1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/RuntimeDyld.h" 15 #include "JITRegistrar.h" 16 #include "ObjectImageCommon.h" 17 #include "RuntimeDyldCheckerImpl.h" 18 #include "RuntimeDyldELF.h" 19 #include "RuntimeDyldImpl.h" 20 #include "RuntimeDyldMachO.h" 21 #include "llvm/Object/ELF.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/MutexGuard.h" 24 25 using namespace llvm; 26 using namespace llvm::object; 27 28 #define DEBUG_TYPE "dyld" 29 30 // Empty out-of-line virtual destructor as the key function. 31 RuntimeDyldImpl::~RuntimeDyldImpl() {} 32 33 // Pin the JITRegistrar's and ObjectImage*'s vtables to this file. 34 void JITRegistrar::anchor() {} 35 void ObjectImage::anchor() {} 36 void ObjectImageCommon::anchor() {} 37 38 namespace llvm { 39 40 void RuntimeDyldImpl::registerEHFrames() {} 41 42 void RuntimeDyldImpl::deregisterEHFrames() {} 43 44 // Resolve the relocations for all symbols we currently know about. 45 void RuntimeDyldImpl::resolveRelocations() { 46 MutexGuard locked(lock); 47 48 // First, resolve relocations associated with external symbols. 49 resolveExternalSymbols(); 50 51 // Just iterate over the sections we have and resolve all the relocations 52 // in them. Gross overkill, but it gets the job done. 53 for (int i = 0, e = Sections.size(); i != e; ++i) { 54 // The Section here (Sections[i]) refers to the section in which the 55 // symbol for the relocation is located. The SectionID in the relocation 56 // entry provides the section to which the relocation will be applied. 57 uint64_t Addr = Sections[i].LoadAddress; 58 DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t" 59 << format("%p", (uint8_t *)Addr) << "\n"); 60 resolveRelocationList(Relocations[i], Addr); 61 Relocations.erase(i); 62 } 63 } 64 65 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 66 uint64_t TargetAddress) { 67 MutexGuard locked(lock); 68 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 69 if (Sections[i].Address == LocalAddress) { 70 reassignSectionAddress(i, TargetAddress); 71 return; 72 } 73 } 74 llvm_unreachable("Attempting to remap address of unknown section!"); 75 } 76 77 static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) { 78 uint64_t Address; 79 if (std::error_code EC = Sym.getAddress(Address)) 80 return EC; 81 82 if (Address == UnknownAddressOrSize) { 83 Result = UnknownAddressOrSize; 84 return object_error::success; 85 } 86 87 const ObjectFile *Obj = Sym.getObject(); 88 section_iterator SecI(Obj->section_begin()); 89 if (std::error_code EC = Sym.getSection(SecI)) 90 return EC; 91 92 if (SecI == Obj->section_end()) { 93 Result = UnknownAddressOrSize; 94 return object_error::success; 95 } 96 97 uint64_t SectionAddress; 98 if (std::error_code EC = SecI->getAddress(SectionAddress)) 99 return EC; 100 101 Result = Address - SectionAddress; 102 return object_error::success; 103 } 104 105 ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) { 106 MutexGuard locked(lock); 107 108 std::unique_ptr<ObjectImage> Obj(InputObject); 109 if (!Obj) 110 return nullptr; 111 112 // Save information about our target 113 Arch = (Triple::ArchType)Obj->getArch(); 114 IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian(); 115 116 // Compute the memory size required to load all sections to be loaded 117 // and pass this information to the memory manager 118 if (MemMgr->needsToReserveAllocationSpace()) { 119 uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0; 120 computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW); 121 MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW); 122 } 123 124 // Symbols found in this object 125 StringMap<SymbolLoc> LocalSymbols; 126 // Used sections from the object file 127 ObjSectionToIDMap LocalSections; 128 129 // Common symbols requiring allocation, with their sizes and alignments 130 CommonSymbolMap CommonSymbols; 131 // Maximum required total memory to allocate all common symbols 132 uint64_t CommonSize = 0; 133 134 // Parse symbols 135 DEBUG(dbgs() << "Parse symbols:\n"); 136 for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E; 137 ++I) { 138 object::SymbolRef::Type SymType; 139 StringRef Name; 140 Check(I->getType(SymType)); 141 Check(I->getName(Name)); 142 143 uint32_t Flags = I->getFlags(); 144 145 bool IsCommon = Flags & SymbolRef::SF_Common; 146 if (IsCommon) { 147 // Add the common symbols to a list. We'll allocate them all below. 