1 //=== DWARFLinker.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/DWARFLinker/DWARFLinker.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/CodeGen/NonRelocatableStringpool.h" 14 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h" 15 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" 16 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 17 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 18 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" 19 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" 20 #include "llvm/DebugInfo/DWARF/DWARFDie.h" 21 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 22 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 23 #include "llvm/DebugInfo/DWARF/DWARFSection.h" 24 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 25 #include "llvm/MC/MCDwarf.h" 26 #include "llvm/Support/DataExtractor.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/ErrorOr.h" 30 #include "llvm/Support/FormatVariadic.h" 31 #include "llvm/Support/LEB128.h" 32 #include "llvm/Support/Path.h" 33 #include "llvm/Support/ThreadPool.h" 34 #include <vector> 35 36 namespace llvm { 37 38 /// Hold the input and output of the debug info size in bytes. 39 struct DebugInfoSize { 40 uint64_t Input; 41 uint64_t Output; 42 }; 43 44 /// Compute the total size of the debug info. 45 static uint64_t getDebugInfoSize(DWARFContext &Dwarf) { 46 uint64_t Size = 0; 47 for (auto &Unit : Dwarf.compile_units()) { 48 Size += Unit->getLength(); 49 } 50 return Size; 51 } 52 53 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our 54 /// CompileUnit object instead. 55 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) { 56 auto CU = llvm::upper_bound( 57 Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) { 58 return LHS < RHS->getOrigUnit().getNextUnitOffset(); 59 }); 60 return CU != Units.end() ? CU->get() : nullptr; 61 } 62 63 /// Resolve the DIE attribute reference that has been extracted in \p RefValue. 64 /// The resulting DIE might be in another CompileUnit which is stored into \p 65 /// ReferencedCU. \returns null if resolving fails for any reason. 66 DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File, 67 const UnitListTy &Units, 68 const DWARFFormValue &RefValue, 69 const DWARFDie &DIE, 70 CompileUnit *&RefCU) { 71 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference)); 72 uint64_t RefOffset = *RefValue.getAsReference(); 73 if ((RefCU = getUnitForOffset(Units, RefOffset))) 74 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) { 75 // In a file with broken references, an attribute might point to a NULL 76 // DIE. 77 if (!RefDie.isNULL()) 78 return RefDie; 79 } 80 81 reportWarning("could not find referenced DIE", File, &DIE); 82 return DWARFDie(); 83 } 84 85 /// \returns whether the passed \a Attr type might contain a DIE reference 86 /// suitable for ODR uniquing. 87 static bool isODRAttribute(uint16_t Attr) { 88 switch (Attr) { 89 default: 90 return false; 91 case dwarf::DW_AT_type: 92 case dwarf::DW_AT_containing_type: 93 case dwarf::DW_AT_specification: 94 case dwarf::DW_AT_abstract_origin: 95 case dwarf::DW_AT_import: 96 return true; 97 } 98 llvm_unreachable("Improper attribute."); 99 } 100 101 static bool isTypeTag(uint16_t Tag) { 102 switch (Tag) { 103 case dwarf::DW_TAG_array_type: 104 case dwarf::DW_TAG_class_type: 105 case dwarf::DW_TAG_enumeration_type: 106 case dwarf::DW_TAG_pointer_type: 107 case dwarf::DW_TAG_reference_type: 108 case dwarf::DW_TAG_string_type: 109 case dwarf::DW_TAG_structure_type: 110 case dwarf::DW_TAG_subroutine_type: 111 case dwarf::DW_TAG_typedef: 112 case dwarf::DW_TAG_union_type: 113 case dwarf::DW_TAG_ptr_to_member_type: 114 case dwarf::DW_TAG_set_type: 115 case dwarf::DW_TAG_subrange_type: 116 case dwarf::DW_TAG_base_type: 117 case dwarf::DW_TAG_const_type: 118 case dwarf::DW_TAG_constant: 119 case dwarf::DW_TAG_file_type: 120 case dwarf::DW_TAG_namelist: 121 case dwarf::DW_TAG_packed_type: 122 case dwarf::DW_TAG_volatile_type: 123 case dwarf::DW_TAG_restrict_type: 124 case dwarf::DW_TAG_atomic_type: 125 case dwarf::DW_TAG_interface_type: 126 case dwarf::DW_TAG_unspecified_type: 127 case dwarf::DW_TAG_shared_type: 128 case dwarf::DW_TAG_immutable_type: 129 return true; 130 default: 131 break; 132 } 133 return false; 134 } 135 136 AddressesMap::~AddressesMap() = default; 137 138 DwarfEmitter::~DwarfEmitter() = default; 139 140 static Optional<StringRef> StripTemplateParameters(StringRef Name) { 141 // We are looking for template parameters to strip from Name. e.g. 142 // 143 // operator<<B> 144 // 145 // We look for > at the end but if it does not contain any < then we 146 // have something like operator>>. We check for the operator<=> case. 147 if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>")) 148 return {}; 149 150 // How many < until we have the start of the template parameters. 151 size_t NumLeftAnglesToSkip = 1; 152 153 // If we have operator<=> then we need to skip its < as well. 154 NumLeftAnglesToSkip += Name.count("<=>"); 155 156 size_t RightAngleCount = Name.count('>'); 157 size_t LeftAngleCount = Name.count('<'); 158 159 // If we have more < than > we have operator< or operator<< 160 // we to account for their < as well. 161 if (LeftAngleCount > RightAngleCount) 162 NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount; 163 164 size_t StartOfTemplate = 0; 165 while (NumLeftAnglesToSkip--) 166 StartOfTemplate = Name.find('<', StartOfTemplate) + 1; 167 168 return Name.substr(0, StartOfTemplate - 1); 169 } 170 171 bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die, 172 AttributesInfo &Info, 173 OffsetsStringPool &StringPool, 174 bool StripTemplate) { 175 // This function will be called on DIEs having low_pcs and 176 // ranges. As getting the name might be more expansive, filter out 177 // blocks directly. 178 if (Die.getTag() == dwarf::DW_TAG_lexical_block) 179 return false; 180 181 if (!Info.MangledName) 182 if (const char *MangledName = Die.getLinkageName()) 183 Info.MangledName = StringPool.getEntry(MangledName); 184 185 if (!Info.Name) 186 if (const char *Name = Die.getShortName()) 187 Info.Name = StringPool.getEntry(Name); 188 189 if (!Info.MangledName) 190 Info.MangledName = Info.Name; 191 192 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) { 193 StringRef Name = Info.Name.getString(); 194 if (Optional<StringRef> StrippedName = StripTemplateParameters(Name)) 195 Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName); 196 } 197 198 return Info.Name || Info.MangledName; 199 } 200 201 /// Resolve the relative path to a build artifact referenced by DWARF by 202 /// applying DW_AT_comp_dir. 203 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) { 204 sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), "")); 205 } 206 207 /// Collect references to parseable Swift interfaces in imported 208 /// DW_TAG_module blocks. 209 static void analyzeImportedModule( 210 const DWARFDie &DIE, CompileUnit &CU, 211 swiftInterfacesMap *ParseableSwiftInterfaces, 212 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) { 213 if (CU.getLanguage() != dwarf::DW_LANG_Swift) 214 return; 215 216 if (!ParseableSwiftInterfaces) 217 return; 218 219 StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path)); 220 if (!Path.endswith(".swiftinterface")) 221 return; 222 // Don't track interfaces that are part of the SDK. 223 StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot)); 224 if (SysRoot.empty()) 225 SysRoot = CU.getSysRoot(); 226 if (!SysRoot.empty() && Path.startswith(SysRoot)) 227 return; 228 Optional<const char*> Name = dwarf::toString(DIE.find(dwarf::DW_AT_name)); 229 if (!Name) 230 return; 231 auto &Entry = (*ParseableSwiftInterfaces)[*Name]; 232 // The prepend path is applied later when copying. 233 DWARFDie CUDie = CU.getOrigUnit().getUnitDIE(); 234 SmallString<128> ResolvedPath; 235 if (sys::path::is_relative(Path)) 236 resolveRelativeObjectPath(ResolvedPath, CUDie); 237 sys::path::append(ResolvedPath, Path); 238 if (!Entry.empty() && Entry != ResolvedPath) 239 ReportWarning(Twine("Conflicting parseable interfaces for Swift Module ") + 240 *Name + ": " + Entry + " and " + Path, 241 DIE); 242 Entry = std::string(ResolvedPath.str()); 243 } 244 245 /// The distinct types of work performed by the work loop in 246 /// analyzeContextInfo. 247 enum class ContextWorklistItemType : uint8_t { 248 AnalyzeContextInfo, 249 UpdateChildPruning, 250 UpdatePruning, 251 }; 252 253 /// This class represents an item in the work list. The type defines what kind 254 /// of work needs to be performed when processing the current item. Everything 255 /// but the Type and Die fields are optional based on the type. 256 struct ContextWorklistItem { 257 DWARFDie Die; 258 unsigned ParentIdx; 259 union { 260 CompileUnit::DIEInfo *OtherInfo; 261 DeclContext *Context; 262 }; 263 ContextWorklistItemType Type; 264 bool InImportedModule; 265 266 ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T, 267 CompileUnit::DIEInfo *OtherInfo = nullptr) 268 : Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T), 269 InImportedModule(false) {} 270 271 ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx, 272 bool InImportedModule) 273 : Die(Die), ParentIdx(ParentIdx), Context(Context), 274 Type(ContextWorklistItemType::AnalyzeContextInfo), 275 InImportedModule(InImportedModule) {} 276 }; 277 278 static bool updatePruning(const DWARFDie &Die, CompileUnit &CU, 279 uint64_t ModulesEndOffset) { 280 CompileUnit::DIEInfo &Info = CU.getInfo(Die); 281 282 // Prune this DIE if it is either a forward declaration inside a 283 // DW_TAG_module or a DW_TAG_module that contains nothing but 284 // forward declarations. 285 Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) || 286 (isTypeTag(Die.getTag()) && 287 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0)); 288 289 // Only prune forward declarations inside a DW_TAG_module for which a 290 // definition exists elsewhere. 291 if (ModulesEndOffset == 0) 292 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset(); 293 else 294 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 && 295 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset; 296 297 return Info.Prune; 298 } 299 300 static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU, 301 CompileUnit::DIEInfo &ChildInfo) { 302 CompileUnit::DIEInfo &Info = CU.getInfo(Die); 303 Info.Prune &= ChildInfo.Prune; 304 } 305 306 /// Recursive helper to build the global DeclContext information and 307 /// gather the child->parent relationships in the original compile unit. 308 /// 309 /// This function uses the same work list approach as lookForDIEsToKeep. 310 /// 311 /// \return true when this DIE and all of its children are only 312 /// forward declarations to types defined in external clang modules 313 /// (i.e., forward declarations that are children of a DW_TAG_module). 314 static bool analyzeContextInfo( 315 const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU, 316 DeclContext *CurrentDeclContext, DeclContextTree &Contexts, 317 uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces, 318 std::function<void(const Twine &, const DWARFDie &)> ReportWarning, 319 bool InImportedModule = false) { 320 // LIFO work list. 321 std::vector<ContextWorklistItem> Worklist; 322 Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, InImportedModule); 323 324 while (!Worklist.empty()) { 325 ContextWorklistItem Current = Worklist.back(); 326 Worklist.pop_back(); 327 328 switch (Current.Type) { 329 case ContextWorklistItemType::UpdatePruning: 330 updatePruning(Current.Die, CU, ModulesEndOffset); 331 continue; 332 case ContextWorklistItemType::UpdateChildPruning: 333 updateChildPruning(Current.Die, CU, *Current.OtherInfo); 334 continue; 335 case ContextWorklistItemType::AnalyzeContextInfo: 336 break; 337 } 338 339 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die); 340 CompileUnit::DIEInfo &Info = CU.getInfo(Idx); 341 342 // Clang imposes an ODR on modules(!) regardless of the language: 343 // "The module-id should consist of only a single identifier, 344 // which provides the name of the module being defined. Each 345 // module shall have a single definition." 346 // 347 // This does not extend to the types inside the modules: 348 // "[I]n C, this implies that if two structs are defined in 349 // different submodules with the same name, those two types are 350 // distinct types (but may be compatible types if their 351 // definitions match)." 352 // 353 // We treat non-C++ modules like namespaces for this reason. 