1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/RuntimeDyld.h" 15 #include "RuntimeDyldCheckerImpl.h" 16 #include "RuntimeDyldCOFF.h" 17 #include "RuntimeDyldELF.h" 18 #include "RuntimeDyldImpl.h" 19 #include "RuntimeDyldMachO.h" 20 #include "llvm/Object/ELFObjectFile.h" 21 #include "llvm/Object/COFF.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/MutexGuard.h" 25 26 using namespace llvm; 27 using namespace llvm::object; 28 29 #define DEBUG_TYPE "dyld" 30 31 namespace { 32 33 enum RuntimeDyldErrorCode { 34 GenericRTDyldError = 1 35 }; 36 37 // FIXME: This class is only here to support the transition to llvm::Error. It 38 // will be removed once this transition is complete. Clients should prefer to 39 // deal with the Error value directly, rather than converting to error_code. 40 class RuntimeDyldErrorCategory : public std::error_category { 41 public: 42 const char *name() const LLVM_NOEXCEPT override { return "runtimedyld"; } 43 44 std::string message(int Condition) const override { 45 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 46 case GenericRTDyldError: return "Generic RuntimeDyld error"; 47 } 48 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 49 } 50 }; 51 52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 53 54 } 55 56 char RuntimeDyldError::ID = 0; 57 58 void RuntimeDyldError::log(raw_ostream &OS) const { 59 OS << ErrMsg << "\n"; 60 } 61 62 std::error_code RuntimeDyldError::convertToErrorCode() const { 63 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 64 } 65 66 // Empty out-of-line virtual destructor as the key function. 67 RuntimeDyldImpl::~RuntimeDyldImpl() {} 68 69 // Pin LoadedObjectInfo's vtables to this file. 70 void RuntimeDyld::LoadedObjectInfo::anchor() {} 71 72 namespace llvm { 73 74 void RuntimeDyldImpl::registerEHFrames() {} 75 76 void RuntimeDyldImpl::deregisterEHFrames() {} 77 78 #ifndef NDEBUG 79 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 80 dbgs() << "----- Contents of section " << S.getName() << " " << State 81 << " -----"; 82 83 if (S.getAddress() == nullptr) { 84 dbgs() << "\n <section not emitted>\n"; 85 return; 86 } 87 88 const unsigned ColsPerRow = 16; 89 90 uint8_t *DataAddr = S.getAddress(); 91 uint64_t LoadAddr = S.getLoadAddress(); 92 93 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 94 unsigned BytesRemaining = S.getSize(); 95 96 if (StartPadding) { 97 dbgs() << "\n" << format("0x%016" PRIx64, 98 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 99 while (StartPadding--) 100 dbgs() << " "; 101 } 102 103 while (BytesRemaining > 0) { 104 if ((LoadAddr & (ColsPerRow - 1)) == 0) 105 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 106 107 dbgs() << " " << format("%02x", *DataAddr); 108 109 ++DataAddr; 110 ++LoadAddr; 111 --BytesRemaining; 112 } 113 114 dbgs() << "\n"; 115 } 116 #endif 117 118 // Resolve the relocations for all symbols we currently know about. 119 void RuntimeDyldImpl::resolveRelocations() { 120 MutexGuard locked(lock); 121 122 // Print out the sections prior to relocation. 123 DEBUG( 124 for (int i = 0, e = Sections.size(); i != e; ++i) 125 dumpSectionMemory(Sections[i], "before relocations"); 126 ); 127 128 // First, resolve relocations associated with external symbols. 129 resolveExternalSymbols(); 130 131 // Iterate over all outstanding relocations 132 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 133 // The Section here (Sections[i]) refers to the section in which the 134 // symbol for the relocation is located. The SectionID in the relocation 135 // entry provides the section to which the relocation will be applied. 136 int Idx = it->first; 137 uint64_t Addr = Sections[Idx].getLoadAddress(); 138 DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 139 << format("%p", (uintptr_t)Addr) << "\n"); 140 resolveRelocationList(it->second, Addr); 141 } 142 Relocations.clear(); 143 144 // Print out sections after relocation. 145 DEBUG( 146 for (int i = 0, e = Sections.size(); i != e; ++i) 147 dumpSectionMemory(Sections[i], "after relocations"); 148 ); 149 150 } 151 152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 153 uint64_t TargetAddress) { 154 MutexGuard locked(lock); 155 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 156 if (Sections[i].getAddress() == LocalAddress) { 157 reassignSectionAddress(i, TargetAddress); 158 return; 159 } 160 } 161 llvm_unreachable("Attempting to remap address of unknown section!"); 162 } 163 164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 165 uint64_t &Result) { 166 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 167 if (!AddressOrErr) 168 return AddressOrErr.takeError(); 169 Result = *AddressOrErr - Sec.getAddress(); 170 return Error::success(); 171 } 172 