1 //=== DWARFLinker.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/DWARFLinker/DWARFLinker.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/CodeGen/NonRelocatableStringpool.h"
15 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
16 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
17 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
18 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
19 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
20 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
21 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
22 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
23 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
24 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
25 #include "llvm/Support/DataExtractor.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ErrorOr.h"
29 #include "llvm/Support/FormatVariadic.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/ThreadPool.h"
33 #include <vector>
34 
35 namespace llvm {
36 
37 /// Hold the input and output of the debug info size in bytes.
38 struct DebugInfoSize {
39   uint64_t Input;
40   uint64_t Output;
41 };
42 
43 /// Compute the total size of the debug info.
44 static uint64_t getDebugInfoSize(DWARFContext &Dwarf) {
45   uint64_t Size = 0;
46   for (auto &Unit : Dwarf.compile_units()) {
47     Size += Unit->getLength();
48   }
49   return Size;
50 }
51 
52 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
53 /// CompileUnit object instead.
54 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
55   auto CU = llvm::upper_bound(
56       Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
57         return LHS < RHS->getOrigUnit().getNextUnitOffset();
58       });
59   return CU != Units.end() ? CU->get() : nullptr;
60 }
61 
62 /// Resolve the DIE attribute reference that has been extracted in \p RefValue.
63 /// The resulting DIE might be in another CompileUnit which is stored into \p
64 /// ReferencedCU. \returns null if resolving fails for any reason.
65 DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File,
66                                           const UnitListTy &Units,
67                                           const DWARFFormValue &RefValue,
68                                           const DWARFDie &DIE,
69                                           CompileUnit *&RefCU) {
70   assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
71   uint64_t RefOffset = *RefValue.getAsReference();
72   if ((RefCU = getUnitForOffset(Units, RefOffset)))
73     if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
74       // In a file with broken references, an attribute might point to a NULL
75       // DIE.
76       if (!RefDie.isNULL())
77         return RefDie;
78     }
79 
80   reportWarning("could not find referenced DIE", File, &DIE);
81   return DWARFDie();
82 }
83 
84 /// \returns whether the passed \a Attr type might contain a DIE reference
85 /// suitable for ODR uniquing.
86 static bool isODRAttribute(uint16_t Attr) {
87   switch (Attr) {
88   default:
89     return false;
90   case dwarf::DW_AT_type:
91   case dwarf::DW_AT_containing_type:
92   case dwarf::DW_AT_specification:
93   case dwarf::DW_AT_abstract_origin:
94   case dwarf::DW_AT_import:
95     return true;
96   }
97   llvm_unreachable("Improper attribute.");
98 }
99 
100 static bool isTypeTag(uint16_t Tag) {
101   switch (Tag) {
102   case dwarf::DW_TAG_array_type:
103   case dwarf::DW_TAG_class_type:
104   case dwarf::DW_TAG_enumeration_type:
105   case dwarf::DW_TAG_pointer_type:
106   case dwarf::DW_TAG_reference_type:
107   case dwarf::DW_TAG_string_type:
108   case dwarf::DW_TAG_structure_type:
109   case dwarf::DW_TAG_subroutine_type:
110   case dwarf::DW_TAG_typedef:
111   case dwarf::DW_TAG_union_type:
112   case dwarf::DW_TAG_ptr_to_member_type:
113   case dwarf::DW_TAG_set_type:
114   case dwarf::DW_TAG_subrange_type:
115   case dwarf::DW_TAG_base_type:
116   case dwarf::DW_TAG_const_type:
117   case dwarf::DW_TAG_constant:
118   case dwarf::DW_TAG_file_type:
119   case dwarf::DW_TAG_namelist:
120   case dwarf::DW_TAG_packed_type:
121   case dwarf::DW_TAG_volatile_type:
122   case dwarf::DW_TAG_restrict_type:
123   case dwarf::DW_TAG_atomic_type:
124   case dwarf::DW_TAG_interface_type:
125   case dwarf::DW_TAG_unspecified_type:
126   case dwarf::DW_TAG_shared_type:
127   case dwarf::DW_TAG_immutable_type:
128     return true;
129   default:
130     break;
131   }
132   return false;
133 }
134 
135 AddressesMap::~AddressesMap() {}
136 
137 DwarfEmitter::~DwarfEmitter() {}
138 
139 static Optional<StringRef> StripTemplateParameters(StringRef Name) {
140   // We are looking for template parameters to strip from Name. e.g.
141   //
142   //  operator<<B>
143   //
144   // We look for > at the end but if it does not contain any < then we
145   // have something like operator>>. We check for the operator<=> case.
146   if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>"))
147     return {};
148 
149   // How many < until we have the start of the template parameters.
150   size_t NumLeftAnglesToSkip = 1;
151 
152   // If we have operator<=> then we need to skip its < as well.
153   NumLeftAnglesToSkip += Name.count("<=>");
154 
155   size_t RightAngleCount = Name.count('>');
156   size_t LeftAngleCount = Name.count('<');
157 
158   // If we have more < than > we have operator< or operator<<
159   // we to account for their < as well.
160   if (LeftAngleCount > RightAngleCount)
161     NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount;
162 
163   size_t StartOfTemplate = 0;
164   while (NumLeftAnglesToSkip--)
165     StartOfTemplate = Name.find('<', StartOfTemplate) + 1;
166 
167   return Name.substr(0, StartOfTemplate - 1);
168 }
169 
170 bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die,
171                                          AttributesInfo &Info,
172                                          OffsetsStringPool &StringPool,
173                                          bool StripTemplate) {
174   // This function will be called on DIEs having low_pcs and
175   // ranges. As getting the name might be more expansive, filter out
176   // blocks directly.
177   if (Die.getTag() == dwarf::DW_TAG_lexical_block)
178     return false;
179 
180   if (!Info.MangledName)
181     if (const char *MangledName = Die.getLinkageName())
182       Info.MangledName = StringPool.getEntry(MangledName);
183 
184   if (!Info.Name)
185     if (const char *Name = Die.getShortName())
186       Info.Name = StringPool.getEntry(Name);
187 
188   if (!Info.MangledName)
189     Info.MangledName = Info.Name;
190 
191   if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
192     StringRef Name = Info.Name.getString();
193     if (Optional<StringRef> StrippedName = StripTemplateParameters(Name))
194       Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName);
195   }
196 
197   return Info.Name || Info.MangledName;
198 }
199 
200 /// Resolve the relative path to a build artifact referenced by DWARF by
201 /// applying DW_AT_comp_dir.
202 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
203   sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
204 }
205 
206 /// Collect references to parseable Swift interfaces in imported
207 /// DW_TAG_module blocks.
208 static void analyzeImportedModule(
209     const DWARFDie &DIE, CompileUnit &CU,
210     swiftInterfacesMap *ParseableSwiftInterfaces,
211     std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
212   if (CU.getLanguage() != dwarf::DW_LANG_Swift)
213     return;
214 
215   if (!ParseableSwiftInterfaces)
216     return;
217 
218   StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
219   if (!Path.endswith(".swiftinterface"))
220     return;
221   // Don't track interfaces that are part of the SDK.
222   StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot));
223   if (SysRoot.empty())
224     SysRoot = CU.getSysRoot();
225   if (!SysRoot.empty() && Path.startswith(SysRoot))
226     return;
227   Optional<const char*> Name = dwarf::toString(DIE.find(dwarf::DW_AT_name));
228   if (!Name)
229     return;
230   auto &Entry = (*ParseableSwiftInterfaces)[*Name];
231   // The prepend path is applied later when copying.
232   DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
233   SmallString<128> ResolvedPath;
234   if (sys::path::is_relative(Path))
235     resolveRelativeObjectPath(ResolvedPath, CUDie);
236   sys::path::append(ResolvedPath, Path);
237   if (!Entry.empty() && Entry != ResolvedPath)
238     ReportWarning(Twine("Conflicting parseable interfaces for Swift Module ") +
239                       *Name + ": " + Entry + " and " + Path,
240                   DIE);
241   Entry = std::string(ResolvedPath.str());
242 }
243 
244 /// The distinct types of work performed by the work loop in
245 /// analyzeContextInfo.
246 enum class ContextWorklistItemType : uint8_t {
247   AnalyzeContextInfo,
248   UpdateChildPruning,
249   UpdatePruning,
250 };
251 
252 /// This class represents an item in the work list. The type defines what kind
253 /// of work needs to be performed when processing the current item. Everything
254 /// but the Type and Die fields are optional based on the type.
255 struct ContextWorklistItem {
256   DWARFDie Die;
257   unsigned ParentIdx;
258   union {
259     CompileUnit::DIEInfo *OtherInfo;
260     DeclContext *Context;
261   };
262   ContextWorklistItemType Type;
263   bool InImportedModule;
264 
265   ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T,
266                       CompileUnit::DIEInfo *OtherInfo = nullptr)
267       : Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T),
268         InImportedModule(false) {}
269 
270   ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx,
271                       bool InImportedModule)
272       : Die(Die), ParentIdx(ParentIdx), Context(Context),
273         Type(ContextWorklistItemType::AnalyzeContextInfo),
274         InImportedModule(InImportedModule) {}
275 };
276 
277 static bool updatePruning(const DWARFDie &Die, CompileUnit &CU,
278                           uint64_t ModulesEndOffset) {
279   CompileUnit::DIEInfo &Info = CU.getInfo(Die);
280 
281   // Prune this DIE if it is either a forward declaration inside a
282   // DW_TAG_module or a DW_TAG_module that contains nothing but
283   // forward declarations.
284   Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) ||
285                 (isTypeTag(Die.getTag()) &&
286                  dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0));
287 
288   // Only prune forward declarations inside a DW_TAG_module for which a
289   // definition exists elsewhere.
290   if (ModulesEndOffset == 0)
291     Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
292   else
293     Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
294                   Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
295 
296   return Info.Prune;
297 }
298 
299 static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU,
300                                CompileUnit::DIEInfo &ChildInfo) {
301   CompileUnit::DIEInfo &Info = CU.getInfo(Die);
302   Info.Prune &= ChildInfo.Prune;
303 }
304 
305 /// Recursive helper to build the global DeclContext information and
306 /// gather the child->parent relationships in the original compile unit.
307 ///
308 /// This function uses the same work list approach as lookForDIEsToKeep.
309 ///
310 /// \return true when this DIE and all of its children are only
311 /// forward declarations to types defined in external clang modules
312 /// (i.e., forward declarations that are children of a DW_TAG_module).
313 static bool analyzeContextInfo(
314     const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
315     DeclContext *CurrentDeclContext, DeclContextTree &Contexts,
316     uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces,
317     std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
318     bool InImportedModule = false) {
319   // LIFO work list.
320   std::vector<ContextWorklistItem> Worklist;
321   Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, InImportedModule);
322 
323   while (!Worklist.empty()) {
324     ContextWorklistItem Current = Worklist.back();
325     Worklist.pop_back();
326 
327     switch (Current.Type) {
328     case ContextWorklistItemType::UpdatePruning:
329       updatePruning(Current.Die, CU, ModulesEndOffset);
330       continue;
331     case ContextWorklistItemType::UpdateChildPruning:
332       updateChildPruning(Current.Die, CU, *Current.OtherInfo);
333       continue;
334     case ContextWorklistItemType::AnalyzeContextInfo:
335       break;
336     }
337 
338     unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
339     CompileUnit::DIEInfo &Info = CU.getInfo(Idx);
340 
341     // Clang imposes an ODR on modules(!) regardless of the language:
342     //  "The module-id should consist of only a single identifier,
343     //   which provides the name of the module being defined. Each
344     //   module shall have a single definition."
345     //
346     // This does not extend to the types inside the modules:
347     //  "[I]n C, this implies that if two structs are defined in
348     //   different submodules with the same name, those two types are
349     //   distinct types (but may be compatible types if their
350     //   definitions match)."
351     //
352     // We treat non-C++ modules like namespaces for this reason.
