1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "RuntimeDyldCOFF.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/COFF.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/MutexGuard.h"
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 
28 #define DEBUG_TYPE "dyld"
29 
30 // Empty out-of-line virtual destructor as the key function.
31 RuntimeDyldImpl::~RuntimeDyldImpl() {}
32 
33 // Pin LoadedObjectInfo's vtables to this file.
34 void RuntimeDyld::LoadedObjectInfo::anchor() {}
35 
36 namespace llvm {
37 
38 void RuntimeDyldImpl::registerEHFrames() {}
39 
40 void RuntimeDyldImpl::deregisterEHFrames() {}
41 
42 #ifndef NDEBUG
43 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
44   dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
45 
46   if (S.Address == nullptr) {
47     dbgs() << "\n          <section not emitted>\n";
48     return;
49   }
50 
51   const unsigned ColsPerRow = 16;
52 
53   uint8_t *DataAddr = S.Address;
54   uint64_t LoadAddr = S.LoadAddress;
55 
56   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
57   unsigned BytesRemaining = S.Size;
58 
59   if (StartPadding) {
60     dbgs() << "\n" << format("0x%016" PRIx64,
61                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
62     while (StartPadding--)
63       dbgs() << "   ";
64   }
65 
66   while (BytesRemaining > 0) {
67     if ((LoadAddr & (ColsPerRow - 1)) == 0)
68       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
69 
70     dbgs() << " " << format("%02x", *DataAddr);
71 
72     ++DataAddr;
73     ++LoadAddr;
74     --BytesRemaining;
75   }
76 
77   dbgs() << "\n";
78 }
79 #endif
80 
81 // Resolve the relocations for all symbols we currently know about.
82 void RuntimeDyldImpl::resolveRelocations() {
83   MutexGuard locked(lock);
84 
85   // Print out the sections prior to relocation.
86   DEBUG(
87     for (int i = 0, e = Sections.size(); i != e; ++i)
88       dumpSectionMemory(Sections[i], "before relocations");
89   );
90 
91   // First, resolve relocations associated with external symbols.
92   resolveExternalSymbols();
93 
94   // Iterate over all outstanding relocations
95   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
96     // The Section here (Sections[i]) refers to the section in which the
97     // symbol for the relocation is located.  The SectionID in the relocation
98     // entry provides the section to which the relocation will be applied.
99     int Idx = it->getFirst();
100     uint64_t Addr = Sections[Idx].LoadAddress;
101     DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
102                  << format("%p", (uintptr_t)Addr) << "\n");
103     resolveRelocationList(it->getSecond(), Addr);
104   }
105   Relocations.clear();
106 
107   // Print out sections after relocation.
108   DEBUG(
109     for (int i = 0, e = Sections.size(); i != e; ++i)
110       dumpSectionMemory(Sections[i], "after relocations");
111   );
112 
113 }
114 
115 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
116                                         uint64_t TargetAddress) {
117   MutexGuard locked(lock);
118   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
119     if (Sections[i].Address == LocalAddress) {
120       reassignSectionAddress(i, TargetAddress);
121       return;
122     }
123   }
124   llvm_unreachable("Attempting to remap address of unknown section!");
125 }
126 
127 static std::error_code getOffset(const SymbolRef &Sym, SectionRef Sec,
128                                  uint64_t &Result) {
129   ErrorOr<uint64_t> AddressOrErr = Sym.getAddress();
130   if (std::error_code EC = AddressOrErr.getError())
131     return EC;
132   Result = *AddressOrErr - Sec.getAddress();
133   return std::error_code();
134 }
135 
136 RuntimeDyldImpl::ObjSectionToIDMap
137 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
138   MutexGuard locked(lock);
139 
140   // Save information about our target
141   Arch = (Triple::ArchType)Obj.getArch();
142   IsTargetLittleEndian = Obj.isLittleEndian();
143   setMipsABI(Obj);
144 
145   // Compute the memory size required to load all sections to be loaded
146   // and pass this information to the memory manager
147   if (MemMgr.needsToReserveAllocationSpace()) {
148     uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
149     computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
150     MemMgr.reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
151   }
152 
153   // Used sections from the object file
154   ObjSectionToIDMap LocalSections;
155 
156   // Common symbols requiring allocation, with their sizes and alignments
157   CommonSymbolList CommonSymbols;
158 
159   // Parse symbols
160   DEBUG(dbgs() << "Parse symbols:\n");
161   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
162        ++I) {
163     uint32_t Flags = I->getFlags();
164 
165     if (Flags & SymbolRef::SF_Common)
166       CommonSymbols.push_back(*I);
167     else {
168       object::SymbolRef::Type SymType = I->getType();
169 
170       // Get symbol name.