354 if (Current.Die.getTag() == dwarf::DW_TAG_module && 355 Current.ParentIdx == 0 && 356 dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") != 357 CU.getClangModuleName()) { 358 Current.InImportedModule = true; 359 analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces, 360 ReportWarning); 361 } 362 363 Info.ParentIdx = Current.ParentIdx; 364 bool InClangModule = CU.isClangModule() || Current.InImportedModule; 365 if (CU.hasODR() || InClangModule) { 366 if (Current.Context) { 367 auto PtrInvalidPair = Contexts.getChildDeclContext( 368 *Current.Context, Current.Die, CU, InClangModule); 369 Current.Context = PtrInvalidPair.getPointer(); 370 Info.Ctxt = 371 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer(); 372 if (Info.Ctxt) 373 Info.Ctxt->setDefinedInClangModule(InClangModule); 374 } else 375 Info.Ctxt = Current.Context = nullptr; 376 } 377 378 Info.Prune = Current.InImportedModule; 379 // Add children in reverse order to the worklist to effectively process 380 // them in order. 381 Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning); 382 for (auto Child : reverse(Current.Die.children())) { 383 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child); 384 Worklist.emplace_back( 385 Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo); 386 Worklist.emplace_back(Child, Current.Context, Idx, 387 Current.InImportedModule); 388 } 389 } 390 391 return CU.getInfo(DIE).Prune; 392 } 393 394 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) { 395 switch (Tag) { 396 default: 397 return false; 398 case dwarf::DW_TAG_class_type: 399 case dwarf::DW_TAG_common_block: 400 case dwarf::DW_TAG_lexical_block: 401 case dwarf::DW_TAG_structure_type: 402 case dwarf::DW_TAG_subprogram: 403 case dwarf::DW_TAG_subroutine_type: 404 case dwarf::DW_TAG_union_type: 405 return true; 406 } 407 llvm_unreachable("Invalid Tag"); 408 } 409 410 void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) { 411 Context.clear(); 412 413 for (DIEBlock *I : DIEBlocks) 414 I->~DIEBlock(); 415 for (DIELoc *I : DIELocs) 416 I->~DIELoc(); 417 418 DIEBlocks.clear(); 419 DIELocs.clear(); 420 DIEAlloc.Reset(); 421 } 422 423 /// Check if a variable describing DIE should be kept. 424 /// \returns updated TraversalFlags. 425 unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr, 426 const DWARFDie &DIE, 427 CompileUnit::DIEInfo &MyInfo, 428 unsigned Flags) { 429 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); 430 431 // Global variables with constant value can always be kept. 432 if (!(Flags & TF_InFunctionScope) && 433 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) { 434 MyInfo.InDebugMap = true; 435 return Flags | TF_Keep; 436 } 437 438 // See if there is a relocation to a valid debug map entry inside this 439 // variable's location. The order is important here. We want to always check 440 // if the variable has a valid relocation, so that the DIEInfo is filled. 441 // However, we don't want a static variable in a function to force us to keep 442 // the enclosing function, unless requested explicitly. 443 const bool HasLiveMemoryLocation = RelocMgr.isLiveVariable(DIE, MyInfo); 444 if (!HasLiveMemoryLocation || ((Flags & TF_InFunctionScope) && 445 !LLVM_UNLIKELY(Options.KeepFunctionForStatic))) 446 return Flags; 447 448 if (Options.Verbose) { 449 outs() << "Keeping variable DIE:"; 450 DIDumpOptions DumpOpts; 451 DumpOpts.ChildRecurseDepth = 0; 452 DumpOpts.Verbose = Options.Verbose; 453 DIE.dump(outs(), 8 /* Indent */, DumpOpts); 454 } 455 456 return Flags | TF_Keep; 457 } 458 459 /// Check if a function describing DIE should be kept. 460 /// \returns updated TraversalFlags. 461 unsigned DWARFLinker::shouldKeepSubprogramDIE( 462 AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE, 463 const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, 464 unsigned Flags) { 465 Flags |= TF_InFunctionScope; 466 467 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc)); 468 if (!LowPc) 469 return Flags; 470 471 assert(LowPc.hasValue() && "low_pc attribute is not an address."); 472 if (!RelocMgr.isLiveSubprogram(DIE, MyInfo)) 473 return Flags; 474 475 if (Options.Verbose) { 476 outs() << "Keeping subprogram DIE:"; 477 DIDumpOptions DumpOpts; 478 DumpOpts.ChildRecurseDepth = 0; 479 DumpOpts.Verbose = Options.Verbose; 480 DIE.dump(outs(), 8 /* Indent */, DumpOpts); 481 } 482 483 if (DIE.getTag() == dwarf::DW_TAG_label) { 484 if (Unit.hasLabelAt(*LowPc)) 485 return Flags; 486 487 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 488 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels 489 // that don't fall into the CU's aranges. This is wrong IMO. Debug info 490 // generation bugs aside, this is really wrong in the case of labels, where 491 // a label marking the end of a function will have a PC == CU's high_pc. 492 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc)) 493 .getValueOr(UINT64_MAX) <= LowPc) 494 return Flags; 495 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust); 496 return Flags | TF_Keep; 497 } 498 499 Flags |= TF_Keep; 500 501 Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc); 502 if (!HighPc) { 503 reportWarning("Function without high_pc. Range will be discarded.\n", File, 504 &DIE); 505 return Flags; 506 } 507 508 // Replace the debug map range with a more accurate one. 509 Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust); 510 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust); 511 return Flags; 512 } 513 514 /// Check if a DIE should be kept. 515 /// \returns updated TraversalFlags. 516 unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges, 517 const DWARFDie &DIE, const DWARFFile &File, 518 CompileUnit &Unit, 519 CompileUnit::DIEInfo &MyInfo, 520 unsigned Flags) { 521 switch (DIE.getTag()) { 522 case dwarf::DW_TAG_constant: 523 case dwarf::DW_TAG_variable: 524 return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags); 525 case dwarf::DW_TAG_subprogram: 526 case dwarf::DW_TAG_label: 527 return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo, 528 Flags); 529 case dwarf::DW_TAG_base_type: 530 // DWARF Expressions may reference basic types, but scanning them 531 // is expensive. Basic types are tiny, so just keep all of them. 532 case dwarf::DW_TAG_imported_module: 533 case dwarf::DW_TAG_imported_declaration: 534 case dwarf::DW_TAG_imported_unit: 535 // We always want to keep these. 536 return Flags | TF_Keep; 537 default: 538 break; 539 } 540 541 return Flags; 542 } 543 544 /// Helper that updates the completeness of the current DIE based on the 545 /// completeness of one of its children. It depends on the incompleteness of 546 /// the children already being computed. 547 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU, 548 CompileUnit::DIEInfo &ChildInfo) { 549 switch (Die.getTag()) { 550 case dwarf::DW_TAG_structure_type: 551 case dwarf::DW_TAG_class_type: 552 case dwarf::DW_TAG_union_type: 553 break; 554 default: 555 return; 556 } 557 558 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die); 559 560 if (ChildInfo.Incomplete || ChildInfo.Prune) 561 MyInfo.Incomplete = true; 562 } 563 564 /// Helper that updates the completeness of the current DIE based on the 565 /// completeness of the DIEs it references. It depends on the incompleteness of 566 /// the referenced DIE already being computed. 567 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU, 568 CompileUnit::DIEInfo &RefInfo) { 569 switch (Die.getTag()) { 570 case dwarf::DW_TAG_typedef: 571 case dwarf::DW_TAG_member: 572 case dwarf::DW_TAG_reference_type: 573 case dwarf::DW_TAG_ptr_to_member_type: 574 case dwarf::DW_TAG_pointer_type: 575 break; 576 default: 577 return; 578 } 579 580 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die); 581 582 if (MyInfo.Incomplete) 583 return; 584 585 if (RefInfo.Incomplete) 586 MyInfo.Incomplete = true; 587 } 588 589 /// Look at the children of the given DIE and decide whether they should be 590 /// kept. 591 void DWARFLinker::lookForChildDIEsToKeep( 592 const DWARFDie &Die, CompileUnit &CU, unsigned Flags, 593 SmallVectorImpl<WorklistItem> &Worklist) { 594 // The TF_ParentWalk flag tells us that we are currently walking up the 595 // parent chain of a required DIE, and we don't want to mark all the children 596 // of the parents as kept (consider for example a DW_TAG_namespace node in 597 // the parent chain). There are however a set of DIE types for which we want 598 // to ignore that directive and still walk their children. 599 if (dieNeedsChildrenToBeMeaningful(Die.getTag())) 600 Flags &= ~DWARFLinker::TF_ParentWalk; 601 602 // We're finished if this DIE has no children or we're walking the parent 603 // chain. 604 if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk)) 605 return; 606 607 // Add children in reverse order to the worklist to effectively process them 608 // in order. 609 for (auto Child : reverse(Die.children())) { 610 // Add a worklist item before every child to calculate incompleteness right 611 // after the current child is processed. 612 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child); 613 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness, 614 &ChildInfo); 615 Worklist.emplace_back(Child, CU, Flags); 616 } 617 } 618 619 /// Look at DIEs referenced by the given DIE and decide whether they should be 620 /// kept. All DIEs referenced though attributes should be kept. 621 void DWARFLinker::lookForRefDIEsToKeep( 622 const DWARFDie &Die, CompileUnit &CU, unsigned Flags, 623 const UnitListTy &Units, const DWARFFile &File, 624 SmallVectorImpl<WorklistItem> &Worklist) { 625 bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk) 626 ? (Flags & DWARFLinker::TF_ODR) 627 : CU.hasODR(); 628 DWARFUnit &Unit = CU.getOrigUnit(); 629 DWARFDataExtractor Data = Unit.getDebugInfoExtractor(); 630 const auto *Abbrev = Die.getAbbreviationDeclarationPtr(); 631 uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode()); 632 633 SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs; 634 for (const auto &AttrSpec : Abbrev->attributes()) { 635 DWARFFormValue Val(AttrSpec.Form); 636 if (!Val.isFormClass(DWARFFormValue::FC_Reference) || 637 AttrSpec.Attr == dwarf::DW_AT_sibling) { 638 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, 639 Unit.getFormParams()); 640 continue; 641 } 642 643 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit); 644 CompileUnit *ReferencedCU; 645 if (auto RefDie = 646 resolveDIEReference(File, Units, Val, Die, ReferencedCU)) { 647 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie); 648 bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() && 649 Info.Ctxt->isDefinedInClangModule(); 650 // If the referenced DIE has a DeclContext that has already been 651 // emitted, then do not keep the one in this CU. We'll link to 652 // the canonical DIE in cloneDieReferenceAttribute. 653 // 654 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't 655 // be necessary and could be advantageously replaced by 656 // ReferencedCU->hasODR() && CU.hasODR(). 657 // 658 // FIXME: compatibility with dsymutil-classic. There is no 659 // reason not to unique ref_addr references. 660 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) && 661 Info.Ctxt && 662 Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt && 663 Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr)) 664 continue; 665 666 // Keep a module forward declaration if there is no definition. 667 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt && 668 Info.Ctxt->getCanonicalDIEOffset())) 669 Info.Prune = false; 670 ReferencedDIEs.emplace_back(RefDie, *ReferencedCU); 671 } 672 } 673 674 unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0; 675 676 // Add referenced DIEs in reverse order to the worklist to effectively 677 // process them in order. 678 for (auto &P : reverse(ReferencedDIEs)) { 679 // Add a worklist item before every child to calculate incompleteness right 680 // after the current child is processed. 681 CompileUnit::DIEInfo &Info = P.second.getInfo(P.first); 682 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness, 683 &Info); 684 Worklist.emplace_back(P.first, P.second, 685 DWARFLinker::TF_Keep | 686 DWARFLinker::TF_DependencyWalk | ODRFlag); 687 } 688 } 689 690 /// Look at the parent of the given DIE and decide whether they should be kept. 691 void DWARFLinker::lookForParentDIEsToKeep( 692 unsigned AncestorIdx, CompileUnit &CU, unsigned Flags, 693 SmallVectorImpl<WorklistItem> &Worklist) { 694 // Stop if we encounter an ancestor that's already marked as kept. 695 if (CU.getInfo(AncestorIdx).Keep) 696 return; 697 698 DWARFUnit &Unit = CU.getOrigUnit(); 699 DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx); 700 Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags); 701 Worklist.emplace_back(ParentDIE, CU, Flags); 702 } 703 704 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that 705 /// information in \p CU's DIEInfo. 