1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include <mutex>
25 
26 #include <future>
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 
31 #define DEBUG_TYPE "dyld"
32 
33 namespace {
34 
35 enum RuntimeDyldErrorCode {
36   GenericRTDyldError = 1
37 };
38 
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory : public std::error_category {
43 public:
44   const char *name() const noexcept override { return "runtimedyld"; }
45 
46   std::string message(int Condition) const override {
47     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48       case GenericRTDyldError: return "Generic RuntimeDyld error";
49     }
50     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
51   }
52 };
53 
54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55 
56 }
57 
58 char RuntimeDyldError::ID = 0;
59 
60 void RuntimeDyldError::log(raw_ostream &OS) const {
61   OS << ErrMsg << "\n";
62 }
63 
64 std::error_code RuntimeDyldError::convertToErrorCode() const {
65   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66 }
67 
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
70 
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
73 
74 namespace llvm {
75 
76 void RuntimeDyldImpl::registerEHFrames() {}
77 
78 void RuntimeDyldImpl::deregisterEHFrames() {
79   MemMgr.deregisterEHFrames();
80 }
81 
82 #ifndef NDEBUG
83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84   dbgs() << "----- Contents of section " << S.getName() << " " << State
85          << " -----";
86 
87   if (S.getAddress() == nullptr) {
88     dbgs() << "\n          <section not emitted>\n";
89     return;
90   }
91 
92   const unsigned ColsPerRow = 16;
93 
94   uint8_t *DataAddr = S.getAddress();
95   uint64_t LoadAddr = S.getLoadAddress();
96 
97   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98   unsigned BytesRemaining = S.getSize();
99 
100   if (StartPadding) {
101     dbgs() << "\n" << format("0x%016" PRIx64,
102                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103     while (StartPadding--)
104       dbgs() << "   ";
105   }
106 
107   while (BytesRemaining > 0) {
108     if ((LoadAddr & (ColsPerRow - 1)) == 0)
109       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
110 
111     dbgs() << " " << format("%02x", *DataAddr);
112 
113     ++DataAddr;
114     ++LoadAddr;
115     --BytesRemaining;
116   }
117 
118   dbgs() << "\n";
119 }
120 #endif
121 
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124   std::lock_guard<sys::Mutex> locked(lock);
125 
126   // Print out the sections prior to relocation.
127   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
128                  dumpSectionMemory(Sections[i], "before relocations"););
129 
130   // First, resolve relocations associated with external symbols.
131   if (auto Err = resolveExternalSymbols()) {
132     HasError = true;
133     ErrorStr = toString(std::move(Err));
134   }
135 
136   resolveLocalRelocations();
137 
138   // Print out sections after relocation.
139   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
140                  dumpSectionMemory(Sections[i], "after relocations"););
141 }
142 
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144   // Iterate over all outstanding relocations
145   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146     // The Section here (Sections[i]) refers to the section in which the
147     // symbol for the relocation is located.  The SectionID in the relocation
148     // entry provides the section to which the relocation will be applied.
149     int Idx = it->first;
150     uint64_t Addr = Sections[Idx].getLoadAddress();
151     LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
152                       << format("%p", (uintptr_t)Addr) << "\n");
153     resolveRelocationList(it->second, Addr);
154   }
155   Relocations.clear();
156 }
157 
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159                                         uint64_t TargetAddress) {
160   std::lock_guard<sys::Mutex> locked(lock);
161   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162     if (Sections[i].getAddress() == LocalAddress) {
163       reassignSectionAddress(i, TargetAddress);
164       return;
165     }
166   }
167   llvm_unreachable("Attempting to remap address of unknown section!");
168 }
169 
170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171                        uint64_t &Result) {
172   Expected<uint64_t> AddressOrErr = Sym.getAddress();
173   if (!AddressOrErr)
174     return AddressOrErr.takeError();
175   Result = *AddressOrErr - Sec.getAddress();
176   return Error::success();
177 }
178 
179 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181   std::lock_guard<sys::Mutex> locked(lock);
182 
183   // Save information about our target
184   Arch = (Triple::ArchType)Obj.getArch();
185   IsTargetLittleEndian = Obj.isLittleEndian();
186   setMipsABI(Obj);
187 
188   // Compute the memory size required to load all sections to be loaded
189   // and pass this information to the memory manager
190   if (MemMgr.needsToReserveAllocationSpace()) {
191     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193     if (auto Err = computeTotalAllocSize(Obj,
194                                          CodeSize, CodeAlign,
195                                          RODataSize, RODataAlign,
196                                          RWDataSize, RWDataAlign))
197       return std::move(Err);
198     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199                                   RWDataSize, RWDataAlign);
200   }
201 
202   // Used sections from the object file
203   ObjSectionToIDMap LocalSections;
204 
205   // Common symbols requiring allocation, with their sizes and alignments
206   CommonSymbolList CommonSymbolsToAllocate;
207 
208   uint64_t CommonSize = 0;
209   uint32_t CommonAlign = 0;
210 
211   // First, collect all weak and common symbols. We need to know if stronger
212   // definitions occur elsewhere.
213   JITSymbolResolver::LookupSet ResponsibilitySet;
214   {
215     JITSymbolResolver::LookupSet Symbols;
216     for (auto &Sym : Obj.symbols()) {
217       uint32_t Flags = Sym.getFlags();
218       if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
219         // Get symbol name.
220         if (auto NameOrErr = Sym.getName())
221           Symbols.insert(*NameOrErr);
222         else
223           return NameOrErr.takeError();
224       }
225     }
226 
227     if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
228       ResponsibilitySet = std::move(*ResultOrErr);
229     else
230       return ResultOrErr.takeError();
231   }
232 
233   // Parse symbols
234   LLVM_DEBUG(dbgs() << "Parse symbols:\n");
235   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
236        ++I) {
237     uint32_t Flags = I->getFlags();
238 
239     // Skip undefined symbols.