353     if (Current.Die.getTag() == dwarf::DW_TAG_module &&
354         Current.ParentIdx == 0 &&
355         dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") !=
356             CU.getClangModuleName()) {
357       Current.InImportedModule = true;
358       analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces,
359                             ReportWarning);
360     }
361 
362     Info.ParentIdx = Current.ParentIdx;
363     bool InClangModule = CU.isClangModule() || Current.InImportedModule;
364     if (CU.hasODR() || InClangModule) {
365       if (Current.Context) {
366         auto PtrInvalidPair = Contexts.getChildDeclContext(
367             *Current.Context, Current.Die, CU, InClangModule);
368         Current.Context = PtrInvalidPair.getPointer();
369         Info.Ctxt =
370             PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
371         if (Info.Ctxt)
372           Info.Ctxt->setDefinedInClangModule(InClangModule);
373       } else
374         Info.Ctxt = Current.Context = nullptr;
375     }
376 
377     Info.Prune = Current.InImportedModule;
378     // Add children in reverse order to the worklist to effectively process
379     // them in order.
380     Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning);
381     for (auto Child : reverse(Current.Die.children())) {
382       CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
383       Worklist.emplace_back(
384           Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo);
385       Worklist.emplace_back(Child, Current.Context, Idx,
386                             Current.InImportedModule);
387     }
388   }
389 
390   return CU.getInfo(DIE).Prune;
391 }
392 
393 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
394   switch (Tag) {
395   default:
396     return false;
397   case dwarf::DW_TAG_class_type:
398   case dwarf::DW_TAG_common_block:
399   case dwarf::DW_TAG_lexical_block:
400   case dwarf::DW_TAG_structure_type:
401   case dwarf::DW_TAG_subprogram:
402   case dwarf::DW_TAG_subroutine_type:
403   case dwarf::DW_TAG_union_type:
404     return true;
405   }
406   llvm_unreachable("Invalid Tag");
407 }
408 
409 void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) {
410   Context.clear();
411 
412   for (DIEBlock *I : DIEBlocks)
413     I->~DIEBlock();
414   for (DIELoc *I : DIELocs)
415     I->~DIELoc();
416 
417   DIEBlocks.clear();
418   DIELocs.clear();
419   DIEAlloc.Reset();
420 }
421 
422 /// Check if a variable describing DIE should be kept.
423 /// \returns updated TraversalFlags.
424 unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr,
425                                             const DWARFDie &DIE,
426                                             CompileUnit::DIEInfo &MyInfo,
427                                             unsigned Flags) {
428   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
429 
430   // Global variables with constant value can always be kept.
431   if (!(Flags & TF_InFunctionScope) &&
432       Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
433     MyInfo.InDebugMap = true;
434     return Flags | TF_Keep;
435   }
436 
437   // See if there is a relocation to a valid debug map entry inside this
438   // variable's location. The order is important here. We want to always check
439   // if the variable has a valid relocation, so that the DIEInfo is filled.
440   // However, we don't want a static variable in a function to force us to keep
441   // the enclosing function, unless requested explicitly.
442   const bool HasLiveMemoryLocation =
443       RelocMgr.hasLiveMemoryLocation(DIE, MyInfo);
444   if (!HasLiveMemoryLocation || ((Flags & TF_InFunctionScope) &&
445                                  !LLVM_UNLIKELY(Options.KeepFunctionForStatic)))
446     return Flags;
447 
448   if (Options.Verbose) {
449     outs() << "Keeping variable DIE:";
450     DIDumpOptions DumpOpts;
451     DumpOpts.ChildRecurseDepth = 0;
452     DumpOpts.Verbose = Options.Verbose;
453     DIE.dump(outs(), 8 /* Indent */, DumpOpts);
454   }
455 
456   return Flags | TF_Keep;
457 }
458 
459 /// Check if a function describing DIE should be kept.
460 /// \returns updated TraversalFlags.
461 unsigned DWARFLinker::shouldKeepSubprogramDIE(
462     AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
463     const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
464     unsigned Flags) {
465   Flags |= TF_InFunctionScope;
466 
467   auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
468   if (!LowPc)
469     return Flags;
470 
471   assert(LowPc.hasValue() && "low_pc attribute is not an address.");
472   if (!RelocMgr.hasLiveAddressRange(DIE, MyInfo))
473     return Flags;
474 
475   if (Options.Verbose) {
476     outs() << "Keeping subprogram DIE:";
477     DIDumpOptions DumpOpts;
478     DumpOpts.ChildRecurseDepth = 0;
479     DumpOpts.Verbose = Options.Verbose;
480     DIE.dump(outs(), 8 /* Indent */, DumpOpts);
481   }
482 
483   if (DIE.getTag() == dwarf::DW_TAG_label) {
484     if (Unit.hasLabelAt(*LowPc))
485       return Flags;
486 
487     DWARFUnit &OrigUnit = Unit.getOrigUnit();
488     // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
489     // that don't fall into the CU's aranges. This is wrong IMO. Debug info
490     // generation bugs aside, this is really wrong in the case of labels, where
491     // a label marking the end of a function will have a PC == CU's high_pc.
492     if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
493             .getValueOr(UINT64_MAX) <= LowPc)
494       return Flags;
495     Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
496     return Flags | TF_Keep;
497   }
498 
499   Flags |= TF_Keep;
500 
501   Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
502   if (!HighPc) {
503     reportWarning("Function without high_pc. Range will be discarded.\n", File,
504                   &DIE);
505     return Flags;
506   }
507 
508   // Replace the debug map range with a more accurate one.
509   Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust);
510   Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
511   return Flags;
512 }
513 
514 /// Check if a DIE should be kept.
515 /// \returns updated TraversalFlags.
516 unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges,
517                                     const DWARFDie &DIE, const DWARFFile &File,
518                                     CompileUnit &Unit,
519                                     CompileUnit::DIEInfo &MyInfo,
520                                     unsigned Flags) {
521   switch (DIE.getTag()) {
522   case dwarf::DW_TAG_constant:
523   case dwarf::DW_TAG_variable:
524     return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags);
525   case dwarf::DW_TAG_subprogram:
526   case dwarf::DW_TAG_label:
527     return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo,
528                                    Flags);
529   case dwarf::DW_TAG_base_type:
530     // DWARF Expressions may reference basic types, but scanning them
531     // is expensive. Basic types are tiny, so just keep all of them.
532   case dwarf::DW_TAG_imported_module:
533   case dwarf::DW_TAG_imported_declaration:
534   case dwarf::DW_TAG_imported_unit:
535     // We always want to keep these.
536     return Flags | TF_Keep;
537   default:
538     break;
539   }
540 
541   return Flags;
542 }
543 
544 /// Helper that updates the completeness of the current DIE based on the
545 /// completeness of one of its children. It depends on the incompleteness of
546 /// the children already being computed.
547 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
548                                       CompileUnit::DIEInfo &ChildInfo) {
549   switch (Die.getTag()) {
550   case dwarf::DW_TAG_structure_type:
551   case dwarf::DW_TAG_class_type:
552   case dwarf::DW_TAG_union_type:
553     break;
554   default:
555     return;
556   }
557 
558   CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
559 
560   if (ChildInfo.Incomplete || ChildInfo.Prune)
561     MyInfo.Incomplete = true;
562 }
563 
564 /// Helper that updates the completeness of the current DIE based on the
565 /// completeness of the DIEs it references. It depends on the incompleteness of
566 /// the referenced DIE already being computed.
567 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
568                                     CompileUnit::DIEInfo &RefInfo) {
569   switch (Die.getTag()) {
570   case dwarf::DW_TAG_typedef:
571   case dwarf::DW_TAG_member:
572   case dwarf::DW_TAG_reference_type:
573   case dwarf::DW_TAG_ptr_to_member_type:
574   case dwarf::DW_TAG_pointer_type:
575     break;
576   default:
577     return;
578   }
579 
580   CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
581 
582   if (MyInfo.Incomplete)
583     return;
584 
585   if (RefInfo.Incomplete)
586     MyInfo.Incomplete = true;
587 }
588 
589 /// Look at the children of the given DIE and decide whether they should be
590 /// kept.
591 void DWARFLinker::lookForChildDIEsToKeep(
592     const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
593     SmallVectorImpl<WorklistItem> &Worklist) {
594   // The TF_ParentWalk flag tells us that we are currently walking up the
595   // parent chain of a required DIE, and we don't want to mark all the children
596   // of the parents as kept (consider for example a DW_TAG_namespace node in
597   // the parent chain). There are however a set of DIE types for which we want
598   // to ignore that directive and still walk their children.
599   if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
600     Flags &= ~DWARFLinker::TF_ParentWalk;
601 
602   // We're finished if this DIE has no children or we're walking the parent
603   // chain.
604   if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk))
605     return;
606 
607   // Add children in reverse order to the worklist to effectively process them
608   // in order.
609   for (auto Child : reverse(Die.children())) {
610     // Add a worklist item before every child to calculate incompleteness right
611     // after the current child is processed.
612     CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
613     Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
614                           &ChildInfo);
615     Worklist.emplace_back(Child, CU, Flags);
616   }
617 }
618 
619 /// Look at DIEs referenced by the given DIE and decide whether they should be
620 /// kept. All DIEs referenced though attributes should be kept.
621 void DWARFLinker::lookForRefDIEsToKeep(
622     const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
623     const UnitListTy &Units, const DWARFFile &File,
624     SmallVectorImpl<WorklistItem> &Worklist) {
625   bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk)
626                     ? (Flags & DWARFLinker::TF_ODR)
627                     : CU.hasODR();
628   DWARFUnit &Unit = CU.getOrigUnit();
629   DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
630   const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
631   uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
632 
633   SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
634   for (const auto &AttrSpec : Abbrev->attributes()) {
635     DWARFFormValue Val(AttrSpec.Form);
636     if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
637         AttrSpec.Attr == dwarf::DW_AT_sibling) {
638       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
639                                 Unit.getFormParams());
640       continue;
641     }
642 
643     Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
644     CompileUnit *ReferencedCU;
645     if (auto RefDie =
646             resolveDIEReference(File, Units, Val, Die, ReferencedCU)) {
647       CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie);
648       bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
649                          Info.Ctxt->isDefinedInClangModule();
650       // If the referenced DIE has a DeclContext that has already been
651       // emitted, then do not keep the one in this CU. We'll link to
652       // the canonical DIE in cloneDieReferenceAttribute.
653       //
654       // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
655       // be necessary and could be advantageously replaced by
656       // ReferencedCU->hasODR() && CU.hasODR().
657       //
658       // FIXME: compatibility with dsymutil-classic. There is no
659       // reason not to unique ref_addr references.
660       if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) &&
661           Info.Ctxt &&
662           Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
663           Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
664         continue;
665 
666       // Keep a module forward declaration if there is no definition.
667       if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
668             Info.Ctxt->getCanonicalDIEOffset()))
669         Info.Prune = false;
670       ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
671     }
672   }
673 
674   unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0;
675 
676   // Add referenced DIEs in reverse order to the worklist to effectively
677   // process them in order.
678   for (auto &P : reverse(ReferencedDIEs)) {
679     // Add a worklist item before every child to calculate incompleteness right
680     // after the current child is processed.
681     CompileUnit::DIEInfo &Info = P.second.getInfo(P.first);
682     Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
683                           &Info);
684     Worklist.emplace_back(P.first, P.second,
685                           DWARFLinker::TF_Keep |
686                               DWARFLinker::TF_DependencyWalk | ODRFlag);
687   }
688 }
689 
690 /// Look at the parent of the given DIE and decide whether they should be kept.
691 void DWARFLinker::lookForParentDIEsToKeep(
692     unsigned AncestorIdx, CompileUnit &CU, unsigned Flags,
693     SmallVectorImpl<WorklistItem> &Worklist) {
694   // Stop if we encounter an ancestor that's already marked as kept.
695   if (CU.getInfo(AncestorIdx).Keep)
696     return;
697 
698   DWARFUnit &Unit = CU.getOrigUnit();
699   DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
700   Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
701   Worklist.emplace_back(ParentDIE, CU, Flags);
702 }
703 
704 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
705 /// information in \p CU's DIEInfo.
