1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/RuntimeDyld.h" 15 #include "RuntimeDyldCheckerImpl.h" 16 #include "RuntimeDyldCOFF.h" 17 #include "RuntimeDyldELF.h" 18 #include "RuntimeDyldImpl.h" 19 #include "RuntimeDyldMachO.h" 20 #include "llvm/Object/ELFObjectFile.h" 21 #include "llvm/Object/COFF.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/MutexGuard.h" 24 25 using namespace llvm; 26 using namespace llvm::object; 27 28 #define DEBUG_TYPE "dyld" 29 30 // Empty out-of-line virtual destructor as the key function. 31 RuntimeDyldImpl::~RuntimeDyldImpl() {} 32 33 // Pin LoadedObjectInfo's vtables to this file. 34 void RuntimeDyld::LoadedObjectInfo::anchor() {} 35 36 namespace llvm { 37 38 void RuntimeDyldImpl::registerEHFrames() {} 39 40 void RuntimeDyldImpl::deregisterEHFrames() {} 41 42 #ifndef NDEBUG 43 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 44 dbgs() << "----- Contents of section " << S.getName() << " " << State 45 << " -----"; 46 47 if (S.getAddress() == nullptr) { 48 dbgs() << "\n <section not emitted>\n"; 49 return; 50 } 51 52 const unsigned ColsPerRow = 16; 53 54 uint8_t *DataAddr = S.getAddress(); 55 uint64_t LoadAddr = S.getLoadAddress(); 56 57 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 58 unsigned BytesRemaining = S.getSize(); 59 60 if (StartPadding) { 61 dbgs() << "\n" << format("0x%016" PRIx64, 62 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 63 while (StartPadding--) 64 dbgs() << " "; 65 } 66 67 while (BytesRemaining > 0) { 68 if ((LoadAddr & (ColsPerRow - 1)) == 0) 69 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 70 71 dbgs() << " " << format("%02x", *DataAddr); 72 73 ++DataAddr; 74 ++LoadAddr; 75 --BytesRemaining; 76 } 77 78 dbgs() << "\n"; 79 } 80 #endif 81 82 // Resolve the relocations for all symbols we currently know about. 83 void RuntimeDyldImpl::resolveRelocations() { 84 MutexGuard locked(lock); 85 86 // Print out the sections prior to relocation. 87 DEBUG( 88 for (int i = 0, e = Sections.size(); i != e; ++i) 89 dumpSectionMemory(Sections[i], "before relocations"); 90 ); 91 92 // First, resolve relocations associated with external symbols. 93 resolveExternalSymbols(); 94 95 // Iterate over all outstanding relocations 96 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 97 // The Section here (Sections[i]) refers to the section in which the 98 // symbol for the relocation is located. The SectionID in the relocation 99 // entry provides the section to which the relocation will be applied. 100 int Idx = it->first; 101 uint64_t Addr = Sections[Idx].getLoadAddress(); 102 DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 103 << format("%p", (uintptr_t)Addr) << "\n"); 104 resolveRelocationList(it->second, Addr); 105 } 106 Relocations.clear(); 107 108 // Print out sections after relocation. 109 DEBUG( 110 for (int i = 0, e = Sections.size(); i != e; ++i) 111 dumpSectionMemory(Sections[i], "after relocations"); 112 ); 113 114 } 115 116 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 117 uint64_t TargetAddress) { 118 MutexGuard locked(lock); 119 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 120 if (Sections[i].getAddress() == LocalAddress) { 121 reassignSectionAddress(i, TargetAddress); 122 return; 123 } 124 } 125 llvm_unreachable("Attempting to remap address of unknown section!"); 126 } 127 128 static std::error_code getOffset(const SymbolRef &Sym, SectionRef Sec, 129 uint64_t &Result) { 130 ErrorOr<uint64_t> AddressOrErr = Sym.getAddress(); 131 if (std::error_code EC = AddressOrErr.getError()) 132 return EC; 133 Result = *AddressOrErr - Sec.getAddress(); 134 return std::error_code(); 135 } 136 137 RuntimeDyldImpl::ObjSectionToIDMap 138 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 139 MutexGuard locked(lock); 140 141 // Save information about our target 142 Arch = (Triple::ArchType)Obj.getArch(); 143 IsTargetLittleEndian = Obj.isLittleEndian(); 144 setMipsABI(Obj); 145 146 // Compute the memory size required to load all sections to be loaded 147 // and pass this information to the memory manager 148 if (MemMgr.needsToReserveAllocationSpace()) { 149 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 150 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 151 computeTotalAllocSize(Obj, CodeSize, CodeAlign, RODataSize, RODataAlign, 