240     if (Flags & SymbolRef::SF_Undefined)
241       continue;
242 
243     // Get the symbol type.
244     object::SymbolRef::Type SymType;
245     if (auto SymTypeOrErr = I->getType())
246       SymType = *SymTypeOrErr;
247     else
248       return SymTypeOrErr.takeError();
249 
250     // Get symbol name.
251     StringRef Name;
252     if (auto NameOrErr = I->getName())
253       Name = *NameOrErr;
254     else
255       return NameOrErr.takeError();
256 
257     // Compute JIT symbol flags.
258     auto JITSymFlags = getJITSymbolFlags(*I);
259     if (!JITSymFlags)
260       return JITSymFlags.takeError();
261 
262     // If this is a weak definition, check to see if there's a strong one.
263     // If there is, skip this symbol (we won't be providing it: the strong
264     // definition will). If there's no strong definition, make this definition
265     // strong.
266     if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
267       // First check whether there's already a definition in this instance.
268       if (GlobalSymbolTable.count(Name))
269         continue;
270 
271       // If we're not responsible for this symbol, skip it.
272       if (!ResponsibilitySet.count(Name))
273         continue;
274 
275       // Otherwise update the flags on the symbol to make this definition
276       // strong.
277       if (JITSymFlags->isWeak())
278         *JITSymFlags &= ~JITSymbolFlags::Weak;
279       if (JITSymFlags->isCommon()) {
280         *JITSymFlags &= ~JITSymbolFlags::Common;
281         uint32_t Align = I->getAlignment();
282         uint64_t Size = I->getCommonSize();
283         if (!CommonAlign)
284           CommonAlign = Align;
285         CommonSize = alignTo(CommonSize, Align) + Size;
286         CommonSymbolsToAllocate.push_back(*I);
287       }
288     }
289 
290     if (Flags & SymbolRef::SF_Absolute &&
291         SymType != object::SymbolRef::ST_File) {
292       uint64_t Addr = 0;
293       if (auto AddrOrErr = I->getAddress())
294         Addr = *AddrOrErr;
295       else
296         return AddrOrErr.takeError();
297 
298       unsigned SectionID = AbsoluteSymbolSection;
299 
300       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
301                         << " SID: " << SectionID
302                         << " Offset: " << format("%p", (uintptr_t)Addr)
303                         << " flags: " << Flags << "\n");
304       GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
305     } else if (SymType == object::SymbolRef::ST_Function ||
306                SymType == object::SymbolRef::ST_Data ||
307                SymType == object::SymbolRef::ST_Unknown ||
308                SymType == object::SymbolRef::ST_Other) {
309 
310       section_iterator SI = Obj.section_end();
311       if (auto SIOrErr = I->getSection())
312         SI = *SIOrErr;
313       else
314         return SIOrErr.takeError();
315 
316       if (SI == Obj.section_end())
317         continue;
318 
319       // Get symbol offset.
320       uint64_t SectOffset;
321       if (auto Err = getOffset(*I, *SI, SectOffset))
322         return std::move(Err);
323 
324       bool IsCode = SI->isText();
325       unsigned SectionID;
326       if (auto SectionIDOrErr =
327               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
328         SectionID = *SectionIDOrErr;
329       else
330         return SectionIDOrErr.takeError();
331 
332       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
333                         << " SID: " << SectionID
334                         << " Offset: " << format("%p", (uintptr_t)SectOffset)
335                         << " flags: " << Flags << "\n");
336       GlobalSymbolTable[Name] =
337           SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
338     }
339   }
340 
341   // Allocate common symbols
342   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
343                                    CommonAlign))
344     return std::move(Err);
345 
346   // Parse and process relocations
347   LLVM_DEBUG(dbgs() << "Parse relocations:\n");
348   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
349        SI != SE; ++SI) {
350     StubMap Stubs;
351     section_iterator RelocatedSection = SI->getRelocatedSection();
352 
353     if (RelocatedSection == SE)
354       continue;
355 
356     relocation_iterator I = SI->relocation_begin();
357     relocation_iterator E = SI->relocation_end();
358 
359     if (I == E && !ProcessAllSections)
360       continue;
361 
362     bool IsCode = RelocatedSection->isText();
363     unsigned SectionID = 0;
364     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
365                                                 LocalSections))
366       SectionID = *SectionIDOrErr;
367     else
368       return SectionIDOrErr.takeError();
369 
370     LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
371 
372     for (; I != E;)
373       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
374         I = *IOrErr;
375       else
376         return IOrErr.takeError();
377 
378     // If there is a NotifyStubEmitted callback set, call it to register any
379     // stubs created for this section.
380     if (NotifyStubEmitted) {
381       StringRef FileName = Obj.getFileName();
382       StringRef SectionName = Sections[SectionID].getName();
383       for (auto &KV : Stubs) {
384 
385         auto &VR = KV.first;
386         uint64_t StubAddr = KV.second;
387 
388         // If this is a named stub, just call NotifyStubEmitted.
389         if (VR.SymbolName) {
390           NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
391                             StubAddr);
392           continue;
393         }
394 
395         // Otherwise we will have to try a reverse lookup on the globla symbol table.
