1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ExecutionEngine/RuntimeDyld.h" 14 #include "RuntimeDyldCOFF.h" 15 #include "RuntimeDyldELF.h" 16 #include "RuntimeDyldImpl.h" 17 #include "RuntimeDyldMachO.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/Alignment.h" 21 #include "llvm/Support/MSVCErrorWorkarounds.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include <mutex> 25 26 #include <future> 27 28 using namespace llvm; 29 using namespace llvm::object; 30 31 #define DEBUG_TYPE "dyld" 32 33 namespace { 34 35 enum RuntimeDyldErrorCode { 36 GenericRTDyldError = 1 37 }; 38 39 // FIXME: This class is only here to support the transition to llvm::Error. It 40 // will be removed once this transition is complete. Clients should prefer to 41 // deal with the Error value directly, rather than converting to error_code. 42 class RuntimeDyldErrorCategory : public std::error_category { 43 public: 44 const char *name() const noexcept override { return "runtimedyld"; } 45 46 std::string message(int Condition) const override { 47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 48 case GenericRTDyldError: return "Generic RuntimeDyld error"; 49 } 50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 51 } 52 }; 53 54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 55 56 } 57 58 char RuntimeDyldError::ID = 0; 59 60 void RuntimeDyldError::log(raw_ostream &OS) const { 61 OS << ErrMsg << "\n"; 62 } 63 64 std::error_code RuntimeDyldError::convertToErrorCode() const { 65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 66 } 67 68 // Empty out-of-line virtual destructor as the key function. 69 RuntimeDyldImpl::~RuntimeDyldImpl() {} 70 71 // Pin LoadedObjectInfo's vtables to this file. 72 void RuntimeDyld::LoadedObjectInfo::anchor() {} 73 74 namespace llvm { 75 76 void RuntimeDyldImpl::registerEHFrames() {} 77 78 void RuntimeDyldImpl::deregisterEHFrames() { 79 MemMgr.deregisterEHFrames(); 80 } 81 82 #ifndef NDEBUG 83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 84 dbgs() << "----- Contents of section " << S.getName() << " " << State 85 << " -----"; 86 87 if (S.getAddress() == nullptr) { 88 dbgs() << "\n <section not emitted>\n"; 89 return; 90 } 91 92 const unsigned ColsPerRow = 16; 93 94 uint8_t *DataAddr = S.getAddress(); 95 uint64_t LoadAddr = S.getLoadAddress(); 96 97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 98 unsigned BytesRemaining = S.getSize(); 99 100 if (StartPadding) { 101 dbgs() << "\n" << format("0x%016" PRIx64, 102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 103 while (StartPadding--) 104 dbgs() << " "; 105 } 106 107 while (BytesRemaining > 0) { 108 if ((LoadAddr & (ColsPerRow - 1)) == 0) 109 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 110 111 dbgs() << " " << format("%02x", *DataAddr); 112 113 ++DataAddr; 114 ++LoadAddr; 115 --BytesRemaining; 116 } 117 118 dbgs() << "\n"; 119 } 120 #endif 121 122 // Resolve the relocations for all symbols we currently know about. 123 void RuntimeDyldImpl::resolveRelocations() { 124 std::lock_guard<sys::Mutex> locked(lock); 125 126 // Print out the sections prior to relocation. 127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 128 dumpSectionMemory(Sections[i], "before relocations");); 129 130 // First, resolve relocations associated with external symbols. 131 if (auto Err = resolveExternalSymbols()) { 132 HasError = true; 133 ErrorStr = toString(std::move(Err)); 134 } 135 136 resolveLocalRelocations(); 137 138 // Print out sections after relocation. 139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 140 dumpSectionMemory(Sections[i], "after relocations");); 141 } 142 143 void RuntimeDyldImpl::resolveLocalRelocations() { 144 // Iterate over all outstanding relocations 145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 146 // The Section here (Sections[i]) refers to the section in which the 147 // symbol for the relocation is located. The SectionID in the relocation 148 // entry provides the section to which the relocation will be applied. 149 int Idx = it->first; 150 uint64_t Addr = Sections[Idx].getLoadAddress(); 151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 152 << format("%p", (uintptr_t)Addr) << "\n"); 153 resolveRelocationList(it->second, Addr); 154 } 155 Relocations.clear(); 156 } 157 158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 159 uint64_t TargetAddress) { 160 std::lock_guard<sys::Mutex> locked(lock); 161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 162 if (Sections[i].getAddress() == LocalAddress) { 163 reassignSectionAddress(i, TargetAddress); 164 return; 165 } 166 } 167 llvm_unreachable("Attempting to remap address of unknown section!"); 168 } 169 170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 171 uint64_t &Result) { 172 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 173 if (!AddressOrErr) 174 return AddressOrErr.takeError(); 175 Result = *AddressOrErr - Sec.getAddress(); 176 return Error::success(); 177 } 178 179 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 181 std::lock_guard<sys::Mutex> locked(lock); 182 183 // Save information about our target 184 Arch = (Triple::ArchType)Obj.getArch(); 185 IsTargetLittleEndian = Obj.isLittleEndian(); 186 setMipsABI(Obj); 187 188 // Compute the memory size required to load all sections to be loaded 189 // and pass this information to the memory manager 190 if (MemMgr.needsToReserveAllocationSpace()) { 191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 193 if (auto Err = computeTotalAllocSize(Obj, 194 CodeSize, CodeAlign, 195 RODataSize, RODataAlign, 196 RWDataSize, RWDataAlign)) 197 return std::move(Err); 198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 199 RWDataSize, RWDataAlign); 200 } 201 202 // Used sections from the object file 203 ObjSectionToIDMap LocalSections; 204 205 // Common symbols requiring allocation, with their sizes and alignments 206 CommonSymbolList CommonSymbolsToAllocate; 207 208 uint64_t CommonSize = 0; 209 uint32_t CommonAlign = 0; 210 211 // First, collect all weak and common symbols. We need to know if stronger 212 // definitions occur elsewhere. 