1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 
43 #define DEBUG_TYPE "type-promotion"
44 #define PASS_NAME "Type Promotion"
45 
46 using namespace llvm;
47 
48 static cl::opt<bool>
49 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(true),
50                  cl::desc("Disable type promotion pass"));
51 
52 // The goal of this pass is to enable more efficient code generation for
53 // operations on narrow types (i.e. types with < 32-bits) and this is a
54 // motivating IR code example:
55 //
56 //   define hidden i32 @cmp(i8 zeroext) {
57 //     %2 = add i8 %0, -49
58 //     %3 = icmp ult i8 %2, 3
59 //     ..
60 //   }
61 //
62 // The issue here is that i8 is type-legalized to i32 because i8 is not a
63 // legal type. Thus, arithmetic is done in integer-precision, but then the
64 // byte value is masked out as follows:
65 //
66 //   t19: i32 = add t4, Constant:i32<-49>
67 //     t24: i32 = and t19, Constant:i32<255>
68 //
69 // Consequently, we generate code like this:
70 //
71 //   subs  r0, #49
72 //   uxtb  r1, r0
73 //   cmp r1, #3
74 //
75 // This shows that masking out the byte value results in generation of
76 // the UXTB instruction. This is not optimal as r0 already contains the byte
77 // value we need, and so instead we can just generate:
78 //
79 //   sub.w r1, r0, #49
80 //   cmp r1, #3
81 //
82 // We achieve this by type promoting the IR to i32 like so for this example:
83 //
84 //   define i32 @cmp(i8 zeroext %c) {
85 //     %0 = zext i8 %c to i32
86 //     %c.off = add i32 %0, -49
87 //     %1 = icmp ult i32 %c.off, 3
88 //     ..
89 //   }
90 //
91 // For this to be valid and legal, we need to prove that the i32 add is
92 // producing the same value as the i8 addition, and that e.g. no overflow
93 // happens.
94 //
95 // A brief sketch of the algorithm and some terminology.
96 // We pattern match interesting IR patterns:
97 // - which have "sources": instructions producing narrow values (i8, i16), and
98 // - they have "sinks": instructions consuming these narrow values.
99 //
100 // We collect all instruction connecting sources and sinks in a worklist, so
101 // that we can mutate these instruction and perform type promotion when it is
102 // legal to do so.
103 
104 namespace {
105 class IRPromoter {
106   SmallPtrSet<Value*, 8> NewInsts;
107   SmallPtrSet<Instruction*, 4> InstsToRemove;
108   DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
109   SmallPtrSet<Value*, 8> Promoted;
110   LLVMContext &Ctx;
111   // The type we promote to: always i32
112   IntegerType *ExtTy = nullptr;
113   // The type of the value that the search began from, either i8 or i16.
114   // This defines the max range of the values that we allow in the promoted
115   // tree.
116   IntegerType *OrigTy = nullptr;
117   SetVector<Value*> *Visited;
118   SmallPtrSetImpl<Value*> *Sources;
119   SmallPtrSetImpl<Instruction*> *Sinks;
120   SmallPtrSetImpl<Instruction*> *SafeToPromote;
121   SmallPtrSetImpl<Instruction*> *SafeWrap;
122 
123   void ReplaceAllUsersOfWith(Value *From, Value *To);
124   void PrepareWrappingAdds(void);
125   void ExtendSources(void);
126   void ConvertTruncs(void);
127   void PromoteTree(void);
128   void TruncateSinks(void);
129   void Cleanup(void);
130 
131 public:
132   IRPromoter(Module *M) : Ctx(M->getContext()) { }
133 
134 
135   void Mutate(Type *OrigTy, unsigned PromotedWidth,
136               SetVector<Value*> &Visited,
137               SmallPtrSetImpl<Value*> &Sources,
138               SmallPtrSetImpl<Instruction*> &Sinks,
139               SmallPtrSetImpl<Instruction*> &SafeToPromote,
140               SmallPtrSetImpl<Instruction*> &SafeWrap);
141 };
142 
143 class TypePromotion : public FunctionPass {
144   IRPromoter *Promoter = nullptr;
145   SmallPtrSet<Value*, 16> AllVisited;
146   SmallPtrSet<Instruction*, 8> SafeToPromote;