706 /// 707 /// This function is the entry point of the DIE selection algorithm. It is 708 /// expected to walk the DIE tree in file order and (though the mediation of 709 /// its helper) call hasValidRelocation() on each DIE that might be a 'root 710 /// DIE' (See DwarfLinker class comment). 711 /// 712 /// While walking the dependencies of root DIEs, this function is also called, 713 /// but during these dependency walks the file order is not respected. The 714 /// TF_DependencyWalk flag tells us which kind of traversal we are currently 715 /// doing. 716 /// 717 /// The recursive algorithm is implemented iteratively as a work list because 718 /// very deep recursion could exhaust the stack for large projects. The work 719 /// list acts as a scheduler for different types of work that need to be 720 /// performed. 721 /// 722 /// The recursive nature of the algorithm is simulated by running the "main" 723 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs 724 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or 725 /// fixing up a computed property (UpdateChildIncompleteness, 726 /// UpdateRefIncompleteness). 727 /// 728 /// The return value indicates whether the DIE is incomplete. 729 void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap, 730 RangesTy &Ranges, const UnitListTy &Units, 731 const DWARFDie &Die, const DWARFFile &File, 732 CompileUnit &Cu, unsigned Flags) { 733 // LIFO work list. 734 SmallVector<WorklistItem, 4> Worklist; 735 Worklist.emplace_back(Die, Cu, Flags); 736 737 while (!Worklist.empty()) { 738 WorklistItem Current = Worklist.pop_back_val(); 739 740 // Look at the worklist type to decide what kind of work to perform. 741 switch (Current.Type) { 742 case WorklistItemType::UpdateChildIncompleteness: 743 updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo); 744 continue; 745 case WorklistItemType::UpdateRefIncompleteness: 746 updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo); 747 continue; 748 case WorklistItemType::LookForChildDIEsToKeep: 749 lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist); 750 continue; 751 case WorklistItemType::LookForRefDIEsToKeep: 752 lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File, 753 Worklist); 754 continue; 755 case WorklistItemType::LookForParentDIEsToKeep: 756 lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags, 757 Worklist); 758 continue; 759 case WorklistItemType::LookForDIEsToKeep: 760 break; 761 } 762 763 unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die); 764 CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx); 765 766 if (MyInfo.Prune) 767 continue; 768 769 // If the Keep flag is set, we are marking a required DIE's dependencies. 770 // If our target is already marked as kept, we're all set. 771 bool AlreadyKept = MyInfo.Keep; 772 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept) 773 continue; 774 775 // We must not call shouldKeepDIE while called from keepDIEAndDependencies, 776 // because it would screw up the relocation finding logic. 777 if (!(Current.Flags & TF_DependencyWalk)) 778 Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File, 779 Current.CU, MyInfo, Current.Flags); 780 781 // Finish by looking for child DIEs. Because of the LIFO worklist we need 782 // to schedule that work before any subsequent items are added to the 783 // worklist. 784 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags, 785 WorklistItemType::LookForChildDIEsToKeep); 786 787 if (AlreadyKept || !(Current.Flags & TF_Keep)) 788 continue; 789 790 // If it is a newly kept DIE mark it as well as all its dependencies as 791 // kept. 792 MyInfo.Keep = true; 793 794 // We're looking for incomplete types. 795 MyInfo.Incomplete = 796 Current.Die.getTag() != dwarf::DW_TAG_subprogram && 797 Current.Die.getTag() != dwarf::DW_TAG_member && 798 dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0); 799 800 // After looking at the parent chain, look for referenced DIEs. Because of 801 // the LIFO worklist we need to schedule that work before any subsequent 802 // items are added to the worklist. 803 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags, 804 WorklistItemType::LookForRefDIEsToKeep); 805 806 bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR) 807 : Current.CU.hasODR(); 808 unsigned ODRFlag = UseOdr ? TF_ODR : 0; 809 unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag; 810 811 // Now schedule the parent walk. 812 Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags); 813 } 814 } 815 816 /// Assign an abbreviation number to \p Abbrev. 817 /// 818 /// Our DIEs get freed after every DebugMapObject has been processed, 819 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to 820 /// the instances hold by the DIEs. When we encounter an abbreviation 821 /// that we don't know, we create a permanent copy of it. 822 void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) { 823 // Check the set for priors. 824 FoldingSetNodeID ID; 825 Abbrev.Profile(ID); 826 void *InsertToken; 827 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken); 828 829 // If it's newly added. 830 if (InSet) { 831 // Assign existing abbreviation number. 832 Abbrev.setNumber(InSet->getNumber()); 833 } else { 834 // Add to abbreviation list. 835 Abbreviations.push_back( 836 std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren())); 837 for (const auto &Attr : Abbrev.getData()) 838 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm()); 839 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken); 840 // Assign the unique abbreviation number. 841 Abbrev.setNumber(Abbreviations.size()); 842 Abbreviations.back()->setNumber(Abbreviations.size()); 843 } 844 } 845 846 unsigned DWARFLinker::DIECloner::cloneStringAttribute( 847 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, 848 const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) { 849 Optional<const char *> String = dwarf::toString(Val); 850 if (!String) 851 return 0; 852 853 // Switch everything to out of line strings. 854 auto StringEntry = StringPool.getEntry(*String); 855 856 // Update attributes info. 857 if (AttrSpec.Attr == dwarf::DW_AT_name) 858 Info.Name = StringEntry; 859 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name || 860 AttrSpec.Attr == dwarf::DW_AT_linkage_name) 861 Info.MangledName = StringEntry; 862 863 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp, 864 DIEInteger(StringEntry.getOffset())); 865 866 return 4; 867 } 868 869 unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute( 870 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec, 871 unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File, 872 CompileUnit &Unit) { 873 const DWARFUnit &U = Unit.getOrigUnit(); 874 uint64_t Ref = *Val.getAsReference(); 875 876 DIE *NewRefDie = nullptr; 877 CompileUnit *RefUnit = nullptr; 878 DeclContext *Ctxt = nullptr; 879 880 DWARFDie RefDie = 881 Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit); 882 883 // If the referenced DIE is not found, drop the attribute. 884 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling) 885 return 0; 886 887 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie); 888 889 // If we already have emitted an equivalent DeclContext, just point 890 // at it. 891 if (isODRAttribute(AttrSpec.Attr)) { 892 Ctxt = RefInfo.Ctxt; 893 if (Ctxt && Ctxt->getCanonicalDIEOffset()) { 894 DIEInteger Attr(Ctxt->getCanonicalDIEOffset()); 895 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 896 dwarf::DW_FORM_ref_addr, Attr); 897 return U.getRefAddrByteSize(); 898 } 899 } 900 901 if (!RefInfo.Clone) { 902 assert(Ref > InputDIE.getOffset()); 903 // We haven't cloned this DIE yet. Just create an empty one and 904 // store it. It'll get really cloned when we process it. 905 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag())); 906 } 907 NewRefDie = RefInfo.Clone; 908 909 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr || 910 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) { 911 // We cannot currently rely on a DIEEntry to emit ref_addr 912 // references, because the implementation calls back to DwarfDebug 913 // to find the unit offset. (We don't have a DwarfDebug) 914 // FIXME: we should be able to design DIEEntry reliance on 915 // DwarfDebug away. 916 uint64_t Attr; 917 if (Ref < InputDIE.getOffset()) { 918 // We must have already cloned that DIE. 919 uint32_t NewRefOffset = 920 RefUnit->getStartOffset() + NewRefDie->getOffset(); 921 Attr = NewRefOffset; 922 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 923 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)); 924 } else { 925 // A forward reference. Note and fixup later. 926 Attr = 0xBADDEF; 927 Unit.noteForwardReference( 928 NewRefDie, RefUnit, Ctxt, 929 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 930 dwarf::DW_FORM_ref_addr, DIEInteger(Attr))); 931 } 932 return U.getRefAddrByteSize(); 933 } 934 935 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 936 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie)); 937 938 return AttrSize; 939 } 940 941 void DWARFLinker::DIECloner::cloneExpression( 942 DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File, 943 CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) { 944 using Encoding = DWARFExpression::Operation::Encoding; 945 946 uint64_t OpOffset = 0; 947 for (auto &Op : Expression) { 948 auto Description = Op.getDescription(); 949 // DW_OP_const_type is variable-length and has 3 950 // operands. DWARFExpression thus far only supports 2. 951 auto Op0 = Description.Op[0]; 952 auto Op1 = Description.Op[1]; 953 if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) || 954 (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1)) 955 Linker.reportWarning("Unsupported DW_OP encoding.", File); 956 957 if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) || 958 (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) { 959 // This code assumes that the other non-typeref operand fits into 1 byte. 960 assert(OpOffset < Op.getEndOffset()); 961 uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1; 962 assert(ULEBsize <= 16); 963 964 // Copy over the operation. 965 OutputBuffer.push_back(Op.getCode()); 966 uint64_t RefOffset; 967 if (Op1 == Encoding::SizeNA) { 968 RefOffset = Op.getRawOperand(0); 969 } else { 970 OutputBuffer.push_back(Op.getRawOperand(0)); 971 RefOffset = Op.getRawOperand(1); 972 } 973 uint32_t Offset = 0; 974 // Look up the base type. For DW_OP_convert, the operand may be 0 to 975 // instead indicate the generic type. The same holds for 976 // DW_OP_reinterpret, which is currently not supported. 977 if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) { 978 auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset); 979 CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie); 980 if (DIE *Clone = Info.Clone) 981 Offset = Clone->getOffset(); 982 else 983 Linker.reportWarning( 984 "base type ref doesn't point to DW_TAG_base_type.", File); 985 } 986 uint8_t ULEB[16]; 987 unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize); 988 if (RealSize > ULEBsize) { 989 // Emit the generic type as a fallback. 990 RealSize = encodeULEB128(0, ULEB, ULEBsize); 991 Linker.reportWarning("base type ref doesn't fit.", File); 992 } 993 assert(RealSize == ULEBsize && "padding failed"); 994 ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize); 995 OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end()); 996 } else { 997 // Copy over everything else unmodified. 998 StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset()); 999 OutputBuffer.append(Bytes.begin(), Bytes.end()); 1000 } 1001 OpOffset = Op.getEndOffset(); 1002 } 1003 } 1004 1005 unsigned DWARFLinker::DIECloner::cloneBlockAttribute( 1006 DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec, 1007 const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) { 1008 DIEValueList *Attr; 1009 DIEValue Value; 1010 DIELoc *Loc = nullptr; 1011 DIEBlock *Block = nullptr; 1012 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) { 1013 Loc = new (DIEAlloc) DIELoc; 1014 Linker.DIELocs.push_back(Loc); 1015 } else { 1016 Block = new (DIEAlloc) DIEBlock; 1017 Linker.DIEBlocks.push_back(Block); 1018 } 1019 Attr = Loc ? static_cast<DIEValueList *>(Loc) 1020 : static_cast<DIEValueList *>(Block); 1021 1022 if (Loc) 1023 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), 1024 dwarf::Form(AttrSpec.Form), Loc); 1025 else 1026 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), 1027 dwarf::Form(AttrSpec.Form), Block); 1028 1029 // If the block is a DWARF Expression, clone it into the temporary 1030 // buffer using cloneExpression(), otherwise copy the data directly. 