1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsARM.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 
44 #define DEBUG_TYPE "type-promotion"
45 #define PASS_NAME "Type Promotion"
46 
47 using namespace llvm;
48 
49 static cl::opt<bool>
50 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(true),
51                  cl::desc("Disable type promotion pass"));
52 
53 // The goal of this pass is to enable more efficient code generation for
54 // operations on narrow types (i.e. types with < 32-bits) and this is a
55 // motivating IR code example:
56 //
57 //   define hidden i32 @cmp(i8 zeroext) {
58 //     %2 = add i8 %0, -49
59 //     %3 = icmp ult i8 %2, 3
60 //     ..
61 //   }
62 //
63 // The issue here is that i8 is type-legalized to i32 because i8 is not a
64 // legal type. Thus, arithmetic is done in integer-precision, but then the
65 // byte value is masked out as follows:
66 //
67 //   t19: i32 = add t4, Constant:i32<-49>
68 //     t24: i32 = and t19, Constant:i32<255>
69 //
70 // Consequently, we generate code like this:
71 //
72 //   subs  r0, #49
73 //   uxtb  r1, r0
74 //   cmp r1, #3
75 //
76 // This shows that masking out the byte value results in generation of
77 // the UXTB instruction. This is not optimal as r0 already contains the byte
78 // value we need, and so instead we can just generate:
79 //
80 //   sub.w r1, r0, #49
81 //   cmp r1, #3
82 //
83 // We achieve this by type promoting the IR to i32 like so for this example:
84 //
85 //   define i32 @cmp(i8 zeroext %c) {
86 //     %0 = zext i8 %c to i32
87 //     %c.off = add i32 %0, -49
88 //     %1 = icmp ult i32 %c.off, 3
89 //     ..
90 //   }
91 //
92 // For this to be valid and legal, we need to prove that the i32 add is
93 // producing the same value as the i8 addition, and that e.g. no overflow
94 // happens.
95 //
96 // A brief sketch of the algorithm and some terminology.
97 // We pattern match interesting IR patterns:
98 // - which have "sources": instructions producing narrow values (i8, i16), and
99 // - they have "sinks": instructions consuming these narrow values.
100 //
101 // We collect all instruction connecting sources and sinks in a worklist, so
102 // that we can mutate these instruction and perform type promotion when it is
103 // legal to do so.
104 
105 namespace {
106 class IRPromoter {
107   SmallPtrSet<Value*, 8> NewInsts;
108   SmallPtrSet<Instruction*, 4> InstsToRemove;
109   DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
110   SmallPtrSet<Value*, 8> Promoted;
111   LLVMContext &Ctx;
112   // The type we promote to: always i32
113   IntegerType *ExtTy = nullptr;
114   // The type of the value that the search began from, either i8 or i16.
115   // This defines the max range of the values that we allow in the promoted
116   // tree.
117   IntegerType *OrigTy = nullptr;
118   SetVector<Value*> *Visited;
119   SmallPtrSetImpl<Value*> *Sources;
120   SmallPtrSetImpl<Instruction*> *Sinks;
121   SmallPtrSetImpl<Instruction*> *SafeToPromote;
122   SmallPtrSetImpl<Instruction*> *SafeWrap;
123 
124   void ReplaceAllUsersOfWith(Value *From, Value *To);
125   void PrepareWrappingAdds(void);
126   void ExtendSources(void);
127   void ConvertTruncs(void);
128   void PromoteTree(void);
129   void TruncateSinks(void);
130   void Cleanup(void);
131 
132 public:
133   IRPromoter(Module *M) : Ctx(M->getContext()) { }
134 
135 
136   void Mutate(Type *OrigTy, unsigned PromotedWidth,
137               SetVector<Value*> &Visited,
138               SmallPtrSetImpl<Value*> &Sources,
139               SmallPtrSetImpl<Instruction*> &Sinks,
140               SmallPtrSetImpl<Instruction*> &SafeToPromote,
141               SmallPtrSetImpl<Instruction*> &SafeWrap);
142 };
143 
144 class TypePromotion : public FunctionPass {
