1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "RuntimeDyldCOFF.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/COFF.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/MutexGuard.h"
25 
26 using namespace llvm;
27 using namespace llvm::object;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 namespace {
32 
33 enum RuntimeDyldErrorCode {
34   GenericRTDyldError = 1
35 };
36 
37 // FIXME: This class is only here to support the transition to llvm::Error. It
38 // will be removed once this transition is complete. Clients should prefer to
39 // deal with the Error value directly, rather than converting to error_code.
40 class RuntimeDyldErrorCategory : public std::error_category {
41 public:
42   const char *name() const noexcept override { return "runtimedyld"; }
43 
44   std::string message(int Condition) const override {
45     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
46       case GenericRTDyldError: return "Generic RuntimeDyld error";
47     }
48     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
49   }
50 };
51 
52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
53 
54 }
55 
56 char RuntimeDyldError::ID = 0;
57 
58 void RuntimeDyldError::log(raw_ostream &OS) const {
59   OS << ErrMsg << "\n";
60 }
61 
62 std::error_code RuntimeDyldError::convertToErrorCode() const {
63   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
64 }
65 
66 // Empty out-of-line virtual destructor as the key function.
67 RuntimeDyldImpl::~RuntimeDyldImpl() {}
68 
69 // Pin LoadedObjectInfo's vtables to this file.
70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
71 
72 namespace llvm {
73 
74 void RuntimeDyldImpl::registerEHFrames() {}
75 
76 void RuntimeDyldImpl::deregisterEHFrames() {}
77 
78 #ifndef NDEBUG
79 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
80   dbgs() << "----- Contents of section " << S.getName() << " " << State
81          << " -----";
82 
83   if (S.getAddress() == nullptr) {
84     dbgs() << "\n          <section not emitted>\n";
85     return;
86   }
87 
88   const unsigned ColsPerRow = 16;
89 
90   uint8_t *DataAddr = S.getAddress();
91   uint64_t LoadAddr = S.getLoadAddress();
92 
93   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
94   unsigned BytesRemaining = S.getSize();
95 
96   if (StartPadding) {
97     dbgs() << "\n" << format("0x%016" PRIx64,
98                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
99     while (StartPadding--)
100       dbgs() << "   ";
101   }
102 
103   while (BytesRemaining > 0) {
104     if ((LoadAddr & (ColsPerRow - 1)) == 0)
105       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
106 
107     dbgs() << " " << format("%02x", *DataAddr);
108 
109     ++DataAddr;
110     ++LoadAddr;
111     --BytesRemaining;
112   }
113 
114   dbgs() << "\n";
115 }
116 #endif
117 
118 // Resolve the relocations for all symbols we currently know about.
119 void RuntimeDyldImpl::resolveRelocations() {
120   MutexGuard locked(lock);
121 
122   // Print out the sections prior to relocation.
123   DEBUG(
124     for (int i = 0, e = Sections.size(); i != e; ++i)
125       dumpSectionMemory(Sections[i], "before relocations");
126   );
127 
128   // First, resolve relocations associated with external symbols.
129   resolveExternalSymbols();
130 
131   // Iterate over all outstanding relocations
132   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
133     // The Section here (Sections[i]) refers to the section in which the
134     // symbol for the relocation is located.  The SectionID in the relocation
135     // entry provides the section to which the relocation will be applied.
136     int Idx = it->first;
137     uint64_t Addr = Sections[Idx].getLoadAddress();
138     DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
139                  << format("%p", (uintptr_t)Addr) << "\n");
140     resolveRelocationList(it->second, Addr);
141   }
142   Relocations.clear();
143 
144   // Print out sections after relocation.