171       ErrorOr<StringRef> NameOrErr = I->getName();
172       Check(NameOrErr.getError());
173       StringRef Name = *NameOrErr;
174 
175       // Compute JIT symbol flags.
176       JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
177       if (Flags & SymbolRef::SF_Weak)
178         RTDyldSymFlags |= JITSymbolFlags::Weak;
179       if (Flags & SymbolRef::SF_Exported)
180         RTDyldSymFlags |= JITSymbolFlags::Exported;
181 
182       if (Flags & SymbolRef::SF_Absolute &&
183           SymType != object::SymbolRef::ST_File) {
184         auto Addr = I->getAddress();
185         Check(Addr.getError());
186         uint64_t SectOffset = *Addr;
187         unsigned SectionID = AbsoluteSymbolSection;
188 
189         DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
190                      << " SID: " << SectionID << " Offset: "
191                      << format("%p", (uintptr_t)SectOffset)
192                      << " flags: " << Flags << "\n");
193         GlobalSymbolTable[Name] =
194           SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
195       } else if (SymType == object::SymbolRef::ST_Function ||
196                  SymType == object::SymbolRef::ST_Data ||
197                  SymType == object::SymbolRef::ST_Unknown ||
198                  SymType == object::SymbolRef::ST_Other) {
199 
200         ErrorOr<section_iterator> SIOrErr = I->getSection();
201         Check(SIOrErr.getError());
202         section_iterator SI = *SIOrErr;
203         if (SI == Obj.section_end())
204           continue;
205         // Get symbol offset.
206         uint64_t SectOffset;
207         Check(getOffset(*I, *SI, SectOffset));
208         bool IsCode = SI->isText();
209         unsigned SectionID = findOrEmitSection(Obj, *SI, IsCode, LocalSections);
210 
211         DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
212                      << " SID: " << SectionID << " Offset: "
213                      << format("%p", (uintptr_t)SectOffset)
214                      << " flags: " << Flags << "\n");
215         GlobalSymbolTable[Name] =
216           SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
217       }
218     }
219   }
220 
221   // Allocate common symbols
222   emitCommonSymbols(Obj, CommonSymbols);
223 
224   // Parse and process relocations
225   DEBUG(dbgs() << "Parse relocations:\n");
226   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
227        SI != SE; ++SI) {
228     unsigned SectionID = 0;
229     StubMap Stubs;
230     section_iterator RelocatedSection = SI->getRelocatedSection();
231 
232     if (RelocatedSection == SE)
233       continue;
234 
235     relocation_iterator I = SI->relocation_begin();
236     relocation_iterator E = SI->relocation_end();
237 
238     if (I == E && !ProcessAllSections)
239       continue;
240 
241     bool IsCode = RelocatedSection->isText();
242     SectionID =
243         findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
244     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
245 
246     for (; I != E;)
247       I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
248 
249     // If there is an attached checker, notify it about the stubs for this
250     // section so that they can be verified.
251     if (Checker)
252       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
253   }
254 
255   // Give the subclasses a chance to tie-up any loose ends.
256   finalizeLoad(Obj, LocalSections);
257 
258 //   for (auto E : LocalSections)
259 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
260 
261   return LocalSections;
262 }
263 
264 // A helper method for computeTotalAllocSize.
