1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/RuntimeDyld.h" 15 #include "RuntimeDyldCOFF.h" 16 #include "RuntimeDyldCheckerImpl.h" 17 #include "RuntimeDyldELF.h" 18 #include "RuntimeDyldImpl.h" 19 #include "RuntimeDyldMachO.h" 20 #include "llvm/Object/COFF.h" 21 #include "llvm/Object/ELFObjectFile.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/MutexGuard.h" 25 26 using namespace llvm; 27 using namespace llvm::object; 28 29 #define DEBUG_TYPE "dyld" 30 31 namespace { 32 33 enum RuntimeDyldErrorCode { 34 GenericRTDyldError = 1 35 }; 36 37 // FIXME: This class is only here to support the transition to llvm::Error. It 38 // will be removed once this transition is complete. Clients should prefer to 39 // deal with the Error value directly, rather than converting to error_code. 40 class RuntimeDyldErrorCategory : public std::error_category { 41 public: 42 const char *name() const noexcept override { return "runtimedyld"; } 43 44 std::string message(int Condition) const override { 45 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 46 case GenericRTDyldError: return "Generic RuntimeDyld error"; 47 } 48 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 49 } 50 }; 51 52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 53 54 } 55 56 char RuntimeDyldError::ID = 0; 57 58 void RuntimeDyldError::log(raw_ostream &OS) const { 59 OS << ErrMsg << "\n"; 60 } 61 62 std::error_code RuntimeDyldError::convertToErrorCode() const { 63 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 64 } 65 66 // Empty out-of-line virtual destructor as the key function. 67 RuntimeDyldImpl::~RuntimeDyldImpl() {} 68 69 // Pin LoadedObjectInfo's vtables to this file. 70 void RuntimeDyld::LoadedObjectInfo::anchor() {} 71 72 namespace llvm { 73 74 void RuntimeDyldImpl::registerEHFrames() {} 75 76 void RuntimeDyldImpl::deregisterEHFrames() { 77 MemMgr.deregisterEHFrames(); 78 } 79 80 #ifndef NDEBUG 81 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 82 dbgs() << "----- Contents of section " << S.getName() << " " << State 83 << " -----"; 84 85 if (S.getAddress() == nullptr) { 86 dbgs() << "\n <section not emitted>\n"; 87 return; 88 } 89 90 const unsigned ColsPerRow = 16; 91 92 uint8_t *DataAddr = S.getAddress(); 93 uint64_t LoadAddr = S.getLoadAddress(); 94 95 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 96 unsigned BytesRemaining = S.getSize(); 97 98 if (StartPadding) { 99 dbgs() << "\n" << format("0x%016" PRIx64, 100 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 101 while (StartPadding--) 102 dbgs() << " "; 103 } 104 105 while (BytesRemaining > 0) { 106 if ((LoadAddr & (ColsPerRow - 1)) == 0) 107 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 108 109 dbgs() << " " << format("%02x", *DataAddr); 110 111 ++DataAddr; 112 ++LoadAddr; 113 --BytesRemaining; 114 } 115 116 dbgs() << "\n"; 117 } 118 #endif 119 120 // Resolve the relocations for all symbols we currently know about. 121 void RuntimeDyldImpl::resolveRelocations() { 122 MutexGuard locked(lock); 123 124 // Print out the sections prior to relocation. 125 DEBUG( 126 for (int i = 0, e = Sections.size(); i != e; ++i) 127 dumpSectionMemory(Sections[i], "before relocations"); 128 ); 129 130 // First, resolve relocations associated with external symbols. 131 if (auto Err = resolveExternalSymbols()) { 132 HasError = true; 133 ErrorStr = toString(std::move(Err)); 134 } 135 136 // Iterate over all outstanding relocations 137 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 138 // The Section here (Sections[i]) refers to the section in which the 139 // symbol for the relocation is located. The SectionID in the relocation 140 // entry provides the section to which the relocation will be applied. 141 int Idx = it->first; 142 uint64_t Addr = Sections[Idx].getLoadAddress(); 143 DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 144 << format("%p", (uintptr_t)Addr) << "\n"); 145 resolveRelocationList(it->second, Addr); 146 } 147 Relocations.clear(); 148 149 // Print out sections after relocation. 150 DEBUG( 151 for (int i = 0, e = Sections.size(); i != e; ++i) 152 dumpSectionMemory(Sections[i], "after relocations"); 153 ); 154 155 } 156 157 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 158 uint64_t TargetAddress) { 159 MutexGuard locked(lock); 160 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 161 if (Sections[i].getAddress() == LocalAddress) { 162 reassignSectionAddress(i, TargetAddress); 163 return; 164 } 165 } 166 llvm_unreachable("Attempting to remap address of unknown section!"); 167 } 168 169 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 170 uint64_t &Result) { 171 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 172 if (!AddressOrErr) 173 return AddressOrErr.takeError(); 174 Result = *AddressOrErr - Sec.getAddress(); 175 return Error::success(); 176 } 177 178 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 179 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 180 MutexGuard locked(lock); 181 182 // Save information about our target 183 Arch = (Triple::ArchType)Obj.getArch(); 184 IsTargetLittleEndian = Obj.isLittleEndian(); 185 setMipsABI(Obj); 186 187 // Compute the memory size required to load all sections to be loaded 188 // and pass this information to