863 Allocate = DataSize + PaddingSize + StubBufSize;
864 if (!Allocate)
865 Allocate = 1;
866 if (IsTLS) {
867 auto TLSSection =
868 MemMgr.allocateTLSSection(Allocate, Alignment, SectionID, Name);
869 Addr = TLSSection.InitializationImage;
870 LoadAddress = TLSSection.Offset;
871 } else if (IsCode) {
872 Addr = MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, Name);
873 } else {
874 Addr = MemMgr.allocateDataSection(Allocate, Alignment, SectionID, Name,
875 IsReadOnly);
876 }
877 if (!Addr)
878 report_fatal_error("Unable to allocate section memory!");
879
880 // Zero-initialize or copy the data from the image
881 if (IsZeroInit || IsVirtual)
882 memset(Addr, 0, DataSize);
883 else
884 memcpy(Addr, pData, DataSize);
885
886 // Fill in any extra bytes we allocated for padding
887 if (PaddingSize != 0) {
888 memset(Addr + DataSize, 0, PaddingSize);
889 // Update the DataSize variable to include padding.
890 DataSize += PaddingSize;
891
892 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
893 // have been increased above to account for this).
894 if (StubBufSize > 0)
895 DataSize &= -(uint64_t)getStubAlignment();
896 }
897
898 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
899 << Name << " obj addr: " << format("%p", pData)
900 << " new addr: " << format("%p", Addr) << " DataSize: "
901 << DataSize << " StubBufSize: " << StubBufSize
902 << " Allocate: " << Allocate << "\n");
903 } else {
904 // Even if we didn't load the section, we need to record an entry for it
905 // to handle later processing (and by 'handle' I mean don't do anything
906 // with these sections).
907 Allocate = 0;
908 Addr = nullptr;
909 LLVM_DEBUG(
910 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
911 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
912 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
913 << " Allocate: " << Allocate << "\n");
914 }
915
916 Sections.push_back(
917 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
918
919 // The load address of a TLS section is not equal to the address of its
920 // initialization image
921 if (IsTLS)
922 Sections.back().setLoadAddress(LoadAddress);
923 // Debug info sections are linked as if their load address was zero
924 if (!IsRequired)
925 Sections.back().setLoadAddress(0);
926
927 return SectionID;
928 }
929
930 Expected<unsigned>
findOrEmitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode,ObjSectionToIDMap & LocalSections)931 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
932 const SectionRef &Section,
933 bool IsCode,
934 ObjSectionToIDMap &LocalSections) {
935
936 unsigned SectionID = 0;
937 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
938 if (i != LocalSections.end())
939 SectionID = i->second;
940 else {
941 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
942 SectionID = *SectionIDOrErr;
943 else
944 return SectionIDOrErr.takeError();
945 LocalSections[Section] = SectionID;
946 }
947 return SectionID;
948 }
949
addRelocationForSection(const RelocationEntry & RE,unsigned SectionID)950 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
951 unsigned SectionID) {
952 Relocations[SectionID].push_back(RE);
953 }
954
addRelocationForSymbol(const RelocationEntry & RE,StringRef SymbolName)955 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
956 StringRef SymbolName) {
957 // Relocation by symbol. If the symbol is found in the global symbol table,
958 // create an appropriate section relocation. Otherwise, add it to
959 // ExternalSymbolRelocations.
960 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
961 if (Loc == GlobalSymbolTable.end()) {
962 ExternalSymbolRelocations[SymbolName].push_back(RE);
963 } else {
964 assert(!SymbolName.empty() &&
965 "Empty symbol should not be in GlobalSymbolTable");
966 // Copy the RE since we want to modify its addend.