265 // Computes the memory size required to allocate sections with the given sizes,
266 // assuming that all sections are allocated with the given alignment
267 static uint64_t
268 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
269                                  uint64_t Alignment) {
270   uint64_t TotalSize = 0;
271   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
272     uint64_t AlignedSize =
273         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
274     TotalSize += AlignedSize;
275   }
276   return TotalSize;
277 }
278 
279 static bool isRequiredForExecution(const SectionRef Section) {
280   const ObjectFile *Obj = Section.getObject();
281   if (isa<object::ELFObjectFileBase>(Obj))
282     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
283   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
284     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
285     // Avoid loading zero-sized COFF sections.
286     // In PE files, VirtualSize gives the section size, and SizeOfRawData
287     // may be zero for sections with content. In Obj files, SizeOfRawData
288     // gives the section size, and VirtualSize is always zero. Hence
289     // the need to check for both cases below.
290     bool HasContent = (CoffSection->VirtualSize > 0)
291       || (CoffSection->SizeOfRawData > 0);
292     bool IsDiscardable = CoffSection->Characteristics &
293       (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
294     return HasContent && !IsDiscardable;
295   }
296 
297   assert(isa<MachOObjectFile>(Obj));
298   return true;
299 }
300 
301 static bool isReadOnlyData(const SectionRef Section) {
302   const ObjectFile *Obj = Section.getObject();
303   if (isa<object::ELFObjectFileBase>(Obj))
304     return !(ELFSectionRef(Section).getFlags() &
305              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
306   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
307     return ((COFFObj->getCOFFSection(Section)->Characteristics &
308              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
309              | COFF::IMAGE_SCN_MEM_READ
310              | COFF::IMAGE_SCN_MEM_WRITE))
311              ==
312              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
313              | COFF::IMAGE_SCN_MEM_READ));
314 
315   assert(isa<MachOObjectFile>(Obj));
316   return false;
317 }
318 
319 static bool isZeroInit(const SectionRef Section) {
320   const ObjectFile *Obj = Section.getObject();
321   if (isa<object::ELFObjectFileBase>(Obj))
322     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
323   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
324     return COFFObj->getCOFFSection(Section)->Characteristics &
325             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
326 
327   auto *MachO = cast<MachOObjectFile>(Obj);
328   unsigned SectionType = MachO->getSectionType(Section);
329   return SectionType == MachO::S_ZEROFILL ||
330          SectionType == MachO::S_GB_ZEROFILL;
331 }
332 
333 // Compute an upper bound of the memory size that is required to load all
334 // sections
335 void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
336                                             uint64_t &CodeSize,
337                                             uint64_t &DataSizeRO,
338                                             uint64_t &DataSizeRW) {
339   // Compute the size of all sections required for execution
340   std::vector<uint64_t> CodeSectionSizes;
341   std::vector<uint64_t> ROSectionSizes;
342   std::vector<uint64_t> RWSectionSizes;
343   uint64_t MaxAlignment = sizeof(void *);
344 
345   // Collect sizes of all sections to be loaded;
346   // also determine the max alignment of all sections
347   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
348        SI != SE; ++SI) {
349     const SectionRef &Section = *SI;
350 
351     bool IsRequired = isRequiredForExecution(Section);
352 
353     // Consider only the sections that are required to be loaded for execution
354     if (IsRequired) {
355       StringRef Name;
356       uint64_t DataSize = Section.getSize();
357       uint64_t Alignment64 = Section.getAlignment();
358       bool IsCode = Section.isText();
359       bool IsReadOnly = isReadOnlyData(Section);
360       Check(Section.getName(Name));
361       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
362 
363       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
364       uint64_t SectionSize = DataSize + StubBufSize;
365 
366       // The .eh_frame section (at least on Linux) needs an extra four bytes
367       // padded
368       // with zeroes added at the end.  For MachO objects, this section has a
369       // slightly different name, so this won't have any effect for MachO
370       // objects.