the memory manager 189 if (MemMgr.needsToReserveAllocationSpace()) { 190 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 191 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 192 if (auto Err = computeTotalAllocSize(Obj, 193 CodeSize, CodeAlign, 194 RODataSize, RODataAlign, 195 RWDataSize, RWDataAlign)) 196 return std::move(Err); 197 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 198 RWDataSize, RWDataAlign); 199 } 200 201 // Used sections from the object file 202 ObjSectionToIDMap LocalSections; 203 204 // Common symbols requiring allocation, with their sizes and alignments 205 CommonSymbolList CommonSymbolsToAllocate; 206 207 uint64_t CommonSize = 0; 208 uint32_t CommonAlign = 0; 209 210 // First, collect all weak and common symbols. We need to know if stronger 211 // definitions occur elsewhere. 212 JITSymbolResolver::LookupFlagsResult SymbolFlags; 213 { 214 JITSymbolResolver::LookupSet Symbols; 215 for (auto &Sym : Obj.symbols()) { 216 uint32_t Flags = Sym.getFlags(); 217 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) { 218 // Get symbol name. 219 if (auto NameOrErr = Sym.getName()) 220 Symbols.insert(*NameOrErr); 221 else 222 return NameOrErr.takeError(); 223 } 224 } 225 226 if (auto FlagsResultOrErr = Resolver.lookupFlags(Symbols)) 227 SymbolFlags = std::move(*FlagsResultOrErr); 228 else 229 return FlagsResultOrErr.takeError(); 230 } 231 232 // Parse symbols 233 DEBUG(dbgs() << "Parse symbols:\n"); 234 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 235 ++I) { 236 uint32_t Flags = I->getFlags(); 237 238 // Skip undefined symbols. 239 if (Flags & SymbolRef::SF_Undefined) 240 continue; 241 242 // Get the symbol type. 243 object::SymbolRef::Type SymType; 244 if (auto SymTypeOrErr = I->getType()) 245 SymType = *SymTypeOrErr; 246 else 247 return SymTypeOrErr.takeError(); 248 249 // Get symbol name. 250 StringRef Name; 251 if (auto NameOrErr = I->getName()) 252 Name = *NameOrErr; 253 else 254 return NameOrErr.takeError(); 255 256 // Compute JIT symbol flags. 257 JITSymbolFlags JITSymFlags = getJITSymbolFlags(*I); 258 259 // If this is a weak definition, check to see if there's a strong one. 260 // If there is, skip this symbol (we won't be providing it: the strong 261 // definition will). If there's no strong definition, make this definition 262 // strong. 263 if (JITSymFlags.isWeak() || JITSymFlags.isCommon()) { 264 // First check whether there's already a definition in this instance. 265 // FIXME: Override existing weak definitions with strong ones. 266 if (GlobalSymbolTable.count(Name)) 267 continue; 268 269 // Then check whether we found flags for an existing symbol during the 270 // flags lookup earlier. 271 auto FlagsI = SymbolFlags.find(Name); 272 if (FlagsI == SymbolFlags.end() || 273 (JITSymFlags.isWeak() && !FlagsI->second.isStrong()) || 274 (JITSymFlags.isCommon() && FlagsI->second.isCommon())) { 275 if (JITSymFlags.isWeak()) 276 JITSymFlags &= ~JITSymbolFlags::Weak; 277 if (JITSymFlags.isCommon()) { 278 JITSymFlags &= ~JITSymbolFlags::Common; 279 uint32_t Align = I->getAlignment(); 280 uint64_t Size = I->getCommonSize(); 281 if (!CommonAlign) 282 CommonAlign = Align; 283 CommonSize += alignTo(CommonSize, Align) + Size; 284 CommonSymbolsToAllocate.push_back(*I); 285 } 286 } else 287 continue; 288 } 289 290 if (Flags & SymbolRef::SF_Absolute && 291 SymType != object::SymbolRef::ST_File) { 292 uint64_t Addr = 0; 293 if (auto AddrOrErr = I->getAddress()) 294 Addr = *AddrOrErr; 295 else 296 return AddrOrErr.takeError(); 297 298 unsigned SectionID = AbsoluteSymbolSection; 299 300 DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 301 << " SID: " << SectionID 302 << " Offset: " << format("%p", (uintptr_t)Addr) 303 << " flags: " << Flags << "\n"); 304 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, JITSymFlags); 305 } else if (SymType == object::SymbolRef::ST_Function || 306 SymType == object::SymbolRef::ST_Data || 307 SymType == object::SymbolRef::ST_Unknown || 308 SymType == object::SymbolRef::ST_Other) { 309 310 section_iterator SI = Obj.section_end(); 311 if (auto SIOrErr = I->getSection()) 312 SI = *SIOrErr; 313 else 314 return SIOrErr.takeError(); 315 316 if (SI == Obj.section_end()) 317 continue; 318 319 // Get symbol offset. 320 uint64_t SectOffset; 321 if (auto Err = getOffset(*I, *SI, SectOffset)) 322 return std::move(Err); 323 324 bool IsCode = SI->isText(); 325 unsigned SectionID; 326 if (auto SectionIDOrErr = 327 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 328 SectionID = *SectionIDOrErr; 329 else 330 return SectionIDOrErr.takeError(); 331 332 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 333 << " SID: " << SectionID 334 << " Offset: " << format("%p", (uintptr_t)SectOffset) 335 << " flags: " << Flags << "\n"); 336 GlobalSymbolTable[Name] = 337 SymbolTableEntry(SectionID, SectOffset, JITSymFlags); 338 } 339 } 340 341 // Allocate common symbols 342 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 343 CommonAlign)) 344 return std::move(Err); 345 346 // Parse and process relocations 347 DEBUG(dbgs() << "Parse relocations:\n"); 348 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 349 SI != SE; ++SI) { 350 StubMap Stubs; 351 section_iterator RelocatedSection = SI->getRelocatedSection(); 352 353 if (RelocatedSection == SE) 354 continue; 355 356 relocation_iterator I = SI->relocation_begin(); 357 relocation_iterator E = SI->relocation_end(); 358 359 if (I == E && !ProcessAllSections) 360 continue; 361 362 bool IsCode = RelocatedSection->isText(); 363 unsigned SectionID = 0; 364 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 365 LocalSections)) 366 SectionID = *SectionIDOrErr; 367 else 368 return SectionIDOrErr.takeError(); 369 370 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 371 372 for (; I != E;) 373 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 374 I = *IOrErr; 375 else 376 return IOrErr.takeError(); 377 378 // If there is an attached checker, notify it about the stubs for this 379 // section so that they can be verified. 