145   IRPromoter *Promoter = nullptr;
146   SmallPtrSet<Value*, 16> AllVisited;
147   SmallPtrSet<Instruction*, 8> SafeToPromote;
148   SmallPtrSet<Instruction*, 4> SafeWrap;
149 
150   bool isSafeWrap(Instruction *I);
151   bool isSupportedValue(Value *V);
152   bool isLegalToPromote(Value *V);
153   bool TryToPromote(Value *V, unsigned PromotedWidth);
154 
155 public:
156   static char ID;
157   static unsigned TypeSize;
158   Type *OrigTy = nullptr;
159 
160   TypePromotion() : FunctionPass(ID) {}
161 
162   void getAnalysisUsage(AnalysisUsage &AU) const override {
163     AU.addRequired<TargetTransformInfoWrapperPass>();
164     AU.addRequired<TargetPassConfig>();
165   }
166 
167   StringRef getPassName() const override { return PASS_NAME; }
168 
169   bool doInitialization(Module &M) override;
170   bool runOnFunction(Function &F) override;
171   bool doFinalization(Module &M) override;
172 };
173 
174 }
175 
176 static bool GenerateSignBits(Value *V) {
177   if (!isa<Instruction>(V))
178     return false;
179 
180   unsigned Opc = cast<Instruction>(V)->getOpcode();
181   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
182          Opc == Instruction::SRem || Opc == Instruction::SExt;
183 }
184 
185 static bool EqualTypeSize(Value *V) {
186   return V->getType()->getScalarSizeInBits() == TypePromotion::TypeSize;
187 }
188 
189 static bool LessOrEqualTypeSize(Value *V) {
190   return V->getType()->getScalarSizeInBits() <= TypePromotion::TypeSize;
191 }
192 
193 static bool GreaterThanTypeSize(Value *V) {
194   return V->getType()->getScalarSizeInBits() > TypePromotion::TypeSize;
195 }
196 
197 static bool LessThanTypeSize(Value *V) {
198   return V->getType()->getScalarSizeInBits() < TypePromotion::TypeSize;
199 }
200 
201 /// Some instructions can use 8- and 16-bit operands, and we don't need to
202 /// promote anything larger. We disallow booleans to make life easier when
203 /// dealing with icmps but allow any other integer that is <= 16 bits. Void
204 /// types are accepted so we can handle switches.
205 static bool isSupportedType(Value *V) {
206   Type *Ty = V->getType();
207 
208   // Allow voids and pointers, these won't be promoted.
209   if (Ty->isVoidTy() || Ty->isPointerTy())
210     return true;
211 
212   if (auto *Ld = dyn_cast<LoadInst>(V))
213     Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
214 
215   if (!isa<IntegerType>(Ty) ||
216       cast<IntegerType>(V->getType())->getBitWidth() == 1)
217     return false;
218 
219   return LessOrEqualTypeSize(V);
220 }
221 
222 /// Return true if the given value is a source in the use-def chain, producing
223 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
224 /// of the tree to i32. We guarantee that these won't populate the upper bits
225 /// of the register. ZExt on the loads will be free, and the same for call
226 /// return values because we only accept ones that guarantee a zeroext ret val.
227 /// Many arguments will have the zeroext attribute too, so those would be free
228 /// too.
229 static bool isSource(Value *V) {
230   if (!isa<IntegerType>(V->getType()))
231     return false;
232 
233   // TODO Allow zext to be sources.
234   if (isa<Argument>(V))
235     return true;
236   else if (isa<LoadInst>(V))
237     return true;
238   else if (isa<BitCastInst>(V))
239     return true;
240   else if (auto *Call = dyn_cast<CallInst>(V))
241     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
242   else if (auto *Trunc = dyn_cast<TruncInst>(V))
243     return EqualTypeSize(Trunc);
244   return false;
245 }
246 
247 /// Return true if V will require any promoted values to be truncated for the
248 /// the IR to remain valid. We can't mutate the value type of these
249 /// instructions.