371       if (Name == ".eh_frame")
372         SectionSize += 4;
373 
374       if (!SectionSize)
375         SectionSize = 1;
376 
377       if (IsCode) {
378         CodeSectionSizes.push_back(SectionSize);
379       } else if (IsReadOnly) {
380         ROSectionSizes.push_back(SectionSize);
381       } else {
382         RWSectionSizes.push_back(SectionSize);
383       }
384 
385       // update the max alignment
386       if (Alignment > MaxAlignment) {
387         MaxAlignment = Alignment;
388       }
389     }
390   }
391 
392   // Compute the size of all common symbols
393   uint64_t CommonSize = 0;
394   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
395        ++I) {
396     uint32_t Flags = I->getFlags();
397     if (Flags & SymbolRef::SF_Common) {
398       // Add the common symbols to a list.  We'll allocate them all below.
399       uint64_t Size = I->getCommonSize();
400       CommonSize += Size;
401     }
402   }
403   if (CommonSize != 0) {
404     RWSectionSizes.push_back(CommonSize);
405   }
406 
407   // Compute the required allocation space for each different type of sections
408   // (code, read-only data, read-write data) assuming that all sections are
409   // allocated with the max alignment. Note that we cannot compute with the
410   // individual alignments of the sections, because then the required size
411   // depends on the order, in which the sections are allocated.
412   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
413   DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
414   DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
415 }
416 
417 // compute stub buffer size for the given section
418 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
419                                                     const SectionRef &Section) {
420   unsigned StubSize = getMaxStubSize();
421   if (StubSize == 0) {
422     return 0;
423   }
424   // FIXME: this is an inefficient way to handle this. We should computed the
425   // necessary section allocation size in loadObject by walking all the sections
426   // once.
427   unsigned StubBufSize = 0;
428   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
429        SI != SE; ++SI) {
430     section_iterator RelSecI = SI->getRelocatedSection();
431     if (!(RelSecI == Section))
432       continue;
433 
434     for (const RelocationRef &Reloc : SI->relocations()) {
435       (void)Reloc;
436       StubBufSize += StubSize;
437     }
438   }
439 
440   // Get section data size and alignment
441   uint64_t DataSize = Section.getSize();
442   uint64_t Alignment64 = Section.getAlignment();
443 
444   // Add stubbuf size alignment
445   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
446   unsigned StubAlignment = getStubAlignment();
447   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
448   if (StubAlignment > EndAlignment)
449     StubBufSize += StubAlignment - EndAlignment;
450   return StubBufSize;
451 }
452 
453 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
454                                              unsigned Size) const {
455   uint64_t Result = 0;
456   if (IsTargetLittleEndian) {
457     Src += Size - 1;
458     while (Size--)
459       Result = (Result << 8) | *Src--;
460   } else
461     while (Size--)
462       Result = (Result << 8) | *Src++;
463 
464   return Result;
465 }
466 
467 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
468                                           unsigned Size) const {
469   if (IsTargetLittleEndian) {
470     while (Size--) {
471       *Dst++ = Value & 0xFF;
472       Value >>= 8;
473     }
474   } else {
475     Dst += Size - 1;
476     while (Size--) {
477       *Dst-- = Value & 0xFF;
478       Value >>= 8;
479     }
480   }
481 }
482 
483 void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
484                                         CommonSymbolList &CommonSymbols) {
485   if (CommonSymbols.empty())
486     return;
487 
488   uint64_t CommonSize = 0;
489   CommonSymbolList SymbolsToAllocate;
490 
491   DEBUG(dbgs() << "Processing common symbols...\n");
492 
493   for (const auto &Sym : CommonSymbols) {
494     ErrorOr<StringRef> NameOrErr = Sym.getName();
495     Check(NameOrErr.getError());
496     StringRef Name = *NameOrErr;
497 
498     // Skip common symbols already elsewhere.