147   SmallPtrSet<Instruction*, 4> SafeWrap;
148 
149   bool isSafeWrap(Instruction *I);
150   bool isSupportedValue(Value *V);
151   bool isLegalToPromote(Value *V);
152   bool TryToPromote(Value *V, unsigned PromotedWidth);
153 
154 public:
155   static char ID;
156   static unsigned TypeSize;
157   Type *OrigTy = nullptr;
158 
159   TypePromotion() : FunctionPass(ID) {}
160 
161   void getAnalysisUsage(AnalysisUsage &AU) const override {
162     AU.addRequired<TargetTransformInfoWrapperPass>();
163     AU.addRequired<TargetPassConfig>();
164   }
165 
166   StringRef getPassName() const override { return PASS_NAME; }
167 
168   bool doInitialization(Module &M) override;
169   bool runOnFunction(Function &F) override;
170   bool doFinalization(Module &M) override;
171 };
172 
173 }
174 
175 static bool GenerateSignBits(Value *V) {
176   if (!isa<Instruction>(V))
177     return false;
178 
179   unsigned Opc = cast<Instruction>(V)->getOpcode();
180   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
181          Opc == Instruction::SRem || Opc == Instruction::SExt;
182 }
183 
184 static bool EqualTypeSize(Value *V) {
185   return V->getType()->getScalarSizeInBits() == TypePromotion::TypeSize;
186 }
187 
188 static bool LessOrEqualTypeSize(Value *V) {
189   return V->getType()->getScalarSizeInBits() <= TypePromotion::TypeSize;
190 }
191 
192 static bool GreaterThanTypeSize(Value *V) {
193   return V->getType()->getScalarSizeInBits() > TypePromotion::TypeSize;
194 }
195 
196 static bool LessThanTypeSize(Value *V) {
197   return V->getType()->getScalarSizeInBits() < TypePromotion::TypeSize;
198 }
199 
200 /// Some instructions can use 8- and 16-bit operands, and we don't need to
201 /// promote anything larger. We disallow booleans to make life easier when
202 /// dealing with icmps but allow any other integer that is <= 16 bits. Void
203 /// types are accepted so we can handle switches.
204 static bool isSupportedType(Value *V) {
205   Type *Ty = V->getType();
206 
207   // Allow voids and pointers, these won't be promoted.
208   if (Ty->isVoidTy() || Ty->isPointerTy())
209     return true;
210 
211   if (auto *Ld = dyn_cast<LoadInst>(V))
212     Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
213 
214   if (!isa<IntegerType>(Ty) ||
215       cast<IntegerType>(V->getType())->getBitWidth() == 1)
216     return false;
217 
218   return LessOrEqualTypeSize(V);
219 }
220 
221 /// Return true if the given value is a source in the use-def chain, producing
222 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
223 /// of the tree to i32. We guarantee that these won't populate the upper bits
224 /// of the register. ZExt on the loads will be free, and the same for call
225 /// return values because we only accept ones that guarantee a zeroext ret val.
226 /// Many arguments will have the zeroext attribute too, so those would be free
227 /// too.
228 static bool isSource(Value *V) {
229   if (!isa<IntegerType>(V->getType()))
230     return false;
231 
232   // TODO Allow zext to be sources.
233   if (isa<Argument>(V))
234     return true;
235   else if (isa<LoadInst>(V))
236     return true;
237   else if (isa<BitCastInst>(V))
238     return true;
239   else if (auto *Call = dyn_cast<CallInst>(V))
240     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
241   else if (auto *Trunc = dyn_cast<TruncInst>(V))
242     return EqualTypeSize(Trunc);
243   return false;
244 }
245 
246 /// Return true if V will require any promoted values to be truncated for the
247 /// the IR to remain valid. We can't mutate the value type of these
248 /// instructions.
249 static bool isSink(Value *V) {
250   // TODO The truncate also isn't actually necessary because we would already
251   // proved that the data value is kept within the range of the original data
252   // type.
