1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Target/TargetMachine.h"
39
40 #define DEBUG_TYPE "type-promotion"
41 #define PASS_NAME "Type Promotion"
42
43 using namespace llvm;
44
45 static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden,
46 cl::init(false),
47 cl::desc("Disable type promotion pass"));
48
49 // The goal of this pass is to enable more efficient code generation for
50 // operations on narrow types (i.e. types with < 32-bits) and this is a
51 // motivating IR code example:
52 //
53 // define hidden i32 @cmp(i8 zeroext) {
54 // %2 = add i8 %0, -49
55 // %3 = icmp ult i8 %2, 3
56 // ..
57 // }
58 //
59 // The issue here is that i8 is type-legalized to i32 because i8 is not a
60 // legal type. Thus, arithmetic is done in integer-precision, but then the
61 // byte value is masked out as follows:
62 //
63 // t19: i32 = add t4, Constant:i32<-49>
64 // t24: i32 = and t19, Constant:i32<255>
65 //
66 // Consequently, we generate code like this:
67 //
68 // subs r0, #49
69 // uxtb r1, r0
70 // cmp r1, #3
71 //
72 // This shows that masking out the byte value results in generation of
73 // the UXTB instruction. This is not optimal as r0 already contains the byte
74 // value we need, and so instead we can just generate:
75 //
76 // sub.w r1, r0, #49
77 // cmp r1, #3
78 //
79 // We achieve this by type promoting the IR to i32 like so for this example:
80 //
81 // define i32 @cmp(i8 zeroext %c) {
82 // %0 = zext i8 %c to i32
83 // %c.off = add i32 %0, -49
84 // %1 = icmp ult i32 %c.off, 3
85 // ..
86 // }
87 //
88 // For this to be valid and legal, we need to prove that the i32 add is
89 // producing the same value as the i8 addition, and that e.g. no overflow
90 // happens.
91 //
92 // A brief sketch of the algorithm and some terminology.
93 // We pattern match interesting IR patterns:
94 // - which have "sources": instructions producing narrow values (i8, i16), and
95 // - they have "sinks": instructions consuming these narrow values.
96 //
97 // We collect all instruction connecting sources and sinks in a worklist, so
98 // that we can mutate these instruction and perform type promotion when it is
99 // legal to do so.
100
101 namespace {
102 class IRPromoter {
103 LLVMContext &Ctx;
104 unsigned PromotedWidth = 0;
105 SetVector<Value *> &Visited;
106 SetVector<Value *> &Sources;
107 SetVector<Instruction *> &Sinks;
108 SmallPtrSetImpl<Instruction *> &SafeWrap;
109 IntegerType *ExtTy = nullptr;
110 SmallPtrSet<Value *, 8> NewInsts;
111 SmallPtrSet<Instruction *, 4> InstsToRemove;
112 DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap;
113 SmallPtrSet<Value *, 8> Promoted;
114
115 void ReplaceAllUsersOfWith(Value *From, Value *To);
116 void ExtendSources();
117 void ConvertTruncs();
118 void PromoteTree();
119 void TruncateSinks();
120 void Cleanup();
121
122 public:
IRPromoter(LLVMContext & C,unsigned Width,SetVector<Value * > & visited,SetVector<Value * > & sources,SetVector<Instruction * > & sinks,SmallPtrSetImpl<Instruction * > & wrap)123 IRPromoter(LLVMContext &C, unsigned Width,
124 SetVector<Value *> &visited, SetVector<Value *> &sources,
125 SetVector<Instruction *> &sinks,
126 SmallPtrSetImpl<Instruction *> &wrap)
127 : Ctx(C), PromotedWidth(Width), Visited(visited),
128 Sources(sources), Sinks(sinks), SafeWrap(wrap) {
129 ExtTy = IntegerType::get(Ctx, PromotedWidth);
130 }
131
132 void Mutate();
133 };
134
135 class TypePromotion : public FunctionPass {
136 unsigned TypeSize = 0;
137 LLVMContext *Ctx = nullptr;
138 unsigned RegisterBitWidth = 0;
139 SmallPtrSet<Value *, 16> AllVisited;
140 SmallPtrSet<Instruction *, 8> SafeToPromote;
141 SmallPtrSet<Instruction *, 4> SafeWrap;
142
143 // Does V have the same size result type as TypeSize.
