1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "RuntimeDyldCOFF.h"
16 #include "RuntimeDyldCheckerImpl.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/MutexGuard.h"
25 
26 using namespace llvm;
27 using namespace llvm::object;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 namespace {
32 
33 enum RuntimeDyldErrorCode {
34   GenericRTDyldError = 1
35 };
36 
37 // FIXME: This class is only here to support the transition to llvm::Error. It
38 // will be removed once this transition is complete. Clients should prefer to
39 // deal with the Error value directly, rather than converting to error_code.
40 class RuntimeDyldErrorCategory : public std::error_category {
41 public:
42   const char *name() const noexcept override { return "runtimedyld"; }
43 
44   std::string message(int Condition) const override {
45     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
46       case GenericRTDyldError: return "Generic RuntimeDyld error";
47     }
48     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
49   }
50 };
51 
52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
53 
54 }
55 
56 char RuntimeDyldError::ID = 0;
57 
58 void RuntimeDyldError::log(raw_ostream &OS) const {
59   OS << ErrMsg << "\n";
60 }
61 
62 std::error_code RuntimeDyldError::convertToErrorCode() const {
63   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
64 }
65 
66 // Empty out-of-line virtual destructor as the key function.
67 RuntimeDyldImpl::~RuntimeDyldImpl() {}
68 
69 // Pin LoadedObjectInfo's vtables to this file.
70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
71 
72 namespace llvm {
73 
74 void RuntimeDyldImpl::registerEHFrames() {}
75 
76 void RuntimeDyldImpl::deregisterEHFrames() {
77   MemMgr.deregisterEHFrames();
78 }
79 
80 #ifndef NDEBUG
81 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
82   dbgs() << "----- Contents of section " << S.getName() << " " << State
83          << " -----";
84 
85   if (S.getAddress() == nullptr) {
86     dbgs() << "\n          <section not emitted>\n";
87     return;
88   }
89 
90   const unsigned ColsPerRow = 16;
91 
92   uint8_t *DataAddr = S.getAddress();
93   uint64_t LoadAddr = S.getLoadAddress();
94 
95   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
96   unsigned BytesRemaining = S.getSize();
97 
98   if (StartPadding) {
99     dbgs() << "\n" << format("0x%016" PRIx64,
100                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
101     while (StartPadding--)
102       dbgs() << "   ";
103   }
104 
105   while (BytesRemaining > 0) {
106     if ((LoadAddr & (ColsPerRow - 1)) == 0)
107       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
108 
109     dbgs() << " " << format("%02x", *DataAddr);
110 
111     ++DataAddr;
112     ++LoadAddr;
113     --BytesRemaining;
114   }
115 
116   dbgs() << "\n";
117 }
118 #endif
119 
120 // Resolve the relocations for all symbols we currently know about.
121 void RuntimeDyldImpl::resolveRelocations() {
122   MutexGuard locked(lock);
123 
124   // Print out the sections prior to relocation.
125   DEBUG(
126     for (int i = 0, e = Sections.size(); i != e; ++i)
127       dumpSectionMemory(Sections[i], "before relocations");
128   );
129 
130   // First, resolve relocations associated with external symbols.
131   if (auto Err = resolveExternalSymbols()) {
132     HasError = true;
133     ErrorStr = toString(std::move(Err));
134   }
135 
136   // Iterate over all outstanding relocations
137   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
138     // The Section here (Sections[i]) refers to the section in which the
139     // symbol for the relocation is located.  The SectionID in the relocation
140     // entry provides the section to which the relocation will be applied.
141     int Idx = it->first;
142     uint64_t Addr = Sections[Idx].getLoadAddress();
143     DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
144                  << format("%p", (uintptr_t)Addr) << "\n");
145     resolveRelocationList(it->second, Addr);
146   }
147   Relocations.clear();
148 
149   // Print out sections after relocation.
150   DEBUG(
151     for (int i = 0, e = Sections.size(); i != e; ++i)
152       dumpSectionMemory(Sections[i], "after relocations");
153   );
154 
155 }
156 
157 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
158                                         uint64_t TargetAddress) {
159   MutexGuard locked(lock);
160   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
161     if (Sections[i].getAddress() == LocalAddress) {
162       reassignSectionAddress(i, TargetAddress);
163       return;
164     }
165   }
166   llvm_unreachable("Attempting to remap address of unknown section!");
167 }
168 
169 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
170                        uint64_t &Result) {
171   Expected<uint64_t> AddressOrErr = Sym.getAddress();
172   if (!AddressOrErr)
173     return AddressOrErr.takeError();
174   Result = *AddressOrErr - Sec.getAddress();
175   return Error::success();
176 }
177 
178 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
179 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
180   MutexGuard locked(lock);
181 
182   // Save information about our target
183   Arch = (Triple::ArchType)Obj.getArch();
184   IsTargetLittleEndian = Obj.isLittleEndian();
185   setMipsABI(Obj);
186 
187   // Compute the memory size required to load all sections to be loaded
188   // and pass this information to the memory manager
189   if (MemMgr.needsToReserveAllocationSpace()) {
190     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
191     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
192     if (auto Err = computeTotalAllocSize(Obj,
193                                          CodeSize, CodeAlign,
194                                          RODataSize, RODataAlign,
195                                          RWDataSize, RWDataAlign))
196       return std::move(Err);
197     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
198                                   RWDataSize, RWDataAlign);
199   }
200 
201   // Used sections from the object file
202   ObjSectionToIDMap LocalSections;
203 
204   // Common symbols requiring allocation, with their sizes and alignments
205   CommonSymbolList CommonSymbolsToAllocate;
206 
207   uint64_t CommonSize = 0;
208   uint32_t CommonAlign = 0;
209 
210   // First, collect all weak and common symbols. We need to know if stronger
211   // definitions occur elsewhere.