380 if (Checker) 381 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs); 382 } 383 384 // Give the subclasses a chance to tie-up any loose ends. 385 if (auto Err = finalizeLoad(Obj, LocalSections)) 386 return std::move(Err); 387 388 // for (auto E : LocalSections) 389 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 390 391 return LocalSections; 392 } 393 394 // A helper method for computeTotalAllocSize. 395 // Computes the memory size required to allocate sections with the given sizes, 396 // assuming that all sections are allocated with the given alignment 397 static uint64_t 398 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 399 uint64_t Alignment) { 400 uint64_t TotalSize = 0; 401 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 402 uint64_t AlignedSize = 403 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 404 TotalSize += AlignedSize; 405 } 406 return TotalSize; 407 } 408 409 static bool isRequiredForExecution(const SectionRef Section) { 410 const ObjectFile *Obj = Section.getObject(); 411 if (isa<object::ELFObjectFileBase>(Obj)) 412 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 413 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 414 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 415 // Avoid loading zero-sized COFF sections. 416 // In PE files, VirtualSize gives the section size, and SizeOfRawData 417 // may be zero for sections with content. In Obj files, SizeOfRawData 418 // gives the section size, and VirtualSize is always zero. Hence 419 // the need to check for both cases below. 420 bool HasContent = 421 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 422 bool IsDiscardable = 423 CoffSection->Characteristics & 424 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 425 return HasContent && !IsDiscardable; 426 } 427 428 assert(isa<MachOObjectFile>(Obj)); 429 return true; 430 } 431 432 static bool isReadOnlyData(const SectionRef Section) { 433 const ObjectFile *Obj = Section.getObject(); 434 if (isa<object::ELFObjectFileBase>(Obj)) 435 return !(ELFSectionRef(Section).getFlags() & 436 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 437 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 438 return ((COFFObj->getCOFFSection(Section)->Characteristics & 439 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 440 | COFF::IMAGE_SCN_MEM_READ 441 | COFF::IMAGE_SCN_MEM_WRITE)) 442 == 443 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 444 | COFF::IMAGE_SCN_MEM_READ)); 445 446 assert(isa<MachOObjectFile>(Obj)); 447 return false; 448 } 449 450 static bool isZeroInit(const SectionRef Section) { 451 const ObjectFile *Obj = Section.getObject(); 452 if (isa<object::ELFObjectFileBase>(Obj)) 453 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 454 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 455 return COFFObj->getCOFFSection(Section)->Characteristics & 456 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 457 458 auto *MachO = cast<MachOObjectFile>(Obj); 459 unsigned SectionType = MachO->getSectionType(Section); 460 return SectionType == MachO::S_ZEROFILL || 461 SectionType == MachO::S_GB_ZEROFILL; 462 } 463 464 // Compute an upper bound of the memory size that is required to load all 465 // sections 466 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 467 uint64_t &CodeSize, 468 uint32_t &CodeAlign, 469 uint64_t &RODataSize, 470 uint32_t &RODataAlign, 471 uint64_t &RWDataSize, 472 uint32_t &RWDataAlign) { 473 // Compute the size of all sections required for execution 474 std::vector<uint64_t> CodeSectionSizes; 475 std::vector<uint64_t> ROSectionSizes; 476 std::vector<uint64_t> RWSectionSizes; 477 478 // Collect sizes of all sections to be loaded; 479 // also determine the max alignment of all sections 480 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 481 SI != SE; ++SI) { 482 const SectionRef &Section = *SI; 483 484 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 485 486 // Consider only the sections that are required to be loaded for execution 487 if (IsRequired) { 488 uint64_t DataSize = Section.getSize(); 489 uint64_t Alignment64 = Section.getAlignment(); 490 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 491 bool IsCode = Section.isText(); 492 bool IsReadOnly = isReadOnlyData(Section); 493 494 StringRef Name; 495 if (auto EC = Section.getName(Name)) 496 return errorCodeToError(EC); 497 498 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 499 uint64_t SectionSize = DataSize + StubBufSize; 500 501 // The .eh_frame section (at least on Linux) needs an extra four bytes 502 // padded 503 // with zeroes added at the end. For MachO objects, this section has a 504 // slightly different name, so this won't have any effect for MachO 505 // objects. 