1 //=== DWARFLinker.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/DWARFLinker/DWARFLinker.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/CodeGen/NonRelocatableStringpool.h"
14 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
15 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
16 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
17 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
18 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
19 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
20 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
21 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
22 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
23 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
24 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
25 #include "llvm/MC/MCDwarf.h"
26 #include "llvm/Support/DataExtractor.h"
27 #include "llvm/Support/Error.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ErrorOr.h"
30 #include "llvm/Support/FormatVariadic.h"
31 #include "llvm/Support/LEB128.h"
32 #include "llvm/Support/Path.h"
33 #include "llvm/Support/ThreadPool.h"
34 #include <vector>
35
36 namespace llvm {
37
38 /// Hold the input and output of the debug info size in bytes.
39 struct DebugInfoSize {
40 uint64_t Input;
41 uint64_t Output;
42 };
43
44 /// Compute the total size of the debug info.
getDebugInfoSize(DWARFContext & Dwarf)45 static uint64_t getDebugInfoSize(DWARFContext &Dwarf) {
46 uint64_t Size = 0;
47 for (auto &Unit : Dwarf.compile_units()) {
48 Size += Unit->getLength();
49 }
50 return Size;
51 }
52
53 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
54 /// CompileUnit object instead.
getUnitForOffset(const UnitListTy & Units,uint64_t Offset)55 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
56 auto CU = llvm::upper_bound(
57 Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
58 return LHS < RHS->getOrigUnit().getNextUnitOffset();
59 });
60 return CU != Units.end() ? CU->get() : nullptr;
61 }
62
63 /// Resolve the DIE attribute reference that has been extracted in \p RefValue.
64 /// The resulting DIE might be in another CompileUnit which is stored into \p
65 /// ReferencedCU. \returns null if resolving fails for any reason.
resolveDIEReference(const DWARFFile & File,const UnitListTy & Units,const DWARFFormValue & RefValue,const DWARFDie & DIE,CompileUnit * & RefCU)66 DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File,
67 const UnitListTy &Units,
68 const DWARFFormValue &RefValue,
69 const DWARFDie &DIE,
70 CompileUnit *&RefCU) {
71 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
72 uint64_t RefOffset = *RefValue.getAsReference();
73 if ((RefCU = getUnitForOffset(Units, RefOffset)))
74 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
75 // In a file with broken references, an attribute might point to a NULL
76 // DIE.
77 if (!RefDie.isNULL())
78 return RefDie;
79 }
80
81 reportWarning("could not find referenced DIE", File, &DIE);
82 return DWARFDie();
83 }
84
85 /// \returns whether the passed \a Attr type might contain a DIE reference
86 /// suitable for ODR uniquing.
isODRAttribute(uint16_t Attr)87 static bool isODRAttribute(uint16_t Attr) {
88 switch (Attr) {
89 default:
90 return false;
91 case dwarf::DW_AT_type:
92 case dwarf::DW_AT_containing_type:
93 case dwarf::DW_AT_specification:
94 case dwarf::DW_AT_abstract_origin:
95 case dwarf::DW_AT_import:
96 return true;
97 }
98 llvm_unreachable("Improper attribute.");
99 }
100
isTypeTag(uint16_t Tag)101 static bool isTypeTag(uint16_t Tag) {
102 switch (Tag) {
103 case dwarf::DW_TAG_array_type:
104 case dwarf::DW_TAG_class_type:
105 case dwarf::DW_TAG_enumeration_type:
106 case dwarf::DW_TAG_pointer_type:
107 case dwarf::DW_TAG_reference_type:
108 case dwarf::DW_TAG_string_type:
109 case dwarf::DW_TAG_structure_type:
110 case dwarf::DW_TAG_subroutine_type:
111 case dwarf::DW_TAG_typedef:
112 case dwarf::DW_TAG_union_type:
113 case dwarf::DW_TAG_ptr_to_member_type:
114 case dwarf::DW_TAG_set_type:
115 case dwarf::DW_TAG_subrange_type:
116 case dwarf::DW_TAG_base_type:
117 case dwarf::DW_TAG_const_type:
118 case dwarf::DW_TAG_constant:
119 case dwarf::DW_TAG_file_type:
120 case dwarf::DW_TAG_namelist:
121 case dwarf::DW_TAG_packed_type:
122 case dwarf::DW_TAG_volatile_type:
123 case dwarf::DW_TAG_restrict_type:
124 case dwarf::DW_TAG_atomic_type:
125 case dwarf::DW_TAG_interface_type:
126 case dwarf::DW_TAG_unspecified_type:
127 case dwarf::DW_TAG_shared_type:
128 case dwarf::DW_TAG_immutable_type:
129 return true;
130 default:
131 break;
132 }
133 return false;
134 }
135
136 AddressesMap::~AddressesMap() = default;
137
138 DwarfEmitter::~DwarfEmitter() = default;
139
StripTemplateParameters(StringRef Name)140 static Optional<StringRef> StripTemplateParameters(StringRef Name) {
141 // We are looking for template parameters to strip from Name. e.g.
142 //
143 // operator<<B>
144 //
145 // We look for > at the end but if it does not contain any < then we
146 // have something like operator>>. We check for the operator<=> case.
147 if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>"))
148 return {};
149
150 // How many < until we have the start of the template parameters.
151 size_t NumLeftAnglesToSkip = 1;
152
153 // If we have operator<=> then we need to skip its < as well.
154 NumLeftAnglesToSkip += Name.count("<=>");
155
156 size_t RightAngleCount = Name.count('>');
157 size_t LeftAngleCount = Name.count('<');
158
159 // If we have more < than > we have operator< or operator<<
160 // we to account for their < as well.
161 if (LeftAngleCount > RightAngleCount)
162 NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount;
163
164 size_t StartOfTemplate = 0;
165 while (NumLeftAnglesToSkip--)
166 StartOfTemplate = Name.find('<', StartOfTemplate) + 1;
167
168 return Name.substr(0, StartOfTemplate - 1);
169 }
170
getDIENames(const DWARFDie & Die,AttributesInfo & Info,OffsetsStringPool & StringPool,bool StripTemplate)171 bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die,
172 AttributesInfo &Info,
173 OffsetsStringPool &StringPool,
174 bool StripTemplate) {
175 // This function will be called on DIEs having low_pcs and
176 // ranges. As getting the name might be more expansive, filter out
177 // blocks directly.
178 if (Die.getTag() == dwarf::DW_TAG_lexical_block)
179 return false;
180
181 if (!Info.MangledName)
182 if (const char *MangledName = Die.getLinkageName())
183 Info.MangledName = StringPool.getEntry(MangledName);
184
185 if (!Info.Name)
186 if (const char *Name = Die.getShortName())
187 Info.Name = StringPool.getEntry(Name);
188
189 if (!Info.MangledName)
190 Info.MangledName = Info.Name;
191
192 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
193 StringRef Name = Info.Name.getString();
194 if (Optional<StringRef> StrippedName = StripTemplateParameters(Name))
195 Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName);
196 }
197
198 return Info.Name || Info.MangledName;
199 }
200
201 /// Resolve the relative path to a build artifact referenced by DWARF by
202 /// applying DW_AT_comp_dir.
resolveRelativeObjectPath(SmallVectorImpl<char> & Buf,DWARFDie CU)203 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
204 sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
205 }
206
207 /// Collect references to parseable Swift interfaces in imported
208 /// DW_TAG_module blocks.
analyzeImportedModule(const DWARFDie & DIE,CompileUnit & CU,swiftInterfacesMap * ParseableSwiftInterfaces,std::function<void (const Twine &,const DWARFDie &)> ReportWarning)209 static void analyzeImportedModule(
210 const DWARFDie &DIE, CompileUnit &CU,
211 swiftInterfacesMap *ParseableSwiftInterfaces,
212 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
213 if (CU.getLanguage() != dwarf::DW_LANG_Swift)
214 return;
215
216 if (!ParseableSwiftInterfaces)
217 return;
218
219 StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
220 if (!Path.endswith(".swiftinterface"))
221 return;
222 // Don't track interfaces that are part of the SDK.
223 StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot));
224 if (SysRoot.empty())
225 SysRoot = CU.getSysRoot();
226 if (!SysRoot.empty() && Path.startswith(SysRoot))
227 return;
228 Optional<const char*> Name = dwarf::toString(DIE.find(dwarf::DW_AT_name));
229 if (!Name)
230 return;
231 auto &Entry = (*ParseableSwiftInterfaces)[*Name];
232 // The prepend path is applied later when copying.
233 DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
234 SmallString<128> ResolvedPath;
235 if (sys::path::is_relative(Path))
236 resolveRelativeObjectPath(ResolvedPath, CUDie);
237 sys::path::append(ResolvedPath, Path);
238 if (!Entry.empty() && Entry != ResolvedPath)
239 ReportWarning(Twine("Conflicting parseable interfaces for Swift Module ") +
240 *Name + ": " + Entry + " and " + Path,
241 DIE);
242 Entry = std::string(ResolvedPath.str());
243 }
244
245 /// The distinct types of work performed by the work loop in
246 /// analyzeContextInfo.
247 enum class ContextWorklistItemType : uint8_t {
248 AnalyzeContextInfo,
249 UpdateChildPruning,
250 UpdatePruning,
251 };
252
253 /// This class represents an item in the work list. The type defines what kind
254 /// of work needs to be performed when processing the current item. Everything
255 /// but the Type and Die fields are optional based on the type.
256 struct ContextWorklistItem {
257 DWARFDie Die;
258 unsigned ParentIdx;
259 union {
260 CompileUnit::DIEInfo *OtherInfo;
261 DeclContext *Context;
262 };
263 ContextWorklistItemType Type;
264 bool InImportedModule;
265
ContextWorklistItemllvm::ContextWorklistItem266 ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T,
267 CompileUnit::DIEInfo *OtherInfo = nullptr)
268 : Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T),
269 InImportedModule(false) {}
270
ContextWorklistItemllvm::ContextWorklistItem271 ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx,
272 bool InImportedModule)
273 : Die(Die), ParentIdx(ParentIdx), Context(Context),
274 Type(ContextWorklistItemType::AnalyzeContextInfo),
275 InImportedModule(InImportedModule) {}
276 };
277
updatePruning(const DWARFDie & Die,CompileUnit & CU,uint64_t ModulesEndOffset)278 static bool updatePruning(const DWARFDie &Die, CompileUnit &CU,
279 uint64_t ModulesEndOffset) {
280 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
281
282 // Prune this DIE if it is either a forward declaration inside a
283 // DW_TAG_module or a DW_TAG_module that contains nothing but
284 // forward declarations.
285 Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) ||
286 (isTypeTag(Die.getTag()) &&
287 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0));
288
289 // Only prune forward declarations inside a DW_TAG_module for which a
290 // definition exists elsewhere.
291 if (ModulesEndOffset == 0)
292 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
293 else
294 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
295 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
296
297 return Info.Prune;
298 }
299
updateChildPruning(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & ChildInfo)300 static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU,
301 CompileUnit::DIEInfo &ChildInfo) {
302 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
303 Info.Prune &= ChildInfo.Prune;
304 }
305
306 /// Recursive helper to build the global DeclContext information and
307 /// gather the child->parent relationships in the original compile unit.
308 ///
309 /// This function uses the same work list approach as lookForDIEsToKeep.
310 ///
311 /// \return true when this DIE and all of its children are only
312 /// forward declarations to types defined in external clang modules
313 /// (i.e., forward declarations that are children of a DW_TAG_module).
analyzeContextInfo(const DWARFDie & DIE,unsigned ParentIdx,CompileUnit & CU,DeclContext * CurrentDeclContext,DeclContextTree & Contexts,uint64_t ModulesEndOffset,swiftInterfacesMap * ParseableSwiftInterfaces,std::function<void (const Twine &,const DWARFDie &)> ReportWarning,bool InImportedModule=false)314 static bool analyzeContextInfo(
315 const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
316 DeclContext *CurrentDeclContext, DeclContextTree &Contexts,
317 uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces,
318 std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
319 bool InImportedModule = false) {
320 // LIFO work list.
321 std::vector<ContextWorklistItem> Worklist;
322 Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, InImportedModule);
323
324 while (!Worklist.empty()) {
325 ContextWorklistItem Current = Worklist.back();
326 Worklist.pop_back();
327
328 switch (Current.Type) {
329 case ContextWorklistItemType::UpdatePruning:
330 updatePruning(Current.Die, CU, ModulesEndOffset);
331 continue;
332 case ContextWorklistItemType::UpdateChildPruning:
333 updateChildPruning(Current.Die, CU, *Current.OtherInfo);
334 continue;
335 case ContextWorklistItemType::AnalyzeContextInfo:
336 break;
337 }
338
339 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
340 CompileUnit::DIEInfo &Info = CU.getInfo(Idx);
341
342 // Clang imposes an ODR on modules(!) regardless of the language:
343 // "The module-id should consist of only a single identifier,
344 // which provides the name of the module being defined. Each
345 // module shall have a single definition."
346 //
347 // This does not extend to the types inside the modules:
348 // "[I]n C, this implies that if two structs are defined in
349 // different submodules with the same name, those two types are
350 // distinct types (but may be compatible types if their
351 // definitions match)."
352 //
353 // We treat non-C++ modules like namespaces for this reason.
