1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/RuntimeDyld.h" 15 #include "RuntimeDyldCheckerImpl.h" 16 #include "RuntimeDyldCOFF.h" 17 #include "RuntimeDyldELF.h" 18 #include "RuntimeDyldImpl.h" 19 #include "RuntimeDyldMachO.h" 20 #include "llvm/Object/ELFObjectFile.h" 21 #include "llvm/Object/COFF.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/MutexGuard.h" 25 26 using namespace llvm; 27 using namespace llvm::object; 28 29 #define DEBUG_TYPE "dyld" 30 31 namespace { 32 33 enum RuntimeDyldErrorCode { 34 GenericRTDyldError = 1 35 }; 36 37 // FIXME: This class is only here to support the transition to llvm::Error. It 38 // will be removed once this transition is complete. Clients should prefer to 39 // deal with the Error value directly, rather than converting to error_code. 40 class RuntimeDyldErrorCategory : public std::error_category { 41 public: 42 const char *name() const noexcept override { return "runtimedyld"; } 43 44 std::string message(int Condition) const override { 45 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 46 case GenericRTDyldError: return "Generic RuntimeDyld error"; 47 } 48 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 49 } 50 }; 51 52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 53 54 } 55 56 char RuntimeDyldError::ID = 0; 57 58 void RuntimeDyldError::log(raw_ostream &OS) const { 59 OS << ErrMsg << "\n"; 60 } 61 62 std::error_code RuntimeDyldError::convertToErrorCode() const { 63 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 64 } 65 66 // Empty out-of-line virtual destructor as the key function. 67 RuntimeDyldImpl::~RuntimeDyldImpl() {} 68 69 // Pin LoadedObjectInfo's vtables to this file. 70 void RuntimeDyld::LoadedObjectInfo::anchor() {} 71 72 namespace llvm { 73 74 void RuntimeDyldImpl::registerEHFrames() {} 75 76 void RuntimeDyldImpl::deregisterEHFrames() {} 77 78 #ifndef NDEBUG 79 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 80 dbgs() << "----- Contents of section " << S.getName() << " " << State 81 << " -----"; 82 83 if (S.getAddress() == nullptr) { 84 dbgs() << "\n <section not emitted>\n"; 85 return; 86 } 87 88 const unsigned ColsPerRow = 16; 89 90 uint8_t *DataAddr = S.getAddress(); 91 uint64_t LoadAddr = S.getLoadAddress(); 92 93 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 94 unsigned BytesRemaining = S.getSize(); 95 96 if (StartPadding) { 97 dbgs() << "\n" << format("0x%016" PRIx64, 98 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 99 while (StartPadding--) 100 dbgs() << " "; 101 } 102 103 while (BytesRemaining > 0) { 104 if ((LoadAddr & (ColsPerRow - 1)) == 0) 105 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 106 107 dbgs() << " " << format("%02x", *DataAddr); 108 109 ++DataAddr; 110 ++LoadAddr; 111 --BytesRemaining; 112 } 113 114 dbgs() << "\n"; 115 } 116 #endif 117 118 // Resolve the relocations for all symbols we currently know about. 119 void RuntimeDyldImpl::resolveRelocations() { 120 MutexGuard locked(lock); 121 122 // Print out the sections prior to relocation. 123 DEBUG( 124 for (int i = 0, e = Sections.size(); i != e; ++i) 125 dumpSectionMemory(Sections[i], "before relocations"); 126 ); 127 128 // First, resolve relocations associated with external symbols. 129 resolveExternalSymbols(); 130 131 // Iterate over all outstanding relocations 132 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 133 // The Section here (Sections[i]) refers to the section in which the 134 // symbol for the relocation is located. The SectionID in the relocation 135 // entry provides the section to which the relocation will be applied. 136 int Idx = it->first; 137 uint64_t Addr = Sections[Idx].getLoadAddress(); 138 DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 139 << format("%p", (uintptr_t)Addr) << "\n"); 140 resolveRelocationList(it->second, Addr); 141 } 142 Relocations.clear(); 143 144 // Print out sections after relocation. 145 DEBUG( 146 for (int i = 0, e = Sections.size(); i != e; ++i) 147 dumpSectionMemory(Sections[i], "after relocations"); 148 ); 149 150 } 151 152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 153 uint64_t TargetAddress) { 154 MutexGuard locked(lock); 155 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 156 if (Sections[i].getAddress() == LocalAddress) { 157 reassignSectionAddress(i, TargetAddress); 158 return; 159 } 160 } 161 llvm_unreachable("Attempting to remap address of unknown section!"); 162 } 163 164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 165 uint64_t &Result) { 166 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 167 if (!AddressOrErr) 168 return AddressOrErr.takeError(); 169 Result = *AddressOrErr - Sec.getAddress(); 170 return Error::success(); 171 } 172 173 