506 if (Name == ".eh_frame") 507 SectionSize += 4; 508 509 if (!SectionSize) 510 SectionSize = 1; 511 512 if (IsCode) { 513 CodeAlign = std::max(CodeAlign, Alignment); 514 CodeSectionSizes.push_back(SectionSize); 515 } else if (IsReadOnly) { 516 RODataAlign = std::max(RODataAlign, Alignment); 517 ROSectionSizes.push_back(SectionSize); 518 } else { 519 RWDataAlign = std::max(RWDataAlign, Alignment); 520 RWSectionSizes.push_back(SectionSize); 521 } 522 } 523 } 524 525 // Compute Global Offset Table size. If it is not zero we 526 // also update alignment, which is equal to a size of a 527 // single GOT entry. 528 if (unsigned GotSize = computeGOTSize(Obj)) { 529 RWSectionSizes.push_back(GotSize); 530 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); 531 } 532 533 // Compute the size of all common symbols 534 uint64_t CommonSize = 0; 535 uint32_t CommonAlign = 1; 536 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 537 ++I) { 538 uint32_t Flags = I->getFlags(); 539 if (Flags & SymbolRef::SF_Common) { 540 // Add the common symbols to a list. We'll allocate them all below. 541 uint64_t Size = I->getCommonSize(); 542 uint32_t Align = I->getAlignment(); 543 // If this is the first common symbol, use its alignment as the alignment 544 // for the common symbols section. 545 if (CommonSize == 0) 546 CommonAlign = Align; 547 CommonSize = alignTo(CommonSize, Align) + Size; 548 } 549 } 550 if (CommonSize != 0) { 551 RWSectionSizes.push_back(CommonSize); 552 RWDataAlign = std::max(RWDataAlign, CommonAlign); 553 } 554 555 // Compute the required allocation space for each different type of sections 556 // (code, read-only data, read-write data) assuming that all sections are 557 // allocated with the max alignment. Note that we cannot compute with the 558 // individual alignments of the sections, because then the required size 559 // depends on the order, in which the sections are allocated. 560 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 561 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 562 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 563 564 return Error::success(); 565 } 566 567 // compute GOT size 568 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 569 size_t GotEntrySize = getGOTEntrySize(); 570 if (!GotEntrySize) 571 return 0; 572 573 size_t GotSize = 0; 574 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 575 SI != SE; ++SI) { 576 577 for (const RelocationRef &Reloc : SI->relocations()) 578 if (relocationNeedsGot(Reloc)) 579 GotSize += GotEntrySize; 580 } 581 582 return GotSize; 583 } 584 585 // compute stub buffer size for the given section 586 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 587 const SectionRef &Section) { 588 unsigned StubSize = getMaxStubSize(); 589 if (StubSize == 0) { 590 return 0; 591 } 592 // FIXME: this is an inefficient way to handle this. We should computed the 593 // necessary section allocation size in loadObject by walking all the sections 594 // once. 595 unsigned StubBufSize = 0; 596 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 597 SI != SE; ++SI) { 598 section_iterator RelSecI = SI->getRelocatedSection(); 599 if (!(RelSecI == Section)) 600 continue; 601 602 for (const RelocationRef &Reloc : SI->relocations()) 603 if (relocationNeedsStub(Reloc)) 604 StubBufSize += StubSize; 605 } 606 607 // Get section data size and alignment 608 uint64_t DataSize = Section.getSize(); 609 uint64_t Alignment64 = Section.getAlignment(); 610 611 // Add stubbuf size alignment 612 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 613 unsigned StubAlignment = getStubAlignment(); 614 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 615 if (StubAlignment > EndAlignment) 616 StubBufSize += StubAlignment - EndAlignment; 617 return StubBufSize; 618 } 619 620 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 621 unsigned Size) const { 622 uint64_t Result = 0; 623 if (IsTargetLittleEndian) { 624 Src += Size - 1; 625 while (Size--) 626 Result = (Result << 8) | *Src--; 627 } else 628 while (Size--) 629 Result = (Result << 8) | *Src++; 630 631 return Result; 632 } 633 634 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 635 unsigned Size) const { 636 if (IsTargetLittleEndian) { 637 while (Size--) { 638 *Dst++ = Value & 0xFF; 639 Value >>= 8; 640 } 641 } else { 642 Dst += Size - 1; 643 while (Size--) { 644 *Dst-- = Value & 0xFF; 645 Value >>= 8; 646 } 647 } 648 } 649 650 JITSymbolFlags RuntimeDyldImpl::getJITSymbolFlags(const BasicSymbolRef &SR) { 651 return JITSymbolFlags::fromObjectSymbol(SR); 652 } 653 654 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 655 CommonSymbolList &SymbolsToAllocate, 656 uint64_t CommonSize, 657 uint32_t CommonAlign) { 658 if (SymbolsToAllocate.empty()) 659 return Error::success(); 660 661 // Allocate memory for the section 662 unsigned SectionID = Sections.size(); 663 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 664 "<common symbols>", false); 665 if (!Addr) 666 report_fatal_error("Unable to allocate memory for common symbols!"); 667 uint64_t Offset = 0; 668 Sections.push_back( 669 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 670 memset(Addr, 0, CommonSize); 671 672 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " 673 << format("%p", Addr) << " DataSize: " << CommonSize << "\n"); 674 675 // Assign the address of each symbol 676 for (auto &Sym : SymbolsToAllocate) { 677 uint32_t Align = Sym.getAlignment(); 678 uint64_t Size = Sym.getCommonSize(); 679 StringRef Name; 680 if (auto NameOrErr = Sym.getName()) 681 Name = *NameOrErr; 682 else 683 return NameOrErr.takeError(); 684 if (Align) { 685 // This symbol has an alignment requirement. 