144 bool EqualTypeSize(Value *V);
145 // Does V have the same size, or narrower, result type as TypeSize.
146 bool LessOrEqualTypeSize(Value *V);
147 // Does V have a result type that is wider than TypeSize.
148 bool GreaterThanTypeSize(Value *V);
149 // Does V have a result type that is narrower than TypeSize.
150 bool LessThanTypeSize(Value *V);
151 // Should V be a leaf in the promote tree?
152 bool isSource(Value *V);
153 // Should V be a root in the promotion tree?
154 bool isSink(Value *V);
155 // Should we change the result type of V? It will result in the users of V
156 // being visited.
157 bool shouldPromote(Value *V);
158 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
159 // result won't affect the computation?
160 bool isSafeWrap(Instruction *I);
161 // Can V have its integer type promoted, or can the type be ignored.
162 bool isSupportedType(Value *V);
163 // Is V an instruction with a supported opcode or another value that we can
164 // handle, such as constants and basic blocks.
165 bool isSupportedValue(Value *V);
166 // Is V an instruction thats result can trivially promoted, or has safe
167 // wrapping.
168 bool isLegalToPromote(Value *V);
169 bool TryToPromote(Value *V, unsigned PromotedWidth);
170
171 public:
172 static char ID;
173
TypePromotion()174 TypePromotion() : FunctionPass(ID) {}
175
getAnalysisUsage(AnalysisUsage & AU) const176 void getAnalysisUsage(AnalysisUsage &AU) const override {
177 AU.addRequired<TargetTransformInfoWrapperPass>();
178 AU.addRequired<TargetPassConfig>();
179 AU.setPreservesCFG();
180 }
181
getPassName() const182 StringRef getPassName() const override { return PASS_NAME; }
183
184 bool runOnFunction(Function &F) override;
185 };
186
187 } // namespace
188
GenerateSignBits(Instruction * I)189 static bool GenerateSignBits(Instruction *I) {
190 unsigned Opc = I->getOpcode();
191 return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
192 Opc == Instruction::SRem || Opc == Instruction::SExt;
193 }
194
EqualTypeSize(Value * V)195 bool TypePromotion::EqualTypeSize(Value *V) {
196 return V->getType()->getScalarSizeInBits() == TypeSize;
197 }
198
LessOrEqualTypeSize(Value * V)199 bool TypePromotion::LessOrEqualTypeSize(Value *V) {
200 return V->getType()->getScalarSizeInBits() <= TypeSize;
201 }
202
GreaterThanTypeSize(Value * V)203 bool TypePromotion::GreaterThanTypeSize(Value *V) {
204 return V->getType()->getScalarSizeInBits() > TypeSize;
205 }
206
LessThanTypeSize(Value * V)207 bool TypePromotion::LessThanTypeSize(Value *V) {
208 return V->getType()->getScalarSizeInBits() < TypeSize;
209 }
210
211 /// Return true if the given value is a source in the use-def chain, producing
212 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
213 /// of the tree to i32. We guarantee that these won't populate the upper bits
214 /// of the register. ZExt on the loads will be free, and the same for call
215 /// return values because we only accept ones that guarantee a zeroext ret val.
216 /// Many arguments will have the zeroext attribute too, so those would be free
217 /// too.
isSource(Value * V)218 bool TypePromotion::isSource(Value *V) {
219 if (!isa<IntegerType>(V->getType()))
220 return false;
221
222 // TODO Allow zext to be sources.