148 if (!GlobalSymbolTable.count(Name)) { 149 uint32_t Align; 150 Check(I->getAlignment(Align)); 151 uint64_t Size = 0; 152 Check(I->getSize(Size)); 153 CommonSize += Size + Align; 154 CommonSymbols[*I] = CommonSymbolInfo(Size, Align); 155 } 156 } else { 157 if (SymType == object::SymbolRef::ST_Function || 158 SymType == object::SymbolRef::ST_Data || 159 SymType == object::SymbolRef::ST_Unknown) { 160 uint64_t SectOffset; 161 StringRef SectionData; 162 bool IsCode; 163 section_iterator SI = Obj->end_sections(); 164 Check(getOffset(*I, SectOffset)); 165 Check(I->getSection(SI)); 166 if (SI == Obj->end_sections()) 167 continue; 168 Check(SI->getContents(SectionData)); 169 Check(SI->isText(IsCode)); 170 unsigned SectionID = 171 findOrEmitSection(*Obj, *SI, IsCode, LocalSections); 172 LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset); 173 DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset) 174 << " flags: " << Flags << " SID: " << SectionID); 175 GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset); 176 } 177 } 178 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n"); 179 } 180 181 // Allocate common symbols 182 if (CommonSize != 0) 183 emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable); 184 185 // Parse and process relocations 186 DEBUG(dbgs() << "Parse relocations:\n"); 187 for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections(); 188 SI != SE; ++SI) { 189 unsigned SectionID = 0; 190 StubMap Stubs; 191 section_iterator RelocatedSection = SI->getRelocatedSection(); 192 193 relocation_iterator I = SI->relocation_begin(); 194 relocation_iterator E = SI->relocation_end(); 195 196 if (I == E && !ProcessAllSections) 197 continue; 198 199 bool IsCode = false; 200 Check(RelocatedSection->isText(IsCode)); 201 SectionID = 202 findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections); 203 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 204 205 for (; I != E;) 206 I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols, 207 Stubs); 208 209 // If there is an attached checker, notify it about the stubs for this 210 // section so that they can be verified. 211 if (Checker) 212 Checker->registerStubMap(Obj->getImageName(), SectionID, Stubs); 213 } 214 215 // Give the subclasses a chance to tie-up any loose ends. 216 finalizeLoad(*Obj, LocalSections); 217 218 return Obj.release(); 219 } 220 221 // A helper method for computeTotalAllocSize. 222 // Computes the memory size required to allocate sections with the given sizes, 223 // assuming that all sections are allocated with the given alignment 224 static uint64_t 225 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 226 uint64_t Alignment) { 227 uint64_t TotalSize = 0; 228 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 229 uint64_t AlignedSize = 230 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 231 TotalSize += AlignedSize; 232 } 233 return TotalSize; 234 } 235 236 // Compute an upper bound of the memory size that is required to load all 237 // sections 238 void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj, 239 uint64_t &CodeSize, 240 uint64_t &DataSizeRO, 241 uint64_t &DataSizeRW) { 242 // Compute the size of all sections required for execution 243 std::vector<uint64_t> CodeSectionSizes; 244 std::vector<uint64_t> ROSectionSizes; 245 std::vector<uint64_t> RWSectionSizes; 246 uint64_t MaxAlignment = sizeof(void *); 247 248 // Collect sizes of all sections to be loaded; 249 // also determine the max alignment of all sections 250 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); 251 SI != SE; ++SI) { 252 const SectionRef &Section = *SI; 253 254 bool IsRequired; 255 Check(Section.isRequiredForExecution(IsRequired)); 256 257 // Consider only the sections that are required to be loaded for execution 258 if (IsRequired) { 259 uint64_t DataSize = 0; 260 uint64_t Alignment64 = 0; 261 bool IsCode = false; 262 bool IsReadOnly = false; 263 StringRef Name; 264 Check(Section.getSize(DataSize)); 265 Check(Section.getAlignment(Alignment64)); 266 Check(Section.isText(IsCode)); 267 Check(Section.isReadOnlyData(IsReadOnly)); 268 Check(Section.getName(Name)); 269 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 270 271 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 272 uint64_t SectionSize = DataSize + StubBufSize; 273 274 // The .eh_frame section (at least on Linux) needs an extra four bytes 275 // padded 276 // with zeroes added at the end. For MachO objects, this section has a 277 // slightly different name, so this won't have any effect for MachO 278 // objects. 