706 ///
707 /// This function is the entry point of the DIE selection algorithm. It is
708 /// expected to walk the DIE tree in file order and (though the mediation of
709 /// its helper) call hasValidRelocation() on each DIE that might be a 'root
710 /// DIE' (See DwarfLinker class comment).
711 ///
712 /// While walking the dependencies of root DIEs, this function is also called,
713 /// but during these dependency walks the file order is not respected. The
714 /// TF_DependencyWalk flag tells us which kind of traversal we are currently
715 /// doing.
716 ///
717 /// The recursive algorithm is implemented iteratively as a work list because
718 /// very deep recursion could exhaust the stack for large projects. The work
719 /// list acts as a scheduler for different types of work that need to be
720 /// performed.
721 ///
722 /// The recursive nature of the algorithm is simulated by running the "main"
723 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
724 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
725 /// fixing up a computed property (UpdateChildIncompleteness,
726 /// UpdateRefIncompleteness).
727 ///
728 /// The return value indicates whether the DIE is incomplete.
729 void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap,
730                                     RangesTy &Ranges, const UnitListTy &Units,
731                                     const DWARFDie &Die, const DWARFFile &File,
732                                     CompileUnit &Cu, unsigned Flags) {
733   // LIFO work list.
734   SmallVector<WorklistItem, 4> Worklist;
735   Worklist.emplace_back(Die, Cu, Flags);
736 
737   while (!Worklist.empty()) {
738     WorklistItem Current = Worklist.pop_back_val();
739 
740     // Look at the worklist type to decide what kind of work to perform.
741     switch (Current.Type) {
742     case WorklistItemType::UpdateChildIncompleteness:
743       updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
744       continue;
745     case WorklistItemType::UpdateRefIncompleteness:
746       updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
747       continue;
748     case WorklistItemType::LookForChildDIEsToKeep:
749       lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
750       continue;
751     case WorklistItemType::LookForRefDIEsToKeep:
752       lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File,
753                            Worklist);
754       continue;
755     case WorklistItemType::LookForParentDIEsToKeep:
756       lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
757                               Worklist);
758       continue;
759     case WorklistItemType::LookForDIEsToKeep:
760       break;
761     }
762 
763     unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
764     CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
765 
766     if (MyInfo.Prune)
767       continue;
768 
769     // If the Keep flag is set, we are marking a required DIE's dependencies.
770     // If our target is already marked as kept, we're all set.
771     bool AlreadyKept = MyInfo.Keep;
772     if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
773       continue;
774 
775     // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
776     // because it would screw up the relocation finding logic.
777     if (!(Current.Flags & TF_DependencyWalk))
778       Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File,
779                                     Current.CU, MyInfo, Current.Flags);
780 
781     // Finish by looking for child DIEs. Because of the LIFO worklist we need
782     // to schedule that work before any subsequent items are added to the
783     // worklist.
784     Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
785                           WorklistItemType::LookForChildDIEsToKeep);
786 
787     if (AlreadyKept || !(Current.Flags & TF_Keep))
788       continue;
789 
790     // If it is a newly kept DIE mark it as well as all its dependencies as
791     // kept.
792     MyInfo.Keep = true;
793 
794     // We're looking for incomplete types.
795     MyInfo.Incomplete =
796         Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
797         Current.Die.getTag() != dwarf::DW_TAG_member &&
798         dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
799 
800     // After looking at the parent chain, look for referenced DIEs. Because of
801     // the LIFO worklist we need to schedule that work before any subsequent
802     // items are added to the worklist.
803     Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
804                           WorklistItemType::LookForRefDIEsToKeep);
805 
806     bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
807                                                       : Current.CU.hasODR();
808     unsigned ODRFlag = UseOdr ? TF_ODR : 0;
809     unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
810 
811     // Now schedule the parent walk.
812     Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
813   }
814 }
815 
816 /// Assign an abbreviation number to \p Abbrev.
817 ///
818 /// Our DIEs get freed after every DebugMapObject has been processed,
819 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
820 /// the instances hold by the DIEs. When we encounter an abbreviation
821 /// that we don't know, we create a permanent copy of it.
822 void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) {
823   // Check the set for priors.
824   FoldingSetNodeID ID;
825   Abbrev.Profile(ID);
826   void *InsertToken;
827   DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
828 
829   // If it's newly added.
830   if (InSet) {
831     // Assign existing abbreviation number.
832     Abbrev.setNumber(InSet->getNumber());
833   } else {
834     // Add to abbreviation list.
835     Abbreviations.push_back(
836         std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
837     for (const auto &Attr : Abbrev.getData())
838       Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
839     AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
840     // Assign the unique abbreviation number.
841     Abbrev.setNumber(Abbreviations.size());
842     Abbreviations.back()->setNumber(Abbreviations.size());
843   }
844 }
845 
846 unsigned DWARFLinker::DIECloner::cloneStringAttribute(
847     DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
848     const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
849   Optional<const char *> String = dwarf::toString(Val);
850   if (!String)
851     return 0;
852 
853   // Switch everything to out of line strings.
854   auto StringEntry = StringPool.getEntry(*String);
855 
856   // Update attributes info.
857   if (AttrSpec.Attr == dwarf::DW_AT_name)
858     Info.Name = StringEntry;
859   else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
860            AttrSpec.Attr == dwarf::DW_AT_linkage_name)
861     Info.MangledName = StringEntry;
862 
863   Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
864                DIEInteger(StringEntry.getOffset()));
865 
866   return 4;
867 }
868 
869 unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute(
870     DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
871     unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File,
872     CompileUnit &Unit) {
873   const DWARFUnit &U = Unit.getOrigUnit();
874   uint64_t Ref = *Val.getAsReference();
875 
876   DIE *NewRefDie = nullptr;
877   CompileUnit *RefUnit = nullptr;
878   DeclContext *Ctxt = nullptr;
879 
880   DWARFDie RefDie =
881       Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit);
882 
883   // If the referenced DIE is not found,  drop the attribute.
884   if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
885     return 0;
886 
887   CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie);
888 
889   // If we already have emitted an equivalent DeclContext, just point
890   // at it.
891   if (isODRAttribute(AttrSpec.Attr)) {
892     Ctxt = RefInfo.Ctxt;
893     if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
894       DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
895       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
896                    dwarf::DW_FORM_ref_addr, Attr);
897       return U.getRefAddrByteSize();
898     }
899   }
900 
901   if (!RefInfo.Clone) {
902     assert(Ref > InputDIE.getOffset());
903     // We haven't cloned this DIE yet. Just create an empty one and
904     // store it. It'll get really cloned when we process it.
905     RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
906   }
907   NewRefDie = RefInfo.Clone;
908 
909   if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
910       (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
911     // We cannot currently rely on a DIEEntry to emit ref_addr
912     // references, because the implementation calls back to DwarfDebug
913     // to find the unit offset. (We don't have a DwarfDebug)
914     // FIXME: we should be able to design DIEEntry reliance on
915     // DwarfDebug away.
916     uint64_t Attr;
917     if (Ref < InputDIE.getOffset()) {
918       // We must have already cloned that DIE.
919       uint32_t NewRefOffset =
920           RefUnit->getStartOffset() + NewRefDie->getOffset();
921       Attr = NewRefOffset;
922       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
923                    dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
924     } else {
925       // A forward reference. Note and fixup later.
926       Attr = 0xBADDEF;
927       Unit.noteForwardReference(
928           NewRefDie, RefUnit, Ctxt,
929           Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
930                        dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
931     }
932     return U.getRefAddrByteSize();
933   }
934 
935   Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
936                dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
937 
938   return AttrSize;
939 }
940 
941 void DWARFLinker::DIECloner::cloneExpression(
942     DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File,
943     CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
944   using Encoding = DWARFExpression::Operation::Encoding;
945 
946   uint64_t OpOffset = 0;
947   for (auto &Op : Expression) {
948     auto Description = Op.getDescription();
949     // DW_OP_const_type is variable-length and has 3
950     // operands. DWARFExpression thus far only supports 2.
951     auto Op0 = Description.Op[0];
952     auto Op1 = Description.Op[1];
953     if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
954         (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
955       Linker.reportWarning("Unsupported DW_OP encoding.", File);
956 
957     if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
958         (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
959       // This code assumes that the other non-typeref operand fits into 1 byte.
960       assert(OpOffset < Op.getEndOffset());
961       uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
962       assert(ULEBsize <= 16);
963 
964       // Copy over the operation.
965       OutputBuffer.push_back(Op.getCode());
966       uint64_t RefOffset;
967       if (Op1 == Encoding::SizeNA) {
968         RefOffset = Op.getRawOperand(0);
969       } else {
970         OutputBuffer.push_back(Op.getRawOperand(0));
971         RefOffset = Op.getRawOperand(1);
972       }
973       uint32_t Offset = 0;
974       // Look up the base type. For DW_OP_convert, the operand may be 0 to
975       // instead indicate the generic type. The same holds for
976       // DW_OP_reinterpret, which is currently not supported.
977       if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) {
978         auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
979         CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie);
980         if (DIE *Clone = Info.Clone)
981           Offset = Clone->getOffset();
982         else
983           Linker.reportWarning(
984               "base type ref doesn't point to DW_TAG_base_type.", File);
985       }
986       uint8_t ULEB[16];
987       unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
988       if (RealSize > ULEBsize) {
989         // Emit the generic type as a fallback.
990         RealSize = encodeULEB128(0, ULEB, ULEBsize);
991         Linker.reportWarning("base type ref doesn't fit.", File);
992       }
993       assert(RealSize == ULEBsize && "padding failed");
994       ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
995       OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
996     } else {
997       // Copy over everything else unmodified.
998       StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
999       OutputBuffer.append(Bytes.begin(), Bytes.end());
1000     }
1001     OpOffset = Op.getEndOffset();
1002   }
1003 }
1004 
1005 unsigned DWARFLinker::DIECloner::cloneBlockAttribute(
1006     DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec,
1007     const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) {
1008   DIEValueList *Attr;
1009   DIEValue Value;
1010   DIELoc *Loc = nullptr;
1011   DIEBlock *Block = nullptr;
1012   if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1013     Loc = new (DIEAlloc) DIELoc;
1014     Linker.DIELocs.push_back(Loc);
1015   } else {
1016     Block = new (DIEAlloc) DIEBlock;
1017     Linker.DIEBlocks.push_back(Block);
1018   }
1019   Attr = Loc ? static_cast<DIEValueList *>(Loc)
1020              : static_cast<DIEValueList *>(Block);
1021 
1022   if (Loc)
1023     Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1024                      dwarf::Form(AttrSpec.Form), Loc);
1025   else
1026     Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1027                      dwarf::Form(AttrSpec.Form), Block);
1028 
1029   // If the block is a DWARF Expression, clone it into the temporary
1030   // buffer using cloneExpression(), otherwise copy the data directly.
1031   SmallVector<uint8_t, 32> Buffer;
1032   ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1033   if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) &&
1034       (Val.isFormClass(DWARFFormValue::FC_Block) ||
1035        Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
1036     DWARFUnit &OrigUnit = Unit.getOrigUnit();
1037     DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
1038                        IsLittleEndian, OrigUnit.getAddressByteSize());
1039     DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(),
1040                          OrigUnit.getFormParams().Format);
1041     cloneExpression(Data, Expr, File, Unit, Buffer);
1042     Bytes = Buffer;
1043   }
1044   for (auto Byte : Bytes)
1045     Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1046                    dwarf::DW_FORM_data1, DIEInteger(Byte));
1047 
1048   // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1049   // the DIE class, this "if" could be replaced by
1050   // Attr->setSize(Bytes.size()).