152 RWDataSize, RWDataAlign); 153 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 154 RWDataSize, RWDataAlign); 155 } 156 157 // Used sections from the object file 158 ObjSectionToIDMap LocalSections; 159 160 // Common symbols requiring allocation, with their sizes and alignments 161 CommonSymbolList CommonSymbols; 162 163 // Parse symbols 164 DEBUG(dbgs() << "Parse symbols:\n"); 165 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 166 ++I) { 167 uint32_t Flags = I->getFlags(); 168 169 if (Flags & SymbolRef::SF_Common) 170 CommonSymbols.push_back(*I); 171 else { 172 ErrorOr<object::SymbolRef::Type> SymTypeOrErr = I->getType(); 173 Check(SymTypeOrErr.getError()); 174 object::SymbolRef::Type SymType = *SymTypeOrErr; 175 176 // Get symbol name. 177 ErrorOr<StringRef> NameOrErr = I->getName(); 178 Check(NameOrErr.getError()); 179 StringRef Name = *NameOrErr; 180 181 // Compute JIT symbol flags. 182 JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None; 183 if (Flags & SymbolRef::SF_Weak) 184 RTDyldSymFlags |= JITSymbolFlags::Weak; 185 if (Flags & SymbolRef::SF_Exported) 186 RTDyldSymFlags |= JITSymbolFlags::Exported; 187 188 if (Flags & SymbolRef::SF_Absolute && 189 SymType != object::SymbolRef::ST_File) { 190 auto Addr = I->getAddress(); 191 Check(Addr.getError()); 192 uint64_t SectOffset = *Addr; 193 unsigned SectionID = AbsoluteSymbolSection; 194 195 DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 196 << " SID: " << SectionID << " Offset: " 197 << format("%p", (uintptr_t)SectOffset) 198 << " flags: " << Flags << "\n"); 199 GlobalSymbolTable[Name] = 200 SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags); 201 } else if (SymType == object::SymbolRef::ST_Function || 202 SymType == object::SymbolRef::ST_Data || 203 SymType == object::SymbolRef::ST_Unknown || 204 SymType == object::SymbolRef::ST_Other) { 205 206 ErrorOr<section_iterator> SIOrErr = I->getSection(); 207 Check(SIOrErr.getError()); 208 section_iterator SI = *SIOrErr; 209 if (SI == Obj.section_end()) 210 continue; 211 // Get symbol offset. 212 uint64_t SectOffset; 213 Check(getOffset(*I, *SI, SectOffset)); 214 bool IsCode = SI->isText(); 215 unsigned SectionID = findOrEmitSection(Obj, *SI, IsCode, LocalSections); 216 217 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 218 << " SID: " << SectionID << " Offset: " 219 << format("%p", (uintptr_t)SectOffset) 220 << " flags: " << Flags << "\n"); 221 GlobalSymbolTable[Name] = 222 SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags); 223 } 224 } 225 } 226 227 // Allocate common symbols 228 emitCommonSymbols(Obj, CommonSymbols); 229 230 // Parse and process relocations 231 DEBUG(dbgs() << "Parse relocations:\n"); 232 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 233 SI != SE; ++SI) { 234 unsigned SectionID = 0; 235 StubMap Stubs; 236 section_iterator RelocatedSection = SI->getRelocatedSection(); 237 238 if (RelocatedSection == SE) 239 continue; 240 241 relocation_iterator I = SI->relocation_begin(); 242 relocation_iterator E = SI->relocation_end(); 243 244 if (I == E && !ProcessAllSections) 245 continue; 246 247 bool IsCode = RelocatedSection->isText(); 248 SectionID = 249 findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections); 250 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 251 252 for (; I != E;) 253 I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs); 254 255 // If there is an attached checker, notify it about the stubs for this 256 // section so that they can be verified. 257 if (Checker) 258 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs); 259 } 260 261 // Give the subclasses a chance to tie-up any loose ends. 262 finalizeLoad(Obj, LocalSections); 263 264 // for (auto E : LocalSections) 265 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 266 267 return LocalSections; 268 } 269 270 // A helper method for computeTotalAllocSize. 