1031 SmallVector<uint8_t, 32> Buffer; 1032 ArrayRef<uint8_t> Bytes = *Val.getAsBlock(); 1033 if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) && 1034 (Val.isFormClass(DWARFFormValue::FC_Block) || 1035 Val.isFormClass(DWARFFormValue::FC_Exprloc))) { 1036 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 1037 DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()), 1038 IsLittleEndian, OrigUnit.getAddressByteSize()); 1039 DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(), 1040 OrigUnit.getFormParams().Format); 1041 cloneExpression(Data, Expr, File, Unit, Buffer); 1042 Bytes = Buffer; 1043 } 1044 for (auto Byte : Bytes) 1045 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0), 1046 dwarf::DW_FORM_data1, DIEInteger(Byte)); 1047 1048 // FIXME: If DIEBlock and DIELoc just reuses the Size field of 1049 // the DIE class, this "if" could be replaced by 1050 // Attr->setSize(Bytes.size()). 1051 if (Loc) 1052 Loc->setSize(Bytes.size()); 1053 else 1054 Block->setSize(Bytes.size()); 1055 1056 Die.addValue(DIEAlloc, Value); 1057 return AttrSize; 1058 } 1059 1060 unsigned DWARFLinker::DIECloner::cloneAddressAttribute( 1061 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, 1062 const CompileUnit &Unit, AttributesInfo &Info) { 1063 if (LLVM_UNLIKELY(Linker.Options.Update)) { 1064 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) 1065 Info.HasLowPc = true; 1066 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1067 dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue())); 1068 return Unit.getOrigUnit().getAddressByteSize(); 1069 } 1070 1071 dwarf::Form Form = AttrSpec.Form; 1072 uint64_t Addr = 0; 1073 if (Form == dwarf::DW_FORM_addrx) { 1074 if (Optional<uint64_t> AddrOffsetSectionBase = 1075 Unit.getOrigUnit().getAddrOffsetSectionBase()) { 1076 uint64_t StartOffset = *AddrOffsetSectionBase + Val.getRawUValue(); 1077 uint64_t EndOffset = 1078 StartOffset + Unit.getOrigUnit().getAddressByteSize(); 1079 if (llvm::Expected<uint64_t> RelocAddr = 1080 ObjFile.Addresses->relocateIndexedAddr(StartOffset, EndOffset)) 1081 Addr = *RelocAddr; 1082 else 1083 Linker.reportWarning(toString(RelocAddr.takeError()), ObjFile); 1084 } else 1085 Linker.reportWarning("no base offset for address table", ObjFile); 1086 1087 // If this is an indexed address emit the debug_info address. 1088 Form = dwarf::DW_FORM_addr; 1089 } else 1090 Addr = *Val.getAsAddress(); 1091 1092 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) { 1093 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine || 1094 Die.getTag() == dwarf::DW_TAG_lexical_block || 1095 Die.getTag() == dwarf::DW_TAG_label) { 1096 // The low_pc of a block or inline subroutine might get 1097 // relocated because it happens to match the low_pc of the 1098 // enclosing subprogram. To prevent issues with that, always use 1099 // the low_pc from the input DIE if relocations have been applied. 1100 Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max() 1101 ? Info.OrigLowPc 1102 : Addr) + 1103 Info.PCOffset; 1104 } else if (Die.getTag() == dwarf::DW_TAG_compile_unit) { 1105 Addr = Unit.getLowPc(); 1106 if (Addr == std::numeric_limits<uint64_t>::max()) 1107 return 0; 1108 } 1109 Info.HasLowPc = true; 1110 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) { 1111 if (Die.getTag() == dwarf::DW_TAG_compile_unit) { 1112 if (uint64_t HighPc = Unit.getHighPc()) 1113 Addr = HighPc; 1114 else 1115 return 0; 1116 } else 1117 // If we have a high_pc recorded for the input DIE, use 1118 // it. Otherwise (when no relocations where applied) just use the 1119 // one we just decoded. 1120 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset; 1121 } else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) { 1122 // Relocate a return PC address within a call site entry. 1123 if (Die.getTag() == dwarf::DW_TAG_call_site) 1124 Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) + 1125 Info.PCOffset; 1126 } else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) { 1127 // Relocate the address of a branch instruction within a call site entry. 1128 if (Die.getTag() == dwarf::DW_TAG_call_site) 1129 Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset; 1130 } 1131 1132 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr), 1133 static_cast<dwarf::Form>(Form), DIEInteger(Addr)); 1134 return Unit.getOrigUnit().getAddressByteSize(); 1135 } 1136 1137 unsigned DWARFLinker::DIECloner::cloneScalarAttribute( 1138 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File, 1139 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val, 1140 unsigned AttrSize, AttributesInfo &Info) { 1141 uint64_t Value; 1142 1143 if (LLVM_UNLIKELY(Linker.Options.Update)) { 1144 if (auto OptionalValue = Val.getAsUnsignedConstant()) 1145 Value = *OptionalValue; 1146 else if (auto OptionalValue = Val.getAsSignedConstant()) 1147 Value = *OptionalValue; 1148 else if (auto OptionalValue = Val.getAsSectionOffset()) 1149 Value = *OptionalValue; 1150 else { 1151 Linker.reportWarning( 1152 "Unsupported scalar attribute form. Dropping attribute.", File, 1153 &InputDIE); 1154 return 0; 1155 } 1156 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) 1157 Info.IsDeclaration = true; 1158 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1159 dwarf::Form(AttrSpec.Form), DIEInteger(Value)); 1160 return AttrSize; 1161 } 1162 1163 if (AttrSpec.Attr == dwarf::DW_AT_high_pc && 1164 Die.getTag() == dwarf::DW_TAG_compile_unit) { 1165 if (Unit.getLowPc() == -1ULL) 1166 return 0; 1167 // Dwarf >= 4 high_pc is an size, not an address. 1168 Value = Unit.getHighPc() - Unit.getLowPc(); 1169 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset) 1170 Value = *Val.getAsSectionOffset(); 1171 else if (AttrSpec.Form == dwarf::DW_FORM_sdata) 1172 Value = *Val.getAsSignedConstant(); 1173 else if (auto OptionalValue = Val.getAsUnsignedConstant()) 1174 Value = *OptionalValue; 1175 else { 1176 Linker.reportWarning( 1177 "Unsupported scalar attribute form. Dropping attribute.", File, 1178 &InputDIE); 1179 return 0; 1180 } 1181 PatchLocation Patch = 1182 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1183 dwarf::Form(AttrSpec.Form), DIEInteger(Value)); 1184 if (AttrSpec.Attr == dwarf::DW_AT_ranges) { 1185 Unit.noteRangeAttribute(Die, Patch); 1186 Info.HasRanges = true; 1187 } 1188 1189 // A more generic way to check for location attributes would be 1190 // nice, but it's very unlikely that any other attribute needs a 1191 // location list. 1192 // FIXME: use DWARFAttribute::mayHaveLocationDescription(). 1193 else if (AttrSpec.Attr == dwarf::DW_AT_location || 1194 AttrSpec.Attr == dwarf::DW_AT_frame_base) { 1195 Unit.noteLocationAttribute(Patch, Info.PCOffset); 1196 } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) 1197 Info.IsDeclaration = true; 1198 1199 return AttrSize; 1200 } 1201 1202 /// Clone \p InputDIE's attribute described by \p AttrSpec with 1203 /// value \p Val, and add it to \p Die. 1204 /// \returns the size of the cloned attribute. 1205 unsigned DWARFLinker::DIECloner::cloneAttribute( 1206 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File, 1207 CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val, 1208 const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info, 1209 bool IsLittleEndian) { 1210 const DWARFUnit &U = Unit.getOrigUnit(); 1211 1212 switch (AttrSpec.Form) { 1213 case dwarf::DW_FORM_strp: 1214 case dwarf::DW_FORM_string: 1215 case dwarf::DW_FORM_strx: 1216 case dwarf::DW_FORM_strx1: 1217 case dwarf::DW_FORM_strx2: 1218 case dwarf::DW_FORM_strx3: 1219 case dwarf::DW_FORM_strx4: 1220 return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info); 1221 case dwarf::DW_FORM_ref_addr: 1222 case dwarf::DW_FORM_ref1: 1223 case dwarf::DW_FORM_ref2: 1224 case dwarf::DW_FORM_ref4: 1225 case dwarf::DW_FORM_ref8: 1226 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val, 1227 File, Unit); 1228 case dwarf::DW_FORM_block: 1229 case dwarf::DW_FORM_block1: 1230 case dwarf::DW_FORM_block2: 1231 case dwarf::DW_FORM_block4: 1232 case dwarf::DW_FORM_exprloc: 1233 return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize, 1234 IsLittleEndian); 1235 case dwarf::DW_FORM_addr: 1236 case dwarf::DW_FORM_addrx: 1237 return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info); 1238 case dwarf::DW_FORM_data1: 1239 case dwarf::DW_FORM_data2: 1240 case dwarf::DW_FORM_data4: 1241 case dwarf::DW_FORM_data8: 1242 case dwarf::DW_FORM_udata: 1243 case dwarf::DW_FORM_sdata: 1244 case dwarf::DW_FORM_sec_offset: 1245 case dwarf::DW_FORM_flag: 1246 case dwarf::DW_FORM_flag_present: 1247 return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val, 1248 AttrSize, Info); 1249 default: 1250 Linker.reportWarning("Unsupported attribute form " + 1251 dwarf::FormEncodingString(AttrSpec.Form) + 1252 " in cloneAttribute. Dropping.", 1253 File, &InputDIE); 1254 } 1255 1256 return 0; 1257 } 1258 1259 static bool isObjCSelector(StringRef Name) { 1260 return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') && 1261 (Name[1] == '['); 1262 } 1263 1264 void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit, 1265 const DIE *Die, 1266 DwarfStringPoolEntryRef Name, 1267 OffsetsStringPool &StringPool, 1268 bool SkipPubSection) { 1269 assert(isObjCSelector(Name.getString()) && "not an objc selector"); 1270 // Objective C method or class function. 1271 // "- [Class(Category) selector :withArg ...]" 1272 StringRef ClassNameStart(Name.getString().drop_front(2)); 1273 size_t FirstSpace = ClassNameStart.find(' '); 1274 if (FirstSpace == StringRef::npos) 1275 return; 1276 1277 StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1); 1278 if (!SelectorStart.size()) 1279 return; 1280 1281 StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1); 1282 Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection); 1283 1284 // Add an entry for the class name that points to this 1285 // method/class function. 1286 StringRef ClassName(ClassNameStart.data(), FirstSpace); 1287 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection); 1288 1289 if (ClassName[ClassName.size() - 1] == ')') { 1290 size_t OpenParens = ClassName.find('('); 1291 if (OpenParens != StringRef::npos) { 1292 StringRef ClassNameNoCategory(ClassName.data(), OpenParens); 1293 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory), 1294 SkipPubSection); 1295 1296 std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2); 1297 // FIXME: The missing space here may be a bug, but 1298 // dsymutil-classic also does it this way. 1299 MethodNameNoCategory.append(std::string(SelectorStart)); 1300 Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory), 1301 SkipPubSection); 1302 } 1303 } 1304 } 1305 1306 static bool 1307 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec, 1308 uint16_t Tag, bool InDebugMap, bool SkipPC, 1309 bool InFunctionScope) { 1310 switch (AttrSpec.Attr) { 1311 default: 1312 return false; 1313 case dwarf::DW_AT_low_pc: 1314 case dwarf::DW_AT_high_pc: 1315 case dwarf::DW_AT_ranges: 1316 return SkipPC; 1317 case dwarf::DW_AT_str_offsets_base: 1318 // FIXME: Use the string offset table with Dwarf 5. 1319 return true; 1320 case dwarf::DW_AT_location: 1321 case dwarf::DW_AT_frame_base: 1322 // FIXME: for some reason dsymutil-classic keeps the location attributes 1323 // when they are of block type (i.e. not location lists). This is totally 1324 // wrong for globals where we will keep a wrong address. It is mostly 1325 // harmless for locals, but there is no point in keeping these anyway when 1326 // the function wasn't linked. 1327 return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable && 1328 !InDebugMap)) && 1329 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block); 1330 } 1331 } 1332 1333 DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE, 1334 const DWARFFile &File, CompileUnit &Unit, 1335 OffsetsStringPool &StringPool, 1336 int64_t PCOffset, uint32_t OutOffset, 1337 unsigned Flags, bool IsLittleEndian, 1338 DIE *Die) { 1339 DWARFUnit &U = Unit.getOrigUnit(); 1340 unsigned Idx = U.getDIEIndex(InputDIE); 1341 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx); 1342 1343 // Should the DIE appear in the output? 1344 if (!Unit.getInfo(Idx).Keep) 1345 return nullptr; 1346 1347 uint64_t Offset = InputDIE.getOffset(); 1348 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE"); 1349 if (!Die) { 1350 // The DIE might have been already created by a forward reference 1351 // (see cloneDieReferenceAttribute()). 