1051   if (Loc)
1052     Loc->setSize(Bytes.size());
1053   else
1054     Block->setSize(Bytes.size());
1055 
1056   Die.addValue(DIEAlloc, Value);
1057   return AttrSize;
1058 }
1059 
1060 unsigned DWARFLinker::DIECloner::cloneAddressAttribute(
1061     DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1062     const CompileUnit &Unit, AttributesInfo &Info) {
1063   if (LLVM_UNLIKELY(Linker.Options.Update)) {
1064     if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1065       Info.HasLowPc = true;
1066     Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1067                  dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue()));
1068     return Unit.getOrigUnit().getAddressByteSize();
1069   }
1070 
1071   dwarf::Form Form = AttrSpec.Form;
1072   uint64_t Addr = 0;
1073   if (Form == dwarf::DW_FORM_addrx) {
1074     if (Optional<uint64_t> AddrOffsetSectionBase =
1075             Unit.getOrigUnit().getAddrOffsetSectionBase()) {
1076       uint64_t StartOffset = *AddrOffsetSectionBase + Val.getRawUValue();
1077       uint64_t EndOffset =
1078           StartOffset + Unit.getOrigUnit().getAddressByteSize();
1079       if (llvm::Expected<uint64_t> RelocAddr =
1080               ObjFile.Addresses->relocateIndexedAddr(StartOffset, EndOffset))
1081         Addr = *RelocAddr;
1082       else
1083         Linker.reportWarning(toString(RelocAddr.takeError()), ObjFile);
1084     } else
1085       Linker.reportWarning("no base offset for address table", ObjFile);
1086 
1087     // If this is an indexed address emit the debug_info address.
1088     Form = dwarf::DW_FORM_addr;
1089   } else
1090     Addr = *Val.getAsAddress();
1091 
1092   if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1093     if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1094         Die.getTag() == dwarf::DW_TAG_lexical_block ||
1095         Die.getTag() == dwarf::DW_TAG_label) {
1096       // The low_pc of a block or inline subroutine might get
1097       // relocated because it happens to match the low_pc of the
1098       // enclosing subprogram. To prevent issues with that, always use
1099       // the low_pc from the input DIE if relocations have been applied.
1100       Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
1101                   ? Info.OrigLowPc
1102                   : Addr) +
1103              Info.PCOffset;
1104     } else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1105       Addr = Unit.getLowPc();
1106       if (Addr == std::numeric_limits<uint64_t>::max())
1107         return 0;
1108     }
1109     Info.HasLowPc = true;
1110   } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1111     if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1112       if (uint64_t HighPc = Unit.getHighPc())
1113         Addr = HighPc;
1114       else
1115         return 0;
1116     } else
1117       // If we have a high_pc recorded for the input DIE, use
1118       // it. Otherwise (when no relocations where applied) just use the
1119       // one we just decoded.
1120       Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1121   } else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) {
1122     // Relocate a return PC address within a call site entry.
1123     if (Die.getTag() == dwarf::DW_TAG_call_site)
1124       Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) +
1125              Info.PCOffset;
1126   } else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) {
1127     // Relocate the address of a branch instruction within a call site entry.
1128     if (Die.getTag() == dwarf::DW_TAG_call_site)
1129       Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset;
1130   }
1131 
1132   Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1133                static_cast<dwarf::Form>(Form), DIEInteger(Addr));
1134   return Unit.getOrigUnit().getAddressByteSize();
1135 }
1136 
1137 unsigned DWARFLinker::DIECloner::cloneScalarAttribute(
1138     DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1139     CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1140     unsigned AttrSize, AttributesInfo &Info) {
1141   uint64_t Value;
1142 
1143   if (LLVM_UNLIKELY(Linker.Options.Update)) {
1144     if (auto OptionalValue = Val.getAsUnsignedConstant())
1145       Value = *OptionalValue;
1146     else if (auto OptionalValue = Val.getAsSignedConstant())
1147       Value = *OptionalValue;
1148     else if (auto OptionalValue = Val.getAsSectionOffset())
1149       Value = *OptionalValue;
1150     else {
1151       Linker.reportWarning(
1152           "Unsupported scalar attribute form. Dropping attribute.", File,
1153           &InputDIE);
1154       return 0;
1155     }
1156     if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1157       Info.IsDeclaration = true;
1158     Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1159                  dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1160     return AttrSize;
1161   }
1162 
1163   if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1164       Die.getTag() == dwarf::DW_TAG_compile_unit) {
1165     if (Unit.getLowPc() == -1ULL)
1166       return 0;
1167     // Dwarf >= 4 high_pc is an size, not an address.
1168     Value = Unit.getHighPc() - Unit.getLowPc();
1169   } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1170     Value = *Val.getAsSectionOffset();
1171   else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1172     Value = *Val.getAsSignedConstant();
1173   else if (auto OptionalValue = Val.getAsUnsignedConstant())
1174     Value = *OptionalValue;
1175   else {
1176     Linker.reportWarning(
1177         "Unsupported scalar attribute form. Dropping attribute.", File,
1178         &InputDIE);
1179     return 0;
1180   }
1181   PatchLocation Patch =
1182       Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1183                    dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1184   if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
1185     Unit.noteRangeAttribute(Die, Patch);
1186     Info.HasRanges = true;
1187   }
1188 
1189   // A more generic way to check for location attributes would be
1190   // nice, but it's very unlikely that any other attribute needs a
1191   // location list.
1192   // FIXME: use DWARFAttribute::mayHaveLocationDescription().
1193   else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1194            AttrSpec.Attr == dwarf::DW_AT_frame_base) {
1195     Unit.noteLocationAttribute(Patch, Info.PCOffset);
1196   } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1197     Info.IsDeclaration = true;
1198 
1199   return AttrSize;
1200 }
1201 
1202 /// Clone \p InputDIE's attribute described by \p AttrSpec with
1203 /// value \p Val, and add it to \p Die.
1204 /// \returns the size of the cloned attribute.
1205 unsigned DWARFLinker::DIECloner::cloneAttribute(
1206     DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1207     CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
1208     const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
1209     bool IsLittleEndian) {
1210   const DWARFUnit &U = Unit.getOrigUnit();
1211 
1212   switch (AttrSpec.Form) {
1213   case dwarf::DW_FORM_strp:
1214   case dwarf::DW_FORM_string:
1215   case dwarf::DW_FORM_strx:
1216   case dwarf::DW_FORM_strx1:
1217   case dwarf::DW_FORM_strx2:
1218   case dwarf::DW_FORM_strx3:
1219   case dwarf::DW_FORM_strx4:
1220     return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
1221   case dwarf::DW_FORM_ref_addr:
1222   case dwarf::DW_FORM_ref1:
1223   case dwarf::DW_FORM_ref2:
1224   case dwarf::DW_FORM_ref4:
1225   case dwarf::DW_FORM_ref8:
1226     return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1227                                       File, Unit);
1228   case dwarf::DW_FORM_block:
1229   case dwarf::DW_FORM_block1:
1230   case dwarf::DW_FORM_block2:
1231   case dwarf::DW_FORM_block4:
1232   case dwarf::DW_FORM_exprloc:
1233     return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize,
1234                                IsLittleEndian);
1235   case dwarf::DW_FORM_addr:
1236   case dwarf::DW_FORM_addrx:
1237     return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
1238   case dwarf::DW_FORM_data1:
1239   case dwarf::DW_FORM_data2:
1240   case dwarf::DW_FORM_data4:
1241   case dwarf::DW_FORM_data8:
1242   case dwarf::DW_FORM_udata:
1243   case dwarf::DW_FORM_sdata:
1244   case dwarf::DW_FORM_sec_offset:
1245   case dwarf::DW_FORM_flag:
1246   case dwarf::DW_FORM_flag_present:
1247     return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
1248                                 AttrSize, Info);
1249   default:
1250     Linker.reportWarning("Unsupported attribute form " +
1251                              dwarf::FormEncodingString(AttrSpec.Form) +
1252                              " in cloneAttribute. Dropping.",
1253                          File, &InputDIE);
1254   }
1255 
1256   return 0;
1257 }
1258 
1259 static bool isObjCSelector(StringRef Name) {
1260   return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
1261          (Name[1] == '[');
1262 }
1263 
1264 void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
1265                                                 const DIE *Die,
1266                                                 DwarfStringPoolEntryRef Name,
1267                                                 OffsetsStringPool &StringPool,
1268                                                 bool SkipPubSection) {
1269   assert(isObjCSelector(Name.getString()) && "not an objc selector");
1270   // Objective C method or class function.
1271   // "- [Class(Category) selector :withArg ...]"
1272   StringRef ClassNameStart(Name.getString().drop_front(2));
1273   size_t FirstSpace = ClassNameStart.find(' ');
1274   if (FirstSpace == StringRef::npos)
1275     return;
1276 
1277   StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
1278   if (!SelectorStart.size())
1279     return;
1280 
1281   StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
1282   Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
1283 
1284   // Add an entry for the class name that points to this
1285   // method/class function.
1286   StringRef ClassName(ClassNameStart.data(), FirstSpace);
1287   Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
1288 
1289   if (ClassName[ClassName.size() - 1] == ')') {
1290     size_t OpenParens = ClassName.find('(');
1291     if (OpenParens != StringRef::npos) {
1292       StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
1293       Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
1294                               SkipPubSection);
1295 
1296       std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
1297       // FIXME: The missing space here may be a bug, but
1298       //        dsymutil-classic also does it this way.
1299       MethodNameNoCategory.append(std::string(SelectorStart));
1300       Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
1301                               SkipPubSection);
1302     }
1303   }
1304 }
1305 
1306 static bool
1307 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1308                     uint16_t Tag, bool InDebugMap, bool SkipPC,
1309                     bool InFunctionScope) {
1310   switch (AttrSpec.Attr) {
1311   default:
1312     return false;
1313   case dwarf::DW_AT_low_pc:
1314   case dwarf::DW_AT_high_pc:
1315   case dwarf::DW_AT_ranges:
1316     return SkipPC;
1317   case dwarf::DW_AT_str_offsets_base:
1318     // FIXME: Use the string offset table with Dwarf 5.
1319     return true;
1320   case dwarf::DW_AT_location:
1321   case dwarf::DW_AT_frame_base:
1322     // FIXME: for some reason dsymutil-classic keeps the location attributes
1323     // when they are of block type (i.e. not location lists). This is totally
1324     // wrong for globals where we will keep a wrong address. It is mostly
1325     // harmless for locals, but there is no point in keeping these anyway when
1326     // the function wasn't linked.
1327     return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
1328                        !InDebugMap)) &&
1329            !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
1330   }
1331 }
1332 
1333 DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
1334                                       const DWARFFile &File, CompileUnit &Unit,
1335                                       OffsetsStringPool &StringPool,
1336                                       int64_t PCOffset, uint32_t OutOffset,
1337                                       unsigned Flags, bool IsLittleEndian,
1338                                       DIE *Die) {
1339   DWARFUnit &U = Unit.getOrigUnit();
1340   unsigned Idx = U.getDIEIndex(InputDIE);
1341   CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1342 
1343   // Should the DIE appear in the output?
1344   if (!Unit.getInfo(Idx).Keep)
1345     return nullptr;
1346 
1347   uint64_t Offset = InputDIE.getOffset();
1348   assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
1349   if (!Die) {
1350     // The DIE might have been already created by a forward reference
1351     // (see cloneDieReferenceAttribute()).
1352     if (!Info.Clone)
1353       Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1354     Die = Info.Clone;
1355   }
1356 
1357   assert(Die->getTag() == InputDIE.getTag());
1358   Die->setOffset(OutOffset);
1359   if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
1360       Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
1361       Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
1362       !Info.Ctxt->getCanonicalDIEOffset()) {
1363     // We are about to emit a DIE that is the root of its own valid
1364     // DeclContext tree. Make the current offset the canonical offset
1365     // for this context.
1366     Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1367   }
1368 
1369   // Extract and clone every attribute.
1370   DWARFDataExtractor Data = U.getDebugInfoExtractor();
1371   // Point to the next DIE (generally there is always at least a NULL
1372   // entry after the current one). If this is a lone
1373   // DW_TAG_compile_unit without any children, point to the next unit.
1374   uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
1375                             ? U.getDIEAtIndex(Idx + 1).getOffset()
1376                             : U.getNextUnitOffset();
1377   AttributesInfo AttrInfo;
1378 
1379   // We could copy the data only if we need to apply a relocation to it. After
1380   // testing, it seems there is no performance downside to doing the copy
1381   // unconditionally, and it makes the code simpler.