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 175 MutexGuard locked(lock); 176 177 // Save information about our target 178 Arch = (Triple::ArchType)Obj.getArch(); 179 IsTargetLittleEndian = Obj.isLittleEndian(); 180 setMipsABI(Obj); 181 182 // Compute the memory size required to load all sections to be loaded 183 // and pass this information to the memory manager 184 if (MemMgr.needsToReserveAllocationSpace()) { 185 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 186 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 187 if (auto Err = computeTotalAllocSize(Obj, 188 CodeSize, CodeAlign, 189 RODataSize, RODataAlign, 190 RWDataSize, RWDataAlign)) 191 return std::move(Err); 192 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 193 RWDataSize, RWDataAlign); 194 } 195 196 // Used sections from the object file 197 ObjSectionToIDMap LocalSections; 198 199 // Common symbols requiring allocation, with their sizes and alignments 200 CommonSymbolList CommonSymbols; 201 202 // Parse symbols 203 DEBUG(dbgs() << "Parse symbols:\n"); 204 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 205 ++I) { 206 uint32_t Flags = I->getFlags(); 207 208 // Skip undefined symbols. 209 if (Flags & SymbolRef::SF_Undefined) 210 continue; 211 212 if (Flags & SymbolRef::SF_Common) 213 CommonSymbols.push_back(*I); 214 else { 215 216 // Get the symbol type. 217 object::SymbolRef::Type SymType; 218 if (auto SymTypeOrErr = I->getType()) 219 SymType = *SymTypeOrErr; 220 else 221 return SymTypeOrErr.takeError(); 222 223 // Get symbol name. 224 StringRef Name; 225 if (auto NameOrErr = I->getName()) 226 Name = *NameOrErr; 227 else 228 return NameOrErr.takeError(); 229 230 // Compute JIT symbol flags. 231 JITSymbolFlags JITSymFlags = JITSymbolFlags::fromObjectSymbol(*I); 232 233 // If this is a weak definition, check to see if there's a strong one. 234 // If there is, skip this symbol (we won't be providing it: the strong 235 // definition will). If there's no strong definition, make this definition 236 // strong. 237 if (JITSymFlags.isWeak()) { 238 // First check whether there's already a definition in this instance. 239 // FIXME: Override existing weak definitions with strong ones. 240 if (GlobalSymbolTable.count(Name)) 241 continue; 242 // Then check the symbol resolver to see if there's a definition 243 // elsewhere in this logical dylib. 244 if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) 245 if (Sym.getFlags().isStrongDefinition()) 246 continue; 247 // else 248 JITSymFlags &= ~JITSymbolFlags::Weak; 249 } 250 251 if (Flags & SymbolRef::SF_Absolute && 252 SymType != object::SymbolRef::ST_File) { 253 uint64_t Addr = 0; 254 if (auto AddrOrErr = I->getAddress()) 255 Addr = *AddrOrErr; 256 else 257 return AddrOrErr.takeError(); 258 259 unsigned SectionID = AbsoluteSymbolSection; 260 261 DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 262 << " SID: " << SectionID << " Offset: " 263 << format("%p", (uintptr_t)Addr) 264 << " flags: " << Flags << "\n"); 265 GlobalSymbolTable[Name] = 266 SymbolTableEntry(SectionID, Addr, JITSymFlags); 267 } else if (SymType == object::SymbolRef::ST_Function || 268 SymType == object::SymbolRef::ST_Data || 269 SymType == object::SymbolRef::ST_Unknown || 270 SymType == object::SymbolRef::ST_Other) { 271 272 section_iterator SI = Obj.section_end(); 273 if (auto SIOrErr = I->getSection()) 274 SI = *SIOrErr; 275 else 276 return SIOrErr.takeError(); 277 278 if (SI == Obj.section_end()) 279 continue; 280 281 // Get symbol offset. 282 uint64_t SectOffset; 283 if (auto Err = getOffset(*I, *SI, SectOffset)) 284 return std::move(Err); 285 286 bool IsCode = SI->isText(); 287 unsigned SectionID; 288 if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode, 289 LocalSections)) 290 SectionID = *SectionIDOrErr; 291 else 292 return SectionIDOrErr.takeError(); 293 294 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 295 << " SID: " << SectionID << " Offset: " 296 << format("%p", (uintptr_t)SectOffset) 297 << " flags: " << Flags << "\n"); 298 GlobalSymbolTable[Name] = 299 SymbolTableEntry(SectionID, SectOffset, JITSymFlags); 300 } 301 } 302 } 303 304 // Allocate common symbols 305 if (auto Err = emitCommonSymbols(Obj, CommonSymbols)) 306 return std::move(Err); 307 308 // Parse and process relocations 309 DEBUG(dbgs() << "Parse relocations:\n"); 310 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 311 SI != SE; ++SI) { 312 StubMap Stubs; 313 section_iterator RelocatedSection = SI->getRelocatedSection(); 314 315 if (RelocatedSection == SE) 316 continue; 317 318 relocation_iterator I = SI->relocation_begin(); 319 relocation_iterator E = SI->relocation_end(); 320 321 if (I == E && !ProcessAllSections) 322 continue; 323 324 bool IsCode = RelocatedSection->isText(); 325 unsigned SectionID = 0; 326 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 327 LocalSections)) 328 SectionID = *SectionIDOrErr; 329 else 330 return SectionIDOrErr.takeError(); 331 332 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 333 334 for (; I != E;) 335 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 336 I = *IOrErr; 337 else 338 return IOrErr.takeError(); 339 340 // If there is an attached checker, notify it about the stubs for this 341 // section so that they can be verified. 