396         for (auto &GSTMapEntry : GlobalSymbolTable) {
397           StringRef SymbolName = GSTMapEntry.first();
398           auto &GSTEntry = GSTMapEntry.second;
399           if (GSTEntry.getSectionID() == VR.SectionID &&
400               GSTEntry.getOffset() == VR.Offset) {
401             NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
402                               StubAddr);
403             break;
404           }
405         }
406       }
407     }
408   }
409 
410   // Process remaining sections
411   if (ProcessAllSections) {
412     LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
413     for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
414          SI != SE; ++SI) {
415 
416       /* Ignore already loaded sections */
417       if (LocalSections.find(*SI) != LocalSections.end())
418         continue;
419 
420       bool IsCode = SI->isText();
421       if (auto SectionIDOrErr =
422               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
423         LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
424       else
425         return SectionIDOrErr.takeError();
426     }
427   }
428 
429   // Give the subclasses a chance to tie-up any loose ends.
430   if (auto Err = finalizeLoad(Obj, LocalSections))
431     return std::move(Err);
432 
433 //   for (auto E : LocalSections)
434 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
435 
436   return LocalSections;
437 }
438 
439 // A helper method for computeTotalAllocSize.
440 // Computes the memory size required to allocate sections with the given sizes,
441 // assuming that all sections are allocated with the given alignment
442 static uint64_t
443 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
444                                  uint64_t Alignment) {
445   uint64_t TotalSize = 0;
446   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
447     uint64_t AlignedSize =
448         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
449     TotalSize += AlignedSize;
450   }
451   return TotalSize;
452 }
453 
454 static bool isRequiredForExecution(const SectionRef Section) {
455   const ObjectFile *Obj = Section.getObject();
456   if (isa<object::ELFObjectFileBase>(Obj))
457     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
458   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
459     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
460     // Avoid loading zero-sized COFF sections.
461     // In PE files, VirtualSize gives the section size, and SizeOfRawData
462     // may be zero for sections with content. In Obj files, SizeOfRawData
463     // gives the section size, and VirtualSize is always zero. Hence
464     // the need to check for both cases below.
465     bool HasContent =
466         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
467     bool IsDiscardable =
468         CoffSection->Characteristics &
469         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
470     return HasContent && !IsDiscardable;
471   }
472 
473   assert(isa<MachOObjectFile>(Obj));
474   return true;
475 }
476 
477 static bool isReadOnlyData(const SectionRef Section) {
478   const ObjectFile *Obj = Section.getObject();
479   if (isa<object::ELFObjectFileBase>(Obj))
480     return !(ELFSectionRef(Section).getFlags() &
481              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
482   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
483     return ((COFFObj->getCOFFSection(Section)->Characteristics &
484              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
485              | COFF::IMAGE_SCN_MEM_READ
486              | COFF::IMAGE_SCN_MEM_WRITE))
487              ==
488              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
489              | COFF::IMAGE_SCN_MEM_READ));
490 
491   assert(isa<MachOObjectFile>(Obj));
492   return false;
493 }
494 
495 static bool isZeroInit(const SectionRef Section) {
496   const ObjectFile *Obj = Section.getObject();
497   if (isa<object::ELFObjectFileBase>(Obj))
498     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
499   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
500     return COFFObj->getCOFFSection(Section)->Characteristics &
501             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
502 
503   auto *MachO = cast<MachOObjectFile>(Obj);
504   unsigned SectionType = MachO->getSectionType(Section);
505   return SectionType == MachO::S_ZEROFILL ||
506          SectionType == MachO::S_GB_ZEROFILL;
507 }
508 
509 // Compute an upper bound of the memory size that is required to load all
510 // sections
511 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
512                                              uint64_t &CodeSize,
513                                              uint32_t &CodeAlign,
514                                              uint64_t &RODataSize,
515                                              uint32_t &RODataAlign,
516                                              uint64_t &RWDataSize,
517                                              uint32_t &RWDataAlign) {
518   // Compute the size of all sections required for execution
519   std::vector<uint64_t> CodeSectionSizes;
520   std::vector<uint64_t> ROSectionSizes;
521   std::vector<uint64_t> RWSectionSizes;
522 
523   // Collect sizes of all sections to be loaded;
524   // also determine the max alignment of all sections
525   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
526        SI != SE; ++SI) {
527     const SectionRef &Section = *SI;
528 
529     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
530 
531     // Consider only the sections that are required to be loaded for execution
532     if (IsRequired) {
533       uint64_t DataSize = Section.getSize();
534       uint64_t Alignment64 = Section.getAlignment();
535       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
536       bool IsCode = Section.isText();
537       bool IsReadOnly = isReadOnlyData(Section);
538 
539       Expected<StringRef> NameOrErr = Section.getName();
540       if (!NameOrErr)
541         return NameOrErr.takeError();
542       StringRef Name = *NameOrErr;
543 
544       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
545 
546       uint64_t PaddingSize = 0;
547       if (Name == ".eh_frame")
548         PaddingSize += 4;
549       if (StubBufSize != 0)
550         PaddingSize += getStubAlignment() - 1;
551 
552       uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
553 
554       // The .eh_frame section (at least on Linux) needs an extra four bytes
555       // padded
556       // with zeroes added at the end.  For MachO objects, this section has a
557       // slightly different name, so this won't have any effect for MachO
558       // objects.
559       if (Name == ".eh_frame")
560         SectionSize += 4;
561 
562       if (!SectionSize)
563         SectionSize = 1;
564 
565       if (IsCode) {
566         CodeAlign = std::max(CodeAlign, Alignment);
567         CodeSectionSizes.push_back(SectionSize);
568       } else if (IsReadOnly) {
569         RODataAlign = std::max(RODataAlign, Alignment);
570         ROSectionSizes.push_back(SectionSize);
571       } else {
572         RWDataAlign = std::max(RWDataAlign, Alignment);
573         RWSectionSizes.push_back(SectionSize);
574       }
575     }
576   }
577 
578   // Compute Global Offset Table size. If it is not zero we
579   // also update alignment, which is equal to a size of a
580   // single GOT entry.