253 
254   // Sinks are:
255   // - points where the value in the register is being observed, such as an
256   //   icmp, switch or store.
257   // - points where value types have to match, such as calls and returns.
258   // - zext are included to ease the transformation and are generally removed
259   //   later on.
260   if (auto *Store = dyn_cast<StoreInst>(V))
261     return LessOrEqualTypeSize(Store->getValueOperand());
262   if (auto *Return = dyn_cast<ReturnInst>(V))
263     return LessOrEqualTypeSize(Return->getReturnValue());
264   if (auto *ZExt = dyn_cast<ZExtInst>(V))
265     return GreaterThanTypeSize(ZExt);
266   if (auto *Switch = dyn_cast<SwitchInst>(V))
267     return LessThanTypeSize(Switch->getCondition());
268   if (auto *ICmp = dyn_cast<ICmpInst>(V))
269     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
270 
271   return isa<CallInst>(V);
272 }
273 
274 /// Return whether this instruction can safely wrap.
275 bool TypePromotion::isSafeWrap(Instruction *I) {
276   // We can support a, potentially, wrapping instruction (I) if:
277   // - It is only used by an unsigned icmp.
278   // - The icmp uses a constant.
279   // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
280   //   around zero to become a larger number than before.
281   // - The wrapping instruction (I) also uses a constant.
282   //
283   // We can then use the two constants to calculate whether the result would
284   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
285   // just underflows the range, the icmp would give the same result whether the
286   // result has been truncated or not. We calculate this by:
287   // - Zero extending both constants, if needed, to 32-bits.
288   // - Take the absolute value of I's constant, adding this to the icmp const.
289   // - Check that this value is not out of range for small type. If it is, it
290   //   means that it has underflowed enough to wrap around the icmp constant.
291   //
292   // For example:
293   //
294   // %sub = sub i8 %a, 2
295   // %cmp = icmp ule i8 %sub, 254
296   //
297   // If %a = 0, %sub = -2 == FE == 254
298   // But if this is evalulated as a i32
299   // %sub = -2 == FF FF FF FE == 4294967294
300   // So the unsigned compares (i8 and i32) would not yield the same result.
301   //
302   // Another way to look at it is:
303   // %a - 2 <= 254
304   // %a + 2 <= 254 + 2
305   // %a <= 256
306   // And we can't represent 256 in the i8 format, so we don't support it.
307   //
308   // Whereas:
309   //
310   // %sub i8 %a, 1
311   // %cmp = icmp ule i8 %sub, 254
312   //
313   // If %a = 0, %sub = -1 == FF == 255
314   // As i32:
315   // %sub = -1 == FF FF FF FF == 4294967295
316   //
317   // In this case, the unsigned compare results would be the same and this
318   // would also be true for ult, uge and ugt:
319   // - (255 < 254) == (0xFFFFFFFF < 254) == false
320   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
321   // - (255 > 254) == (0xFFFFFFFF > 254) == true
322   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
323   //
324   // To demonstrate why we can't handle increasing values:
325   //
326   // %add = add i8 %a, 2
327   // %cmp = icmp ult i8 %add, 127
328   //
329   // If %a = 254, %add = 256 == (i8 1)
330   // As i32:
331   // %add = 256
332   //
333   // (1 < 127) != (256 < 127)
334 
335   unsigned Opc = I->getOpcode();
336   if (Opc != Instruction::Add && Opc != Instruction::Sub)
337     return false;
338 
339   if (!I->hasOneUse() ||
340       !isa<ICmpInst>(*I->user_begin()) ||
341       !isa<ConstantInt>(I->getOperand(1)))
342     return false;
343 
344   ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
345   bool NegImm = OverflowConst->isNegative();
346   bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
347                        ((Opc == Instruction::Add) && NegImm);
348   if (!IsDecreasing)
349     return false;
350 
351   // Don't support an icmp that deals with sign bits.