342 if (Checker) 343 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs); 344 } 345 346 // Give the subclasses a chance to tie-up any loose ends. 347 if (auto Err = finalizeLoad(Obj, LocalSections)) 348 return std::move(Err); 349 350 // for (auto E : LocalSections) 351 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 352 353 return LocalSections; 354 } 355 356 // A helper method for computeTotalAllocSize. 357 // Computes the memory size required to allocate sections with the given sizes, 358 // assuming that all sections are allocated with the given alignment 359 static uint64_t 360 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 361 uint64_t Alignment) { 362 uint64_t TotalSize = 0; 363 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 364 uint64_t AlignedSize = 365 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 366 TotalSize += AlignedSize; 367 } 368 return TotalSize; 369 } 370 371 static bool isRequiredForExecution(const SectionRef Section) { 372 const ObjectFile *Obj = Section.getObject(); 373 if (isa<object::ELFObjectFileBase>(Obj)) 374 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 375 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 376 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 377 // Avoid loading zero-sized COFF sections. 378 // In PE files, VirtualSize gives the section size, and SizeOfRawData 379 // may be zero for sections with content. In Obj files, SizeOfRawData 380 // gives the section size, and VirtualSize is always zero. Hence 381 // the need to check for both cases below. 382 bool HasContent = 383 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 384 bool IsDiscardable = 385 CoffSection->Characteristics & 386 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 387 return HasContent && !IsDiscardable; 388 } 389 390 assert(isa<MachOObjectFile>(Obj)); 391 return true; 392 } 393 394 static bool isReadOnlyData(const SectionRef Section) { 395 const ObjectFile *Obj = Section.getObject(); 396 if (isa<object::ELFObjectFileBase>(Obj)) 397 return !(ELFSectionRef(Section).getFlags() & 398 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 399 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 400 return ((COFFObj->getCOFFSection(Section)->Characteristics & 401 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 402 | COFF::IMAGE_SCN_MEM_READ 403 | COFF::IMAGE_SCN_MEM_WRITE)) 404 == 405 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 406 | COFF::IMAGE_SCN_MEM_READ)); 407 408 assert(isa<MachOObjectFile>(Obj)); 409 return false; 410 } 411 412 static bool isZeroInit(const SectionRef Section) { 413 const ObjectFile *Obj = Section.getObject(); 414 if (isa<object::ELFObjectFileBase>(Obj)) 415 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 416 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 417 return COFFObj->getCOFFSection(Section)->Characteristics & 418 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 419 420 auto *MachO = cast<MachOObjectFile>(Obj); 421 unsigned SectionType = MachO->getSectionType(Section); 422 return SectionType == MachO::S_ZEROFILL || 423 SectionType == MachO::S_GB_ZEROFILL; 424 } 425 426 // Compute an upper bound of the memory size that is required to load all 427 // sections 428 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 429 uint64_t &CodeSize, 430 uint32_t &CodeAlign, 431 uint64_t &RODataSize, 432 uint32_t &RODataAlign, 433 uint64_t &RWDataSize, 434 uint32_t &RWDataAlign) { 435 // Compute the size of all sections required for execution 436 std::vector<uint64_t> CodeSectionSizes; 437 std::vector<uint64_t> ROSectionSizes; 438 std::vector<uint64_t> RWSectionSizes; 439 440 // Collect sizes of all sections to be loaded; 441 // also determine the max alignment of all sections 442 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 443 SI != SE; ++SI) { 444 const SectionRef &Section = *SI; 445 446 bool IsRequired = isRequiredForExecution(Section); 447 448 // Consider only the sections that are required to be loaded for execution 449 if (IsRequired) { 450 uint64_t DataSize = Section.getSize(); 451 uint64_t Alignment64 = Section.getAlignment(); 452 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 453 bool IsCode = Section.isText(); 454 bool IsReadOnly = isReadOnlyData(Section); 455 456 StringRef Name; 457 if (auto EC = Section.getName(Name)) 458 return errorCodeToError(EC); 459 460 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 461 uint64_t SectionSize = DataSize + StubBufSize; 462 463 // The .eh_frame section (at least on Linux) needs an extra four bytes 464 // padded 465 // with zeroes added at the end. For MachO objects, this section has a 466 // slightly different name, so this won't have any effect for MachO 467 // objects. 