581   if (unsigned GotSize = computeGOTSize(Obj)) {
582     RWSectionSizes.push_back(GotSize);
583     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
584   }
585 
586   // Compute the size of all common symbols
587   uint64_t CommonSize = 0;
588   uint32_t CommonAlign = 1;
589   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
590        ++I) {
591     uint32_t Flags = I->getFlags();
592     if (Flags & SymbolRef::SF_Common) {
593       // Add the common symbols to a list.  We'll allocate them all below.
594       uint64_t Size = I->getCommonSize();
595       uint32_t Align = I->getAlignment();
596       // If this is the first common symbol, use its alignment as the alignment
597       // for the common symbols section.
598       if (CommonSize == 0)
599         CommonAlign = Align;
600       CommonSize = alignTo(CommonSize, Align) + Size;
601     }
602   }
603   if (CommonSize != 0) {
604     RWSectionSizes.push_back(CommonSize);
605     RWDataAlign = std::max(RWDataAlign, CommonAlign);
606   }
607 
608   // Compute the required allocation space for each different type of sections
609   // (code, read-only data, read-write data) assuming that all sections are
610   // allocated with the max alignment. Note that we cannot compute with the
611   // individual alignments of the sections, because then the required size
612   // depends on the order, in which the sections are allocated.
613   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
614   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
615   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
616 
617   return Error::success();
618 }
619 
620 // compute GOT size
621 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
622   size_t GotEntrySize = getGOTEntrySize();
623   if (!GotEntrySize)
624     return 0;
625 
626   size_t GotSize = 0;
627   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
628        SI != SE; ++SI) {
629 
630     for (const RelocationRef &Reloc : SI->relocations())
631       if (relocationNeedsGot(Reloc))
632         GotSize += GotEntrySize;
633   }
634 
635   return GotSize;
636 }
637 
638 // compute stub buffer size for the given section
639 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
640                                                     const SectionRef &Section) {
641   unsigned StubSize = getMaxStubSize();
642   if (StubSize == 0) {
643     return 0;
644   }
645   // FIXME: this is an inefficient way to handle this. We should computed the
646   // necessary section allocation size in loadObject by walking all the sections
647   // once.
648   unsigned StubBufSize = 0;
649   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
650        SI != SE; ++SI) {
651     section_iterator RelSecI = SI->getRelocatedSection();
652     if (!(RelSecI == Section))
653       continue;
654 
655     for (const RelocationRef &Reloc : SI->relocations())
656       if (relocationNeedsStub(Reloc))
657         StubBufSize += StubSize;
658   }
659 
660   // Get section data size and alignment
661   uint64_t DataSize = Section.getSize();
662   uint64_t Alignment64 = Section.getAlignment();
663 
664   // Add stubbuf size alignment
665   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
666   unsigned StubAlignment = getStubAlignment();
667   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
668   if (StubAlignment > EndAlignment)
669     StubBufSize += StubAlignment - EndAlignment;
670   return StubBufSize;
671 }
672 
673 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
674                                              unsigned Size) const {
675   uint64_t Result = 0;
676   if (IsTargetLittleEndian) {
677     Src += Size - 1;
678     while (Size--)
679       Result = (Result << 8) | *Src--;
680   } else
681     while (Size--)
682       Result = (Result << 8) | *Src++;
683 
684   return Result;
685 }
686 
687 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
688                                           unsigned Size) const {
689   if (IsTargetLittleEndian) {
690     while (Size--) {
691       *Dst++ = Value & 0xFF;
692       Value >>= 8;
693     }
694   } else {
695     Dst += Size - 1;
696     while (Size--) {
697       *Dst-- = Value & 0xFF;
698       Value >>= 8;
699     }
700   }
701 }
702 
703 Expected<JITSymbolFlags>
704 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
705   return JITSymbolFlags::fromObjectSymbol(SR);
706 }
707 
708 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
709                                          CommonSymbolList &SymbolsToAllocate,
710                                          uint64_t CommonSize,
711                                          uint32_t CommonAlign) {
712   if (SymbolsToAllocate.empty())
713     return Error::success();
714 
715   // Allocate memory for the section
716   unsigned SectionID = Sections.size();
717   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
718                                              "<common symbols>", false);
719   if (!Addr)
720     report_fatal_error("Unable to allocate memory for common symbols!");
721   uint64_t Offset = 0;
722   Sections.push_back(
723       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
724   memset(Addr, 0, CommonSize);
725 
726   LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
727                     << " new addr: " << format("%p", Addr)
728                     << " DataSize: " << CommonSize << "\n");
729 
730   // Assign the address of each symbol
731   for (auto &Sym : SymbolsToAllocate) {
732     uint32_t Align = Sym.getAlignment();
733     uint64_t Size = Sym.getCommonSize();
734     StringRef Name;
735     if (auto NameOrErr = Sym.getName())
736       Name = *NameOrErr;
737     else
738       return NameOrErr.takeError();
739     if (Align) {
740       // This symbol has an alignment requirement.