352   auto *CI = cast<ICmpInst>(*I->user_begin());
353   if (CI->isSigned() || CI->isEquality())
354     return false;
355 
356   ConstantInt *ICmpConst = nullptr;
357   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
358     ICmpConst = Const;
359   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
360     ICmpConst = Const;
361   else
362     return false;
363 
364   // Now check that the result can't wrap on itself.
365   APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
366     ICmpConst->getValue().zext(32) : ICmpConst->getValue();
367 
368   Total += OverflowConst->getValue().getBitWidth() < 32 ?
369     OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
370 
371   APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
372 
373   if (Total.getBitWidth() > Max.getBitWidth()) {
374     if (Total.ugt(Max.zext(Total.getBitWidth())))
375       return false;
376   } else if (Max.getBitWidth() > Total.getBitWidth()) {
377     if (Total.zext(Max.getBitWidth()).ugt(Max))
378       return false;
379   } else if (Total.ugt(Max))
380     return false;
381 
382   LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for " << *I << "\n");
383   SafeWrap.insert(I);
384   return true;
385 }
386 
387 static bool shouldPromote(Value *V) {
388   if (!isa<IntegerType>(V->getType()) || isSink(V))
389     return false;
390 
391   if (isSource(V))
392     return true;
393 
394   auto *I = dyn_cast<Instruction>(V);
395   if (!I)
396     return false;
397 
398   if (isa<ICmpInst>(I))
399     return false;
400 
401   return true;
402 }
403 
404 /// Return whether we can safely mutate V's type to ExtTy without having to be
405 /// concerned with zero extending or truncation.
406 static bool isPromotedResultSafe(Value *V) {
407   if (GenerateSignBits(V))
408     return false;
409 
410   if (!isa<Instruction>(V))
411     return true;
412 
413   if (!isa<OverflowingBinaryOperator>(V))
414     return true;
415 
416   return cast<Instruction>(V)->hasNoUnsignedWrap();
417 }
418 
419 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
420   SmallVector<Instruction*, 4> Users;
421   Instruction *InstTo = dyn_cast<Instruction>(To);
422   bool ReplacedAll = true;
423 
424   LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
425              << "\n");
426 
427   for (Use &U : From->uses()) {
428     auto *User = cast<Instruction>(U.getUser());
429     if (InstTo && User->isIdenticalTo(InstTo)) {
430       ReplacedAll = false;
431       continue;
432     }
433     Users.push_back(User);
434   }
435 
436   for (auto *U : Users)
437     U->replaceUsesOfWith(From, To);
438 
439   if (ReplacedAll)
440     if (auto *I = dyn_cast<Instruction>(From))
441       InstsToRemove.insert(I);
442 }
443 
444 void IRPromoter::PrepareWrappingAdds() {
445   LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
446   IRBuilder<> Builder{Ctx};
447 
448   // For adds that safely wrap and use a negative immediate as operand 1, we
449   // create an equivalent instruction using a positive immediate.
450   // That positive immediate can then be zext along with all the other
451   // immediates later.
452   for (auto *I : *SafeWrap) {
453     if (I->getOpcode() != Instruction::Add)
454       continue;
455 
456     LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
457     assert((isa<ConstantInt>(I->getOperand(1)) &&
458             cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
459            "Wrapping should have a negative immediate as the second operand");
460 
461     auto Const = cast<ConstantInt>(I->getOperand(1));
462     auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
463     Builder.SetInsertPoint(I);
464     Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
465     if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
466       NewInst->copyIRFlags(I);
467       NewInsts.insert(NewInst);
468     }
469     InstsToRemove.insert(I);
470     I->replaceAllUsesWith(NewVal);
471     LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
472   }
473   for (auto *I : NewInsts)
474     Visited->insert(I);
475 }
476 
477 void IRPromoter::ExtendSources() {
478   IRBuilder<> Builder{Ctx};
479 
480   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
481     assert(V->getType() != ExtTy && "zext already extends to i32");
482     LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
483     Builder.SetInsertPoint(InsertPt);
484     if (auto *I = dyn_cast<Instruction>(V))
485       Builder.SetCurrentDebugLocation(I->getDebugLoc());
486 
487     Value *ZExt = Builder.CreateZExt(V, ExtTy);
488     if (auto *I = dyn_cast<Instruction>(ZExt)) {
489       if (isa<Argument>(V))
490         I->moveBefore(InsertPt);
491       else
492         I->moveAfter(InsertPt);
493       NewInsts.insert(I);
494     }
495 
496     ReplaceAllUsersOfWith(V, ZExt);
497   };
498 
499   // Now, insert extending instructions between the sources and their users.