250 static bool isSink(Value *V) {
251   // TODO The truncate also isn't actually necessary because we would already
252   // proved that the data value is kept within the range of the original data
253   // type.
254 
255   // Sinks are:
256   // - points where the value in the register is being observed, such as an
257   //   icmp, switch or store.
258   // - points where value types have to match, such as calls and returns.
259   // - zext are included to ease the transformation and are generally removed
260   //   later on.
261   if (auto *Store = dyn_cast<StoreInst>(V))
262     return LessOrEqualTypeSize(Store->getValueOperand());
263   if (auto *Return = dyn_cast<ReturnInst>(V))
264     return LessOrEqualTypeSize(Return->getReturnValue());
265   if (auto *ZExt = dyn_cast<ZExtInst>(V))
266     return GreaterThanTypeSize(ZExt);
267   if (auto *Switch = dyn_cast<SwitchInst>(V))
268     return LessThanTypeSize(Switch->getCondition());
269   if (auto *ICmp = dyn_cast<ICmpInst>(V))
270     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
271 
272   return isa<CallInst>(V);
273 }
274 
275 /// Return whether this instruction can safely wrap.
276 bool TypePromotion::isSafeWrap(Instruction *I) {
277   // We can support a, potentially, wrapping instruction (I) if:
278   // - It is only used by an unsigned icmp.
279   // - The icmp uses a constant.
280   // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
281   //   around zero to become a larger number than before.
282   // - The wrapping instruction (I) also uses a constant.
283   //
284   // We can then use the two constants to calculate whether the result would
285   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
286   // just underflows the range, the icmp would give the same result whether the
287   // result has been truncated or not. We calculate this by:
288   // - Zero extending both constants, if needed, to 32-bits.
289   // - Take the absolute value of I's constant, adding this to the icmp const.
290   // - Check that this value is not out of range for small type. If it is, it
291   //   means that it has underflowed enough to wrap around the icmp constant.
292   //
293   // For example:
294   //
295   // %sub = sub i8 %a, 2
296   // %cmp = icmp ule i8 %sub, 254
297   //
298   // If %a = 0, %sub = -2 == FE == 254
299   // But if this is evalulated as a i32
300   // %sub = -2 == FF FF FF FE == 4294967294
301   // So the unsigned compares (i8 and i32) would not yield the same result.
302   //
303   // Another way to look at it is:
304   // %a - 2 <= 254
305   // %a + 2 <= 254 + 2
306   // %a <= 256
307   // And we can't represent 256 in the i8 format, so we don't support it.
308   //
309   // Whereas:
310   //
311   // %sub i8 %a, 1
312   // %cmp = icmp ule i8 %sub, 254
313   //
314   // If %a = 0, %sub = -1 == FF == 255
315   // As i32:
316   // %sub = -1 == FF FF FF FF == 4294967295
317   //
318   // In this case, the unsigned compare results would be the same and this
319   // would also be true for ult, uge and ugt:
320   // - (255 < 254) == (0xFFFFFFFF < 254) == false
321   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
322   // - (255 > 254) == (0xFFFFFFFF > 254) == true
323   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
324   //
325   // To demonstrate why we can't handle increasing values:
326   //
327   // %add = add i8 %a, 2
328   // %cmp = icmp ult i8 %add, 127
329   //
330   // If %a = 254, %add = 256 == (i8 1)
331   // As i32:
332   // %add = 256
333   //
334   // (1 < 127) != (256 < 127)
335 
336   unsigned Opc = I->getOpcode();
337   if (Opc != Instruction::Add && Opc != Instruction::Sub)
338     return false;
339 
340   if (!I->hasOneUse() ||
341       !isa<ICmpInst>(*I->user_begin()) ||
342       !isa<ConstantInt>(I->getOperand(1)))
343     return false;
344 
345   ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
346   bool NegImm = OverflowConst->isNegative();
347   bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
348                        ((Opc == Instruction::Add) && NegImm);
349   if (!IsDecreasing)
350     return false;
351 
352   // Don't support an icmp that deals with sign bits.