1382   SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1383   Data =
1384       DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1385 
1386   // Modify the copy with relocated addresses.
1387   if (ObjFile.Addresses->areRelocationsResolved() &&
1388       ObjFile.Addresses->applyValidRelocs(DIECopy, Offset,
1389                                           Data.isLittleEndian())) {
1390     // If we applied relocations, we store the value of high_pc that was
1391     // potentially stored in the input DIE. If high_pc is an address
1392     // (Dwarf version == 2), then it might have been relocated to a
1393     // totally unrelated value (because the end address in the object
1394     // file might be start address of another function which got moved
1395     // independently by the linker). The computation of the actual
1396     // high_pc value is done in cloneAddressAttribute().
1397     AttrInfo.OrigHighPc =
1398         dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
1399     // Also store the low_pc. It might get relocated in an
1400     // inline_subprogram that happens at the beginning of its
1401     // inlining function.
1402     AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
1403                                           std::numeric_limits<uint64_t>::max());
1404     AttrInfo.OrigCallReturnPc =
1405         dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0);
1406     AttrInfo.OrigCallPc =
1407         dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0);
1408   }
1409 
1410   // Reset the Offset to 0 as we will be working on the local copy of
1411   // the data.
1412   Offset = 0;
1413 
1414   const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1415   Offset += getULEB128Size(Abbrev->getCode());
1416 
1417   // We are entering a subprogram. Get and propagate the PCOffset.
1418   if (Die->getTag() == dwarf::DW_TAG_subprogram)
1419     PCOffset = Info.AddrAdjust;
1420   AttrInfo.PCOffset = PCOffset;
1421 
1422   if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1423     Flags |= TF_InFunctionScope;
1424     if (!Info.InDebugMap && LLVM_LIKELY(!Update))
1425       Flags |= TF_SkipPC;
1426   } else if (Abbrev->getTag() == dwarf::DW_TAG_variable) {
1427     // Function-local globals could be in the debug map even when the function
1428     // is not, e.g., inlined functions.
1429     if ((Flags & TF_InFunctionScope) && Info.InDebugMap)
1430       Flags &= ~TF_SkipPC;
1431   }
1432 
1433   for (const auto &AttrSpec : Abbrev->attributes()) {
1434     if (LLVM_LIKELY(!Update) &&
1435         shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
1436                             Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
1437       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1438                                 U.getFormParams());
1439       continue;
1440     }
1441 
1442     DWARFFormValue Val(AttrSpec.Form);
1443     uint64_t AttrSize = Offset;
1444     Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1445     AttrSize = Offset - AttrSize;
1446 
1447     OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val,
1448                                 AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
1449   }
1450 
1451   // Look for accelerator entries.
1452   uint16_t Tag = InputDIE.getTag();
1453   // FIXME: This is slightly wrong. An inline_subroutine without a
1454   // low_pc, but with AT_ranges might be interesting to get into the
1455   // accelerator tables too. For now stick with dsymutil's behavior.
1456   if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1457       Tag != dwarf::DW_TAG_compile_unit &&
1458       getDIENames(InputDIE, AttrInfo, StringPool,
1459                   Tag != dwarf::DW_TAG_inlined_subroutine)) {
1460     if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1461       Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1462                               Tag == dwarf::DW_TAG_inlined_subroutine);
1463     if (AttrInfo.Name) {
1464       if (AttrInfo.NameWithoutTemplate)
1465         Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1466                                 /* SkipPubSection */ true);
1467       Unit.addNameAccelerator(Die, AttrInfo.Name,
1468                               Tag == dwarf::DW_TAG_inlined_subroutine);
1469     }
1470     if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
1471       addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
1472                          /* SkipPubSection =*/true);
1473 
1474   } else if (Tag == dwarf::DW_TAG_namespace) {
1475     if (!AttrInfo.Name)
1476       AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
1477     Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1478   } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1479              getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
1480              AttrInfo.Name.getString()[0]) {
1481     uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File);
1482     uint64_t RuntimeLang =
1483         dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1484             .getValueOr(0);
1485     bool ObjCClassIsImplementation =
1486         (RuntimeLang == dwarf::DW_LANG_ObjC ||
1487          RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1488         dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1489             .getValueOr(0);
1490     Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1491                             Hash);
1492   }
1493 
1494   // Determine whether there are any children that we want to keep.
1495   bool HasChildren = false;
1496   for (auto Child : InputDIE.children()) {
1497     unsigned Idx = U.getDIEIndex(Child);
1498     if (Unit.getInfo(Idx).Keep) {
1499       HasChildren = true;
1500       break;
1501     }
1502   }
1503 
1504   DIEAbbrev NewAbbrev = Die->generateAbbrev();
1505   if (HasChildren)
1506     NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1507   // Assign a permanent abbrev number
1508   Linker.assignAbbrev(NewAbbrev);
1509   Die->setAbbrevNumber(NewAbbrev.getNumber());
1510 
1511   // Add the size of the abbreviation number to the output offset.
1512   OutOffset += getULEB128Size(Die->getAbbrevNumber());
1513 
1514   if (!HasChildren) {
1515     // Update our size.
1516     Die->setSize(OutOffset - Die->getOffset());
1517     return Die;
1518   }
1519 
1520   // Recursively clone children.
1521   for (auto Child : InputDIE.children()) {
1522     if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset,
1523                               OutOffset, Flags, IsLittleEndian)) {
1524       Die->addChild(Clone);
1525       OutOffset = Clone->getOffset() + Clone->getSize();
1526     }
1527   }
1528 
1529   // Account for the end of children marker.
1530   OutOffset += sizeof(int8_t);
1531   // Update our size.
1532   Die->setSize(OutOffset - Die->getOffset());
1533   return Die;
1534 }
1535 
1536 /// Patch the input object file relevant debug_ranges entries
1537 /// and emit them in the output file. Update the relevant attributes
1538 /// to point at the new entries.
1539 void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit,
1540                                      DWARFContext &OrigDwarf,
1541                                      const DWARFFile &File) const {
1542   DWARFDebugRangeList RangeList;
1543   const auto &FunctionRanges = Unit.getFunctionRanges();
1544   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
1545   DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
1546                                     OrigDwarf.getDWARFObj().getRangesSection(),
1547                                     OrigDwarf.isLittleEndian(), AddressSize);
1548   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1549   DWARFUnit &OrigUnit = Unit.getOrigUnit();
1550   auto OrigUnitDie = OrigUnit.getUnitDIE(false);
1551   uint64_t OrigLowPc =
1552       dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
1553   // Ranges addresses are based on the unit's low_pc. Compute the
1554   // offset we need to apply to adapt to the new unit's low_pc.
1555   int64_t UnitPcOffset = 0;
1556   if (OrigLowPc != -1ULL)
1557     UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
1558 
1559   for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
1560     uint64_t Offset = RangeAttribute.get();
1561     RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize());
1562     if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
1563       llvm::consumeError(std::move(E));
1564       reportWarning("invalid range list ignored.", File);
1565       RangeList.clear();
1566     }
1567     const auto &Entries = RangeList.getEntries();
1568     if (!Entries.empty()) {
1569       const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
1570 
1571       if (CurrRange == InvalidRange ||
1572           First.StartAddress + OrigLowPc < CurrRange.start() ||
1573           First.StartAddress + OrigLowPc >= CurrRange.stop()) {
1574         CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
1575         if (CurrRange == InvalidRange ||
1576             CurrRange.start() > First.StartAddress + OrigLowPc) {
1577           reportWarning("no mapping for range.", File);
1578           continue;
1579         }
1580       }
1581     }
1582 
1583     TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange,
1584                                        Entries, AddressSize);
1585   }
1586 }
1587 
1588 /// Generate the debug_aranges entries for \p Unit and if the
1589 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1590 /// contribution for this attribute.
1591 /// FIXME: this could actually be done right in patchRangesForUnit,
1592 /// but for the sake of initial bit-for-bit compatibility with legacy
1593 /// dsymutil, we have to do it in a delayed pass.
1594 void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const {
1595   auto Attr = Unit.getUnitRangesAttribute();
1596   if (Attr)
1597     Attr->set(TheDwarfEmitter->getRangesSectionSize());
1598   TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
1599 }
1600 
1601 /// Insert the new line info sequence \p Seq into the current
1602 /// set of already linked line info \p Rows.
1603 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
1604                                std::vector<DWARFDebugLine::Row> &Rows) {
1605   if (Seq.empty())
1606     return;
1607 
1608   if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
1609     llvm::append_range(Rows, Seq);
1610     Seq.clear();
1611     return;
1612   }
1613 
1614   object::SectionedAddress Front = Seq.front().Address;
1615   auto InsertPoint = partition_point(
1616       Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
1617 
1618   // FIXME: this only removes the unneeded end_sequence if the
1619   // sequences have been inserted in order. Using a global sort like
1620   // described in patchLineTableForUnit() and delaying the end_sequene
1621   // elimination to emitLineTableForUnit() we can get rid of all of them.
1622   if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
1623       InsertPoint->EndSequence) {
1624     *InsertPoint = Seq.front();
1625     Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
1626   } else {
1627     Rows.insert(InsertPoint, Seq.begin(), Seq.end());
1628   }
1629 
1630   Seq.clear();
1631 }
1632 
1633 static void patchStmtList(DIE &Die, DIEInteger Offset) {
1634   for (auto &V : Die.values())
1635     if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
1636       V = DIEValue(V.getAttribute(), V.getForm(), Offset);
1637       return;
1638     }
1639 
1640   llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
1641 }
1642 
1643 /// Extract the line table for \p Unit from \p OrigDwarf, and
1644 /// recreate a relocated version of these for the address ranges that
1645 /// are present in the binary.
1646 void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit,
1647                                         DWARFContext &OrigDwarf,
1648                                         const DWARFFile &File) {
1649   DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
1650   auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1651   if (!StmtList)
1652     return;
1653 
1654   // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1655   if (auto *OutputDIE = Unit.getOutputUnitDIE())
1656     patchStmtList(*OutputDIE,
1657                   DIEInteger(TheDwarfEmitter->getLineSectionSize()));
1658 
1659   RangesTy &Ranges = File.Addresses->getValidAddressRanges();
1660 
1661   // Parse the original line info for the unit.
1662   DWARFDebugLine::LineTable LineTable;
1663   uint64_t StmtOffset = *StmtList;
1664   DWARFDataExtractor LineExtractor(
1665       OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
1666       OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
1667   if (needToTranslateStrings())
1668     return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset);
1669 
1670   if (Error Err =
1671           LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
1672                           &Unit.getOrigUnit(), OrigDwarf.getWarningHandler()))
1673     OrigDwarf.getWarningHandler()(std::move(Err));
1674 
1675   // This vector is the output line table.
1676   std::vector<DWARFDebugLine::Row> NewRows;
1677   NewRows.reserve(LineTable.Rows.size());
1678 
1679   // Current sequence of rows being extracted, before being inserted
1680   // in NewRows.
1681   std::vector<DWARFDebugLine::Row> Seq;
1682   const auto &FunctionRanges = Unit.getFunctionRanges();
1683   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1684 
1685   // FIXME: This logic is meant to generate exactly the same output as
1686   // Darwin's classic dsymutil. There is a nicer way to implement this
1687   // by simply putting all the relocated line info in NewRows and simply
1688   // sorting NewRows before passing it to emitLineTableForUnit. This
1689   // should be correct as sequences for a function should stay
1690   // together in the sorted output. There are a few corner cases that
1691   // look suspicious though, and that required to implement the logic
1692   // this way. Revisit that once initial validation is finished.
1693 
1694   // Iterate over the object file line info and extract the sequences
1695   // that correspond to linked functions.
1696   for (auto &Row : LineTable.Rows) {
1697     // Check whether we stepped out of the range. The range is
1698     // half-open, but consider accept the end address of the range if
1699     // it is marked as end_sequence in the input (because in that
1700     // case, the relocation offset is accurate and that entry won't
1701     // serve as the start of another function).