354 if (Current.Die.getTag() == dwarf::DW_TAG_module &&
355 Current.ParentIdx == 0 &&
356 dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") !=
357 CU.getClangModuleName()) {
358 Current.InImportedModule = true;
359 analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces,
360 ReportWarning);
361 }
362
363 Info.ParentIdx = Current.ParentIdx;
364 Info.InModuleScope = CU.isClangModule() || Current.InImportedModule;
365 if (CU.hasODR() || Info.InModuleScope) {
366 if (Current.Context) {
367 auto PtrInvalidPair = Contexts.getChildDeclContext(
368 *Current.Context, Current.Die, CU, Info.InModuleScope);
369 Current.Context = PtrInvalidPair.getPointer();
370 Info.Ctxt =
371 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
372 if (Info.Ctxt)
373 Info.Ctxt->setDefinedInClangModule(Info.InModuleScope);
374 } else
375 Info.Ctxt = Current.Context = nullptr;
376 }
377
378 Info.Prune = Current.InImportedModule;
379 // Add children in reverse order to the worklist to effectively process
380 // them in order.
381 Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning);
382 for (auto Child : reverse(Current.Die.children())) {
383 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
384 Worklist.emplace_back(
385 Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo);
386 Worklist.emplace_back(Child, Current.Context, Idx,
387 Current.InImportedModule);
388 }
389 }
390
391 return CU.getInfo(DIE).Prune;
392 }
393
dieNeedsChildrenToBeMeaningful(uint32_t Tag)394 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
395 switch (Tag) {
396 default:
397 return false;
398 case dwarf::DW_TAG_class_type:
399 case dwarf::DW_TAG_common_block:
400 case dwarf::DW_TAG_lexical_block:
401 case dwarf::DW_TAG_structure_type:
402 case dwarf::DW_TAG_subprogram:
403 case dwarf::DW_TAG_subroutine_type:
404 case dwarf::DW_TAG_union_type:
405 return true;
406 }
407 llvm_unreachable("Invalid Tag");
408 }
409
cleanupAuxiliarryData(LinkContext & Context)410 void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) {
411 Context.clear();
412
413 for (DIEBlock *I : DIEBlocks)
414 I->~DIEBlock();
415 for (DIELoc *I : DIELocs)
416 I->~DIELoc();
417
418 DIEBlocks.clear();
419 DIELocs.clear();
420 DIEAlloc.Reset();
421 }
422
423 /// Check if a variable describing DIE should be kept.
424 /// \returns updated TraversalFlags.
shouldKeepVariableDIE(AddressesMap & RelocMgr,const DWARFDie & DIE,CompileUnit::DIEInfo & MyInfo,unsigned Flags)425 unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr,
426 const DWARFDie &DIE,
427 CompileUnit::DIEInfo &MyInfo,
428 unsigned Flags) {
429 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
430
431 // Global variables with constant value can always be kept.
432 if (!(Flags & TF_InFunctionScope) &&
433 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
434 MyInfo.InDebugMap = true;
435 return Flags | TF_Keep;
436 }
437
438 // See if there is a relocation to a valid debug map entry inside this
439 // variable's location. The order is important here. We want to always check
440 // if the variable has a valid relocation, so that the DIEInfo is filled.
441 // However, we don't want a static variable in a function to force us to keep
442 // the enclosing function, unless requested explicitly.
443 const bool HasLiveMemoryLocation = RelocMgr.isLiveVariable(DIE, MyInfo);
444 if (!HasLiveMemoryLocation || ((Flags & TF_InFunctionScope) &&
445 !LLVM_UNLIKELY(Options.KeepFunctionForStatic)))
446 return Flags;
447
448 if (Options.Verbose) {
449 outs() << "Keeping variable DIE:";
450 DIDumpOptions DumpOpts;
451 DumpOpts.ChildRecurseDepth = 0;
452 DumpOpts.Verbose = Options.Verbose;
453 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
454 }
455
456 return Flags | TF_Keep;
457 }
458
459 /// Check if a function describing DIE should be kept.
460 /// \returns updated TraversalFlags.
shouldKeepSubprogramDIE(AddressesMap & RelocMgr,RangesTy & Ranges,const DWARFDie & DIE,const DWARFFile & File,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)461 unsigned DWARFLinker::shouldKeepSubprogramDIE(
462 AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
463 const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
464 unsigned Flags) {
465 Flags |= TF_InFunctionScope;
466
467 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
468 if (!LowPc)
469 return Flags;
470
471 assert(LowPc && "low_pc attribute is not an address.");
472 if (!RelocMgr.isLiveSubprogram(DIE, MyInfo))
473 return Flags;
474
475 if (Options.Verbose) {
476 outs() << "Keeping subprogram DIE:";
477 DIDumpOptions DumpOpts;
478 DumpOpts.ChildRecurseDepth = 0;
479 DumpOpts.Verbose = Options.Verbose;
480 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
481 }
482
483 if (DIE.getTag() == dwarf::DW_TAG_label) {
484 if (Unit.hasLabelAt(*LowPc))
485 return Flags;
486
487 DWARFUnit &OrigUnit = Unit.getOrigUnit();
488 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
489 // that don't fall into the CU's aranges. This is wrong IMO. Debug info
490 // generation bugs aside, this is really wrong in the case of labels, where
491 // a label marking the end of a function will have a PC == CU's high_pc.
492 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
493 .value_or(UINT64_MAX) <= LowPc)
494 return Flags;
495 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
496 return Flags | TF_Keep;
497 }
498
499 Flags |= TF_Keep;
500
501 Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
502 if (!HighPc) {
503 reportWarning("Function without high_pc. Range will be discarded.\n", File,
504 &DIE);
505 return Flags;
506 }
507 if (*LowPc > *HighPc) {
508 reportWarning("low_pc greater than high_pc. Range will be discarded.\n",
509 File, &DIE);
510 return Flags;
511 }
512
513 // Replace the debug map range with a more accurate one.
514 Ranges.insert({*LowPc, *HighPc}, MyInfo.AddrAdjust);
515 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
516 return Flags;
517 }
518
519 /// Check if a DIE should be kept.
520 /// \returns updated TraversalFlags.
shouldKeepDIE(AddressesMap & RelocMgr,RangesTy & Ranges,const DWARFDie & DIE,const DWARFFile & File,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)521 unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges,
522 const DWARFDie &DIE, const DWARFFile &File,
523 CompileUnit &Unit,
524 CompileUnit::DIEInfo &MyInfo,
525 unsigned Flags) {
526 switch (DIE.getTag()) {
527 case dwarf::DW_TAG_constant:
528 case dwarf::DW_TAG_variable:
529 return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags);
530 case dwarf::DW_TAG_subprogram:
531 case dwarf::DW_TAG_label:
532 return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo,
533 Flags);
534 case dwarf::DW_TAG_base_type:
535 // DWARF Expressions may reference basic types, but scanning them
536 // is expensive. Basic types are tiny, so just keep all of them.
537 case dwarf::DW_TAG_imported_module:
538 case dwarf::DW_TAG_imported_declaration:
539 case dwarf::DW_TAG_imported_unit:
540 // We always want to keep these.
541 return Flags | TF_Keep;
542 default:
543 break;
544 }
545
546 return Flags;
547 }
548
549 /// Helper that updates the completeness of the current DIE based on the
550 /// completeness of one of its children. It depends on the incompleteness of
551 /// the children already being computed.
updateChildIncompleteness(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & ChildInfo)552 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
553 CompileUnit::DIEInfo &ChildInfo) {
554 switch (Die.getTag()) {
555 case dwarf::DW_TAG_structure_type:
556 case dwarf::DW_TAG_class_type:
557 case dwarf::DW_TAG_union_type:
558 break;
559 default:
560 return;
561 }
562
563 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
564
565 if (ChildInfo.Incomplete || ChildInfo.Prune)
566 MyInfo.Incomplete = true;
567 }
568
569 /// Helper that updates the completeness of the current DIE based on the
570 /// completeness of the DIEs it references. It depends on the incompleteness of
571 /// the referenced DIE already being computed.
updateRefIncompleteness(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & RefInfo)572 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
573 CompileUnit::DIEInfo &RefInfo) {
574 switch (Die.getTag()) {
575 case dwarf::DW_TAG_typedef:
576 case dwarf::DW_TAG_member:
577 case dwarf::DW_TAG_reference_type:
578 case dwarf::DW_TAG_ptr_to_member_type:
579 case dwarf::DW_TAG_pointer_type:
580 break;
581 default:
582 return;
583 }
584
585 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
586
587 if (MyInfo.Incomplete)
588 return;
589
590 if (RefInfo.Incomplete)
591 MyInfo.Incomplete = true;
592 }
593
594 /// Look at the children of the given DIE and decide whether they should be
595 /// kept.
lookForChildDIEsToKeep(const DWARFDie & Die,CompileUnit & CU,unsigned Flags,SmallVectorImpl<WorklistItem> & Worklist)596 void DWARFLinker::lookForChildDIEsToKeep(
597 const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
598 SmallVectorImpl<WorklistItem> &Worklist) {
599 // The TF_ParentWalk flag tells us that we are currently walking up the
600 // parent chain of a required DIE, and we don't want to mark all the children
601 // of the parents as kept (consider for example a DW_TAG_namespace node in
602 // the parent chain). There are however a set of DIE types for which we want
603 // to ignore that directive and still walk their children.
604 if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
605 Flags &= ~DWARFLinker::TF_ParentWalk;
606
607 // We're finished if this DIE has no children or we're walking the parent
608 // chain.
609 if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk))
610 return;
611
612 // Add children in reverse order to the worklist to effectively process them
613 // in order.
614 for (auto Child : reverse(Die.children())) {
615 // Add a worklist item before every child to calculate incompleteness right
616 // after the current child is processed.
617 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
618 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
619 &ChildInfo);
620 Worklist.emplace_back(Child, CU, Flags);
621 }
622 }
623
isODRCanonicalCandidate(const DWARFDie & Die,CompileUnit & CU)624 static bool isODRCanonicalCandidate(const DWARFDie &Die, CompileUnit &CU) {
625 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
626
627 if (!Info.Ctxt || (Die.getTag() == dwarf::DW_TAG_namespace))
628 return false;
629
630 if (!CU.hasODR() && !Info.InModuleScope)
631 return false;
632
633 return !Info.Incomplete && Info.Ctxt != CU.getInfo(Info.ParentIdx).Ctxt;
634 }
635
markODRCanonicalDie(const DWARFDie & Die,CompileUnit & CU)636 void DWARFLinker::markODRCanonicalDie(const DWARFDie &Die, CompileUnit &CU) {
637 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
638
639 Info.ODRMarkingDone = true;
640 if (Info.Keep && isODRCanonicalCandidate(Die, CU) &&
641 !Info.Ctxt->hasCanonicalDIE())
642 Info.Ctxt->setHasCanonicalDIE();
643 }
644
645 /// Look at DIEs referenced by the given DIE and decide whether they should be
646 /// kept. All DIEs referenced though attributes should be kept.
lookForRefDIEsToKeep(const DWARFDie & Die,CompileUnit & CU,unsigned Flags,const UnitListTy & Units,const DWARFFile & File,SmallVectorImpl<WorklistItem> & Worklist)647 void DWARFLinker::lookForRefDIEsToKeep(
648 const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
649 const UnitListTy &Units, const DWARFFile &File,
650 SmallVectorImpl<WorklistItem> &Worklist) {
651 bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk)
652 ? (Flags & DWARFLinker::TF_ODR)
653 : CU.hasODR();
654 DWARFUnit &Unit = CU.getOrigUnit();
655 DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
656 const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
657 uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
658
659 SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
660 for (const auto &AttrSpec : Abbrev->attributes()) {
661 DWARFFormValue Val(AttrSpec.Form);
662 if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
663 AttrSpec.Attr == dwarf::DW_AT_sibling) {
664 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
665 Unit.getFormParams());
666 continue;
667 }
668
669 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
670 CompileUnit *ReferencedCU;
671 if (auto RefDie =
672 resolveDIEReference(File, Units, Val, Die, ReferencedCU)) {
673 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie);
674 // If the referenced DIE has a DeclContext that has already been
675 // emitted, then do not keep the one in this CU. We'll link to
676 // the canonical DIE in cloneDieReferenceAttribute.
677 //
678 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
679 // be necessary and could be advantageously replaced by
680 // ReferencedCU->hasODR() && CU.hasODR().
681 //
682 // FIXME: compatibility with dsymutil-classic. There is no
683 // reason not to unique ref_addr references.
684 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr &&
685 isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
686 Info.Ctxt->hasCanonicalDIE())
687 continue;
688
689 // Keep a module forward declaration if there is no definition.
690 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
691 Info.Ctxt->hasCanonicalDIE()))
692 Info.Prune = false;
693 ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
694 }
695 }
696
697 unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0;
698
699 // Add referenced DIEs in reverse order to the worklist to effectively
700 // process them in order.
701 for (auto &P : reverse(ReferencedDIEs)) {
702 // Add a worklist item before every child to calculate incompleteness right
703 // after the current child is processed.