353   auto *CI = cast<ICmpInst>(*I->user_begin());
354   if (CI->isSigned() || CI->isEquality())
355     return false;
356 
357   ConstantInt *ICmpConst = nullptr;
358   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
359     ICmpConst = Const;
360   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
361     ICmpConst = Const;
362   else
363     return false;
364 
365   // Now check that the result can't wrap on itself.
366   APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
367     ICmpConst->getValue().zext(32) : ICmpConst->getValue();
368 
369   Total += OverflowConst->getValue().getBitWidth() < 32 ?
370     OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
371 
372   APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
373 
374   if (Total.getBitWidth() > Max.getBitWidth()) {
375     if (Total.ugt(Max.zext(Total.getBitWidth())))
376       return false;
377   } else if (Max.getBitWidth() > Total.getBitWidth()) {
378     if (Total.zext(Max.getBitWidth()).ugt(Max))
379       return false;
380   } else if (Total.ugt(Max))
381     return false;
382 
383   LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for " << *I << "\n");
384   SafeWrap.insert(I);
385   return true;
386 }
387 
388 static bool shouldPromote(Value *V) {
389   if (!isa<IntegerType>(V->getType()) || isSink(V))
390     return false;
391 
392   if (isSource(V))
393     return true;
394 
395   auto *I = dyn_cast<Instruction>(V);
396   if (!I)
397     return false;
398 
399   if (isa<ICmpInst>(I))
400     return false;
401 
402   return true;
403 }
404 
405 /// Return whether we can safely mutate V's type to ExtTy without having to be
406 /// concerned with zero extending or truncation.
407 static bool isPromotedResultSafe(Value *V) {
408   if (GenerateSignBits(V))
409     return false;
410 
411   if (!isa<Instruction>(V))
412     return true;
413 
414   if (!isa<OverflowingBinaryOperator>(V))
415     return true;
416 
417   return cast<Instruction>(V)->hasNoUnsignedWrap();
418 }
419 
420 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
421   SmallVector<Instruction*, 4> Users;
422   Instruction *InstTo = dyn_cast<Instruction>(To);
423   bool ReplacedAll = true;
424 
425   LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
426              << "\n");
427 
428   for (Use &U : From->uses()) {
429     auto *User = cast<Instruction>(U.getUser());
430     if (InstTo && User->isIdenticalTo(InstTo)) {
431       ReplacedAll = false;
432       continue;
433     }
434     Users.push_back(User);
435   }
436 
437   for (auto *U : Users)
438     U->replaceUsesOfWith(From, To);
439 
440   if (ReplacedAll)
441     if (auto *I = dyn_cast<Instruction>(From))
442       InstsToRemove.insert(I);
443 }
444 
445 void IRPromoter::PrepareWrappingAdds() {
446   LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
447   IRBuilder<> Builder{Ctx};
448 
449   // For adds that safely wrap and use a negative immediate as operand 1, we
450   // create an equivalent instruction using a positive immediate.
451   // That positive immediate can then be zext along with all the other
452   // immediates later.
453   for (auto *I : *SafeWrap) {
454     if (I->getOpcode() != Instruction::Add)
455       continue;
456 
457     LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
458     assert((isa<ConstantInt>(I->getOperand(1)) &&
459             cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
460            "Wrapping should have a negative immediate as the second operand");
461 
462     auto Const = cast<ConstantInt>(I->getOperand(1));
463     auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
464     Builder.SetInsertPoint(I);
465     Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
466     if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
467       NewInst->copyIRFlags(I);
468       NewInsts.insert(NewInst);
469     }
470     InstsToRemove.insert(I);
471     I->replaceAllUsesWith(NewVal);
472     LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
473   }
474   for (auto *I : NewInsts)
475     Visited->insert(I);
476 }
477 
478 void IRPromoter::ExtendSources() {
479   IRBuilder<> Builder{Ctx};
480 
481   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
482     assert(V->getType() != ExtTy && "zext already extends to i32");
483     LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
484     Builder.SetInsertPoint(InsertPt);
485     if (auto *I = dyn_cast<Instruction>(V))
486       Builder.SetCurrentDebugLocation(I->getDebugLoc());
487 
488     Value *ZExt = Builder.CreateZExt(V, ExtTy);
489     if (auto *I = dyn_cast<Instruction>(ZExt)) {
490       if (isa<Argument>(V))
491         I->moveBefore(InsertPt);
492       else
493         I->moveAfter(InsertPt);
494       NewInsts.insert(I);
495     }
496 
497     ReplaceAllUsersOfWith(V, ZExt);
498   };
499 
500   // Now, insert extending instructions between the sources and their users.