468 if (Name == ".eh_frame") 469 SectionSize += 4; 470 471 if (!SectionSize) 472 SectionSize = 1; 473 474 if (IsCode) { 475 CodeAlign = std::max(CodeAlign, Alignment); 476 CodeSectionSizes.push_back(SectionSize); 477 } else if (IsReadOnly) { 478 RODataAlign = std::max(RODataAlign, Alignment); 479 ROSectionSizes.push_back(SectionSize); 480 } else { 481 RWDataAlign = std::max(RWDataAlign, Alignment); 482 RWSectionSizes.push_back(SectionSize); 483 } 484 } 485 } 486 487 // Compute the size of all common symbols 488 uint64_t CommonSize = 0; 489 uint32_t CommonAlign = 1; 490 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 491 ++I) { 492 uint32_t Flags = I->getFlags(); 493 if (Flags & SymbolRef::SF_Common) { 494 // Add the common symbols to a list. We'll allocate them all below. 495 uint64_t Size = I->getCommonSize(); 496 uint32_t Align = I->getAlignment(); 497 // If this is the first common symbol, use its alignment as the alignment 498 // for the common symbols section. 499 if (CommonSize == 0) 500 CommonAlign = Align; 501 CommonSize = alignTo(CommonSize, Align) + Size; 502 } 503 } 504 if (CommonSize != 0) { 505 RWSectionSizes.push_back(CommonSize); 506 RWDataAlign = std::max(RWDataAlign, CommonAlign); 507 } 508 509 // Compute the required allocation space for each different type of sections 510 // (code, read-only data, read-write data) assuming that all sections are 511 // allocated with the max alignment. Note that we cannot compute with the 512 // individual alignments of the sections, because then the required size 513 // depends on the order, in which the sections are allocated. 514 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 515 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 516 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 517 518 return Error::success(); 519 } 520 521 // compute stub buffer size for the given section 522 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 523 const SectionRef &Section) { 524 unsigned StubSize = getMaxStubSize(); 525 if (StubSize == 0) { 526 return 0; 527 } 528 // FIXME: this is an inefficient way to handle this. We should computed the 529 // necessary section allocation size in loadObject by walking all the sections 530 // once. 531 unsigned StubBufSize = 0; 532 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 533 SI != SE; ++SI) { 534 section_iterator RelSecI = SI->getRelocatedSection(); 535 if (!(RelSecI == Section)) 536 continue; 537 538 for (const RelocationRef &Reloc : SI->relocations()) 539 if (relocationNeedsStub(Reloc)) 540 StubBufSize += StubSize; 541 } 542 543 // Get section data size and alignment 544 uint64_t DataSize = Section.getSize(); 545 uint64_t Alignment64 = Section.getAlignment(); 546 547 // Add stubbuf size alignment 548 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 549 unsigned StubAlignment = getStubAlignment(); 550 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 551 if (StubAlignment > EndAlignment) 552 StubBufSize += StubAlignment - EndAlignment; 553 return StubBufSize; 554 } 555 556 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 557 unsigned Size) const { 558 uint64_t Result = 0; 559 if (IsTargetLittleEndian) { 560 Src += Size - 1; 561 while (Size--) 562 Result = (Result << 8) | *Src--; 563 } else 564 while (Size--) 565 Result = (Result << 8) | *Src++; 566 567 return Result; 568 } 569 570 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 571 unsigned Size) const { 572 if (IsTargetLittleEndian) { 573 while (Size--) { 574 *Dst++ = Value & 0xFF; 575 Value >>= 8; 576 } 577 } else { 578 Dst += Size - 1; 579 while (Size--) { 580 *Dst-- = Value & 0xFF; 581 Value >>= 8; 582 } 583 } 584 } 585 586 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 587 CommonSymbolList &CommonSymbols) { 588 if (CommonSymbols.empty()) 589 return Error::success(); 590 591 uint64_t CommonSize = 0; 592 uint32_t CommonAlign = CommonSymbols.begin()->getAlignment(); 593 CommonSymbolList SymbolsToAllocate; 594 595 DEBUG(dbgs() << "Processing common symbols...\n"); 596 597 for (const auto &Sym : CommonSymbols) { 598 StringRef Name; 599 if (auto NameOrErr = Sym.getName()) 600 Name = *NameOrErr; 601 else 602 return NameOrErr.takeError(); 603 604 // Skip common symbols already elsewhere. 