145   DEBUG(
146     for (int i = 0, e = Sections.size(); i != e; ++i)
147       dumpSectionMemory(Sections[i], "after relocations");
148   );
149 
150 }
151 
152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
153                                         uint64_t TargetAddress) {
154   MutexGuard locked(lock);
155   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
156     if (Sections[i].getAddress() == LocalAddress) {
157       reassignSectionAddress(i, TargetAddress);
158       return;
159     }
160   }
161   llvm_unreachable("Attempting to remap address of unknown section!");
162 }
163 
164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
165                        uint64_t &Result) {
166   Expected<uint64_t> AddressOrErr = Sym.getAddress();
167   if (!AddressOrErr)
168     return AddressOrErr.takeError();
169   Result = *AddressOrErr - Sec.getAddress();
170   return Error::success();
171 }
172 
173 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
175   MutexGuard locked(lock);
176 
177   // Save information about our target
178   Arch = (Triple::ArchType)Obj.getArch();
179   IsTargetLittleEndian = Obj.isLittleEndian();
180   setMipsABI(Obj);
181 
182   // Compute the memory size required to load all sections to be loaded
183   // and pass this information to the memory manager
184   if (MemMgr.needsToReserveAllocationSpace()) {
185     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
186     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
187     if (auto Err = computeTotalAllocSize(Obj,
188                                          CodeSize, CodeAlign,
189                                          RODataSize, RODataAlign,
190                                          RWDataSize, RWDataAlign))
191       return std::move(Err);
192     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
193                                   RWDataSize, RWDataAlign);
194   }
195 
196   // Used sections from the object file
197   ObjSectionToIDMap LocalSections;
198 
199   // Common symbols requiring allocation, with their sizes and alignments
200   CommonSymbolList CommonSymbols;
201 
202   // Parse symbols
203   DEBUG(dbgs() << "Parse symbols:\n");
204   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
205        ++I) {
206     uint32_t Flags = I->getFlags();
207 
208     // Skip undefined symbols.
209     if (Flags & SymbolRef::SF_Undefined)
210       continue;
211 
212     if (Flags & SymbolRef::SF_Common)
213       CommonSymbols.push_back(*I);
214     else {
215 
216       // Get the symbol type.
217       object::SymbolRef::Type SymType;
218       if (auto SymTypeOrErr = I->getType())
219         SymType =  *SymTypeOrErr;
220       else
221         return SymTypeOrErr.takeError();
222 
223       // Get symbol name.
224       StringRef Name;
225       if (auto NameOrErr = I->getName())
226         Name = *NameOrErr;
227       else
228         return NameOrErr.takeError();
229 
230       // Compute JIT symbol flags.
231       JITSymbolFlags JITSymFlags = JITSymbolFlags::fromObjectSymbol(*I);
232 
233       // If this is a weak definition, check to see if there's a strong one.
234       // If there is, skip this symbol (we won't be providing it: the strong
235       // definition will). If there's no strong definition, make this definition
236       // strong.
237       if (JITSymFlags.isWeak()) {
238         // First check whether there's already a definition in this instance.
239         // FIXME: Override existing weak definitions with strong ones.
240         if (GlobalSymbolTable.count(Name))
241           continue;
242         // Then check the symbol resolver to see if there's a definition
243         // elsewhere in this logical dylib.
244         if (auto Sym = Resolver.findSymbolInLogicalDylib(Name))
245           if (Sym.getFlags().isStrongDefinition())
246             continue;
247         // else
248         JITSymFlags &= ~JITSymbolFlags::Weak;
249       }
250 
251       if (Flags & SymbolRef::SF_Absolute &&
252           SymType != object::SymbolRef::ST_File) {
253         uint64_t Addr = 0;
254         if (auto AddrOrErr = I->getAddress())
255           Addr = *AddrOrErr;
256         else
257           return AddrOrErr.takeError();
258 
259         unsigned SectionID = AbsoluteSymbolSection;
260 
261         DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
262                      << " SID: " << SectionID << " Offset: "
263                      << format("%p", (uintptr_t)Addr)
264                      << " flags: " << Flags << "\n");
265         GlobalSymbolTable[Name] =
266           SymbolTableEntry(SectionID, Addr, JITSymFlags);
267       } else if (SymType == object::SymbolRef::ST_Function ||
268                  SymType == object::SymbolRef::ST_Data ||
269                  SymType == object::SymbolRef::ST_Unknown ||
270                  SymType == object::SymbolRef::ST_Other) {
271 
272         section_iterator SI = Obj.section_end();
273         if (auto SIOrErr = I->getSection())
274           SI = *SIOrErr;
275         else
276           return SIOrErr.takeError();
277 
278         if (SI == Obj.section_end())
279           continue;
280 
281         // Get symbol offset.