212   JITSymbolResolver::LookupFlagsResult SymbolFlags;
213   {
214     JITSymbolResolver::LookupSet Symbols;
215     for (auto &Sym : Obj.symbols()) {
216       uint32_t Flags = Sym.getFlags();
217       if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
218         // Get symbol name.
219         if (auto NameOrErr = Sym.getName())
220           Symbols.insert(*NameOrErr);
221         else
222           return NameOrErr.takeError();
223       }
224     }
225 
226     if (auto FlagsResultOrErr = Resolver.lookupFlags(Symbols))
227       SymbolFlags = std::move(*FlagsResultOrErr);
228     else
229       return FlagsResultOrErr.takeError();
230   }
231 
232   // Parse symbols
233   DEBUG(dbgs() << "Parse symbols:\n");
234   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
235        ++I) {
236     uint32_t Flags = I->getFlags();
237 
238     // Skip undefined symbols.
239     if (Flags & SymbolRef::SF_Undefined)
240       continue;
241 
242     // Get the symbol type.
243     object::SymbolRef::Type SymType;
244     if (auto SymTypeOrErr = I->getType())
245       SymType = *SymTypeOrErr;
246     else
247       return SymTypeOrErr.takeError();
248 
249     // Get symbol name.
250     StringRef Name;
251     if (auto NameOrErr = I->getName())
252       Name = *NameOrErr;
253     else
254       return NameOrErr.takeError();
255 
256     // Compute JIT symbol flags.
257     JITSymbolFlags JITSymFlags = getJITSymbolFlags(*I);
258 
259     // If this is a weak definition, check to see if there's a strong one.
260     // If there is, skip this symbol (we won't be providing it: the strong
261     // definition will). If there's no strong definition, make this definition
262     // strong.
263     if (JITSymFlags.isWeak() || JITSymFlags.isCommon()) {
264       // First check whether there's already a definition in this instance.
265       // FIXME: Override existing weak definitions with strong ones.
266       if (GlobalSymbolTable.count(Name))
267         continue;
268 
269       // Then check whether we found flags for an existing symbol during the
270       // flags lookup earlier.
271       auto FlagsI = SymbolFlags.find(Name);
272       if (FlagsI == SymbolFlags.end() ||
273           (JITSymFlags.isWeak() && !FlagsI->second.isStrong()) ||
274           (JITSymFlags.isCommon() && FlagsI->second.isCommon())) {
275         if (JITSymFlags.isWeak())
276           JITSymFlags &= ~JITSymbolFlags::Weak;
277         if (JITSymFlags.isCommon()) {
278           JITSymFlags &= ~JITSymbolFlags::Common;
279           uint32_t Align = I->getAlignment();
280           uint64_t Size = I->getCommonSize();
281           if (!CommonAlign)
282             CommonAlign = Align;
283           CommonSize += alignTo(CommonSize, Align) + Size;
284           CommonSymbolsToAllocate.push_back(*I);
285         }
286       } else
287         continue;
288     }
289 
290     if (Flags & SymbolRef::SF_Absolute &&
291         SymType != object::SymbolRef::ST_File) {
292       uint64_t Addr = 0;
293       if (auto AddrOrErr = I->getAddress())
294         Addr = *AddrOrErr;
295       else
296         return AddrOrErr.takeError();
297 
298       unsigned SectionID = AbsoluteSymbolSection;
299 
300       DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
301                    << " SID: " << SectionID
302                    << " Offset: " << format("%p", (uintptr_t)Addr)
303                    << " flags: " << Flags << "\n");
304       GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, JITSymFlags);
305     } else if (SymType == object::SymbolRef::ST_Function ||
306                SymType == object::SymbolRef::ST_Data ||
307                SymType == object::SymbolRef::ST_Unknown ||
308                SymType == object::SymbolRef::ST_Other) {
309 
310       section_iterator SI = Obj.section_end();
311       if (auto SIOrErr = I->getSection())
312         SI = *SIOrErr;
313       else
314         return SIOrErr.takeError();
315 
316       if (SI == Obj.section_end())
317         continue;
318 
319       // Get symbol offset.