271 // Computes the memory size required to allocate sections with the given sizes, 272 // assuming that all sections are allocated with the given alignment 273 static uint64_t 274 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 275 uint64_t Alignment) { 276 uint64_t TotalSize = 0; 277 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 278 uint64_t AlignedSize = 279 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 280 TotalSize += AlignedSize; 281 } 282 return TotalSize; 283 } 284 285 static bool isRequiredForExecution(const SectionRef Section) { 286 const ObjectFile *Obj = Section.getObject(); 287 if (isa<object::ELFObjectFileBase>(Obj)) 288 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 289 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 290 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 291 // Avoid loading zero-sized COFF sections. 292 // In PE files, VirtualSize gives the section size, and SizeOfRawData 293 // may be zero for sections with content. In Obj files, SizeOfRawData 294 // gives the section size, and VirtualSize is always zero. Hence 295 // the need to check for both cases below. 296 bool HasContent = (CoffSection->VirtualSize > 0) 297 || (CoffSection->SizeOfRawData > 0); 298 bool IsDiscardable = CoffSection->Characteristics & 299 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 300 return HasContent && !IsDiscardable; 301 } 302 303 assert(isa<MachOObjectFile>(Obj)); 304 return true; 305 } 306 307 static bool isReadOnlyData(const SectionRef Section) { 308 const ObjectFile *Obj = Section.getObject(); 309 if (isa<object::ELFObjectFileBase>(Obj)) 310 return !(ELFSectionRef(Section).getFlags() & 311 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 312 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 313 return ((COFFObj->getCOFFSection(Section)->Characteristics & 314 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 315 | COFF::IMAGE_SCN_MEM_READ 316 | COFF::IMAGE_SCN_MEM_WRITE)) 317 == 318 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 319 | COFF::IMAGE_SCN_MEM_READ)); 320 321 assert(isa<MachOObjectFile>(Obj)); 322 return false; 323 } 324 325 static bool isZeroInit(const SectionRef Section) { 326 const ObjectFile *Obj = Section.getObject(); 327 if (isa<object::ELFObjectFileBase>(Obj)) 328 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 329 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 330 return COFFObj->getCOFFSection(Section)->Characteristics & 331 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 332 333 auto *MachO = cast<MachOObjectFile>(Obj); 334 unsigned SectionType = MachO->getSectionType(Section); 335 return SectionType == MachO::S_ZEROFILL || 336 SectionType == MachO::S_GB_ZEROFILL; 337 } 338 339 // Compute an upper bound of the memory size that is required to load all 340 // sections 341 void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 342 uint64_t &CodeSize, 343 uint32_t &CodeAlign, 344 uint64_t &RODataSize, 345 uint32_t &RODataAlign, 346 uint64_t &RWDataSize, 347 uint32_t &RWDataAlign) { 348 // Compute the size of all sections required for execution 349 std::vector<uint64_t> CodeSectionSizes; 350 std::vector<uint64_t> ROSectionSizes; 351 std::vector<uint64_t> RWSectionSizes; 352 353 // Collect sizes of all sections to be loaded; 354 // also determine the max alignment of all sections 355 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 356 SI != SE; ++SI) { 357 const SectionRef &Section = *SI; 358 359 bool IsRequired = isRequiredForExecution(Section); 360 361 // Consider only the sections that are required to be loaded for execution 362 if (IsRequired) { 363 StringRef Name; 364 uint64_t DataSize = Section.getSize(); 365 uint64_t Alignment64 = Section.getAlignment(); 366 bool IsCode = Section.isText(); 367 bool IsReadOnly = isReadOnlyData(Section); 368 Check(Section.getName(Name)); 369 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 370 371 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 372 uint64_t SectionSize = DataSize + StubBufSize; 373 374 // The .eh_frame section (at least on Linux) needs an extra four bytes 375 // padded 376 // with zeroes added at the end. For MachO objects, this section has a 377 // slightly different name, so this won't have any effect for MachO 378 // objects. 379 if (Name == ".eh_frame") 380 SectionSize += 4; 381 382 if (!SectionSize) 383 SectionSize = 1; 384 385 if (IsCode) { 386 CodeAlign = std::max(CodeAlign, Alignment); 387 CodeSectionSizes.push_back(SectionSize); 388 } else if (IsReadOnly) { 389 RODataAlign = std::max(RODataAlign, Alignment); 390 ROSectionSizes.push_back(SectionSize); 391 } else { 392 RWDataAlign = std::max(RWDataAlign, Alignment); 393 RWSectionSizes.push_back(SectionSize); 394 } 395 } 396 } 397 398 // Compute the size of all common symbols 399 uint64_t CommonSize = 0; 400 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 401 ++I) { 402 uint32_t Flags = I->getFlags(); 403 if (Flags & SymbolRef::SF_Common) { 404 // Add the common symbols to a list. We'll allocate them all below. 