686 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 687 Addr += AlignOffset; 688 Offset += AlignOffset; 689 } 690 JITSymbolFlags JITSymFlags = getJITSymbolFlags(Sym); 691 DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 692 << format("%p", Addr) << "\n"); 693 GlobalSymbolTable[Name] = 694 SymbolTableEntry(SectionID, Offset, JITSymFlags); 695 Offset += Size; 696 Addr += Size; 697 } 698 699 if (Checker) 700 Checker->registerSection(Obj.getFileName(), SectionID); 701 702 return Error::success(); 703 } 704 705 Expected<unsigned> 706 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 707 const SectionRef &Section, 708 bool IsCode) { 709 StringRef data; 710 uint64_t Alignment64 = Section.getAlignment(); 711 712 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 713 unsigned PaddingSize = 0; 714 unsigned StubBufSize = 0; 715 bool IsRequired = isRequiredForExecution(Section); 716 bool IsVirtual = Section.isVirtual(); 717 bool IsZeroInit = isZeroInit(Section); 718 bool IsReadOnly = isReadOnlyData(Section); 719 uint64_t DataSize = Section.getSize(); 720 721 StringRef Name; 722 if (auto EC = Section.getName(Name)) 723 return errorCodeToError(EC); 724 725 StubBufSize = computeSectionStubBufSize(Obj, Section); 726 727 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 728 // with zeroes added at the end. For MachO objects, this section has a 729 // slightly different name, so this won't have any effect for MachO objects. 730 if (Name == ".eh_frame") 731 PaddingSize = 4; 732 733 uintptr_t Allocate; 734 unsigned SectionID = Sections.size(); 735 uint8_t *Addr; 736 const char *pData = nullptr; 737 738 // If this section contains any bits (i.e. isn't a virtual or bss section), 739 // grab a reference to them. 740 if (!IsVirtual && !IsZeroInit) { 741 // In either case, set the location of the unrelocated section in memory, 742 // since we still process relocations for it even if we're not applying them. 743 if (auto EC = Section.getContents(data)) 744 return errorCodeToError(EC); 745 pData = data.data(); 746 } 747 748 // Code section alignment needs to be at least as high as stub alignment or 749 // padding calculations may by incorrect when the section is remapped to a 750 // higher alignment. 751 if (IsCode) { 752 Alignment = std::max(Alignment, getStubAlignment()); 753 if (StubBufSize > 0) 754 PaddingSize += getStubAlignment() - 1; 755 } 756 757 // Some sections, such as debug info, don't need to be loaded for execution. 758 // Process those only if explicitly requested. 759 if (IsRequired || ProcessAllSections) { 760 Allocate = DataSize + PaddingSize + StubBufSize; 761 if (!Allocate) 762 Allocate = 1; 763 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 764 Name) 765 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 766 Name, IsReadOnly); 767 if (!Addr) 768 report_fatal_error("Unable to allocate section memory!"); 769 770 // Zero-initialize or copy the data from the image 771 if (IsZeroInit || IsVirtual) 772 memset(Addr, 0, DataSize); 773 else 774 memcpy(Addr, pData, DataSize); 775 776 // Fill in any extra bytes we allocated for padding 777 if (PaddingSize != 0) { 778 memset(Addr + DataSize, 0, PaddingSize); 779 // Update the DataSize variable to include padding. 780 DataSize += PaddingSize; 781 782 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 783 // have been increased above to account for this). 784 if (StubBufSize > 0) 785 DataSize &= ~(getStubAlignment() - 1); 786 } 787 788 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 789 << " obj addr: " << format("%p", pData) 790 << " new addr: " << format("%p", Addr) 791 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 792 << " Allocate: " << Allocate << "\n"); 793 } else { 794 // Even if we didn't load the section, we need to record an entry for it 795 // to handle later processing (and by 'handle' I mean don't do anything 796 // with these sections). 