320       uint64_t SectOffset;
321       if (auto Err = getOffset(*I, *SI, SectOffset))
322         return std::move(Err);
323 
324       bool IsCode = SI->isText();
325       unsigned SectionID;
326       if (auto SectionIDOrErr =
327               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
328         SectionID = *SectionIDOrErr;
329       else
330         return SectionIDOrErr.takeError();
331 
332       DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
333                    << " SID: " << SectionID
334                    << " Offset: " << format("%p", (uintptr_t)SectOffset)
335                    << " flags: " << Flags << "\n");
336       GlobalSymbolTable[Name] =
337           SymbolTableEntry(SectionID, SectOffset, JITSymFlags);
338     }
339   }
340 
341   // Allocate common symbols
342   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
343                                    CommonAlign))
344     return std::move(Err);
345 
346   // Parse and process relocations
347   DEBUG(dbgs() << "Parse relocations:\n");
348   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
349        SI != SE; ++SI) {
350     StubMap Stubs;
351     section_iterator RelocatedSection = SI->getRelocatedSection();
352 
353     if (RelocatedSection == SE)
354       continue;
355 
356     relocation_iterator I = SI->relocation_begin();
357     relocation_iterator E = SI->relocation_end();
358 
359     if (I == E && !ProcessAllSections)
360       continue;
361 
362     bool IsCode = RelocatedSection->isText();
363     unsigned SectionID = 0;
364     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
365                                                 LocalSections))
366       SectionID = *SectionIDOrErr;
367     else
368       return SectionIDOrErr.takeError();
369 
370     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
371 
372     for (; I != E;)
373       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
374         I = *IOrErr;
375       else
376         return IOrErr.takeError();
377 
378     // If there is an attached checker, notify it about the stubs for this
379     // section so that they can be verified.
380     if (Checker)
381       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
382   }
383 
384   // Give the subclasses a chance to tie-up any loose ends.
385   if (auto Err = finalizeLoad(Obj, LocalSections))
386     return std::move(Err);
387 
388 //   for (auto E : LocalSections)
389 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
390 
391   return LocalSections;
392 }
393 
394 // A helper method for computeTotalAllocSize.
395 // Computes the memory size required to allocate sections with the given sizes,
396 // assuming that all sections are allocated with the given alignment
397 static uint64_t
398 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
399                                  uint64_t Alignment) {
400   uint64_t TotalSize = 0;
401   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
402     uint64_t AlignedSize =
403         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
404     TotalSize += AlignedSize;
405   }
406   return TotalSize;
407 }
408 
409 static bool isRequiredForExecution(const SectionRef Section) {
410   const ObjectFile *Obj = Section.getObject();
411   if (isa<object::ELFObjectFileBase>(Obj))
412     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
413   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
414     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
415     // Avoid loading zero-sized COFF sections.
416     // In PE files, VirtualSize gives the section size, and SizeOfRawData
417     // may be zero for sections with content. In Obj files, SizeOfRawData
418     // gives the section size, and VirtualSize is always zero. Hence
419     // the need to check for both cases below.
420     bool HasContent =
421         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
422     bool IsDiscardable =
423         CoffSection->Characteristics &
424         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
425     return HasContent && !IsDiscardable;
426   }
427 
428   assert(isa<MachOObjectFile>(Obj));
429   return true;
430 }
431 
432 static bool isReadOnlyData(const SectionRef Section) {
433   const ObjectFile *Obj = Section.getObject();
434   if (isa<object::ELFObjectFileBase>(Obj))
435     return !(ELFSectionRef(Section).getFlags() &
436              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
437   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
438     return ((COFFObj->getCOFFSection(Section)->Characteristics &
439              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
440              | COFF::IMAGE_SCN_MEM_READ
441              | COFF::IMAGE_SCN_MEM_WRITE))
442              ==
443              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
444              | COFF::IMAGE_SCN_MEM_READ));
445 
446   assert(isa<MachOObjectFile>(Obj));
447   return false;
448 }
449 
450 static bool isZeroInit(const SectionRef Section) {
451   const ObjectFile *Obj = Section.getObject();
452   if (isa<object::ELFObjectFileBase>(Obj))
453     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
454   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
455     return COFFObj->getCOFFSection(Section)->Characteristics &
456             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
457 
458   auto *MachO = cast<MachOObjectFile>(Obj);
459   unsigned SectionType = MachO->getSectionType(Section);
460   return SectionType == MachO::S_ZEROFILL ||
461          SectionType == MachO::S_GB_ZEROFILL;
462 }
463 
464 // Compute an upper bound of the memory size that is required to load all
465 // sections
466 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
467                                              uint64_t &CodeSize,
468                                              uint32_t &CodeAlign,
469                                              uint64_t &RODataSize,
470                                              uint32_t &RODataAlign,
471                                              uint64_t &RWDataSize,
472                                              uint32_t &RWDataAlign) {
473   // Compute the size of all sections required for execution
474   std::vector<uint64_t> CodeSectionSizes;
475   std::vector<uint64_t> ROSectionSizes;
476   std::vector<uint64_t> RWSectionSizes;
477 
478   // Collect sizes of all sections to be loaded;
479   // also determine the max alignment of all sections
480   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
481        SI != SE; ++SI) {
482     const SectionRef &Section = *SI;
483 
484     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
485 
486     // Consider only the sections that are required to be loaded for execution
487     if (IsRequired) {
488       uint64_t DataSize = Section.getSize();
489       uint64_t Alignment64 = Section.getAlignment();
490       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
491       bool IsCode = Section.isText();
492       bool IsReadOnly = isReadOnlyData(Section);
493 
494       StringRef Name;
495       if (auto EC = Section.getName(Name))
496         return errorCodeToError(EC);
497 
498       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
499       uint64_t SectionSize = DataSize + StubBufSize;
500 
501       // The .eh_frame section (at least on Linux) needs an extra four bytes
502       // padded
503       // with zeroes added at the end.  For MachO objects, this section has a
504       // slightly different name, so this won't have any effect for MachO
505       // objects.