704 CompileUnit::DIEInfo &Info = P.second.getInfo(P.first);
705 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
706 &Info);
707 Worklist.emplace_back(P.first, P.second,
708 DWARFLinker::TF_Keep |
709 DWARFLinker::TF_DependencyWalk | ODRFlag);
710 }
711 }
712
713 /// Look at the parent of the given DIE and decide whether they should be kept.
lookForParentDIEsToKeep(unsigned AncestorIdx,CompileUnit & CU,unsigned Flags,SmallVectorImpl<WorklistItem> & Worklist)714 void DWARFLinker::lookForParentDIEsToKeep(
715 unsigned AncestorIdx, CompileUnit &CU, unsigned Flags,
716 SmallVectorImpl<WorklistItem> &Worklist) {
717 // Stop if we encounter an ancestor that's already marked as kept.
718 if (CU.getInfo(AncestorIdx).Keep)
719 return;
720
721 DWARFUnit &Unit = CU.getOrigUnit();
722 DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
723 Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
724 Worklist.emplace_back(ParentDIE, CU, Flags);
725 }
726
727 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
728 /// information in \p CU's DIEInfo.
729 ///
730 /// This function is the entry point of the DIE selection algorithm. It is
731 /// expected to walk the DIE tree in file order and (though the mediation of
732 /// its helper) call hasValidRelocation() on each DIE that might be a 'root
733 /// DIE' (See DwarfLinker class comment).
734 ///
735 /// While walking the dependencies of root DIEs, this function is also called,
736 /// but during these dependency walks the file order is not respected. The
737 /// TF_DependencyWalk flag tells us which kind of traversal we are currently
738 /// doing.
739 ///
740 /// The recursive algorithm is implemented iteratively as a work list because
741 /// very deep recursion could exhaust the stack for large projects. The work
742 /// list acts as a scheduler for different types of work that need to be
743 /// performed.
744 ///
745 /// The recursive nature of the algorithm is simulated by running the "main"
746 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
747 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
748 /// fixing up a computed property (UpdateChildIncompleteness,
749 /// UpdateRefIncompleteness).
750 ///
751 /// The return value indicates whether the DIE is incomplete.
lookForDIEsToKeep(AddressesMap & AddressesMap,RangesTy & Ranges,const UnitListTy & Units,const DWARFDie & Die,const DWARFFile & File,CompileUnit & Cu,unsigned Flags)752 void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap,
753 RangesTy &Ranges, const UnitListTy &Units,
754 const DWARFDie &Die, const DWARFFile &File,
755 CompileUnit &Cu, unsigned Flags) {
756 // LIFO work list.
757 SmallVector<WorklistItem, 4> Worklist;
758 Worklist.emplace_back(Die, Cu, Flags);
759
760 while (!Worklist.empty()) {
761 WorklistItem Current = Worklist.pop_back_val();
762
763 // Look at the worklist type to decide what kind of work to perform.
764 switch (Current.Type) {
765 case WorklistItemType::UpdateChildIncompleteness:
766 updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
767 continue;
768 case WorklistItemType::UpdateRefIncompleteness:
769 updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
770 continue;
771 case WorklistItemType::LookForChildDIEsToKeep:
772 lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
773 continue;
774 case WorklistItemType::LookForRefDIEsToKeep:
775 lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File,
776 Worklist);
777 continue;
778 case WorklistItemType::LookForParentDIEsToKeep:
779 lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
780 Worklist);
781 continue;
782 case WorklistItemType::MarkODRCanonicalDie:
783 markODRCanonicalDie(Current.Die, Current.CU);
784 continue;
785 case WorklistItemType::LookForDIEsToKeep:
786 break;
787 }
788
789 unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
790 CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
791
792 if (MyInfo.Prune)
793 continue;
794
795 // If the Keep flag is set, we are marking a required DIE's dependencies.
796 // If our target is already marked as kept, we're all set.
797 bool AlreadyKept = MyInfo.Keep;
798 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
799 continue;
800
801 // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
802 // because it would screw up the relocation finding logic.
803 if (!(Current.Flags & TF_DependencyWalk))
804 Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File,
805 Current.CU, MyInfo, Current.Flags);
806
807 // We need to mark context for the canonical die in the end of normal
808 // traversing(not TF_DependencyWalk) or after normal traversing if die
809 // was not marked as kept.
810 if (!(Current.Flags & TF_DependencyWalk) ||
811 (MyInfo.ODRMarkingDone && !MyInfo.Keep)) {
812 if (Current.CU.hasODR() || MyInfo.InModuleScope)
813 Worklist.emplace_back(Current.Die, Current.CU,
814 WorklistItemType::MarkODRCanonicalDie);
815 }
816
817 // Finish by looking for child DIEs. Because of the LIFO worklist we need
818 // to schedule that work before any subsequent items are added to the
819 // worklist.
820 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
821 WorklistItemType::LookForChildDIEsToKeep);
822
823 if (AlreadyKept || !(Current.Flags & TF_Keep))
824 continue;
825
826 // If it is a newly kept DIE mark it as well as all its dependencies as
827 // kept.
828 MyInfo.Keep = true;
829
830 // We're looking for incomplete types.
831 MyInfo.Incomplete =
832 Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
833 Current.Die.getTag() != dwarf::DW_TAG_member &&
834 dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
835
836 // After looking at the parent chain, look for referenced DIEs. Because of
837 // the LIFO worklist we need to schedule that work before any subsequent
838 // items are added to the worklist.
839 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
840 WorklistItemType::LookForRefDIEsToKeep);
841
842 bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
843 : Current.CU.hasODR();
844 unsigned ODRFlag = UseOdr ? TF_ODR : 0;
845 unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
846
847 // Now schedule the parent walk.
848 Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
849 }
850 }
851
852 /// Assign an abbreviation number to \p Abbrev.
853 ///
854 /// Our DIEs get freed after every DebugMapObject has been processed,
855 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
856 /// the instances hold by the DIEs. When we encounter an abbreviation
857 /// that we don't know, we create a permanent copy of it.
assignAbbrev(DIEAbbrev & Abbrev)858 void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) {
859 // Check the set for priors.
860 FoldingSetNodeID ID;
861 Abbrev.Profile(ID);
862 void *InsertToken;
863 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
864
865 // If it's newly added.
866 if (InSet) {
867 // Assign existing abbreviation number.
868 Abbrev.setNumber(InSet->getNumber());
869 } else {
870 // Add to abbreviation list.
871 Abbreviations.push_back(
872 std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
873 for (const auto &Attr : Abbrev.getData())
874 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
875 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
876 // Assign the unique abbreviation number.
877 Abbrev.setNumber(Abbreviations.size());
878 Abbreviations.back()->setNumber(Abbreviations.size());
879 }
880 }
881
cloneStringAttribute(DIE & Die,AttributeSpec AttrSpec,const DWARFFormValue & Val,const DWARFUnit &,OffsetsStringPool & StringPool,AttributesInfo & Info)882 unsigned DWARFLinker::DIECloner::cloneStringAttribute(
883 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
884 const DWARFUnit &, OffsetsStringPool &StringPool, AttributesInfo &Info) {
885 Optional<const char *> String = dwarf::toString(Val);
886 if (!String)
887 return 0;
888
889 // Switch everything to out of line strings.
890 auto StringEntry = StringPool.getEntry(*String);
891
892 // Update attributes info.
893 if (AttrSpec.Attr == dwarf::DW_AT_name)
894 Info.Name = StringEntry;
895 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
896 AttrSpec.Attr == dwarf::DW_AT_linkage_name)
897 Info.MangledName = StringEntry;
898
899 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
900 DIEInteger(StringEntry.getOffset()));
901
902 return 4;
903 }
904
cloneDieReferenceAttribute(DIE & Die,const DWARFDie & InputDIE,AttributeSpec AttrSpec,unsigned AttrSize,const DWARFFormValue & Val,const DWARFFile & File,CompileUnit & Unit)905 unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute(
906 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
907 unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File,
908 CompileUnit &Unit) {
909 const DWARFUnit &U = Unit.getOrigUnit();
910 uint64_t Ref = *Val.getAsReference();
911
912 DIE *NewRefDie = nullptr;
913 CompileUnit *RefUnit = nullptr;
914
915 DWARFDie RefDie =
916 Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit);
917
918 // If the referenced DIE is not found, drop the attribute.
919 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
920 return 0;
921
922 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie);
923
924 // If we already have emitted an equivalent DeclContext, just point
925 // at it.
926 if (isODRAttribute(AttrSpec.Attr) && RefInfo.Ctxt &&
927 RefInfo.Ctxt->getCanonicalDIEOffset()) {
928 assert(RefInfo.Ctxt->hasCanonicalDIE() &&
929 "Offset to canonical die is set, but context is not marked");
930 DIEInteger Attr(RefInfo.Ctxt->getCanonicalDIEOffset());
931 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
932 dwarf::DW_FORM_ref_addr, Attr);
933 return U.getRefAddrByteSize();
934 }
935
936 if (!RefInfo.Clone) {
937 assert(Ref > InputDIE.getOffset());
938 // We haven't cloned this DIE yet. Just create an empty one and
939 // store it. It'll get really cloned when we process it.
940 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
941 }
942 NewRefDie = RefInfo.Clone;
943
944 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
945 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
946 // We cannot currently rely on a DIEEntry to emit ref_addr
947 // references, because the implementation calls back to DwarfDebug
948 // to find the unit offset. (We don't have a DwarfDebug)
949 // FIXME: we should be able to design DIEEntry reliance on
950 // DwarfDebug away.
951 uint64_t Attr;
952 if (Ref < InputDIE.getOffset()) {
953 // We must have already cloned that DIE.
954 uint32_t NewRefOffset =
955 RefUnit->getStartOffset() + NewRefDie->getOffset();
956 Attr = NewRefOffset;
957 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
958 dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
959 } else {
960 // A forward reference. Note and fixup later.
961 Attr = 0xBADDEF;
962 Unit.noteForwardReference(
963 NewRefDie, RefUnit, RefInfo.Ctxt,
964 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
965 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
966 }
967 return U.getRefAddrByteSize();
968 }
969
970 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
971 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
972
973 return AttrSize;
974 }
975
cloneExpression(DataExtractor & Data,DWARFExpression Expression,const DWARFFile & File,CompileUnit & Unit,SmallVectorImpl<uint8_t> & OutputBuffer)976 void DWARFLinker::DIECloner::cloneExpression(
977 DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File,
978 CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
979 using Encoding = DWARFExpression::Operation::Encoding;
980
981 uint64_t OpOffset = 0;
982 for (auto &Op : Expression) {
983 auto Description = Op.getDescription();
984 // DW_OP_const_type is variable-length and has 3
985 // operands. DWARFExpression thus far only supports 2.
986 auto Op0 = Description.Op[0];
987 auto Op1 = Description.Op[1];
988 if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
989 (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
990 Linker.reportWarning("Unsupported DW_OP encoding.", File);
991
992 if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
993 (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
994 // This code assumes that the other non-typeref operand fits into 1 byte.
995 assert(OpOffset < Op.getEndOffset());
996 uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
997 assert(ULEBsize <= 16);
998
999 // Copy over the operation.
1000 OutputBuffer.push_back(Op.getCode());
1001 uint64_t RefOffset;
1002 if (Op1 == Encoding::SizeNA) {
1003 RefOffset = Op.getRawOperand(0);
1004 } else {
1005 OutputBuffer.push_back(Op.getRawOperand(0));
1006 RefOffset = Op.getRawOperand(1);
1007 }
1008 uint32_t Offset = 0;
1009 // Look up the base type. For DW_OP_convert, the operand may be 0 to
1010 // instead indicate the generic type. The same holds for
1011 // DW_OP_reinterpret, which is currently not supported.
1012 if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) {
1013 RefOffset += Unit.getOrigUnit().getOffset();
1014 auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
1015 CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie);
1016 if (DIE *Clone = Info.Clone)
1017 Offset = Clone->getOffset();
1018 else
1019 Linker.reportWarning(
1020 "base type ref doesn't point to DW_TAG_base_type.", File);
1021 }
1022 uint8_t ULEB[16];
1023 unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
1024 if (RealSize > ULEBsize) {
1025 // Emit the generic type as a fallback.
1026 RealSize = encodeULEB128(0, ULEB, ULEBsize);
1027 Linker.reportWarning("base type ref doesn't fit.", File);
1028 }
1029 assert(RealSize == ULEBsize && "padding failed");
1030 ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
1031 OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
1032 } else {
1033 // Copy over everything else unmodified.
1034 StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
1035 OutputBuffer.append(Bytes.begin(), Bytes.end());
1036 }
1037 OpOffset = Op.getEndOffset();
1038 }
1039 }
1040
cloneBlockAttribute(DIE & Die,const DWARFFile & File,CompileUnit & Unit,AttributeSpec AttrSpec,const DWARFFormValue & Val,unsigned AttrSize,bool IsLittleEndian)1041 unsigned DWARFLinker::DIECloner::cloneBlockAttribute(
1042 DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec,
1043 const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) {
1044 DIEValueList *Attr;
1045 DIEValue Value;
1046 DIELoc *Loc = nullptr;
1047 DIEBlock *Block = nullptr;
1048 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1049 Loc = new (DIEAlloc) DIELoc;
1050 Linker.DIELocs.push_back(Loc);
1051 } else {
1052 Block = new (DIEAlloc) DIEBlock;
1053 Linker.DIEBlocks.push_back(Block);
1054 }
1055 Attr = Loc ? static_cast<DIEValueList *>(Loc)
1056 : static_cast<DIEValueList *>(Block);
1057
1058 if (Loc)
1059 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1060 dwarf::Form(AttrSpec.Form), Loc);
1061 else
1062 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1063 dwarf::Form(AttrSpec.Form), Block);
1064
1065 // If the block is a DWARF Expression, clone it into the temporary
1066 // buffer using cloneExpression(), otherwise copy the data directly.