741       uint64_t AlignOffset =
742           offsetToAlignment((uint64_t)Addr, llvm::Align(Align));
743       Addr += AlignOffset;
744       Offset += AlignOffset;
745     }
746     auto JITSymFlags = getJITSymbolFlags(Sym);
747 
748     if (!JITSymFlags)
749       return JITSymFlags.takeError();
750 
751     LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
752                       << format("%p", Addr) << "\n");
753     GlobalSymbolTable[Name] =
754         SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
755     Offset += Size;
756     Addr += Size;
757   }
758 
759   return Error::success();
760 }
761 
762 Expected<unsigned>
763 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
764                              const SectionRef &Section,
765                              bool IsCode) {
766   StringRef data;
767   uint64_t Alignment64 = Section.getAlignment();
768 
769   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
770   unsigned PaddingSize = 0;
771   unsigned StubBufSize = 0;
772   bool IsRequired = isRequiredForExecution(Section);
773   bool IsVirtual = Section.isVirtual();
774   bool IsZeroInit = isZeroInit(Section);
775   bool IsReadOnly = isReadOnlyData(Section);
776   uint64_t DataSize = Section.getSize();
777 
778   // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
779   // while being more "polite".  Other formats do not support 0-aligned sections
780   // anyway, so we should guarantee that the alignment is always at least 1.
781   Alignment = std::max(1u, Alignment);
782 
783   Expected<StringRef> NameOrErr = Section.getName();
784   if (!NameOrErr)
785     return NameOrErr.takeError();
786   StringRef Name = *NameOrErr;
787 
788   StubBufSize = computeSectionStubBufSize(Obj, Section);
789 
790   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
791   // with zeroes added at the end.  For MachO objects, this section has a
792   // slightly different name, so this won't have any effect for MachO objects.
793   if (Name == ".eh_frame")
794     PaddingSize = 4;
795 
796   uintptr_t Allocate;
797   unsigned SectionID = Sections.size();
798   uint8_t *Addr;
799   const char *pData = nullptr;
800 
801   // If this section contains any bits (i.e. isn't a virtual or bss section),
802   // grab a reference to them.
803   if (!IsVirtual && !IsZeroInit) {
804     // In either case, set the location of the unrelocated section in memory,
805     // since we still process relocations for it even if we're not applying them.
806     if (Expected<StringRef> E = Section.getContents())
807       data = *E;
808     else
809       return E.takeError();
810     pData = data.data();
811   }
812 
813   // If there are any stubs then the section alignment needs to be at least as
814   // high as stub alignment or padding calculations may by incorrect when the
815   // section is remapped.
816   if (StubBufSize != 0) {
817     Alignment = std::max(Alignment, getStubAlignment());
818     PaddingSize += getStubAlignment() - 1;
819   }
820 
821   // Some sections, such as debug info, don't need to be loaded for execution.
822   // Process those only if explicitly requested.
823   if (IsRequired || ProcessAllSections) {
824     Allocate = DataSize + PaddingSize + StubBufSize;
825     if (!Allocate)
826       Allocate = 1;
827     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
828                                                Name)
829                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
830                                                Name, IsReadOnly);
831     if (!Addr)
832       report_fatal_error("Unable to allocate section memory!");
833 
834     // Zero-initialize or copy the data from the image
835     if (IsZeroInit || IsVirtual)
836       memset(Addr, 0, DataSize);
837     else
838       memcpy(Addr, pData, DataSize);
839 
840     // Fill in any extra bytes we allocated for padding
841     if (PaddingSize != 0) {
842       memset(Addr + DataSize, 0, PaddingSize);
843       // Update the DataSize variable to include padding.
844       DataSize += PaddingSize;
845 
846       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
847       // have been increased above to account for this).
848       if (StubBufSize > 0)
849         DataSize &= -(uint64_t)getStubAlignment();
850     }
851 
852     LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
853                       << Name << " obj addr: " << format("%p", pData)
854                       << " new addr: " << format("%p", Addr) << " DataSize: "
855                       << DataSize << " StubBufSize: " << StubBufSize
856                       << " Allocate: " << Allocate << "\n");
857   } else {
858     // Even if we didn't load the section, we need to record an entry for it
859     // to handle later processing (and by 'handle' I mean don't do anything
860     // with these sections).
861     Allocate = 0;
862     Addr = nullptr;
863     LLVM_DEBUG(
864         dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
865                << " obj addr: " << format("%p", data.data()) << " new addr: 0"
866                << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
867                << " Allocate: " << Allocate << "\n");
868   }
869 
870   Sections.push_back(
871       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
872 
873   // Debug info sections are linked as if their load address was zero
874   if (!IsRequired)
875     Sections.back().setLoadAddress(0);
876 
877   return SectionID;
878 }
879 
880 Expected<unsigned>
881 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
882                                    const SectionRef &Section,
883                                    bool IsCode,
884                                    ObjSectionToIDMap &LocalSections) {
885 
886   unsigned SectionID = 0;
887   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
888   if (i != LocalSections.end())
889     SectionID = i->second;
890   else {
891     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
892       SectionID = *SectionIDOrErr;
893     else
894       return SectionIDOrErr.takeError();
895     LocalSections[Section] = SectionID;
896   }
897   return SectionID;
898 }
899 
900 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
901                                               unsigned SectionID) {
902   Relocations[SectionID].push_back(RE);
903 }
904 
905 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
906                                              StringRef SymbolName) {
907   // Relocation by symbol.  If the symbol is found in the global symbol table,
908   // create an appropriate section relocation.  Otherwise, add it to
909   // ExternalSymbolRelocations.
910   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
911   if (Loc == GlobalSymbolTable.end()) {
912     ExternalSymbolRelocations[SymbolName].push_back(RE);
913   } else {
914     // Copy the RE since we want to modify its addend.
915     RelocationEntry RECopy = RE;
916     const auto &SymInfo = Loc->second;
917     RECopy.Addend += SymInfo.getOffset();
918     Relocations[SymInfo.getSectionID()].push_back(RECopy);
919   }
920 }
921 
922 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
923                                              unsigned AbiVariant) {
924   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
925       Arch == Triple::aarch64_32) {
926     // This stub has to be able to access the full address space,
927     // since symbol lookup won't necessarily find a handy, in-range,
928     // PLT stub for functions which could be anywhere.