213 JITSymbolResolver::LookupSet ResponsibilitySet; 214 { 215 JITSymbolResolver::LookupSet Symbols; 216 for (auto &Sym : Obj.symbols()) { 217 uint32_t Flags = Sym.getFlags(); 218 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) { 219 // Get symbol name. 220 if (auto NameOrErr = Sym.getName()) 221 Symbols.insert(*NameOrErr); 222 else 223 return NameOrErr.takeError(); 224 } 225 } 226 227 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) 228 ResponsibilitySet = std::move(*ResultOrErr); 229 else 230 return ResultOrErr.takeError(); 231 } 232 233 // Parse symbols 234 LLVM_DEBUG(dbgs() << "Parse symbols:\n"); 235 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 236 ++I) { 237 uint32_t Flags = I->getFlags(); 238 239 // Skip undefined symbols. 240 if (Flags & SymbolRef::SF_Undefined) 241 continue; 242 243 // Get the symbol type. 244 object::SymbolRef::Type SymType; 245 if (auto SymTypeOrErr = I->getType()) 246 SymType = *SymTypeOrErr; 247 else 248 return SymTypeOrErr.takeError(); 249 250 // Get symbol name. 251 StringRef Name; 252 if (auto NameOrErr = I->getName()) 253 Name = *NameOrErr; 254 else 255 return NameOrErr.takeError(); 256 257 // Compute JIT symbol flags. 258 auto JITSymFlags = getJITSymbolFlags(*I); 259 if (!JITSymFlags) 260 return JITSymFlags.takeError(); 261 262 // If this is a weak definition, check to see if there's a strong one. 263 // If there is, skip this symbol (we won't be providing it: the strong 264 // definition will). If there's no strong definition, make this definition 265 // strong. 266 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { 267 // First check whether there's already a definition in this instance. 268 if (GlobalSymbolTable.count(Name)) 269 continue; 270 271 // If we're not responsible for this symbol, skip it. 272 if (!ResponsibilitySet.count(Name)) 273 continue; 274 275 // Otherwise update the flags on the symbol to make this definition 276 // strong. 277 if (JITSymFlags->isWeak()) 278 *JITSymFlags &= ~JITSymbolFlags::Weak; 279 if (JITSymFlags->isCommon()) { 280 *JITSymFlags &= ~JITSymbolFlags::Common; 281 uint32_t Align = I->getAlignment(); 282 uint64_t Size = I->getCommonSize(); 283 if (!CommonAlign) 284 CommonAlign = Align; 285 CommonSize = alignTo(CommonSize, Align) + Size; 286 CommonSymbolsToAllocate.push_back(*I); 287 } 288 } 289 290 if (Flags & SymbolRef::SF_Absolute && 291 SymType != object::SymbolRef::ST_File) { 292 uint64_t Addr = 0; 293 if (auto AddrOrErr = I->getAddress()) 294 Addr = *AddrOrErr; 295 else 296 return AddrOrErr.takeError(); 297 298 unsigned SectionID = AbsoluteSymbolSection; 299 300 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 301 << " SID: " << SectionID 302 << " Offset: " << format("%p", (uintptr_t)Addr) 303 << " flags: " << Flags << "\n"); 304 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags); 305 } else if (SymType == object::SymbolRef::ST_Function || 306 SymType == object::SymbolRef::ST_Data || 307 SymType == object::SymbolRef::ST_Unknown || 308 SymType == object::SymbolRef::ST_Other) { 309 310 section_iterator SI = Obj.section_end(); 311 if (auto SIOrErr = I->getSection()) 312 SI = *SIOrErr; 313 else 314 return SIOrErr.takeError(); 315 316 if (SI == Obj.section_end()) 317 continue; 318 319 // Get symbol offset. 320 uint64_t SectOffset; 321 if (auto Err = getOffset(*I, *SI, SectOffset)) 322 return std::move(Err); 323 324 bool IsCode = SI->isText(); 325 unsigned SectionID; 326 if (auto SectionIDOrErr = 327 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 328 SectionID = *SectionIDOrErr; 329 else 330 return SectionIDOrErr.takeError(); 331 332 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 333 << " SID: " << SectionID 334 << " Offset: " << format("%p", (uintptr_t)SectOffset) 335 << " flags: " << Flags << "\n"); 336 GlobalSymbolTable[Name] = 337 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); 338 } 339 } 340 341 // Allocate common symbols 342 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 343 CommonAlign)) 344 return std::move(Err); 345 346 // Parse and process relocations 347 LLVM_DEBUG(dbgs() << "Parse relocations:\n"); 348 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 349 SI != SE; ++SI) { 350 StubMap Stubs; 351 section_iterator RelocatedSection = SI->getRelocatedSection(); 352 353 if (RelocatedSection == SE) 354 continue; 355 356 relocation_iterator I = SI->relocation_begin(); 357 relocation_iterator E = SI->relocation_end(); 358 359 if (I == E && !ProcessAllSections) 360 continue; 361 362 bool IsCode = RelocatedSection->isText(); 363 unsigned SectionID = 0; 364 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 365 LocalSections)) 366 SectionID = *SectionIDOrErr; 367 else 368 return SectionIDOrErr.takeError(); 369 370 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 371 372 for (; I != E;) 373 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 374 I = *IOrErr; 375 else 376 return IOrErr.takeError(); 377 378 // If there is a NotifyStubEmitted callback set, call it to register any 379 // stubs created for this section. 380 if (NotifyStubEmitted) { 381 StringRef FileName = Obj.getFileName(); 382 StringRef SectionName = Sections[SectionID].getName(); 383 for (auto &KV : Stubs) { 384 385 auto &VR = KV.first; 386 uint64_t StubAddr = KV.second; 387 388 // If this is a named stub, just call NotifyStubEmitted. 389 if (VR.SymbolName) { 390 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, 391 StubAddr); 392 continue; 393 } 394 395 // Otherwise we will have to try a reverse lookup on the globla symbol table. 