500   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
501   for (auto V : *Sources) {
502     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
503     if (auto *I = dyn_cast<Instruction>(V))
504       InsertZExt(I, I);
505     else if (auto *Arg = dyn_cast<Argument>(V)) {
506       BasicBlock &BB = Arg->getParent()->front();
507       InsertZExt(Arg, &*BB.getFirstInsertionPt());
508     } else {
509       llvm_unreachable("unhandled source that needs extending");
510     }
511     Promoted.insert(V);
512   }
513 }
514 
515 void IRPromoter::PromoteTree() {
516   LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
517 
518   IRBuilder<> Builder{Ctx};
519 
520   // Mutate the types of the instructions within the tree. Here we handle
521   // constant operands.
522   for (auto *V : *Visited) {
523     if (Sources->count(V))
524       continue;
525 
526     auto *I = cast<Instruction>(V);
527     if (Sinks->count(I))
528       continue;
529 
530     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
531       Value *Op = I->getOperand(i);
532       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
533         continue;
534 
535       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
536         Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
537         I->setOperand(i, NewConst);
538       } else if (isa<UndefValue>(Op))
539         I->setOperand(i, UndefValue::get(ExtTy));
540     }
541 
542     if (shouldPromote(I)) {
543       I->mutateType(ExtTy);
544       Promoted.insert(I);
545     }
546   }
547 }
548 
549 void IRPromoter::TruncateSinks() {
550   LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
551 
552   IRBuilder<> Builder{Ctx};
553 
554   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
555     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
556       return nullptr;
557 
558     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
559       return nullptr;
560 
561     LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
562                << *V << "\n");
563     Builder.SetInsertPoint(cast<Instruction>(V));
564     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
565     if (Trunc)
566       NewInsts.insert(Trunc);
567     return Trunc;
568   };
569 
570   // Fix up any stores or returns that use the results of the promoted
571   // chain.
572   for (auto I : *Sinks) {
573     LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
574 
575     // Handle calls separately as we need to iterate over arg operands.
576     if (auto *Call = dyn_cast<CallInst>(I)) {
577       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
578         Value *Arg = Call->getArgOperand(i);
579         Type *Ty = TruncTysMap[Call][i];
580         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
581           Trunc->moveBefore(Call);
582           Call->setArgOperand(i, Trunc);
583         }
584       }
585       continue;
586     }
587 
588     // Special case switches because we need to truncate the condition.
589     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
590       Type *Ty = TruncTysMap[Switch][0];
591       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
592         Trunc->moveBefore(Switch);
593         Switch->setCondition(Trunc);
594       }
595       continue;
596     }
597 
598     // Now handle the others.
599     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
600       Type *Ty = TruncTysMap[I][i];
601       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
602         Trunc->moveBefore(I);
603         I->setOperand(i, Trunc);
604       }
605     }
606   }
607 }
608 
609 void IRPromoter::Cleanup() {
610   LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
611   // Some zexts will now have become redundant, along with their trunc
612   // operands, so remove them
613   for (auto V : *Visited) {
614     if (!isa<ZExtInst>(V))
615       continue;
616 
617     auto ZExt = cast<ZExtInst>(V);
618     if (ZExt->getDestTy() != ExtTy)
619       continue;
620 
621     Value *Src = ZExt->getOperand(0);
622     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
623       LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
624                  << "\n");
625       ReplaceAllUsersOfWith(ZExt, Src);
626       continue;
627     }
628 
629     // Unless they produce a value that is narrower than ExtTy, we can
630     // replace the result of the zext with the input of a newly inserted
631     // trunc.