173 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 175 MutexGuard locked(lock); 176 177 // Save information about our target 178 Arch = (Triple::ArchType)Obj.getArch(); 179 IsTargetLittleEndian = Obj.isLittleEndian(); 180 setMipsABI(Obj); 181 182 // Compute the memory size required to load all sections to be loaded 183 // and pass this information to the memory manager 184 if (MemMgr.needsToReserveAllocationSpace()) { 185 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 186 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 187 if (auto Err = computeTotalAllocSize(Obj, 188 CodeSize, CodeAlign, 189 RODataSize, RODataAlign, 190 RWDataSize, RWDataAlign)) 191 return std::move(Err); 192 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 193 RWDataSize, RWDataAlign); 194 } 195 196 // Used sections from the object file 197 ObjSectionToIDMap LocalSections; 198 199 // Common symbols requiring allocation, with their sizes and alignments 200 CommonSymbolList CommonSymbols; 201 202 // Parse symbols 203 DEBUG(dbgs() << "Parse symbols:\n"); 204 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 205 ++I) { 206 uint32_t Flags = I->getFlags(); 207 208 if (Flags & SymbolRef::SF_Common) 209 CommonSymbols.push_back(*I); 210 else { 211 212 // Get the symbol type. 213 object::SymbolRef::Type SymType; 214 if (auto SymTypeOrErr = I->getType()) 215 SymType = *SymTypeOrErr; 216 else 217 return SymTypeOrErr.takeError(); 218 219 // Get symbol name. 220 StringRef Name; 221 if (auto NameOrErr = I->getName()) 222 Name = *NameOrErr; 223 else 224 return NameOrErr.takeError(); 225 226 // Compute JIT symbol flags. 227 JITSymbolFlags JITSymFlags = JITSymbolFlags::fromObjectSymbol(*I); 228 229 // If this is a weak definition, check to see if there's a strong one. 230 // If there is, skip this symbol (we won't be providing it: the strong 231 // definition will). If there's no strong definition, make this definition 232 // strong. 233 if (JITSymFlags.isWeak()) { 234 // First check whether there's already a definition in this instance. 235 // FIXME: Override existing weak definitions with strong ones. 236 if (GlobalSymbolTable.count(Name)) 237 continue; 238 // Then check the symbol resolver to see if there's a definition 239 // elsewhere in this logical dylib. 240 if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) 241 if (Sym.getFlags().isStrongDefinition()) 242 continue; 243 // else 244 JITSymFlags &= ~JITSymbolFlags::Weak; 245 } 246 247 if (Flags & SymbolRef::SF_Absolute && 248 SymType != object::SymbolRef::ST_File) { 249 uint64_t Addr = 0; 250 if (auto AddrOrErr = I->getAddress()) 251 Addr = *AddrOrErr; 252 else 253 return AddrOrErr.takeError(); 254 255 unsigned SectionID = AbsoluteSymbolSection; 256 257 DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 258 << " SID: " << SectionID << " Offset: " 259 << format("%p", (uintptr_t)Addr) 260 << " flags: " << Flags << "\n"); 261 GlobalSymbolTable[Name] = 262 SymbolTableEntry(SectionID, Addr, JITSymFlags); 263 } else if (SymType == object::SymbolRef::ST_Function || 264 SymType == object::SymbolRef::ST_Data || 265 SymType == object::SymbolRef::ST_Unknown || 266 SymType == object::SymbolRef::ST_Other) { 267 268 section_iterator SI = Obj.section_end(); 269 if (auto SIOrErr = I->getSection()) 270 SI = *SIOrErr; 271 else 272 return SIOrErr.takeError(); 273 274 if (SI == Obj.section_end()) 275 continue; 276 277 // Get symbol offset. 278 uint64_t SectOffset; 279 if (auto Err = getOffset(*I, *SI, SectOffset)) 280 return std::move(Err); 281 282 bool IsCode = SI->isText(); 283 unsigned SectionID; 284 if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode, 285 LocalSections)) 286 SectionID = *SectionIDOrErr; 287 else 288 return SectionIDOrErr.takeError(); 289 290 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 291 << " SID: " << SectionID << " Offset: " 292 << format("%p", (uintptr_t)SectOffset) 293 << " flags: " << Flags << "\n"); 294 GlobalSymbolTable[Name] = 295 SymbolTableEntry(SectionID, SectOffset, JITSymFlags); 296 } 297 } 298 } 299 300 // Allocate common symbols 301 if (auto Err = emitCommonSymbols(Obj, CommonSymbols)) 302 return std::move(Err); 303 304 // Parse and process relocations 305 DEBUG(dbgs() << "Parse relocations:\n"); 306 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 307 SI != SE; ++SI) { 308 StubMap Stubs; 309 section_iterator RelocatedSection = SI->getRelocatedSection(); 310 311 if (RelocatedSection == SE) 312 continue; 313 314 relocation_iterator I = SI->relocation_begin(); 315 relocation_iterator E = SI->relocation_end(); 316 317 if (I == E && !ProcessAllSections) 318 continue; 319 320 bool IsCode = RelocatedSection->isText(); 321 unsigned SectionID = 0; 322 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 323 LocalSections)) 324 SectionID = *SectionIDOrErr; 325 else 326 return SectionIDOrErr.takeError(); 327 328 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 329 330 for (; I != E;) 331 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 332 I = *IOrErr; 333 else 334 return IOrErr.takeError(); 335 336 // If there is an attached checker, notify it about the stubs for this 337 // section so that they can be verified. 