1 //===----- TypePromotion.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is an opcode based type promotion pass for small types that would 11 /// otherwise be promoted during legalisation. This works around the limitations 12 /// of selection dag for cyclic regions. The search begins from icmp 13 /// instructions operands where a tree, consisting of non-wrapping or safe 14 /// wrapping instructions, is built, checked and promoted if possible. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/CodeGen/Passes.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/InitializePasses.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 #define DEBUG_TYPE "type-promotion" 42 #define PASS_NAME "Type Promotion" 43 44 using namespace llvm; 45 46 static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden, 47 cl::init(false), 48 cl::desc("Disable type promotion pass")); 49 50 // The goal of this pass is to enable more efficient code generation for 51 // operations on narrow types (i.e. types with < 32-bits) and this is a 52 // motivating IR code example: 53 // 54 // define hidden i32 @cmp(i8 zeroext) { 55 // %2 = add i8 %0, -49 56 // %3 = icmp ult i8 %2, 3 57 // .. 58 // } 59 // 60 // The issue here is that i8 is type-legalized to i32 because i8 is not a 61 // legal type. Thus, arithmetic is done in integer-precision, but then the 62 // byte value is masked out as follows: 63 // 64 // t19: i32 = add t4, Constant:i32<-49> 65 // t24: i32 = and t19, Constant:i32<255> 66 // 67 // Consequently, we generate code like this: 68 // 69 // subs r0, #49 70 // uxtb r1, r0 71 // cmp r1, #3 72 // 73 // This shows that masking out the byte value results in generation of 74 // the UXTB instruction. This is not optimal as r0 already contains the byte 75 // value we need, and so instead we can just generate: 76 // 77 // sub.w r1, r0, #49 78 // cmp r1, #3 79 // 80 // We achieve this by type promoting the IR to i32 like so for this example: 81 // 82 // define i32 @cmp(i8 zeroext %c) { 83 // %0 = zext i8 %c to i32 84 // %c.off = add i32 %0, -49 85 // %1 = icmp ult i32 %c.off, 3 86 // .. 87 // } 88 // 89 // For this to be valid and legal, we need to prove that the i32 add is 90 // producing the same value as the i8 addition, and that e.g. no overflow 91 // happens. 92 // 93 // A brief sketch of the algorithm and some terminology. 94 // We pattern match interesting IR patterns: 95 // - which have "sources": instructions producing narrow values (i8, i16), and 96 // - they have "sinks": instructions consuming these narrow values. 97 // 98 // We collect all instruction connecting sources and sinks in a worklist, so 99 // that we can mutate these instruction and perform type promotion when it is 100 // legal to do so. 101 102 namespace { 103 class IRPromoter { 104 LLVMContext &Ctx; 105 IntegerType *OrigTy = nullptr; 106 unsigned PromotedWidth = 0; 107 SetVector<Value *> &Visited; 108 SetVector<Value *> &Sources; 109 SetVector<Instruction *> &Sinks; 110 SmallPtrSetImpl<Instruction *> &SafeWrap; 111 IntegerType *ExtTy = nullptr; 112 SmallPtrSet<Value *, 8> NewInsts; 113 SmallPtrSet<Instruction *, 4> InstsToRemove; 114 DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap; 115 SmallPtrSet<Value *, 8> Promoted; 116 117 void ReplaceAllUsersOfWith(Value *From, Value *To); 118 void ExtendSources(); 119 void ConvertTruncs(); 120 void PromoteTree(); 121 void TruncateSinks(); 122 void Cleanup(); 123 124 public: 125 IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width, 126 SetVector<Value *> &visited, SetVector<Value *> &sources, 127 SetVector<Instruction *> &sinks, 128 SmallPtrSetImpl<Instruction *> &wrap) 129 : Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited), 130 Sources(sources), Sinks(sinks), SafeWrap(wrap) { 131 ExtTy = IntegerType::get(Ctx, PromotedWidth); 132 assert(OrigTy->getPrimitiveSizeInBits().getFixedSize() < 133 ExtTy->getPrimitiveSizeInBits().getFixedSize() && 134 "Original type not smaller than extended type"); 135 } 136 137 void Mutate(); 138 }; 139 140 class TypePromotion : public FunctionPass { 141 unsigned TypeSize = 0; 142 LLVMContext *Ctx = nullptr; 143 unsigned RegisterBitWidth = 0; 144 SmallPtrSet<Value *, 16> AllVisited; 145 SmallPtrSet<Instruction *, 8> SafeToPromote; 146 SmallPtrSet<Instruction *, 4> SafeWrap; 147 148 // Does V have the same size result type as TypeSize. 