499     if (GlobalSymbolTable.count(Name) ||
500         Resolver.findSymbolInLogicalDylib(Name)) {
501       DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
502                    << "'\n");
503       continue;
504     }
505 
506     uint32_t Align = Sym.getAlignment();
507     uint64_t Size = Sym.getCommonSize();
508 
509     CommonSize += Align + Size;
510     SymbolsToAllocate.push_back(Sym);
511   }
512 
513   // Allocate memory for the section
514   unsigned SectionID = Sections.size();
515   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, sizeof(void *),
516                                              SectionID, StringRef(), false);
517   if (!Addr)
518     report_fatal_error("Unable to allocate memory for common symbols!");
519   uint64_t Offset = 0;
520   Sections.push_back(SectionEntry("<common symbols>", Addr, CommonSize, 0));
521   memset(Addr, 0, CommonSize);
522 
523   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
524                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
525 
526   // Assign the address of each symbol
527   for (auto &Sym : SymbolsToAllocate) {
528     uint32_t Align = Sym.getAlignment();
529     uint64_t Size = Sym.getCommonSize();
530     ErrorOr<StringRef> NameOrErr = Sym.getName();
531     Check(NameOrErr.getError());
532     StringRef Name = *NameOrErr;
533     if (Align) {
534       // This symbol has an alignment requirement.
535       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
536       Addr += AlignOffset;
537       Offset += AlignOffset;
538     }
539     uint32_t Flags = Sym.getFlags();
540     JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
541     if (Flags & SymbolRef::SF_Weak)
542       RTDyldSymFlags |= JITSymbolFlags::Weak;
543     if (Flags & SymbolRef::SF_Exported)
544       RTDyldSymFlags |= JITSymbolFlags::Exported;
545     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
546                  << format("%p", Addr) << "\n");
547     GlobalSymbolTable[Name] =
548       SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
549     Offset += Size;
550     Addr += Size;
551   }
552 
553   if (Checker)
554     Checker->registerSection(Obj.getFileName(), SectionID);
555 }
556 
557 unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
558                                       const SectionRef &Section, bool IsCode) {
559 
560   StringRef data;
561   uint64_t Alignment64 = Section.getAlignment();
562 
563   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
564   unsigned PaddingSize = 0;
565   unsigned StubBufSize = 0;
566   StringRef Name;
567   bool IsRequired = isRequiredForExecution(Section);
568   bool IsVirtual = Section.isVirtual();
569   bool IsZeroInit = isZeroInit(Section);
570   bool IsReadOnly = isReadOnlyData(Section);
571   uint64_t DataSize = Section.getSize();
572   Check(Section.getName(Name));
573 
574   StubBufSize = computeSectionStubBufSize(Obj, Section);
575 
576   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
577   // with zeroes added at the end.  For MachO objects, this section has a
578   // slightly different name, so this won't have any effect for MachO objects.
579   if (Name == ".eh_frame")
580     PaddingSize = 4;
581 
582   uintptr_t Allocate;
583   unsigned SectionID = Sections.size();
584   uint8_t *Addr;
585   const char *pData = nullptr;
586 
587   // If this section contains any bits (i.e. isn't a virtual or bss section),
588   // grab a reference to them.
589   if (!IsVirtual && !IsZeroInit) {
590     // In either case, set the location of the unrelocated section in memory,
591     // since we still process relocations for it even if we're not applying them.
592     Check(Section.getContents(data));
593     pData = data.data();
594   }
595 
596   // Code section alignment needs to be at least as high as stub alignment or
597   // padding calculations may by incorrect when the section is remapped to a
598   // higher alignment.
599   if (IsCode)
600     Alignment = std::max(Alignment, getStubAlignment());
601 
602   // Some sections, such as debug info, don't need to be loaded for execution.
603   // Leave those where they are.
604   if (IsRequired) {
605     Allocate = DataSize + PaddingSize + StubBufSize;
606     if (!Allocate)
607       Allocate = 1;
608     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
609                                                Name)
610                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
611                                                Name, IsReadOnly);
612     if (!Addr)
613       report_fatal_error("Unable to allocate section memory!");
614 
615     // Zero-initialize or copy the data from the image
616     if (IsZeroInit || IsVirtual)
617       memset(Addr, 0, DataSize);
618     else
619       memcpy(Addr, pData, DataSize);
620 
621     // Fill in any extra bytes we allocated for padding
622     if (PaddingSize != 0) {
623       memset(Addr + DataSize, 0, PaddingSize);
624       // Update the DataSize variable so that the stub offset is set correctly.