605 if (GlobalSymbolTable.count(Name)) { 606 DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name 607 << "'\n"); 608 continue; 609 } 610 611 if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) { 612 if (!Sym.getFlags().isCommon()) { 613 DEBUG(dbgs() << "\tSkipping common symbol '" << Name 614 << "' in favor of stronger definition.\n"); 615 continue; 616 } 617 } 618 uint32_t Align = Sym.getAlignment(); 619 uint64_t Size = Sym.getCommonSize(); 620 621 CommonSize = alignTo(CommonSize, Align) + Size; 622 623 SymbolsToAllocate.push_back(Sym); 624 } 625 626 // Allocate memory for the section 627 unsigned SectionID = Sections.size(); 628 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 629 "<common symbols>", false); 630 if (!Addr) 631 report_fatal_error("Unable to allocate memory for common symbols!"); 632 uint64_t Offset = 0; 633 Sections.push_back( 634 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 635 memset(Addr, 0, CommonSize); 636 637 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " 638 << format("%p", Addr) << " DataSize: " << CommonSize << "\n"); 639 640 // Assign the address of each symbol 641 for (auto &Sym : SymbolsToAllocate) { 642 uint32_t Align = Sym.getAlignment(); 643 uint64_t Size = Sym.getCommonSize(); 644 StringRef Name; 645 if (auto NameOrErr = Sym.getName()) 646 Name = *NameOrErr; 647 else 648 return NameOrErr.takeError(); 649 if (Align) { 650 // This symbol has an alignment requirement. 651 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 652 Addr += AlignOffset; 653 Offset += AlignOffset; 654 } 655 JITSymbolFlags JITSymFlags = JITSymbolFlags::fromObjectSymbol(Sym); 656 DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 657 << format("%p", Addr) << "\n"); 658 GlobalSymbolTable[Name] = 659 SymbolTableEntry(SectionID, Offset, JITSymFlags); 660 Offset += Size; 661 Addr += Size; 662 } 663 664 if (Checker) 665 Checker->registerSection(Obj.getFileName(), SectionID); 666 667 return Error::success(); 668 } 669 670 Expected<unsigned> 671 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 672 const SectionRef &Section, 673 bool IsCode) { 674 StringRef data; 675 uint64_t Alignment64 = Section.getAlignment(); 676 677 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 678 unsigned PaddingSize = 0; 679 unsigned StubBufSize = 0; 680 bool IsRequired = isRequiredForExecution(Section); 681 bool IsVirtual = Section.isVirtual(); 682 bool IsZeroInit = isZeroInit(Section); 683 bool IsReadOnly = isReadOnlyData(Section); 684 uint64_t DataSize = Section.getSize(); 685 686 StringRef Name; 687 if (auto EC = Section.getName(Name)) 688 return errorCodeToError(EC); 689 690 StubBufSize = computeSectionStubBufSize(Obj, Section); 691 692 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 693 // with zeroes added at the end. For MachO objects, this section has a 694 // slightly different name, so this won't have any effect for MachO objects. 695 if (Name == ".eh_frame") 696 PaddingSize = 4; 697 698 uintptr_t Allocate; 699 unsigned SectionID = Sections.size(); 700 uint8_t *Addr; 701 const char *pData = nullptr; 702 703 // If this section contains any bits (i.e. isn't a virtual or bss section), 704 // grab a reference to them. 705 if (!IsVirtual && !IsZeroInit) { 706 // In either case, set the location of the unrelocated section in memory, 707 // since we still process relocations for it even if we're not applying them. 708 if (auto EC = Section.getContents(data)) 709 return errorCodeToError(EC); 710 pData = data.data(); 711 } 712 713 // Code section alignment needs to be at least as high as stub alignment or 714 // padding calculations may by incorrect when the section is remapped to a 715 // higher alignment. 716 if (IsCode) 717 Alignment = std::max(Alignment, getStubAlignment()); 718 719 // Some sections, such as debug info, don't need to be loaded for execution. 720 // Leave those where they are. 721 if (IsRequired) { 722 Allocate = DataSize + PaddingSize + StubBufSize; 723 if (!Allocate) 724 Allocate = 1; 725 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 726 Name) 727 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 728 Name, IsReadOnly); 729 if (!Addr) 730 report_fatal_error("Unable to allocate section memory!"); 731 732 // Zero-initialize or copy the data from the image 733 if (IsZeroInit || IsVirtual) 734 memset(Addr, 0, DataSize); 735 else 736 memcpy(Addr, pData, DataSize); 737 738 // Fill in any extra bytes we allocated for padding 739 if (PaddingSize != 0) { 740 memset(Addr + DataSize, 0, PaddingSize); 741 // Update the DataSize variable so that the stub offset is set correctly. 