149 bool EqualTypeSize(Value *V); 150 // Does V have the same size, or narrower, result type as TypeSize. 151 bool LessOrEqualTypeSize(Value *V); 152 // Does V have a result type that is wider than TypeSize. 153 bool GreaterThanTypeSize(Value *V); 154 // Does V have a result type that is narrower than TypeSize. 155 bool LessThanTypeSize(Value *V); 156 // Should V be a leaf in the promote tree? 157 bool isSource(Value *V); 158 // Should V be a root in the promotion tree? 159 bool isSink(Value *V); 160 // Should we change the result type of V? It will result in the users of V 161 // being visited. 162 bool shouldPromote(Value *V); 163 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping 164 // result won't affect the computation? 165 bool isSafeWrap(Instruction *I); 166 // Can V have its integer type promoted, or can the type be ignored. 167 bool isSupportedType(Value *V); 168 // Is V an instruction with a supported opcode or another value that we can 169 // handle, such as constants and basic blocks. 170 bool isSupportedValue(Value *V); 171 // Is V an instruction thats result can trivially promoted, or has safe 172 // wrapping. 173 bool isLegalToPromote(Value *V); 174 bool TryToPromote(Value *V, unsigned PromotedWidth); 175 176 public: 177 static char ID; 178 179 TypePromotion() : FunctionPass(ID) {} 180 181 void getAnalysisUsage(AnalysisUsage &AU) const override { 182 AU.addRequired<TargetTransformInfoWrapperPass>(); 183 AU.addRequired<TargetPassConfig>(); 184 AU.setPreservesCFG(); 185 } 186 187 StringRef getPassName() const override { return PASS_NAME; } 188 189 bool runOnFunction(Function &F) override; 190 }; 191 192 } // namespace 193 194 static bool GenerateSignBits(Instruction *I) { 195 unsigned Opc = I->getOpcode(); 196 return Opc == Instruction::AShr || Opc == Instruction::SDiv || 197 Opc == Instruction::SRem || Opc == Instruction::SExt; 198 } 199 200 bool TypePromotion::EqualTypeSize(Value *V) { 201 return V->getType()->getScalarSizeInBits() == TypeSize; 202 } 203 204 bool TypePromotion::LessOrEqualTypeSize(Value *V) { 205 return V->getType()->getScalarSizeInBits() <= TypeSize; 206 } 207 208 bool TypePromotion::GreaterThanTypeSize(Value *V) { 209 return V->getType()->getScalarSizeInBits() > TypeSize; 210 } 211 212 bool TypePromotion::LessThanTypeSize(Value *V) { 213 return V->getType()->getScalarSizeInBits() < TypeSize; 214 } 215 216 /// Return true if the given value is a source in the use-def chain, producing 217 /// a narrow 'TypeSize' value. These values will be zext to start the promotion 218 /// of the tree to i32. We guarantee that these won't populate the upper bits 219 /// of the register. ZExt on the loads will be free, and the same for call 220 /// return values because we only accept ones that guarantee a zeroext ret val. 221 /// Many arguments will have the zeroext attribute too, so those would be free 222 /// too. 223 bool TypePromotion::isSource(Value *V) { 224 if (!isa<IntegerType>(V->getType())) 225 return false; 226 227 // TODO Allow zext to be sources. 228 if (isa<Argument>(V)) 229 return true; 230 else if (isa<LoadInst>(V)) 231 return true; 232 else if (isa<BitCastInst>(V)) 233 return true; 234 else if (auto *Call = dyn_cast<CallInst>(V)) 235 return Call->hasRetAttr(Attribute::AttrKind::ZExt); 236 else if (auto *Trunc = dyn_cast<TruncInst>(V)) 237 return EqualTypeSize(Trunc); 238 return false; 239 } 240 241 /// Return true if V will require any promoted values to be truncated for the 242 /// the IR to remain valid. We can't mutate the value type of these 243 /// instructions. 