279 if (Name == ".eh_frame") 280 SectionSize += 4; 281 282 if (SectionSize > 0) { 283 // save the total size of the section 284 if (IsCode) { 285 CodeSectionSizes.push_back(SectionSize); 286 } else if (IsReadOnly) { 287 ROSectionSizes.push_back(SectionSize); 288 } else { 289 RWSectionSizes.push_back(SectionSize); 290 } 291 // update the max alignment 292 if (Alignment > MaxAlignment) { 293 MaxAlignment = Alignment; 294 } 295 } 296 } 297 } 298 299 // Compute the size of all common symbols 300 uint64_t CommonSize = 0; 301 for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E; 302 ++I) { 303 uint32_t Flags = I->getFlags(); 304 if (Flags & SymbolRef::SF_Common) { 305 // Add the common symbols to a list. We'll allocate them all below. 306 uint64_t Size = 0; 307 Check(I->getSize(Size)); 308 CommonSize += Size; 309 } 310 } 311 if (CommonSize != 0) { 312 RWSectionSizes.push_back(CommonSize); 313 } 314 315 // Compute the required allocation space for each different type of sections 316 // (code, read-only data, read-write data) assuming that all sections are 317 // allocated with the max alignment. Note that we cannot compute with the 318 // individual alignments of the sections, because then the required size 319 // depends on the order, in which the sections are allocated. 320 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment); 321 DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment); 322 DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment); 323 } 324 325 // compute stub buffer size for the given section 326 unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj, 327 const SectionRef &Section) { 328 unsigned StubSize = getMaxStubSize(); 329 if (StubSize == 0) { 330 return 0; 331 } 332 // FIXME: this is an inefficient way to handle this. We should computed the 333 // necessary section allocation size in loadObject by walking all the sections 334 // once. 335 unsigned StubBufSize = 0; 336 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); 337 SI != SE; ++SI) { 338 section_iterator RelSecI = SI->getRelocatedSection(); 339 if (!(RelSecI == Section)) 340 continue; 341 342 for (const RelocationRef &Reloc : SI->relocations()) { 343 (void)Reloc; 344 StubBufSize += StubSize; 345 } 346 } 347 348 // Get section data size and alignment 349 uint64_t Alignment64; 350 uint64_t DataSize; 351 Check(Section.getSize(DataSize)); 352 Check(Section.getAlignment(Alignment64)); 353 354 // Add stubbuf size alignment 355 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 356 unsigned StubAlignment = getStubAlignment(); 357 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 358 if (StubAlignment > EndAlignment) 359 StubBufSize += StubAlignment - EndAlignment; 360 return StubBufSize; 361 } 362 363 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, 364 const CommonSymbolMap &CommonSymbols, 365 uint64_t TotalSize, 366 SymbolTableMap &SymbolTable) { 367 // Allocate memory for the section 368 unsigned SectionID = Sections.size(); 369 uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *), 370 SectionID, StringRef(), false); 371 if (!Addr) 372 report_fatal_error("Unable to allocate memory for common symbols!"); 373 uint64_t Offset = 0; 374 Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0)); 375 memset(Addr, 0, TotalSize); 376 377 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " 378 << format("%p", Addr) << " DataSize: " << TotalSize << "\n"); 379 380 // Assign the address of each symbol 381 for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(), 382 itEnd = CommonSymbols.end(); it != itEnd; ++it) { 383 uint64_t Size = it->second.first; 384 uint64_t Align = it->second.second; 385 StringRef Name; 386 it->first.getName(Name); 387 if (Align) { 388 // This symbol has an alignment requirement. 