797 Allocate = 0; 798 Addr = nullptr; 799 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 800 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 801 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 802 << " Allocate: " << Allocate << "\n"); 803 } 804 805 Sections.push_back( 806 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 807 808 // Debug info sections are linked as if their load address was zero 809 if (!IsRequired) 810 Sections.back().setLoadAddress(0); 811 812 if (Checker) 813 Checker->registerSection(Obj.getFileName(), SectionID); 814 815 return SectionID; 816 } 817 818 Expected<unsigned> 819 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 820 const SectionRef &Section, 821 bool IsCode, 822 ObjSectionToIDMap &LocalSections) { 823 824 unsigned SectionID = 0; 825 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 826 if (i != LocalSections.end()) 827 SectionID = i->second; 828 else { 829 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 830 SectionID = *SectionIDOrErr; 831 else 832 return SectionIDOrErr.takeError(); 833 LocalSections[Section] = SectionID; 834 } 835 return SectionID; 836 } 837 838 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 839 unsigned SectionID) { 840 Relocations[SectionID].push_back(RE); 841 } 842 843 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 844 StringRef SymbolName) { 845 // Relocation by symbol. If the symbol is found in the global symbol table, 846 // create an appropriate section relocation. Otherwise, add it to 847 // ExternalSymbolRelocations. 848 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 849 if (Loc == GlobalSymbolTable.end()) { 850 ExternalSymbolRelocations[SymbolName].push_back(RE); 851 } else { 852 // Copy the RE since we want to modify its addend. 853 RelocationEntry RECopy = RE; 854 const auto &SymInfo = Loc->second; 855 RECopy.Addend += SymInfo.getOffset(); 856 Relocations[SymInfo.getSectionID()].push_back(RECopy); 857 } 858 } 859 860 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 861 unsigned AbiVariant) { 862 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 863 // This stub has to be able to access the full address space, 864 // since symbol lookup won't necessarily find a handy, in-range, 865 // PLT stub for functions which could be anywhere. 866 // Stub can use ip0 (== x16) to calculate address 867 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 868 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 869 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 870 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 871 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 872 873 return Addr; 874 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 875 // TODO: There is only ARM far stub now. We should add the Thumb stub, 876 // and stubs for branches Thumb - ARM and ARM - Thumb. 877 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 878 return Addr + 4; 879 } else if (IsMipsO32ABI || IsMipsN32ABI) { 880 // 0: 3c190000 lui t9,%hi(addr). 881 // 4: 27390000 addiu t9,t9,%lo(addr). 882 // 8: 03200008 jr t9. 883 // c: 00000000 nop. 884 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 885 const unsigned NopInstr = 0x0; 886 unsigned JrT9Instr = 0x03200008; 887 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 888 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 889 JrT9Instr = 0x03200009; 890 891 writeBytesUnaligned(LuiT9Instr, Addr, 4); 892 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 893 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 894 writeBytesUnaligned(NopInstr, Addr + 12, 4); 895 return Addr; 896 } else if (IsMipsN64ABI) { 897 // 0: 3c190000 lui t9,%highest(addr). 898 // 4: 67390000 daddiu t9,t9,%higher(addr). 899 // 8: 0019CC38 dsll t9,t9,16. 900 // c: 67390000 daddiu t9,t9,%hi(addr). 901 // 10: 0019CC38 dsll t9,t9,16. 902 // 14: 67390000 daddiu t9,t9,%lo(addr). 903 // 18: 03200008 jr t9. 904 // 1c: 00000000 nop. 905 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 906 DsllT9Instr = 0x19CC38; 907 const unsigned NopInstr = 0x0; 908 unsigned JrT9Instr = 0x03200008; 909 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 910 JrT9Instr = 0x03200009; 911 912 writeBytesUnaligned(LuiT9Instr, Addr, 4); 913 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 914 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 915 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 916 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 917 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 918 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 919 writeBytesUnaligned(NopInstr, Addr + 28, 4); 920 return Addr; 921 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 922 // Depending on which version of the ELF ABI is in use, we need to 923 // generate one of two variants of the stub. They both start with 924 // the same sequence to load the target address into r12. 925 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 926 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 927 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 928 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 929 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 930 if (AbiVariant == 2) { 931 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 932 // The address is already in r12 as required by the ABI. Branch to it. 933 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 934 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 935 writeInt32BE(Addr+28, 0x4E800420); // bctr 936 } else { 937 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 938 // Load the function address on r11 and sets it to control register. Also 939 // loads the function TOC in r2 and environment pointer to r11. 