632     if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
633         Src->getType() == OrigTy) {
634       auto *Trunc = cast<TruncInst>(Src);
635       assert(Trunc->getOperand(0)->getType() == ExtTy &&
636              "expected inserted trunc to be operating on i32");
637       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
638     }
639   }
640 
641   for (auto *I : InstsToRemove) {
642     LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
643     I->dropAllReferences();
644     I->eraseFromParent();
645   }
646 
647   InstsToRemove.clear();
648   NewInsts.clear();
649   TruncTysMap.clear();
650   Promoted.clear();
651   SafeToPromote->clear();
652   SafeWrap->clear();
653 }
654 
655 void IRPromoter::ConvertTruncs() {
656   LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
657   IRBuilder<> Builder{Ctx};
658 
659   for (auto *V : *Visited) {
660     if (!isa<TruncInst>(V) || Sources->count(V))
661       continue;
662 
663     auto *Trunc = cast<TruncInst>(V);
664     Builder.SetInsertPoint(Trunc);
665     IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
666     IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
667 
668     unsigned NumBits = DestTy->getScalarSizeInBits();
669     ConstantInt *Mask =
670       ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
671     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
672 
673     if (auto *I = dyn_cast<Instruction>(Masked))
674       NewInsts.insert(I);
675 
676     ReplaceAllUsersOfWith(Trunc, Masked);
677   }
678 }
679 
680 void IRPromoter::Mutate(Type *OrigTy, unsigned PromotedWidth,
681                         SetVector<Value*> &Visited,
682                         SmallPtrSetImpl<Value*> &Sources,
683                         SmallPtrSetImpl<Instruction*> &Sinks,
684                         SmallPtrSetImpl<Instruction*> &SafeToPromote,
685                         SmallPtrSetImpl<Instruction*> &SafeWrap) {
686   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
687              << TypePromotion::TypeSize << " to " << PromotedWidth
688              << "-bits\n");
689 
690   assert(isa<IntegerType>(OrigTy) && "expected integer type");
691   this->OrigTy = cast<IntegerType>(OrigTy);
692   ExtTy = IntegerType::get(Ctx, PromotedWidth);
693   assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() &&
694          "original type not smaller than extended type");
695 
696   this->Visited = &Visited;
697   this->Sources = &Sources;
698   this->Sinks = &Sinks;
699   this->SafeToPromote = &SafeToPromote;
700   this->SafeWrap = &SafeWrap;
701 
702   // Cache original types of the values that will likely need truncating
703   for (auto *I : Sinks) {
704     if (auto *Call = dyn_cast<CallInst>(I)) {
705       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
706         Value *Arg = Call->getArgOperand(i);
707         TruncTysMap[Call].push_back(Arg->getType());
708       }
709     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
710       TruncTysMap[I].push_back(Switch->getCondition()->getType());
711     else {
712       for (unsigned i = 0; i < I->getNumOperands(); ++i)
713         TruncTysMap[I].push_back(I->getOperand(i)->getType());
714     }
715   }
716   for (auto *V : Visited) {
717     if (!isa<TruncInst>(V) || Sources.count(V))
718       continue;
719     auto *Trunc = cast<TruncInst>(V);
720     TruncTysMap[Trunc].push_back(Trunc->getDestTy());
721   }
722 
723   // Convert adds using negative immediates to equivalent instructions that use
724   // positive constants.
725   PrepareWrappingAdds();
726 
727   // Insert zext instructions between sources and their users.
728   ExtendSources();
729 
730   // Promote visited instructions, mutating their types in place.
731   PromoteTree();
732 
733   // Convert any truncs, that aren't sources, into AND masks.
734   ConvertTruncs();
735 
736   // Insert trunc instructions for use by calls, stores etc...
737   TruncateSinks();
738 
739   // Finally, remove unecessary zexts and truncs, delete old instructions and
740   // clear the data structures.
741   Cleanup();
742 
743   LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
744 }
745 
746 /// We accept most instructions, as well as Arguments and ConstantInsts. We
747 /// Disallow casts other than zext and truncs and only allow calls if their
748 /// return value is zeroext. We don't allow opcodes that can introduce sign
749 /// bits.