396 for (auto &GSTMapEntry : GlobalSymbolTable) { 397 StringRef SymbolName = GSTMapEntry.first(); 398 auto &GSTEntry = GSTMapEntry.second; 399 if (GSTEntry.getSectionID() == VR.SectionID && 400 GSTEntry.getOffset() == VR.Offset) { 401 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, 402 StubAddr); 403 break; 404 } 405 } 406 } 407 } 408 } 409 410 // Process remaining sections 411 if (ProcessAllSections) { 412 LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); 413 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 414 SI != SE; ++SI) { 415 416 /* Ignore already loaded sections */ 417 if (LocalSections.find(*SI) != LocalSections.end()) 418 continue; 419 420 bool IsCode = SI->isText(); 421 if (auto SectionIDOrErr = 422 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 423 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); 424 else 425 return SectionIDOrErr.takeError(); 426 } 427 } 428 429 // Give the subclasses a chance to tie-up any loose ends. 430 if (auto Err = finalizeLoad(Obj, LocalSections)) 431 return std::move(Err); 432 433 // for (auto E : LocalSections) 434 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 435 436 return LocalSections; 437 } 438 439 // A helper method for computeTotalAllocSize. 440 // Computes the memory size required to allocate sections with the given sizes, 441 // assuming that all sections are allocated with the given alignment 442 static uint64_t 443 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 444 uint64_t Alignment) { 445 uint64_t TotalSize = 0; 446 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 447 uint64_t AlignedSize = 448 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 449 TotalSize += AlignedSize; 450 } 451 return TotalSize; 452 } 453 454 static bool isRequiredForExecution(const SectionRef Section) { 455 const ObjectFile *Obj = Section.getObject(); 456 if (isa<object::ELFObjectFileBase>(Obj)) 457 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 458 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 459 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 460 // Avoid loading zero-sized COFF sections. 461 // In PE files, VirtualSize gives the section size, and SizeOfRawData 462 // may be zero for sections with content. In Obj files, SizeOfRawData 463 // gives the section size, and VirtualSize is always zero. Hence 464 // the need to check for both cases below. 465 bool HasContent = 466 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 467 bool IsDiscardable = 468 CoffSection->Characteristics & 469 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 470 return HasContent && !IsDiscardable; 471 } 472 473 assert(isa<MachOObjectFile>(Obj)); 474 return true; 475 } 476 477 static bool isReadOnlyData(const SectionRef Section) { 478 const ObjectFile *Obj = Section.getObject(); 479 if (isa<object::ELFObjectFileBase>(Obj)) 480 return !(ELFSectionRef(Section).getFlags() & 481 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 482 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 483 return ((COFFObj->getCOFFSection(Section)->Characteristics & 484 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 485 | COFF::IMAGE_SCN_MEM_READ 486 | COFF::IMAGE_SCN_MEM_WRITE)) 487 == 488 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 489 | COFF::IMAGE_SCN_MEM_READ)); 490 491 assert(isa<MachOObjectFile>(Obj)); 492 return false; 493 } 494 495 static bool isZeroInit(const SectionRef Section) { 496 const ObjectFile *Obj = Section.getObject(); 497 if (isa<object::ELFObjectFileBase>(Obj)) 498 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 499 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 500 return COFFObj->getCOFFSection(Section)->Characteristics & 501 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 502 503 auto *MachO = cast<MachOObjectFile>(Obj); 504 unsigned SectionType = MachO->getSectionType(Section); 505 return SectionType == MachO::S_ZEROFILL || 506 SectionType == MachO::S_GB_ZEROFILL; 507 } 508 509 // Compute an upper bound of the memory size that is required to load all 510 // sections 511 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 512 uint64_t &CodeSize, 513 uint32_t &CodeAlign, 514 uint64_t &RODataSize, 515 uint32_t &RODataAlign, 516 uint64_t &RWDataSize, 517 uint32_t &RWDataAlign) { 518 // Compute the size of all sections required for execution 519 std::vector<uint64_t> CodeSectionSizes; 520 std::vector<uint64_t> ROSectionSizes; 521 std::vector<uint64_t> RWSectionSizes; 522 523 // Collect sizes of all sections to be loaded; 524 // also determine the max alignment of all sections 525 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 526 SI != SE; ++SI) { 527 const SectionRef &Section = *SI; 528 529 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 530 531 // Consider only the sections that are required to be loaded for execution 532 if (IsRequired) { 533 uint64_t DataSize = Section.getSize(); 534 uint64_t Alignment64 = Section.getAlignment(); 535 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 536 bool IsCode = Section.isText(); 537 bool IsReadOnly = isReadOnlyData(Section); 538 539 Expected<StringRef> NameOrErr = Section.getName(); 540 if (!NameOrErr) 541 return NameOrErr.takeError(); 542 StringRef Name = *NameOrErr; 543 544 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 545 546 uint64_t PaddingSize = 0; 547 if (Name == ".eh_frame") 548 PaddingSize += 4; 549 if (StubBufSize != 0) 550 PaddingSize += getStubAlignment() - 1; 551 552 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; 553 554 // The .eh_frame section (at least on Linux) needs an extra four bytes 555 // padded 556 // with zeroes added at the end. For MachO objects, this section has a 557 // slightly different name, so this won't have any effect for MachO 558 // objects. 559 if (Name == ".eh_frame") 560 SectionSize += 4; 561 562 if (!SectionSize) 563 SectionSize = 1; 564 565 if (IsCode) { 566 CodeAlign = std::max(CodeAlign, Alignment); 567 CodeSectionSizes.push_back(SectionSize); 568 } else if (IsReadOnly) { 569 RODataAlign = std::max(RODataAlign, Alignment); 570 ROSectionSizes.push_back(SectionSize); 571 } else { 572 RWDataAlign = std::max(RWDataAlign, Alignment); 573 RWSectionSizes.push_back(SectionSize); 574 } 575 } 576 } 577 578 // Compute Global Offset Table size. If it is not zero we 579 // also update alignment, which is equal to a size of a 580 // single GOT entry. 