1067 SmallVector<uint8_t, 32> Buffer;
1068 ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1069 if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) &&
1070 (Val.isFormClass(DWARFFormValue::FC_Block) ||
1071 Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
1072 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1073 DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
1074 IsLittleEndian, OrigUnit.getAddressByteSize());
1075 DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(),
1076 OrigUnit.getFormParams().Format);
1077 cloneExpression(Data, Expr, File, Unit, Buffer);
1078 Bytes = Buffer;
1079 }
1080 for (auto Byte : Bytes)
1081 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1082 dwarf::DW_FORM_data1, DIEInteger(Byte));
1083
1084 // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1085 // the DIE class, this "if" could be replaced by
1086 // Attr->setSize(Bytes.size()).
1087 if (Loc)
1088 Loc->setSize(Bytes.size());
1089 else
1090 Block->setSize(Bytes.size());
1091
1092 Die.addValue(DIEAlloc, Value);
1093 return AttrSize;
1094 }
1095
cloneAddressAttribute(DIE & Die,AttributeSpec AttrSpec,const DWARFFormValue & Val,const CompileUnit & Unit,AttributesInfo & Info)1096 unsigned DWARFLinker::DIECloner::cloneAddressAttribute(
1097 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1098 const CompileUnit &Unit, AttributesInfo &Info) {
1099 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1100 if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1101 Info.HasLowPc = true;
1102 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1103 dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue()));
1104 return Unit.getOrigUnit().getAddressByteSize();
1105 }
1106
1107 dwarf::Form Form = AttrSpec.Form;
1108 uint64_t Addr = 0;
1109 if (Form == dwarf::DW_FORM_addrx) {
1110 if (Optional<uint64_t> AddrOffsetSectionBase =
1111 Unit.getOrigUnit().getAddrOffsetSectionBase()) {
1112 uint64_t StartOffset = *AddrOffsetSectionBase + Val.getRawUValue();
1113 uint64_t EndOffset =
1114 StartOffset + Unit.getOrigUnit().getAddressByteSize();
1115 if (llvm::Expected<uint64_t> RelocAddr =
1116 ObjFile.Addresses->relocateIndexedAddr(StartOffset, EndOffset))
1117 Addr = *RelocAddr;
1118 else
1119 Linker.reportWarning(toString(RelocAddr.takeError()), ObjFile);
1120 } else
1121 Linker.reportWarning("no base offset for address table", ObjFile);
1122
1123 // If this is an indexed address emit the debug_info address.
1124 Form = dwarf::DW_FORM_addr;
1125 } else
1126 Addr = *Val.getAsAddress();
1127
1128 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1129 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1130 Die.getTag() == dwarf::DW_TAG_lexical_block ||
1131 Die.getTag() == dwarf::DW_TAG_label) {
1132 // The low_pc of a block or inline subroutine might get
1133 // relocated because it happens to match the low_pc of the
1134 // enclosing subprogram. To prevent issues with that, always use
1135 // the low_pc from the input DIE if relocations have been applied.
1136 Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
1137 ? Info.OrigLowPc
1138 : Addr) +
1139 Info.PCOffset;
1140 } else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1141 Addr = Unit.getLowPc();
1142 if (Addr == std::numeric_limits<uint64_t>::max())
1143 return 0;
1144 }
1145 Info.HasLowPc = true;
1146 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1147 if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1148 if (uint64_t HighPc = Unit.getHighPc())
1149 Addr = HighPc;
1150 else
1151 return 0;
1152 } else
1153 // If we have a high_pc recorded for the input DIE, use
1154 // it. Otherwise (when no relocations where applied) just use the
1155 // one we just decoded.
1156 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1157 } else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) {
1158 // Relocate a return PC address within a call site entry.
1159 if (Die.getTag() == dwarf::DW_TAG_call_site)
1160 Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) +
1161 Info.PCOffset;
1162 } else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) {
1163 // Relocate the address of a branch instruction within a call site entry.
1164 if (Die.getTag() == dwarf::DW_TAG_call_site)
1165 Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset;
1166 }
1167
1168 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1169 static_cast<dwarf::Form>(Form), DIEInteger(Addr));
1170 return Unit.getOrigUnit().getAddressByteSize();
1171 }
1172
cloneScalarAttribute(DIE & Die,const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,AttributeSpec AttrSpec,const DWARFFormValue & Val,unsigned AttrSize,AttributesInfo & Info)1173 unsigned DWARFLinker::DIECloner::cloneScalarAttribute(
1174 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1175 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1176 unsigned AttrSize, AttributesInfo &Info) {
1177 uint64_t Value;
1178
1179 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1180 if (auto OptionalValue = Val.getAsUnsignedConstant())
1181 Value = *OptionalValue;
1182 else if (auto OptionalValue = Val.getAsSignedConstant())
1183 Value = *OptionalValue;
1184 else if (auto OptionalValue = Val.getAsSectionOffset())
1185 Value = *OptionalValue;
1186 else {
1187 Linker.reportWarning(
1188 "Unsupported scalar attribute form. Dropping attribute.", File,
1189 &InputDIE);
1190 return 0;
1191 }
1192 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1193 Info.IsDeclaration = true;
1194 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1195 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1196 return AttrSize;
1197 }
1198
1199 if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1200 Die.getTag() == dwarf::DW_TAG_compile_unit) {
1201 if (Unit.getLowPc() == -1ULL)
1202 return 0;
1203 // Dwarf >= 4 high_pc is an size, not an address.
1204 Value = Unit.getHighPc() - Unit.getLowPc();
1205 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1206 Value = *Val.getAsSectionOffset();
1207 else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1208 Value = *Val.getAsSignedConstant();
1209 else if (auto OptionalValue = Val.getAsUnsignedConstant())
1210 Value = *OptionalValue;
1211 else {
1212 Linker.reportWarning(
1213 "Unsupported scalar attribute form. Dropping attribute.", File,
1214 &InputDIE);
1215 return 0;
1216 }
1217 PatchLocation Patch =
1218 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1219 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1220 if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
1221 Unit.noteRangeAttribute(Die, Patch);
1222 Info.HasRanges = true;
1223 }
1224
1225 // A more generic way to check for location attributes would be
1226 // nice, but it's very unlikely that any other attribute needs a
1227 // location list.
1228 // FIXME: use DWARFAttribute::mayHaveLocationDescription().
1229 else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1230 AttrSpec.Attr == dwarf::DW_AT_frame_base) {
1231 Unit.noteLocationAttribute(Patch, Info.PCOffset);
1232 } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1233 Info.IsDeclaration = true;
1234
1235 return AttrSize;
1236 }
1237
1238 /// Clone \p InputDIE's attribute described by \p AttrSpec with
1239 /// value \p Val, and add it to \p Die.
1240 /// \returns the size of the cloned attribute.
cloneAttribute(DIE & Die,const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,OffsetsStringPool & StringPool,const DWARFFormValue & Val,const AttributeSpec AttrSpec,unsigned AttrSize,AttributesInfo & Info,bool IsLittleEndian)1241 unsigned DWARFLinker::DIECloner::cloneAttribute(
1242 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1243 CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
1244 const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
1245 bool IsLittleEndian) {
1246 const DWARFUnit &U = Unit.getOrigUnit();
1247
1248 switch (AttrSpec.Form) {
1249 case dwarf::DW_FORM_strp:
1250 case dwarf::DW_FORM_string:
1251 case dwarf::DW_FORM_strx:
1252 case dwarf::DW_FORM_strx1:
1253 case dwarf::DW_FORM_strx2:
1254 case dwarf::DW_FORM_strx3:
1255 case dwarf::DW_FORM_strx4:
1256 return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
1257 case dwarf::DW_FORM_ref_addr:
1258 case dwarf::DW_FORM_ref1:
1259 case dwarf::DW_FORM_ref2:
1260 case dwarf::DW_FORM_ref4:
1261 case dwarf::DW_FORM_ref8:
1262 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1263 File, Unit);
1264 case dwarf::DW_FORM_block:
1265 case dwarf::DW_FORM_block1:
1266 case dwarf::DW_FORM_block2:
1267 case dwarf::DW_FORM_block4:
1268 case dwarf::DW_FORM_exprloc:
1269 return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize,
1270 IsLittleEndian);
1271 case dwarf::DW_FORM_addr:
1272 case dwarf::DW_FORM_addrx:
1273 return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
1274 case dwarf::DW_FORM_data1:
1275 case dwarf::DW_FORM_data2:
1276 case dwarf::DW_FORM_data4:
1277 case dwarf::DW_FORM_data8:
1278 case dwarf::DW_FORM_udata:
1279 case dwarf::DW_FORM_sdata:
1280 case dwarf::DW_FORM_sec_offset:
1281 case dwarf::DW_FORM_flag:
1282 case dwarf::DW_FORM_flag_present:
1283 return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
1284 AttrSize, Info);
1285 default:
1286 Linker.reportWarning("Unsupported attribute form " +
1287 dwarf::FormEncodingString(AttrSpec.Form) +
1288 " in cloneAttribute. Dropping.",
1289 File, &InputDIE);
1290 }
1291
1292 return 0;
1293 }
1294
isObjCSelector(StringRef Name)1295 static bool isObjCSelector(StringRef Name) {
1296 return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
1297 (Name[1] == '[');
1298 }
1299
addObjCAccelerator(CompileUnit & Unit,const DIE * Die,DwarfStringPoolEntryRef Name,OffsetsStringPool & StringPool,bool SkipPubSection)1300 void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
1301 const DIE *Die,
1302 DwarfStringPoolEntryRef Name,
1303 OffsetsStringPool &StringPool,
1304 bool SkipPubSection) {
1305 assert(isObjCSelector(Name.getString()) && "not an objc selector");
1306 // Objective C method or class function.
1307 // "- [Class(Category) selector :withArg ...]"
1308 StringRef ClassNameStart(Name.getString().drop_front(2));
1309 size_t FirstSpace = ClassNameStart.find(' ');
1310 if (FirstSpace == StringRef::npos)
1311 return;
1312
1313 StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
1314 if (!SelectorStart.size())
1315 return;
1316
1317 StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
1318 Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
1319
1320 // Add an entry for the class name that points to this
1321 // method/class function.
1322 StringRef ClassName(ClassNameStart.data(), FirstSpace);
1323 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
1324
1325 if (ClassName[ClassName.size() - 1] == ')') {
1326 size_t OpenParens = ClassName.find('(');
1327 if (OpenParens != StringRef::npos) {
1328 StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
1329 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
1330 SkipPubSection);
1331
1332 std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
1333 // FIXME: The missing space here may be a bug, but
1334 // dsymutil-classic also does it this way.
1335 MethodNameNoCategory.append(std::string(SelectorStart));
1336 Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
1337 SkipPubSection);
1338 }
1339 }
1340 }
1341
1342 static bool
shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,uint16_t Tag,bool InDebugMap,bool SkipPC,bool InFunctionScope)1343 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1344 uint16_t Tag, bool InDebugMap, bool SkipPC,
1345 bool InFunctionScope) {
1346 switch (AttrSpec.Attr) {
1347 default:
1348 return false;
1349 case dwarf::DW_AT_low_pc:
1350 case dwarf::DW_AT_high_pc:
1351 case dwarf::DW_AT_ranges:
1352 return SkipPC;
1353 case dwarf::DW_AT_str_offsets_base:
1354 // FIXME: Use the string offset table with Dwarf 5.
1355 return true;
1356 case dwarf::DW_AT_location:
1357 case dwarf::DW_AT_frame_base:
1358 // FIXME: for some reason dsymutil-classic keeps the location attributes
1359 // when they are of block type (i.e. not location lists). This is totally
1360 // wrong for globals where we will keep a wrong address. It is mostly
1361 // harmless for locals, but there is no point in keeping these anyway when
1362 // the function wasn't linked.
1363 return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
1364 !InDebugMap)) &&
1365 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
1366 }
1367 }
1368
cloneDIE(const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,OffsetsStringPool & StringPool,int64_t PCOffset,uint32_t OutOffset,unsigned Flags,bool IsLittleEndian,DIE * Die)1369 DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
1370 const DWARFFile &File, CompileUnit &Unit,
1371 OffsetsStringPool &StringPool,
1372 int64_t PCOffset, uint32_t OutOffset,
1373 unsigned Flags, bool IsLittleEndian,
1374 DIE *Die) {
1375 DWARFUnit &U = Unit.getOrigUnit();
1376 unsigned Idx = U.getDIEIndex(InputDIE);
1377 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1378
1379 // Should the DIE appear in the output?
1380 if (!Unit.getInfo(Idx).Keep)
1381 return nullptr;
1382
1383 uint64_t Offset = InputDIE.getOffset();
1384 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
1385 if (!Die) {
1386 // The DIE might have been already created by a forward reference
1387 // (see cloneDieReferenceAttribute()).