929     // Stub can use ip0 (== x16) to calculate address
930     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
931     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
932     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
933     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
934     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
935 
936     return Addr;
937   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
938     // TODO: There is only ARM far stub now. We should add the Thumb stub,
939     // and stubs for branches Thumb - ARM and ARM - Thumb.
940     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
941     return Addr + 4;
942   } else if (IsMipsO32ABI || IsMipsN32ABI) {
943     // 0:   3c190000        lui     t9,%hi(addr).
944     // 4:   27390000        addiu   t9,t9,%lo(addr).
945     // 8:   03200008        jr      t9.
946     // c:   00000000        nop.
947     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
948     const unsigned NopInstr = 0x0;
949     unsigned JrT9Instr = 0x03200008;
950     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
951         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
952       JrT9Instr = 0x03200009;
953 
954     writeBytesUnaligned(LuiT9Instr, Addr, 4);
955     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
956     writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
957     writeBytesUnaligned(NopInstr, Addr + 12, 4);
958     return Addr;
959   } else if (IsMipsN64ABI) {
960     // 0:   3c190000        lui     t9,%highest(addr).
961     // 4:   67390000        daddiu  t9,t9,%higher(addr).
962     // 8:   0019CC38        dsll    t9,t9,16.
963     // c:   67390000        daddiu  t9,t9,%hi(addr).
964     // 10:  0019CC38        dsll    t9,t9,16.
965     // 14:  67390000        daddiu  t9,t9,%lo(addr).
966     // 18:  03200008        jr      t9.
967     // 1c:  00000000        nop.
968     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
969                    DsllT9Instr = 0x19CC38;
970     const unsigned NopInstr = 0x0;
971     unsigned JrT9Instr = 0x03200008;
972     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
973       JrT9Instr = 0x03200009;
974 
975     writeBytesUnaligned(LuiT9Instr, Addr, 4);
976     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
977     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
978     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
979     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
980     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
981     writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
982     writeBytesUnaligned(NopInstr, Addr + 28, 4);
983     return Addr;
984   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
985     // Depending on which version of the ELF ABI is in use, we need to
986     // generate one of two variants of the stub.  They both start with
987     // the same sequence to load the target address into r12.
988     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
989     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
990     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
991     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
992     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
993     if (AbiVariant == 2) {
994       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
995       // The address is already in r12 as required by the ABI.  Branch to it.
996       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
997       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
998       writeInt32BE(Addr+28, 0x4E800420); // bctr
999     } else {
1000       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1001       // Load the function address on r11 and sets it to control register. Also
1002       // loads the function TOC in r2 and environment pointer to r11.
1003       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
1004       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
1005       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
1006       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1007       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
1008       writeInt32BE(Addr+40, 0x4E800420); // bctr
1009     }
1010     return Addr;
1011   } else if (Arch == Triple::systemz) {
1012     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
1013     writeInt16BE(Addr+2,  0x0000);
1014     writeInt16BE(Addr+4,  0x0004);
1015     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
1016     // 8-byte address stored at Addr + 8
1017     return Addr;
1018   } else if (Arch == Triple::x86_64) {
1019     *Addr      = 0xFF; // jmp
1020     *(Addr+1)  = 0x25; // rip
1021     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1022   } else if (Arch == Triple::x86) {
1023     *Addr      = 0xE9; // 32-bit pc-relative jump.
1024   }
1025   return Addr;
1026 }
1027 
1028 // Assign an address to a symbol name and resolve all the relocations
1029 // associated with it.
1030 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1031                                              uint64_t Addr) {
1032   // The address to use for relocation resolution is not
1033   // the address of the local section buffer. We must be doing
1034   // a remote execution environment of some sort. Relocations can't
1035   // be applied until all the sections have been moved.  The client must
1036   // trigger this with a call to MCJIT::finalize() or
1037   // RuntimeDyld::resolveRelocations().
1038   //
1039   // Addr is a uint64_t because we can't assume the pointer width
1040   // of the target is the same as that of the host. Just use a generic
1041   // "big enough" type.
1042   LLVM_DEBUG(
1043       dbgs() << "Reassigning address for section " << SectionID << " ("
1044              << Sections[SectionID].getName() << "): "
1045              << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1046              << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1047   Sections[SectionID].setLoadAddress(Addr);
1048 }
1049 
1050 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1051                                             uint64_t Value) {
1052   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1053     const RelocationEntry &RE = Relocs[i];
1054     // Ignore relocations for sections that were not loaded
1055     if (Sections[RE.SectionID].getAddress() == nullptr)
1056       continue;
1057     resolveRelocation(RE, Value);
1058   }
1059 }
1060 
1061 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1062     const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1063   while (!ExternalSymbolRelocations.empty()) {
1064 
1065     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1066 
1067     StringRef Name = i->first();
1068     if (Name.size() == 0) {
1069       // This is an absolute symbol, use an address of zero.
1070       LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1071                         << "\n");
1072       RelocationList &Relocs = i->second;
1073       resolveRelocationList(Relocs, 0);
1074     } else {
1075       uint64_t Addr = 0;
1076       JITSymbolFlags Flags;
1077       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1078       if (Loc == GlobalSymbolTable.end()) {
1079         auto RRI = ExternalSymbolMap.find(Name);
1080         assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1081         Addr = RRI->second.getAddress();
1082         Flags = RRI->second.getFlags();
1083         // The call to getSymbolAddress may have caused additional modules to
1084         // be loaded, which may have added new entries to the
1085         // ExternalSymbolRelocations map.  Consquently, we need to update our
1086         // iterator.  This is also why retrieval of the relocation list
1087         // associated with this symbol is deferred until below this point.