581 if (unsigned GotSize = computeGOTSize(Obj)) { 582 RWSectionSizes.push_back(GotSize); 583 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); 584 } 585 586 // Compute the size of all common symbols 587 uint64_t CommonSize = 0; 588 uint32_t CommonAlign = 1; 589 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 590 ++I) { 591 uint32_t Flags = I->getFlags(); 592 if (Flags & SymbolRef::SF_Common) { 593 // Add the common symbols to a list. We'll allocate them all below. 594 uint64_t Size = I->getCommonSize(); 595 uint32_t Align = I->getAlignment(); 596 // If this is the first common symbol, use its alignment as the alignment 597 // for the common symbols section. 598 if (CommonSize == 0) 599 CommonAlign = Align; 600 CommonSize = alignTo(CommonSize, Align) + Size; 601 } 602 } 603 if (CommonSize != 0) { 604 RWSectionSizes.push_back(CommonSize); 605 RWDataAlign = std::max(RWDataAlign, CommonAlign); 606 } 607 608 // Compute the required allocation space for each different type of sections 609 // (code, read-only data, read-write data) assuming that all sections are 610 // allocated with the max alignment. Note that we cannot compute with the 611 // individual alignments of the sections, because then the required size 612 // depends on the order, in which the sections are allocated. 613 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 614 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 615 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 616 617 return Error::success(); 618 } 619 620 // compute GOT size 621 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 622 size_t GotEntrySize = getGOTEntrySize(); 623 if (!GotEntrySize) 624 return 0; 625 626 size_t GotSize = 0; 627 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 628 SI != SE; ++SI) { 629 630 for (const RelocationRef &Reloc : SI->relocations()) 631 if (relocationNeedsGot(Reloc)) 632 GotSize += GotEntrySize; 633 } 634 635 return GotSize; 636 } 637 638 // compute stub buffer size for the given section 639 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 640 const SectionRef &Section) { 641 unsigned StubSize = getMaxStubSize(); 642 if (StubSize == 0) { 643 return 0; 644 } 645 // FIXME: this is an inefficient way to handle this. We should computed the 646 // necessary section allocation size in loadObject by walking all the sections 647 // once. 648 unsigned StubBufSize = 0; 649 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 650 SI != SE; ++SI) { 651 section_iterator RelSecI = SI->getRelocatedSection(); 652 if (!(RelSecI == Section)) 653 continue; 654 655 for (const RelocationRef &Reloc : SI->relocations()) 656 if (relocationNeedsStub(Reloc)) 657 StubBufSize += StubSize; 658 } 659 660 // Get section data size and alignment 661 uint64_t DataSize = Section.getSize(); 662 uint64_t Alignment64 = Section.getAlignment(); 663 664 // Add stubbuf size alignment 665 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 666 unsigned StubAlignment = getStubAlignment(); 667 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 668 if (StubAlignment > EndAlignment) 669 StubBufSize += StubAlignment - EndAlignment; 670 return StubBufSize; 671 } 672 673 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 674 unsigned Size) const { 675 uint64_t Result = 0; 676 if (IsTargetLittleEndian) { 677 Src += Size - 1; 678 while (Size--) 679 Result = (Result << 8) | *Src--; 680 } else 681 while (Size--) 682 Result = (Result << 8) | *Src++; 683 684 return Result; 685 } 686 687 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 688 unsigned Size) const { 689 if (IsTargetLittleEndian) { 690 while (Size--) { 691 *Dst++ = Value & 0xFF; 692 Value >>= 8; 693 } 694 } else { 695 Dst += Size - 1; 696 while (Size--) { 697 *Dst-- = Value & 0xFF; 698 Value >>= 8; 699 } 700 } 701 } 702 703 Expected<JITSymbolFlags> 704 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { 705 return JITSymbolFlags::fromObjectSymbol(SR); 706 } 707 708 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 709 CommonSymbolList &SymbolsToAllocate, 710 uint64_t CommonSize, 711 uint32_t CommonAlign) { 712 if (SymbolsToAllocate.empty()) 713 return Error::success(); 714 715 // Allocate memory for the section 716 unsigned SectionID = Sections.size(); 717 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 718 "<common symbols>", false); 719 if (!Addr) 720 report_fatal_error("Unable to allocate memory for common symbols!"); 721 uint64_t Offset = 0; 722 Sections.push_back( 723 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 724 memset(Addr, 0, CommonSize); 725 726 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID 727 << " new addr: " << format("%p", Addr) 728 << " DataSize: " << CommonSize << "\n"); 729 730 // Assign the address of each symbol 731 for (auto &Sym : SymbolsToAllocate) { 732 uint32_t Align = Sym.getAlignment(); 733 uint64_t Size = Sym.getCommonSize(); 734 StringRef Name; 735 if (auto NameOrErr = Sym.getName()) 736 Name = *NameOrErr; 737 else 738 return NameOrErr.takeError(); 739 if (Align) { 740 // This symbol has an alignment requirement. 741 uint64_t AlignOffset = 742 offsetToAlignment((uint64_t)Addr, llvm::Align(Align)); 743 Addr += AlignOffset; 744 Offset += AlignOffset; 745 } 746 auto JITSymFlags = getJITSymbolFlags(Sym); 747 748 if (!JITSymFlags) 749 return JITSymFlags.takeError(); 750 751 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 752 << format("%p", Addr) << "\n"); 753 GlobalSymbolTable[Name] = 754 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); 755 Offset += Size; 756 Addr += Size; 757 } 758 759 return Error::success(); 760 } 761 762 Expected<unsigned> 763 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 764 const SectionRef &Section, 765 bool IsCode) { 766 StringRef data; 767 uint64_t Alignment64 = Section.getAlignment(); 768 769 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 770 unsigned PaddingSize = 0; 771 unsigned StubBufSize = 0; 772 bool IsRequired = isRequiredForExecution(Section); 773 bool IsVirtual = Section.isVirtual(); 774 bool IsZeroInit = isZeroInit(Section); 775 bool IsReadOnly = isReadOnlyData(Section); 776 uint64_t DataSize = Section.getSize(); 777 778 // An alignment of 0 (at least with ELF) is identical to an alignment of 1, 779 // while being more "polite". Other formats do not support 0-aligned sections 780 // anyway, so we should guarantee that the alignment is always at least 1. 