506       if (Name == ".eh_frame")
507         SectionSize += 4;
508 
509       if (!SectionSize)
510         SectionSize = 1;
511 
512       if (IsCode) {
513         CodeAlign = std::max(CodeAlign, Alignment);
514         CodeSectionSizes.push_back(SectionSize);
515       } else if (IsReadOnly) {
516         RODataAlign = std::max(RODataAlign, Alignment);
517         ROSectionSizes.push_back(SectionSize);
518       } else {
519         RWDataAlign = std::max(RWDataAlign, Alignment);
520         RWSectionSizes.push_back(SectionSize);
521       }
522     }
523   }
524 
525   // Compute Global Offset Table size. If it is not zero we
526   // also update alignment, which is equal to a size of a
527   // single GOT entry.
528   if (unsigned GotSize = computeGOTSize(Obj)) {
529     RWSectionSizes.push_back(GotSize);
530     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
531   }
532 
533   // Compute the size of all common symbols
534   uint64_t CommonSize = 0;
535   uint32_t CommonAlign = 1;
536   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
537        ++I) {
538     uint32_t Flags = I->getFlags();
539     if (Flags & SymbolRef::SF_Common) {
540       // Add the common symbols to a list.  We'll allocate them all below.
541       uint64_t Size = I->getCommonSize();
542       uint32_t Align = I->getAlignment();
543       // If this is the first common symbol, use its alignment as the alignment
544       // for the common symbols section.
545       if (CommonSize == 0)
546         CommonAlign = Align;
547       CommonSize = alignTo(CommonSize, Align) + Size;
548     }
549   }
550   if (CommonSize != 0) {
551     RWSectionSizes.push_back(CommonSize);
552     RWDataAlign = std::max(RWDataAlign, CommonAlign);
553   }
554 
555   // Compute the required allocation space for each different type of sections
556   // (code, read-only data, read-write data) assuming that all sections are
557   // allocated with the max alignment. Note that we cannot compute with the
558   // individual alignments of the sections, because then the required size
559   // depends on the order, in which the sections are allocated.
560   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
561   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
562   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
563 
564   return Error::success();
565 }
566 
567 // compute GOT size
568 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
569   size_t GotEntrySize = getGOTEntrySize();
570   if (!GotEntrySize)
571     return 0;
572 
573   size_t GotSize = 0;
574   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
575        SI != SE; ++SI) {
576 
577     for (const RelocationRef &Reloc : SI->relocations())
578       if (relocationNeedsGot(Reloc))
579         GotSize += GotEntrySize;
580   }
581 
582   return GotSize;
583 }
584 
585 // compute stub buffer size for the given section
586 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
587                                                     const SectionRef &Section) {
588   unsigned StubSize = getMaxStubSize();
589   if (StubSize == 0) {
590     return 0;
591   }
592   // FIXME: this is an inefficient way to handle this. We should computed the
593   // necessary section allocation size in loadObject by walking all the sections
594   // once.
595   unsigned StubBufSize = 0;
596   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
597        SI != SE; ++SI) {
598     section_iterator RelSecI = SI->getRelocatedSection();
599     if (!(RelSecI == Section))
600       continue;
601 
602     for (const RelocationRef &Reloc : SI->relocations())
603       if (relocationNeedsStub(Reloc))
604         StubBufSize += StubSize;
605   }
606 
607   // Get section data size and alignment
608   uint64_t DataSize = Section.getSize();
609   uint64_t Alignment64 = Section.getAlignment();
610 
611   // Add stubbuf size alignment
612   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
613   unsigned StubAlignment = getStubAlignment();
614   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
615   if (StubAlignment > EndAlignment)
616     StubBufSize += StubAlignment - EndAlignment;
617   return StubBufSize;
618 }
619 
620 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
621                                              unsigned Size) const {
622   uint64_t Result = 0;
623   if (IsTargetLittleEndian) {
624     Src += Size - 1;
625     while (Size--)
626       Result = (Result << 8) | *Src--;
627   } else
628     while (Size--)
629       Result = (Result << 8) | *Src++;
630 
631   return Result;
632 }
633 
634 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
635                                           unsigned Size) const {
636   if (IsTargetLittleEndian) {
637     while (Size--) {
638       *Dst++ = Value & 0xFF;
639       Value >>= 8;
640     }
641   } else {
642     Dst += Size - 1;
643     while (Size--) {
644       *Dst-- = Value & 0xFF;
645       Value >>= 8;
646     }
647   }
648 }
649 
650 JITSymbolFlags RuntimeDyldImpl::getJITSymbolFlags(const BasicSymbolRef &SR) {
651   return JITSymbolFlags::fromObjectSymbol(SR);
652 }
653 
654 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
655                                          CommonSymbolList &SymbolsToAllocate,
656                                          uint64_t CommonSize,
657                                          uint32_t CommonAlign) {
658   if (SymbolsToAllocate.empty())
659     return Error::success();
660 
661   // Allocate memory for the section
662   unsigned SectionID = Sections.size();
663   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
664                                              "<common symbols>", false);
665   if (!Addr)
666     report_fatal_error("Unable to allocate memory for common symbols!");
667   uint64_t Offset = 0;
668   Sections.push_back(
669       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
670   memset(Addr, 0, CommonSize);
671 
672   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
673                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
674 
675   // Assign the address of each symbol
676   for (auto &Sym : SymbolsToAllocate) {
677     uint32_t Align = Sym.getAlignment();
678     uint64_t Size = Sym.getCommonSize();
679     StringRef Name;
680     if (auto NameOrErr = Sym.getName())
681       Name = *NameOrErr;
682     else
683       return NameOrErr.takeError();
684     if (Align) {
685       // This symbol has an alignment requirement.