625       DataSize += PaddingSize;
626     }
627 
628     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
629                  << " obj addr: " << format("%p", pData)
630                  << " new addr: " << format("%p", Addr)
631                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
632                  << " Allocate: " << Allocate << "\n");
633   } else {
634     // Even if we didn't load the section, we need to record an entry for it
635     // to handle later processing (and by 'handle' I mean don't do anything
636     // with these sections).
637     Allocate = 0;
638     Addr = nullptr;
639     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
640                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
641                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
642                  << " Allocate: " << Allocate << "\n");
643   }
644 
645   Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
646 
647   if (Checker)
648     Checker->registerSection(Obj.getFileName(), SectionID);
649 
650   return SectionID;
651 }
652 
653 unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
654                                             const SectionRef &Section,
655                                             bool IsCode,
656                                             ObjSectionToIDMap &LocalSections) {
657 
658   unsigned SectionID = 0;
659   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
660   if (i != LocalSections.end())
661     SectionID = i->second;
662   else {
663     SectionID = emitSection(Obj, Section, IsCode);
664     LocalSections[Section] = SectionID;
665   }
666   return SectionID;
667 }
668 
669 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
670                                               unsigned SectionID) {
671   Relocations[SectionID].push_back(RE);
672 }
673 
674 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
675                                              StringRef SymbolName) {
676   // Relocation by symbol.  If the symbol is found in the global symbol table,
677   // create an appropriate section relocation.  Otherwise, add it to
678   // ExternalSymbolRelocations.
679   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
680   if (Loc == GlobalSymbolTable.end()) {
681     ExternalSymbolRelocations[SymbolName].push_back(RE);
682   } else {
683     // Copy the RE since we want to modify its addend.
684     RelocationEntry RECopy = RE;
685     const auto &SymInfo = Loc->second;
686     RECopy.Addend += SymInfo.getOffset();
687     Relocations[SymInfo.getSectionID()].push_back(RECopy);
688   }
689 }
690 
691 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
692                                              unsigned AbiVariant) {
693   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
694     // This stub has to be able to access the full address space,
695     // since symbol lookup won't necessarily find a handy, in-range,
696     // PLT stub for functions which could be anywhere.
697     // Stub can use ip0 (== x16) to calculate address
698     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
699     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
700     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
701     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
702     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
703 
704     return Addr;
705   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
706     // TODO: There is only ARM far stub now. We should add the Thumb stub,
707     // and stubs for branches Thumb - ARM and ARM - Thumb.
708     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
709     return Addr + 4;
710   } else if (IsMipsO32ABI) {
711     // 0:   3c190000        lui     t9,%hi(addr).
712     // 4:   27390000        addiu   t9,t9,%lo(addr).
713     // 8:   03200008        jr      t9.
714     // c:   00000000        nop.
715     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
716     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
717 
718     writeBytesUnaligned(LuiT9Instr, Addr, 4);
719     writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
720     writeBytesUnaligned(JrT9Instr, Addr+8, 4);
721     writeBytesUnaligned(NopInstr, Addr+12, 4);
722     return Addr;
723   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
724     // Depending on which version of the ELF ABI is in use, we need to
725     // generate one of two variants of the stub.  They both start with
726     // the same sequence to load the target address into r12.
727     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
728     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
729     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
730     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
731     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
732     if (AbiVariant == 2) {
733       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
734       // The address is already in r12 as required by the ABI.  Branch to it.
735       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
736       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
737       writeInt32BE(Addr+28, 0x4E800420); // bctr
738     } else {
739       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
740       // Load the function address on r11 and sets it to control register. Also
741       // loads the function TOC in r2 and environment pointer to r11.
742       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
743       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
744       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
745       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
746       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
747       writeInt32BE(Addr+40, 0x4E800420); // bctr
748     }
749     return Addr;
750   } else if (Arch == Triple::systemz) {
751     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
752     writeInt16BE(Addr+2,  0x0000);
753     writeInt16BE(Addr+4,  0x0004);
754     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
755     // 8-byte address stored at Addr + 8
756     return Addr;
757   } else if (Arch == Triple::x86_64) {
758     *Addr      = 0xFF; // jmp
759     *(Addr+1)  = 0x25; // rip
760     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
761   } else if (Arch == Triple::x86) {
762     *Addr      = 0xE9; // 32-bit pc-relative jump.