338 if (Checker) 339 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs); 340 } 341 342 // Give the subclasses a chance to tie-up any loose ends. 343 if (auto Err = finalizeLoad(Obj, LocalSections)) 344 return std::move(Err); 345 346 // for (auto E : LocalSections) 347 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 348 349 return LocalSections; 350 } 351 352 // A helper method for computeTotalAllocSize. 353 // Computes the memory size required to allocate sections with the given sizes, 354 // assuming that all sections are allocated with the given alignment 355 static uint64_t 356 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 357 uint64_t Alignment) { 358 uint64_t TotalSize = 0; 359 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 360 uint64_t AlignedSize = 361 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 362 TotalSize += AlignedSize; 363 } 364 return TotalSize; 365 } 366 367 static bool isRequiredForExecution(const SectionRef Section) { 368 const ObjectFile *Obj = Section.getObject(); 369 if (isa<object::ELFObjectFileBase>(Obj)) 370 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 371 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 372 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 373 // Avoid loading zero-sized COFF sections. 374 // In PE files, VirtualSize gives the section size, and SizeOfRawData 375 // may be zero for sections with content. In Obj files, SizeOfRawData 376 // gives the section size, and VirtualSize is always zero. Hence 377 // the need to check for both cases below. 378 bool HasContent = 379 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 380 bool IsDiscardable = 381 CoffSection->Characteristics & 382 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 383 return HasContent && !IsDiscardable; 384 } 385 386 assert(isa<MachOObjectFile>(Obj)); 387 return true; 388 } 389 390 static bool isReadOnlyData(const SectionRef Section) { 391 const ObjectFile *Obj = Section.getObject(); 392 if (isa<object::ELFObjectFileBase>(Obj)) 393 return !(ELFSectionRef(Section).getFlags() & 394 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 395 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 396 return ((COFFObj->getCOFFSection(Section)->Characteristics & 397 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 398 | COFF::IMAGE_SCN_MEM_READ 399 | COFF::IMAGE_SCN_MEM_WRITE)) 400 == 401 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 402 | COFF::IMAGE_SCN_MEM_READ)); 403 404 assert(isa<MachOObjectFile>(Obj)); 405 return false; 406 } 407 408 static bool isZeroInit(const SectionRef Section) { 409 const ObjectFile *Obj = Section.getObject(); 410 if (isa<object::ELFObjectFileBase>(Obj)) 411 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 412 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 413 return COFFObj->getCOFFSection(Section)->Characteristics & 414 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 415 416 auto *MachO = cast<MachOObjectFile>(Obj); 417 unsigned SectionType = MachO->getSectionType(Section); 418 return SectionType == MachO::S_ZEROFILL || 419 SectionType == MachO::S_GB_ZEROFILL; 420 } 421 422 // Compute an upper bound of the memory size that is required to load all 423 // sections 424 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 425 uint64_t &CodeSize, 426 uint32_t &CodeAlign, 427 uint64_t &RODataSize, 428 uint32_t &RODataAlign, 429 uint64_t &RWDataSize, 430 uint32_t &RWDataAlign) { 431 // Compute the size of all sections required for execution 432 std::vector<uint64_t> CodeSectionSizes; 433 std::vector<uint64_t> ROSectionSizes; 434 std::vector<uint64_t> RWSectionSizes; 435 436 // Collect sizes of all sections to be loaded; 437 // also determine the max alignment of all sections 438 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 439 SI != SE; ++SI) { 440 const SectionRef &Section = *SI; 441 442 bool IsRequired = isRequiredForExecution(Section); 443 444 // Consider only the sections that are required to be loaded for execution 445 if (IsRequired) { 446 uint64_t DataSize = Section.getSize(); 447 uint64_t Alignment64 = Section.getAlignment(); 448 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 449 bool IsCode = Section.isText(); 450 bool IsReadOnly = isReadOnlyData(Section); 451 452 StringRef Name; 453 if (auto EC = Section.getName(Name)) 454 return errorCodeToError(EC); 455 456 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 457 uint64_t SectionSize = DataSize + StubBufSize; 458 459 // The .eh_frame section (at least on Linux) needs an extra four bytes 460 // padded 461 // with zeroes added at the end. For MachO objects, this section has a 462 // slightly different name, so this won't have any effect for MachO 463 // objects. 