967 RelocationEntry RECopy = RE;
968 const auto &SymInfo = Loc->second;
969 RECopy.Addend += SymInfo.getOffset();
970 Relocations[SymInfo.getSectionID()].push_back(RECopy);
971 }
972 }
973
createStubFunction(uint8_t * Addr,unsigned AbiVariant)974 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
975 unsigned AbiVariant) {
976 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
977 Arch == Triple::aarch64_32) {
978 // This stub has to be able to access the full address space,
979 // since symbol lookup won't necessarily find a handy, in-range,
980 // PLT stub for functions which could be anywhere.
981 // Stub can use ip0 (== x16) to calculate address
982 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
983 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
984 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
985 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
986 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
987
988 return Addr;
989 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
990 // TODO: There is only ARM far stub now. We should add the Thumb stub,
991 // and stubs for branches Thumb - ARM and ARM - Thumb.
992 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
993 return Addr + 4;
994 } else if (IsMipsO32ABI || IsMipsN32ABI) {
995 // 0: 3c190000 lui t9,%hi(addr).
996 // 4: 27390000 addiu t9,t9,%lo(addr).
997 // 8: 03200008 jr t9.
998 // c: 00000000 nop.
999 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
1000 const unsigned NopInstr = 0x0;
1001 unsigned JrT9Instr = 0x03200008;
1002 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
1003 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1004 JrT9Instr = 0x03200009;
1005
1006 writeBytesUnaligned(LuiT9Instr, Addr, 4);
1007 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
1008 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
1009 writeBytesUnaligned(NopInstr, Addr + 12, 4);
1010 return Addr;
1011 } else if (IsMipsN64ABI) {
1012 // 0: 3c190000 lui t9,%highest(addr).
1013 // 4: 67390000 daddiu t9,t9,%higher(addr).
1014 // 8: 0019CC38 dsll t9,t9,16.
1015 // c: 67390000 daddiu t9,t9,%hi(addr).
1016 // 10: 0019CC38 dsll t9,t9,16.
1017 // 14: 67390000 daddiu t9,t9,%lo(addr).
1018 // 18: 03200008 jr t9.
1019 // 1c: 00000000 nop.
1020 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
1021 DsllT9Instr = 0x19CC38;
1022 const unsigned NopInstr = 0x0;
1023 unsigned JrT9Instr = 0x03200008;
1024 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1025 JrT9Instr = 0x03200009;
1026
1027 writeBytesUnaligned(LuiT9Instr, Addr, 4);
1028 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
1029 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
1030 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
1031 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
1032 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
1033 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
1034 writeBytesUnaligned(NopInstr, Addr + 28, 4);
1035 return Addr;
1036 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1037 // Depending on which version of the ELF ABI is in use, we need to
1038 // generate one of two variants of the stub. They both start with
1039 // the same sequence to load the target address into r12.
1040 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
1041 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
1042 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
1043 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
1044 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
1045 if (AbiVariant == 2) {
1046 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1047 // The address is already in r12 as required by the ABI. Branch to it.
1048 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
1049 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1050 writeInt32BE(Addr+28, 0x4E800420); // bctr
1051 } else {
1052 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1053 // Load the function address on r11 and sets it to control register. Also
1054 // loads the function TOC in r2 and environment pointer to r11.
1055 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1056 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1057 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1058 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1059 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1060 writeInt32BE(Addr+40, 0x4E800420); // bctr
1061 }
1062 return Addr;
1063 } else if (Arch == Triple::systemz) {
1064 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1065 writeInt16BE(Addr+2, 0x0000);
1066 writeInt16BE(Addr+4, 0x0004);
1067 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1068 // 8-byte address stored at Addr + 8
1069 return Addr;
1070 } else if (Arch == Triple::x86_64) {
1071 *Addr = 0xFF; // jmp
1072 *(Addr+1) = 0x25; // rip
1073 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1074 } else if (Arch == Triple::x86) {
1075 *Addr = 0xE9; // 32-bit pc-relative jump.