781 Alignment = std::max(1u, Alignment); 782 783 Expected<StringRef> NameOrErr = Section.getName(); 784 if (!NameOrErr) 785 return NameOrErr.takeError(); 786 StringRef Name = *NameOrErr; 787 788 StubBufSize = computeSectionStubBufSize(Obj, Section); 789 790 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 791 // with zeroes added at the end. For MachO objects, this section has a 792 // slightly different name, so this won't have any effect for MachO objects. 793 if (Name == ".eh_frame") 794 PaddingSize = 4; 795 796 uintptr_t Allocate; 797 unsigned SectionID = Sections.size(); 798 uint8_t *Addr; 799 const char *pData = nullptr; 800 801 // If this section contains any bits (i.e. isn't a virtual or bss section), 802 // grab a reference to them. 803 if (!IsVirtual && !IsZeroInit) { 804 // In either case, set the location of the unrelocated section in memory, 805 // since we still process relocations for it even if we're not applying them. 806 if (Expected<StringRef> E = Section.getContents()) 807 data = *E; 808 else 809 return E.takeError(); 810 pData = data.data(); 811 } 812 813 // If there are any stubs then the section alignment needs to be at least as 814 // high as stub alignment or padding calculations may by incorrect when the 815 // section is remapped. 816 if (StubBufSize != 0) { 817 Alignment = std::max(Alignment, getStubAlignment()); 818 PaddingSize += getStubAlignment() - 1; 819 } 820 821 // Some sections, such as debug info, don't need to be loaded for execution. 822 // Process those only if explicitly requested. 823 if (IsRequired || ProcessAllSections) { 824 Allocate = DataSize + PaddingSize + StubBufSize; 825 if (!Allocate) 826 Allocate = 1; 827 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 828 Name) 829 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 830 Name, IsReadOnly); 831 if (!Addr) 832 report_fatal_error("Unable to allocate section memory!"); 833 834 // Zero-initialize or copy the data from the image 835 if (IsZeroInit || IsVirtual) 836 memset(Addr, 0, DataSize); 837 else 838 memcpy(Addr, pData, DataSize); 839 840 // Fill in any extra bytes we allocated for padding 841 if (PaddingSize != 0) { 842 memset(Addr + DataSize, 0, PaddingSize); 843 // Update the DataSize variable to include padding. 844 DataSize += PaddingSize; 845 846 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 847 // have been increased above to account for this). 848 if (StubBufSize > 0) 849 DataSize &= -(uint64_t)getStubAlignment(); 850 } 851 852 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " 853 << Name << " obj addr: " << format("%p", pData) 854 << " new addr: " << format("%p", Addr) << " DataSize: " 855 << DataSize << " StubBufSize: " << StubBufSize 856 << " Allocate: " << Allocate << "\n"); 857 } else { 858 // Even if we didn't load the section, we need to record an entry for it 859 // to handle later processing (and by 'handle' I mean don't do anything 860 // with these sections). 861 Allocate = 0; 862 Addr = nullptr; 863 LLVM_DEBUG( 864 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 865 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 866 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 867 << " Allocate: " << Allocate << "\n"); 868 } 869 870 Sections.push_back( 871 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 872 873 // Debug info sections are linked as if their load address was zero 874 if (!IsRequired) 875 Sections.back().setLoadAddress(0); 876 877 return SectionID; 878 } 879 880 Expected<unsigned> 881 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 882 const SectionRef &Section, 883 bool IsCode, 884 ObjSectionToIDMap &LocalSections) { 885 886 unsigned SectionID = 0; 887 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 888 if (i != LocalSections.end()) 889 SectionID = i->second; 890 else { 891 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 892 SectionID = *SectionIDOrErr; 893 else 894 return SectionIDOrErr.takeError(); 895 LocalSections[Section] = SectionID; 896 } 897 return SectionID; 898 } 899 900 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 901 unsigned SectionID) { 902 Relocations[SectionID].push_back(RE); 903 } 904 905 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 906 StringRef SymbolName) { 907 // Relocation by symbol. If the symbol is found in the global symbol table, 908 // create an appropriate section relocation. Otherwise, add it to 909 // ExternalSymbolRelocations. 910 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 911 if (Loc == GlobalSymbolTable.end()) { 912 ExternalSymbolRelocations[SymbolName].push_back(RE); 913 } else { 914 // Copy the RE since we want to modify its addend. 915 RelocationEntry RECopy = RE; 916 const auto &SymInfo = Loc->second; 917 RECopy.Addend += SymInfo.getOffset(); 918 Relocations[SymInfo.getSectionID()].push_back(RECopy); 919 } 920 } 921 922 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 923 unsigned AbiVariant) { 924 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || 925 Arch == Triple::aarch64_32) { 926 // This stub has to be able to access the full address space, 927 // since symbol lookup won't necessarily find a handy, in-range, 928 // PLT stub for functions which could be anywhere. 929 // Stub can use ip0 (== x16) to calculate address 930 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 931 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 932 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 933 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 934 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 935 936 return Addr; 937 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 938 // TODO: There is only ARM far stub now. We should add the Thumb stub, 939 // and stubs for branches Thumb - ARM and ARM - Thumb. 