1352 if (!Info.Clone) 1353 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag())); 1354 Die = Info.Clone; 1355 } 1356 1357 assert(Die->getTag() == InputDIE.getTag()); 1358 Die->setOffset(OutOffset); 1359 if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete && 1360 Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt && 1361 Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt && 1362 !Info.Ctxt->getCanonicalDIEOffset()) { 1363 // We are about to emit a DIE that is the root of its own valid 1364 // DeclContext tree. Make the current offset the canonical offset 1365 // for this context. 1366 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset()); 1367 } 1368 1369 // Extract and clone every attribute. 1370 DWARFDataExtractor Data = U.getDebugInfoExtractor(); 1371 // Point to the next DIE (generally there is always at least a NULL 1372 // entry after the current one). If this is a lone 1373 // DW_TAG_compile_unit without any children, point to the next unit. 1374 uint64_t NextOffset = (Idx + 1 < U.getNumDIEs()) 1375 ? U.getDIEAtIndex(Idx + 1).getOffset() 1376 : U.getNextUnitOffset(); 1377 AttributesInfo AttrInfo; 1378 1379 // We could copy the data only if we need to apply a relocation to it. After 1380 // testing, it seems there is no performance downside to doing the copy 1381 // unconditionally, and it makes the code simpler. 1382 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset)); 1383 Data = 1384 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize()); 1385 1386 // Modify the copy with relocated addresses. 1387 if (ObjFile.Addresses->applyValidRelocs(DIECopy, Offset, 1388 Data.isLittleEndian())) { 1389 // If we applied relocations, we store the value of high_pc that was 1390 // potentially stored in the input DIE. If high_pc is an address 1391 // (Dwarf version == 2), then it might have been relocated to a 1392 // totally unrelated value (because the end address in the object 1393 // file might be start address of another function which got moved 1394 // independently by the linker). The computation of the actual 1395 // high_pc value is done in cloneAddressAttribute(). 1396 AttrInfo.OrigHighPc = 1397 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0); 1398 // Also store the low_pc. It might get relocated in an 1399 // inline_subprogram that happens at the beginning of its 1400 // inlining function. 1401 AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc), 1402 std::numeric_limits<uint64_t>::max()); 1403 AttrInfo.OrigCallReturnPc = 1404 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0); 1405 AttrInfo.OrigCallPc = 1406 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0); 1407 } 1408 1409 // Reset the Offset to 0 as we will be working on the local copy of 1410 // the data. 1411 Offset = 0; 1412 1413 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr(); 1414 Offset += getULEB128Size(Abbrev->getCode()); 1415 1416 // We are entering a subprogram. Get and propagate the PCOffset. 1417 if (Die->getTag() == dwarf::DW_TAG_subprogram) 1418 PCOffset = Info.AddrAdjust; 1419 AttrInfo.PCOffset = PCOffset; 1420 1421 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) { 1422 Flags |= TF_InFunctionScope; 1423 if (!Info.InDebugMap && LLVM_LIKELY(!Update)) 1424 Flags |= TF_SkipPC; 1425 } else if (Abbrev->getTag() == dwarf::DW_TAG_variable) { 1426 // Function-local globals could be in the debug map even when the function 1427 // is not, e.g., inlined functions. 1428 if ((Flags & TF_InFunctionScope) && Info.InDebugMap) 1429 Flags &= ~TF_SkipPC; 1430 } 1431 1432 for (const auto &AttrSpec : Abbrev->attributes()) { 1433 if (LLVM_LIKELY(!Update) && 1434 shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap, 1435 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) { 1436 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, 1437 U.getFormParams()); 1438 continue; 1439 } 1440 1441 DWARFFormValue Val(AttrSpec.Form); 1442 uint64_t AttrSize = Offset; 1443 Val.extractValue(Data, &Offset, U.getFormParams(), &U); 1444 AttrSize = Offset - AttrSize; 1445 1446 OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val, 1447 AttrSpec, AttrSize, AttrInfo, IsLittleEndian); 1448 } 1449 1450 // Look for accelerator entries. 1451 uint16_t Tag = InputDIE.getTag(); 1452 // FIXME: This is slightly wrong. An inline_subroutine without a 1453 // low_pc, but with AT_ranges might be interesting to get into the 1454 // accelerator tables too. For now stick with dsymutil's behavior. 1455 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) && 1456 Tag != dwarf::DW_TAG_compile_unit && 1457 getDIENames(InputDIE, AttrInfo, StringPool, 1458 Tag != dwarf::DW_TAG_inlined_subroutine)) { 1459 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name) 1460 Unit.addNameAccelerator(Die, AttrInfo.MangledName, 1461 Tag == dwarf::DW_TAG_inlined_subroutine); 1462 if (AttrInfo.Name) { 1463 if (AttrInfo.NameWithoutTemplate) 1464 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate, 1465 /* SkipPubSection */ true); 1466 Unit.addNameAccelerator(Die, AttrInfo.Name, 1467 Tag == dwarf::DW_TAG_inlined_subroutine); 1468 } 1469 if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString())) 1470 addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool, 1471 /* SkipPubSection =*/true); 1472 1473 } else if (Tag == dwarf::DW_TAG_namespace) { 1474 if (!AttrInfo.Name) 1475 AttrInfo.Name = StringPool.getEntry("(anonymous namespace)"); 1476 Unit.addNamespaceAccelerator(Die, AttrInfo.Name); 1477 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration && 1478 getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name && 1479 AttrInfo.Name.getString()[0]) { 1480 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File); 1481 uint64_t RuntimeLang = 1482 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class)) 1483 .getValueOr(0); 1484 bool ObjCClassIsImplementation = 1485 (RuntimeLang == dwarf::DW_LANG_ObjC || 1486 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) && 1487 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type)) 1488 .getValueOr(0); 1489 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation, 1490 Hash); 1491 } 1492 1493 // Determine whether there are any children that we want to keep. 1494 bool HasChildren = false; 1495 for (auto Child : InputDIE.children()) { 1496 unsigned Idx = U.getDIEIndex(Child); 1497 if (Unit.getInfo(Idx).Keep) { 1498 HasChildren = true; 1499 break; 1500 } 1501 } 1502 1503 DIEAbbrev NewAbbrev = Die->generateAbbrev(); 1504 if (HasChildren) 1505 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes); 1506 // Assign a permanent abbrev number 1507 Linker.assignAbbrev(NewAbbrev); 1508 Die->setAbbrevNumber(NewAbbrev.getNumber()); 1509 1510 // Add the size of the abbreviation number to the output offset. 1511 OutOffset += getULEB128Size(Die->getAbbrevNumber()); 1512 1513 if (!HasChildren) { 1514 // Update our size. 1515 Die->setSize(OutOffset - Die->getOffset()); 1516 return Die; 1517 } 1518 1519 // Recursively clone children. 1520 for (auto Child : InputDIE.children()) { 1521 if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset, 1522 OutOffset, Flags, IsLittleEndian)) { 1523 Die->addChild(Clone); 1524 OutOffset = Clone->getOffset() + Clone->getSize(); 1525 } 1526 } 1527 1528 // Account for the end of children marker. 1529 OutOffset += sizeof(int8_t); 1530 // Update our size. 1531 Die->setSize(OutOffset - Die->getOffset()); 1532 return Die; 1533 } 1534 1535 /// Patch the input object file relevant debug_ranges entries 1536 /// and emit them in the output file. Update the relevant attributes 1537 /// to point at the new entries. 1538 void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit, 1539 DWARFContext &OrigDwarf, 1540 const DWARFFile &File) const { 1541 DWARFDebugRangeList RangeList; 1542 const auto &FunctionRanges = Unit.getFunctionRanges(); 1543 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); 1544 DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(), 1545 OrigDwarf.getDWARFObj().getRangesSection(), 1546 OrigDwarf.isLittleEndian(), AddressSize); 1547 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; 1548 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 1549 auto OrigUnitDie = OrigUnit.getUnitDIE(false); 1550 uint64_t OrigLowPc = 1551 dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL); 1552 // Ranges addresses are based on the unit's low_pc. Compute the 1553 // offset we need to apply to adapt to the new unit's low_pc. 1554 int64_t UnitPcOffset = 0; 1555 if (OrigLowPc != -1ULL) 1556 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc(); 1557 1558 for (const auto &RangeAttribute : Unit.getRangesAttributes()) { 1559 uint64_t Offset = RangeAttribute.get(); 1560 RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize()); 1561 if (Error E = RangeList.extract(RangeExtractor, &Offset)) { 1562 llvm::consumeError(std::move(E)); 1563 reportWarning("invalid range list ignored.", File); 1564 RangeList.clear(); 1565 } 1566 const auto &Entries = RangeList.getEntries(); 1567 if (!Entries.empty()) { 1568 const DWARFDebugRangeList::RangeListEntry &First = Entries.front(); 1569 1570 if (CurrRange == InvalidRange || 1571 First.StartAddress + OrigLowPc < CurrRange.start() || 1572 First.StartAddress + OrigLowPc >= CurrRange.stop()) { 1573 CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc); 1574 if (CurrRange == InvalidRange || 1575 CurrRange.start() > First.StartAddress + OrigLowPc) { 1576 reportWarning("no mapping for range.", File); 1577 continue; 1578 } 1579 } 1580 } 1581 1582 TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, 1583 Entries, AddressSize); 1584 } 1585 } 1586 1587 /// Generate the debug_aranges entries for \p Unit and if the 1588 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges 1589 /// contribution for this attribute. 1590 /// FIXME: this could actually be done right in patchRangesForUnit, 1591 /// but for the sake of initial bit-for-bit compatibility with legacy 1592 /// dsymutil, we have to do it in a delayed pass. 1593 void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const { 1594 auto Attr = Unit.getUnitRangesAttribute(); 1595 if (Attr) 1596 Attr->set(TheDwarfEmitter->getRangesSectionSize()); 1597 TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr)); 1598 } 1599 1600 /// Insert the new line info sequence \p Seq into the current 1601 /// set of already linked line info \p Rows. 1602 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq, 1603 std::vector<DWARFDebugLine::Row> &Rows) { 1604 if (Seq.empty()) 1605 return; 1606 1607 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) { 1608 llvm::append_range(Rows, Seq); 1609 Seq.clear(); 1610 return; 1611 } 1612 1613 object::SectionedAddress Front = Seq.front().Address; 1614 auto InsertPoint = partition_point( 1615 Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; }); 1616 1617 // FIXME: this only removes the unneeded end_sequence if the 1618 // sequences have been inserted in order. Using a global sort like 1619 // described in patchLineTableForUnit() and delaying the end_sequene 1620 // elimination to emitLineTableForUnit() we can get rid of all of them. 1621 if (InsertPoint != Rows.end() && InsertPoint->Address == Front && 1622 InsertPoint->EndSequence) { 1623 *InsertPoint = Seq.front(); 1624 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end()); 1625 } else { 1626 Rows.insert(InsertPoint, Seq.begin(), Seq.end()); 1627 } 1628 1629 Seq.clear(); 1630 } 1631 1632 static void patchStmtList(DIE &Die, DIEInteger Offset) { 1633 for (auto &V : Die.values()) 1634 if (V.getAttribute() == dwarf::DW_AT_stmt_list) { 1635 V = DIEValue(V.getAttribute(), V.getForm(), Offset); 1636 return; 1637 } 1638 1639 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!"); 1640 } 1641 1642 /// Extract the line table for \p Unit from \p OrigDwarf, and 1643 /// recreate a relocated version of these for the address ranges that 1644 /// are present in the binary. 1645 void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit, 1646 DWARFContext &OrigDwarf, 1647 const DWARFFile &File) { 1648 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE(); 1649 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1650 if (!StmtList) 1651 return; 1652 1653 // Update the cloned DW_AT_stmt_list with the correct debug_line offset. 