1076 }
1077 return Addr;
1078 }
1079
1080 // Assign an address to a symbol name and resolve all the relocations
1081 // associated with it.
reassignSectionAddress(unsigned SectionID,uint64_t Addr)1082 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1083 uint64_t Addr) {
1084 // The address to use for relocation resolution is not
1085 // the address of the local section buffer. We must be doing
1086 // a remote execution environment of some sort. Relocations can't
1087 // be applied until all the sections have been moved. The client must
1088 // trigger this with a call to MCJIT::finalize() or
1089 // RuntimeDyld::resolveRelocations().
1090 //
1091 // Addr is a uint64_t because we can't assume the pointer width
1092 // of the target is the same as that of the host. Just use a generic
1093 // "big enough" type.
1094 LLVM_DEBUG(
1095 dbgs() << "Reassigning address for section " << SectionID << " ("
1096 << Sections[SectionID].getName() << "): "
1097 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1098 << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1099 Sections[SectionID].setLoadAddress(Addr);
1100 }
1101
resolveRelocationList(const RelocationList & Relocs,uint64_t Value)1102 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1103 uint64_t Value) {
1104 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1105 const RelocationEntry &RE = Relocs[i];
1106 // Ignore relocations for sections that were not loaded
1107 if (RE.SectionID != AbsoluteSymbolSection &&
1108 Sections[RE.SectionID].getAddress() == nullptr)
1109 continue;
1110 resolveRelocation(RE, Value);
1111 }
1112 }
1113
applyExternalSymbolRelocations(const StringMap<JITEvaluatedSymbol> ExternalSymbolMap)1114 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1115 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1116 for (auto &RelocKV : ExternalSymbolRelocations) {
1117 StringRef Name = RelocKV.first();
1118 RelocationList &Relocs = RelocKV.second;
1119 if (Name.size() == 0) {
1120 // This is an absolute symbol, use an address of zero.
1121 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1122 << "\n");
1123 resolveRelocationList(Relocs, 0);
1124 } else {
1125 uint64_t Addr = 0;
1126 JITSymbolFlags Flags;
1127 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1128 if (Loc == GlobalSymbolTable.end()) {
1129 auto RRI = ExternalSymbolMap.find(Name);
1130 assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1131 Addr = RRI->second.getAddress();
1132 Flags = RRI->second.getFlags();
1133 } else {
1134 // We found the symbol in our global table. It was probably in a
1135 // Module that we loaded previously.
1136 const auto &SymInfo = Loc->second;
1137 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1138 SymInfo.getOffset();
1139 Flags = SymInfo.getFlags();
1140 }
1141
1142 // FIXME: Implement error handling that doesn't kill the host program!
1143 if (!Addr && !Resolver.allowsZeroSymbols())
1144 report_fatal_error(Twine("Program used external function '") + Name +
1145 "' which could not be resolved!");
1146
1147 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1148 // manually and we shouldn't resolve its relocations.
1149 if (Addr != UINT64_MAX) {
1150
1151 // Tweak the address based on the symbol flags if necessary.
1152 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1153 // if the target symbol is Thumb.
1154 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1155
1156 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1157 << format("0x%lx", Addr) << "\n");
1158 resolveRelocationList(Relocs, Addr);
1159 }
1160 }
1161 }
1162 ExternalSymbolRelocations.clear();
1163 }
1164
resolveExternalSymbols()1165 Error RuntimeDyldImpl::resolveExternalSymbols() {
1166 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1167
1168 // Resolution can trigger emission of more symbols, so iterate until
1169 // we've resolved *everything*.