389 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 390 Addr += AlignOffset; 391 Offset += AlignOffset; 392 DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 393 << format("%p\n", Addr)); 394 } 395 Obj.updateSymbolAddress(it->first, (uint64_t)Addr); 396 SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset); 397 Offset += Size; 398 Addr += Size; 399 } 400 } 401 402 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, 403 const SectionRef &Section, bool IsCode) { 404 405 StringRef data; 406 uint64_t Alignment64; 407 Check(Section.getContents(data)); 408 Check(Section.getAlignment(Alignment64)); 409 410 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 411 bool IsRequired; 412 bool IsVirtual; 413 bool IsZeroInit; 414 bool IsReadOnly; 415 uint64_t DataSize; 416 unsigned PaddingSize = 0; 417 unsigned StubBufSize = 0; 418 StringRef Name; 419 Check(Section.isRequiredForExecution(IsRequired)); 420 Check(Section.isVirtual(IsVirtual)); 421 Check(Section.isZeroInit(IsZeroInit)); 422 Check(Section.isReadOnlyData(IsReadOnly)); 423 Check(Section.getSize(DataSize)); 424 Check(Section.getName(Name)); 425 426 StubBufSize = computeSectionStubBufSize(Obj, Section); 427 428 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 429 // with zeroes added at the end. For MachO objects, this section has a 430 // slightly different name, so this won't have any effect for MachO objects. 431 if (Name == ".eh_frame") 432 PaddingSize = 4; 433 434 uintptr_t Allocate; 435 unsigned SectionID = Sections.size(); 436 uint8_t *Addr; 437 const char *pData = nullptr; 438 439 // Some sections, such as debug info, don't need to be loaded for execution. 440 // Leave those where they are. 441 if (IsRequired) { 442 Allocate = DataSize + PaddingSize + StubBufSize; 443 Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, 444 Name) 445 : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, 446 Name, IsReadOnly); 447 if (!Addr) 448 report_fatal_error("Unable to allocate section memory!"); 449 450 // Virtual sections have no data in the object image, so leave pData = 0 451 if (!IsVirtual) 452 pData = data.data(); 453 454 // Zero-initialize or copy the data from the image 455 if (IsZeroInit || IsVirtual) 456 memset(Addr, 0, DataSize); 457 else 458 memcpy(Addr, pData, DataSize); 459 460 // Fill in any extra bytes we allocated for padding 461 if (PaddingSize != 0) { 462 memset(Addr + DataSize, 0, PaddingSize); 463 // Update the DataSize variable so that the stub offset is set correctly. 464 DataSize += PaddingSize; 465 } 466 467 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 468 << " obj addr: " << format("%p", pData) 469 << " new addr: " << format("%p", Addr) 470 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 471 << " Allocate: " << Allocate << "\n"); 472 Obj.updateSectionAddress(Section, (uint64_t)Addr); 473 } else { 474 // Even if we didn't load the section, we need to record an entry for it 475 // to handle later processing (and by 'handle' I mean don't do anything 476 // with these sections). 477 Allocate = 0; 478 Addr = nullptr; 479 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 480 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 481 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 482 << " Allocate: " << Allocate << "\n"); 483 } 484 485 Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData)); 486 return SectionID; 487 } 488 489 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj, 490 const SectionRef &Section, 491 bool IsCode, 492 ObjSectionToIDMap &LocalSections) { 493 494 unsigned SectionID = 0; 495 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 496 if (i != LocalSections.end()) 497 SectionID = i->second; 498 else { 499 SectionID = emitSection(Obj, Section, IsCode); 500 LocalSections[Section] = SectionID; 501 } 502 return SectionID; 503 } 504 505 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 506 unsigned SectionID) { 507 Relocations[SectionID].push_back(RE); 508 } 509 510 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 511 StringRef SymbolName) { 512 // Relocation by symbol. If the symbol is found in the global symbol table, 513 // create an appropriate section relocation. Otherwise, add it to 514 // ExternalSymbolRelocations. 