244 bool TypePromotion::isSink(Value *V) { 245 // TODO The truncate also isn't actually necessary because we would already 246 // proved that the data value is kept within the range of the original data 247 // type. 248 249 // Sinks are: 250 // - points where the value in the register is being observed, such as an 251 // icmp, switch or store. 252 // - points where value types have to match, such as calls and returns. 253 // - zext are included to ease the transformation and are generally removed 254 // later on. 255 if (auto *Store = dyn_cast<StoreInst>(V)) 256 return LessOrEqualTypeSize(Store->getValueOperand()); 257 if (auto *Return = dyn_cast<ReturnInst>(V)) 258 return LessOrEqualTypeSize(Return->getReturnValue()); 259 if (auto *ZExt = dyn_cast<ZExtInst>(V)) 260 return GreaterThanTypeSize(ZExt); 261 if (auto *Switch = dyn_cast<SwitchInst>(V)) 262 return LessThanTypeSize(Switch->getCondition()); 263 if (auto *ICmp = dyn_cast<ICmpInst>(V)) 264 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0)); 265 266 return isa<CallInst>(V); 267 } 268 269 /// Return whether this instruction can safely wrap. 270 bool TypePromotion::isSafeWrap(Instruction *I) { 271 // We can support a potentially wrapping instruction (I) if: 272 // - It is only used by an unsigned icmp. 273 // - The icmp uses a constant. 274 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping 275 // around zero to become a larger number than before. 276 // - The wrapping instruction (I) also uses a constant. 277 // 278 // We can then use the two constants to calculate whether the result would 279 // wrap in respect to itself in the original bitwidth. If it doesn't wrap, 280 // just underflows the range, the icmp would give the same result whether the 281 // result has been truncated or not. We calculate this by: 282 // - Zero extending both constants, if needed, to RegisterBitWidth. 283 // - Take the absolute value of I's constant, adding this to the icmp const. 284 // - Check that this value is not out of range for small type. If it is, it 285 // means that it has underflowed enough to wrap around the icmp constant. 286 // 287 // For example: 288 // 289 // %sub = sub i8 %a, 2 290 // %cmp = icmp ule i8 %sub, 254 291 // 292 // If %a = 0, %sub = -2 == FE == 254 293 // But if this is evalulated as a i32 294 // %sub = -2 == FF FF FF FE == 4294967294 295 // So the unsigned compares (i8 and i32) would not yield the same result. 296 // 297 // Another way to look at it is: 298 // %a - 2 <= 254 299 // %a + 2 <= 254 + 2 300 // %a <= 256 301 // And we can't represent 256 in the i8 format, so we don't support it. 302 // 303 // Whereas: 304 // 305 // %sub i8 %a, 1 306 // %cmp = icmp ule i8 %sub, 254 307 // 308 // If %a = 0, %sub = -1 == FF == 255 309 // As i32: 310 // %sub = -1 == FF FF FF FF == 4294967295 311 // 312 // In this case, the unsigned compare results would be the same and this 313 // would also be true for ult, uge and ugt: 314 // - (255 < 254) == (0xFFFFFFFF < 254) == false 315 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false 316 // - (255 > 254) == (0xFFFFFFFF > 254) == true 317 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true 318 // 319 // To demonstrate why we can't handle increasing values: 320 // 321 // %add = add i8 %a, 2 322 // %cmp = icmp ult i8 %add, 127 323 // 324 // If %a = 254, %add = 256 == (i8 1) 325 // As i32: 326 // %add = 256 327 // 328 // (1 < 127) != (256 < 127) 329 330 unsigned Opc = I->getOpcode(); 331 if (Opc != Instruction::Add && Opc != Instruction::Sub) 332 return false; 333 334 if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) || 335 !isa<ConstantInt>(I->getOperand(1))) 336 return false; 337 338 // Don't support an icmp that deals with sign bits. 339 auto *CI = cast<ICmpInst>(*I->user_begin()); 340 if (CI->isSigned() || CI->isEquality()) 341 return false; 342 343 ConstantInt *ICmpConstant = nullptr; 344 