763   }
764   return Addr;
765 }
766 
767 // Assign an address to a symbol name and resolve all the relocations
768 // associated with it.
769 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
770                                              uint64_t Addr) {
771   // The address to use for relocation resolution is not
772   // the address of the local section buffer. We must be doing
773   // a remote execution environment of some sort. Relocations can't
774   // be applied until all the sections have been moved.  The client must
775   // trigger this with a call to MCJIT::finalize() or
776   // RuntimeDyld::resolveRelocations().
777   //
778   // Addr is a uint64_t because we can't assume the pointer width
779   // of the target is the same as that of the host. Just use a generic
780   // "big enough" type.
781   DEBUG(dbgs() << "Reassigning address for section "
782                << SectionID << " (" << Sections[SectionID].Name << "): "
783                << format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
784                << format("0x%016" PRIx64, Addr) << "\n");
785   Sections[SectionID].LoadAddress = Addr;
786 }
787 
788 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
789                                             uint64_t Value) {
790   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
791     const RelocationEntry &RE = Relocs[i];
792     // Ignore relocations for sections that were not loaded
793     if (Sections[RE.SectionID].Address == nullptr)
794       continue;
795     resolveRelocation(RE, Value);
796   }
797 }
798 
799 void RuntimeDyldImpl::resolveExternalSymbols() {
800   while (!ExternalSymbolRelocations.empty()) {
801     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
802 
803     StringRef Name = i->first();
804     if (Name.size() == 0) {
805       // This is an absolute symbol, use an address of zero.
806       DEBUG(dbgs() << "Resolving absolute relocations."
807                    << "\n");
808       RelocationList &Relocs = i->second;
809       resolveRelocationList(Relocs, 0);
810     } else {
811       uint64_t Addr = 0;
812       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
813       if (Loc == GlobalSymbolTable.end()) {
814         // This is an external symbol, try to get its address from the symbol
815         // resolver.
816         Addr = Resolver.findSymbol(Name.data()).getAddress();
817         // The call to getSymbolAddress may have caused additional modules to
818         // be loaded, which may have added new entries to the
819         // ExternalSymbolRelocations map.  Consquently, we need to update our
820         // iterator.  This is also why retrieval of the relocation list
821         // associated with this symbol is deferred until below this point.
822         // New entries may have been added to the relocation list.
823         i = ExternalSymbolRelocations.find(Name);
824       } else {
825         // We found the symbol in our global table.  It was probably in a
826         // Module that we loaded previously.
827         const auto &SymInfo = Loc->second;
828         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
829                SymInfo.getOffset();
830       }
831 
832       // FIXME: Implement error handling that doesn't kill the host program!
833       if (!Addr)
834         report_fatal_error("Program used external function '" + Name +
835                            "' which could not be resolved!");
836 
837       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
838       // manually and we shouldn't resolve its relocations.
839       if (Addr != UINT64_MAX) {
840         DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
841                      << format("0x%lx", Addr) << "\n");
842         // This list may have been updated when we called getSymbolAddress, so
843         // don't change this code to get the list earlier.