1388 if (!Info.Clone)
1389 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1390 Die = Info.Clone;
1391 }
1392
1393 assert(Die->getTag() == InputDIE.getTag());
1394 Die->setOffset(OutOffset);
1395 if (isODRCanonicalCandidate(InputDIE, Unit) && Info.Ctxt &&
1396 (Info.Ctxt->getCanonicalDIEOffset() == 0)) {
1397 if (!Info.Ctxt->hasCanonicalDIE())
1398 Info.Ctxt->setHasCanonicalDIE();
1399 // We are about to emit a DIE that is the root of its own valid
1400 // DeclContext tree. Make the current offset the canonical offset
1401 // for this context.
1402 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1403 }
1404
1405 // Extract and clone every attribute.
1406 DWARFDataExtractor Data = U.getDebugInfoExtractor();
1407 // Point to the next DIE (generally there is always at least a NULL
1408 // entry after the current one). If this is a lone
1409 // DW_TAG_compile_unit without any children, point to the next unit.
1410 uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
1411 ? U.getDIEAtIndex(Idx + 1).getOffset()
1412 : U.getNextUnitOffset();
1413 AttributesInfo AttrInfo;
1414
1415 // We could copy the data only if we need to apply a relocation to it. After
1416 // testing, it seems there is no performance downside to doing the copy
1417 // unconditionally, and it makes the code simpler.
1418 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1419 Data =
1420 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1421
1422 // Modify the copy with relocated addresses.
1423 if (ObjFile.Addresses->applyValidRelocs(DIECopy, Offset,
1424 Data.isLittleEndian())) {
1425 // If we applied relocations, we store the value of high_pc that was
1426 // potentially stored in the input DIE. If high_pc is an address
1427 // (Dwarf version == 2), then it might have been relocated to a
1428 // totally unrelated value (because the end address in the object
1429 // file might be start address of another function which got moved
1430 // independently by the linker). The computation of the actual
1431 // high_pc value is done in cloneAddressAttribute().
1432 AttrInfo.OrigHighPc =
1433 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
1434 // Also store the low_pc. It might get relocated in an
1435 // inline_subprogram that happens at the beginning of its
1436 // inlining function.
1437 AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
1438 std::numeric_limits<uint64_t>::max());
1439 AttrInfo.OrigCallReturnPc =
1440 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0);
1441 AttrInfo.OrigCallPc =
1442 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0);
1443 }
1444
1445 // Reset the Offset to 0 as we will be working on the local copy of
1446 // the data.
1447 Offset = 0;
1448
1449 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1450 Offset += getULEB128Size(Abbrev->getCode());
1451
1452 // We are entering a subprogram. Get and propagate the PCOffset.
1453 if (Die->getTag() == dwarf::DW_TAG_subprogram)
1454 PCOffset = Info.AddrAdjust;
1455 AttrInfo.PCOffset = PCOffset;
1456
1457 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1458 Flags |= TF_InFunctionScope;
1459 if (!Info.InDebugMap && LLVM_LIKELY(!Update))
1460 Flags |= TF_SkipPC;
1461 } else if (Abbrev->getTag() == dwarf::DW_TAG_variable) {
1462 // Function-local globals could be in the debug map even when the function
1463 // is not, e.g., inlined functions.
1464 if ((Flags & TF_InFunctionScope) && Info.InDebugMap)
1465 Flags &= ~TF_SkipPC;
1466 }
1467
1468 for (const auto &AttrSpec : Abbrev->attributes()) {
1469 if (LLVM_LIKELY(!Update) &&
1470 shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
1471 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
1472 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1473 U.getFormParams());
1474 continue;
1475 }
1476
1477 DWARFFormValue Val(AttrSpec.Form);
1478 uint64_t AttrSize = Offset;
1479 Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1480 AttrSize = Offset - AttrSize;
1481
1482 OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val,
1483 AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
1484 }
1485
1486 // Look for accelerator entries.
1487 uint16_t Tag = InputDIE.getTag();
1488 // FIXME: This is slightly wrong. An inline_subroutine without a
1489 // low_pc, but with AT_ranges might be interesting to get into the
1490 // accelerator tables too. For now stick with dsymutil's behavior.
1491 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1492 Tag != dwarf::DW_TAG_compile_unit &&
1493 getDIENames(InputDIE, AttrInfo, StringPool,
1494 Tag != dwarf::DW_TAG_inlined_subroutine)) {
1495 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1496 Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1497 Tag == dwarf::DW_TAG_inlined_subroutine);
1498 if (AttrInfo.Name) {
1499 if (AttrInfo.NameWithoutTemplate)
1500 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1501 /* SkipPubSection */ true);
1502 Unit.addNameAccelerator(Die, AttrInfo.Name,
1503 Tag == dwarf::DW_TAG_inlined_subroutine);
1504 }
1505 if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
1506 addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
1507 /* SkipPubSection =*/true);
1508
1509 } else if (Tag == dwarf::DW_TAG_namespace) {
1510 if (!AttrInfo.Name)
1511 AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
1512 Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1513 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1514 getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
1515 AttrInfo.Name.getString()[0]) {
1516 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File);
1517 uint64_t RuntimeLang =
1518 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1519 .value_or(0);
1520 bool ObjCClassIsImplementation =
1521 (RuntimeLang == dwarf::DW_LANG_ObjC ||
1522 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1523 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1524 .value_or(0);
1525 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1526 Hash);
1527 }
1528
1529 // Determine whether there are any children that we want to keep.
1530 bool HasChildren = false;
1531 for (auto Child : InputDIE.children()) {
1532 unsigned Idx = U.getDIEIndex(Child);
1533 if (Unit.getInfo(Idx).Keep) {
1534 HasChildren = true;
1535 break;
1536 }
1537 }
1538
1539 DIEAbbrev NewAbbrev = Die->generateAbbrev();
1540 if (HasChildren)
1541 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1542 // Assign a permanent abbrev number
1543 Linker.assignAbbrev(NewAbbrev);
1544 Die->setAbbrevNumber(NewAbbrev.getNumber());
1545
1546 // Add the size of the abbreviation number to the output offset.
1547 OutOffset += getULEB128Size(Die->getAbbrevNumber());
1548
1549 if (!HasChildren) {
1550 // Update our size.
1551 Die->setSize(OutOffset - Die->getOffset());
1552 return Die;
1553 }
1554
1555 // Recursively clone children.
1556 for (auto Child : InputDIE.children()) {
1557 if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset,
1558 OutOffset, Flags, IsLittleEndian)) {
1559 Die->addChild(Clone);
1560 OutOffset = Clone->getOffset() + Clone->getSize();
1561 }
1562 }
1563
1564 // Account for the end of children marker.
1565 OutOffset += sizeof(int8_t);
1566 // Update our size.
1567 Die->setSize(OutOffset - Die->getOffset());
1568 return Die;
1569 }
1570
1571 /// Patch the input object file relevant debug_ranges entries
1572 /// and emit them in the output file. Update the relevant attributes
1573 /// to point at the new entries.
patchRangesForUnit(const CompileUnit & Unit,DWARFContext & OrigDwarf,const DWARFFile & File) const1574 void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit,
1575 DWARFContext &OrigDwarf,
1576 const DWARFFile &File) const {
1577 DWARFDebugRangeList RangeList;
1578 const auto &FunctionRanges = Unit.getFunctionRanges();
1579 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
1580 DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
1581 OrigDwarf.getDWARFObj().getRangesSection(),
1582 OrigDwarf.isLittleEndian(), AddressSize);
1583 Optional<std::pair<AddressRange, int64_t>> CurrRange;
1584 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1585 auto OrigUnitDie = OrigUnit.getUnitDIE(false);
1586 uint64_t OrigLowPc =
1587 dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
1588 // Ranges addresses are based on the unit's low_pc. Compute the
1589 // offset we need to apply to adapt to the new unit's low_pc.
1590 int64_t UnitPcOffset = 0;
1591 if (OrigLowPc != -1ULL)
1592 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
1593
1594 for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
1595 uint64_t Offset = RangeAttribute.get();
1596 RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize());
1597 if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
1598 llvm::consumeError(std::move(E));
1599 reportWarning("invalid range list ignored.", File);
1600 RangeList.clear();
1601 }
1602 const auto &Entries = RangeList.getEntries();
1603 if (!Entries.empty()) {
1604 const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
1605
1606 if (!CurrRange ||
1607 !CurrRange->first.contains(First.StartAddress + OrigLowPc)) {
1608 CurrRange = FunctionRanges.getRangeValueThatContains(
1609 First.StartAddress + OrigLowPc);
1610 if (!CurrRange) {
1611 reportWarning("no mapping for range.", File);
1612 continue;
1613 }
1614 }
1615 }
1616
1617 TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange,
1618 Entries, AddressSize);
1619 }
1620 }
1621
1622 /// Generate the debug_aranges entries for \p Unit and if the
1623 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1624 /// contribution for this attribute.
1625 /// FIXME: this could actually be done right in patchRangesForUnit,
1626 /// but for the sake of initial bit-for-bit compatibility with legacy
1627 /// dsymutil, we have to do it in a delayed pass.
generateUnitRanges(CompileUnit & Unit) const1628 void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const {
1629 auto Attr = Unit.getUnitRangesAttribute();
1630 if (Attr)
1631 Attr->set(TheDwarfEmitter->getRangesSectionSize());
1632 TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
1633 }
1634
1635 /// Insert the new line info sequence \p Seq into the current
1636 /// set of already linked line info \p Rows.
insertLineSequence(std::vector<DWARFDebugLine::Row> & Seq,std::vector<DWARFDebugLine::Row> & Rows)1637 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
1638 std::vector<DWARFDebugLine::Row> &Rows) {
1639 if (Seq.empty())
1640 return;
1641
1642 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
1643 llvm::append_range(Rows, Seq);
1644 Seq.clear();
1645 return;
1646 }
1647
1648 object::SectionedAddress Front = Seq.front().Address;
1649 auto InsertPoint = partition_point(
1650 Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
1651
1652 // FIXME: this only removes the unneeded end_sequence if the
1653 // sequences have been inserted in order. Using a global sort like
1654 // described in patchLineTableForUnit() and delaying the end_sequene
1655 // elimination to emitLineTableForUnit() we can get rid of all of them.
1656 if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
1657 InsertPoint->EndSequence) {
1658 *InsertPoint = Seq.front();
1659 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
1660 } else {
1661 Rows.insert(InsertPoint, Seq.begin(), Seq.end());
1662 }
1663
1664 Seq.clear();
1665 }
1666
patchStmtList(DIE & Die,DIEInteger Offset)1667 static void patchStmtList(DIE &Die, DIEInteger Offset) {
1668 for (auto &V : Die.values())
1669 if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
1670 V = DIEValue(V.getAttribute(), V.getForm(), Offset);
1671 return;
1672 }
1673
1674 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
1675 }
1676
1677 /// Extract the line table for \p Unit from \p OrigDwarf, and
1678 /// recreate a relocated version of these for the address ranges that
1679 /// are present in the binary.
patchLineTableForUnit(CompileUnit & Unit,DWARFContext & OrigDwarf,const DWARFFile & File)1680 void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit,
1681 DWARFContext &OrigDwarf,
1682 const DWARFFile &File) {
1683 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
1684 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1685 if (!StmtList)
1686 return;
1687
1688 // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1689 if (auto *OutputDIE = Unit.getOutputUnitDIE())
1690 patchStmtList(*OutputDIE,
1691 DIEInteger(TheDwarfEmitter->getLineSectionSize()));
1692
1693 RangesTy &Ranges = File.Addresses->getValidAddressRanges();
1694
1695 // Parse the original line info for the unit.
1696 DWARFDebugLine::LineTable LineTable;
1697 uint64_t StmtOffset = *StmtList;
1698 DWARFDataExtractor LineExtractor(
1699 OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
1700 OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
1701 if (needToTranslateStrings())
1702 return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset);
1703
1704 if (Error Err =
1705 LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
1706 &Unit.getOrigUnit(), OrigDwarf.getWarningHandler()))
1707 OrigDwarf.getWarningHandler()(std::move(Err));
1708
1709 // This vector is the output line table.
1710 std::vector<DWARFDebugLine::Row> NewRows;
1711 NewRows.reserve(LineTable.Rows.size());
1712
1713 // Current sequence of rows being extracted, before being inserted
1714 // in NewRows.
1715 std::vector<DWARFDebugLine::Row> Seq;
1716 const auto &FunctionRanges = Unit.getFunctionRanges();
1717 Optional<std::pair<AddressRange, int64_t>> CurrRange;
1718
1719 // FIXME: This logic is meant to generate exactly the same output as
1720 // Darwin's classic dsymutil. There is a nicer way to implement this
1721 // by simply putting all the relocated line info in NewRows and simply
1722 // sorting NewRows before passing it to emitLineTableForUnit. This
1723 // should be correct as sequences for a function should stay
1724 // together in the sorted output. There are a few corner cases that
1725 // look suspicious though, and that required to implement the logic
1726 // this way. Revisit that once initial validation is finished.
1727
1728 // Iterate over the object file line info and extract the sequences
1729 // that correspond to linked functions.