223 if (isa<Argument>(V))
224 return true;
225 else if (isa<LoadInst>(V))
226 return true;
227 else if (isa<BitCastInst>(V))
228 return true;
229 else if (auto *Call = dyn_cast<CallInst>(V))
230 return Call->hasRetAttr(Attribute::AttrKind::ZExt);
231 else if (auto *Trunc = dyn_cast<TruncInst>(V))
232 return EqualTypeSize(Trunc);
233 return false;
234 }
235
236 /// Return true if V will require any promoted values to be truncated for the
237 /// the IR to remain valid. We can't mutate the value type of these
238 /// instructions.
isSink(Value * V)239 bool TypePromotion::isSink(Value *V) {
240 // TODO The truncate also isn't actually necessary because we would already
241 // proved that the data value is kept within the range of the original data
242 // type. We currently remove any truncs inserted for handling zext sinks.
243
244 // Sinks are:
245 // - points where the value in the register is being observed, such as an
246 // icmp, switch or store.
247 // - points where value types have to match, such as calls and returns.
248 // - zext are included to ease the transformation and are generally removed
249 // later on.
250 if (auto *Store = dyn_cast<StoreInst>(V))
251 return LessOrEqualTypeSize(Store->getValueOperand());
252 if (auto *Return = dyn_cast<ReturnInst>(V))
253 return LessOrEqualTypeSize(Return->getReturnValue());
254 if (auto *ZExt = dyn_cast<ZExtInst>(V))
255 return GreaterThanTypeSize(ZExt);
256 if (auto *Switch = dyn_cast<SwitchInst>(V))
257 return LessThanTypeSize(Switch->getCondition());
258 if (auto *ICmp = dyn_cast<ICmpInst>(V))
259 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
260
261 return isa<CallInst>(V);
262 }
263
264 /// Return whether this instruction can safely wrap.
isSafeWrap(Instruction * I)265 bool TypePromotion::isSafeWrap(Instruction *I) {
266 // We can support a potentially wrapping instruction (I) if:
267 // - It is only used by an unsigned icmp.
268 // - The icmp uses a constant.
269 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
270 // around zero to become a larger number than before.
271 // - The wrapping instruction (I) also uses a constant.
272 //
273 // We can then use the two constants to calculate whether the result would
274 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
275 // just underflows the range, the icmp would give the same result whether the
276 // result has been truncated or not. We calculate this by:
277 // - Zero extending both constants, if needed, to RegisterBitWidth.
278 // - Take the absolute value of I's constant, adding this to the icmp const.
279 // - Check that this value is not out of range for small type. If it is, it
280 // means that it has underflowed enough to wrap around the icmp constant.
281 //
282 // For example:
283 //
284 // %sub = sub i8 %a, 2
285 // %cmp = icmp ule i8 %sub, 254
286 //
287 // If %a = 0, %sub = -2 == FE == 254
288 // But if this is evalulated as a i32
289 // %sub = -2 == FF FF FF FE == 4294967294
290 // So the unsigned compares (i8 and i32) would not yield the same result.
291 //
292 // Another way to look at it is:
293 // %a - 2 <= 254
294 // %a + 2 <= 254 + 2
295 // %a <= 256
296 // And we can't represent 256 in the i8 format, so we don't support it.
297 //
298 // Whereas:
299 //
300 // %sub i8 %a, 1
301 // %cmp = icmp ule i8 %sub, 254
302 //
303 // If %a = 0, %sub = -1 == FF == 255
304 // As i32:
305 // %sub = -1 == FF FF FF FF == 4294967295
306 //
307 // In this case, the unsigned compare results would be the same and this
308 // would also be true for ult, uge and ugt:
309 // - (255 < 254) == (0xFFFFFFFF < 254) == false
310 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
311 // - (255 > 254) == (0xFFFFFFFF > 254) == true
312 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
313 //
314 // To demonstrate why we can't handle increasing values:
315 //
316 // %add = add i8 %a, 2
317 // %cmp = icmp ult i8 %add, 127
318 //
319 // If %a = 254, %add = 256 == (i8 1)
320 // As i32:
321 // %add = 256
322 //
323 // (1 < 127) != (256 < 127)
324
325 unsigned Opc = I->getOpcode();
326 if (Opc != Instruction::Add && Opc != Instruction::Sub)
327 return false;
328
329 if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) ||
330 !isa<ConstantInt>(I->getOperand(1)))
331 return false;
332
333 // Don't support an icmp that deals with sign bits.