501   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
502   for (auto V : *Sources) {
503     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
504     if (auto *I = dyn_cast<Instruction>(V))
505       InsertZExt(I, I);
506     else if (auto *Arg = dyn_cast<Argument>(V)) {
507       BasicBlock &BB = Arg->getParent()->front();
508       InsertZExt(Arg, &*BB.getFirstInsertionPt());
509     } else {
510       llvm_unreachable("unhandled source that needs extending");
511     }
512     Promoted.insert(V);
513   }
514 }
515 
516 void IRPromoter::PromoteTree() {
517   LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
518 
519   IRBuilder<> Builder{Ctx};
520 
521   // Mutate the types of the instructions within the tree. Here we handle
522   // constant operands.
523   for (auto *V : *Visited) {
524     if (Sources->count(V))
525       continue;
526 
527     auto *I = cast<Instruction>(V);
528     if (Sinks->count(I))
529       continue;
530 
531     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
532       Value *Op = I->getOperand(i);
533       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
534         continue;
535 
536       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
537         Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
538         I->setOperand(i, NewConst);
539       } else if (isa<UndefValue>(Op))
540         I->setOperand(i, UndefValue::get(ExtTy));
541     }
542 
543     if (shouldPromote(I)) {
544       I->mutateType(ExtTy);
545       Promoted.insert(I);
546     }
547   }
548 }
549 
550 void IRPromoter::TruncateSinks() {
551   LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
552 
553   IRBuilder<> Builder{Ctx};
554 
555   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
556     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
557       return nullptr;
558 
559     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
560       return nullptr;
561 
562     LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
563                << *V << "\n");
564     Builder.SetInsertPoint(cast<Instruction>(V));
565     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
566     if (Trunc)
567       NewInsts.insert(Trunc);
568     return Trunc;
569   };
570 
571   // Fix up any stores or returns that use the results of the promoted
572   // chain.
573   for (auto I : *Sinks) {
574     LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
575 
576     // Handle calls separately as we need to iterate over arg operands.
577     if (auto *Call = dyn_cast<CallInst>(I)) {
578       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
579         Value *Arg = Call->getArgOperand(i);
580         Type *Ty = TruncTysMap[Call][i];
581         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
582           Trunc->moveBefore(Call);
583           Call->setArgOperand(i, Trunc);
584         }
585       }
586       continue;
587     }
588 
589     // Special case switches because we need to truncate the condition.
590     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
591       Type *Ty = TruncTysMap[Switch][0];
592       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
593         Trunc->moveBefore(Switch);
594         Switch->setCondition(Trunc);
595       }
596       continue;
597     }
598 
599     // Now handle the others.
600     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
601       Type *Ty = TruncTysMap[I][i];
602       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
603         Trunc->moveBefore(I);
604         I->setOperand(i, Trunc);
605       }
606     }
607   }
608 }
609 
610 void IRPromoter::Cleanup() {
611   LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
612   // Some zexts will now have become redundant, along with their trunc
613   // operands, so remove them
614   for (auto V : *Visited) {
615     if (!isa<ZExtInst>(V))
616       continue;
617 
618     auto ZExt = cast<ZExtInst>(V);
619     if (ZExt->getDestTy() != ExtTy)
620       continue;
621 
622     Value *Src = ZExt->getOperand(0);
623     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
624       LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
625                  << "\n");
626       ReplaceAllUsersOfWith(ZExt, Src);
627       continue;
628     }
629 
630     // Unless they produce a value that is narrower than ExtTy, we can
631     // replace the result of the zext with the input of a newly inserted
632     // trunc.