940 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 941 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 942 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 943 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 944 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 945 writeInt32BE(Addr+40, 0x4E800420); // bctr 946 } 947 return Addr; 948 } else if (Arch == Triple::systemz) { 949 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 950 writeInt16BE(Addr+2, 0x0000); 951 writeInt16BE(Addr+4, 0x0004); 952 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 953 // 8-byte address stored at Addr + 8 954 return Addr; 955 } else if (Arch == Triple::x86_64) { 956 *Addr = 0xFF; // jmp 957 *(Addr+1) = 0x25; // rip 958 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 959 } else if (Arch == Triple::x86) { 960 *Addr = 0xE9; // 32-bit pc-relative jump. 961 } 962 return Addr; 963 } 964 965 // Assign an address to a symbol name and resolve all the relocations 966 // associated with it. 967 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 968 uint64_t Addr) { 969 // The address to use for relocation resolution is not 970 // the address of the local section buffer. We must be doing 971 // a remote execution environment of some sort. Relocations can't 972 // be applied until all the sections have been moved. The client must 973 // trigger this with a call to MCJIT::finalize() or 974 // RuntimeDyld::resolveRelocations(). 975 // 976 // Addr is a uint64_t because we can't assume the pointer width 977 // of the target is the same as that of the host. Just use a generic 978 // "big enough" type. 979 DEBUG(dbgs() << "Reassigning address for section " << SectionID << " (" 980 << Sections[SectionID].getName() << "): " 981 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 982 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 983 Sections[SectionID].setLoadAddress(Addr); 984 } 985 986 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 987 uint64_t Value) { 988 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 989 const RelocationEntry &RE = Relocs[i]; 990 // Ignore relocations for sections that were not loaded 991 if (Sections[RE.SectionID].getAddress() == nullptr) 992 continue; 993 resolveRelocation(RE, Value); 994 } 995 } 996 997 Error RuntimeDyldImpl::resolveExternalSymbols() { 998 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 999 1000 // Resolution can trigger emission of more symbols, so iterate until 1001 // we've resolved *everything*. 1002 { 1003 JITSymbolResolver::LookupSet ResolvedSymbols; 1004 1005 while (true) { 1006 JITSymbolResolver::LookupSet NewSymbols; 1007 1008 for (auto &RelocKV : ExternalSymbolRelocations) { 1009 StringRef Name = RelocKV.first(); 1010 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1011 !ResolvedSymbols.count(Name)) 1012 NewSymbols.insert(Name); 1013 } 1014 1015 if (NewSymbols.empty()) 1016 break; 1017 1018 auto NewResolverResults = Resolver.lookup(NewSymbols); 1019 if (!NewResolverResults) 1020 return NewResolverResults.takeError(); 1021 1022 for (auto &RRKV : *NewResolverResults) { 1023 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1024 ExternalSymbolMap.insert(RRKV); 1025 ResolvedSymbols.insert(RRKV.first); 1026 } 1027 } 1028 } 1029 1030 while (!ExternalSymbolRelocations.empty()) { 1031 1032 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 1033 1034 StringRef Name = i->first(); 1035 if (Name.size() == 0) { 1036 // This is an absolute symbol, use an address of zero. 1037 DEBUG(dbgs() << "Resolving absolute relocations." 1038 << "\n"); 1039 RelocationList &Relocs = i->second; 1040 resolveRelocationList(Relocs, 0); 1041 } else { 1042 uint64_t Addr = 0; 1043 JITSymbolFlags Flags; 1044 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1045 if (Loc == GlobalSymbolTable.end()) { 1046 auto RRI = ExternalSymbolMap.find(Name); 1047 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1048 Addr = RRI->second.getAddress(); 1049 Flags = RRI->second.getFlags(); 1050 // The call to getSymbolAddress may have caused additional modules to 1051 // be loaded, which may have added new entries to the 1052 // ExternalSymbolRelocations map. Consquently, we need to update our 1053 // iterator. This is also why retrieval of the relocation list 1054 // associated with this symbol is deferred until below this point. 1055 // New entries may have been added to the relocation list. 1056 i = ExternalSymbolRelocations.find(Name); 1057 } else { 1058 // We found the symbol in our global table. It was probably in a 1059 // Module that we loaded previously. 1060 const auto &SymInfo = Loc->second; 1061 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1062 SymInfo.getOffset(); 1063 Flags = SymInfo.getFlags(); 1064 } 1065 1066 // FIXME: Implement error handling that doesn't kill the host program! 1067 if (!Addr) 1068 report_fatal_error("Program used external function '" + Name + 1069 "' which could not be resolved!"); 1070 1071 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1072 // manually and we shouldn't resolve its relocations. 1073 if (Addr != UINT64_MAX) { 1074 1075 // Tweak the address based on the symbol flags if necessary. 1076 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1077 // if the target symbol is Thumb. 1078 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1079 1080 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1081 << format("0x%lx", Addr) << "\n"); 1082 // This list may have been updated when we called getSymbolAddress, so 1083 // don't change this code to get the list earlier. 