334 auto *CI = cast<ICmpInst>(*I->user_begin());
335 if (CI->isSigned() || CI->isEquality())
336 return false;
337
338 ConstantInt *ICmpConstant = nullptr;
339 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
340 ICmpConstant = Const;
341 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
342 ICmpConstant = Const;
343 else
344 return false;
345
346 const APInt &ICmpConst = ICmpConstant->getValue();
347 APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue();
348 if (Opc == Instruction::Sub)
349 OverflowConst = -OverflowConst;
350 if (!OverflowConst.isNonPositive())
351 return false;
352
353 // Using C1 = OverflowConst and C2 = ICmpConst, we can either prove that:
354 // zext(x) + sext(C1) <u zext(C2) if C1 < 0 and C1 >s C2
355 // zext(x) + sext(C1) <u sext(C2) if C1 < 0 and C1 <=s C2
356 if (OverflowConst.sgt(ICmpConst)) {
357 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
358 << "const of " << *I << "\n");
359 SafeWrap.insert(I);
360 return true;
361 } else {
362 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
363 << "const of " << *I << " and " << *CI << "\n");
364 SafeWrap.insert(I);
365 SafeWrap.insert(CI);
366 return true;
367 }
368 return false;
369 }
370
shouldPromote(Value * V)371 bool TypePromotion::shouldPromote(Value *V) {
372 if (!isa<IntegerType>(V->getType()) || isSink(V))
373 return false;
374
375 if (isSource(V))
376 return true;
377
378 auto *I = dyn_cast<Instruction>(V);
379 if (!I)
380 return false;
381
382 if (isa<ICmpInst>(I))
383 return false;
384
385 return true;
386 }
387
388 /// Return whether we can safely mutate V's type to ExtTy without having to be
389 /// concerned with zero extending or truncation.
isPromotedResultSafe(Instruction * I)390 static bool isPromotedResultSafe(Instruction *I) {
391 if (GenerateSignBits(I))
392 return false;
393
394 if (!isa<OverflowingBinaryOperator>(I))
395 return true;
396
397 return I->hasNoUnsignedWrap();
398 }
399
ReplaceAllUsersOfWith(Value * From,Value * To)400 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
401 SmallVector<Instruction *, 4> Users;
402 Instruction *InstTo = dyn_cast<Instruction>(To);
403 bool ReplacedAll = true;
404
405 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
406 << "\n");
407
408 for (Use &U : From->uses()) {
409 auto *User = cast<Instruction>(U.getUser());
410 if (InstTo && User->isIdenticalTo(InstTo)) {
411 ReplacedAll = false;
412 continue;
413 }
414 Users.push_back(User);
415 }
416
417 for (auto *U : Users)
418 U->replaceUsesOfWith(From, To);
419
420 if (ReplacedAll)
421 if (auto *I = dyn_cast<Instruction>(From))
422 InstsToRemove.insert(I);
423 }
424
ExtendSources()425 void IRPromoter::ExtendSources() {
426 IRBuilder<> Builder{Ctx};
427
428 auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
429 assert(V->getType() != ExtTy && "zext already extends to i32");
430 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
431 Builder.SetInsertPoint(InsertPt);
432 if (auto *I = dyn_cast<Instruction>(V))
433 Builder.SetCurrentDebugLocation(I->getDebugLoc());
434
435 Value *ZExt = Builder.CreateZExt(V, ExtTy);
436 if (auto *I = dyn_cast<Instruction>(ZExt)) {
437 if (isa<Argument>(V))
438 I->moveBefore(InsertPt);
439 else
440 I->moveAfter(InsertPt);
441 NewInsts.insert(I);
442 }
443
444 ReplaceAllUsersOfWith(V, ZExt);
445 };
446
447 // Now, insert extending instructions between the sources and their users.