633     if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
634         Src->getType() == OrigTy) {
635       auto *Trunc = cast<TruncInst>(Src);
636       assert(Trunc->getOperand(0)->getType() == ExtTy &&
637              "expected inserted trunc to be operating on i32");
638       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
639     }
640   }
641 
642   for (auto *I : InstsToRemove) {
643     LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
644     I->dropAllReferences();
645     I->eraseFromParent();
646   }
647 
648   InstsToRemove.clear();
649   NewInsts.clear();
650   TruncTysMap.clear();
651   Promoted.clear();
652   SafeToPromote->clear();
653   SafeWrap->clear();
654 }
655 
656 void IRPromoter::ConvertTruncs() {
657   LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
658   IRBuilder<> Builder{Ctx};
659 
660   for (auto *V : *Visited) {
661     if (!isa<TruncInst>(V) || Sources->count(V))
662       continue;
663 
664     auto *Trunc = cast<TruncInst>(V);
665     Builder.SetInsertPoint(Trunc);
666     IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
667     IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
668 
669     unsigned NumBits = DestTy->getScalarSizeInBits();
670     ConstantInt *Mask =
671       ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
672     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
673 
674     if (auto *I = dyn_cast<Instruction>(Masked))
675       NewInsts.insert(I);
676 
677     ReplaceAllUsersOfWith(Trunc, Masked);
678   }
679 }
680 
681 void IRPromoter::Mutate(Type *OrigTy, unsigned PromotedWidth,
682                         SetVector<Value*> &Visited,
683                         SmallPtrSetImpl<Value*> &Sources,
684                         SmallPtrSetImpl<Instruction*> &Sinks,
685                         SmallPtrSetImpl<Instruction*> &SafeToPromote,
686                         SmallPtrSetImpl<Instruction*> &SafeWrap) {
687   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
688              << TypePromotion::TypeSize << " to " << PromotedWidth
689              << "-bits\n");
690 
691   assert(isa<IntegerType>(OrigTy) && "expected integer type");
692   this->OrigTy = cast<IntegerType>(OrigTy);
693   ExtTy = IntegerType::get(Ctx, PromotedWidth);
694   assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() &&
695          "original type not smaller than extended type");
696 
697   this->Visited = &Visited;
698   this->Sources = &Sources;
699   this->Sinks = &Sinks;
700   this->SafeToPromote = &SafeToPromote;
701   this->SafeWrap = &SafeWrap;
702 
703   // Cache original types of the values that will likely need truncating
704   for (auto *I : Sinks) {
705     if (auto *Call = dyn_cast<CallInst>(I)) {
706       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
707         Value *Arg = Call->getArgOperand(i);
708         TruncTysMap[Call].push_back(Arg->getType());
709       }
710     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
711       TruncTysMap[I].push_back(Switch->getCondition()->getType());
712     else {
713       for (unsigned i = 0; i < I->getNumOperands(); ++i)
714         TruncTysMap[I].push_back(I->getOperand(i)->getType());
715     }
716   }
717   for (auto *V : Visited) {
718     if (!isa<TruncInst>(V) || Sources.count(V))
719       continue;
720     auto *Trunc = cast<TruncInst>(V);
721     TruncTysMap[Trunc].push_back(Trunc->getDestTy());
722   }
723 
724   // Convert adds using negative immediates to equivalent instructions that use
725   // positive constants.
726   PrepareWrappingAdds();
727 
728   // Insert zext instructions between sources and their users.
729   ExtendSources();
730 
731   // Promote visited instructions, mutating their types in place.
732   PromoteTree();
733 
734   // Convert any truncs, that aren't sources, into AND masks.
735   ConvertTruncs();
736 
737   // Insert trunc instructions for use by calls, stores etc...
738   TruncateSinks();
739 
740   // Finally, remove unecessary zexts and truncs, delete old instructions and
741   // clear the data structures.
742   Cleanup();
743 
744   LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
745 }
746 
747 /// We accept most instructions, as well as Arguments and ConstantInsts. We
748 /// Disallow casts other than zext and truncs and only allow calls if their
749 /// return value is zeroext. We don't allow opcodes that can introduce sign
750 /// bits.