464 if (Name == ".eh_frame") 465 SectionSize += 4; 466 467 if (!SectionSize) 468 SectionSize = 1; 469 470 if (IsCode) { 471 CodeAlign = std::max(CodeAlign, Alignment); 472 CodeSectionSizes.push_back(SectionSize); 473 } else if (IsReadOnly) { 474 RODataAlign = std::max(RODataAlign, Alignment); 475 ROSectionSizes.push_back(SectionSize); 476 } else { 477 RWDataAlign = std::max(RWDataAlign, Alignment); 478 RWSectionSizes.push_back(SectionSize); 479 } 480 } 481 } 482 483 // Compute the size of all common symbols 484 uint64_t CommonSize = 0; 485 uint32_t CommonAlign = 1; 486 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 487 ++I) { 488 uint32_t Flags = I->getFlags(); 489 if (Flags & SymbolRef::SF_Common) { 490 // Add the common symbols to a list. We'll allocate them all below. 491 uint64_t Size = I->getCommonSize(); 492 uint32_t Align = I->getAlignment(); 493 // If this is the first common symbol, use its alignment as the alignment 494 // for the common symbols section. 495 if (CommonSize == 0) 496 CommonAlign = Align; 497 CommonSize = alignTo(CommonSize, Align) + Size; 498 } 499 } 500 if (CommonSize != 0) { 501 RWSectionSizes.push_back(CommonSize); 502 RWDataAlign = std::max(RWDataAlign, CommonAlign); 503 } 504 505 // Compute the required allocation space for each different type of sections 506 // (code, read-only data, read-write data) assuming that all sections are 507 // allocated with the max alignment. Note that we cannot compute with the 508 // individual alignments of the sections, because then the required size 509 // depends on the order, in which the sections are allocated. 510 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 511 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 512 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 513 514 return Error::success(); 515 } 516 517 // compute stub buffer size for the given section 518 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 519 const SectionRef &Section) { 520 unsigned StubSize = getMaxStubSize(); 521 if (StubSize == 0) { 522 return 0; 523 } 524 // FIXME: this is an inefficient way to handle this. We should computed the 525 // necessary section allocation size in loadObject by walking all the sections 526 // once. 527 unsigned StubBufSize = 0; 528 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 529 SI != SE; ++SI) { 530 section_iterator RelSecI = SI->getRelocatedSection(); 531 if (!(RelSecI == Section)) 532 continue; 533 534 for (const RelocationRef &Reloc : SI->relocations()) 535 if (relocationNeedsStub(Reloc)) 536 StubBufSize += StubSize; 537 } 538 539 // Get section data size and alignment 540 uint64_t DataSize = Section.getSize(); 541 uint64_t Alignment64 = Section.getAlignment(); 542 543 // Add stubbuf size alignment 544 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 545 unsigned StubAlignment = getStubAlignment(); 546 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 547 if (StubAlignment > EndAlignment) 548 StubBufSize += StubAlignment - EndAlignment; 549 return StubBufSize; 550 } 551 552 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 553 unsigned Size) const { 554 uint64_t Result = 0; 555 if (IsTargetLittleEndian) { 556 Src += Size - 1; 557 while (Size--) 558 Result = (Result << 8) | *Src--; 559 } else 560 while (Size--) 561 Result = (Result << 8) | *Src++; 562 563 return Result; 564 } 565 566 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 567 unsigned Size) const { 568 if (IsTargetLittleEndian) { 569 while (Size--) { 570 *Dst++ = Value & 0xFF; 571 Value >>= 8; 572 } 573 } else { 574 Dst += Size - 1; 575 while (Size--) { 576 *Dst-- = Value & 0xFF; 577 Value >>= 8; 578 } 579 } 580 } 581 582 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 583 CommonSymbolList &CommonSymbols) { 584 if (CommonSymbols.empty()) 585 return Error::success(); 586 587 uint64_t CommonSize = 0; 588 uint32_t CommonAlign = CommonSymbols.begin()->getAlignment(); 589 CommonSymbolList SymbolsToAllocate; 590 591 DEBUG(dbgs() << "Processing common symbols...\n"); 592 593 for (const auto &Sym : CommonSymbols) { 594 StringRef Name; 595 if (auto NameOrErr = Sym.getName()) 596 Name = *NameOrErr; 597 else 598 return NameOrErr.takeError(); 599 600 // Skip common symbols already elsewhere. 