405 uint64_t Size = I->getCommonSize(); 406 CommonSize += Size; 407 } 408 } 409 if (CommonSize != 0) { 410 RWSectionSizes.push_back(CommonSize); 411 } 412 413 // Compute the required allocation space for each different type of sections 414 // (code, read-only data, read-write data) assuming that all sections are 415 // allocated with the max alignment. Note that we cannot compute with the 416 // individual alignments of the sections, because then the required size 417 // depends on the order, in which the sections are allocated. 418 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 419 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 420 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 421 } 422 423 // compute stub buffer size for the given section 424 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 425 const SectionRef &Section) { 426 unsigned StubSize = getMaxStubSize(); 427 if (StubSize == 0) { 428 return 0; 429 } 430 // FIXME: this is an inefficient way to handle this. We should computed the 431 // necessary section allocation size in loadObject by walking all the sections 432 // once. 433 unsigned StubBufSize = 0; 434 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 435 SI != SE; ++SI) { 436 section_iterator RelSecI = SI->getRelocatedSection(); 437 if (!(RelSecI == Section)) 438 continue; 439 440 for (const RelocationRef &Reloc : SI->relocations()) 441 if (relocationNeedsStub(Reloc)) 442 StubBufSize += StubSize; 443 } 444 445 // Get section data size and alignment 446 uint64_t DataSize = Section.getSize(); 447 uint64_t Alignment64 = Section.getAlignment(); 448 449 // Add stubbuf size alignment 450 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 451 unsigned StubAlignment = getStubAlignment(); 452 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 453 if (StubAlignment > EndAlignment) 454 StubBufSize += StubAlignment - EndAlignment; 455 return StubBufSize; 456 } 457 458 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 459 unsigned Size) const { 460 uint64_t Result = 0; 461 if (IsTargetLittleEndian) { 462 Src += Size - 1; 463 while (Size--) 464 Result = (Result << 8) | *Src--; 465 } else 466 while (Size--) 467 Result = (Result << 8) | *Src++; 468 469 return Result; 470 } 471 472 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 473 unsigned Size) const { 474 if (IsTargetLittleEndian) { 475 while (Size--) { 476 *Dst++ = Value & 0xFF; 477 Value >>= 8; 478 } 479 } else { 480 Dst += Size - 1; 481 while (Size--) { 482 *Dst-- = Value & 0xFF; 483 Value >>= 8; 484 } 485 } 486 } 487 488 void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 489 CommonSymbolList &CommonSymbols) { 490 if (CommonSymbols.empty()) 491 return; 492 493 uint64_t CommonSize = 0; 494 CommonSymbolList SymbolsToAllocate; 495 496 DEBUG(dbgs() << "Processing common symbols...\n"); 497 498 for (const auto &Sym : CommonSymbols) { 499 ErrorOr<StringRef> NameOrErr = Sym.getName(); 500 Check(NameOrErr.getError()); 501 StringRef Name = *NameOrErr; 502 503 // Skip common symbols already elsewhere. 504 if (GlobalSymbolTable.count(Name) || 505 Resolver.findSymbolInLogicalDylib(Name)) { 506 DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name 507 << "'\n"); 508 continue; 509 } 510 511 uint32_t Align = Sym.getAlignment(); 512 uint64_t Size = Sym.getCommonSize(); 513 514 CommonSize += Align + Size; 515 SymbolsToAllocate.push_back(Sym); 516 } 517 518 // Allocate memory for the section 519 unsigned SectionID = Sections.size(); 520 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, sizeof(void *), 521 SectionID, StringRef(), false); 522 if (!Addr) 523 report_fatal_error("Unable to allocate memory for common symbols!"); 524 uint64_t Offset = 0; 525 Sections.push_back( 526 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 527 memset(Addr, 0, CommonSize); 528 529 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " 530 << format("%p", Addr) << " DataSize: " << CommonSize << "\n"); 531 532 // Assign the address of each symbol 533 for (auto &Sym : SymbolsToAllocate) { 534 uint32_t Align = Sym.getAlignment(); 535 uint64_t Size = Sym.getCommonSize(); 536 ErrorOr<StringRef> NameOrErr = Sym.getName(); 537 Check(NameOrErr.getError()); 538 StringRef Name = *NameOrErr; 539 if (Align) { 540 // This symbol has an alignment requirement. 