1088         // New entries may have been added to the relocation list.
1089         i = ExternalSymbolRelocations.find(Name);
1090       } else {
1091         // We found the symbol in our global table.  It was probably in a
1092         // Module that we loaded previously.
1093         const auto &SymInfo = Loc->second;
1094         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1095                SymInfo.getOffset();
1096         Flags = SymInfo.getFlags();
1097       }
1098 
1099       // FIXME: Implement error handling that doesn't kill the host program!
1100       if (!Addr)
1101         report_fatal_error("Program used external function '" + Name +
1102                            "' which could not be resolved!");
1103 
1104       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1105       // manually and we shouldn't resolve its relocations.
1106       if (Addr != UINT64_MAX) {
1107 
1108         // Tweak the address based on the symbol flags if necessary.
1109         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1110         // if the target symbol is Thumb.
1111         Addr = modifyAddressBasedOnFlags(Addr, Flags);
1112 
1113         LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1114                           << format("0x%lx", Addr) << "\n");
1115         // This list may have been updated when we called getSymbolAddress, so
1116         // don't change this code to get the list earlier.
1117         RelocationList &Relocs = i->second;
1118         resolveRelocationList(Relocs, Addr);
1119       }
1120     }
1121 
1122     ExternalSymbolRelocations.erase(i);
1123   }
1124 }
1125 
1126 Error RuntimeDyldImpl::resolveExternalSymbols() {
1127   StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1128 
1129   // Resolution can trigger emission of more symbols, so iterate until
1130   // we've resolved *everything*.
1131   {
1132     JITSymbolResolver::LookupSet ResolvedSymbols;
1133 
1134     while (true) {
1135       JITSymbolResolver::LookupSet NewSymbols;
1136 
1137       for (auto &RelocKV : ExternalSymbolRelocations) {
1138         StringRef Name = RelocKV.first();
1139         if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1140             !ResolvedSymbols.count(Name))
1141           NewSymbols.insert(Name);
1142       }
1143 
1144       if (NewSymbols.empty())
1145         break;
1146 
1147 #ifdef _MSC_VER
1148       using ExpectedLookupResult =
1149           MSVCPExpected<JITSymbolResolver::LookupResult>;
1150 #else
1151       using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1152 #endif
1153 
1154       auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1155       auto NewSymbolsF = NewSymbolsP->get_future();
1156       Resolver.lookup(NewSymbols,
1157                       [=](Expected<JITSymbolResolver::LookupResult> Result) {
1158                         NewSymbolsP->set_value(std::move(Result));
1159                       });
1160 
1161       auto NewResolverResults = NewSymbolsF.get();
1162 
1163       if (!NewResolverResults)
1164         return NewResolverResults.takeError();
1165 
1166       assert(NewResolverResults->size() == NewSymbols.size() &&
1167              "Should have errored on unresolved symbols");
1168 
1169       for (auto &RRKV : *NewResolverResults) {
1170         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1171         ExternalSymbolMap.insert(RRKV);
1172         ResolvedSymbols.insert(RRKV.first);
1173       }
1174     }
1175   }
1176 
1177   applyExternalSymbolRelocations(ExternalSymbolMap);
1178 
1179   return Error::success();
1180 }
1181 
1182 void RuntimeDyldImpl::finalizeAsync(
1183     std::unique_ptr<RuntimeDyldImpl> This,
1184     unique_function<void(Error)> OnEmitted,
1185     std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1186 
1187   auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1188   auto PostResolveContinuation =
1189       [SharedThis, OnEmitted = std::move(OnEmitted),
1190        UnderlyingBuffer = std::move(UnderlyingBuffer)](
1191           Expected<JITSymbolResolver::LookupResult> Result) mutable {
1192         if (!Result) {
1193           OnEmitted(Result.takeError());
1194           return;
1195         }
1196 
1197         /// Copy the result into a StringMap, where the keys are held by value.
1198         StringMap<JITEvaluatedSymbol> Resolved;
1199         for (auto &KV : *Result)
1200           Resolved[KV.first] = KV.second;
1201 
1202         SharedThis->applyExternalSymbolRelocations(Resolved);
1203         SharedThis->resolveLocalRelocations();
1204         SharedThis->registerEHFrames();
1205         std::string ErrMsg;
1206         if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1207           OnEmitted(make_error<StringError>(std::move(ErrMsg),
1208                                             inconvertibleErrorCode()));
1209         else
1210           OnEmitted(Error::success());
1211       };
1212 
1213   JITSymbolResolver::LookupSet Symbols;
1214 
1215   for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1216     StringRef Name = RelocKV.first();
1217     assert(!Name.empty() && "Symbol has no name?");
1218     assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1219            "Name already processed. RuntimeDyld instances can not be re-used "
1220            "when finalizing with finalizeAsync.");
1221     Symbols.insert(Name);
1222   }
1223 
1224   if (!Symbols.empty()) {
1225     SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1226   } else
1227     PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1228 }
1229 
1230 //===----------------------------------------------------------------------===//
1231 // RuntimeDyld class implementation
1232 
1233 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1234                                           const object::SectionRef &Sec) const {
1235 
1236   auto I = ObjSecToIDMap.find(Sec);
1237   if (I != ObjSecToIDMap.end())
1238     return RTDyld.Sections[I->second].getLoadAddress();
1239 
1240   return 0;
1241 }
1242 
1243 void RuntimeDyld::MemoryManager::anchor() {}
1244 void JITSymbolResolver::anchor() {}
1245 void LegacyJITSymbolResolver::anchor() {}
1246 
1247 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1248                          JITSymbolResolver &Resolver)
1249     : MemMgr(MemMgr), Resolver(Resolver) {
1250   // FIXME: There's a potential issue lurking here if a single instance of
1251   // RuntimeDyld is used to load multiple objects.  The current implementation
1252   // associates a single memory manager with a RuntimeDyld instance.  Even
1253   // though the public class spawns a new 'impl' instance for each load,
1254   // they share a single memory manager.  This can become a problem when page
1255   // permissions are applied.