601 if (GlobalSymbolTable.count(Name)) { 602 DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name 603 << "'\n"); 604 continue; 605 } 606 607 if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) { 608 if (!Sym.getFlags().isCommon()) { 609 DEBUG(dbgs() << "\tSkipping common symbol '" << Name 610 << "' in favor of stronger definition.\n"); 611 continue; 612 } 613 } 614 uint32_t Align = Sym.getAlignment(); 615 uint64_t Size = Sym.getCommonSize(); 616 617 CommonSize = alignTo(CommonSize, Align) + Size; 618 619 SymbolsToAllocate.push_back(Sym); 620 } 621 622 // Allocate memory for the section 623 unsigned SectionID = Sections.size(); 624 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 625 "<common symbols>", false); 626 if (!Addr) 627 report_fatal_error("Unable to allocate memory for common symbols!"); 628 uint64_t Offset = 0; 629 Sections.push_back( 630 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 631 memset(Addr, 0, CommonSize); 632 633 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " 634 << format("%p", Addr) << " DataSize: " << CommonSize << "\n"); 635 636 // Assign the address of each symbol 637 for (auto &Sym : SymbolsToAllocate) { 638 uint32_t Align = Sym.getAlignment(); 639 uint64_t Size = Sym.getCommonSize(); 640 StringRef Name; 641 if (auto NameOrErr = Sym.getName()) 642 Name = *NameOrErr; 643 else 644 return NameOrErr.takeError(); 645 if (Align) { 646 // This symbol has an alignment requirement. 647 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 648 Addr += AlignOffset; 649 Offset += AlignOffset; 650 } 651 JITSymbolFlags JITSymFlags = JITSymbolFlags::fromObjectSymbol(Sym); 652 DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 653 << format("%p", Addr) << "\n"); 654 GlobalSymbolTable[Name] = 655 SymbolTableEntry(SectionID, Offset, JITSymFlags); 656 Offset += Size; 657 Addr += Size; 658 } 659 660 if (Checker) 661 Checker->registerSection(Obj.getFileName(), SectionID); 662 663 return Error::success(); 664 } 665 666 Expected<unsigned> 667 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 668 const SectionRef &Section, 669 bool IsCode) { 670 StringRef data; 671 uint64_t Alignment64 = Section.getAlignment(); 672 673 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 674 unsigned PaddingSize = 0; 675 unsigned StubBufSize = 0; 676 bool IsRequired = isRequiredForExecution(Section); 677 bool IsVirtual = Section.isVirtual(); 678 bool IsZeroInit = isZeroInit(Section); 679 bool IsReadOnly = isReadOnlyData(Section); 680 uint64_t DataSize = Section.getSize(); 681 682 StringRef Name; 683 if (auto EC = Section.getName(Name)) 684 return errorCodeToError(EC); 685 686 StubBufSize = computeSectionStubBufSize(Obj, Section); 687 688 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 689 // with zeroes added at the end. For MachO objects, this section has a 690 // slightly different name, so this won't have any effect for MachO objects. 691 if (Name == ".eh_frame") 692 PaddingSize = 4; 693 694 uintptr_t Allocate; 695 unsigned SectionID = Sections.size(); 696 uint8_t *Addr; 697 const char *pData = nullptr; 698 699 // If this section contains any bits (i.e. isn't a virtual or bss section), 700 // grab a reference to them. 701 if (!IsVirtual && !IsZeroInit) { 702 // In either case, set the location of the unrelocated section in memory, 703 // since we still process relocations for it even if we're not applying them. 704 if (auto EC = Section.getContents(data)) 705 return errorCodeToError(EC); 706 pData = data.data(); 707 } 708 709 // Code section alignment needs to be at least as high as stub alignment or 710 // padding calculations may by incorrect when the section is remapped to a 711 // higher alignment. 712 if (IsCode) 713 Alignment = std::max(Alignment, getStubAlignment()); 714 715 // Some sections, such as debug info, don't need to be loaded for execution. 716 // Leave those where they are. 717 if (IsRequired) { 718 Allocate = DataSize + PaddingSize + StubBufSize; 719 if (!Allocate) 720 Allocate = 1; 721 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 722 Name) 723 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 724 Name, IsReadOnly); 725 if (!Addr) 726 report_fatal_error("Unable to allocate section memory!"); 727 728 // Zero-initialize or copy the data from the image 729 if (IsZeroInit || IsVirtual) 730 memset(Addr, 0, DataSize); 731 else 732 memcpy(Addr, pData, DataSize); 733 734 // Fill in any extra bytes we allocated for padding 735 if (PaddingSize != 0) { 736 memset(Addr + DataSize, 0, PaddingSize); 737 // Update the DataSize variable so that the stub offset is set correctly. 