541 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 542 Addr += AlignOffset; 543 Offset += AlignOffset; 544 } 545 uint32_t Flags = Sym.getFlags(); 546 JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None; 547 if (Flags & SymbolRef::SF_Weak) 548 RTDyldSymFlags |= JITSymbolFlags::Weak; 549 if (Flags & SymbolRef::SF_Exported) 550 RTDyldSymFlags |= JITSymbolFlags::Exported; 551 DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 552 << format("%p", Addr) << "\n"); 553 GlobalSymbolTable[Name] = 554 SymbolTableEntry(SectionID, Offset, RTDyldSymFlags); 555 Offset += Size; 556 Addr += Size; 557 } 558 559 if (Checker) 560 Checker->registerSection(Obj.getFileName(), SectionID); 561 } 562 563 unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 564 const SectionRef &Section, bool IsCode) { 565 566 StringRef data; 567 uint64_t Alignment64 = Section.getAlignment(); 568 569 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 570 unsigned PaddingSize = 0; 571 unsigned StubBufSize = 0; 572 StringRef Name; 573 bool IsRequired = isRequiredForExecution(Section); 574 bool IsVirtual = Section.isVirtual(); 575 bool IsZeroInit = isZeroInit(Section); 576 bool IsReadOnly = isReadOnlyData(Section); 577 uint64_t DataSize = Section.getSize(); 578 Check(Section.getName(Name)); 579 580 StubBufSize = computeSectionStubBufSize(Obj, Section); 581 582 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 583 // with zeroes added at the end. For MachO objects, this section has a 584 // slightly different name, so this won't have any effect for MachO objects. 585 if (Name == ".eh_frame") 586 PaddingSize = 4; 587 588 uintptr_t Allocate; 589 unsigned SectionID = Sections.size(); 590 uint8_t *Addr; 591 const char *pData = nullptr; 592 593 // If this section contains any bits (i.e. isn't a virtual or bss section), 594 // grab a reference to them. 595 if (!IsVirtual && !IsZeroInit) { 596 // In either case, set the location of the unrelocated section in memory, 597 // since we still process relocations for it even if we're not applying them. 598 Check(Section.getContents(data)); 599 pData = data.data(); 600 } 601 602 // Code section alignment needs to be at least as high as stub alignment or 603 // padding calculations may by incorrect when the section is remapped to a 604 // higher alignment. 605 if (IsCode) 606 Alignment = std::max(Alignment, getStubAlignment()); 607 608 // Some sections, such as debug info, don't need to be loaded for execution. 609 // Leave those where they are. 610 if (IsRequired) { 611 Allocate = DataSize + PaddingSize + StubBufSize; 612 if (!Allocate) 613 Allocate = 1; 614 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 615 Name) 616 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 617 Name, IsReadOnly); 618 if (!Addr) 619 report_fatal_error("Unable to allocate section memory!"); 620 621 // Zero-initialize or copy the data from the image 622 if (IsZeroInit || IsVirtual) 623 memset(Addr, 0, DataSize); 624 else 625 memcpy(Addr, pData, DataSize); 626 627 // Fill in any extra bytes we allocated for padding 628 if (PaddingSize != 0) { 629 memset(Addr + DataSize, 0, PaddingSize); 630 // Update the DataSize variable so that the stub offset is set correctly. 631 DataSize += PaddingSize; 632 } 633 634 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 635 << " obj addr: " << format("%p", pData) 636 << " new addr: " << format("%p", Addr) 637 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 638 << " Allocate: " << Allocate << "\n"); 639 } else { 640 // Even if we didn't load the section, we need to record an entry for it 641 // to handle later processing (and by 'handle' I mean don't do anything 642 // with these sections). 