940 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 941 return Addr + 4; 942 } else if (IsMipsO32ABI || IsMipsN32ABI) { 943 // 0: 3c190000 lui t9,%hi(addr). 944 // 4: 27390000 addiu t9,t9,%lo(addr). 945 // 8: 03200008 jr t9. 946 // c: 00000000 nop. 947 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 948 const unsigned NopInstr = 0x0; 949 unsigned JrT9Instr = 0x03200008; 950 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 951 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 952 JrT9Instr = 0x03200009; 953 954 writeBytesUnaligned(LuiT9Instr, Addr, 4); 955 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 956 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 957 writeBytesUnaligned(NopInstr, Addr + 12, 4); 958 return Addr; 959 } else if (IsMipsN64ABI) { 960 // 0: 3c190000 lui t9,%highest(addr). 961 // 4: 67390000 daddiu t9,t9,%higher(addr). 962 // 8: 0019CC38 dsll t9,t9,16. 963 // c: 67390000 daddiu t9,t9,%hi(addr). 964 // 10: 0019CC38 dsll t9,t9,16. 965 // 14: 67390000 daddiu t9,t9,%lo(addr). 966 // 18: 03200008 jr t9. 967 // 1c: 00000000 nop. 968 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 969 DsllT9Instr = 0x19CC38; 970 const unsigned NopInstr = 0x0; 971 unsigned JrT9Instr = 0x03200008; 972 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 973 JrT9Instr = 0x03200009; 974 975 writeBytesUnaligned(LuiT9Instr, Addr, 4); 976 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 977 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 978 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 979 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 980 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 981 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 982 writeBytesUnaligned(NopInstr, Addr + 28, 4); 983 return Addr; 984 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 985 // Depending on which version of the ELF ABI is in use, we need to 986 // generate one of two variants of the stub. They both start with 987 // the same sequence to load the target address into r12. 988 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 989 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 990 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 991 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 992 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 993 if (AbiVariant == 2) { 994 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 995 // The address is already in r12 as required by the ABI. Branch to it. 996 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 997 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 998 writeInt32BE(Addr+28, 0x4E800420); // bctr 999 } else { 1000 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 1001 // Load the function address on r11 and sets it to control register. Also 1002 // loads the function TOC in r2 and environment pointer to r11. 1003 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 1004 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 1005 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 1006 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 1007 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 1008 writeInt32BE(Addr+40, 0x4E800420); // bctr 1009 } 1010 return Addr; 1011 } else if (Arch == Triple::systemz) { 1012 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 1013 writeInt16BE(Addr+2, 0x0000); 1014 writeInt16BE(Addr+4, 0x0004); 1015 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 1016 // 8-byte address stored at Addr + 8 1017 return Addr; 1018 } else if (Arch == Triple::x86_64) { 1019 *Addr = 0xFF; // jmp 1020 *(Addr+1) = 0x25; // rip 1021 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 1022 } else if (Arch == Triple::x86) { 1023 *Addr = 0xE9; // 32-bit pc-relative jump. 1024 } 1025 return Addr; 1026 } 1027 1028 // Assign an address to a symbol name and resolve all the relocations 1029 // associated with it. 1030 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 1031 uint64_t Addr) { 1032 // The address to use for relocation resolution is not 1033 // the address of the local section buffer. We must be doing 1034 // a remote execution environment of some sort. Relocations can't 1035 // be applied until all the sections have been moved. The client must 1036 // trigger this with a call to MCJIT::finalize() or 1037 // RuntimeDyld::resolveRelocations(). 1038 // 1039 // Addr is a uint64_t because we can't assume the pointer width 1040 // of the target is the same as that of the host. Just use a generic 1041 // "big enough" type. 1042 LLVM_DEBUG( 1043 dbgs() << "Reassigning address for section " << SectionID << " (" 1044 << Sections[SectionID].getName() << "): " 1045 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 1046 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 1047 Sections[SectionID].setLoadAddress(Addr); 1048 } 1049 1050 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 1051 uint64_t Value) { 1052 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1053 const RelocationEntry &RE = Relocs[i]; 1054 // Ignore relocations for sections that were not loaded 1055 if (Sections[RE.SectionID].getAddress() == nullptr) 1056 continue; 1057 resolveRelocation(RE, Value); 1058 } 1059 } 1060 1061 void RuntimeDyldImpl::applyExternalSymbolRelocations( 1062 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { 1063 while (!ExternalSymbolRelocations.empty()) { 1064 1065 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 1066 1067 StringRef Name = i->first(); 1068 if (Name.size() == 0) { 1069 // This is an absolute symbol, use an address of zero. 1070 LLVM_DEBUG(dbgs() << "Resolving absolute relocations." 