686       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
687       Addr += AlignOffset;
688       Offset += AlignOffset;
689     }
690     JITSymbolFlags JITSymFlags = getJITSymbolFlags(Sym);
691     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
692                  << format("%p", Addr) << "\n");
693     GlobalSymbolTable[Name] =
694       SymbolTableEntry(SectionID, Offset, JITSymFlags);
695     Offset += Size;
696     Addr += Size;
697   }
698 
699   if (Checker)
700     Checker->registerSection(Obj.getFileName(), SectionID);
701 
702   return Error::success();
703 }
704 
705 Expected<unsigned>
706 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
707                              const SectionRef &Section,
708                              bool IsCode) {
709   StringRef data;
710   uint64_t Alignment64 = Section.getAlignment();
711 
712   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
713   unsigned PaddingSize = 0;
714   unsigned StubBufSize = 0;
715   bool IsRequired = isRequiredForExecution(Section);
716   bool IsVirtual = Section.isVirtual();
717   bool IsZeroInit = isZeroInit(Section);
718   bool IsReadOnly = isReadOnlyData(Section);
719   uint64_t DataSize = Section.getSize();
720 
721   StringRef Name;
722   if (auto EC = Section.getName(Name))
723     return errorCodeToError(EC);
724 
725   StubBufSize = computeSectionStubBufSize(Obj, Section);
726 
727   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
728   // with zeroes added at the end.  For MachO objects, this section has a
729   // slightly different name, so this won't have any effect for MachO objects.
730   if (Name == ".eh_frame")
731     PaddingSize = 4;
732 
733   uintptr_t Allocate;
734   unsigned SectionID = Sections.size();
735   uint8_t *Addr;
736   const char *pData = nullptr;
737 
738   // If this section contains any bits (i.e. isn't a virtual or bss section),
739   // grab a reference to them.
740   if (!IsVirtual && !IsZeroInit) {
741     // In either case, set the location of the unrelocated section in memory,
742     // since we still process relocations for it even if we're not applying them.
743     if (auto EC = Section.getContents(data))
744       return errorCodeToError(EC);
745     pData = data.data();
746   }
747 
748   // Code section alignment needs to be at least as high as stub alignment or
749   // padding calculations may by incorrect when the section is remapped to a
750   // higher alignment.
751   if (IsCode) {
752     Alignment = std::max(Alignment, getStubAlignment());
753     if (StubBufSize > 0)
754       PaddingSize += getStubAlignment() - 1;
755   }
756 
757   // Some sections, such as debug info, don't need to be loaded for execution.
758   // Process those only if explicitly requested.
759   if (IsRequired || ProcessAllSections) {
760     Allocate = DataSize + PaddingSize + StubBufSize;
761     if (!Allocate)
762       Allocate = 1;
763     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
764                                                Name)
765                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
766                                                Name, IsReadOnly);
767     if (!Addr)
768       report_fatal_error("Unable to allocate section memory!");
769 
770     // Zero-initialize or copy the data from the image
771     if (IsZeroInit || IsVirtual)
772       memset(Addr, 0, DataSize);
773     else
774       memcpy(Addr, pData, DataSize);
775 
776     // Fill in any extra bytes we allocated for padding
777     if (PaddingSize != 0) {
778       memset(Addr + DataSize, 0, PaddingSize);
779       // Update the DataSize variable to include padding.
780       DataSize += PaddingSize;
781 
782       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
783       // have been increased above to account for this).
784       if (StubBufSize > 0)
785         DataSize &= ~(getStubAlignment() - 1);
786     }
787 
788     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
789                  << " obj addr: " << format("%p", pData)
790                  << " new addr: " << format("%p", Addr)
791                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
792                  << " Allocate: " << Allocate << "\n");
793   } else {
794     // Even if we didn't load the section, we need to record an entry for it
795     // to handle later processing (and by 'handle' I mean don't do anything
796     // with these sections).