448 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
449 for (auto *V : Sources) {
450 LLVM_DEBUG(dbgs() << " - " << *V << "\n");
451 if (auto *I = dyn_cast<Instruction>(V))
452 InsertZExt(I, I);
453 else if (auto *Arg = dyn_cast<Argument>(V)) {
454 BasicBlock &BB = Arg->getParent()->front();
455 InsertZExt(Arg, &*BB.getFirstInsertionPt());
456 } else {
457 llvm_unreachable("unhandled source that needs extending");
458 }
459 Promoted.insert(V);
460 }
461 }
462
PromoteTree()463 void IRPromoter::PromoteTree() {
464 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
465
466 // Mutate the types of the instructions within the tree. Here we handle
467 // constant operands.
468 for (auto *V : Visited) {
469 if (Sources.count(V))
470 continue;
471
472 auto *I = cast<Instruction>(V);
473 if (Sinks.count(I))
474 continue;
475
476 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
477 Value *Op = I->getOperand(i);
478 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
479 continue;
480
481 if (auto *Const = dyn_cast<ConstantInt>(Op)) {
482 // For subtract, we don't need to sext the constant. We only put it in
483 // SafeWrap because SafeWrap.size() is used elsewhere.
484 // For cmp, we need to sign extend a constant appearing in either
485 // operand. For add, we should only sign extend the RHS.
486 Constant *NewConst = (SafeWrap.contains(I) &&
487 (I->getOpcode() == Instruction::ICmp || i == 1) &&
488 I->getOpcode() != Instruction::Sub)
489 ? ConstantExpr::getSExt(Const, ExtTy)
490 : ConstantExpr::getZExt(Const, ExtTy);
491 I->setOperand(i, NewConst);
492 } else if (isa<UndefValue>(Op))
493 I->setOperand(i, ConstantInt::get(ExtTy, 0));
494 }
495
496 // Mutate the result type, unless this is an icmp or switch.
497 if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) {
498 I->mutateType(ExtTy);
499 Promoted.insert(I);
500 }
501 }
502 }
503
TruncateSinks()504 void IRPromoter::TruncateSinks() {
505 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
506
507 IRBuilder<> Builder{Ctx};
508
509 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * {
510 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
511 return nullptr;
512
513 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
514 return nullptr;
515
516 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
517 << *V << "\n");
518 Builder.SetInsertPoint(cast<Instruction>(V));
519 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
520 if (Trunc)
521 NewInsts.insert(Trunc);
522 return Trunc;
523 };
524
525 // Fix up any stores or returns that use the results of the promoted
526 // chain.
527 for (auto *I : Sinks) {
528 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
529
530 // Handle calls separately as we need to iterate over arg operands.
531 if (auto *Call = dyn_cast<CallInst>(I)) {
532 for (unsigned i = 0; i < Call->arg_size(); ++i) {
533 Value *Arg = Call->getArgOperand(i);
534 Type *Ty = TruncTysMap[Call][i];
535 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
536 Trunc->moveBefore(Call);
537 Call->setArgOperand(i, Trunc);
538 }
539 }
540 continue;
541 }
542
543 // Special case switches because we need to truncate the condition.
544 if (auto *Switch = dyn_cast<SwitchInst>(I)) {
545 Type *Ty = TruncTysMap[Switch][0];
546 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
547 Trunc->moveBefore(Switch);
548 Switch->setCondition(Trunc);
549 }
550 continue;
551 }
552
553 // Don't insert a trunc for a zext which can still legally promote.
554 if (auto ZExt = dyn_cast<ZExtInst>(I))
555 if (ZExt->getType()->getScalarSizeInBits() > PromotedWidth)
556 continue;
557
558 // Now handle the others.
559 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
560 Type *Ty = TruncTysMap[I][i];
561 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
562 Trunc->moveBefore(I);
563 I->setOperand(i, Trunc);
564 }
565 }
566 }
567 }
568
Cleanup()569 void IRPromoter::Cleanup() {
570 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
571 // Some zexts will now have become redundant, along with their trunc
572 // operands, so remove them.