1084 RelocationList &Relocs = i->second; 1085 resolveRelocationList(Relocs, Addr); 1086 } 1087 } 1088 1089 ExternalSymbolRelocations.erase(i); 1090 } 1091 1092 return Error::success(); 1093 } 1094 1095 //===----------------------------------------------------------------------===// 1096 // RuntimeDyld class implementation 1097 1098 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1099 const object::SectionRef &Sec) const { 1100 1101 auto I = ObjSecToIDMap.find(Sec); 1102 if (I != ObjSecToIDMap.end()) 1103 return RTDyld.Sections[I->second].getLoadAddress(); 1104 1105 return 0; 1106 } 1107 1108 void RuntimeDyld::MemoryManager::anchor() {} 1109 void JITSymbolResolver::anchor() {} 1110 void LegacyJITSymbolResolver::anchor() {} 1111 1112 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1113 JITSymbolResolver &Resolver) 1114 : MemMgr(MemMgr), Resolver(Resolver) { 1115 // FIXME: There's a potential issue lurking here if a single instance of 1116 // RuntimeDyld is used to load multiple objects. The current implementation 1117 // associates a single memory manager with a RuntimeDyld instance. Even 1118 // though the public class spawns a new 'impl' instance for each load, 1119 // they share a single memory manager. This can become a problem when page 1120 // permissions are applied. 1121 Dyld = nullptr; 1122 ProcessAllSections = false; 1123 Checker = nullptr; 1124 } 1125 1126 RuntimeDyld::~RuntimeDyld() {} 1127 1128 static std::unique_ptr<RuntimeDyldCOFF> 1129 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1130 JITSymbolResolver &Resolver, bool ProcessAllSections, 1131 RuntimeDyldCheckerImpl *Checker) { 1132 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1133 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1134 Dyld->setProcessAllSections(ProcessAllSections); 1135 Dyld->setRuntimeDyldChecker(Checker); 1136 return Dyld; 1137 } 1138 1139 static std::unique_ptr<RuntimeDyldELF> 1140 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1141 JITSymbolResolver &Resolver, bool ProcessAllSections, 1142 RuntimeDyldCheckerImpl *Checker) { 1143 std::unique_ptr<RuntimeDyldELF> Dyld = 1144 RuntimeDyldELF::create(Arch, MM, Resolver); 1145 Dyld->setProcessAllSections(ProcessAllSections); 1146 Dyld->setRuntimeDyldChecker(Checker); 1147 return Dyld; 1148 } 1149 1150 static std::unique_ptr<RuntimeDyldMachO> 1151 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1152 JITSymbolResolver &Resolver, 1153 bool ProcessAllSections, 1154 RuntimeDyldCheckerImpl *Checker) { 1155 std::unique_ptr<RuntimeDyldMachO> Dyld = 1156 RuntimeDyldMachO::create(Arch, MM, Resolver); 1157 Dyld->setProcessAllSections(ProcessAllSections); 1158 Dyld->setRuntimeDyldChecker(Checker); 1159 return Dyld; 1160 } 1161 1162 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1163 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1164 if (!Dyld) { 1165 if (Obj.isELF()) 1166 Dyld = 1167 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1168 MemMgr, Resolver, ProcessAllSections, Checker); 1169 else if (Obj.isMachO()) 1170 Dyld = createRuntimeDyldMachO( 1171 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1172 ProcessAllSections, Checker); 1173 else if (Obj.isCOFF()) 1174 Dyld = createRuntimeDyldCOFF( 1175 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1176 ProcessAllSections, Checker); 1177 else 1178 report_fatal_error("Incompatible object format!"); 1179 } 1180 1181 if (!Dyld->isCompatibleFile(Obj)) 1182 report_fatal_error("Incompatible object format!"); 1183 1184 auto LoadedObjInfo = Dyld->loadObject(Obj); 1185 MemMgr.notifyObjectLoaded(*this, Obj); 1186 return LoadedObjInfo; 1187 } 1188 1189 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1190 if (!Dyld) 1191 return nullptr; 1192 return Dyld->getSymbolLocalAddress(Name); 1193 } 1194 1195 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1196 if (!Dyld) 1197 return nullptr; 1198 return Dyld->getSymbol(Name); 1199 } 1200 1201 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1202 if (!Dyld) 1203 return std::map<StringRef, JITEvaluatedSymbol>(); 1204 return Dyld->getSymbolTable(); 1205 } 1206 1207 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1208 1209 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1210 Dyld->reassignSectionAddress(SectionID, Addr); 1211 } 1212 1213 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1214 uint64_t TargetAddress) { 1215 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1216 } 1217 1218 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1219 1220 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1221 1222 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1223 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1224 MemMgr.FinalizationLocked = true; 1225 resolveRelocations(); 1226 registerEHFrames(); 1227 if (!MemoryFinalizationLocked) { 1228 MemMgr.finalizeMemory(); 1229 MemMgr.FinalizationLocked = false; 1230 } 1231 } 1232 1233 void RuntimeDyld::registerEHFrames() { 1234 if (Dyld) 1235 Dyld->registerEHFrames(); 1236 } 1237 1238 void RuntimeDyld::deregisterEHFrames() { 1239 if (Dyld) 1240 Dyld->deregisterEHFrames(); 1241 } 1242 1243 } // end namespace llvm 1244