1730 for (auto &Row : LineTable.Rows) {
1731 // Check whether we stepped out of the range. The range is
1732 // half-open, but consider accept the end address of the range if
1733 // it is marked as end_sequence in the input (because in that
1734 // case, the relocation offset is accurate and that entry won't
1735 // serve as the start of another function).
1736 if (!CurrRange || !CurrRange->first.contains(Row.Address.Address) ||
1737 (Row.Address.Address == CurrRange->first.end() && !Row.EndSequence)) {
1738 // We just stepped out of a known range. Insert a end_sequence
1739 // corresponding to the end of the range.
1740 uint64_t StopAddress =
1741 CurrRange ? CurrRange->first.end() + CurrRange->second : -1ULL;
1742 CurrRange = FunctionRanges.getRangeValueThatContains(Row.Address.Address);
1743 if (!CurrRange) {
1744 if (StopAddress != -1ULL) {
1745 // Try harder by looking in the Address ranges map.
1746 // There are corner cases where this finds a
1747 // valid entry. It's unclear if this is right or wrong, but
1748 // for now do as dsymutil.
1749 // FIXME: Understand exactly what cases this addresses and
1750 // potentially remove it along with the Ranges map.
1751 if (Optional<std::pair<AddressRange, int64_t>> Range =
1752 Ranges.getRangeValueThatContains(Row.Address.Address))
1753 StopAddress = Row.Address.Address + (*Range).second;
1754 }
1755 }
1756 if (StopAddress != -1ULL && !Seq.empty()) {
1757 // Insert end sequence row with the computed end address, but
1758 // the same line as the previous one.
1759 auto NextLine = Seq.back();
1760 NextLine.Address.Address = StopAddress;
1761 NextLine.EndSequence = 1;
1762 NextLine.PrologueEnd = 0;
1763 NextLine.BasicBlock = 0;
1764 NextLine.EpilogueBegin = 0;
1765 Seq.push_back(NextLine);
1766 insertLineSequence(Seq, NewRows);
1767 }
1768
1769 if (!CurrRange)
1770 continue;
1771 }
1772
1773 // Ignore empty sequences.
1774 if (Row.EndSequence && Seq.empty())
1775 continue;
1776
1777 // Relocate row address and add it to the current sequence.
1778 Row.Address.Address += CurrRange->second;
1779 Seq.emplace_back(Row);
1780
1781 if (Row.EndSequence)
1782 insertLineSequence(Seq, NewRows);
1783 }
1784
1785 // Finished extracting, now emit the line tables.
1786 // FIXME: LLVM hard-codes its prologue values. We just copy the
1787 // prologue over and that works because we act as both producer and
1788 // consumer. It would be nicer to have a real configurable line
1789 // table emitter.
1790 if (LineTable.Prologue.getVersion() < 2 ||
1791 LineTable.Prologue.getVersion() > 5 ||
1792 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
1793 LineTable.Prologue.OpcodeBase > 13)
1794 reportWarning("line table parameters mismatch. Cannot emit.", File);
1795 else {
1796 uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
1797 // DWARF v5 has an extra 2 bytes of information before the header_length
1798 // field.
1799 if (LineTable.Prologue.getVersion() == 5)
1800 PrologueEnd += 2;
1801 StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
1802 MCDwarfLineTableParams Params;
1803 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
1804 Params.DWARF2LineBase = LineTable.Prologue.LineBase;
1805 Params.DWARF2LineRange = LineTable.Prologue.LineRange;
1806 TheDwarfEmitter->emitLineTableForUnit(
1807 Params, LineData.slice(*StmtList + 4, PrologueEnd),
1808 LineTable.Prologue.MinInstLength, NewRows,
1809 Unit.getOrigUnit().getAddressByteSize());
1810 }
1811 }
1812
emitAcceleratorEntriesForUnit(CompileUnit & Unit)1813 void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
1814 switch (Options.TheAccelTableKind) {
1815 case DwarfLinkerAccelTableKind::None:
1816 // Nothing to do.
1817 break;
1818 case DwarfLinkerAccelTableKind::Apple:
1819 emitAppleAcceleratorEntriesForUnit(Unit);
1820 break;
1821 case DwarfLinkerAccelTableKind::Dwarf:
1822 emitDwarfAcceleratorEntriesForUnit(Unit);
1823 break;
1824 case DwarfLinkerAccelTableKind::Pub:
1825 emitPubAcceleratorEntriesForUnit(Unit);
1826 break;
1827 case DwarfLinkerAccelTableKind::Default:
1828 llvm_unreachable("The default must be updated to a concrete value.");
1829 break;
1830 }
1831 }
1832
emitAppleAcceleratorEntriesForUnit(CompileUnit & Unit)1833 void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) {
1834 // Add namespaces.
1835 for (const auto &Namespace : Unit.getNamespaces())
1836 AppleNamespaces.addName(Namespace.Name,
1837 Namespace.Die->getOffset() + Unit.getStartOffset());
1838
1839 /// Add names.
1840 for (const auto &Pubname : Unit.getPubnames())
1841 AppleNames.addName(Pubname.Name,
1842 Pubname.Die->getOffset() + Unit.getStartOffset());
1843
1844 /// Add types.
1845 for (const auto &Pubtype : Unit.getPubtypes())
1846 AppleTypes.addName(
1847 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
1848 Pubtype.Die->getTag(),
1849 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
1850 : 0,
1851 Pubtype.QualifiedNameHash);
1852
1853 /// Add ObjC names.
1854 for (const auto &ObjC : Unit.getObjC())
1855 AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
1856 }
1857
emitDwarfAcceleratorEntriesForUnit(CompileUnit & Unit)1858 void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) {
1859 for (const auto &Namespace : Unit.getNamespaces())
1860 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
1861 Namespace.Die->getTag(), Unit.getUniqueID());
1862 for (const auto &Pubname : Unit.getPubnames())
1863 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
1864 Pubname.Die->getTag(), Unit.getUniqueID());
1865 for (const auto &Pubtype : Unit.getPubtypes())
1866 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
1867 Pubtype.Die->getTag(), Unit.getUniqueID());
1868 }
1869
emitPubAcceleratorEntriesForUnit(CompileUnit & Unit)1870 void DWARFLinker::emitPubAcceleratorEntriesForUnit(CompileUnit &Unit) {
1871 TheDwarfEmitter->emitPubNamesForUnit(Unit);
1872 TheDwarfEmitter->emitPubTypesForUnit(Unit);
1873 }
1874
1875 /// Read the frame info stored in the object, and emit the
1876 /// patched frame descriptions for the resulting file.
1877 ///
1878 /// This is actually pretty easy as the data of the CIEs and FDEs can
1879 /// be considered as black boxes and moved as is. The only thing to do
1880 /// is to patch the addresses in the headers.
patchFrameInfoForObject(const DWARFFile & File,RangesTy & Ranges,DWARFContext & OrigDwarf,unsigned AddrSize)1881 void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File,
1882 RangesTy &Ranges,
1883 DWARFContext &OrigDwarf,
1884 unsigned AddrSize) {
1885 StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
1886 if (FrameData.empty())
1887 return;
1888
1889 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
1890 uint64_t InputOffset = 0;
1891
1892 // Store the data of the CIEs defined in this object, keyed by their
1893 // offsets.
1894 DenseMap<uint64_t, StringRef> LocalCIES;
1895
1896 while (Data.isValidOffset(InputOffset)) {
1897 uint64_t EntryOffset = InputOffset;
1898 uint32_t InitialLength = Data.getU32(&InputOffset);
1899 if (InitialLength == 0xFFFFFFFF)
1900 return reportWarning("Dwarf64 bits no supported", File);
1901
1902 uint32_t CIEId = Data.getU32(&InputOffset);
1903 if (CIEId == 0xFFFFFFFF) {
1904 // This is a CIE, store it.
1905 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
1906 LocalCIES[EntryOffset] = CIEData;
1907 // The -4 is to account for the CIEId we just read.
1908 InputOffset += InitialLength - 4;
1909 continue;
1910 }
1911
1912 uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
1913
1914 // Some compilers seem to emit frame info that doesn't start at
1915 // the function entry point, thus we can't just lookup the address
1916 // in the debug map. Use the AddressInfo's range map to see if the FDE
1917 // describes something that we can relocate.
1918 Optional<std::pair<AddressRange, int64_t>> Range =
1919 Ranges.getRangeValueThatContains(Loc);
1920 if (!Range) {
1921 // The +4 is to account for the size of the InitialLength field itself.
1922 InputOffset = EntryOffset + InitialLength + 4;
1923 continue;
1924 }
1925
1926 // This is an FDE, and we have a mapping.
1927 // Have we already emitted a corresponding CIE?
1928 StringRef CIEData = LocalCIES[CIEId];
1929 if (CIEData.empty())
1930 return reportWarning("Inconsistent debug_frame content. Dropping.", File);
1931
1932 // Look if we already emitted a CIE that corresponds to the
1933 // referenced one (the CIE data is the key of that lookup).
1934 auto IteratorInserted = EmittedCIEs.insert(
1935 std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize()));
1936 // If there is no CIE yet for this ID, emit it.
1937 if (IteratorInserted.second) {
1938 LastCIEOffset = TheDwarfEmitter->getFrameSectionSize();
1939 IteratorInserted.first->getValue() = LastCIEOffset;
1940 TheDwarfEmitter->emitCIE(CIEData);
1941 }
1942
1943 // Emit the FDE with updated address and CIE pointer.
1944 // (4 + AddrSize) is the size of the CIEId + initial_location
1945 // fields that will get reconstructed by emitFDE().
1946 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
1947 TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize,
1948 Loc + Range->second,
1949 FrameData.substr(InputOffset, FDERemainingBytes));
1950 InputOffset += FDERemainingBytes;
1951 }
1952 }
1953
hashFullyQualifiedName(DWARFDie DIE,CompileUnit & U,const DWARFFile & File,int ChildRecurseDepth)1954 uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE,
1955 CompileUnit &U,
1956 const DWARFFile &File,
1957 int ChildRecurseDepth) {
1958 const char *Name = nullptr;
1959 DWARFUnit *OrigUnit = &U.getOrigUnit();
1960 CompileUnit *CU = &U;
1961 Optional<DWARFFormValue> Ref;
1962
1963 while (true) {
1964 if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
1965 Name = CurrentName;
1966
1967 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
1968 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
1969 break;
1970
1971 if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
1972 break;
1973
1974 CompileUnit *RefCU;
1975 if (auto RefDIE =
1976 Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) {
1977 CU = RefCU;
1978 OrigUnit = &RefCU->getOrigUnit();
1979 DIE = RefDIE;
1980 }
1981 }
1982
1983 unsigned Idx = OrigUnit->getDIEIndex(DIE);
1984 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
1985 Name = "(anonymous namespace)";
1986
1987 if (CU->getInfo(Idx).ParentIdx == 0 ||
1988 // FIXME: dsymutil-classic compatibility. Ignore modules.
1989 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
1990 dwarf::DW_TAG_module)
1991 return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
1992
1993 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
1994 return djbHash(
1995 (Name ? Name : ""),
1996 djbHash((Name ? "::" : ""),
1997 hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth)));
1998 }
1999
getDwoId(const DWARFDie & CUDie,const DWARFUnit & Unit)2000 static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
2001 auto DwoId = dwarf::toUnsigned(
2002 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
2003 if (DwoId)
2004 return *DwoId;
2005 return 0;
2006 }
2007
remapPath(StringRef Path,const objectPrefixMap & ObjectPrefixMap)2008 static std::string remapPath(StringRef Path,
2009 const objectPrefixMap &ObjectPrefixMap) {
2010 if (ObjectPrefixMap.empty())
2011 return Path.str();
2012
2013 SmallString<256> p = Path;
2014 for (const auto &Entry : ObjectPrefixMap)
2015 if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second))
2016 break;
2017 return p.str().str();
2018 }
2019
registerModuleReference(DWARFDie CUDie,const DWARFUnit & Unit,const DWARFFile & File,OffsetsStringPool & StringPool,DeclContextTree & ODRContexts,uint64_t ModulesEndOffset,unsigned & UnitID,bool IsLittleEndian,unsigned Indent,bool Quiet)2020 bool DWARFLinker::registerModuleReference(DWARFDie CUDie, const DWARFUnit &Unit,
2021 const DWARFFile &File,
2022 OffsetsStringPool &StringPool,
2023 DeclContextTree &ODRContexts,
2024 uint64_t ModulesEndOffset,
2025 unsigned &UnitID, bool IsLittleEndian,
2026 unsigned Indent, bool Quiet) {
2027 std::string PCMfile = dwarf::toString(
2028 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
2029 if (PCMfile.empty())
2030 return false;
2031 if (Options.ObjectPrefixMap)
2032 PCMfile = remapPath(PCMfile, *Options.ObjectPrefixMap);
2033
2034 // Clang module DWARF skeleton CUs abuse this for the path to the module.
2035 uint64_t DwoId = getDwoId(CUDie, Unit);
2036
2037 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2038 if (Name.empty()) {
2039 if (!Quiet)
2040 reportWarning("Anonymous module skeleton CU for " + PCMfile, File);
2041 return true;
2042 }
2043
2044 if (!Quiet && Options.Verbose) {
2045 outs().indent(Indent);
2046 outs() << "Found clang module reference " << PCMfile;
2047 }
2048
2049 auto Cached = ClangModules.find(PCMfile);
2050 if (Cached != ClangModules.end()) {
2051 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2052 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2053 // ASTFileSignatures will change randomly when a module is rebuilt.