515 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 516 if (Loc == GlobalSymbolTable.end()) { 517 ExternalSymbolRelocations[SymbolName].push_back(RE); 518 } else { 519 // Copy the RE since we want to modify its addend. 520 RelocationEntry RECopy = RE; 521 RECopy.Addend += Loc->second.second; 522 Relocations[Loc->second.first].push_back(RECopy); 523 } 524 } 525 526 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 527 unsigned AbiVariant) { 528 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 529 // This stub has to be able to access the full address space, 530 // since symbol lookup won't necessarily find a handy, in-range, 531 // PLT stub for functions which could be anywhere. 532 uint32_t *StubAddr = (uint32_t *)Addr; 533 534 // Stub can use ip0 (== x16) to calculate address 535 *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr> 536 StubAddr++; 537 *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr> 538 StubAddr++; 539 *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr> 540 StubAddr++; 541 *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr> 542 StubAddr++; 543 *StubAddr = 0xd61f0200; // br ip0 544 545 return Addr; 546 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 547 // TODO: There is only ARM far stub now. We should add the Thumb stub, 548 // and stubs for branches Thumb - ARM and ARM - Thumb. 549 uint32_t *StubAddr = (uint32_t *)Addr; 550 *StubAddr = 0xe51ff004; // ldr pc,<label> 551 return (uint8_t *)++StubAddr; 552 } else if (Arch == Triple::mipsel || Arch == Triple::mips) { 553 uint32_t *StubAddr = (uint32_t *)Addr; 554 // 0: 3c190000 lui t9,%hi(addr). 555 // 4: 27390000 addiu t9,t9,%lo(addr). 556 // 8: 03200008 jr t9. 557 // c: 00000000 nop. 558 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 559 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0; 560 561 *StubAddr = LuiT9Instr; 562 StubAddr++; 563 *StubAddr = AdduiT9Instr; 564 StubAddr++; 565 *StubAddr = JrT9Instr; 566 StubAddr++; 567 *StubAddr = NopInstr; 568 return Addr; 569 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 570 // Depending on which version of the ELF ABI is in use, we need to 571 // generate one of two variants of the stub. They both start with 572 // the same sequence to load the target address into r12. 573 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 574 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 575 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 576 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 577 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 578 if (AbiVariant == 2) { 579 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 580 // The address is already in r12 as required by the ABI. Branch to it. 581 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 582 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 583 writeInt32BE(Addr+28, 0x4E800420); // bctr 584 } else { 585 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 586 // Load the function address on r11 and sets it to control register. Also 587 // loads the function TOC in r2 and environment pointer to r11. 588 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 589 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 590 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 591 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 592 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 593 writeInt32BE(Addr+40, 0x4E800420); // bctr 594 } 595 return Addr; 596 } else if (Arch == Triple::systemz) { 597 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 598 writeInt16BE(Addr+2, 0x0000); 599 writeInt16BE(Addr+4, 0x0004); 600 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 601 // 8-byte address stored at Addr + 8 602 return Addr; 603 } else if (Arch == Triple::x86_64) { 604 *Addr = 0xFF; // jmp 605 *(Addr+1) = 0x25; // rip 606 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 607 } else if (Arch == Triple::x86) { 608 *Addr = 0xE9; // 32-bit pc-relative jump. 609 } 610 return Addr; 611 } 612 613 // Assign an address to a symbol name and resolve all the relocations 614 // associated with it. 615 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 616 uint64_t Addr) { 617 // The address to use for relocation resolution is not 618 // the address of the local section buffer. We must be doing 619 // a remote execution environment of some sort. Relocations can't 620 // be applied until all the sections have been moved. The client must 621 // trigger this with a call to MCJIT::finalize() or 622 // RuntimeDyld::resolveRelocations(). 