1170 {
1171 JITSymbolResolver::LookupSet ResolvedSymbols;
1172
1173 while (true) {
1174 JITSymbolResolver::LookupSet NewSymbols;
1175
1176 for (auto &RelocKV : ExternalSymbolRelocations) {
1177 StringRef Name = RelocKV.first();
1178 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1179 !ResolvedSymbols.count(Name))
1180 NewSymbols.insert(Name);
1181 }
1182
1183 if (NewSymbols.empty())
1184 break;
1185
1186 #ifdef _MSC_VER
1187 using ExpectedLookupResult =
1188 MSVCPExpected<JITSymbolResolver::LookupResult>;
1189 #else
1190 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1191 #endif
1192
1193 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1194 auto NewSymbolsF = NewSymbolsP->get_future();
1195 Resolver.lookup(NewSymbols,
1196 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1197 NewSymbolsP->set_value(std::move(Result));
1198 });
1199
1200 auto NewResolverResults = NewSymbolsF.get();
1201
1202 if (!NewResolverResults)
1203 return NewResolverResults.takeError();
1204
1205 assert(NewResolverResults->size() == NewSymbols.size() &&
1206 "Should have errored on unresolved symbols");
1207
1208 for (auto &RRKV : *NewResolverResults) {
1209 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1210 ExternalSymbolMap.insert(RRKV);
1211 ResolvedSymbols.insert(RRKV.first);
1212 }
1213 }
1214 }
1215
1216 applyExternalSymbolRelocations(ExternalSymbolMap);
1217
1218 return Error::success();
1219 }
1220
finalizeAsync(std::unique_ptr<RuntimeDyldImpl> This,unique_function<void (object::OwningBinary<object::ObjectFile>,std::unique_ptr<RuntimeDyld::LoadedObjectInfo>,Error)> OnEmitted,object::OwningBinary<object::ObjectFile> O,std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info)1221 void RuntimeDyldImpl::finalizeAsync(
1222 std::unique_ptr<RuntimeDyldImpl> This,
1223 unique_function<void(object::OwningBinary<object::ObjectFile>,
1224 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1225 OnEmitted,
1226 object::OwningBinary<object::ObjectFile> O,
1227 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
1228
1229 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1230 auto PostResolveContinuation =
1231 [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
1232 Info = std::move(Info)](
1233 Expected<JITSymbolResolver::LookupResult> Result) mutable {
1234 if (!Result) {
1235 OnEmitted(std::move(O), std::move(Info), Result.takeError());
1236 return;
1237 }
1238
1239 /// Copy the result into a StringMap, where the keys are held by value.
1240 StringMap<JITEvaluatedSymbol> Resolved;
1241 for (auto &KV : *Result)
1242 Resolved[KV.first] = KV.second;
1243
1244 SharedThis->applyExternalSymbolRelocations(Resolved);
1245 SharedThis->resolveLocalRelocations();
1246 SharedThis->registerEHFrames();
1247 std::string ErrMsg;
1248 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1249 OnEmitted(std::move(O), std::move(Info),
1250 make_error<StringError>(std::move(ErrMsg),
1251 inconvertibleErrorCode()));
1252 else
1253 OnEmitted(std::move(O), std::move(Info), Error::success());
1254 };
1255
1256 JITSymbolResolver::LookupSet Symbols;
1257
1258 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1259 StringRef Name = RelocKV.first();
1260 if (Name.empty()) // Skip absolute symbol relocations.