1702     if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() ||
1703         Row.Address.Address > CurrRange.stop() ||
1704         (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) {
1705       // We just stepped out of a known range. Insert a end_sequence
1706       // corresponding to the end of the range.
1707       uint64_t StopAddress = CurrRange != InvalidRange
1708                                  ? CurrRange.stop() + CurrRange.value()
1709                                  : -1ULL;
1710       CurrRange = FunctionRanges.find(Row.Address.Address);
1711       bool CurrRangeValid =
1712           CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address;
1713       if (!CurrRangeValid) {
1714         CurrRange = InvalidRange;
1715         if (StopAddress != -1ULL) {
1716           // Try harder by looking in the Address ranges map.
1717           // There are corner cases where this finds a
1718           // valid entry. It's unclear if this is right or wrong, but
1719           // for now do as dsymutil.
1720           // FIXME: Understand exactly what cases this addresses and
1721           // potentially remove it along with the Ranges map.
1722           auto Range = Ranges.lower_bound(Row.Address.Address);
1723           if (Range != Ranges.begin() && Range != Ranges.end())
1724             --Range;
1725 
1726           if (Range != Ranges.end() && Range->first <= Row.Address.Address &&
1727               Range->second.HighPC >= Row.Address.Address) {
1728             StopAddress = Row.Address.Address + Range->second.Offset;
1729           }
1730         }
1731       }
1732       if (StopAddress != -1ULL && !Seq.empty()) {
1733         // Insert end sequence row with the computed end address, but
1734         // the same line as the previous one.
1735         auto NextLine = Seq.back();
1736         NextLine.Address.Address = StopAddress;
1737         NextLine.EndSequence = 1;
1738         NextLine.PrologueEnd = 0;
1739         NextLine.BasicBlock = 0;
1740         NextLine.EpilogueBegin = 0;
1741         Seq.push_back(NextLine);
1742         insertLineSequence(Seq, NewRows);
1743       }
1744 
1745       if (!CurrRangeValid)
1746         continue;
1747     }
1748 
1749     // Ignore empty sequences.
1750     if (Row.EndSequence && Seq.empty())
1751       continue;
1752 
1753     // Relocate row address and add it to the current sequence.
1754     Row.Address.Address += CurrRange.value();
1755     Seq.emplace_back(Row);
1756 
1757     if (Row.EndSequence)
1758       insertLineSequence(Seq, NewRows);
1759   }
1760 
1761   // Finished extracting, now emit the line tables.
1762   // FIXME: LLVM hard-codes its prologue values. We just copy the
1763   // prologue over and that works because we act as both producer and
1764   // consumer. It would be nicer to have a real configurable line
1765   // table emitter.
1766   if (LineTable.Prologue.getVersion() < 2 ||
1767       LineTable.Prologue.getVersion() > 5 ||
1768       LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
1769       LineTable.Prologue.OpcodeBase > 13)
1770     reportWarning("line table parameters mismatch. Cannot emit.", File);
1771   else {
1772     uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
1773     // DWARF v5 has an extra 2 bytes of information before the header_length
1774     // field.
1775     if (LineTable.Prologue.getVersion() == 5)
1776       PrologueEnd += 2;
1777     StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
1778     MCDwarfLineTableParams Params;
1779     Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
1780     Params.DWARF2LineBase = LineTable.Prologue.LineBase;
1781     Params.DWARF2LineRange = LineTable.Prologue.LineRange;
1782     TheDwarfEmitter->emitLineTableForUnit(
1783         Params, LineData.slice(*StmtList + 4, PrologueEnd),
1784         LineTable.Prologue.MinInstLength, NewRows,
1785         Unit.getOrigUnit().getAddressByteSize());
1786   }
1787 }
1788 
1789 void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
1790   switch (Options.TheAccelTableKind) {
1791   case AccelTableKind::Apple:
1792     emitAppleAcceleratorEntriesForUnit(Unit);
1793     break;
1794   case AccelTableKind::Dwarf:
1795     emitDwarfAcceleratorEntriesForUnit(Unit);
1796     break;
1797   case AccelTableKind::Pub:
1798     emitPubAcceleratorEntriesForUnit(Unit);
1799     break;
1800   case AccelTableKind::Default:
1801     llvm_unreachable("The default must be updated to a concrete value.");
1802     break;
1803   }
1804 }
1805 
1806 void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) {
1807   // Add namespaces.
1808   for (const auto &Namespace : Unit.getNamespaces())
1809     AppleNamespaces.addName(Namespace.Name,
1810                             Namespace.Die->getOffset() + Unit.getStartOffset());
1811 
1812   /// Add names.
1813   for (const auto &Pubname : Unit.getPubnames())
1814     AppleNames.addName(Pubname.Name,
1815                        Pubname.Die->getOffset() + Unit.getStartOffset());
1816 
1817   /// Add types.
1818   for (const auto &Pubtype : Unit.getPubtypes())
1819     AppleTypes.addName(
1820         Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
1821         Pubtype.Die->getTag(),
1822         Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
1823                                         : 0,
1824         Pubtype.QualifiedNameHash);
1825 
1826   /// Add ObjC names.
1827   for (const auto &ObjC : Unit.getObjC())
1828     AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
1829 }
1830 
1831 void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) {
1832   for (const auto &Namespace : Unit.getNamespaces())
1833     DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
1834                        Namespace.Die->getTag(), Unit.getUniqueID());
1835   for (const auto &Pubname : Unit.getPubnames())
1836     DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
1837                        Pubname.Die->getTag(), Unit.getUniqueID());
1838   for (const auto &Pubtype : Unit.getPubtypes())
1839     DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
1840                        Pubtype.Die->getTag(), Unit.getUniqueID());
1841 }
1842 
1843 void DWARFLinker::emitPubAcceleratorEntriesForUnit(CompileUnit &Unit) {
1844   TheDwarfEmitter->emitPubNamesForUnit(Unit);
1845   TheDwarfEmitter->emitPubTypesForUnit(Unit);
1846 }
1847 
1848 /// Read the frame info stored in the object, and emit the
1849 /// patched frame descriptions for the resulting file.
1850 ///
1851 /// This is actually pretty easy as the data of the CIEs and FDEs can
1852 /// be considered as black boxes and moved as is. The only thing to do
1853 /// is to patch the addresses in the headers.
1854 void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File,
1855                                           RangesTy &Ranges,
1856                                           DWARFContext &OrigDwarf,
1857                                           unsigned AddrSize) {
1858   StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
1859   if (FrameData.empty())
1860     return;
1861 
1862   DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
1863   uint64_t InputOffset = 0;
1864 
1865   // Store the data of the CIEs defined in this object, keyed by their
1866   // offsets.
1867   DenseMap<uint64_t, StringRef> LocalCIES;
1868 
1869   while (Data.isValidOffset(InputOffset)) {
1870     uint64_t EntryOffset = InputOffset;
1871     uint32_t InitialLength = Data.getU32(&InputOffset);
1872     if (InitialLength == 0xFFFFFFFF)
1873       return reportWarning("Dwarf64 bits no supported", File);
1874 
1875     uint32_t CIEId = Data.getU32(&InputOffset);
1876     if (CIEId == 0xFFFFFFFF) {
1877       // This is a CIE, store it.
1878       StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
1879       LocalCIES[EntryOffset] = CIEData;
1880       // The -4 is to account for the CIEId we just read.
1881       InputOffset += InitialLength - 4;
1882       continue;
1883     }
1884 
1885     uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
1886 
1887     // Some compilers seem to emit frame info that doesn't start at
1888     // the function entry point, thus we can't just lookup the address
1889     // in the debug map. Use the AddressInfo's range map to see if the FDE
1890     // describes something that we can relocate.
1891     auto Range = Ranges.upper_bound(Loc);
1892     if (Range != Ranges.begin())
1893       --Range;
1894     if (Range == Ranges.end() || Range->first > Loc ||
1895         Range->second.HighPC <= Loc) {
1896       // The +4 is to account for the size of the InitialLength field itself.
1897       InputOffset = EntryOffset + InitialLength + 4;
1898       continue;
1899     }
1900 
1901     // This is an FDE, and we have a mapping.
1902     // Have we already emitted a corresponding CIE?
1903     StringRef CIEData = LocalCIES[CIEId];
1904     if (CIEData.empty())
1905       return reportWarning("Inconsistent debug_frame content. Dropping.", File);
1906 
1907     // Look if we already emitted a CIE that corresponds to the
1908     // referenced one (the CIE data is the key of that lookup).
1909     auto IteratorInserted = EmittedCIEs.insert(
1910         std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize()));
1911     // If there is no CIE yet for this ID, emit it.
1912     if (IteratorInserted.second) {
1913       LastCIEOffset = TheDwarfEmitter->getFrameSectionSize();
1914       IteratorInserted.first->getValue() = LastCIEOffset;
1915       TheDwarfEmitter->emitCIE(CIEData);
1916     }
1917 
1918     // Emit the FDE with updated address and CIE pointer.
1919     // (4 + AddrSize) is the size of the CIEId + initial_location
1920     // fields that will get reconstructed by emitFDE().
1921     unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
1922     TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize,
1923                              Loc + Range->second.Offset,
1924                              FrameData.substr(InputOffset, FDERemainingBytes));
1925     InputOffset += FDERemainingBytes;
1926   }
1927 }
1928 
1929 uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE,
1930                                                         CompileUnit &U,
1931                                                         const DWARFFile &File,
1932                                                         int ChildRecurseDepth) {
1933   const char *Name = nullptr;
1934   DWARFUnit *OrigUnit = &U.getOrigUnit();
1935   CompileUnit *CU = &U;
1936   Optional<DWARFFormValue> Ref;
1937 
1938   while (true) {
1939     if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
1940       Name = CurrentName;
1941 
1942     if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
1943         !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
1944       break;
1945 
1946     if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
1947       break;
1948 
1949     CompileUnit *RefCU;
1950     if (auto RefDIE =
1951             Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) {
1952       CU = RefCU;
1953       OrigUnit = &RefCU->getOrigUnit();
1954       DIE = RefDIE;
1955     }
1956   }
1957 
1958   unsigned Idx = OrigUnit->getDIEIndex(DIE);
1959   if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
1960     Name = "(anonymous namespace)";
1961 
1962   if (CU->getInfo(Idx).ParentIdx == 0 ||
1963       // FIXME: dsymutil-classic compatibility. Ignore modules.
1964       CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
1965           dwarf::DW_TAG_module)
1966     return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
1967 
1968   DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
1969   return djbHash(
1970       (Name ? Name : ""),
1971       djbHash((Name ? "::" : ""),
1972               hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth)));
1973 }
1974 
1975 static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
1976   auto DwoId = dwarf::toUnsigned(
1977       CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
1978   if (DwoId)
1979     return *DwoId;
1980   return 0;
1981 }
1982 
1983 static std::string remapPath(StringRef Path,
1984                              const objectPrefixMap &ObjectPrefixMap) {
1985   if (ObjectPrefixMap.empty())
1986     return Path.str();
1987 
1988   SmallString<256> p = Path;
1989   for (const auto &Entry : ObjectPrefixMap)
1990     if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second))
1991       break;
1992   return p.str().str();
1993 }
1994 
1995 bool DWARFLinker::registerModuleReference(DWARFDie CUDie, const DWARFUnit &Unit,
1996                                           const DWARFFile &File,
1997                                           OffsetsStringPool &StringPool,
1998                                           DeclContextTree &ODRContexts,
1999                                           uint64_t ModulesEndOffset,
2000                                           unsigned &UnitID, bool IsLittleEndian,
2001                                           unsigned Indent, bool Quiet) {
2002   std::string PCMfile = dwarf::toString(
2003       CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
2004   if (PCMfile.empty())
2005     return false;
2006   if (Options.ObjectPrefixMap)
2007     PCMfile = remapPath(PCMfile, *Options.ObjectPrefixMap);
2008 
2009   // Clang module DWARF skeleton CUs abuse this for the path to the module.