1654 if (auto *OutputDIE = Unit.getOutputUnitDIE()) 1655 patchStmtList(*OutputDIE, 1656 DIEInteger(TheDwarfEmitter->getLineSectionSize())); 1657 1658 RangesTy &Ranges = File.Addresses->getValidAddressRanges(); 1659 1660 // Parse the original line info for the unit. 1661 DWARFDebugLine::LineTable LineTable; 1662 uint64_t StmtOffset = *StmtList; 1663 DWARFDataExtractor LineExtractor( 1664 OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(), 1665 OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize()); 1666 if (needToTranslateStrings()) 1667 return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset); 1668 1669 if (Error Err = 1670 LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf, 1671 &Unit.getOrigUnit(), OrigDwarf.getWarningHandler())) 1672 OrigDwarf.getWarningHandler()(std::move(Err)); 1673 1674 // This vector is the output line table. 1675 std::vector<DWARFDebugLine::Row> NewRows; 1676 NewRows.reserve(LineTable.Rows.size()); 1677 1678 // Current sequence of rows being extracted, before being inserted 1679 // in NewRows. 1680 std::vector<DWARFDebugLine::Row> Seq; 1681 const auto &FunctionRanges = Unit.getFunctionRanges(); 1682 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; 1683 1684 // FIXME: This logic is meant to generate exactly the same output as 1685 // Darwin's classic dsymutil. There is a nicer way to implement this 1686 // by simply putting all the relocated line info in NewRows and simply 1687 // sorting NewRows before passing it to emitLineTableForUnit. This 1688 // should be correct as sequences for a function should stay 1689 // together in the sorted output. There are a few corner cases that 1690 // look suspicious though, and that required to implement the logic 1691 // this way. Revisit that once initial validation is finished. 1692 1693 // Iterate over the object file line info and extract the sequences 1694 // that correspond to linked functions. 1695 for (auto &Row : LineTable.Rows) { 1696 // Check whether we stepped out of the range. The range is 1697 // half-open, but consider accept the end address of the range if 1698 // it is marked as end_sequence in the input (because in that 1699 // case, the relocation offset is accurate and that entry won't 1700 // serve as the start of another function). 1701 if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() || 1702 Row.Address.Address > CurrRange.stop() || 1703 (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) { 1704 // We just stepped out of a known range. Insert a end_sequence 1705 // corresponding to the end of the range. 1706 uint64_t StopAddress = CurrRange != InvalidRange 1707 ? CurrRange.stop() + CurrRange.value() 1708 : -1ULL; 1709 CurrRange = FunctionRanges.find(Row.Address.Address); 1710 bool CurrRangeValid = 1711 CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address; 1712 if (!CurrRangeValid) { 1713 CurrRange = InvalidRange; 1714 if (StopAddress != -1ULL) { 1715 // Try harder by looking in the Address ranges map. 1716 // There are corner cases where this finds a 1717 // valid entry. It's unclear if this is right or wrong, but 1718 // for now do as dsymutil. 1719 // FIXME: Understand exactly what cases this addresses and 1720 // potentially remove it along with the Ranges map. 1721 auto Range = Ranges.lower_bound(Row.Address.Address); 1722 if (Range != Ranges.begin() && Range != Ranges.end()) 1723 --Range; 1724 1725 if (Range != Ranges.end() && Range->first <= Row.Address.Address && 1726 Range->second.HighPC >= Row.Address.Address) { 1727 StopAddress = Row.Address.Address + Range->second.Offset; 1728 } 1729 } 1730 } 1731 if (StopAddress != -1ULL && !Seq.empty()) { 1732 // Insert end sequence row with the computed end address, but 1733 // the same line as the previous one. 1734 auto NextLine = Seq.back(); 1735 NextLine.Address.Address = StopAddress; 1736 NextLine.EndSequence = 1; 1737 NextLine.PrologueEnd = 0; 1738 NextLine.BasicBlock = 0; 1739 NextLine.EpilogueBegin = 0; 1740 Seq.push_back(NextLine); 1741 insertLineSequence(Seq, NewRows); 1742 } 1743 1744 if (!CurrRangeValid) 1745 continue; 1746 } 1747 1748 // Ignore empty sequences. 1749 if (Row.EndSequence && Seq.empty()) 1750 continue; 1751 1752 // Relocate row address and add it to the current sequence. 1753 Row.Address.Address += CurrRange.value(); 1754 Seq.emplace_back(Row); 1755 1756 if (Row.EndSequence) 1757 insertLineSequence(Seq, NewRows); 1758 } 1759 1760 // Finished extracting, now emit the line tables. 1761 // FIXME: LLVM hard-codes its prologue values. We just copy the 1762 // prologue over and that works because we act as both producer and 1763 // consumer. It would be nicer to have a real configurable line 1764 // table emitter. 1765 if (LineTable.Prologue.getVersion() < 2 || 1766 LineTable.Prologue.getVersion() > 5 || 1767 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT || 1768 LineTable.Prologue.OpcodeBase > 13) 1769 reportWarning("line table parameters mismatch. Cannot emit.", File); 1770 else { 1771 uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength; 1772 // DWARF v5 has an extra 2 bytes of information before the header_length 1773 // field. 1774 if (LineTable.Prologue.getVersion() == 5) 1775 PrologueEnd += 2; 1776 StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data; 1777 MCDwarfLineTableParams Params; 1778 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase; 1779 Params.DWARF2LineBase = LineTable.Prologue.LineBase; 1780 Params.DWARF2LineRange = LineTable.Prologue.LineRange; 1781 TheDwarfEmitter->emitLineTableForUnit( 1782 Params, LineData.slice(*StmtList + 4, PrologueEnd), 1783 LineTable.Prologue.MinInstLength, NewRows, 1784 Unit.getOrigUnit().getAddressByteSize()); 1785 } 1786 } 1787 1788 void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) { 1789 switch (Options.TheAccelTableKind) { 1790 case DwarfLinkerAccelTableKind::None: 1791 // Nothing to do. 1792 break; 1793 case DwarfLinkerAccelTableKind::Apple: 1794 emitAppleAcceleratorEntriesForUnit(Unit); 1795 break; 1796 case DwarfLinkerAccelTableKind::Dwarf: 1797 emitDwarfAcceleratorEntriesForUnit(Unit); 1798 break; 1799 case DwarfLinkerAccelTableKind::Pub: 1800 emitPubAcceleratorEntriesForUnit(Unit); 1801 break; 1802 case DwarfLinkerAccelTableKind::Default: 1803 llvm_unreachable("The default must be updated to a concrete value."); 1804 break; 1805 } 1806 } 1807 1808 void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) { 1809 // Add namespaces. 1810 for (const auto &Namespace : Unit.getNamespaces()) 1811 AppleNamespaces.addName(Namespace.Name, 1812 Namespace.Die->getOffset() + Unit.getStartOffset()); 1813 1814 /// Add names. 1815 for (const auto &Pubname : Unit.getPubnames()) 1816 AppleNames.addName(Pubname.Name, 1817 Pubname.Die->getOffset() + Unit.getStartOffset()); 1818 1819 /// Add types. 1820 for (const auto &Pubtype : Unit.getPubtypes()) 1821 AppleTypes.addName( 1822 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(), 1823 Pubtype.Die->getTag(), 1824 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation 1825 : 0, 1826 Pubtype.QualifiedNameHash); 1827 1828 /// Add ObjC names. 1829 for (const auto &ObjC : Unit.getObjC()) 1830 AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset()); 1831 } 1832 1833 void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) { 1834 for (const auto &Namespace : Unit.getNamespaces()) 1835 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(), 1836 Namespace.Die->getTag(), Unit.getUniqueID()); 1837 for (const auto &Pubname : Unit.getPubnames()) 1838 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(), 1839 Pubname.Die->getTag(), Unit.getUniqueID()); 1840 for (const auto &Pubtype : Unit.getPubtypes()) 1841 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(), 1842 Pubtype.Die->getTag(), Unit.getUniqueID()); 1843 } 1844 1845 void DWARFLinker::emitPubAcceleratorEntriesForUnit(CompileUnit &Unit) { 1846 TheDwarfEmitter->emitPubNamesForUnit(Unit); 1847 TheDwarfEmitter->emitPubTypesForUnit(Unit); 1848 } 1849 1850 /// Read the frame info stored in the object, and emit the 1851 /// patched frame descriptions for the resulting file. 1852 /// 1853 /// This is actually pretty easy as the data of the CIEs and FDEs can 1854 /// be considered as black boxes and moved as is. The only thing to do 1855 /// is to patch the addresses in the headers. 1856 void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File, 1857 RangesTy &Ranges, 1858 DWARFContext &OrigDwarf, 1859 unsigned AddrSize) { 1860 StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data; 1861 if (FrameData.empty()) 1862 return; 1863 1864 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0); 1865 uint64_t InputOffset = 0; 1866 1867 // Store the data of the CIEs defined in this object, keyed by their 1868 // offsets. 1869 DenseMap<uint64_t, StringRef> LocalCIES; 1870 1871 while (Data.isValidOffset(InputOffset)) { 1872 uint64_t EntryOffset = InputOffset; 1873 uint32_t InitialLength = Data.getU32(&InputOffset); 1874 if (InitialLength == 0xFFFFFFFF) 1875 return reportWarning("Dwarf64 bits no supported", File); 1876 1877 uint32_t CIEId = Data.getU32(&InputOffset); 1878 if (CIEId == 0xFFFFFFFF) { 1879 // This is a CIE, store it. 1880 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4); 1881 LocalCIES[EntryOffset] = CIEData; 1882 // The -4 is to account for the CIEId we just read. 1883 InputOffset += InitialLength - 4; 1884 continue; 1885 } 1886 1887 uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize); 1888 1889 // Some compilers seem to emit frame info that doesn't start at 1890 // the function entry point, thus we can't just lookup the address 1891 // in the debug map. Use the AddressInfo's range map to see if the FDE 1892 // describes something that we can relocate. 1893 auto Range = Ranges.upper_bound(Loc); 1894 if (Range != Ranges.begin()) 1895 --Range; 1896 if (Range == Ranges.end() || Range->first > Loc || 1897 Range->second.HighPC <= Loc) { 1898 // The +4 is to account for the size of the InitialLength field itself. 1899 InputOffset = EntryOffset + InitialLength + 4; 1900 continue; 1901 } 1902 1903 // This is an FDE, and we have a mapping. 1904 // Have we already emitted a corresponding CIE? 1905 StringRef CIEData = LocalCIES[CIEId]; 1906 if (CIEData.empty()) 1907 return reportWarning("Inconsistent debug_frame content. Dropping.", File); 1908 1909 // Look if we already emitted a CIE that corresponds to the 1910 // referenced one (the CIE data is the key of that lookup). 1911 auto IteratorInserted = EmittedCIEs.insert( 1912 std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize())); 1913 // If there is no CIE yet for this ID, emit it. 1914 if (IteratorInserted.second) { 1915 LastCIEOffset = TheDwarfEmitter->getFrameSectionSize(); 1916 IteratorInserted.first->getValue() = LastCIEOffset; 1917 TheDwarfEmitter->emitCIE(CIEData); 1918 } 1919 1920 // Emit the FDE with updated address and CIE pointer. 1921 // (4 + AddrSize) is the size of the CIEId + initial_location 1922 // fields that will get reconstructed by emitFDE(). 1923 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize); 1924 TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize, 1925 Loc + Range->second.Offset, 1926 FrameData.substr(InputOffset, FDERemainingBytes)); 1927 InputOffset += FDERemainingBytes; 1928 } 1929 } 1930 1931 uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE, 1932 CompileUnit &U, 1933 const DWARFFile &File, 1934 int ChildRecurseDepth) { 1935 const char *Name = nullptr; 1936 DWARFUnit *OrigUnit = &U.getOrigUnit(); 1937 CompileUnit *CU = &U; 1938 Optional<DWARFFormValue> Ref; 1939 1940 while (true) { 1941 if (const char *CurrentName = DIE.getName(DINameKind::ShortName)) 1942 Name = CurrentName; 1943 1944 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) && 1945 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin))) 1946 break; 1947 1948 if (!Ref->isFormClass(DWARFFormValue::FC_Reference)) 1949 break; 1950 1951 CompileUnit *RefCU; 1952 if (auto RefDIE = 1953 Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) { 1954 CU = RefCU; 1955 OrigUnit = &RefCU->getOrigUnit(); 1956 DIE = RefDIE; 1957 } 1958 } 1959 1960 unsigned Idx = OrigUnit->getDIEIndex(DIE); 1961 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace) 1962 Name = "(anonymous namespace)"; 1963 1964 if (CU->getInfo(Idx).ParentIdx == 0 || 1965 // FIXME: dsymutil-classic compatibility. Ignore modules. 