573 for (auto *V : Visited) {
574 if (!isa<ZExtInst>(V))
575 continue;
576
577 auto ZExt = cast<ZExtInst>(V);
578 if (ZExt->getDestTy() != ExtTy)
579 continue;
580
581 Value *Src = ZExt->getOperand(0);
582 if (ZExt->getSrcTy() == ZExt->getDestTy()) {
583 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
584 << "\n");
585 ReplaceAllUsersOfWith(ZExt, Src);
586 continue;
587 }
588
589 // We've inserted a trunc for a zext sink, but we already know that the
590 // input is in range, negating the need for the trunc.
591 if (NewInsts.count(Src) && isa<TruncInst>(Src)) {
592 auto *Trunc = cast<TruncInst>(Src);
593 assert(Trunc->getOperand(0)->getType() == ExtTy &&
594 "expected inserted trunc to be operating on i32");
595 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
596 }
597 }
598
599 for (auto *I : InstsToRemove) {
600 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
601 I->dropAllReferences();
602 I->eraseFromParent();
603 }
604 }
605
ConvertTruncs()606 void IRPromoter::ConvertTruncs() {
607 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
608 IRBuilder<> Builder{Ctx};
609
610 for (auto *V : Visited) {
611 if (!isa<TruncInst>(V) || Sources.count(V))
612 continue;
613
614 auto *Trunc = cast<TruncInst>(V);
615 Builder.SetInsertPoint(Trunc);
616 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
617 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
618
619 unsigned NumBits = DestTy->getScalarSizeInBits();
620 ConstantInt *Mask =
621 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
622 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
623 if (SrcTy != ExtTy)
624 Masked = Builder.CreateTrunc(Masked, ExtTy);
625
626 if (auto *I = dyn_cast<Instruction>(Masked))
627 NewInsts.insert(I);
628
629 ReplaceAllUsersOfWith(Trunc, Masked);
630 }
631 }
632
Mutate()633 void IRPromoter::Mutate() {
634 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to "
635 << PromotedWidth << "-bits\n");
636
637 // Cache original types of the values that will likely need truncating
638 for (auto *I : Sinks) {
639 if (auto *Call = dyn_cast<CallInst>(I)) {
640 for (Value *Arg : Call->args())
641 TruncTysMap[Call].push_back(Arg->getType());
642 } else if (auto *Switch = dyn_cast<SwitchInst>(I))
643 TruncTysMap[I].push_back(Switch->getCondition()->getType());
644 else {
645 for (unsigned i = 0; i < I->getNumOperands(); ++i)
646 TruncTysMap[I].push_back(I->getOperand(i)->getType());
647 }
648 }
649 for (auto *V : Visited) {
650 if (!isa<TruncInst>(V) || Sources.count(V))
651 continue;
652 auto *Trunc = cast<TruncInst>(V);
653 TruncTysMap[Trunc].push_back(Trunc->getDestTy());
654 }
655
656 // Insert zext instructions between sources and their users.
657 ExtendSources();
658
659 // Promote visited instructions, mutating their types in place.
660 PromoteTree();
661
662 // Convert any truncs, that aren't sources, into AND masks.
663 ConvertTruncs();
664
665 // Insert trunc instructions for use by calls, stores etc...
666 TruncateSinks();
667
668 // Finally, remove unecessary zexts and truncs, delete old instructions and
669 // clear the data structures.
670 Cleanup();
671
672 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
673 }
674
675 /// We disallow booleans to make life easier when dealing with icmps but allow
676 /// any other integer that fits in a scalar register. Void types are accepted
677 /// so we can handle switches.
isSupportedType(Value * V)678 bool TypePromotion::isSupportedType(Value *V) {
679 Type *Ty = V->getType();
680
681 // Allow voids and pointers, these won't be promoted.