738 DataSize += PaddingSize; 739 } 740 741 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 742 << " obj addr: " << format("%p", pData) 743 << " new addr: " << format("%p", Addr) 744 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 745 << " Allocate: " << Allocate << "\n"); 746 } else { 747 // Even if we didn't load the section, we need to record an entry for it 748 // to handle later processing (and by 'handle' I mean don't do anything 749 // with these sections). 750 Allocate = 0; 751 Addr = nullptr; 752 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 753 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 754 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 755 << " Allocate: " << Allocate << "\n"); 756 } 757 758 Sections.push_back( 759 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 760 761 if (Checker) 762 Checker->registerSection(Obj.getFileName(), SectionID); 763 764 return SectionID; 765 } 766 767 Expected<unsigned> 768 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 769 const SectionRef &Section, 770 bool IsCode, 771 ObjSectionToIDMap &LocalSections) { 772 773 unsigned SectionID = 0; 774 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 775 if (i != LocalSections.end()) 776 SectionID = i->second; 777 else { 778 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 779 SectionID = *SectionIDOrErr; 780 else 781 return SectionIDOrErr.takeError(); 782 LocalSections[Section] = SectionID; 783 } 784 return SectionID; 785 } 786 787 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 788 unsigned SectionID) { 789 Relocations[SectionID].push_back(RE); 790 } 791 792 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 793 StringRef SymbolName) { 794 // Relocation by symbol. If the symbol is found in the global symbol table, 795 // create an appropriate section relocation. Otherwise, add it to 796 // ExternalSymbolRelocations. 797 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 798 if (Loc == GlobalSymbolTable.end()) { 799 ExternalSymbolRelocations[SymbolName].push_back(RE); 800 } else { 801 // Copy the RE since we want to modify its addend. 802 RelocationEntry RECopy = RE; 803 const auto &SymInfo = Loc->second; 804 RECopy.Addend += SymInfo.getOffset(); 805 Relocations[SymInfo.getSectionID()].push_back(RECopy); 806 } 807 } 808 809 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 810 unsigned AbiVariant) { 811 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 812 // This stub has to be able to access the full address space, 813 // since symbol lookup won't necessarily find a handy, in-range, 814 // PLT stub for functions which could be anywhere. 815 // Stub can use ip0 (== x16) to calculate address 816 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 817 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 818 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 819 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 820 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 821 822 return Addr; 823 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 824 // TODO: There is only ARM far stub now. We should add the Thumb stub, 825 // and stubs for branches Thumb - ARM and ARM - Thumb. 826 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label> 827 return Addr + 4; 828 } else if (IsMipsO32ABI) { 829 // 0: 3c190000 lui t9,%hi(addr). 830 // 4: 27390000 addiu t9,t9,%lo(addr). 831 // 8: 03200008 jr t9. 832 // c: 00000000 nop. 833 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 834 const unsigned NopInstr = 0x0; 835 unsigned JrT9Instr = 0x03200008; 836 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6) 837 JrT9Instr = 0x03200009; 838 839 writeBytesUnaligned(LuiT9Instr, Addr, 4); 840 writeBytesUnaligned(AdduiT9Instr, Addr+4, 4); 841 writeBytesUnaligned(JrT9Instr, Addr+8, 4); 842 writeBytesUnaligned(NopInstr, Addr+12, 4); 843 return Addr; 844 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 845 // Depending on which version of the ELF ABI is in use, we need to 846 // generate one of two variants of the stub. They both start with 847 // the same sequence to load the target address into r12. 848 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 849 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 850 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 851 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 852 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 853 if (AbiVariant == 2) { 854 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 855 // The address is already in r12 as required by the ABI. Branch to it. 856 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 857 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 858 writeInt32BE(Addr+28, 0x4E800420); // bctr 859 } else { 860 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 861 // Load the function address on r11 and sets it to control register. Also 862 // loads the function TOC in r2 and environment pointer to r11. 