1966 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() == 1967 dwarf::DW_TAG_module) 1968 return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::")); 1969 1970 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx); 1971 return djbHash( 1972 (Name ? Name : ""), 1973 djbHash((Name ? "::" : ""), 1974 hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth))); 1975 } 1976 1977 static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) { 1978 auto DwoId = dwarf::toUnsigned( 1979 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id})); 1980 if (DwoId) 1981 return *DwoId; 1982 return 0; 1983 } 1984 1985 static std::string remapPath(StringRef Path, 1986 const objectPrefixMap &ObjectPrefixMap) { 1987 if (ObjectPrefixMap.empty()) 1988 return Path.str(); 1989 1990 SmallString<256> p = Path; 1991 for (const auto &Entry : ObjectPrefixMap) 1992 if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second)) 1993 break; 1994 return p.str().str(); 1995 } 1996 1997 bool DWARFLinker::registerModuleReference(DWARFDie CUDie, const DWARFUnit &Unit, 1998 const DWARFFile &File, 1999 OffsetsStringPool &StringPool, 2000 DeclContextTree &ODRContexts, 2001 uint64_t ModulesEndOffset, 2002 unsigned &UnitID, bool IsLittleEndian, 2003 unsigned Indent, bool Quiet) { 2004 std::string PCMfile = dwarf::toString( 2005 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), ""); 2006 if (PCMfile.empty()) 2007 return false; 2008 if (Options.ObjectPrefixMap) 2009 PCMfile = remapPath(PCMfile, *Options.ObjectPrefixMap); 2010 2011 // Clang module DWARF skeleton CUs abuse this for the path to the module. 2012 uint64_t DwoId = getDwoId(CUDie, Unit); 2013 2014 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), ""); 2015 if (Name.empty()) { 2016 if (!Quiet) 2017 reportWarning("Anonymous module skeleton CU for " + PCMfile, File); 2018 return true; 2019 } 2020 2021 if (!Quiet && Options.Verbose) { 2022 outs().indent(Indent); 2023 outs() << "Found clang module reference " << PCMfile; 2024 } 2025 2026 auto Cached = ClangModules.find(PCMfile); 2027 if (Cached != ClangModules.end()) { 2028 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is 2029 // fixed in clang, only warn about DWO_id mismatches in verbose mode. 2030 // ASTFileSignatures will change randomly when a module is rebuilt. 2031 if (!Quiet && Options.Verbose && (Cached->second != DwoId)) 2032 reportWarning(Twine("hash mismatch: this object file was built against a " 2033 "different version of the module ") + 2034 PCMfile, 2035 File); 2036 if (!Quiet && Options.Verbose) 2037 outs() << " [cached].\n"; 2038 return true; 2039 } 2040 if (!Quiet && Options.Verbose) 2041 outs() << " ...\n"; 2042 2043 // Cyclic dependencies are disallowed by Clang, but we still 2044 // shouldn't run into an infinite loop, so mark it as processed now. 2045 ClangModules.insert({PCMfile, DwoId}); 2046 2047 if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, File, StringPool, 2048 ODRContexts, ModulesEndOffset, UnitID, 2049 IsLittleEndian, Indent + 2, Quiet)) { 2050 consumeError(std::move(E)); 2051 return false; 2052 } 2053 return true; 2054 } 2055 2056 Error DWARFLinker::loadClangModule( 2057 DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId, 2058 const DWARFFile &File, OffsetsStringPool &StringPool, 2059 DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID, 2060 bool IsLittleEndian, unsigned Indent, bool Quiet) { 2061 /// Using a SmallString<0> because loadClangModule() is recursive. 2062 SmallString<0> Path(Options.PrependPath); 2063 if (sys::path::is_relative(Filename)) 2064 resolveRelativeObjectPath(Path, CUDie); 2065 sys::path::append(Path, Filename); 2066 // Don't use the cached binary holder because we have no thread-safety 2067 // guarantee and the lifetime is limited. 2068 2069 if (Options.ObjFileLoader == nullptr) 2070 return Error::success(); 2071 2072 auto ErrOrObj = Options.ObjFileLoader(File.FileName, Path); 2073 if (!ErrOrObj) 2074 return Error::success(); 2075 2076 std::unique_ptr<CompileUnit> Unit; 2077 2078 for (const auto &CU : ErrOrObj->Dwarf->compile_units()) { 2079 updateDwarfVersion(CU->getVersion()); 2080 // Recursively get all modules imported by this one. 2081 auto CUDie = CU->getUnitDIE(false); 2082 if (!CUDie) 2083 continue; 2084 if (!registerModuleReference(CUDie, *CU, File, StringPool, ODRContexts, 2085 ModulesEndOffset, UnitID, IsLittleEndian, 2086 Indent, Quiet)) { 2087 if (Unit) { 2088 std::string Err = 2089 (Filename + 2090 ": Clang modules are expected to have exactly 1 compile unit.\n") 2091 .str(); 2092 reportError(Err, File); 2093 return make_error<StringError>(Err, inconvertibleErrorCode()); 2094 } 2095 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is 2096 // fixed in clang, only warn about DWO_id mismatches in verbose mode. 2097 // ASTFileSignatures will change randomly when a module is rebuilt. 2098 uint64_t PCMDwoId = getDwoId(CUDie, *CU); 2099 if (PCMDwoId != DwoId) { 2100 if (!Quiet && Options.Verbose) 2101 reportWarning( 2102 Twine("hash mismatch: this object file was built against a " 2103 "different version of the module ") + 2104 Filename, 2105 File); 2106 // Update the cache entry with the DwoId of the module loaded from disk. 2107 ClangModules[Filename] = PCMDwoId; 2108 } 2109 2110 // Add this module. 2111 Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR, 2112 ModuleName); 2113 analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), ODRContexts, 2114 ModulesEndOffset, Options.ParseableSwiftInterfaces, 2115 [&](const Twine &Warning, const DWARFDie &DIE) { 2116 reportWarning(Warning, File, &DIE); 2117 }); 2118 // Keep everything. 2119 Unit->markEverythingAsKept(); 2120 } 2121 } 2122 assert(Unit && "CompileUnit is not set!"); 2123 if (!Unit->getOrigUnit().getUnitDIE().hasChildren()) 2124 return Error::success(); 2125 if (!Quiet && Options.Verbose) { 2126 outs().indent(Indent); 2127 outs() << "cloning .debug_info from " << Filename << "\n"; 2128 } 2129 2130 UnitListTy CompileUnits; 2131 CompileUnits.push_back(std::move(Unit)); 2132 assert(TheDwarfEmitter); 2133 DIECloner(*this, TheDwarfEmitter, *ErrOrObj, DIEAlloc, CompileUnits, 2134 Options.Update) 2135 .cloneAllCompileUnits(*(ErrOrObj->Dwarf), File, StringPool, 2136 IsLittleEndian); 2137 return Error::success(); 2138 } 2139 2140 uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits( 2141 DWARFContext &DwarfContext, const DWARFFile &File, 2142 OffsetsStringPool &StringPool, bool IsLittleEndian) { 2143 uint64_t OutputDebugInfoSize = 2144 Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize(); 2145 const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize; 2146 2147 for (auto &CurrentUnit : CompileUnits) { 2148 const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion(); 2149 const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11; 2150 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE(); 2151 CurrentUnit->setStartOffset(OutputDebugInfoSize); 2152 if (!InputDIE) { 2153 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion); 2154 continue; 2155 } 2156 if (CurrentUnit->getInfo(0).Keep) { 2157 // Clone the InputDIE into your Unit DIE in our compile unit since it 2158 // already has a DIE inside of it. 2159 CurrentUnit->createOutputDIE(); 2160 cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */, 2161 UnitHeaderSize, 0, IsLittleEndian, 2162 CurrentUnit->getOutputUnitDIE()); 2163 } 2164 2165 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion); 2166 2167 if (!Linker.Options.NoOutput) { 2168 assert(Emitter); 2169 2170 if (LLVM_LIKELY(!Linker.Options.Update) || 2171 Linker.needToTranslateStrings()) 2172 Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File); 2173 2174 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit); 2175 2176 if (LLVM_UNLIKELY(Linker.Options.Update)) 2177 continue; 2178 2179 Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File); 2180 auto ProcessExpr = [&](StringRef Bytes, 2181 SmallVectorImpl<uint8_t> &Buffer) { 2182 DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit(); 2183 DataExtractor Data(Bytes, IsLittleEndian, 2184 OrigUnit.getAddressByteSize()); 2185 cloneExpression(Data, 2186 DWARFExpression(Data, OrigUnit.getAddressByteSize(), 2187 OrigUnit.getFormParams().Format), 2188 File, *CurrentUnit, Buffer); 2189 }; 2190 Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr); 2191 } 2192 } 2193 2194 if (!Linker.Options.NoOutput) { 2195 assert(Emitter); 2196 // Emit all the compile unit's debug information. 2197 for (auto &CurrentUnit : CompileUnits) { 2198 if (LLVM_LIKELY(!Linker.Options.Update)) 2199 Linker.generateUnitRanges(*CurrentUnit); 2200 2201 CurrentUnit->fixupForwardReferences(); 2202 2203 if (!CurrentUnit->getOutputUnitDIE()) 2204 continue; 2205 2206 unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion(); 2207 2208 assert(Emitter->getDebugInfoSectionSize() == 2209 CurrentUnit->getStartOffset()); 2210 Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion); 2211 Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE()); 2212 assert(Emitter->getDebugInfoSectionSize() == 2213 CurrentUnit->computeNextUnitOffset(DwarfVersion)); 2214 } 2215 } 2216 2217 return OutputDebugInfoSize - StartOutputDebugInfoSize; 2218 } 2219 2220 void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) { 2221 if (Options.TheAccelTableKind != DwarfLinkerAccelTableKind::Default) 2222 return; 2223 2224 auto &DwarfObj = Dwarf.getDWARFObj(); 2225 2226 if (!AtLeastOneDwarfAccelTable && 2227 (!DwarfObj.getAppleNamesSection().Data.empty() || 2228 !DwarfObj.getAppleTypesSection().Data.empty() || 2229 !DwarfObj.getAppleNamespacesSection().Data.empty() || 2230 !DwarfObj.getAppleObjCSection().Data.empty())) { 2231 AtLeastOneAppleAccelTable = true; 2232 } 2233 2234 if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) { 2235 AtLeastOneDwarfAccelTable = true; 2236 } 2237 } 2238 2239 bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File, 2240 OffsetsStringPool &StringPool) { 2241 2242 if (File.Warnings.empty()) 2243 return false; 2244 2245 DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit); 2246 CUDie->setOffset(11); 2247 StringRef Producer; 2248 StringRef WarningHeader; 2249 2250 switch (DwarfLinkerClientID) { 2251 case DwarfLinkerClient::Dsymutil: 2252 Producer = StringPool.internString("dsymutil"); 2253 WarningHeader = "dsymutil_warning"; 2254 break; 2255 2256 default: 2257 Producer = StringPool.internString("dwarfopt"); 2258 WarningHeader = "dwarfopt_warning"; 2259 break; 2260 } 2261 2262 StringRef FileName = StringPool.internString(File.FileName); 2263 CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp, 2264 DIEInteger(StringPool.getStringOffset(Producer))); 2265 DIEBlock *String = new (DIEAlloc) DIEBlock(); 2266 DIEBlocks.push_back(String); 2267 for (auto &C : FileName) 2268 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1, 2269 DIEInteger(C)); 2270 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1, 2271 DIEInteger(0)); 2272 2273 CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String); 2274 for (const auto &Warning : File.Warnings) { 2275 DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant)); 2276 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp, 2277 DIEInteger(StringPool.getStringOffset(WarningHeader))); 2278 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag, 2279 DIEInteger(1)); 2280 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp, 2281 DIEInteger(StringPool.getStringOffset(Warning))); 2282 } 2283 unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 + 2284 File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */; 2285 DIEAbbrev Abbrev = CUDie->generateAbbrev(); 2286 assignAbbrev(Abbrev); 2287 CUDie->setAbbrevNumber(Abbrev.getNumber()); 2288 Size += getULEB128Size(Abbrev.getNumber()); 2289 // Abbreviation ordering needed for classic compatibility. 2290 for (auto &Child : CUDie->children()) { 2291 Abbrev = Child.generateAbbrev(); 2292 assignAbbrev(Abbrev); 2293 Child.setAbbrevNumber(Abbrev.getNumber()); 2294 Size += getULEB128Size(Abbrev.getNumber()); 2295 } 2296 CUDie->setSize(Size); 2297 TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie); 2298 2299 return true; 2300 } 2301 2302 void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) { 2303 if (!needToTranslateStrings()) 2304 TheDwarfEmitter->emitSectionContents( 2305 Dwarf.getDWARFObj().getLineSection().Data, "debug_line"); 2306 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data, 2307 "debug_loc"); 2308 TheDwarfEmitter->emitSectionContents( 2309 Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges"); 2310 TheDwarfEmitter->emitSectionContents( 2311 Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame"); 2312 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(), 2313 "debug_aranges"); 2314 } 2315 2316 void DWARFLinker::addObjectFile(DWARFFile &File) { 2317 ObjectContexts.emplace_back(LinkContext(File)); 2318 2319 if (ObjectContexts.back().File.Dwarf) 2320 updateAccelKind(*ObjectContexts.back().File.Dwarf); 2321 } 2322 2323 bool DWARFLinker::link() { 2324 assert(Options.NoOutput || TheDwarfEmitter); 2325 2326 // A unique ID that identifies each compile unit. 2327 unsigned UnitID = 0; 2328 2329 // First populate the data structure we need for each iteration of the 2330 // parallel loop. 2331 unsigned NumObjects = ObjectContexts.size(); 2332 2333 // This Dwarf string pool which is used for emission. It must be used 2334 // serially as the order of calling getStringOffset matters for 2335 // reproducibility. 