682 if (Ty->isVoidTy() || Ty->isPointerTy())
683 return true;
684
685 if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 ||
686 cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
687 return false;
688
689 return LessOrEqualTypeSize(V);
690 }
691
692 /// We accept most instructions, as well as Arguments and ConstantInsts. We
693 /// Disallow casts other than zext and truncs and only allow calls if their
694 /// return value is zeroext. We don't allow opcodes that can introduce sign
695 /// bits.
isSupportedValue(Value * V)696 bool TypePromotion::isSupportedValue(Value *V) {
697 if (auto *I = dyn_cast<Instruction>(V)) {
698 switch (I->getOpcode()) {
699 default:
700 return isa<BinaryOperator>(I) && isSupportedType(I) &&
701 !GenerateSignBits(I);
702 case Instruction::GetElementPtr:
703 case Instruction::Store:
704 case Instruction::Br:
705 case Instruction::Switch:
706 return true;
707 case Instruction::PHI:
708 case Instruction::Select:
709 case Instruction::Ret:
710 case Instruction::Load:
711 case Instruction::Trunc:
712 case Instruction::BitCast:
713 return isSupportedType(I);
714 case Instruction::ZExt:
715 return isSupportedType(I->getOperand(0));
716 case Instruction::ICmp:
717 // Now that we allow small types than TypeSize, only allow icmp of
718 // TypeSize because they will require a trunc to be legalised.
719 // TODO: Allow icmp of smaller types, and calculate at the end
720 // whether the transform would be beneficial.
721 if (isa<PointerType>(I->getOperand(0)->getType()))
722 return true;
723 return EqualTypeSize(I->getOperand(0));
724 case Instruction::Call: {
725 // Special cases for calls as we need to check for zeroext
726 // TODO We should accept calls even if they don't have zeroext, as they
727 // can still be sinks.
728 auto *Call = cast<CallInst>(I);
729 return isSupportedType(Call) &&
730 Call->hasRetAttr(Attribute::AttrKind::ZExt);
731 }
732 }
733 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
734 return isSupportedType(V);
735 } else if (isa<Argument>(V))
736 return isSupportedType(V);
737
738 return isa<BasicBlock>(V);
739 }
740
741 /// Check that the type of V would be promoted and that the original type is
742 /// smaller than the targeted promoted type. Check that we're not trying to
743 /// promote something larger than our base 'TypeSize' type.
isLegalToPromote(Value * V)744 bool TypePromotion::isLegalToPromote(Value *V) {
745 auto *I = dyn_cast<Instruction>(V);
746 if (!I)
747 return true;
748
749 if (SafeToPromote.count(I))
750 return true;
751
752 if (isPromotedResultSafe(I) || isSafeWrap(I)) {
753 SafeToPromote.insert(I);
754 return true;
755 }
756 return false;
757 }
758
TryToPromote(Value * V,unsigned PromotedWidth)759 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
760 Type *OrigTy = V->getType();
761 TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize();
762 SafeToPromote.clear();
763 SafeWrap.clear();
764
765 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
766 return false;
767
768 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
769 << TypeSize << " bits to " << PromotedWidth << "\n");
770
771 SetVector<Value *> WorkList;
772 SetVector<Value *> Sources;
773 SetVector<Instruction *> Sinks;
774 SetVector<Value *> CurrentVisited;
775 WorkList.insert(V);
776
777 // Return true if V was added to the worklist as a supported instruction,
778 // if it was already visited, or if we don't need to explore it (e.g.
779 // pointer values and GEPs), and false otherwise.
780 auto AddLegalInst = [&](Value *V) {
781 if (CurrentVisited.count(V))
782 return true;
783
784 // Ignore GEPs because they don't need promoting and the constant indices
785 // will prevent the transformation.
786 if (isa<GetElementPtrInst>(V))
787 return true;
788
789 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
790 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
791 return false;
792 }
793
794 WorkList.insert(V);
795 return true;
796 };
797
798 // Iterate through, and add to, a tree of operands and users in the use-def.
799 while (!WorkList.empty()) {
800 Value *V = WorkList.pop_back_val();
801 if (CurrentVisited.count(V))
802 continue;
803
804 // Ignore non-instructions, other than arguments.
805 if (!isa<Instruction>(V) && !isSource(V))
806 continue;
807
808 // If we've already visited this value from somewhere, bail now because
809 // the tree has already been explored.
810 // TODO: This could limit the transform, ie if we try to promote something
811 // from an i8 and fail first, before trying an i16.