282         uint64_t SectOffset;
283         if (auto Err = getOffset(*I, *SI, SectOffset))
284           return std::move(Err);
285 
286         bool IsCode = SI->isText();
287         unsigned SectionID;
288         if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode,
289                                                     LocalSections))
290           SectionID = *SectionIDOrErr;
291         else
292           return SectionIDOrErr.takeError();
293 
294         DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
295                      << " SID: " << SectionID << " Offset: "
296                      << format("%p", (uintptr_t)SectOffset)
297                      << " flags: " << Flags << "\n");
298         GlobalSymbolTable[Name] =
299           SymbolTableEntry(SectionID, SectOffset, JITSymFlags);
300       }
301     }
302   }
303 
304   // Allocate common symbols
305   if (auto Err = emitCommonSymbols(Obj, CommonSymbols))
306     return std::move(Err);
307 
308   // Parse and process relocations
309   DEBUG(dbgs() << "Parse relocations:\n");
310   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
311        SI != SE; ++SI) {
312     StubMap Stubs;
313     section_iterator RelocatedSection = SI->getRelocatedSection();
314 
315     if (RelocatedSection == SE)
316       continue;
317 
318     relocation_iterator I = SI->relocation_begin();
319     relocation_iterator E = SI->relocation_end();
320 
321     if (I == E && !ProcessAllSections)
322       continue;
323 
324     bool IsCode = RelocatedSection->isText();
325     unsigned SectionID = 0;
326     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
327                                                 LocalSections))
328       SectionID = *SectionIDOrErr;
329     else
330       return SectionIDOrErr.takeError();
331 
332     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
333 
334     for (; I != E;)
335       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
336         I = *IOrErr;
337       else
338         return IOrErr.takeError();
339 
340     // If there is an attached checker, notify it about the stubs for this
341     // section so that they can be verified.
342     if (Checker)
343       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
344   }
345 
346   // Give the subclasses a chance to tie-up any loose ends.
347   if (auto Err = finalizeLoad(Obj, LocalSections))
348     return std::move(Err);
349 
350 //   for (auto E : LocalSections)
351 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
352 
353   return LocalSections;
354 }
355 
356 // A helper method for computeTotalAllocSize.
357 // Computes the memory size required to allocate sections with the given sizes,
358 // assuming that all sections are allocated with the given alignment
359 static uint64_t
360 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
361                                  uint64_t Alignment) {
362   uint64_t TotalSize = 0;
363   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
364     uint64_t AlignedSize =
365         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
366     TotalSize += AlignedSize;
367   }
368   return TotalSize;
369 }
370 
371 static bool isRequiredForExecution(const SectionRef Section) {
372   const ObjectFile *Obj = Section.getObject();
373   if (isa<object::ELFObjectFileBase>(Obj))
374     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
375   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
376     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
377     // Avoid loading zero-sized COFF sections.
378     // In PE files, VirtualSize gives the section size, and SizeOfRawData
379     // may be zero for sections with content. In Obj files, SizeOfRawData
380     // gives the section size, and VirtualSize is always zero. Hence
381     // the need to check for both cases below.
382     bool HasContent =
383         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
384     bool IsDiscardable =
385         CoffSection->Characteristics &
386         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
387     return HasContent && !IsDiscardable;
388   }
389 
390   assert(isa<MachOObjectFile>(Obj));
391   return true;
392 }
393 
394 static bool isReadOnlyData(const SectionRef Section) {
395   const ObjectFile *Obj = Section.getObject();
396   if (isa<object::ELFObjectFileBase>(Obj))
397     return !(ELFSectionRef(Section).getFlags() &
398              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
399   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
400     return ((COFFObj->getCOFFSection(Section)->Characteristics &
401              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
402              | COFF::IMAGE_SCN_MEM_READ
403              | COFF::IMAGE_SCN_MEM_WRITE))
404              ==
405              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
406              | COFF::IMAGE_SCN_MEM_READ));
407 
408   assert(isa<MachOObjectFile>(Obj));
409   return false;
410 }
411 
412 static bool isZeroInit(const SectionRef Section) {
413   const ObjectFile *Obj = Section.getObject();
414   if (isa<object::ELFObjectFileBase>(Obj))
415     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
416   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
417     return COFFObj->getCOFFSection(Section)->Characteristics &
418             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
419 
420   auto *MachO = cast<MachOObjectFile>(Obj);
421   unsigned SectionType = MachO->getSectionType(Section);
422   return SectionType == MachO::S_ZEROFILL ||
423          SectionType == MachO::S_GB_ZEROFILL;
424 }
425 
426 // Compute an upper bound of the memory size that is required to load all
427 // sections
428 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
429                                              uint64_t &CodeSize,
430                                              uint32_t &CodeAlign,
431                                              uint64_t &RODataSize,
432                                              uint32_t &RODataAlign,
433                                              uint64_t &RWDataSize,
434                                              uint32_t &RWDataAlign) {
435   // Compute the size of all sections required for execution
436   std::vector<uint64_t> CodeSectionSizes;
437   std::vector<uint64_t> ROSectionSizes;
438   std::vector<uint64_t> RWSectionSizes;
439 
440   // Collect sizes of all sections to be loaded;
441   // also determine the max alignment of all sections
442   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
443        SI != SE; ++SI) {
444     const SectionRef &Section = *SI;
445 
446     bool IsRequired = isRequiredForExecution(Section);
447 
448     // Consider only the sections that are required to be loaded for execution
449     if (IsRequired) {
450       uint64_t DataSize = Section.getSize();
451       uint64_t Alignment64 = Section.getAlignment();
452       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
453       bool IsCode = Section.isText();
454       bool IsReadOnly = isReadOnlyData(Section);
455 
456       StringRef Name;
457       if (auto EC = Section.getName(Name))
458         return errorCodeToError(EC);
459 
460       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
461       uint64_t SectionSize = DataSize + StubBufSize;
462 
463       // The .eh_frame section (at least on Linux) needs an extra four bytes
464       // padded
465       // with zeroes added at the end.  For MachO objects, this section has a
466       // slightly different name, so this won't have any effect for MachO
467       // objects.