1261 continue;
1262 assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1263 "Name already processed. RuntimeDyld instances can not be re-used "
1264 "when finalizing with finalizeAsync.");
1265 Symbols.insert(Name);
1266 }
1267
1268 if (!Symbols.empty()) {
1269 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1270 } else
1271 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1272 }
1273
1274 //===----------------------------------------------------------------------===//
1275 // RuntimeDyld class implementation
1276
getSectionLoadAddress(const object::SectionRef & Sec) const1277 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1278 const object::SectionRef &Sec) const {
1279
1280 auto I = ObjSecToIDMap.find(Sec);
1281 if (I != ObjSecToIDMap.end())
1282 return RTDyld.Sections[I->second].getLoadAddress();
1283
1284 return 0;
1285 }
1286
1287 RuntimeDyld::MemoryManager::TLSSection
allocateTLSSection(uintptr_t Size,unsigned Alignment,unsigned SectionID,StringRef SectionName)1288 RuntimeDyld::MemoryManager::allocateTLSSection(uintptr_t Size,
1289 unsigned Alignment,
1290 unsigned SectionID,
1291 StringRef SectionName) {
1292 report_fatal_error("allocation of TLS not implemented");
1293 }
1294
anchor()1295 void RuntimeDyld::MemoryManager::anchor() {}
anchor()1296 void JITSymbolResolver::anchor() {}
anchor()1297 void LegacyJITSymbolResolver::anchor() {}
1298
RuntimeDyld(RuntimeDyld::MemoryManager & MemMgr,JITSymbolResolver & Resolver)1299 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1300 JITSymbolResolver &Resolver)
1301 : MemMgr(MemMgr), Resolver(Resolver) {
1302 // FIXME: There's a potential issue lurking here if a single instance of
1303 // RuntimeDyld is used to load multiple objects. The current implementation
1304 // associates a single memory manager with a RuntimeDyld instance. Even
1305 // though the public class spawns a new 'impl' instance for each load,
1306 // they share a single memory manager. This can become a problem when page
1307 // permissions are applied.
1308 Dyld = nullptr;
1309 ProcessAllSections = false;
1310 }
1311
1312 RuntimeDyld::~RuntimeDyld() = default;
1313
1314 static std::unique_ptr<RuntimeDyldCOFF>
createRuntimeDyldCOFF(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted)1315 createRuntimeDyldCOFF(
1316 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1317 JITSymbolResolver &Resolver, bool ProcessAllSections,
1318 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1319 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1320 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1321 Dyld->setProcessAllSections(ProcessAllSections);
1322 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1323 return Dyld;
1324 }
1325
1326 static std::unique_ptr<RuntimeDyldELF>
createRuntimeDyldELF(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted)1327 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1328 JITSymbolResolver &Resolver, bool ProcessAllSections,
1329 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1330 std::unique_ptr<RuntimeDyldELF> Dyld =
1331 RuntimeDyldELF::create(Arch, MM, Resolver);
1332 Dyld->setProcessAllSections(ProcessAllSections);
1333 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1334 return Dyld;
1335 }
1336
1337 static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,JITSymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted)1338 createRuntimeDyldMachO(
1339 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1340 JITSymbolResolver &Resolver,
1341 bool ProcessAllSections,
1342 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1343 std::unique_ptr<RuntimeDyldMachO> Dyld =
1344 RuntimeDyldMachO::create(Arch, MM, Resolver);
1345 Dyld->setProcessAllSections(ProcessAllSections);
1346 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1347 return Dyld;
1348 }
1349
1350 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const ObjectFile & Obj)1351 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1352 if (!Dyld) {
1353 if (Obj.isELF())
1354 Dyld =
1355 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1356 MemMgr, Resolver, ProcessAllSections,
1357 std::move(NotifyStubEmitted));
1358 else if (Obj.isMachO())
1359 Dyld = createRuntimeDyldMachO(
1360 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1361 ProcessAllSections, std::move(NotifyStubEmitted));
1362 else if (Obj.isCOFF())
1363 Dyld = createRuntimeDyldCOFF(
1364 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1365 ProcessAllSections, std::move(NotifyStubEmitted));