742 DataSize += PaddingSize; 743 } 744 745 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 746 << " obj addr: " << format("%p", pData) 747 << " new addr: " << format("%p", Addr) 748 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 749 << " Allocate: " << Allocate << "\n"); 750 } else { 751 // Even if we didn't load the section, we need to record an entry for it 752 // to handle later processing (and by 'handle' I mean don't do anything 753 // with these sections). 754 Allocate = 0; 755 Addr = nullptr; 756 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 757 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 758 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 759 << " Allocate: " << Allocate << "\n"); 760 } 761 762 Sections.push_back( 763 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 764 765 if (Checker) 766 Checker->registerSection(Obj.getFileName(), SectionID); 767 768 return SectionID; 769 } 770 771 Expected<unsigned> 772 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 773 const SectionRef &Section, 774 bool IsCode, 775 ObjSectionToIDMap &LocalSections) { 776 777 unsigned SectionID = 0; 778 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 779 if (i != LocalSections.end()) 780 SectionID = i->second; 781 else { 782 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 783 SectionID = *SectionIDOrErr; 784 else 785 return SectionIDOrErr.takeError(); 786 LocalSections[Section] = SectionID; 787 } 788 return SectionID; 789 } 790 791 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 792 unsigned SectionID) { 793 Relocations[SectionID].push_back(RE); 794 } 795 796 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 797 StringRef SymbolName) { 798 // Relocation by symbol. If the symbol is found in the global symbol table, 799 // create an appropriate section relocation. Otherwise, add it to 800 // ExternalSymbolRelocations. 801 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 802 if (Loc == GlobalSymbolTable.end()) { 803 ExternalSymbolRelocations[SymbolName].push_back(RE); 804 } else { 805 // Copy the RE since we want to modify its addend. 806 RelocationEntry RECopy = RE; 807 const auto &SymInfo = Loc->second; 808 RECopy.Addend += SymInfo.getOffset(); 809 Relocations[SymInfo.getSectionID()].push_back(RECopy); 810 } 811 } 812 813 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 814 unsigned AbiVariant) { 815 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 816 // This stub has to be able to access the full address space, 817 // since symbol lookup won't necessarily find a handy, in-range, 818 // PLT stub for functions which could be anywhere. 819 // Stub can use ip0 (== x16) to calculate address 820 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 821 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 822 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 823 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 824 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 825 826 return Addr; 827 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 828 // TODO: There is only ARM far stub now. We should add the Thumb stub, 829 // and stubs for branches Thumb - ARM and ARM - Thumb. 830 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label> 831 return Addr + 4; 832 } else if (IsMipsO32ABI) { 833 // 0: 3c190000 lui t9,%hi(addr). 834 // 4: 27390000 addiu t9,t9,%lo(addr). 835 // 8: 03200008 jr t9. 836 // c: 00000000 nop. 837 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 838 const unsigned NopInstr = 0x0; 839 unsigned JrT9Instr = 0x03200008; 840 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6) 841 JrT9Instr = 0x03200009; 842 843 writeBytesUnaligned(LuiT9Instr, Addr, 4); 844 writeBytesUnaligned(AdduiT9Instr, Addr+4, 4); 845 writeBytesUnaligned(JrT9Instr, Addr+8, 4); 846 writeBytesUnaligned(NopInstr, Addr+12, 4); 847 return Addr; 848 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 849 // Depending on which version of the ELF ABI is in use, we need to 850 // generate one of two variants of the stub. They both start with 851 // the same sequence to load the target address into r12. 852 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 853 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 854 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 855 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 856 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 857 if (AbiVariant == 2) { 858 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 859 // The address is already in r12 as required by the ABI. Branch to it. 860 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 861 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 862 writeInt32BE(Addr+28, 0x4E800420); // bctr 863 } else { 864 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 865 // Load the function address on r11 and sets it to control register. Also 866 // loads the function TOC in r2 and environment pointer to r11. 