2054 if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2055 reportWarning(Twine("hash mismatch: this object file was built against a "
2056 "different version of the module ") +
2057 PCMfile,
2058 File);
2059 if (!Quiet && Options.Verbose)
2060 outs() << " [cached].\n";
2061 return true;
2062 }
2063 if (!Quiet && Options.Verbose)
2064 outs() << " ...\n";
2065
2066 // Cyclic dependencies are disallowed by Clang, but we still
2067 // shouldn't run into an infinite loop, so mark it as processed now.
2068 ClangModules.insert({PCMfile, DwoId});
2069
2070 if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, File, StringPool,
2071 ODRContexts, ModulesEndOffset, UnitID,
2072 IsLittleEndian, Indent + 2, Quiet)) {
2073 consumeError(std::move(E));
2074 return false;
2075 }
2076 return true;
2077 }
2078
loadClangModule(DWARFDie CUDie,StringRef Filename,StringRef ModuleName,uint64_t DwoId,const DWARFFile & File,OffsetsStringPool & StringPool,DeclContextTree & ODRContexts,uint64_t ModulesEndOffset,unsigned & UnitID,bool IsLittleEndian,unsigned Indent,bool Quiet)2079 Error DWARFLinker::loadClangModule(
2080 DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
2081 const DWARFFile &File, OffsetsStringPool &StringPool,
2082 DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
2083 bool IsLittleEndian, unsigned Indent, bool Quiet) {
2084 /// Using a SmallString<0> because loadClangModule() is recursive.
2085 SmallString<0> Path(Options.PrependPath);
2086 if (sys::path::is_relative(Filename))
2087 resolveRelativeObjectPath(Path, CUDie);
2088 sys::path::append(Path, Filename);
2089 // Don't use the cached binary holder because we have no thread-safety
2090 // guarantee and the lifetime is limited.
2091
2092 if (Options.ObjFileLoader == nullptr)
2093 return Error::success();
2094
2095 auto ErrOrObj = Options.ObjFileLoader(File.FileName, Path);
2096 if (!ErrOrObj)
2097 return Error::success();
2098
2099 std::unique_ptr<CompileUnit> Unit;
2100
2101 for (const auto &CU : ErrOrObj->Dwarf->compile_units()) {
2102 updateDwarfVersion(CU->getVersion());
2103 // Recursively get all modules imported by this one.
2104 auto CUDie = CU->getUnitDIE(false);
2105 if (!CUDie)
2106 continue;
2107 if (!registerModuleReference(CUDie, *CU, File, StringPool, ODRContexts,
2108 ModulesEndOffset, UnitID, IsLittleEndian,
2109 Indent, Quiet)) {
2110 if (Unit) {
2111 std::string Err =
2112 (Filename +
2113 ": Clang modules are expected to have exactly 1 compile unit.\n")
2114 .str();
2115 reportError(Err, File);
2116 return make_error<StringError>(Err, inconvertibleErrorCode());
2117 }
2118 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2119 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2120 // ASTFileSignatures will change randomly when a module is rebuilt.
2121 uint64_t PCMDwoId = getDwoId(CUDie, *CU);
2122 if (PCMDwoId != DwoId) {
2123 if (!Quiet && Options.Verbose)
2124 reportWarning(
2125 Twine("hash mismatch: this object file was built against a "
2126 "different version of the module ") +
2127 Filename,
2128 File);
2129 // Update the cache entry with the DwoId of the module loaded from disk.
2130 ClangModules[Filename] = PCMDwoId;
2131 }
2132
2133 // Add this module.
2134 Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
2135 ModuleName);
2136 analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), ODRContexts,
2137 ModulesEndOffset, Options.ParseableSwiftInterfaces,
2138 [&](const Twine &Warning, const DWARFDie &DIE) {
2139 reportWarning(Warning, File, &DIE);
2140 });
2141 // Keep everything.
2142 Unit->markEverythingAsKept();
2143 }
2144 }
2145 assert(Unit && "CompileUnit is not set!");
2146 if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
2147 return Error::success();
2148 if (!Quiet && Options.Verbose) {
2149 outs().indent(Indent);
2150 outs() << "cloning .debug_info from " << Filename << "\n";
2151 }
2152
2153 UnitListTy CompileUnits;
2154 CompileUnits.push_back(std::move(Unit));
2155 assert(TheDwarfEmitter);
2156 DIECloner(*this, TheDwarfEmitter, *ErrOrObj, DIEAlloc, CompileUnits,
2157 Options.Update)
2158 .cloneAllCompileUnits(*(ErrOrObj->Dwarf), File, StringPool,
2159 IsLittleEndian);
2160 return Error::success();
2161 }
2162
cloneAllCompileUnits(DWARFContext & DwarfContext,const DWARFFile & File,OffsetsStringPool & StringPool,bool IsLittleEndian)2163 uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits(
2164 DWARFContext &DwarfContext, const DWARFFile &File,
2165 OffsetsStringPool &StringPool, bool IsLittleEndian) {
2166 uint64_t OutputDebugInfoSize =
2167 Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize();
2168 const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize;
2169
2170 for (auto &CurrentUnit : CompileUnits) {
2171 const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2172 const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11;
2173 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2174 CurrentUnit->setStartOffset(OutputDebugInfoSize);
2175 if (!InputDIE) {
2176 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2177 continue;
2178 }
2179 if (CurrentUnit->getInfo(0).Keep) {
2180 // Clone the InputDIE into your Unit DIE in our compile unit since it
2181 // already has a DIE inside of it.
2182 CurrentUnit->createOutputDIE();
2183 cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */,
2184 UnitHeaderSize, 0, IsLittleEndian,
2185 CurrentUnit->getOutputUnitDIE());
2186 }
2187
2188 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2189
2190 if (!Linker.Options.NoOutput) {
2191 assert(Emitter);
2192
2193 if (LLVM_LIKELY(!Linker.Options.Update) ||
2194 Linker.needToTranslateStrings())
2195 Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File);
2196
2197 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2198
2199 if (LLVM_UNLIKELY(Linker.Options.Update))
2200 continue;
2201
2202 Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File);
2203 auto ProcessExpr = [&](StringRef Bytes,
2204 SmallVectorImpl<uint8_t> &Buffer) {
2205 DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
2206 DataExtractor Data(Bytes, IsLittleEndian,
2207 OrigUnit.getAddressByteSize());
2208 cloneExpression(Data,
2209 DWARFExpression(Data, OrigUnit.getAddressByteSize(),
2210 OrigUnit.getFormParams().Format),
2211 File, *CurrentUnit, Buffer);
2212 };
2213 Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr);
2214 }
2215 }
2216
2217 if (!Linker.Options.NoOutput) {
2218 assert(Emitter);
2219 // Emit all the compile unit's debug information.
2220 for (auto &CurrentUnit : CompileUnits) {
2221 if (LLVM_LIKELY(!Linker.Options.Update))
2222 Linker.generateUnitRanges(*CurrentUnit);
2223
2224 CurrentUnit->fixupForwardReferences();
2225
2226 if (!CurrentUnit->getOutputUnitDIE())
2227 continue;
2228
2229 unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2230
2231 assert(Emitter->getDebugInfoSectionSize() ==
2232 CurrentUnit->getStartOffset());
2233 Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion);
2234 Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE());
2235 assert(Emitter->getDebugInfoSectionSize() ==
2236 CurrentUnit->computeNextUnitOffset(DwarfVersion));
2237 }
2238 }
2239
2240 return OutputDebugInfoSize - StartOutputDebugInfoSize;
2241 }
2242
updateAccelKind(DWARFContext & Dwarf)2243 void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) {
2244 if (Options.TheAccelTableKind != DwarfLinkerAccelTableKind::Default)
2245 return;
2246
2247 auto &DwarfObj = Dwarf.getDWARFObj();
2248
2249 if (!AtLeastOneDwarfAccelTable &&
2250 (!DwarfObj.getAppleNamesSection().Data.empty() ||
2251 !DwarfObj.getAppleTypesSection().Data.empty() ||
2252 !DwarfObj.getAppleNamespacesSection().Data.empty() ||
2253 !DwarfObj.getAppleObjCSection().Data.empty())) {
2254 AtLeastOneAppleAccelTable = true;
2255 }
2256
2257 if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
2258 AtLeastOneDwarfAccelTable = true;
2259 }
2260 }
2261
emitPaperTrailWarnings(const DWARFFile & File,OffsetsStringPool & StringPool)2262 bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File,
2263 OffsetsStringPool &StringPool) {
2264
2265 if (File.Warnings.empty())
2266 return false;
2267
2268 DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
2269 CUDie->setOffset(11);
2270 StringRef Producer;
2271 StringRef WarningHeader;
2272
2273 switch (DwarfLinkerClientID) {
2274 case DwarfLinkerClient::Dsymutil:
2275 Producer = StringPool.internString("dsymutil");
2276 WarningHeader = "dsymutil_warning";
2277 break;
2278
2279 default:
2280 Producer = StringPool.internString("dwarfopt");
2281 WarningHeader = "dwarfopt_warning";
2282 break;
2283 }
2284
2285 StringRef FileName = StringPool.internString(File.FileName);
2286 CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
2287 DIEInteger(StringPool.getStringOffset(Producer)));
2288 DIEBlock *String = new (DIEAlloc) DIEBlock();
2289 DIEBlocks.push_back(String);
2290 for (auto &C : FileName)
2291 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2292 DIEInteger(C));
2293 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2294 DIEInteger(0));
2295
2296 CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
2297 for (const auto &Warning : File.Warnings) {
2298 DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
2299 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
2300 DIEInteger(StringPool.getStringOffset(WarningHeader)));
2301 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
2302 DIEInteger(1));
2303 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
2304 DIEInteger(StringPool.getStringOffset(Warning)));
2305 }
2306 unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 +
2307 File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */;
2308 DIEAbbrev Abbrev = CUDie->generateAbbrev();
2309 assignAbbrev(Abbrev);
2310 CUDie->setAbbrevNumber(Abbrev.getNumber());
2311 Size += getULEB128Size(Abbrev.getNumber());
2312 // Abbreviation ordering needed for classic compatibility.
2313 for (auto &Child : CUDie->children()) {
2314 Abbrev = Child.generateAbbrev();
2315 assignAbbrev(Abbrev);
2316 Child.setAbbrevNumber(Abbrev.getNumber());
2317 Size += getULEB128Size(Abbrev.getNumber());
2318 }
2319 CUDie->setSize(Size);
2320 TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie);
2321
2322 return true;
2323 }
2324
copyInvariantDebugSection(DWARFContext & Dwarf)2325 void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) {
2326 if (!needToTranslateStrings())
2327 TheDwarfEmitter->emitSectionContents(
2328 Dwarf.getDWARFObj().getLineSection().Data, "debug_line");
2329 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data,
2330 "debug_loc");
2331 TheDwarfEmitter->emitSectionContents(
2332 Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges");
2333 TheDwarfEmitter->emitSectionContents(
2334 Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame");
2335 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(),
2336 "debug_aranges");
2337 }
2338
addObjectFile(DWARFFile & File)2339 void DWARFLinker::addObjectFile(DWARFFile &File) {
2340 ObjectContexts.emplace_back(LinkContext(File));
2341
2342 if (ObjectContexts.back().File.Dwarf)
2343 updateAccelKind(*ObjectContexts.back().File.Dwarf);
2344 }
2345
link()2346 Error DWARFLinker::link() {
2347 assert(Options.NoOutput || TheDwarfEmitter);
2348
2349 // A unique ID that identifies each compile unit.
2350 unsigned UnitID = 0;
2351
2352 // First populate the data structure we need for each iteration of the
2353 // parallel loop.
2354 unsigned NumObjects = ObjectContexts.size();
2355
2356 // This Dwarf string pool which is used for emission. It must be used
2357 // serially as the order of calling getStringOffset matters for
2358 // reproducibility.
2359 OffsetsStringPool OffsetsStringPool(StringsTranslator, true);
2360
2361 // ODR Contexts for the optimize.
2362 DeclContextTree ODRContexts;
2363
2364 // If we haven't decided on an accelerator table kind yet, we base ourselves
2365 // on the DWARF we have seen so far. At this point we haven't pulled in debug
2366 // information from modules yet, so it is technically possible that they
2367 // would affect the decision. However, as they're built with the same
2368 // compiler and flags, it is safe to assume that they will follow the
2369 // decision made here.
2370 if (Options.TheAccelTableKind == DwarfLinkerAccelTableKind::Default) {
2371 if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
2372 Options.TheAccelTableKind = DwarfLinkerAccelTableKind::Dwarf;
2373 else
2374 Options.TheAccelTableKind = DwarfLinkerAccelTableKind::Apple;
2375 }
2376
2377 for (LinkContext &OptContext : ObjectContexts) {
2378 if (Options.Verbose) {
2379 if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil)
2380 outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n";
2381 else
2382 outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n";
2383 }
2384
2385 if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool))
2386 continue;
2387
2388 if (!OptContext.File.Dwarf)
2389 continue;
2390
2391 if (Options.VerifyInputDWARF)
2392 verify(OptContext.File);
2393
2394 // Look for relocations that correspond to address map entries.