797     Allocate = 0;
798     Addr = nullptr;
799     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
800                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
801                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
802                  << " Allocate: " << Allocate << "\n");
803   }
804 
805   Sections.push_back(
806       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
807 
808   // Debug info sections are linked as if their load address was zero
809   if (!IsRequired)
810     Sections.back().setLoadAddress(0);
811 
812   if (Checker)
813     Checker->registerSection(Obj.getFileName(), SectionID);
814 
815   return SectionID;
816 }
817 
818 Expected<unsigned>
819 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
820                                    const SectionRef &Section,
821                                    bool IsCode,
822                                    ObjSectionToIDMap &LocalSections) {
823 
824   unsigned SectionID = 0;
825   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
826   if (i != LocalSections.end())
827     SectionID = i->second;
828   else {
829     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
830       SectionID = *SectionIDOrErr;
831     else
832       return SectionIDOrErr.takeError();
833     LocalSections[Section] = SectionID;
834   }
835   return SectionID;
836 }
837 
838 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
839                                               unsigned SectionID) {
840   Relocations[SectionID].push_back(RE);
841 }
842 
843 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
844                                              StringRef SymbolName) {
845   // Relocation by symbol.  If the symbol is found in the global symbol table,
846   // create an appropriate section relocation.  Otherwise, add it to
847   // ExternalSymbolRelocations.
848   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
849   if (Loc == GlobalSymbolTable.end()) {
850     ExternalSymbolRelocations[SymbolName].push_back(RE);
851   } else {
852     // Copy the RE since we want to modify its addend.
853     RelocationEntry RECopy = RE;
854     const auto &SymInfo = Loc->second;
855     RECopy.Addend += SymInfo.getOffset();
856     Relocations[SymInfo.getSectionID()].push_back(RECopy);
857   }
858 }
859 
860 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
861                                              unsigned AbiVariant) {
862   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
863     // This stub has to be able to access the full address space,
864     // since symbol lookup won't necessarily find a handy, in-range,
865     // PLT stub for functions which could be anywhere.
866     // Stub can use ip0 (== x16) to calculate address
867     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
868     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
869     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
870     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
871     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
872 
873     return Addr;
874   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
875     // TODO: There is only ARM far stub now. We should add the Thumb stub,
876     // and stubs for branches Thumb - ARM and ARM - Thumb.
877     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
878     return Addr + 4;
879   } else if (IsMipsO32ABI || IsMipsN32ABI) {
880     // 0:   3c190000        lui     t9,%hi(addr).
881     // 4:   27390000        addiu   t9,t9,%lo(addr).
882     // 8:   03200008        jr      t9.
883     // c:   00000000        nop.
884     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
885     const unsigned NopInstr = 0x0;
886     unsigned JrT9Instr = 0x03200008;
887     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
888         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
889       JrT9Instr = 0x03200009;
890 
891     writeBytesUnaligned(LuiT9Instr, Addr, 4);
892     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
893     writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
894     writeBytesUnaligned(NopInstr, Addr + 12, 4);
895     return Addr;
896   } else if (IsMipsN64ABI) {
897     // 0:   3c190000        lui     t9,%highest(addr).
898     // 4:   67390000        daddiu  t9,t9,%higher(addr).
899     // 8:   0019CC38        dsll    t9,t9,16.
900     // c:   67390000        daddiu  t9,t9,%hi(addr).
901     // 10:  0019CC38        dsll    t9,t9,16.
902     // 14:  67390000        daddiu  t9,t9,%lo(addr).
903     // 18:  03200008        jr      t9.
904     // 1c:  00000000        nop.
905     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
906                    DsllT9Instr = 0x19CC38;
907     const unsigned NopInstr = 0x0;
908     unsigned JrT9Instr = 0x03200008;
909     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
910       JrT9Instr = 0x03200009;
911 
912     writeBytesUnaligned(LuiT9Instr, Addr, 4);
913     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
914     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
915     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
916     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
917     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
918     writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
919     writeBytesUnaligned(NopInstr, Addr + 28, 4);
920     return Addr;
921   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
922     // Depending on which version of the ELF ABI is in use, we need to
923     // generate one of two variants of the stub.  They both start with
924     // the same sequence to load the target address into r12.
925     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
926     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
927     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
928     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
929     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
930     if (AbiVariant == 2) {
931       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
932       // The address is already in r12 as required by the ABI.  Branch to it.
933       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
934       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
935       writeInt32BE(Addr+28, 0x4E800420); // bctr
936     } else {
937       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
938       // Load the function address on r11 and sets it to control register. Also
939       // loads the function TOC in r2 and environment pointer to r11.
940       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
941       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
942       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
943       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
944       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
945       writeInt32BE(Addr+40, 0x4E800420); // bctr
946     }
947     return Addr;
948   } else if (Arch == Triple::systemz) {
949     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
950     writeInt16BE(Addr+2,  0x0000);
951     writeInt16BE(Addr+4,  0x0004);
952     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
953     // 8-byte address stored at Addr + 8
954     return Addr;
955   } else if (Arch == Triple::x86_64) {
956     *Addr      = 0xFF; // jmp
957     *(Addr+1)  = 0x25; // rip
958     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
959   } else if (Arch == Triple::x86) {
960     *Addr      = 0xE9; // 32-bit pc-relative jump.