468       if (Name == ".eh_frame")
469         SectionSize += 4;
470 
471       if (!SectionSize)
472         SectionSize = 1;
473 
474       if (IsCode) {
475         CodeAlign = std::max(CodeAlign, Alignment);
476         CodeSectionSizes.push_back(SectionSize);
477       } else if (IsReadOnly) {
478         RODataAlign = std::max(RODataAlign, Alignment);
479         ROSectionSizes.push_back(SectionSize);
480       } else {
481         RWDataAlign = std::max(RWDataAlign, Alignment);
482         RWSectionSizes.push_back(SectionSize);
483       }
484     }
485   }
486 
487   // Compute the size of all common symbols
488   uint64_t CommonSize = 0;
489   uint32_t CommonAlign = 1;
490   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
491        ++I) {
492     uint32_t Flags = I->getFlags();
493     if (Flags & SymbolRef::SF_Common) {
494       // Add the common symbols to a list.  We'll allocate them all below.
495       uint64_t Size = I->getCommonSize();
496       uint32_t Align = I->getAlignment();
497       // If this is the first common symbol, use its alignment as the alignment
498       // for the common symbols section.
499       if (CommonSize == 0)
500         CommonAlign = Align;
501       CommonSize = alignTo(CommonSize, Align) + Size;
502     }
503   }
504   if (CommonSize != 0) {
505     RWSectionSizes.push_back(CommonSize);
506     RWDataAlign = std::max(RWDataAlign, CommonAlign);
507   }
508 
509   // Compute the required allocation space for each different type of sections
510   // (code, read-only data, read-write data) assuming that all sections are
511   // allocated with the max alignment. Note that we cannot compute with the
512   // individual alignments of the sections, because then the required size
513   // depends on the order, in which the sections are allocated.
514   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
515   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
516   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
517 
518   return Error::success();
519 }
520 
521 // compute stub buffer size for the given section
522 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
523                                                     const SectionRef &Section) {
524   unsigned StubSize = getMaxStubSize();
525   if (StubSize == 0) {
526     return 0;
527   }
528   // FIXME: this is an inefficient way to handle this. We should computed the
529   // necessary section allocation size in loadObject by walking all the sections
530   // once.
531   unsigned StubBufSize = 0;
532   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
533        SI != SE; ++SI) {
534     section_iterator RelSecI = SI->getRelocatedSection();
535     if (!(RelSecI == Section))
536       continue;
537 
538     for (const RelocationRef &Reloc : SI->relocations())
539       if (relocationNeedsStub(Reloc))
540         StubBufSize += StubSize;
541   }
542 
543   // Get section data size and alignment
544   uint64_t DataSize = Section.getSize();
545   uint64_t Alignment64 = Section.getAlignment();
546 
547   // Add stubbuf size alignment
548   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
549   unsigned StubAlignment = getStubAlignment();
550   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
551   if (StubAlignment > EndAlignment)
552     StubBufSize += StubAlignment - EndAlignment;
553   return StubBufSize;
554 }
555 
556 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
557                                              unsigned Size) const {
558   uint64_t Result = 0;
559   if (IsTargetLittleEndian) {
560     Src += Size - 1;
561     while (Size--)
562       Result = (Result << 8) | *Src--;
563   } else
564     while (Size--)
565       Result = (Result << 8) | *Src++;
566 
567   return Result;
568 }
569 
570 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
571                                           unsigned Size) const {
572   if (IsTargetLittleEndian) {
573     while (Size--) {
574       *Dst++ = Value & 0xFF;
575       Value >>= 8;
576     }
577   } else {
578     Dst += Size - 1;
579     while (Size--) {
580       *Dst-- = Value & 0xFF;
581       Value >>= 8;
582     }
583   }
584 }
585 
586 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
587                                          CommonSymbolList &CommonSymbols) {
588   if (CommonSymbols.empty())
589     return Error::success();
590 
591   uint64_t CommonSize = 0;
592   uint32_t CommonAlign = CommonSymbols.begin()->getAlignment();
593   CommonSymbolList SymbolsToAllocate;
594 
595   DEBUG(dbgs() << "Processing common symbols...\n");
596 
597   for (const auto &Sym : CommonSymbols) {
598     StringRef Name;
599     if (auto NameOrErr = Sym.getName())
600       Name = *NameOrErr;
601     else
602       return NameOrErr.takeError();
603 
604     // Skip common symbols already elsewhere.