750 bool TypePromotion::isSupportedValue(Value *V) {
751   if (auto *I = dyn_cast<Instruction>(V)) {
752     switch (I->getOpcode()) {
753     default:
754       return isa<BinaryOperator>(I) && isSupportedType(I) &&
755              !GenerateSignBits(I);
756     case Instruction::GetElementPtr:
757     case Instruction::Store:
758     case Instruction::Br:
759     case Instruction::Switch:
760       return true;
761     case Instruction::PHI:
762     case Instruction::Select:
763     case Instruction::Ret:
764     case Instruction::Load:
765     case Instruction::Trunc:
766     case Instruction::BitCast:
767       return isSupportedType(I);
768     case Instruction::ZExt:
769       return isSupportedType(I->getOperand(0));
770     case Instruction::ICmp:
771       // Now that we allow small types than TypeSize, only allow icmp of
772       // TypeSize because they will require a trunc to be legalised.
773       // TODO: Allow icmp of smaller types, and calculate at the end
774       // whether the transform would be beneficial.
775       if (isa<PointerType>(I->getOperand(0)->getType()))
776         return true;
777       return EqualTypeSize(I->getOperand(0));
778     case Instruction::Call: {
779       // Special cases for calls as we need to check for zeroext
780       // TODO We should accept calls even if they don't have zeroext, as they
781       // can still be sinks.
782       auto *Call = cast<CallInst>(I);
783       return isSupportedType(Call) &&
784              Call->hasRetAttr(Attribute::AttrKind::ZExt);
785     }
786     }
787   } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
788     return isSupportedType(V);
789   } else if (isa<Argument>(V))
790     return isSupportedType(V);
791 
792   return isa<BasicBlock>(V);
793 }
794 
795 /// Check that the type of V would be promoted and that the original type is
796 /// smaller than the targeted promoted type. Check that we're not trying to
797 /// promote something larger than our base 'TypeSize' type.
798 bool TypePromotion::isLegalToPromote(Value *V) {
799 
800   auto *I = dyn_cast<Instruction>(V);
801   if (!I)
802     return true;
803 
804   if (SafeToPromote.count(I))
805    return true;
806 
807   if (isPromotedResultSafe(V) || isSafeWrap(I)) {
808     SafeToPromote.insert(I);
809     return true;
810   }
811   return false;
812 }
813 
814 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
815   OrigTy = V->getType();
816   TypeSize = OrigTy->getPrimitiveSizeInBits();
817   SafeToPromote.clear();
818   SafeWrap.clear();
819 
820   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
821     return false;
822 
823   LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
824              << TypeSize << " bits to " << PromotedWidth << "\n");
825 
826   SetVector<Value*> WorkList;
827   SmallPtrSet<Value*, 8> Sources;
828   SmallPtrSet<Instruction*, 4> Sinks;
829   SetVector<Value*> CurrentVisited;
830   WorkList.insert(V);
831 
832   // Return true if V was added to the worklist as a supported instruction,
833   // if it was already visited, or if we don't need to explore it (e.g.
834   // pointer values and GEPs), and false otherwise.
835   auto AddLegalInst = [&](Value *V) {
836     if (CurrentVisited.count(V))
837       return true;
838 
839     // Ignore GEPs because they don't need promoting and the constant indices
840     // will prevent the transformation.
841     if (isa<GetElementPtrInst>(V))
842       return true;
843 
844     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
845       LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
846       return false;
847     }
848 
849     WorkList.insert(V);
850     return true;
851   };
852 
853   // Iterate through, and add to, a tree of operands and users in the use-def.
854   while (!WorkList.empty()) {
855     Value *V = WorkList.back();
856     WorkList.pop_back();
857     if (CurrentVisited.count(V))
858       continue;
859 
860     // Ignore non-instructions, other than arguments.
861     if (!isa<Instruction>(V) && !isSource(V))
862       continue;
863 
864     // If we've already visited this value from somewhere, bail now because
865     // the tree has already been explored.