2395
2396 // there was findvalidrelocations previously ... probably we need to gather
2397 // info here
2398 if (LLVM_LIKELY(!Options.Update) &&
2399 !OptContext.File.Addresses->hasValidRelocs()) {
2400 if (Options.Verbose)
2401 outs() << "No valid relocations found. Skipping.\n";
2402
2403 // Set "Skip" flag as a signal to other loops that we should not
2404 // process this iteration.
2405 OptContext.Skip = true;
2406 continue;
2407 }
2408
2409 // Setup access to the debug info.
2410 if (!OptContext.File.Dwarf)
2411 continue;
2412
2413 // Check whether type units are presented.
2414 if (!OptContext.File.Dwarf->types_section_units().empty()) {
2415 reportWarning("type units are not currently supported: file will "
2416 "be skipped",
2417 OptContext.File);
2418 OptContext.Skip = true;
2419 continue;
2420 }
2421
2422 // Check for unsupported sections. Following sections can be referenced
2423 // from .debug_info section. Current DWARFLinker implementation does not
2424 // support or update references to these tables. Thus we report warning
2425 // and skip corresponding object file.
2426 if (!OptContext.File.Dwarf->getDWARFObj()
2427 .getRnglistsSection()
2428 .Data.empty()) {
2429 reportWarning("'.debug_rnglists' is not currently supported: file "
2430 "will be skipped",
2431 OptContext.File);
2432 OptContext.Skip = true;
2433 continue;
2434 }
2435
2436 if (!OptContext.File.Dwarf->getDWARFObj()
2437 .getLoclistsSection()
2438 .Data.empty()) {
2439 reportWarning("'.debug_loclists' is not currently supported: file "
2440 "will be skipped",
2441 OptContext.File);
2442 OptContext.Skip = true;
2443 continue;
2444 }
2445
2446 if (!OptContext.File.Dwarf->getDWARFObj().getMacroSection().Data.empty()) {
2447 reportWarning("'.debug_macro' is not currently supported: file "
2448 "will be skipped",
2449 OptContext.File);
2450 OptContext.Skip = true;
2451 continue;
2452 }
2453
2454 if (OptContext.File.Dwarf->getDWARFObj().getMacinfoSection().size() > 1) {
2455 reportWarning("'.debug_macinfo' is not currently supported: file "
2456 "will be skipped",
2457 OptContext.File);
2458 OptContext.Skip = true;
2459 continue;
2460 }
2461
2462 // In a first phase, just read in the debug info and load all clang modules.
2463 OptContext.CompileUnits.reserve(
2464 OptContext.File.Dwarf->getNumCompileUnits());
2465
2466 for (const auto &CU : OptContext.File.Dwarf->compile_units()) {
2467 updateDwarfVersion(CU->getVersion());
2468 auto CUDie = CU->getUnitDIE(false);
2469 if (Options.Verbose) {
2470 outs() << "Input compilation unit:";
2471 DIDumpOptions DumpOpts;
2472 DumpOpts.ChildRecurseDepth = 0;
2473 DumpOpts.Verbose = Options.Verbose;
2474 CUDie.dump(outs(), 0, DumpOpts);
2475 }
2476 if (CUDie && !LLVM_UNLIKELY(Options.Update))
2477 registerModuleReference(CUDie, *CU, OptContext.File, OffsetsStringPool,
2478 ODRContexts, 0, UnitID,
2479 OptContext.File.Dwarf->isLittleEndian());
2480 }
2481 }
2482
2483 // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
2484 if (MaxDwarfVersion == 0)
2485 MaxDwarfVersion = 3;
2486
2487 // At this point we know how much data we have emitted. We use this value to
2488 // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2489 // is already emitted, without being affected by canonical die offsets set
2490 // later. This prevents undeterminism when analyze and clone execute
2491 // concurrently, as clone set the canonical DIE offset and analyze reads it.
2492 const uint64_t ModulesEndOffset =
2493 Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize();
2494
2495 // These variables manage the list of processed object files.
2496 // The mutex and condition variable are to ensure that this is thread safe.
2497 std::mutex ProcessedFilesMutex;
2498 std::condition_variable ProcessedFilesConditionVariable;
2499 BitVector ProcessedFiles(NumObjects, false);
2500
2501 // Analyzing the context info is particularly expensive so it is executed in
2502 // parallel with emitting the previous compile unit.
2503 auto AnalyzeLambda = [&](size_t I) {
2504 auto &Context = ObjectContexts[I];
2505
2506 if (Context.Skip || !Context.File.Dwarf)
2507 return;
2508
2509 for (const auto &CU : Context.File.Dwarf->compile_units()) {
2510 updateDwarfVersion(CU->getVersion());
2511 // The !registerModuleReference() condition effectively skips
2512 // over fully resolved skeleton units. This second pass of
2513 // registerModuleReferences doesn't do any new work, but it
2514 // will collect top-level errors, which are suppressed. Module
2515 // warnings were already displayed in the first iteration.
2516 bool Quiet = true;
2517 auto CUDie = CU->getUnitDIE(false);
2518 if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
2519 !registerModuleReference(CUDie, *CU, Context.File, OffsetsStringPool,
2520 ODRContexts, ModulesEndOffset, UnitID,
2521 Quiet)) {
2522 Context.CompileUnits.push_back(std::make_unique<CompileUnit>(
2523 *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
2524 }
2525 }
2526
2527 // Now build the DIE parent links that we will use during the next phase.
2528 for (auto &CurrentUnit : Context.CompileUnits) {
2529 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2530 if (!CUDie)
2531 continue;
2532 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2533 *CurrentUnit, &ODRContexts.getRoot(), ODRContexts,
2534 ModulesEndOffset, Options.ParseableSwiftInterfaces,
2535 [&](const Twine &Warning, const DWARFDie &DIE) {
2536 reportWarning(Warning, Context.File, &DIE);
2537 });
2538 }
2539 };
2540
2541 // For each object file map how many bytes were emitted.
2542 StringMap<DebugInfoSize> SizeByObject;
2543
2544 // And then the remaining work in serial again.
2545 // Note, although this loop runs in serial, it can run in parallel with
2546 // the analyzeContextInfo loop so long as we process files with indices >=
2547 // than those processed by analyzeContextInfo.
2548 auto CloneLambda = [&](size_t I) {
2549 auto &OptContext = ObjectContexts[I];
2550 if (OptContext.Skip || !OptContext.File.Dwarf)
2551 return;
2552
2553 // Then mark all the DIEs that need to be present in the generated output
2554 // and collect some information about them.
2555 // Note that this loop can not be merged with the previous one because
2556 // cross-cu references require the ParentIdx to be setup for every CU in
2557 // the object file before calling this.
2558 if (LLVM_UNLIKELY(Options.Update)) {
2559 for (auto &CurrentUnit : OptContext.CompileUnits)
2560 CurrentUnit->markEverythingAsKept();
2561 copyInvariantDebugSection(*OptContext.File.Dwarf);
2562 } else {
2563 for (auto &CurrentUnit : OptContext.CompileUnits)
2564 lookForDIEsToKeep(*OptContext.File.Addresses,
2565 OptContext.File.Addresses->getValidAddressRanges(),
2566 OptContext.CompileUnits,
2567 CurrentUnit->getOrigUnit().getUnitDIE(),
2568 OptContext.File, *CurrentUnit, 0);
2569 }
2570
2571 // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2572 // array again (in the same way findValidRelocsInDebugInfo() did). We
2573 // need to reset the NextValidReloc index to the beginning.
2574 if (OptContext.File.Addresses->hasValidRelocs() ||
2575 LLVM_UNLIKELY(Options.Update)) {
2576 SizeByObject[OptContext.File.FileName].Input =
2577 getDebugInfoSize(*OptContext.File.Dwarf);
2578 SizeByObject[OptContext.File.FileName].Output =
2579 DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc,
2580 OptContext.CompileUnits, Options.Update)
2581 .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File,
2582 OffsetsStringPool,
2583 OptContext.File.Dwarf->isLittleEndian());
2584 }
2585 if (!Options.NoOutput && !OptContext.CompileUnits.empty() &&
2586 LLVM_LIKELY(!Options.Update))
2587 patchFrameInfoForObject(
2588 OptContext.File, OptContext.File.Addresses->getValidAddressRanges(),
2589 *OptContext.File.Dwarf,
2590 OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
2591
2592 // Clean-up before starting working on the next object.
2593 cleanupAuxiliarryData(OptContext);
2594 };
2595
2596 auto EmitLambda = [&]() {
2597 // Emit everything that's global.
2598 if (!Options.NoOutput) {
2599 TheDwarfEmitter->emitAbbrevs(Abbreviations, MaxDwarfVersion);
2600 TheDwarfEmitter->emitStrings(OffsetsStringPool);
2601 switch (Options.TheAccelTableKind) {
2602 case DwarfLinkerAccelTableKind::None:
2603 // Nothing to do.
2604 break;
2605 case DwarfLinkerAccelTableKind::Apple:
2606 TheDwarfEmitter->emitAppleNames(AppleNames);
2607 TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces);
2608 TheDwarfEmitter->emitAppleTypes(AppleTypes);
2609 TheDwarfEmitter->emitAppleObjc(AppleObjc);
2610 break;
2611 case DwarfLinkerAccelTableKind::Dwarf:
2612 TheDwarfEmitter->emitDebugNames(DebugNames);
2613 break;
2614 case DwarfLinkerAccelTableKind::Pub:
2615 // Already emitted by emitPubAcceleratorEntriesForUnit.
2616 break;
2617 case DwarfLinkerAccelTableKind::Default:
2618 llvm_unreachable("Default should have already been resolved.");
2619 break;
2620 }
2621 }
2622 };
2623
2624 auto AnalyzeAll = [&]() {
2625 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2626 AnalyzeLambda(I);
2627
2628 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2629 ProcessedFiles.set(I);
2630 ProcessedFilesConditionVariable.notify_one();
2631 }
2632 };
2633
2634 auto CloneAll = [&]() {
2635 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2636 {
2637 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2638 if (!ProcessedFiles[I]) {
2639 ProcessedFilesConditionVariable.wait(
2640 LockGuard, [&]() { return ProcessedFiles[I]; });
2641 }
2642 }
2643
2644 CloneLambda(I);
2645 }
2646 EmitLambda();
2647 };
2648
2649 // To limit memory usage in the single threaded case, analyze and clone are
2650 // run sequentially so the OptContext is freed after processing each object
2651 // in endDebugObject.
2652 if (Options.Threads == 1) {
2653 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2654 AnalyzeLambda(I);
2655 CloneLambda(I);
2656 }
2657 EmitLambda();
2658 } else {
2659 ThreadPool Pool(hardware_concurrency(2));
2660 Pool.async(AnalyzeAll);
2661 Pool.async(CloneAll);
2662 Pool.wait();
2663 }
2664
2665 if (Options.Statistics) {
2666 // Create a vector sorted in descending order by output size.
2667 std::vector<std::pair<StringRef, DebugInfoSize>> Sorted;
2668 for (auto &E : SizeByObject)
2669 Sorted.emplace_back(E.first(), E.second);
2670 llvm::sort(Sorted, [](auto &LHS, auto &RHS) {
2671 return LHS.second.Output > RHS.second.Output;
2672 });
2673
2674 auto ComputePercentange = [](int64_t Input, int64_t Output) -> float {
2675 const float Difference = Output - Input;
2676 const float Sum = Input + Output;
2677 if (Sum == 0)
2678 return 0;
2679 return (Difference / (Sum / 2));
2680 };
2681
2682 int64_t InputTotal = 0;
2683 int64_t OutputTotal = 0;
2684 const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n";
2685
2686 // Print header.
2687 outs() << ".debug_info section size (in bytes)\n";
2688 outs() << "----------------------------------------------------------------"
2689 "---------------\n";
2690 outs() << "Filename Object "
2691 " dSYM Change\n";
2692 outs() << "----------------------------------------------------------------"
2693 "---------------\n";
2694
2695 // Print body.
2696 for (auto &E : Sorted) {
2697 InputTotal += E.second.Input;
2698 OutputTotal += E.second.Output;
2699 llvm::outs() << formatv(
2700 FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input,
2701 E.second.Output, ComputePercentange(E.second.Input, E.second.Output));
2702 }
2703 // Print total and footer.
2704 outs() << "----------------------------------------------------------------"
2705 "---------------\n";
2706 llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal,
2707 ComputePercentange(InputTotal, OutputTotal));
2708 outs() << "----------------------------------------------------------------"
2709 "---------------\n\n";
2710 }
2711
2712 return Error::success();
2713 }
2714
verify(const DWARFFile & File)2715 bool DWARFLinker::verify(const DWARFFile &File) {
2716 assert(File.Dwarf);
2717
2718 DIDumpOptions DumpOpts;
2719 if (!File.Dwarf->verify(llvm::outs(), DumpOpts.noImplicitRecursion())) {
2720 reportWarning("input verification failed", File);
2721 return false;
2722 }
2723 return true;
2724 }
2725
2726 } // namespace llvm
2727