605     if (GlobalSymbolTable.count(Name)) {
606       DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
607                    << "'\n");
608       continue;
609     }
610 
611     if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) {
612       if (!Sym.getFlags().isCommon()) {
613         DEBUG(dbgs() << "\tSkipping common symbol '" << Name
614                      << "' in favor of stronger definition.\n");
615         continue;
616       }
617     }
618     uint32_t Align = Sym.getAlignment();
619     uint64_t Size = Sym.getCommonSize();
620 
621     CommonSize = alignTo(CommonSize, Align) + Size;
622 
623     SymbolsToAllocate.push_back(Sym);
624   }
625 
626   // Allocate memory for the section
627   unsigned SectionID = Sections.size();
628   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
629                                              "<common symbols>", false);
630   if (!Addr)
631     report_fatal_error("Unable to allocate memory for common symbols!");
632   uint64_t Offset = 0;
633   Sections.push_back(
634       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
635   memset(Addr, 0, CommonSize);
636 
637   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
638                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
639 
640   // Assign the address of each symbol
641   for (auto &Sym : SymbolsToAllocate) {
642     uint32_t Align = Sym.getAlignment();
643     uint64_t Size = Sym.getCommonSize();
644     StringRef Name;
645     if (auto NameOrErr = Sym.getName())
646       Name = *NameOrErr;
647     else
648       return NameOrErr.takeError();
649     if (Align) {
650       // This symbol has an alignment requirement.
651       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
652       Addr += AlignOffset;
653       Offset += AlignOffset;
654     }
655     JITSymbolFlags JITSymFlags = JITSymbolFlags::fromObjectSymbol(Sym);
656     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
657                  << format("%p", Addr) << "\n");
658     GlobalSymbolTable[Name] =
659       SymbolTableEntry(SectionID, Offset, JITSymFlags);
660     Offset += Size;
661     Addr += Size;
662   }
663 
664   if (Checker)
665     Checker->registerSection(Obj.getFileName(), SectionID);
666 
667   return Error::success();
668 }
669 
670 Expected<unsigned>
671 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
672                              const SectionRef &Section,
673                              bool IsCode) {
674   StringRef data;
675   uint64_t Alignment64 = Section.getAlignment();
676 
677   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
678   unsigned PaddingSize = 0;
679   unsigned StubBufSize = 0;
680   bool IsRequired = isRequiredForExecution(Section);
681   bool IsVirtual = Section.isVirtual();
682   bool IsZeroInit = isZeroInit(Section);
683   bool IsReadOnly = isReadOnlyData(Section);
684   uint64_t DataSize = Section.getSize();
685 
686   StringRef Name;
687   if (auto EC = Section.getName(Name))
688     return errorCodeToError(EC);
689 
690   StubBufSize = computeSectionStubBufSize(Obj, Section);
691 
692   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
693   // with zeroes added at the end.  For MachO objects, this section has a
694   // slightly different name, so this won't have any effect for MachO objects.
695   if (Name == ".eh_frame")
696     PaddingSize = 4;
697 
698   uintptr_t Allocate;
699   unsigned SectionID = Sections.size();
700   uint8_t *Addr;
701   const char *pData = nullptr;
702 
703   // If this section contains any bits (i.e. isn't a virtual or bss section),
704   // grab a reference to them.
705   if (!IsVirtual && !IsZeroInit) {
706     // In either case, set the location of the unrelocated section in memory,
707     // since we still process relocations for it even if we're not applying them.
708     if (auto EC = Section.getContents(data))
709       return errorCodeToError(EC);
710     pData = data.data();
711   }
712 
713   // Code section alignment needs to be at least as high as stub alignment or
714   // padding calculations may by incorrect when the section is remapped to a
715   // higher alignment.
716   if (IsCode)
717     Alignment = std::max(Alignment, getStubAlignment());
718 
719   // Some sections, such as debug info, don't need to be loaded for execution.