1071 << "\n"); 1072 RelocationList &Relocs = i->second; 1073 resolveRelocationList(Relocs, 0); 1074 } else { 1075 uint64_t Addr = 0; 1076 JITSymbolFlags Flags; 1077 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1078 if (Loc == GlobalSymbolTable.end()) { 1079 auto RRI = ExternalSymbolMap.find(Name); 1080 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1081 Addr = RRI->second.getAddress(); 1082 Flags = RRI->second.getFlags(); 1083 // The call to getSymbolAddress may have caused additional modules to 1084 // be loaded, which may have added new entries to the 1085 // ExternalSymbolRelocations map. Consquently, we need to update our 1086 // iterator. This is also why retrieval of the relocation list 1087 // associated with this symbol is deferred until below this point. 1088 // New entries may have been added to the relocation list. 1089 i = ExternalSymbolRelocations.find(Name); 1090 } else { 1091 // We found the symbol in our global table. It was probably in a 1092 // Module that we loaded previously. 1093 const auto &SymInfo = Loc->second; 1094 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1095 SymInfo.getOffset(); 1096 Flags = SymInfo.getFlags(); 1097 } 1098 1099 // FIXME: Implement error handling that doesn't kill the host program! 1100 if (!Addr) 1101 report_fatal_error("Program used external function '" + Name + 1102 "' which could not be resolved!"); 1103 1104 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1105 // manually and we shouldn't resolve its relocations. 1106 if (Addr != UINT64_MAX) { 1107 1108 // Tweak the address based on the symbol flags if necessary. 1109 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1110 // if the target symbol is Thumb. 1111 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1112 1113 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1114 << format("0x%lx", Addr) << "\n"); 1115 // This list may have been updated when we called getSymbolAddress, so 1116 // don't change this code to get the list earlier. 1117 RelocationList &Relocs = i->second; 1118 resolveRelocationList(Relocs, Addr); 1119 } 1120 } 1121 1122 ExternalSymbolRelocations.erase(i); 1123 } 1124 } 1125 1126 Error RuntimeDyldImpl::resolveExternalSymbols() { 1127 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 1128 1129 // Resolution can trigger emission of more symbols, so iterate until 1130 // we've resolved *everything*. 1131 { 1132 JITSymbolResolver::LookupSet ResolvedSymbols; 1133 1134 while (true) { 1135 JITSymbolResolver::LookupSet NewSymbols; 1136 1137 for (auto &RelocKV : ExternalSymbolRelocations) { 1138 StringRef Name = RelocKV.first(); 1139 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1140 !ResolvedSymbols.count(Name)) 1141 NewSymbols.insert(Name); 1142 } 1143 1144 if (NewSymbols.empty()) 1145 break; 1146 1147 #ifdef _MSC_VER 1148 using ExpectedLookupResult = 1149 MSVCPExpected<JITSymbolResolver::LookupResult>; 1150 #else 1151 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; 1152 #endif 1153 1154 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); 1155 auto NewSymbolsF = NewSymbolsP->get_future(); 1156 Resolver.lookup(NewSymbols, 1157 [=](Expected<JITSymbolResolver::LookupResult> Result) { 1158 NewSymbolsP->set_value(std::move(Result)); 1159 }); 1160 1161 auto NewResolverResults = NewSymbolsF.get(); 1162 1163 if (!NewResolverResults) 1164 return NewResolverResults.takeError(); 1165 1166 assert(NewResolverResults->size() == NewSymbols.size() && 1167 "Should have errored on unresolved symbols"); 1168 1169 for (auto &RRKV : *NewResolverResults) { 1170 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1171 ExternalSymbolMap.insert(RRKV); 1172 ResolvedSymbols.insert(RRKV.first); 1173 } 1174 } 1175 } 1176 1177 applyExternalSymbolRelocations(ExternalSymbolMap); 1178 1179 return Error::success(); 1180 } 1181 1182 void RuntimeDyldImpl::finalizeAsync( 1183 std::unique_ptr<RuntimeDyldImpl> This, 1184 unique_function<void(Error)> OnEmitted, 1185 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) { 1186 1187 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); 1188 auto PostResolveContinuation = 1189 [SharedThis, OnEmitted = std::move(OnEmitted), 1190 UnderlyingBuffer = std::move(UnderlyingBuffer)]( 1191 Expected<JITSymbolResolver::LookupResult> Result) mutable { 1192 if (!Result) { 1193 OnEmitted(Result.takeError()); 1194 return; 1195 } 1196 1197 /// Copy the result into a StringMap, where the keys are held by value. 1198 StringMap<JITEvaluatedSymbol> Resolved; 1199 for (auto &KV : *Result) 1200 Resolved[KV.first] = KV.second; 1201 1202 SharedThis->applyExternalSymbolRelocations(Resolved); 1203 SharedThis->resolveLocalRelocations(); 1204 SharedThis->registerEHFrames(); 1205 std::string ErrMsg; 1206 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) 1207 OnEmitted(make_error<StringError>(std::move(ErrMsg), 1208 inconvertibleErrorCode())); 1209 else 1210 OnEmitted(Error::success()); 1211 }; 1212 1213 JITSymbolResolver::LookupSet Symbols; 1214 1215 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { 1216 StringRef Name = RelocKV.first(); 1217 assert(!Name.empty() && "Symbol has no name?"); 1218 assert(!SharedThis->GlobalSymbolTable.count(Name) && 1219 "Name already processed. RuntimeDyld instances can not be re-used " 1220 "when finalizing with finalizeAsync."); 1221 Symbols.insert(Name); 1222 } 1223 1224 if (!Symbols.empty()) { 1225 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation)); 1226 } else 1227 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); 1228 } 1229 1230 //===----------------------------------------------------------------------===// 1231 // RuntimeDyld class implementation 1232 1233 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1234 const object::SectionRef &Sec) const { 1235 1236 auto I = ObjSecToIDMap.find(Sec); 1237 if (I != ObjSecToIDMap.end()) 1238 return RTDyld.Sections[I->second].getLoadAddress(); 1239 1240 return 0; 1241 } 1242 1243 void RuntimeDyld::MemoryManager::anchor() {} 1244 void JITSymbolResolver::anchor() {} 1245 void LegacyJITSymbolResolver::anchor() {} 1246 1247 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1248 JITSymbolResolver &Resolver) 1249 : MemMgr(MemMgr), Resolver(Resolver) { 1250 // FIXME: There's a potential issue lurking here if a single instance of 1251 // RuntimeDyld is used to load multiple objects. The current implementation 1252 // associates a single memory manager with a RuntimeDyld instance. Even 1253 // though the public class spawns a new 'impl' instance for each load, 1254 // they share a single memory manager. This can become a problem when page 1255 // permissions are applied. 