866     // TODO: This could limit the transform, ie if we try to promote something
867     // from an i8 and fail first, before trying an i16.
868     if (AllVisited.count(V))
869       return false;
870 
871     CurrentVisited.insert(V);
872     AllVisited.insert(V);
873 
874     // Calls can be both sources and sinks.
875     if (isSink(V))
876       Sinks.insert(cast<Instruction>(V));
877 
878     if (isSource(V))
879       Sources.insert(V);
880 
881     if (!isSink(V) && !isSource(V)) {
882       if (auto *I = dyn_cast<Instruction>(V)) {
883         // Visit operands of any instruction visited.
884         for (auto &U : I->operands()) {
885           if (!AddLegalInst(U))
886             return false;
887         }
888       }
889     }
890 
891     // Don't visit users of a node which isn't going to be mutated unless its a
892     // source.
893     if (isSource(V) || shouldPromote(V)) {
894       for (Use &U : V->uses()) {
895         if (!AddLegalInst(U.getUser()))
896           return false;
897       }
898     }
899   }
900 
901   LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
902              for (auto *I : CurrentVisited)
903                I->dump();
904              );
905   unsigned ToPromote = 0;
906   for (auto *V : CurrentVisited) {
907     if (Sources.count(V))
908       continue;
909     if (Sinks.count(cast<Instruction>(V)))
910       continue;
911     ++ToPromote;
912   }
913 
914   if (ToPromote < 2)
915     return false;
916 
917   Promoter->Mutate(OrigTy, PromotedWidth, CurrentVisited, Sources, Sinks,
918                    SafeToPromote, SafeWrap);
919   return true;
920 }
921 
922 bool TypePromotion::doInitialization(Module &M) {
923   Promoter = new IRPromoter(&M);
924   return false;
925 }
926 
927 bool TypePromotion::runOnFunction(Function &F) {
928   if (skipFunction(F) || DisablePromotion)
929     return false;
930 
931   LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
932 
933   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
934   if (!TPC)
935     return false;
936 
937   bool MadeChange = false;
938   const DataLayout &DL = F.getParent()->getDataLayout();
939   const TargetMachine &TM = TPC->getTM<TargetMachine>();
940   const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
941   const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
942   const TargetTransformInfo &TII =
943     getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
944 
945   // Search up from icmps to try to promote their operands.
946   for (BasicBlock &BB : F) {
947     auto &Insts = BB.getInstList();
948     for (auto &I : Insts) {
949       if (AllVisited.count(&I))
950         continue;
951 
952       if (!isa<ICmpInst>(&I))
953         continue;
954 
955       auto *ICmp = cast<ICmpInst>(&I);
956       // Skip signed or pointer compares
957       if (ICmp->isSigned() ||
958           !isa<IntegerType>(ICmp->getOperand(0)->getType()))
959         continue;
960 
961       LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
962 
963       for (auto &Op : ICmp->operands()) {
964         if (auto *I = dyn_cast<Instruction>(Op)) {
965           EVT SrcVT = TLI->getValueType(DL, I->getType());
966           if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
967             break;
968 
969           if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
970               TargetLowering::TypePromoteInteger)
971             break;
972 
973           EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
974           if (TII.getRegisterBitWidth(false) < PromotedVT.getSizeInBits()) {
975             LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
976                        << "for promoted type\n");
977             break;
978           }
979 
980           MadeChange |= TryToPromote(I, PromotedVT.getSizeInBits());
981           break;
982         }
983       }
984     }
985     LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
986                 dbgs() << F;
987                 report_fatal_error("Broken function after type promotion");
988                });
989   }
990   if (MadeChange)
991     LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
992 
993   return MadeChange;
994 }
995 
996 bool TypePromotion::doFinalization(Module &M) {
997   delete Promoter;
998   return false;
999 }
1000 
1001 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1002 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1003 
1004 char TypePromotion::ID = 0;
1005 unsigned TypePromotion::TypeSize = 0;
1006 
1007 FunctionPass *llvm::createTypePromotionPass() {
1008   return new TypePromotion();
1009 }
1010