720   // Leave those where they are.
721   if (IsRequired) {
722     Allocate = DataSize + PaddingSize + StubBufSize;
723     if (!Allocate)
724       Allocate = 1;
725     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
726                                                Name)
727                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
728                                                Name, IsReadOnly);
729     if (!Addr)
730       report_fatal_error("Unable to allocate section memory!");
731 
732     // Zero-initialize or copy the data from the image
733     if (IsZeroInit || IsVirtual)
734       memset(Addr, 0, DataSize);
735     else
736       memcpy(Addr, pData, DataSize);
737 
738     // Fill in any extra bytes we allocated for padding
739     if (PaddingSize != 0) {
740       memset(Addr + DataSize, 0, PaddingSize);
741       // Update the DataSize variable so that the stub offset is set correctly.
742       DataSize += PaddingSize;
743     }
744 
745     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
746                  << " obj addr: " << format("%p", pData)
747                  << " new addr: " << format("%p", Addr)
748                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
749                  << " Allocate: " << Allocate << "\n");
750   } else {
751     // Even if we didn't load the section, we need to record an entry for it
752     // to handle later processing (and by 'handle' I mean don't do anything
753     // with these sections).
754     Allocate = 0;
755     Addr = nullptr;
756     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
757                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
758                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
759                  << " Allocate: " << Allocate << "\n");
760   }
761 
762   Sections.push_back(
763       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
764 
765   if (Checker)
766     Checker->registerSection(Obj.getFileName(), SectionID);
767 
768   return SectionID;
769 }
770 
771 Expected<unsigned>
772 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
773                                    const SectionRef &Section,
774                                    bool IsCode,
775                                    ObjSectionToIDMap &LocalSections) {
776 
777   unsigned SectionID = 0;
778   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
779   if (i != LocalSections.end())
780     SectionID = i->second;
781   else {
782     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
783       SectionID = *SectionIDOrErr;
784     else
785       return SectionIDOrErr.takeError();
786     LocalSections[Section] = SectionID;
787   }
788   return SectionID;
789 }
790 
791 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
792                                               unsigned SectionID) {
793   Relocations[SectionID].push_back(RE);
794 }
795 
796 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
797                                              StringRef SymbolName) {
798   // Relocation by symbol.  If the symbol is found in the global symbol table,
799   // create an appropriate section relocation.  Otherwise, add it to
800   // ExternalSymbolRelocations.
801   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
802   if (Loc == GlobalSymbolTable.end()) {
803     ExternalSymbolRelocations[SymbolName].push_back(RE);
804   } else {
805     // Copy the RE since we want to modify its addend.
806     RelocationEntry RECopy = RE;
807     const auto &SymInfo = Loc->second;
808     RECopy.Addend += SymInfo.getOffset();
809     Relocations[SymInfo.getSectionID()].push_back(RECopy);
810   }
811 }
812 
813 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
814                                              unsigned AbiVariant) {
815   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
816     // This stub has to be able to access the full address space,
817     // since symbol lookup won't necessarily find a handy, in-range,
818     // PLT stub for functions which could be anywhere.
819     // Stub can use ip0 (== x16) to calculate address
820     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
821     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
822     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
823     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
824     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
825 
826     return Addr;
827   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
828     // TODO: There is only ARM far stub now. We should add the Thumb stub,
829     // and stubs for branches Thumb - ARM and ARM - Thumb.
830     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
831     return Addr + 4;
832   } else if (IsMipsO32ABI) {
833     // 0:   3c190000        lui     t9,%hi(addr).
834     // 4:   27390000        addiu   t9,t9,%lo(addr).
835     // 8:   03200008        jr      t9.
836     // c:   00000000        nop.
837     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
838     const unsigned NopInstr = 0x0;
839     unsigned JrT9Instr = 0x03200008;
840     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6)
841         JrT9Instr = 0x03200009;
842 
843     writeBytesUnaligned(LuiT9Instr, Addr, 4);
844     writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
845     writeBytesUnaligned(JrT9Instr, Addr+8, 4);
846     writeBytesUnaligned(NopInstr, Addr+12, 4);
847     return Addr;
848   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
849     // Depending on which version of the ELF ABI is in use, we need to
850     // generate one of two variants of the stub.  They both start with
851     // the same sequence to load the target address into r12.
852     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
853     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
854     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
855     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
856     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
857     if (AbiVariant == 2) {
858       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
859       // The address is already in r12 as required by the ABI.  Branch to it.