751 bool TypePromotion::isSupportedValue(Value *V) {
752   if (auto *I = dyn_cast<Instruction>(V)) {
753     switch (I->getOpcode()) {
754     default:
755       return isa<BinaryOperator>(I) && isSupportedType(I) &&
756              !GenerateSignBits(I);
757     case Instruction::GetElementPtr:
758     case Instruction::Store:
759     case Instruction::Br:
760     case Instruction::Switch:
761       return true;
762     case Instruction::PHI:
763     case Instruction::Select:
764     case Instruction::Ret:
765     case Instruction::Load:
766     case Instruction::Trunc:
767     case Instruction::BitCast:
768       return isSupportedType(I);
769     case Instruction::ZExt:
770       return isSupportedType(I->getOperand(0));
771     case Instruction::ICmp:
772       // Now that we allow small types than TypeSize, only allow icmp of
773       // TypeSize because they will require a trunc to be legalised.
774       // TODO: Allow icmp of smaller types, and calculate at the end
775       // whether the transform would be beneficial.
776       if (isa<PointerType>(I->getOperand(0)->getType()))
777         return true;
778       return EqualTypeSize(I->getOperand(0));
779     case Instruction::Call: {
780       // Special cases for calls as we need to check for zeroext
781       // TODO We should accept calls even if they don't have zeroext, as they
782       // can still be sinks.
783       auto *Call = cast<CallInst>(I);
784       return isSupportedType(Call) &&
785              Call->hasRetAttr(Attribute::AttrKind::ZExt);
786     }
787     }
788   } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
789     return isSupportedType(V);
790   } else if (isa<Argument>(V))
791     return isSupportedType(V);
792 
793   return isa<BasicBlock>(V);
794 }
795 
796 /// Check that the type of V would be promoted and that the original type is
797 /// smaller than the targeted promoted type. Check that we're not trying to
798 /// promote something larger than our base 'TypeSize' type.
799 bool TypePromotion::isLegalToPromote(Value *V) {
800 
801   auto *I = dyn_cast<Instruction>(V);
802   if (!I)
803     return true;
804 
805   if (SafeToPromote.count(I))
806    return true;
807 
808   if (isPromotedResultSafe(V) || isSafeWrap(I)) {
809     SafeToPromote.insert(I);
810     return true;
811   }
812   return false;
813 }
814 
815 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
816   OrigTy = V->getType();
817   TypeSize = OrigTy->getPrimitiveSizeInBits();
818   SafeToPromote.clear();
819   SafeWrap.clear();
820 
821   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
822     return false;
823 
824   LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
825              << TypeSize << " bits to " << PromotedWidth << "\n");
826 
827   SetVector<Value*> WorkList;
828   SmallPtrSet<Value*, 8> Sources;
829   SmallPtrSet<Instruction*, 4> Sinks;
830   SetVector<Value*> CurrentVisited;
831   WorkList.insert(V);
832 
833   // Return true if V was added to the worklist as a supported instruction,
834   // if it was already visited, or if we don't need to explore it (e.g.
835   // pointer values and GEPs), and false otherwise.
836   auto AddLegalInst = [&](Value *V) {
837     if (CurrentVisited.count(V))
838       return true;
839 
840     // Ignore GEPs because they don't need promoting and the constant indices
841     // will prevent the transformation.
842     if (isa<GetElementPtrInst>(V))
843       return true;
844 
845     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
846       LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
847       return false;
848     }
849 
850     WorkList.insert(V);
851     return true;
852   };
853 
854   // Iterate through, and add to, a tree of operands and users in the use-def.
855   while (!WorkList.empty()) {
856     Value *V = WorkList.back();
857     WorkList.pop_back();
858     if (CurrentVisited.count(V))
859       continue;
860 
861     // Ignore non-instructions, other than arguments.
862     if (!isa<Instruction>(V) && !isSource(V))
863       continue;
864 
865     // If we've already visited this value from somewhere, bail now because
866     // the tree has already been explored.