643 Allocate = 0; 644 Addr = nullptr; 645 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 646 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 647 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 648 << " Allocate: " << Allocate << "\n"); 649 } 650 651 Sections.push_back( 652 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 653 654 if (Checker) 655 Checker->registerSection(Obj.getFileName(), SectionID); 656 657 return SectionID; 658 } 659 660 unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 661 const SectionRef &Section, 662 bool IsCode, 663 ObjSectionToIDMap &LocalSections) { 664 665 unsigned SectionID = 0; 666 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 667 if (i != LocalSections.end()) 668 SectionID = i->second; 669 else { 670 SectionID = emitSection(Obj, Section, IsCode); 671 LocalSections[Section] = SectionID; 672 } 673 return SectionID; 674 } 675 676 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 677 unsigned SectionID) { 678 Relocations[SectionID].push_back(RE); 679 } 680 681 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 682 StringRef SymbolName) { 683 // Relocation by symbol. If the symbol is found in the global symbol table, 684 // create an appropriate section relocation. Otherwise, add it to 685 // ExternalSymbolRelocations. 686 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 687 if (Loc == GlobalSymbolTable.end()) { 688 ExternalSymbolRelocations[SymbolName].push_back(RE); 689 } else { 690 // Copy the RE since we want to modify its addend. 691 RelocationEntry RECopy = RE; 692 const auto &SymInfo = Loc->second; 693 RECopy.Addend += SymInfo.getOffset(); 694 Relocations[SymInfo.getSectionID()].push_back(RECopy); 695 } 696 } 697 698 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 699 unsigned AbiVariant) { 700 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 701 // This stub has to be able to access the full address space, 702 // since symbol lookup won't necessarily find a handy, in-range, 703 // PLT stub for functions which could be anywhere. 704 // Stub can use ip0 (== x16) to calculate address 705 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 706 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 707 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 708 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 709 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 710 711 return Addr; 712 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 713 // TODO: There is only ARM far stub now. We should add the Thumb stub, 714 // and stubs for branches Thumb - ARM and ARM - Thumb. 715 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label> 716 return Addr + 4; 717 } else if (IsMipsO32ABI) { 718 // 0: 3c190000 lui t9,%hi(addr). 719 // 4: 27390000 addiu t9,t9,%lo(addr). 720 // 8: 03200008 jr t9. 721 // c: 00000000 nop. 722 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 723 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0; 724 725 writeBytesUnaligned(LuiT9Instr, Addr, 4); 726 writeBytesUnaligned(AdduiT9Instr, Addr+4, 4); 727 writeBytesUnaligned(JrT9Instr, Addr+8, 4); 728 writeBytesUnaligned(NopInstr, Addr+12, 4); 729 return Addr; 730 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 731 // Depending on which version of the ELF ABI is in use, we need to 732 // generate one of two variants of the stub. They both start with 733 // the same sequence to load the target address into r12. 734 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 735 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 736 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 737 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 738 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 739 if (AbiVariant == 2) { 740 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 741 // The address is already in r12 as required by the ABI. Branch to it. 742 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 743 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 744 writeInt32BE(Addr+28, 0x4E800420); // bctr 745 } else { 746 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 747 // Load the function address on r11 and sets it to control register. Also 748 // loads the function TOC in r2 and environment pointer to r11. 