844         RelocationList &Relocs = i->second;
845         resolveRelocationList(Relocs, Addr);
846       }
847     }
848 
849     ExternalSymbolRelocations.erase(i);
850   }
851 }
852 
853 //===----------------------------------------------------------------------===//
854 // RuntimeDyld class implementation
855 
856 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
857                                           const object::SectionRef &Sec) const {
858 
859 //   llvm::dbgs() << "Searching for " << Sec.getRawDataRefImpl() << " in:\n";
860 //   for (auto E : ObjSecToIDMap)
861 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
862 
863   auto I = ObjSecToIDMap.find(Sec);
864   if (I != ObjSecToIDMap.end()) {
865 //    llvm::dbgs() << "Found ID " << I->second << " for Sec: " << Sec.getRawDataRefImpl() << ", LoadAddress = " << RTDyld.Sections[I->second].LoadAddress << "\n";
866     return RTDyld.Sections[I->second].LoadAddress;
867   } else {
868 //    llvm::dbgs() << "Not found.\n";
869   }
870 
871   return 0;
872 }
873 
874 void RuntimeDyld::MemoryManager::anchor() {}
875 void RuntimeDyld::SymbolResolver::anchor() {}
876 
877 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
878                          RuntimeDyld::SymbolResolver &Resolver)
879     : MemMgr(MemMgr), Resolver(Resolver) {
880   // FIXME: There's a potential issue lurking here if a single instance of
881   // RuntimeDyld is used to load multiple objects.  The current implementation
882   // associates a single memory manager with a RuntimeDyld instance.  Even
883   // though the public class spawns a new 'impl' instance for each load,
884   // they share a single memory manager.  This can become a problem when page
885   // permissions are applied.
886   Dyld = nullptr;
887   ProcessAllSections = false;
888   Checker = nullptr;
889 }
890 
891 RuntimeDyld::~RuntimeDyld() {}
892 
893 static std::unique_ptr<RuntimeDyldCOFF>
894 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
895                       RuntimeDyld::SymbolResolver &Resolver,
896                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
897   std::unique_ptr<RuntimeDyldCOFF> Dyld =
898     RuntimeDyldCOFF::create(Arch, MM, Resolver);
899   Dyld->setProcessAllSections(ProcessAllSections);
900   Dyld->setRuntimeDyldChecker(Checker);
901   return Dyld;
902 }
903 
904 static std::unique_ptr<RuntimeDyldELF>
905 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
906                      RuntimeDyld::SymbolResolver &Resolver,
907                      bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
908   std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
909   Dyld->setProcessAllSections(ProcessAllSections);
910   Dyld->setRuntimeDyldChecker(Checker);
911   return Dyld;
912 }
913 
914 static std::unique_ptr<RuntimeDyldMachO>
915 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
916                        RuntimeDyld::SymbolResolver &Resolver,
917                        bool ProcessAllSections,
918                        RuntimeDyldCheckerImpl *Checker) {
919   std::unique_ptr<RuntimeDyldMachO> Dyld =
920     RuntimeDyldMachO::create(Arch, MM, Resolver);
921   Dyld->setProcessAllSections(ProcessAllSections);
922   Dyld->setRuntimeDyldChecker(Checker);
923   return Dyld;
924 }
925 
926 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
927 RuntimeDyld::loadObject(const ObjectFile &Obj) {
928   if (!Dyld) {
929     if (Obj.isELF())
930       Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
931     else if (Obj.isMachO())
932       Dyld = createRuntimeDyldMachO(
933                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
934                ProcessAllSections, Checker);
935     else if (Obj.isCOFF())
936       Dyld = createRuntimeDyldCOFF(
937                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
938                ProcessAllSections, Checker);
939     else
940       report_fatal_error("Incompatible object format!");
941   }
942 
943   if (!Dyld->isCompatibleFile(Obj))
944     report_fatal_error("Incompatible object format!");
945 
946   return Dyld->loadObject(Obj);
947 }
948 
949 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
950   if (!Dyld)
951     return nullptr;
952   return Dyld->getSymbolLocalAddress(Name);
953 }
954 
955 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
956   if (!Dyld)
957     return nullptr;
958   return Dyld->getSymbol(Name);
959 }
960 
961 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
962 
963 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
964   Dyld->reassignSectionAddress(SectionID, Addr);
965 }
966 
967 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
968                                     uint64_t TargetAddress) {
969   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
970 }
971 
972 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
973 
974 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
975 
976 void RuntimeDyld::registerEHFrames() {
977   if (Dyld)
978     Dyld->registerEHFrames();
979 }
980 
981 void RuntimeDyld::deregisterEHFrames() {
982   if (Dyld)
983     Dyld->deregisterEHFrames();
984 }
985 
986 } // end namespace llvm
987