1256 Dyld = nullptr; 1257 ProcessAllSections = false; 1258 } 1259 1260 RuntimeDyld::~RuntimeDyld() {} 1261 1262 static std::unique_ptr<RuntimeDyldCOFF> 1263 createRuntimeDyldCOFF( 1264 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1265 JITSymbolResolver &Resolver, bool ProcessAllSections, 1266 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1267 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1268 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1269 Dyld->setProcessAllSections(ProcessAllSections); 1270 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1271 return Dyld; 1272 } 1273 1274 static std::unique_ptr<RuntimeDyldELF> 1275 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1276 JITSymbolResolver &Resolver, bool ProcessAllSections, 1277 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1278 std::unique_ptr<RuntimeDyldELF> Dyld = 1279 RuntimeDyldELF::create(Arch, MM, Resolver); 1280 Dyld->setProcessAllSections(ProcessAllSections); 1281 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1282 return Dyld; 1283 } 1284 1285 static std::unique_ptr<RuntimeDyldMachO> 1286 createRuntimeDyldMachO( 1287 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1288 JITSymbolResolver &Resolver, 1289 bool ProcessAllSections, 1290 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1291 std::unique_ptr<RuntimeDyldMachO> Dyld = 1292 RuntimeDyldMachO::create(Arch, MM, Resolver); 1293 Dyld->setProcessAllSections(ProcessAllSections); 1294 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1295 return Dyld; 1296 } 1297 1298 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1299 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1300 if (!Dyld) { 1301 if (Obj.isELF()) 1302 Dyld = 1303 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1304 MemMgr, Resolver, ProcessAllSections, 1305 std::move(NotifyStubEmitted)); 1306 else if (Obj.isMachO()) 1307 Dyld = createRuntimeDyldMachO( 1308 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1309 ProcessAllSections, std::move(NotifyStubEmitted)); 1310 else if (Obj.isCOFF()) 1311 Dyld = createRuntimeDyldCOFF( 1312 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1313 ProcessAllSections, std::move(NotifyStubEmitted)); 1314 else 1315 report_fatal_error("Incompatible object format!"); 1316 } 1317 1318 if (!Dyld->isCompatibleFile(Obj)) 1319 report_fatal_error("Incompatible object format!"); 1320 1321 auto LoadedObjInfo = Dyld->loadObject(Obj); 1322 MemMgr.notifyObjectLoaded(*this, Obj); 1323 return LoadedObjInfo; 1324 } 1325 1326 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1327 if (!Dyld) 1328 return nullptr; 1329 return Dyld->getSymbolLocalAddress(Name); 1330 } 1331 1332 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { 1333 assert(Dyld && "No RuntimeDyld instance attached"); 1334 return Dyld->getSymbolSectionID(Name); 1335 } 1336 1337 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1338 if (!Dyld) 1339 return nullptr; 1340 return Dyld->getSymbol(Name); 1341 } 1342 1343 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1344 if (!Dyld) 1345 return std::map<StringRef, JITEvaluatedSymbol>(); 1346 return Dyld->getSymbolTable(); 1347 } 1348 1349 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1350 1351 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1352 Dyld->reassignSectionAddress(SectionID, Addr); 1353 } 1354 1355 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1356 uint64_t TargetAddress) { 1357 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1358 } 1359 1360 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1361 1362 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1363 1364 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1365 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1366 MemMgr.FinalizationLocked = true; 1367 resolveRelocations(); 1368 registerEHFrames(); 1369 if (!MemoryFinalizationLocked) { 1370 MemMgr.finalizeMemory(); 1371 MemMgr.FinalizationLocked = false; 1372 } 1373 } 1374 1375 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { 1376 assert(Dyld && "No Dyld instance attached"); 1377 return Dyld->getSectionContent(SectionID); 1378 } 1379 1380 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { 1381 assert(Dyld && "No Dyld instance attached"); 1382 return Dyld->getSectionLoadAddress(SectionID); 1383 } 1384 1385 void RuntimeDyld::registerEHFrames() { 1386 if (Dyld) 1387 Dyld->registerEHFrames(); 1388 } 1389 1390 void RuntimeDyld::deregisterEHFrames() { 1391 if (Dyld) 1392 Dyld->deregisterEHFrames(); 1393 } 1394 // FIXME: Kill this with fire once we have a new JIT linker: this is only here 1395 // so that we can re-use RuntimeDyld's implementation without twisting the 1396 // interface any further for ORC's purposes. 1397 void jitLinkForORC(object::ObjectFile &Obj, 1398 std::unique_ptr<MemoryBuffer> UnderlyingBuffer, 1399 RuntimeDyld::MemoryManager &MemMgr, 1400 JITSymbolResolver &Resolver, bool ProcessAllSections, 1401 unique_function<Error( 1402 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj, 1403 std::map<StringRef, JITEvaluatedSymbol>)> 1404 OnLoaded, 1405 unique_function<void(Error)> OnEmitted) { 1406 1407 RuntimeDyld RTDyld(MemMgr, Resolver); 1408 RTDyld.setProcessAllSections(ProcessAllSections); 1409 1410 auto Info = RTDyld.loadObject(Obj); 1411 1412 if (RTDyld.hasError()) { 1413 OnEmitted(make_error<StringError>(RTDyld.getErrorString(), 1414 inconvertibleErrorCode())); 1415 return; 1416 } 1417 1418 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable())) 1419 OnEmitted(std::move(Err)); 1420 1421 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), 1422 std::move(UnderlyingBuffer)); 1423 } 1424 1425 } // end namespace llvm 1426