1256   Dyld = nullptr;
1257   ProcessAllSections = false;
1258 }
1259 
1260 RuntimeDyld::~RuntimeDyld() {}
1261 
1262 static std::unique_ptr<RuntimeDyldCOFF>
1263 createRuntimeDyldCOFF(
1264                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1265                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1266                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1267   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1268     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1269   Dyld->setProcessAllSections(ProcessAllSections);
1270   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1271   return Dyld;
1272 }
1273 
1274 static std::unique_ptr<RuntimeDyldELF>
1275 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1276                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1277                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1278   std::unique_ptr<RuntimeDyldELF> Dyld =
1279       RuntimeDyldELF::create(Arch, MM, Resolver);
1280   Dyld->setProcessAllSections(ProcessAllSections);
1281   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1282   return Dyld;
1283 }
1284 
1285 static std::unique_ptr<RuntimeDyldMachO>
1286 createRuntimeDyldMachO(
1287                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1288                      JITSymbolResolver &Resolver,
1289                      bool ProcessAllSections,
1290                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1291   std::unique_ptr<RuntimeDyldMachO> Dyld =
1292     RuntimeDyldMachO::create(Arch, MM, Resolver);
1293   Dyld->setProcessAllSections(ProcessAllSections);
1294   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1295   return Dyld;
1296 }
1297 
1298 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1299 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1300   if (!Dyld) {
1301     if (Obj.isELF())
1302       Dyld =
1303           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1304                                MemMgr, Resolver, ProcessAllSections,
1305                                std::move(NotifyStubEmitted));
1306     else if (Obj.isMachO())
1307       Dyld = createRuntimeDyldMachO(
1308                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1309                ProcessAllSections, std::move(NotifyStubEmitted));
1310     else if (Obj.isCOFF())
1311       Dyld = createRuntimeDyldCOFF(
1312                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1313                ProcessAllSections, std::move(NotifyStubEmitted));
1314     else
1315       report_fatal_error("Incompatible object format!");
1316   }
1317 
1318   if (!Dyld->isCompatibleFile(Obj))
1319     report_fatal_error("Incompatible object format!");
1320 
1321   auto LoadedObjInfo = Dyld->loadObject(Obj);
1322   MemMgr.notifyObjectLoaded(*this, Obj);
1323   return LoadedObjInfo;
1324 }
1325 
1326 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1327   if (!Dyld)
1328     return nullptr;
1329   return Dyld->getSymbolLocalAddress(Name);
1330 }
1331 
1332 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1333   assert(Dyld && "No RuntimeDyld instance attached");
1334   return Dyld->getSymbolSectionID(Name);
1335 }
1336 
1337 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1338   if (!Dyld)
1339     return nullptr;
1340   return Dyld->getSymbol(Name);
1341 }
1342 
1343 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1344   if (!Dyld)
1345     return std::map<StringRef, JITEvaluatedSymbol>();
1346   return Dyld->getSymbolTable();
1347 }
1348 
1349 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1350 
1351 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1352   Dyld->reassignSectionAddress(SectionID, Addr);
1353 }
1354 
1355 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1356                                     uint64_t TargetAddress) {
1357   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1358 }
1359 
1360 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1361 
1362 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1363 
1364 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1365   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1366   MemMgr.FinalizationLocked = true;
1367   resolveRelocations();
1368   registerEHFrames();
1369   if (!MemoryFinalizationLocked) {
1370     MemMgr.finalizeMemory();
1371     MemMgr.FinalizationLocked = false;
1372   }
1373 }
1374 
1375 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1376   assert(Dyld && "No Dyld instance attached");
1377   return Dyld->getSectionContent(SectionID);
1378 }
1379 
1380 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1381   assert(Dyld && "No Dyld instance attached");
1382   return Dyld->getSectionLoadAddress(SectionID);
1383 }
1384 
1385 void RuntimeDyld::registerEHFrames() {
1386   if (Dyld)
1387     Dyld->registerEHFrames();
1388 }
1389 
1390 void RuntimeDyld::deregisterEHFrames() {
1391   if (Dyld)
1392     Dyld->deregisterEHFrames();
1393 }
1394 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1395 // so that we can re-use RuntimeDyld's implementation without twisting the
1396 // interface any further for ORC's purposes.
1397 void jitLinkForORC(object::ObjectFile &Obj,
1398                    std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1399                    RuntimeDyld::MemoryManager &MemMgr,
1400                    JITSymbolResolver &Resolver, bool ProcessAllSections,
1401                    unique_function<Error(
1402                        std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1403                        std::map<StringRef, JITEvaluatedSymbol>)>
1404                        OnLoaded,
1405                    unique_function<void(Error)> OnEmitted) {
1406 
1407   RuntimeDyld RTDyld(MemMgr, Resolver);
1408   RTDyld.setProcessAllSections(ProcessAllSections);
1409 
1410   auto Info = RTDyld.loadObject(Obj);
1411 
1412   if (RTDyld.hasError()) {
1413     OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1414                                       inconvertibleErrorCode()));
1415     return;
1416   }
1417 
1418   if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1419     OnEmitted(std::move(Err));
1420 
1421   RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1422                                  std::move(UnderlyingBuffer));
1423 }
1424 
1425 } // end namespace llvm
1426