1366 else
1367 report_fatal_error("Incompatible object format!");
1368 }
1369
1370 if (!Dyld->isCompatibleFile(Obj))
1371 report_fatal_error("Incompatible object format!");
1372
1373 auto LoadedObjInfo = Dyld->loadObject(Obj);
1374 MemMgr.notifyObjectLoaded(*this, Obj);
1375 return LoadedObjInfo;
1376 }
1377
getSymbolLocalAddress(StringRef Name) const1378 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1379 if (!Dyld)
1380 return nullptr;
1381 return Dyld->getSymbolLocalAddress(Name);
1382 }
1383
getSymbolSectionID(StringRef Name) const1384 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1385 assert(Dyld && "No RuntimeDyld instance attached");
1386 return Dyld->getSymbolSectionID(Name);
1387 }
1388
getSymbol(StringRef Name) const1389 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1390 if (!Dyld)
1391 return nullptr;
1392 return Dyld->getSymbol(Name);
1393 }
1394
getSymbolTable() const1395 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1396 if (!Dyld)
1397 return std::map<StringRef, JITEvaluatedSymbol>();
1398 return Dyld->getSymbolTable();
1399 }
1400
resolveRelocations()1401 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1402
reassignSectionAddress(unsigned SectionID,uint64_t Addr)1403 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1404 Dyld->reassignSectionAddress(SectionID, Addr);
1405 }
1406
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)1407 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1408 uint64_t TargetAddress) {
1409 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1410 }
1411
hasError()1412 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1413
getErrorString()1414 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1415
finalizeWithMemoryManagerLocking()1416 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1417 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1418 MemMgr.FinalizationLocked = true;
1419 resolveRelocations();
1420 registerEHFrames();
1421 if (!MemoryFinalizationLocked) {
1422 MemMgr.finalizeMemory();
1423 MemMgr.FinalizationLocked = false;
1424 }
1425 }
1426
getSectionContent(unsigned SectionID) const1427 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1428 assert(Dyld && "No Dyld instance attached");
1429 return Dyld->getSectionContent(SectionID);
1430 }
1431
getSectionLoadAddress(unsigned SectionID) const1432 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1433 assert(Dyld && "No Dyld instance attached");
1434 return Dyld->getSectionLoadAddress(SectionID);
1435 }
1436
registerEHFrames()1437 void RuntimeDyld::registerEHFrames() {
1438 if (Dyld)
1439 Dyld->registerEHFrames();
1440 }
1441
deregisterEHFrames()1442 void RuntimeDyld::deregisterEHFrames() {
1443 if (Dyld)
1444 Dyld->deregisterEHFrames();
1445 }
1446 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1447 // so that we can re-use RuntimeDyld's implementation without twisting the
1448 // interface any further for ORC's purposes.
jitLinkForORC(object::OwningBinary<object::ObjectFile> O,RuntimeDyld::MemoryManager & MemMgr,JITSymbolResolver & Resolver,bool ProcessAllSections,unique_function<Error (const object::ObjectFile & Obj,RuntimeDyld::LoadedObjectInfo & LoadedObj,std::map<StringRef,JITEvaluatedSymbol>)> OnLoaded,unique_function<void (object::OwningBinary<object::ObjectFile>,std::unique_ptr<RuntimeDyld::LoadedObjectInfo>,Error)> OnEmitted)1449 void jitLinkForORC(
1450 object::OwningBinary<object::ObjectFile> O,
1451 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
1452 bool ProcessAllSections,
1453 unique_function<Error(const object::ObjectFile &Obj,
1454 RuntimeDyld::LoadedObjectInfo &LoadedObj,
1455 std::map<StringRef, JITEvaluatedSymbol>)>
1456 OnLoaded,
1457 unique_function<void(object::OwningBinary<object::ObjectFile>,
1458 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1459 OnEmitted) {
1460
1461 RuntimeDyld RTDyld(MemMgr, Resolver);
1462 RTDyld.setProcessAllSections(ProcessAllSections);
1463
1464 auto Info = RTDyld.loadObject(*O.getBinary());
1465
1466 if (RTDyld.hasError()) {
1467 OnEmitted(std::move(O), std::move(Info),
1468 make_error<StringError>(RTDyld.getErrorString(),
1469 inconvertibleErrorCode()));
1470 return;
1471 }
1472
1473 if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable()))
1474 OnEmitted(std::move(O), std::move(Info), std::move(Err));
1475
1476 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1477 std::move(O), std::move(Info));
1478 }
1479
1480 } // end namespace llvm
1481