961   }
962   return Addr;
963 }
964 
965 // Assign an address to a symbol name and resolve all the relocations
966 // associated with it.
967 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
968                                              uint64_t Addr) {
969   // The address to use for relocation resolution is not
970   // the address of the local section buffer. We must be doing
971   // a remote execution environment of some sort. Relocations can't
972   // be applied until all the sections have been moved.  The client must
973   // trigger this with a call to MCJIT::finalize() or
974   // RuntimeDyld::resolveRelocations().
975   //
976   // Addr is a uint64_t because we can't assume the pointer width
977   // of the target is the same as that of the host. Just use a generic
978   // "big enough" type.
979   DEBUG(dbgs() << "Reassigning address for section " << SectionID << " ("
980                << Sections[SectionID].getName() << "): "
981                << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
982                << " -> " << format("0x%016" PRIx64, Addr) << "\n");
983   Sections[SectionID].setLoadAddress(Addr);
984 }
985 
986 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
987                                             uint64_t Value) {
988   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
989     const RelocationEntry &RE = Relocs[i];
990     // Ignore relocations for sections that were not loaded
991     if (Sections[RE.SectionID].getAddress() == nullptr)
992       continue;
993     resolveRelocation(RE, Value);
994   }
995 }
996 
997 Error RuntimeDyldImpl::resolveExternalSymbols() {
998   StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
999 
1000   // Resolution can trigger emission of more symbols, so iterate until
1001   // we've resolved *everything*.
1002   {
1003     JITSymbolResolver::LookupSet ResolvedSymbols;
1004 
1005     while (true) {
1006       JITSymbolResolver::LookupSet NewSymbols;
1007 
1008       for (auto &RelocKV : ExternalSymbolRelocations) {
1009         StringRef Name = RelocKV.first();
1010         if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1011             !ResolvedSymbols.count(Name))
1012           NewSymbols.insert(Name);
1013       }
1014 
1015       if (NewSymbols.empty())
1016         break;
1017 
1018       auto NewResolverResults = Resolver.lookup(NewSymbols);
1019       if (!NewResolverResults)
1020         return NewResolverResults.takeError();
1021 
1022       for (auto &RRKV : *NewResolverResults) {
1023         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1024         ExternalSymbolMap.insert(RRKV);
1025         ResolvedSymbols.insert(RRKV.first);
1026       }
1027     }
1028   }
1029 
1030   while (!ExternalSymbolRelocations.empty()) {
1031 
1032     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1033 
1034     StringRef Name = i->first();
1035     if (Name.size() == 0) {
1036       // This is an absolute symbol, use an address of zero.
1037       DEBUG(dbgs() << "Resolving absolute relocations."
1038                    << "\n");
1039       RelocationList &Relocs = i->second;
1040       resolveRelocationList(Relocs, 0);
1041     } else {
1042       uint64_t Addr = 0;
1043       JITSymbolFlags Flags;
1044       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1045       if (Loc == GlobalSymbolTable.end()) {
1046         auto RRI = ExternalSymbolMap.find(Name);
1047         assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1048         Addr = RRI->second.getAddress();
1049         Flags = RRI->second.getFlags();
1050         // The call to getSymbolAddress may have caused additional modules to
1051         // be loaded, which may have added new entries to the
1052         // ExternalSymbolRelocations map.  Consquently, we need to update our
1053         // iterator.  This is also why retrieval of the relocation list
1054         // associated with this symbol is deferred until below this point.
1055         // New entries may have been added to the relocation list.
1056         i = ExternalSymbolRelocations.find(Name);
1057       } else {
1058         // We found the symbol in our global table.  It was probably in a
1059         // Module that we loaded previously.
1060         const auto &SymInfo = Loc->second;
1061         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1062                SymInfo.getOffset();
1063         Flags = SymInfo.getFlags();
1064       }
1065 
1066       // FIXME: Implement error handling that doesn't kill the host program!
1067       if (!Addr)
1068         report_fatal_error("Program used external function '" + Name +
1069                            "' which could not be resolved!");
1070 
1071       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1072       // manually and we shouldn't resolve its relocations.
1073       if (Addr != UINT64_MAX) {
1074 
1075         // Tweak the address based on the symbol flags if necessary.
1076         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1077         // if the target symbol is Thumb.
1078         Addr = modifyAddressBasedOnFlags(Addr, Flags);
1079 
1080         DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1081                      << format("0x%lx", Addr) << "\n");
1082         // This list may have been updated when we called getSymbolAddress, so
1083         // don't change this code to get the list earlier.