863 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 864 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 865 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 866 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 867 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 868 writeInt32BE(Addr+40, 0x4E800420); // bctr 869 } 870 return Addr; 871 } else if (Arch == Triple::systemz) { 872 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 873 writeInt16BE(Addr+2, 0x0000); 874 writeInt16BE(Addr+4, 0x0004); 875 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 876 // 8-byte address stored at Addr + 8 877 return Addr; 878 } else if (Arch == Triple::x86_64) { 879 *Addr = 0xFF; // jmp 880 *(Addr+1) = 0x25; // rip 881 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 882 } else if (Arch == Triple::x86) { 883 *Addr = 0xE9; // 32-bit pc-relative jump. 884 } 885 return Addr; 886 } 887 888 // Assign an address to a symbol name and resolve all the relocations 889 // associated with it. 890 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 891 uint64_t Addr) { 892 // The address to use for relocation resolution is not 893 // the address of the local section buffer. We must be doing 894 // a remote execution environment of some sort. Relocations can't 895 // be applied until all the sections have been moved. The client must 896 // trigger this with a call to MCJIT::finalize() or 897 // RuntimeDyld::resolveRelocations(). 898 // 899 // Addr is a uint64_t because we can't assume the pointer width 900 // of the target is the same as that of the host. Just use a generic 901 // "big enough" type. 902 DEBUG(dbgs() << "Reassigning address for section " << SectionID << " (" 903 << Sections[SectionID].getName() << "): " 904 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 905 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 906 Sections[SectionID].setLoadAddress(Addr); 907 } 908 909 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 910 uint64_t Value) { 911 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 912 const RelocationEntry &RE = Relocs[i]; 913 // Ignore relocations for sections that were not loaded 914 if (Sections[RE.SectionID].getAddress() == nullptr) 915 continue; 916 resolveRelocation(RE, Value); 917 } 918 } 919 920 void RuntimeDyldImpl::resolveExternalSymbols() { 921 while (!ExternalSymbolRelocations.empty()) { 922 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 923 924 StringRef Name = i->first(); 925 if (Name.size() == 0) { 926 // This is an absolute symbol, use an address of zero. 927 DEBUG(dbgs() << "Resolving absolute relocations." 928 << "\n"); 929 RelocationList &Relocs = i->second; 930 resolveRelocationList(Relocs, 0); 931 } else { 932 uint64_t Addr = 0; 933 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 934 if (Loc == GlobalSymbolTable.end()) { 935 // This is an external symbol, try to get its address from the symbol 936 // resolver. 937 // First search for the symbol in this logical dylib. 938 Addr = Resolver.findSymbolInLogicalDylib(Name.data()).getAddress(); 939 // If that fails, try searching for an external symbol. 940 if (!Addr) 941 Addr = Resolver.findSymbol(Name.data()).getAddress(); 942 // The call to getSymbolAddress may have caused additional modules to 943 // be loaded, which may have added new entries to the 944 // ExternalSymbolRelocations map. Consquently, we need to update our 945 // iterator. This is also why retrieval of the relocation list 946 // associated with this symbol is deferred until below this point. 947 // New entries may have been added to the relocation list. 948 i = ExternalSymbolRelocations.find(Name); 949 } else { 950 // We found the symbol in our global table. It was probably in a 951 // Module that we loaded previously. 952 const auto &SymInfo = Loc->second; 953 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 954 SymInfo.getOffset(); 955 } 956 957 // FIXME: Implement error handling that doesn't kill the host program! 958 if (!Addr) 959 report_fatal_error("Program used external function '" + Name + 960 "' which could not be resolved!"); 961 962 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 963 // manually and we shouldn't resolve its relocations. 964 if (Addr != UINT64_MAX) { 965 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 966 << format("0x%lx", Addr) << "\n"); 967 // This list may have been updated when we called getSymbolAddress, so 968 // don't change this code to get the list earlier. 