623 // 624 // Addr is a uint64_t because we can't assume the pointer width 625 // of the target is the same as that of the host. Just use a generic 626 // "big enough" type. 627 Sections[SectionID].LoadAddress = Addr; 628 } 629 630 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 631 uint64_t Value) { 632 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 633 const RelocationEntry &RE = Relocs[i]; 634 // Ignore relocations for sections that were not loaded 635 if (Sections[RE.SectionID].Address == nullptr) 636 continue; 637 resolveRelocation(RE, Value); 638 } 639 } 640 641 void RuntimeDyldImpl::resolveExternalSymbols() { 642 while (!ExternalSymbolRelocations.empty()) { 643 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 644 645 StringRef Name = i->first(); 646 if (Name.size() == 0) { 647 // This is an absolute symbol, use an address of zero. 648 DEBUG(dbgs() << "Resolving absolute relocations." 649 << "\n"); 650 RelocationList &Relocs = i->second; 651 resolveRelocationList(Relocs, 0); 652 } else { 653 uint64_t Addr = 0; 654 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name); 655 if (Loc == GlobalSymbolTable.end()) { 656 // This is an external symbol, try to get its address from 657 // MemoryManager. 658 Addr = MemMgr->getSymbolAddress(Name.data()); 659 // The call to getSymbolAddress may have caused additional modules to 660 // be loaded, which may have added new entries to the 661 // ExternalSymbolRelocations map. Consquently, we need to update our 662 // iterator. This is also why retrieval of the relocation list 663 // associated with this symbol is deferred until below this point. 664 // New entries may have been added to the relocation list. 665 i = ExternalSymbolRelocations.find(Name); 666 } else { 667 // We found the symbol in our global table. It was probably in a 668 // Module that we loaded previously. 669 SymbolLoc SymLoc = Loc->second; 670 Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second; 671 } 672 673 // FIXME: Implement error handling that doesn't kill the host program! 674 if (!Addr) 675 report_fatal_error("Program used external function '" + Name + 676 "' which could not be resolved!"); 677 678 updateGOTEntries(Name, Addr); 679 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 680 << format("0x%lx", Addr) << "\n"); 681 // This list may have been updated when we called getSymbolAddress, so 682 // don't change this code to get the list earlier. 683 RelocationList &Relocs = i->second; 684 resolveRelocationList(Relocs, Addr); 685 } 686 687 ExternalSymbolRelocations.erase(i); 688 } 689 } 690 691 //===----------------------------------------------------------------------===// 692 // RuntimeDyld class implementation 693 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) { 694 // FIXME: There's a potential issue lurking here if a single instance of 695 // RuntimeDyld is used to load multiple objects. The current implementation 696 // associates a single memory manager with a RuntimeDyld instance. Even 697 // though the public class spawns a new 'impl' instance for each load, 698 // they share a single memory manager. This can become a problem when page 699 // permissions are applied. 