812 if (AllVisited.count(V))
813 return false;
814
815 CurrentVisited.insert(V);
816 AllVisited.insert(V);
817
818 // Calls can be both sources and sinks.
819 if (isSink(V))
820 Sinks.insert(cast<Instruction>(V));
821
822 if (isSource(V))
823 Sources.insert(V);
824
825 if (!isSink(V) && !isSource(V)) {
826 if (auto *I = dyn_cast<Instruction>(V)) {
827 // Visit operands of any instruction visited.
828 for (auto &U : I->operands()) {
829 if (!AddLegalInst(U))
830 return false;
831 }
832 }
833 }
834
835 // Don't visit users of a node which isn't going to be mutated unless its a
836 // source.
837 if (isSource(V) || shouldPromote(V)) {
838 for (Use &U : V->uses()) {
839 if (!AddLegalInst(U.getUser()))
840 return false;
841 }
842 }
843 }
844
845 LLVM_DEBUG({
846 dbgs() << "IR Promotion: Visited nodes:\n";
847 for (auto *I : CurrentVisited)
848 I->dump();
849 });
850
851 unsigned ToPromote = 0;
852 unsigned NonFreeArgs = 0;
853 SmallPtrSet<BasicBlock *, 4> Blocks;
854 for (auto *V : CurrentVisited) {
855 if (auto *I = dyn_cast<Instruction>(V))
856 Blocks.insert(I->getParent());
857
858 if (Sources.count(V)) {
859 if (auto *Arg = dyn_cast<Argument>(V))
860 if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
861 ++NonFreeArgs;
862 continue;
863 }
864
865 if (Sinks.count(cast<Instruction>(V)))
866 continue;
867 ++ToPromote;
868 }
869
870 // DAG optimizations should be able to handle these cases better, especially
871 // for function arguments.
872 if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
873 return false;
874
875 IRPromoter Promoter(*Ctx, PromotedWidth, CurrentVisited, Sources, Sinks,
876 SafeWrap);
877 Promoter.Mutate();
878 return true;
879 }
880
runOnFunction(Function & F)881 bool TypePromotion::runOnFunction(Function &F) {
882 if (skipFunction(F) || DisablePromotion)
883 return false;
884
885 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
886
887 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
888 if (!TPC)
889 return false;
890
891 AllVisited.clear();
892 SafeToPromote.clear();
893 SafeWrap.clear();
894 bool MadeChange = false;
895 const DataLayout &DL = F.getParent()->getDataLayout();
896 const TargetMachine &TM = TPC->getTM<TargetMachine>();
897 const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
898 const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
899 const TargetTransformInfo &TII =
900 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
901 RegisterBitWidth =
902 TII.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedSize();
903 Ctx = &F.getParent()->getContext();
904
905 // Search up from icmps to try to promote their operands.
906 for (BasicBlock &BB : F) {
907 for (Instruction &I : BB) {
908 if (AllVisited.count(&I))
909 continue;
910
911 if (!isa<ICmpInst>(&I))
912 continue;
913
914 auto *ICmp = cast<ICmpInst>(&I);
915 // Skip signed or pointer compares
916 if (ICmp->isSigned() || !isa<IntegerType>(ICmp->getOperand(0)->getType()))
917 continue;
918
919 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
920
921 for (auto &Op : ICmp->operands()) {
922 if (auto *I = dyn_cast<Instruction>(Op)) {
923 EVT SrcVT = TLI->getValueType(DL, I->getType());
924 if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
925 break;
926
927 if (TLI->getTypeAction(*Ctx, SrcVT) !=
928 TargetLowering::TypePromoteInteger)
929 break;
930 EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT);
931 if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
932 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
933 << "for promoted type\n");
934 break;
935 }
936
937 MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits());
938 break;
939 }
940 }
941 }
942 }
943
944 AllVisited.clear();
945 SafeToPromote.clear();
946 SafeWrap.clear();
947
948 return MadeChange;
949 }
950
951 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
952 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
953
954 char TypePromotion::ID = 0;
955
createTypePromotionPass()956 FunctionPass *llvm::createTypePromotionPass() { return new TypePromotion(); }
957