867     // TODO: This could limit the transform, ie if we try to promote something
868     // from an i8 and fail first, before trying an i16.
869     if (AllVisited.count(V))
870       return false;
871 
872     CurrentVisited.insert(V);
873     AllVisited.insert(V);
874 
875     // Calls can be both sources and sinks.
876     if (isSink(V))
877       Sinks.insert(cast<Instruction>(V));
878 
879     if (isSource(V))
880       Sources.insert(V);
881 
882     if (!isSink(V) && !isSource(V)) {
883       if (auto *I = dyn_cast<Instruction>(V)) {
884         // Visit operands of any instruction visited.
885         for (auto &U : I->operands()) {
886           if (!AddLegalInst(U))
887             return false;
888         }
889       }
890     }
891 
892     // Don't visit users of a node which isn't going to be mutated unless its a
893     // source.
894     if (isSource(V) || shouldPromote(V)) {
895       for (Use &U : V->uses()) {
896         if (!AddLegalInst(U.getUser()))
897           return false;
898       }
899     }
900   }
901 
902   LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
903              for (auto *I : CurrentVisited)
904                I->dump();
905              );
906   unsigned ToPromote = 0;
907   for (auto *V : CurrentVisited) {
908     if (Sources.count(V))
909       continue;
910     if (Sinks.count(cast<Instruction>(V)))
911       continue;
912     ++ToPromote;
913   }
914 
915   if (ToPromote < 2)
916     return false;
917 
918   Promoter->Mutate(OrigTy, PromotedWidth, CurrentVisited, Sources, Sinks,
919                    SafeToPromote, SafeWrap);
920   return true;
921 }
922 
923 bool TypePromotion::doInitialization(Module &M) {
924   Promoter = new IRPromoter(&M);
925   return false;
926 }
927 
928 bool TypePromotion::runOnFunction(Function &F) {
929   if (skipFunction(F) || DisablePromotion)
930     return false;
931 
932   LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
933 
934   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
935   if (!TPC)
936     return false;
937 
938   bool MadeChange = false;
939   const DataLayout &DL = F.getParent()->getDataLayout();
940   const TargetMachine &TM = TPC->getTM<TargetMachine>();
941   const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
942   const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
943   const TargetTransformInfo &TII =
944     getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
945 
946   // Search up from icmps to try to promote their operands.
947   for (BasicBlock &BB : F) {
948     auto &Insts = BB.getInstList();
949     for (auto &I : Insts) {
950       if (AllVisited.count(&I))
951         continue;
952 
953       if (!isa<ICmpInst>(&I))
954         continue;
955 
956       auto *ICmp = cast<ICmpInst>(&I);
957       // Skip signed or pointer compares
958       if (ICmp->isSigned() ||
959           !isa<IntegerType>(ICmp->getOperand(0)->getType()))
960         continue;
961 
962       LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
963 
964       for (auto &Op : ICmp->operands()) {
965         if (auto *I = dyn_cast<Instruction>(Op)) {
966           EVT SrcVT = TLI->getValueType(DL, I->getType());
967           if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
968             break;
969 
970           if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
971               TargetLowering::TypePromoteInteger)
972             break;
973 
974           EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
975           if (TII.getRegisterBitWidth(false) < PromotedVT.getSizeInBits()) {
976             LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
977                        << "for promoted type\n");
978             break;
979           }
980 
981           MadeChange |= TryToPromote(I, PromotedVT.getSizeInBits());
982           break;
983         }
984       }
985     }
986     LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
987                 dbgs() << F;
988                 report_fatal_error("Broken function after type promotion");
989                });
990   }
991   if (MadeChange)
992     LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
993 
994   return MadeChange;
995 }
996 
997 bool TypePromotion::doFinalization(Module &M) {
998   delete Promoter;
999   return false;
1000 }
1001 
1002 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1003 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1004 
1005 char TypePromotion::ID = 0;
1006 unsigned TypePromotion::TypeSize = 0;
1007 
1008 FunctionPass *llvm::createTypePromotionPass() {
1009   return new TypePromotion();
1010 }
1011