700 Dyld = nullptr; 701 MM = mm; 702 ProcessAllSections = false; 703 Checker = nullptr; 704 } 705 706 RuntimeDyld::~RuntimeDyld() { delete Dyld; } 707 708 static std::unique_ptr<RuntimeDyldELF> 709 createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections, 710 RuntimeDyldCheckerImpl *Checker) { 711 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM)); 712 Dyld->setProcessAllSections(ProcessAllSections); 713 Dyld->setRuntimeDyldChecker(Checker); 714 return Dyld; 715 } 716 717 static std::unique_ptr<RuntimeDyldMachO> 718 createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM, 719 bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { 720 std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM)); 721 Dyld->setProcessAllSections(ProcessAllSections); 722 Dyld->setRuntimeDyldChecker(Checker); 723 return Dyld; 724 } 725 726 ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) { 727 std::unique_ptr<ObjectImage> InputImage; 728 729 ObjectFile &Obj = *InputObject; 730 731 if (InputObject->isELF()) { 732 InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject))); 733 if (!Dyld) 734 Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker).release(); 735 } else if (InputObject->isMachO()) { 736 InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject))); 737 if (!Dyld) 738 Dyld = createRuntimeDyldMachO( 739 static_cast<Triple::ArchType>(InputImage->getArch()), 740 MM, ProcessAllSections, Checker).release(); 741 } else 742 report_fatal_error("Incompatible object format!"); 743 744 if (!Dyld->isCompatibleFile(&Obj)) 745 report_fatal_error("Incompatible object format!"); 746 747 Dyld->loadObject(InputImage.get()); 748 return InputImage.release(); 749 } 750 751 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) { 752 std::unique_ptr<ObjectImage> InputImage; 753 sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer()); 754 755 switch (Type) { 756 case sys::fs::file_magic::elf_relocatable: 757 case sys::fs::file_magic::elf_executable: 758 case sys::fs::file_magic::elf_shared_object: 759 case sys::fs::file_magic::elf_core: 760 InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer)); 761 if (!Dyld) 762 Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker).release(); 763 break; 764 case sys::fs::file_magic::macho_object: 765 case sys::fs::file_magic::macho_executable: 766 case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib: 767 case sys::fs::file_magic::macho_core: 768 case sys::fs::file_magic::macho_preload_executable: 769 case sys::fs::file_magic::macho_dynamically_linked_shared_lib: 770 case sys::fs::file_magic::macho_dynamic_linker: 771 case sys::fs::file_magic::macho_bundle: 772 case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub: 773 case sys::fs::file_magic::macho_dsym_companion: 774 InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer)); 775 if (!Dyld) 776 Dyld = createRuntimeDyldMachO( 777 static_cast<Triple::ArchType>(InputImage->getArch()), 778 MM, ProcessAllSections, Checker).release(); 779 break; 780 case sys::fs::file_magic::unknown: 781 case sys::fs::file_magic::bitcode: 782 case sys::fs::file_magic::archive: 783 case sys::fs::file_magic::coff_object: 784 case sys::fs::file_magic::coff_import_library: 785 case sys::fs::file_magic::pecoff_executable: 786 case sys::fs::file_magic::macho_universal_binary: 787 case sys::fs::file_magic::windows_resource: 788 report_fatal_error("Incompatible object format!"); 789 } 790 791 if (!Dyld->isCompatibleFormat(InputBuffer)) 792 report_fatal_error("Incompatible object format!"); 793 794 Dyld->loadObject(InputImage.get()); 795 return InputImage.release(); 796 } 797 798 void *RuntimeDyld::getSymbolAddress(StringRef Name) { 799 if (!Dyld) 800 return nullptr; 801 return Dyld->getSymbolAddress(Name); 802 } 803 804 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) { 805 if (!Dyld) 806 return 0; 807 return Dyld->getSymbolLoadAddress(Name); 808 } 809 810 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 811 812 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 813 Dyld->reassignSectionAddress(SectionID, Addr); 814 } 815 816 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 817 uint64_t TargetAddress) { 818 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 819 } 820 821 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 822 823 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 824 825 void RuntimeDyld::registerEHFrames() { 826 if (Dyld) 827 Dyld->registerEHFrames(); 828 } 829 830 void RuntimeDyld::deregisterEHFrames() { 831 if (Dyld) 832 Dyld->deregisterEHFrames(); 833 } 834 835 } // end namespace llvm 836