1084         RelocationList &Relocs = i->second;
1085         resolveRelocationList(Relocs, Addr);
1086       }
1087     }
1088 
1089     ExternalSymbolRelocations.erase(i);
1090   }
1091 
1092   return Error::success();
1093 }
1094 
1095 //===----------------------------------------------------------------------===//
1096 // RuntimeDyld class implementation
1097 
1098 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1099                                           const object::SectionRef &Sec) const {
1100 
1101   auto I = ObjSecToIDMap.find(Sec);
1102   if (I != ObjSecToIDMap.end())
1103     return RTDyld.Sections[I->second].getLoadAddress();
1104 
1105   return 0;
1106 }
1107 
1108 void RuntimeDyld::MemoryManager::anchor() {}
1109 void JITSymbolResolver::anchor() {}
1110 void LegacyJITSymbolResolver::anchor() {}
1111 
1112 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1113                          JITSymbolResolver &Resolver)
1114     : MemMgr(MemMgr), Resolver(Resolver) {
1115   // FIXME: There's a potential issue lurking here if a single instance of
1116   // RuntimeDyld is used to load multiple objects.  The current implementation
1117   // associates a single memory manager with a RuntimeDyld instance.  Even
1118   // though the public class spawns a new 'impl' instance for each load,
1119   // they share a single memory manager.  This can become a problem when page
1120   // permissions are applied.
1121   Dyld = nullptr;
1122   ProcessAllSections = false;
1123   Checker = nullptr;
1124 }
1125 
1126 RuntimeDyld::~RuntimeDyld() {}
1127 
1128 static std::unique_ptr<RuntimeDyldCOFF>
1129 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1130                       JITSymbolResolver &Resolver, bool ProcessAllSections,
1131                       RuntimeDyldCheckerImpl *Checker) {
1132   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1133     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1134   Dyld->setProcessAllSections(ProcessAllSections);
1135   Dyld->setRuntimeDyldChecker(Checker);
1136   return Dyld;
1137 }
1138 
1139 static std::unique_ptr<RuntimeDyldELF>
1140 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1141                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1142                      RuntimeDyldCheckerImpl *Checker) {
1143   std::unique_ptr<RuntimeDyldELF> Dyld =
1144       RuntimeDyldELF::create(Arch, MM, Resolver);
1145   Dyld->setProcessAllSections(ProcessAllSections);
1146   Dyld->setRuntimeDyldChecker(Checker);
1147   return Dyld;
1148 }
1149 
1150 static std::unique_ptr<RuntimeDyldMachO>
1151 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1152                        JITSymbolResolver &Resolver,
1153                        bool ProcessAllSections,
1154                        RuntimeDyldCheckerImpl *Checker) {
1155   std::unique_ptr<RuntimeDyldMachO> Dyld =
1156     RuntimeDyldMachO::create(Arch, MM, Resolver);
1157   Dyld->setProcessAllSections(ProcessAllSections);
1158   Dyld->setRuntimeDyldChecker(Checker);
1159   return Dyld;
1160 }
1161 
1162 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1163 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1164   if (!Dyld) {
1165     if (Obj.isELF())
1166       Dyld =
1167           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1168                                MemMgr, Resolver, ProcessAllSections, Checker);
1169     else if (Obj.isMachO())
1170       Dyld = createRuntimeDyldMachO(
1171                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1172                ProcessAllSections, Checker);
1173     else if (Obj.isCOFF())
1174       Dyld = createRuntimeDyldCOFF(
1175                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1176                ProcessAllSections, Checker);
1177     else
1178       report_fatal_error("Incompatible object format!");
1179   }
1180 
1181   if (!Dyld->isCompatibleFile(Obj))
1182     report_fatal_error("Incompatible object format!");
1183 
1184   auto LoadedObjInfo = Dyld->loadObject(Obj);
1185   MemMgr.notifyObjectLoaded(*this, Obj);
1186   return LoadedObjInfo;
1187 }
1188 
1189 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1190   if (!Dyld)
1191     return nullptr;
1192   return Dyld->getSymbolLocalAddress(Name);
1193 }
1194 
1195 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1196   if (!Dyld)
1197     return nullptr;
1198   return Dyld->getSymbol(Name);
1199 }
1200 
1201 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1202   if (!Dyld)
1203     return std::map<StringRef, JITEvaluatedSymbol>();
1204   return Dyld->getSymbolTable();
1205 }
1206 
1207 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1208 
1209 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1210   Dyld->reassignSectionAddress(SectionID, Addr);
1211 }
1212 
1213 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1214                                     uint64_t TargetAddress) {
1215   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1216 }
1217 
1218 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1219 
1220 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1221 
1222 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1223   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1224   MemMgr.FinalizationLocked = true;
1225   resolveRelocations();
1226   registerEHFrames();
1227   if (!MemoryFinalizationLocked) {
1228     MemMgr.finalizeMemory();
1229     MemMgr.FinalizationLocked = false;
1230   }
1231 }
1232 
1233 void RuntimeDyld::registerEHFrames() {
1234   if (Dyld)
1235     Dyld->registerEHFrames();
1236 }
1237 
1238 void RuntimeDyld::deregisterEHFrames() {
1239   if (Dyld)
1240     Dyld->deregisterEHFrames();
1241 }
1242 
1243 } // end namespace llvm
1244