867 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 868 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 869 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 870 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 871 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 872 writeInt32BE(Addr+40, 0x4E800420); // bctr 873 } 874 return Addr; 875 } else if (Arch == Triple::systemz) { 876 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 877 writeInt16BE(Addr+2, 0x0000); 878 writeInt16BE(Addr+4, 0x0004); 879 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 880 // 8-byte address stored at Addr + 8 881 return Addr; 882 } else if (Arch == Triple::x86_64) { 883 *Addr = 0xFF; // jmp 884 *(Addr+1) = 0x25; // rip 885 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 886 } else if (Arch == Triple::x86) { 887 *Addr = 0xE9; // 32-bit pc-relative jump. 888 } 889 return Addr; 890 } 891 892 // Assign an address to a symbol name and resolve all the relocations 893 // associated with it. 894 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 895 uint64_t Addr) { 896 // The address to use for relocation resolution is not 897 // the address of the local section buffer. We must be doing 898 // a remote execution environment of some sort. Relocations can't 899 // be applied until all the sections have been moved. The client must 900 // trigger this with a call to MCJIT::finalize() or 901 // RuntimeDyld::resolveRelocations(). 902 // 903 // Addr is a uint64_t because we can't assume the pointer width 904 // of the target is the same as that of the host. Just use a generic 905 // "big enough" type. 906 DEBUG(dbgs() << "Reassigning address for section " << SectionID << " (" 907 << Sections[SectionID].getName() << "): " 908 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 909 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 910 Sections[SectionID].setLoadAddress(Addr); 911 } 912 913 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 914 uint64_t Value) { 915 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 916 const RelocationEntry &RE = Relocs[i]; 917 // Ignore relocations for sections that were not loaded 918 if (Sections[RE.SectionID].getAddress() == nullptr) 919 continue; 920 resolveRelocation(RE, Value); 921 } 922 } 923 924 void RuntimeDyldImpl::resolveExternalSymbols() { 925 while (!ExternalSymbolRelocations.empty()) { 926 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 927 928 StringRef Name = i->first(); 929 if (Name.size() == 0) { 930 // This is an absolute symbol, use an address of zero. 931 DEBUG(dbgs() << "Resolving absolute relocations." 932 << "\n"); 933 RelocationList &Relocs = i->second; 934 resolveRelocationList(Relocs, 0); 935 } else { 936 uint64_t Addr = 0; 937 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 938 if (Loc == GlobalSymbolTable.end()) { 939 // This is an external symbol, try to get its address from the symbol 940 // resolver. 941 // First search for the symbol in this logical dylib. 942 Addr = Resolver.findSymbolInLogicalDylib(Name.data()).getAddress(); 943 // If that fails, try searching for an external symbol. 944 if (!Addr) 945 Addr = Resolver.findSymbol(Name.data()).getAddress(); 946 // The call to getSymbolAddress may have caused additional modules to 947 // be loaded, which may have added new entries to the 948 // ExternalSymbolRelocations map. Consquently, we need to update our 949 // iterator. This is also why retrieval of the relocation list 950 // associated with this symbol is deferred until below this point. 951 // New entries may have been added to the relocation list. 952 i = ExternalSymbolRelocations.find(Name); 953 } else { 954 // We found the symbol in our global table. It was probably in a 955 // Module that we loaded previously. 956 const auto &SymInfo = Loc->second; 957 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 958 SymInfo.getOffset(); 959 } 960 961 // FIXME: Implement error handling that doesn't kill the host program! 962 if (!Addr) 963 report_fatal_error("Program used external function '" + Name + 964 "' which could not be resolved!"); 965 966 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 967 // manually and we shouldn't resolve its relocations. 968 if (Addr != UINT64_MAX) { 969 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 970 << format("0x%lx", Addr) << "\n"); 971 // This list may have been updated when we called getSymbolAddress, so 972 // don't change this code to get the list earlier. 