749 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 750 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 751 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 752 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 753 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 754 writeInt32BE(Addr+40, 0x4E800420); // bctr 755 } 756 return Addr; 757 } else if (Arch == Triple::systemz) { 758 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 759 writeInt16BE(Addr+2, 0x0000); 760 writeInt16BE(Addr+4, 0x0004); 761 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 762 // 8-byte address stored at Addr + 8 763 return Addr; 764 } else if (Arch == Triple::x86_64) { 765 *Addr = 0xFF; // jmp 766 *(Addr+1) = 0x25; // rip 767 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 768 } else if (Arch == Triple::x86) { 769 *Addr = 0xE9; // 32-bit pc-relative jump. 770 } 771 return Addr; 772 } 773 774 // Assign an address to a symbol name and resolve all the relocations 775 // associated with it. 776 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 777 uint64_t Addr) { 778 // The address to use for relocation resolution is not 779 // the address of the local section buffer. We must be doing 780 // a remote execution environment of some sort. Relocations can't 781 // be applied until all the sections have been moved. The client must 782 // trigger this with a call to MCJIT::finalize() or 783 // RuntimeDyld::resolveRelocations(). 784 // 785 // Addr is a uint64_t because we can't assume the pointer width 786 // of the target is the same as that of the host. Just use a generic 787 // "big enough" type. 788 DEBUG(dbgs() << "Reassigning address for section " << SectionID << " (" 789 << Sections[SectionID].getName() << "): " 790 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 791 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 792 Sections[SectionID].setLoadAddress(Addr); 793 } 794 795 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 796 uint64_t Value) { 797 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 798 const RelocationEntry &RE = Relocs[i]; 799 // Ignore relocations for sections that were not loaded 800 if (Sections[RE.SectionID].getAddress() == nullptr) 801 continue; 802 resolveRelocation(RE, Value); 803 } 804 } 805 806 void RuntimeDyldImpl::resolveExternalSymbols() { 807 while (!ExternalSymbolRelocations.empty()) { 808 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 809 810 StringRef Name = i->first(); 811 if (Name.size() == 0) { 812 // This is an absolute symbol, use an address of zero. 813 DEBUG(dbgs() << "Resolving absolute relocations." 814 << "\n"); 815 RelocationList &Relocs = i->second; 816 resolveRelocationList(Relocs, 0); 817 } else { 818 uint64_t Addr = 0; 819 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 820 if (Loc == GlobalSymbolTable.end()) { 821 // This is an external symbol, try to get its address from the symbol 822 // resolver. 823 Addr = Resolver.findSymbol(Name.data()).getAddress(); 824 // The call to getSymbolAddress may have caused additional modules to 825 // be loaded, which may have added new entries to the 826 // ExternalSymbolRelocations map. Consquently, we need to update our 827 // iterator. This is also why retrieval of the relocation list 828 // associated with this symbol is deferred until below this point. 829 // New entries may have been added to the relocation list. 830 i = ExternalSymbolRelocations.find(Name); 831 } else { 832 // We found the symbol in our global table. It was probably in a 833 // Module that we loaded previously. 834 const auto &SymInfo = Loc->second; 835 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 836 SymInfo.getOffset(); 837 } 838 839 // FIXME: Implement error handling that doesn't kill the host program! 840 if (!Addr) 841 report_fatal_error("Program used external function '" + Name + 842 "' which could not be resolved!"); 843 844 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 845 // manually and we shouldn't resolve its relocations. 846 if (Addr != UINT64_MAX) { 847 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 848 << format("0x%lx", Addr) << "\n"); 849 // This list may have been updated when we called getSymbolAddress, so 850 // don't change this code to get the list earlier. 