860       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
861       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
862       writeInt32BE(Addr+28, 0x4E800420); // bctr
863     } else {
864       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
865       // Load the function address on r11 and sets it to control register. Also
866       // loads the function TOC in r2 and environment pointer to r11.
867       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
868       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
869       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
870       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
871       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
872       writeInt32BE(Addr+40, 0x4E800420); // bctr
873     }
874     return Addr;
875   } else if (Arch == Triple::systemz) {
876     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
877     writeInt16BE(Addr+2,  0x0000);
878     writeInt16BE(Addr+4,  0x0004);
879     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
880     // 8-byte address stored at Addr + 8
881     return Addr;
882   } else if (Arch == Triple::x86_64) {
883     *Addr      = 0xFF; // jmp
884     *(Addr+1)  = 0x25; // rip
885     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
886   } else if (Arch == Triple::x86) {
887     *Addr      = 0xE9; // 32-bit pc-relative jump.
888   }
889   return Addr;
890 }
891 
892 // Assign an address to a symbol name and resolve all the relocations
893 // associated with it.
894 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
895                                              uint64_t Addr) {
896   // The address to use for relocation resolution is not
897   // the address of the local section buffer. We must be doing
898   // a remote execution environment of some sort. Relocations can't
899   // be applied until all the sections have been moved.  The client must
900   // trigger this with a call to MCJIT::finalize() or
901   // RuntimeDyld::resolveRelocations().
902   //
903   // Addr is a uint64_t because we can't assume the pointer width
904   // of the target is the same as that of the host. Just use a generic
905   // "big enough" type.
906   DEBUG(dbgs() << "Reassigning address for section " << SectionID << " ("
907                << Sections[SectionID].getName() << "): "
908                << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
909                << " -> " << format("0x%016" PRIx64, Addr) << "\n");
910   Sections[SectionID].setLoadAddress(Addr);
911 }
912 
913 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
914                                             uint64_t Value) {
915   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
916     const RelocationEntry &RE = Relocs[i];
917     // Ignore relocations for sections that were not loaded
918     if (Sections[RE.SectionID].getAddress() == nullptr)
919       continue;
920     resolveRelocation(RE, Value);
921   }
922 }
923 
924 void RuntimeDyldImpl::resolveExternalSymbols() {
925   while (!ExternalSymbolRelocations.empty()) {
926     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
927 
928     StringRef Name = i->first();
929     if (Name.size() == 0) {
930       // This is an absolute symbol, use an address of zero.
931       DEBUG(dbgs() << "Resolving absolute relocations."
932                    << "\n");
933       RelocationList &Relocs = i->second;
934       resolveRelocationList(Relocs, 0);
935     } else {
936       uint64_t Addr = 0;
937       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
938       if (Loc == GlobalSymbolTable.end()) {
939         // This is an external symbol, try to get its address from the symbol
940         // resolver.
941         // First search for the symbol in this logical dylib.
942         Addr = Resolver.findSymbolInLogicalDylib(Name.data()).getAddress();
943         // If that fails, try searching for an external symbol.
944         if (!Addr)
945           Addr = Resolver.findSymbol(Name.data()).getAddress();
946         // The call to getSymbolAddress may have caused additional modules to
947         // be loaded, which may have added new entries to the
948         // ExternalSymbolRelocations map.  Consquently, we need to update our
949         // iterator.  This is also why retrieval of the relocation list
950         // associated with this symbol is deferred until below this point.
951         // New entries may have been added to the relocation list.
952         i = ExternalSymbolRelocations.find(Name);
953       } else {
954         // We found the symbol in our global table.  It was probably in a
955         // Module that we loaded previously.
956         const auto &SymInfo = Loc->second;
957         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
958                SymInfo.getOffset();
959       }
960 
961       // FIXME: Implement error handling that doesn't kill the host program!
962       if (!Addr)
963         report_fatal_error("Program used external function '" + Name +
964                            "' which could not be resolved!");
965 
966       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
967       // manually and we shouldn't resolve its relocations.
968       if (Addr != UINT64_MAX) {
969         DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
970                      << format("0x%lx", Addr) << "\n");
971         // This list may have been updated when we called getSymbolAddress, so
972         // don't change this code to get the list earlier.