969 RelocationList &Relocs = i->second; 970 resolveRelocationList(Relocs, Addr); 971 } 972 } 973 974 ExternalSymbolRelocations.erase(i); 975 } 976 } 977 978 //===----------------------------------------------------------------------===// 979 // RuntimeDyld class implementation 980 981 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 982 const object::SectionRef &Sec) const { 983 984 auto I = ObjSecToIDMap.find(Sec); 985 if (I != ObjSecToIDMap.end()) 986 return RTDyld.Sections[I->second].getLoadAddress(); 987 988 return 0; 989 } 990 991 void RuntimeDyld::MemoryManager::anchor() {} 992 void JITSymbolResolver::anchor() {} 993 994 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 995 JITSymbolResolver &Resolver) 996 : MemMgr(MemMgr), Resolver(Resolver) { 997 // FIXME: There's a potential issue lurking here if a single instance of 998 // RuntimeDyld is used to load multiple objects. The current implementation 999 // associates a single memory manager with a RuntimeDyld instance. Even 1000 // though the public class spawns a new 'impl' instance for each load, 1001 // they share a single memory manager. This can become a problem when page 1002 // permissions are applied. 1003 Dyld = nullptr; 1004 ProcessAllSections = false; 1005 Checker = nullptr; 1006 } 1007 1008 RuntimeDyld::~RuntimeDyld() {} 1009 1010 static std::unique_ptr<RuntimeDyldCOFF> 1011 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1012 JITSymbolResolver &Resolver, bool ProcessAllSections, 1013 RuntimeDyldCheckerImpl *Checker) { 1014 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1015 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1016 Dyld->setProcessAllSections(ProcessAllSections); 1017 Dyld->setRuntimeDyldChecker(Checker); 1018 return Dyld; 1019 } 1020 1021 static std::unique_ptr<RuntimeDyldELF> 1022 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM, 1023 JITSymbolResolver &Resolver, bool ProcessAllSections, 1024 RuntimeDyldCheckerImpl *Checker) { 1025 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver)); 1026 Dyld->setProcessAllSections(ProcessAllSections); 1027 Dyld->setRuntimeDyldChecker(Checker); 1028 return Dyld; 1029 } 1030 1031 static std::unique_ptr<RuntimeDyldMachO> 1032 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1033 JITSymbolResolver &Resolver, 1034 bool ProcessAllSections, 1035 RuntimeDyldCheckerImpl *Checker) { 1036 std::unique_ptr<RuntimeDyldMachO> Dyld = 1037 RuntimeDyldMachO::create(Arch, MM, Resolver); 1038 Dyld->setProcessAllSections(ProcessAllSections); 1039 Dyld->setRuntimeDyldChecker(Checker); 1040 return Dyld; 1041 } 1042 1043 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1044 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1045 if (!Dyld) { 1046 if (Obj.isELF()) 1047 Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker); 1048 else if (Obj.isMachO()) 1049 Dyld = createRuntimeDyldMachO( 1050 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1051 ProcessAllSections, Checker); 1052 else if (Obj.isCOFF()) 1053 Dyld = createRuntimeDyldCOFF( 1054 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1055 ProcessAllSections, Checker); 1056 else 1057 report_fatal_error("Incompatible object format!"); 1058 } 1059 1060 if (!Dyld->isCompatibleFile(Obj)) 1061 report_fatal_error("Incompatible object format!"); 1062 1063 auto LoadedObjInfo = Dyld->loadObject(Obj); 1064 MemMgr.notifyObjectLoaded(*this, Obj); 1065 return LoadedObjInfo; 1066 } 1067 1068 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1069 if (!Dyld) 1070 return nullptr; 1071 return Dyld->getSymbolLocalAddress(Name); 1072 } 1073 1074 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1075 if (!Dyld) 1076 return nullptr; 1077 return Dyld->getSymbol(Name); 1078 } 1079 1080 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1081 1082 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1083 Dyld->reassignSectionAddress(SectionID, Addr); 1084 } 1085 1086 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1087 uint64_t TargetAddress) { 1088 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1089 } 1090 1091 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1092 1093 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1094 1095 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1096 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1097 MemMgr.FinalizationLocked = true; 1098 resolveRelocations(); 1099 registerEHFrames(); 1100 if (!MemoryFinalizationLocked) { 1101 MemMgr.finalizeMemory(); 1102 MemMgr.FinalizationLocked = false; 1103 } 1104 } 1105 1106 void RuntimeDyld::registerEHFrames() { 1107 if (Dyld) 1108 Dyld->registerEHFrames(); 1109 } 1110 1111 void RuntimeDyld::deregisterEHFrames() { 1112 if (Dyld) 1113 Dyld->deregisterEHFrames(); 1114 } 1115 1116 } // end namespace llvm 1117