851 RelocationList &Relocs = i->second; 852 resolveRelocationList(Relocs, Addr); 853 } 854 } 855 856 ExternalSymbolRelocations.erase(i); 857 } 858 } 859 860 //===----------------------------------------------------------------------===// 861 // RuntimeDyld class implementation 862 863 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 864 const object::SectionRef &Sec) const { 865 866 auto I = ObjSecToIDMap.find(Sec); 867 if (I != ObjSecToIDMap.end()) 868 return RTDyld.Sections[I->second].getLoadAddress(); 869 870 return 0; 871 } 872 873 void RuntimeDyld::MemoryManager::anchor() {} 874 void RuntimeDyld::SymbolResolver::anchor() {} 875 876 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 877 RuntimeDyld::SymbolResolver &Resolver) 878 : MemMgr(MemMgr), Resolver(Resolver) { 879 // FIXME: There's a potential issue lurking here if a single instance of 880 // RuntimeDyld is used to load multiple objects. The current implementation 881 // associates a single memory manager with a RuntimeDyld instance. Even 882 // though the public class spawns a new 'impl' instance for each load, 883 // they share a single memory manager. This can become a problem when page 884 // permissions are applied. 885 Dyld = nullptr; 886 ProcessAllSections = false; 887 Checker = nullptr; 888 } 889 890 RuntimeDyld::~RuntimeDyld() {} 891 892 static std::unique_ptr<RuntimeDyldCOFF> 893 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 894 RuntimeDyld::SymbolResolver &Resolver, 895 bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { 896 std::unique_ptr<RuntimeDyldCOFF> Dyld = 897 RuntimeDyldCOFF::create(Arch, MM, Resolver); 898 Dyld->setProcessAllSections(ProcessAllSections); 899 Dyld->setRuntimeDyldChecker(Checker); 900 return Dyld; 901 } 902 903 static std::unique_ptr<RuntimeDyldELF> 904 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM, 905 RuntimeDyld::SymbolResolver &Resolver, 906 bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { 907 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver)); 908 Dyld->setProcessAllSections(ProcessAllSections); 909 Dyld->setRuntimeDyldChecker(Checker); 910 return Dyld; 911 } 912 913 static std::unique_ptr<RuntimeDyldMachO> 914 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 915 RuntimeDyld::SymbolResolver &Resolver, 916 bool ProcessAllSections, 917 RuntimeDyldCheckerImpl *Checker) { 918 std::unique_ptr<RuntimeDyldMachO> Dyld = 919 RuntimeDyldMachO::create(Arch, MM, Resolver); 920 Dyld->setProcessAllSections(ProcessAllSections); 921 Dyld->setRuntimeDyldChecker(Checker); 922 return Dyld; 923 } 924 925 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 926 RuntimeDyld::loadObject(const ObjectFile &Obj) { 927 if (!Dyld) { 928 if (Obj.isELF()) 929 Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker); 930 else if (Obj.isMachO()) 931 Dyld = createRuntimeDyldMachO( 932 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 933 ProcessAllSections, Checker); 934 else if (Obj.isCOFF()) 935 Dyld = createRuntimeDyldCOFF( 936 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 937 ProcessAllSections, Checker); 938 else 939 report_fatal_error("Incompatible object format!"); 940 } 941 942 if (!Dyld->isCompatibleFile(Obj)) 943 report_fatal_error("Incompatible object format!"); 944 945 auto LoadedObjInfo = Dyld->loadObject(Obj); 946 MemMgr.notifyObjectLoaded(*this, Obj); 947 return LoadedObjInfo; 948 } 949 950 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 951 if (!Dyld) 952 return nullptr; 953 return Dyld->getSymbolLocalAddress(Name); 954 } 955 956 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const { 957 if (!Dyld) 958 return nullptr; 959 return Dyld->getSymbol(Name); 960 } 961 962 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 963 964 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 965 Dyld->reassignSectionAddress(SectionID, Addr); 966 } 967 968 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 969 uint64_t TargetAddress) { 970 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 971 } 972 973 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 974 975 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 976 977 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 978 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 979 MemMgr.FinalizationLocked = true; 980 resolveRelocations(); 981 registerEHFrames(); 982 if (!MemoryFinalizationLocked) { 983 MemMgr.finalizeMemory(); 984 MemMgr.FinalizationLocked = false; 985 } 986 } 987 988 void RuntimeDyld::registerEHFrames() { 989 if (Dyld) 990 Dyld->registerEHFrames(); 991 } 992 993 void RuntimeDyld::deregisterEHFrames() { 994 if (Dyld) 995 Dyld->deregisterEHFrames(); 996 } 997 998 } // end namespace llvm 999