973         RelocationList &Relocs = i->second;
974         resolveRelocationList(Relocs, Addr);
975       }
976     }
977 
978     ExternalSymbolRelocations.erase(i);
979   }
980 }
981 
982 //===----------------------------------------------------------------------===//
983 // RuntimeDyld class implementation
984 
985 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
986                                           const object::SectionRef &Sec) const {
987 
988   auto I = ObjSecToIDMap.find(Sec);
989   if (I != ObjSecToIDMap.end())
990     return RTDyld.Sections[I->second].getLoadAddress();
991 
992   return 0;
993 }
994 
995 void RuntimeDyld::MemoryManager::anchor() {}
996 void JITSymbolResolver::anchor() {}
997 
998 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
999                          JITSymbolResolver &Resolver)
1000     : MemMgr(MemMgr), Resolver(Resolver) {
1001   // FIXME: There's a potential issue lurking here if a single instance of
1002   // RuntimeDyld is used to load multiple objects.  The current implementation
1003   // associates a single memory manager with a RuntimeDyld instance.  Even
1004   // though the public class spawns a new 'impl' instance for each load,
1005   // they share a single memory manager.  This can become a problem when page
1006   // permissions are applied.
1007   Dyld = nullptr;
1008   ProcessAllSections = false;
1009   Checker = nullptr;
1010 }
1011 
1012 RuntimeDyld::~RuntimeDyld() {}
1013 
1014 static std::unique_ptr<RuntimeDyldCOFF>
1015 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1016                       JITSymbolResolver &Resolver, bool ProcessAllSections,
1017                       RuntimeDyldCheckerImpl *Checker) {
1018   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1019     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1020   Dyld->setProcessAllSections(ProcessAllSections);
1021   Dyld->setRuntimeDyldChecker(Checker);
1022   return Dyld;
1023 }
1024 
1025 static std::unique_ptr<RuntimeDyldELF>
1026 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1027                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1028                      RuntimeDyldCheckerImpl *Checker) {
1029   std::unique_ptr<RuntimeDyldELF> Dyld =
1030       RuntimeDyldELF::create(Arch, MM, Resolver);
1031   Dyld->setProcessAllSections(ProcessAllSections);
1032   Dyld->setRuntimeDyldChecker(Checker);
1033   return Dyld;
1034 }
1035 
1036 static std::unique_ptr<RuntimeDyldMachO>
1037 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1038                        JITSymbolResolver &Resolver,
1039                        bool ProcessAllSections,
1040                        RuntimeDyldCheckerImpl *Checker) {
1041   std::unique_ptr<RuntimeDyldMachO> Dyld =
1042     RuntimeDyldMachO::create(Arch, MM, Resolver);
1043   Dyld->setProcessAllSections(ProcessAllSections);
1044   Dyld->setRuntimeDyldChecker(Checker);
1045   return Dyld;
1046 }
1047 
1048 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1049 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1050   if (!Dyld) {
1051     if (Obj.isELF())
1052       Dyld =
1053           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1054                                MemMgr, Resolver, ProcessAllSections, Checker);
1055     else if (Obj.isMachO())
1056       Dyld = createRuntimeDyldMachO(
1057                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1058                ProcessAllSections, Checker);
1059     else if (Obj.isCOFF())
1060       Dyld = createRuntimeDyldCOFF(
1061                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1062                ProcessAllSections, Checker);
1063     else
1064       report_fatal_error("Incompatible object format!");
1065   }
1066 
1067   if (!Dyld->isCompatibleFile(Obj))
1068     report_fatal_error("Incompatible object format!");
1069 
1070   auto LoadedObjInfo = Dyld->loadObject(Obj);
1071   MemMgr.notifyObjectLoaded(*this, Obj);
1072   return LoadedObjInfo;
1073 }
1074 
1075 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1076   if (!Dyld)
1077     return nullptr;
1078   return Dyld->getSymbolLocalAddress(Name);
1079 }
1080 
1081 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1082   if (!Dyld)
1083     return nullptr;
1084   return Dyld->getSymbol(Name);
1085 }
1086 
1087 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1088 
1089 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1090   Dyld->reassignSectionAddress(SectionID, Addr);
1091 }
1092 
1093 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1094                                     uint64_t TargetAddress) {
1095   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1096 }
1097 
1098 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1099 
1100 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1101 
1102 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1103   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1104   MemMgr.FinalizationLocked = true;
1105   resolveRelocations();
1106   registerEHFrames();
1107   if (!MemoryFinalizationLocked) {
1108     MemMgr.finalizeMemory();
1109     MemMgr.FinalizationLocked = false;
1110   }
1111 }
1112 
1113 void RuntimeDyld::registerEHFrames() {
1114   if (Dyld)
1115     Dyld->registerEHFrames();
1116 }
1117 
1118 void RuntimeDyld::deregisterEHFrames() {
1119   if (Dyld)
1120     Dyld->deregisterEHFrames();
1121 }
1122 
1123 } // end namespace llvm
1124