2010   uint64_t DwoId = getDwoId(CUDie, Unit);
2011 
2012   std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2013   if (Name.empty()) {
2014     if (!Quiet)
2015       reportWarning("Anonymous module skeleton CU for " + PCMfile, File);
2016     return true;
2017   }
2018 
2019   if (!Quiet && Options.Verbose) {
2020     outs().indent(Indent);
2021     outs() << "Found clang module reference " << PCMfile;
2022   }
2023 
2024   auto Cached = ClangModules.find(PCMfile);
2025   if (Cached != ClangModules.end()) {
2026     // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2027     // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2028     // ASTFileSignatures will change randomly when a module is rebuilt.
2029     if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2030       reportWarning(Twine("hash mismatch: this object file was built against a "
2031                           "different version of the module ") +
2032                         PCMfile,
2033                     File);
2034     if (!Quiet && Options.Verbose)
2035       outs() << " [cached].\n";
2036     return true;
2037   }
2038   if (!Quiet && Options.Verbose)
2039     outs() << " ...\n";
2040 
2041   // Cyclic dependencies are disallowed by Clang, but we still
2042   // shouldn't run into an infinite loop, so mark it as processed now.
2043   ClangModules.insert({PCMfile, DwoId});
2044 
2045   if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, File, StringPool,
2046                                 ODRContexts, ModulesEndOffset, UnitID,
2047                                 IsLittleEndian, Indent + 2, Quiet)) {
2048     consumeError(std::move(E));
2049     return false;
2050   }
2051   return true;
2052 }
2053 
2054 Error DWARFLinker::loadClangModule(
2055     DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
2056     const DWARFFile &File, OffsetsStringPool &StringPool,
2057     DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
2058     bool IsLittleEndian, unsigned Indent, bool Quiet) {
2059   /// Using a SmallString<0> because loadClangModule() is recursive.
2060   SmallString<0> Path(Options.PrependPath);
2061   if (sys::path::is_relative(Filename))
2062     resolveRelativeObjectPath(Path, CUDie);
2063   sys::path::append(Path, Filename);
2064   // Don't use the cached binary holder because we have no thread-safety
2065   // guarantee and the lifetime is limited.
2066 
2067   if (Options.ObjFileLoader == nullptr)
2068     return Error::success();
2069 
2070   auto ErrOrObj = Options.ObjFileLoader(File.FileName, Path);
2071   if (!ErrOrObj)
2072     return Error::success();
2073 
2074   std::unique_ptr<CompileUnit> Unit;
2075 
2076   for (const auto &CU : ErrOrObj->Dwarf->compile_units()) {
2077     updateDwarfVersion(CU->getVersion());
2078     // Recursively get all modules imported by this one.
2079     auto CUDie = CU->getUnitDIE(false);
2080     if (!CUDie)
2081       continue;
2082     if (!registerModuleReference(CUDie, *CU, File, StringPool, ODRContexts,
2083                                  ModulesEndOffset, UnitID, IsLittleEndian,
2084                                  Indent, Quiet)) {
2085       if (Unit) {
2086         std::string Err =
2087             (Filename +
2088              ": Clang modules are expected to have exactly 1 compile unit.\n")
2089                 .str();
2090         reportError(Err, File);
2091         return make_error<StringError>(Err, inconvertibleErrorCode());
2092       }
2093       // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2094       // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2095       // ASTFileSignatures will change randomly when a module is rebuilt.
2096       uint64_t PCMDwoId = getDwoId(CUDie, *CU);
2097       if (PCMDwoId != DwoId) {
2098         if (!Quiet && Options.Verbose)
2099           reportWarning(
2100               Twine("hash mismatch: this object file was built against a "
2101                     "different version of the module ") +
2102                   Filename,
2103               File);
2104         // Update the cache entry with the DwoId of the module loaded from disk.
2105         ClangModules[Filename] = PCMDwoId;
2106       }
2107 
2108       // Add this module.
2109       Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
2110                                            ModuleName);
2111       analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), ODRContexts,
2112                          ModulesEndOffset, Options.ParseableSwiftInterfaces,
2113                          [&](const Twine &Warning, const DWARFDie &DIE) {
2114                            reportWarning(Warning, File, &DIE);
2115                          });
2116       // Keep everything.
2117       Unit->markEverythingAsKept();
2118     }
2119   }
2120   assert(Unit && "CompileUnit is not set!");
2121   if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
2122     return Error::success();
2123   if (!Quiet && Options.Verbose) {
2124     outs().indent(Indent);
2125     outs() << "cloning .debug_info from " << Filename << "\n";
2126   }
2127 
2128   UnitListTy CompileUnits;
2129   CompileUnits.push_back(std::move(Unit));
2130   assert(TheDwarfEmitter);
2131   DIECloner(*this, TheDwarfEmitter, *ErrOrObj, DIEAlloc, CompileUnits,
2132             Options.Update)
2133       .cloneAllCompileUnits(*(ErrOrObj->Dwarf), File, StringPool,
2134                             IsLittleEndian);
2135   return Error::success();
2136 }
2137 
2138 uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits(
2139     DWARFContext &DwarfContext, const DWARFFile &File,
2140     OffsetsStringPool &StringPool, bool IsLittleEndian) {
2141   uint64_t OutputDebugInfoSize =
2142       Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize();
2143   const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize;
2144 
2145   for (auto &CurrentUnit : CompileUnits) {
2146     const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2147     const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11;
2148     auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2149     CurrentUnit->setStartOffset(OutputDebugInfoSize);
2150     if (!InputDIE) {
2151       OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2152       continue;
2153     }
2154     if (CurrentUnit->getInfo(0).Keep) {
2155       // Clone the InputDIE into your Unit DIE in our compile unit since it
2156       // already has a DIE inside of it.
2157       CurrentUnit->createOutputDIE();
2158       cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */,
2159                UnitHeaderSize, 0, IsLittleEndian,
2160                CurrentUnit->getOutputUnitDIE());
2161     }
2162 
2163     OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2164 
2165     if (!Linker.Options.NoOutput) {
2166       assert(Emitter);
2167 
2168       if (LLVM_LIKELY(!Linker.Options.Update) ||
2169           Linker.needToTranslateStrings())
2170         Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File);
2171 
2172       Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2173 
2174       if (LLVM_UNLIKELY(Linker.Options.Update))
2175         continue;
2176 
2177       Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File);
2178       auto ProcessExpr = [&](StringRef Bytes,
2179                              SmallVectorImpl<uint8_t> &Buffer) {
2180         DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
2181         DataExtractor Data(Bytes, IsLittleEndian,
2182                            OrigUnit.getAddressByteSize());
2183         cloneExpression(Data,
2184                         DWARFExpression(Data, OrigUnit.getAddressByteSize(),
2185                                         OrigUnit.getFormParams().Format),
2186                         File, *CurrentUnit, Buffer);
2187       };
2188       Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr);
2189     }
2190   }
2191 
2192   if (!Linker.Options.NoOutput) {
2193     assert(Emitter);
2194     // Emit all the compile unit's debug information.
2195     for (auto &CurrentUnit : CompileUnits) {
2196       if (LLVM_LIKELY(!Linker.Options.Update))
2197         Linker.generateUnitRanges(*CurrentUnit);
2198 
2199       CurrentUnit->fixupForwardReferences();
2200 
2201       if (!CurrentUnit->getOutputUnitDIE())
2202         continue;
2203 
2204       unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2205 
2206       assert(Emitter->getDebugInfoSectionSize() ==
2207              CurrentUnit->getStartOffset());
2208       Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion);
2209       Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE());
2210       assert(Emitter->getDebugInfoSectionSize() ==
2211              CurrentUnit->computeNextUnitOffset(DwarfVersion));
2212     }
2213   }
2214 
2215   return OutputDebugInfoSize - StartOutputDebugInfoSize;
2216 }
2217 
2218 void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) {
2219   if (Options.TheAccelTableKind != AccelTableKind::Default)
2220     return;
2221 
2222   auto &DwarfObj = Dwarf.getDWARFObj();
2223 
2224   if (!AtLeastOneDwarfAccelTable &&
2225       (!DwarfObj.getAppleNamesSection().Data.empty() ||
2226        !DwarfObj.getAppleTypesSection().Data.empty() ||
2227        !DwarfObj.getAppleNamespacesSection().Data.empty() ||
2228        !DwarfObj.getAppleObjCSection().Data.empty())) {
2229     AtLeastOneAppleAccelTable = true;
2230   }
2231 
2232   if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
2233     AtLeastOneDwarfAccelTable = true;
2234   }
2235 }
2236 
2237 bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File,
2238                                          OffsetsStringPool &StringPool) {
2239 
2240   if (File.Warnings.empty())
2241     return false;
2242 
2243   DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
2244   CUDie->setOffset(11);
2245   StringRef Producer;
2246   StringRef WarningHeader;
2247 
2248   switch (DwarfLinkerClientID) {
2249   case DwarfLinkerClient::Dsymutil:
2250     Producer = StringPool.internString("dsymutil");
2251     WarningHeader = "dsymutil_warning";
2252     break;
2253 
2254   default:
2255     Producer = StringPool.internString("dwarfopt");
2256     WarningHeader = "dwarfopt_warning";
2257     break;
2258   }
2259 
2260   StringRef FileName = StringPool.internString(File.FileName);
2261   CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
2262                   DIEInteger(StringPool.getStringOffset(Producer)));
2263   DIEBlock *String = new (DIEAlloc) DIEBlock();
2264   DIEBlocks.push_back(String);
2265   for (auto &C : FileName)
2266     String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2267                      DIEInteger(C));
2268   String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2269                    DIEInteger(0));
2270 
2271   CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
2272   for (const auto &Warning : File.Warnings) {
2273     DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
2274     ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
2275                       DIEInteger(StringPool.getStringOffset(WarningHeader)));
2276     ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
2277                       DIEInteger(1));
2278     ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
2279                       DIEInteger(StringPool.getStringOffset(Warning)));
2280   }
2281   unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 +
2282                   File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */;
2283   DIEAbbrev Abbrev = CUDie->generateAbbrev();
2284   assignAbbrev(Abbrev);
2285   CUDie->setAbbrevNumber(Abbrev.getNumber());
2286   Size += getULEB128Size(Abbrev.getNumber());
2287   // Abbreviation ordering needed for classic compatibility.
2288   for (auto &Child : CUDie->children()) {
2289     Abbrev = Child.generateAbbrev();
2290     assignAbbrev(Abbrev);
2291     Child.setAbbrevNumber(Abbrev.getNumber());
2292     Size += getULEB128Size(Abbrev.getNumber());
2293   }
2294   CUDie->setSize(Size);
2295   TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie);
2296 
2297   return true;
2298 }
2299 
2300 void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) {
2301   if (!needToTranslateStrings())
2302     TheDwarfEmitter->emitSectionContents(
2303         Dwarf.getDWARFObj().getLineSection().Data, "debug_line");
2304   TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data,
2305                                        "debug_loc");
2306   TheDwarfEmitter->emitSectionContents(
2307       Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges");
2308   TheDwarfEmitter->emitSectionContents(
2309       Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame");
2310   TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(),
2311                                        "debug_aranges");
2312 }
2313 
2314 void DWARFLinker::addObjectFile(DWARFFile &File) {
2315   ObjectContexts.emplace_back(LinkContext(File));
2316 
2317   if (ObjectContexts.back().File.Dwarf)
2318     updateAccelKind(*ObjectContexts.back().File.Dwarf);
2319 }
2320 
2321 bool DWARFLinker::link() {
2322   assert(Options.NoOutput || TheDwarfEmitter);
2323 
2324   // A unique ID that identifies each compile unit.
2325   unsigned UnitID = 0;
2326 
2327   // First populate the data structure we need for each iteration of the
2328   // parallel loop.
2329   unsigned NumObjects = ObjectContexts.size();
2330 
2331   // This Dwarf string pool which is used for emission. It must be used
2332   // serially as the order of calling getStringOffset matters for
2333   // reproducibility.
2334   OffsetsStringPool OffsetsStringPool(StringsTranslator, true);
2335 
2336   // ODR Contexts for the optimize.