2336 OffsetsStringPool OffsetsStringPool(StringsTranslator, true); 2337 2338 // ODR Contexts for the optimize. 2339 DeclContextTree ODRContexts; 2340 2341 // If we haven't decided on an accelerator table kind yet, we base ourselves 2342 // on the DWARF we have seen so far. At this point we haven't pulled in debug 2343 // information from modules yet, so it is technically possible that they 2344 // would affect the decision. However, as they're built with the same 2345 // compiler and flags, it is safe to assume that they will follow the 2346 // decision made here. 2347 if (Options.TheAccelTableKind == DwarfLinkerAccelTableKind::Default) { 2348 if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable) 2349 Options.TheAccelTableKind = DwarfLinkerAccelTableKind::Dwarf; 2350 else 2351 Options.TheAccelTableKind = DwarfLinkerAccelTableKind::Apple; 2352 } 2353 2354 for (LinkContext &OptContext : ObjectContexts) { 2355 if (Options.Verbose) { 2356 if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil) 2357 outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n"; 2358 else 2359 outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n"; 2360 } 2361 2362 if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool)) 2363 continue; 2364 2365 if (!OptContext.File.Dwarf) 2366 continue; 2367 2368 if (Options.VerifyInputDWARF) 2369 verify(OptContext.File); 2370 2371 // Look for relocations that correspond to address map entries. 2372 2373 // there was findvalidrelocations previously ... probably we need to gather 2374 // info here 2375 if (LLVM_LIKELY(!Options.Update) && 2376 !OptContext.File.Addresses->hasValidRelocs()) { 2377 if (Options.Verbose) 2378 outs() << "No valid relocations found. Skipping.\n"; 2379 2380 // Set "Skip" flag as a signal to other loops that we should not 2381 // process this iteration. 2382 OptContext.Skip = true; 2383 continue; 2384 } 2385 2386 // Setup access to the debug info. 2387 if (!OptContext.File.Dwarf) 2388 continue; 2389 2390 // In a first phase, just read in the debug info and load all clang modules. 2391 OptContext.CompileUnits.reserve( 2392 OptContext.File.Dwarf->getNumCompileUnits()); 2393 2394 for (const auto &CU : OptContext.File.Dwarf->compile_units()) { 2395 updateDwarfVersion(CU->getVersion()); 2396 auto CUDie = CU->getUnitDIE(false); 2397 if (Options.Verbose) { 2398 outs() << "Input compilation unit:"; 2399 DIDumpOptions DumpOpts; 2400 DumpOpts.ChildRecurseDepth = 0; 2401 DumpOpts.Verbose = Options.Verbose; 2402 CUDie.dump(outs(), 0, DumpOpts); 2403 } 2404 if (CUDie && !LLVM_UNLIKELY(Options.Update)) 2405 registerModuleReference(CUDie, *CU, OptContext.File, OffsetsStringPool, 2406 ODRContexts, 0, UnitID, 2407 OptContext.File.Dwarf->isLittleEndian()); 2408 } 2409 } 2410 2411 // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway. 2412 if (MaxDwarfVersion == 0) 2413 MaxDwarfVersion = 3; 2414 2415 // At this point we know how much data we have emitted. We use this value to 2416 // compare canonical DIE offsets in analyzeContextInfo to see if a definition 2417 // is already emitted, without being affected by canonical die offsets set 2418 // later. This prevents undeterminism when analyze and clone execute 2419 // concurrently, as clone set the canonical DIE offset and analyze reads it. 2420 const uint64_t ModulesEndOffset = 2421 Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize(); 2422 2423 // These variables manage the list of processed object files. 2424 // The mutex and condition variable are to ensure that this is thread safe. 2425 std::mutex ProcessedFilesMutex; 2426 std::condition_variable ProcessedFilesConditionVariable; 2427 BitVector ProcessedFiles(NumObjects, false); 2428 2429 // Analyzing the context info is particularly expensive so it is executed in 2430 // parallel with emitting the previous compile unit. 2431 auto AnalyzeLambda = [&](size_t I) { 2432 auto &Context = ObjectContexts[I]; 2433 2434 if (Context.Skip || !Context.File.Dwarf) 2435 return; 2436 2437 for (const auto &CU : Context.File.Dwarf->compile_units()) { 2438 updateDwarfVersion(CU->getVersion()); 2439 // The !registerModuleReference() condition effectively skips 2440 // over fully resolved skeleton units. This second pass of 2441 // registerModuleReferences doesn't do any new work, but it 2442 // will collect top-level errors, which are suppressed. Module 2443 // warnings were already displayed in the first iteration. 2444 bool Quiet = true; 2445 auto CUDie = CU->getUnitDIE(false); 2446 if (!CUDie || LLVM_UNLIKELY(Options.Update) || 2447 !registerModuleReference(CUDie, *CU, Context.File, OffsetsStringPool, 2448 ODRContexts, ModulesEndOffset, UnitID, 2449 Quiet)) { 2450 Context.CompileUnits.push_back(std::make_unique<CompileUnit>( 2451 *CU, UnitID++, !Options.NoODR && !Options.Update, "")); 2452 } 2453 } 2454 2455 // Now build the DIE parent links that we will use during the next phase. 2456 for (auto &CurrentUnit : Context.CompileUnits) { 2457 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE(); 2458 if (!CUDie) 2459 continue; 2460 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0, 2461 *CurrentUnit, &ODRContexts.getRoot(), ODRContexts, 2462 ModulesEndOffset, Options.ParseableSwiftInterfaces, 2463 [&](const Twine &Warning, const DWARFDie &DIE) { 2464 reportWarning(Warning, Context.File, &DIE); 2465 }); 2466 } 2467 }; 2468 2469 // For each object file map how many bytes were emitted. 2470 StringMap<DebugInfoSize> SizeByObject; 2471 2472 // And then the remaining work in serial again. 2473 // Note, although this loop runs in serial, it can run in parallel with 2474 // the analyzeContextInfo loop so long as we process files with indices >= 2475 // than those processed by analyzeContextInfo. 2476 auto CloneLambda = [&](size_t I) { 2477 auto &OptContext = ObjectContexts[I]; 2478 if (OptContext.Skip || !OptContext.File.Dwarf) 2479 return; 2480 2481 // Then mark all the DIEs that need to be present in the generated output 2482 // and collect some information about them. 2483 // Note that this loop can not be merged with the previous one because 2484 // cross-cu references require the ParentIdx to be setup for every CU in 2485 // the object file before calling this. 2486 if (LLVM_UNLIKELY(Options.Update)) { 2487 for (auto &CurrentUnit : OptContext.CompileUnits) 2488 CurrentUnit->markEverythingAsKept(); 2489 copyInvariantDebugSection(*OptContext.File.Dwarf); 2490 } else { 2491 for (auto &CurrentUnit : OptContext.CompileUnits) 2492 lookForDIEsToKeep(*OptContext.File.Addresses, 2493 OptContext.File.Addresses->getValidAddressRanges(), 2494 OptContext.CompileUnits, 2495 CurrentUnit->getOrigUnit().getUnitDIE(), 2496 OptContext.File, *CurrentUnit, 0); 2497 } 2498 2499 // The calls to applyValidRelocs inside cloneDIE will walk the reloc 2500 // array again (in the same way findValidRelocsInDebugInfo() did). We 2501 // need to reset the NextValidReloc index to the beginning. 2502 if (OptContext.File.Addresses->hasValidRelocs() || 2503 LLVM_UNLIKELY(Options.Update)) { 2504 SizeByObject[OptContext.File.FileName].Input = 2505 getDebugInfoSize(*OptContext.File.Dwarf); 2506 SizeByObject[OptContext.File.FileName].Output = 2507 DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc, 2508 OptContext.CompileUnits, Options.Update) 2509 .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File, 2510 OffsetsStringPool, 2511 OptContext.File.Dwarf->isLittleEndian()); 2512 } 2513 if (!Options.NoOutput && !OptContext.CompileUnits.empty() && 2514 LLVM_LIKELY(!Options.Update)) 2515 patchFrameInfoForObject( 2516 OptContext.File, OptContext.File.Addresses->getValidAddressRanges(), 2517 *OptContext.File.Dwarf, 2518 OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize()); 2519 2520 // Clean-up before starting working on the next object. 2521 cleanupAuxiliarryData(OptContext); 2522 }; 2523 2524 auto EmitLambda = [&]() { 2525 // Emit everything that's global. 2526 if (!Options.NoOutput) { 2527 TheDwarfEmitter->emitAbbrevs(Abbreviations, MaxDwarfVersion); 2528 TheDwarfEmitter->emitStrings(OffsetsStringPool); 2529 switch (Options.TheAccelTableKind) { 2530 case DwarfLinkerAccelTableKind::None: 2531 // Nothing to do. 2532 break; 2533 case DwarfLinkerAccelTableKind::Apple: 2534 TheDwarfEmitter->emitAppleNames(AppleNames); 2535 TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces); 2536 TheDwarfEmitter->emitAppleTypes(AppleTypes); 2537 TheDwarfEmitter->emitAppleObjc(AppleObjc); 2538 break; 2539 case DwarfLinkerAccelTableKind::Dwarf: 2540 TheDwarfEmitter->emitDebugNames(DebugNames); 2541 break; 2542 case DwarfLinkerAccelTableKind::Pub: 2543 // Already emitted by emitPubAcceleratorEntriesForUnit. 2544 break; 2545 case DwarfLinkerAccelTableKind::Default: 2546 llvm_unreachable("Default should have already been resolved."); 2547 break; 2548 } 2549 } 2550 }; 2551 2552 auto AnalyzeAll = [&]() { 2553 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2554 AnalyzeLambda(I); 2555 2556 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex); 2557 ProcessedFiles.set(I); 2558 ProcessedFilesConditionVariable.notify_one(); 2559 } 2560 }; 2561 2562 auto CloneAll = [&]() { 2563 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2564 { 2565 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex); 2566 if (!ProcessedFiles[I]) { 2567 ProcessedFilesConditionVariable.wait( 2568 LockGuard, [&]() { return ProcessedFiles[I]; }); 2569 } 2570 } 2571 2572 CloneLambda(I); 2573 } 2574 EmitLambda(); 2575 }; 2576 2577 // To limit memory usage in the single threaded case, analyze and clone are 2578 // run sequentially so the OptContext is freed after processing each object 2579 // in endDebugObject. 2580 if (Options.Threads == 1) { 2581 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2582 AnalyzeLambda(I); 2583 CloneLambda(I); 2584 } 2585 EmitLambda(); 2586 } else { 2587 ThreadPool Pool(hardware_concurrency(2)); 2588 Pool.async(AnalyzeAll); 2589 Pool.async(CloneAll); 2590 Pool.wait(); 2591 } 2592 2593 if (Options.Statistics) { 2594 // Create a vector sorted in descending order by output size. 2595 std::vector<std::pair<StringRef, DebugInfoSize>> Sorted; 2596 for (auto &E : SizeByObject) 2597 Sorted.emplace_back(E.first(), E.second); 2598 llvm::sort(Sorted, [](auto &LHS, auto &RHS) { 2599 return LHS.second.Output > RHS.second.Output; 2600 }); 2601 2602 auto ComputePercentange = [](int64_t Input, int64_t Output) -> float { 2603 const float Difference = Output - Input; 2604 const float Sum = Input + Output; 2605 if (Sum == 0) 2606 return 0; 2607 return (Difference / (Sum / 2)); 2608 }; 2609 2610 int64_t InputTotal = 0; 2611 int64_t OutputTotal = 0; 2612 const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n"; 2613 2614 // Print header. 2615 outs() << ".debug_info section size (in bytes)\n"; 2616 outs() << "----------------------------------------------------------------" 2617 "---------------\n"; 2618 outs() << "Filename Object " 2619 " dSYM Change\n"; 2620 outs() << "----------------------------------------------------------------" 2621 "---------------\n"; 2622 2623 // Print body. 2624 for (auto &E : Sorted) { 2625 InputTotal += E.second.Input; 2626 OutputTotal += E.second.Output; 2627 llvm::outs() << formatv( 2628 FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input, 2629 E.second.Output, ComputePercentange(E.second.Input, E.second.Output)); 2630 } 2631 // Print total and footer. 2632 outs() << "----------------------------------------------------------------" 2633 "---------------\n"; 2634 llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal, 2635 ComputePercentange(InputTotal, OutputTotal)); 2636 outs() << "----------------------------------------------------------------" 2637 "---------------\n\n"; 2638 } 2639 2640 return true; 2641 } 2642 2643 bool DWARFLinker::verify(const DWARFFile &File) { 2644 assert(File.Dwarf); 2645 2646 DIDumpOptions DumpOpts; 2647 if (!File.Dwarf->verify(llvm::outs(), DumpOpts.noImplicitRecursion())) { 2648 reportWarning("input verification failed", File); 2649 return false; 2650 } 2651 return true; 2652 } 2653 2654 } // namespace llvm 2655