973 RelocationList &Relocs = i->second; 974 resolveRelocationList(Relocs, Addr); 975 } 976 } 977 978 ExternalSymbolRelocations.erase(i); 979 } 980 } 981 982 //===----------------------------------------------------------------------===// 983 // RuntimeDyld class implementation 984 985 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 986 const object::SectionRef &Sec) const { 987 988 auto I = ObjSecToIDMap.find(Sec); 989 if (I != ObjSecToIDMap.end()) 990 return RTDyld.Sections[I->second].getLoadAddress(); 991 992 return 0; 993 } 994 995 void RuntimeDyld::MemoryManager::anchor() {} 996 void JITSymbolResolver::anchor() {} 997 998 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 999 JITSymbolResolver &Resolver) 1000 : MemMgr(MemMgr), Resolver(Resolver) { 1001 // FIXME: There's a potential issue lurking here if a single instance of 1002 // RuntimeDyld is used to load multiple objects. The current implementation 1003 // associates a single memory manager with a RuntimeDyld instance. Even 1004 // though the public class spawns a new 'impl' instance for each load, 1005 // they share a single memory manager. This can become a problem when page 1006 // permissions are applied. 1007 Dyld = nullptr; 1008 ProcessAllSections = false; 1009 Checker = nullptr; 1010 } 1011 1012 RuntimeDyld::~RuntimeDyld() {} 1013 1014 static std::unique_ptr<RuntimeDyldCOFF> 1015 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1016 JITSymbolResolver &Resolver, bool ProcessAllSections, 1017 RuntimeDyldCheckerImpl *Checker) { 1018 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1019 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1020 Dyld->setProcessAllSections(ProcessAllSections); 1021 Dyld->setRuntimeDyldChecker(Checker); 1022 return Dyld; 1023 } 1024 1025 static std::unique_ptr<RuntimeDyldELF> 1026 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1027 JITSymbolResolver &Resolver, bool ProcessAllSections, 1028 RuntimeDyldCheckerImpl *Checker) { 1029 std::unique_ptr<RuntimeDyldELF> Dyld = 1030 RuntimeDyldELF::create(Arch, MM, Resolver); 1031 Dyld->setProcessAllSections(ProcessAllSections); 1032 Dyld->setRuntimeDyldChecker(Checker); 1033 return Dyld; 1034 } 1035 1036 static std::unique_ptr<RuntimeDyldMachO> 1037 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1038 JITSymbolResolver &Resolver, 1039 bool ProcessAllSections, 1040 RuntimeDyldCheckerImpl *Checker) { 1041 std::unique_ptr<RuntimeDyldMachO> Dyld = 1042 RuntimeDyldMachO::create(Arch, MM, Resolver); 1043 Dyld->setProcessAllSections(ProcessAllSections); 1044 Dyld->setRuntimeDyldChecker(Checker); 1045 return Dyld; 1046 } 1047 1048 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1049 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1050 if (!Dyld) { 1051 if (Obj.isELF()) 1052 Dyld = 1053 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1054 MemMgr, Resolver, ProcessAllSections, Checker); 1055 else if (Obj.isMachO()) 1056 Dyld = createRuntimeDyldMachO( 1057 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1058 ProcessAllSections, Checker); 1059 else if (Obj.isCOFF()) 1060 Dyld = createRuntimeDyldCOFF( 1061 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1062 ProcessAllSections, Checker); 1063 else 1064 report_fatal_error("Incompatible object format!"); 1065 } 1066 1067 if (!Dyld->isCompatibleFile(Obj)) 1068 report_fatal_error("Incompatible object format!"); 1069 1070 auto LoadedObjInfo = Dyld->loadObject(Obj); 1071 MemMgr.notifyObjectLoaded(*this, Obj); 1072 return LoadedObjInfo; 1073 } 1074 1075 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1076 if (!Dyld) 1077 return nullptr; 1078 return Dyld->getSymbolLocalAddress(Name); 1079 } 1080 1081 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1082 if (!Dyld) 1083 return nullptr; 1084 return Dyld->getSymbol(Name); 1085 } 1086 1087 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1088 1089 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1090 Dyld->reassignSectionAddress(SectionID, Addr); 1091 } 1092 1093 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1094 uint64_t TargetAddress) { 1095 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1096 } 1097 1098 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1099 1100 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1101 1102 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1103 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1104 MemMgr.FinalizationLocked = true; 1105 resolveRelocations(); 1106 registerEHFrames(); 1107 if (!MemoryFinalizationLocked) { 1108 MemMgr.finalizeMemory(); 1109 MemMgr.FinalizationLocked = false; 1110 } 1111 } 1112 1113 void RuntimeDyld::registerEHFrames() { 1114 if (Dyld) 1115 Dyld->registerEHFrames(); 1116 } 1117 1118 void RuntimeDyld::deregisterEHFrames() { 1119 if (Dyld) 1120 Dyld->deregisterEHFrames(); 1121 } 1122 1123 } // end namespace llvm 1124