2337   DeclContextTree ODRContexts;
2338 
2339   // If we haven't decided on an accelerator table kind yet, we base ourselves
2340   // on the DWARF we have seen so far. At this point we haven't pulled in debug
2341   // information from modules yet, so it is technically possible that they
2342   // would affect the decision. However, as they're built with the same
2343   // compiler and flags, it is safe to assume that they will follow the
2344   // decision made here.
2345   if (Options.TheAccelTableKind == AccelTableKind::Default) {
2346     if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
2347       Options.TheAccelTableKind = AccelTableKind::Dwarf;
2348     else
2349       Options.TheAccelTableKind = AccelTableKind::Apple;
2350   }
2351 
2352   for (LinkContext &OptContext : ObjectContexts) {
2353     if (Options.Verbose) {
2354       if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil)
2355         outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n";
2356       else
2357         outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n";
2358     }
2359 
2360     if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool))
2361       continue;
2362 
2363     if (!OptContext.File.Dwarf)
2364       continue;
2365     // Look for relocations that correspond to address map entries.
2366 
2367     // there was findvalidrelocations previously ... probably we need to gather
2368     // info here
2369     if (LLVM_LIKELY(!Options.Update) &&
2370         !OptContext.File.Addresses->hasValidRelocs()) {
2371       if (Options.Verbose)
2372         outs() << "No valid relocations found. Skipping.\n";
2373 
2374       // Set "Skip" flag as a signal to other loops that we should not
2375       // process this iteration.
2376       OptContext.Skip = true;
2377       continue;
2378     }
2379 
2380     // Setup access to the debug info.
2381     if (!OptContext.File.Dwarf)
2382       continue;
2383 
2384     // In a first phase, just read in the debug info and load all clang modules.
2385     OptContext.CompileUnits.reserve(
2386         OptContext.File.Dwarf->getNumCompileUnits());
2387 
2388     for (const auto &CU : OptContext.File.Dwarf->compile_units()) {
2389       updateDwarfVersion(CU->getVersion());
2390       auto CUDie = CU->getUnitDIE(false);
2391       if (Options.Verbose) {
2392         outs() << "Input compilation unit:";
2393         DIDumpOptions DumpOpts;
2394         DumpOpts.ChildRecurseDepth = 0;
2395         DumpOpts.Verbose = Options.Verbose;
2396         CUDie.dump(outs(), 0, DumpOpts);
2397       }
2398       if (CUDie && !LLVM_UNLIKELY(Options.Update))
2399         registerModuleReference(CUDie, *CU, OptContext.File, OffsetsStringPool,
2400                                 ODRContexts, 0, UnitID,
2401                                 OptContext.File.Dwarf->isLittleEndian());
2402     }
2403   }
2404 
2405   // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
2406   if (MaxDwarfVersion == 0)
2407     MaxDwarfVersion = 3;
2408 
2409   // At this point we know how much data we have emitted. We use this value to
2410   // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2411   // is already emitted, without being affected by canonical die offsets set
2412   // later. This prevents undeterminism when analyze and clone execute
2413   // concurrently, as clone set the canonical DIE offset and analyze reads it.
2414   const uint64_t ModulesEndOffset =
2415       Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize();
2416 
2417   // These variables manage the list of processed object files.
2418   // The mutex and condition variable are to ensure that this is thread safe.
2419   std::mutex ProcessedFilesMutex;
2420   std::condition_variable ProcessedFilesConditionVariable;
2421   BitVector ProcessedFiles(NumObjects, false);
2422 
2423   //  Analyzing the context info is particularly expensive so it is executed in
2424   //  parallel with emitting the previous compile unit.
2425   auto AnalyzeLambda = [&](size_t I) {
2426     auto &Context = ObjectContexts[I];
2427 
2428     if (Context.Skip || !Context.File.Dwarf)
2429       return;
2430 
2431     for (const auto &CU : Context.File.Dwarf->compile_units()) {
2432       updateDwarfVersion(CU->getVersion());
2433       // The !registerModuleReference() condition effectively skips
2434       // over fully resolved skeleton units. This second pass of
2435       // registerModuleReferences doesn't do any new work, but it
2436       // will collect top-level errors, which are suppressed. Module
2437       // warnings were already displayed in the first iteration.
2438       bool Quiet = true;
2439       auto CUDie = CU->getUnitDIE(false);
2440       if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
2441           !registerModuleReference(CUDie, *CU, Context.File, OffsetsStringPool,
2442                                    ODRContexts, ModulesEndOffset, UnitID,
2443                                    Quiet)) {
2444         Context.CompileUnits.push_back(std::make_unique<CompileUnit>(
2445             *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
2446       }
2447     }
2448 
2449     // Now build the DIE parent links that we will use during the next phase.
2450     for (auto &CurrentUnit : Context.CompileUnits) {
2451       auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2452       if (!CUDie)
2453         continue;
2454       analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2455                          *CurrentUnit, &ODRContexts.getRoot(), ODRContexts,
2456                          ModulesEndOffset, Options.ParseableSwiftInterfaces,
2457                          [&](const Twine &Warning, const DWARFDie &DIE) {
2458                            reportWarning(Warning, Context.File, &DIE);
2459                          });
2460     }
2461   };
2462 
2463   // For each object file map how many bytes were emitted.
2464   StringMap<DebugInfoSize> SizeByObject;
2465 
2466   // And then the remaining work in serial again.
2467   // Note, although this loop runs in serial, it can run in parallel with
2468   // the analyzeContextInfo loop so long as we process files with indices >=
2469   // than those processed by analyzeContextInfo.
2470   auto CloneLambda = [&](size_t I) {
2471     auto &OptContext = ObjectContexts[I];
2472     if (OptContext.Skip || !OptContext.File.Dwarf)
2473       return;
2474 
2475     // Then mark all the DIEs that need to be present in the generated output
2476     // and collect some information about them.
2477     // Note that this loop can not be merged with the previous one because
2478     // cross-cu references require the ParentIdx to be setup for every CU in
2479     // the object file before calling this.
2480     if (LLVM_UNLIKELY(Options.Update)) {
2481       for (auto &CurrentUnit : OptContext.CompileUnits)
2482         CurrentUnit->markEverythingAsKept();
2483       copyInvariantDebugSection(*OptContext.File.Dwarf);
2484     } else {
2485       for (auto &CurrentUnit : OptContext.CompileUnits)
2486         lookForDIEsToKeep(*OptContext.File.Addresses,
2487                           OptContext.File.Addresses->getValidAddressRanges(),
2488                           OptContext.CompileUnits,
2489                           CurrentUnit->getOrigUnit().getUnitDIE(),
2490                           OptContext.File, *CurrentUnit, 0);
2491     }
2492 
2493     // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2494     // array again (in the same way findValidRelocsInDebugInfo() did). We
2495     // need to reset the NextValidReloc index to the beginning.
2496     if (OptContext.File.Addresses->hasValidRelocs() ||
2497         LLVM_UNLIKELY(Options.Update)) {
2498       SizeByObject[OptContext.File.FileName].Input =
2499           getDebugInfoSize(*OptContext.File.Dwarf);
2500       SizeByObject[OptContext.File.FileName].Output =
2501           DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc,
2502                     OptContext.CompileUnits, Options.Update)
2503               .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File,
2504                                     OffsetsStringPool,
2505                                     OptContext.File.Dwarf->isLittleEndian());
2506     }
2507     if (!Options.NoOutput && !OptContext.CompileUnits.empty() &&
2508         LLVM_LIKELY(!Options.Update))
2509       patchFrameInfoForObject(
2510           OptContext.File, OptContext.File.Addresses->getValidAddressRanges(),
2511           *OptContext.File.Dwarf,
2512           OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
2513 
2514     // Clean-up before starting working on the next object.
2515     cleanupAuxiliarryData(OptContext);
2516   };
2517 
2518   auto EmitLambda = [&]() {
2519     // Emit everything that's global.
2520     if (!Options.NoOutput) {
2521       TheDwarfEmitter->emitAbbrevs(Abbreviations, MaxDwarfVersion);
2522       TheDwarfEmitter->emitStrings(OffsetsStringPool);
2523       switch (Options.TheAccelTableKind) {
2524       case AccelTableKind::Apple:
2525         TheDwarfEmitter->emitAppleNames(AppleNames);
2526         TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces);
2527         TheDwarfEmitter->emitAppleTypes(AppleTypes);
2528         TheDwarfEmitter->emitAppleObjc(AppleObjc);
2529         break;
2530       case AccelTableKind::Dwarf:
2531         TheDwarfEmitter->emitDebugNames(DebugNames);
2532         break;
2533       case AccelTableKind::Pub:
2534         // Already emitted by emitPubAcceleratorEntriesForUnit.
2535         break;
2536       case AccelTableKind::Default:
2537         llvm_unreachable("Default should have already been resolved.");
2538         break;
2539       }
2540     }
2541   };
2542 
2543   auto AnalyzeAll = [&]() {
2544     for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2545       AnalyzeLambda(I);
2546 
2547       std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2548       ProcessedFiles.set(I);
2549       ProcessedFilesConditionVariable.notify_one();
2550     }
2551   };
2552 
2553   auto CloneAll = [&]() {
2554     for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2555       {
2556         std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2557         if (!ProcessedFiles[I]) {
2558           ProcessedFilesConditionVariable.wait(
2559               LockGuard, [&]() { return ProcessedFiles[I]; });
2560         }
2561       }
2562 
2563       CloneLambda(I);
2564     }
2565     EmitLambda();
2566   };
2567 
2568   // To limit memory usage in the single threaded case, analyze and clone are
2569   // run sequentially so the OptContext is freed after processing each object
2570   // in endDebugObject.
2571   if (Options.Threads == 1) {
2572     for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2573       AnalyzeLambda(I);
2574       CloneLambda(I);
2575     }
2576     EmitLambda();
2577   } else {
2578     ThreadPool Pool(hardware_concurrency(2));
2579     Pool.async(AnalyzeAll);
2580     Pool.async(CloneAll);
2581     Pool.wait();
2582   }
2583 
2584   if (Options.Statistics) {
2585     // Create a vector sorted in descending order by output size.
2586     std::vector<std::pair<StringRef, DebugInfoSize>> Sorted;
2587     for (auto &E : SizeByObject)
2588       Sorted.emplace_back(E.first(), E.second);
2589     llvm::sort(Sorted, [](auto &LHS, auto &RHS) {
2590       return LHS.second.Output > RHS.second.Output;
2591     });
2592 
2593     auto ComputePercentange = [](int64_t Input, int64_t Output) -> float {
2594       const float Difference = Output - Input;
2595       const float Sum = Input + Output;
2596       if (Sum == 0)
2597         return 0;
2598       return (Difference / (Sum / 2));
2599     };
2600 
2601     int64_t InputTotal = 0;
2602     int64_t OutputTotal = 0;
2603     const char *FormatStr = "{0,-45} {1,10}b  {2,10}b {3,8:P}\n";
2604 
2605     // Print header.
2606     outs() << ".debug_info section size (in bytes)\n";
2607     outs() << "----------------------------------------------------------------"
2608               "---------------\n";
2609     outs() << "Filename                                           Object       "
2610               "  dSYM   Change\n";
2611     outs() << "----------------------------------------------------------------"
2612               "---------------\n";
2613 
2614     // Print body.
2615     for (auto &E : Sorted) {
2616       InputTotal += E.second.Input;
2617       OutputTotal += E.second.Output;
2618       llvm::outs() << formatv(
2619           FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input,
2620           E.second.Output, ComputePercentange(E.second.Input, E.second.Output));
2621     }
2622     // Print total and footer.
2623     outs() << "----------------------------------------------------------------"
2624               "---------------\n";
2625     llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal,
2626                             ComputePercentange(InputTotal, OutputTotal));
2627     outs() << "----------------------------------------------------------------"
2628               "---------------\n\n";
2629   }
2630 
2631   return true;
2632 }
2633 
2634 } // namespace llvm
2635