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0))) 345 ICmpConstant = Const; 346 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1))) 347 ICmpConstant = Const; 348 else 349 return false; 350 351 const APInt &ICmpConst = ICmpConstant->getValue(); 352 APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue(); 353 if (Opc == Instruction::Sub) 354 OverflowConst = -OverflowConst; 355 if (!OverflowConst.isNonPositive()) 356 return false; 357 358 // Using C1 = OverflowConst and C2 = ICmpConst, we can either prove that: 359 // zext(x) + sext(C1) <u zext(C2) if C1 < 0 and C1 >s C2 360 // zext(x) + sext(C1) <u sext(C2) if C1 < 0 and C1 <=s C2 361 if (OverflowConst.sgt(ICmpConst)) { 362 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext " 363 << "const of " << *I << "\n"); 364 SafeWrap.insert(I); 365 return true; 366 } else { 367 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext " 368 << "const of " << *I << " and " << *CI << "\n"); 369 SafeWrap.insert(I); 370 SafeWrap.insert(CI); 371 return true; 372 } 373 return false; 374 } 375 376 bool TypePromotion::shouldPromote(Value *V) { 377 if (!isa<IntegerType>(V->getType()) || isSink(V)) 378 return false; 379 380 if (isSource(V)) 381 return true; 382 383 auto *I = dyn_cast<Instruction>(V); 384 if (!I) 385 return false; 386 387 if (isa<ICmpInst>(I)) 388 return false; 389 390 return true; 391 } 392 393 /// Return whether we can safely mutate V's type to ExtTy without having to be 394 /// concerned with zero extending or truncation. 395 static bool isPromotedResultSafe(Instruction *I) { 396 if (GenerateSignBits(I)) 397 return false; 398 399 if (!isa<OverflowingBinaryOperator>(I)) 400 return true; 401 402 return I->hasNoUnsignedWrap(); 403 } 404 405 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) { 406 SmallVector<Instruction *, 4> Users; 407 Instruction *InstTo = dyn_cast<Instruction>(To); 408 bool ReplacedAll = true; 409 410 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To 411 << "\n"); 412 413 for (Use &U : From->uses()) { 414 auto *User = cast<Instruction>(U.getUser()); 415 if (InstTo && User->isIdenticalTo(InstTo)) { 416 ReplacedAll = false; 417 continue; 418 } 419 Users.push_back(User); 420 } 421 422 for (auto *U : Users) 423 U->replaceUsesOfWith(From, To); 424 425 if (ReplacedAll) 426 if (auto *I = dyn_cast<Instruction>(From)) 427 InstsToRemove.insert(I); 428 } 429 430 void IRPromoter::ExtendSources() { 431 IRBuilder<> Builder{Ctx}; 432 433 auto InsertZExt = [&](Value *V, Instruction *InsertPt) { 434 assert(V->getType() != ExtTy && "zext already extends to i32"); 435 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n"); 436 Builder.SetInsertPoint(InsertPt); 437 if (auto *I = dyn_cast<Instruction>(V)) 438 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 439 440 Value *ZExt = Builder.CreateZExt(V, ExtTy); 441 if (auto *I = dyn_cast<Instruction>(ZExt)) { 442 if (isa<Argument>(V)) 443 I->moveBefore(InsertPt); 444 else 445 I->moveAfter(InsertPt); 446 NewInsts.insert(I); 447 } 448 449 ReplaceAllUsersOfWith(V, ZExt); 450 }; 451 452 // Now, insert extending instructions between the sources and their users. 453 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n"); 454 for (auto V : Sources) { 455 LLVM_DEBUG(dbgs() << " - " << *V << "\n"); 456 if (auto *I = dyn_cast<Instruction>(V)) 457 InsertZExt(I, I); 458 else if (auto *Arg = dyn_cast<Argument>(V)) { 459 BasicBlock &BB = Arg->getParent()->front(); 460 InsertZExt(Arg, &*BB.getFirstInsertionPt()); 461 } else { 462 llvm_unreachable("unhandled source that needs extending"); 463 } 464 Promoted.insert(V); 465 } 466 } 467 468 void IRPromoter::PromoteTree() { 469 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n"); 470 471 // Mutate the types of the instructions within the tree. Here we handle 472 // constant operands. 473 for (auto *V : Visited) { 474 if (Sources.count(V)) 475 continue; 476 477 auto *I = cast<Instruction>(V); 478 if (Sinks.count(I)) 479 continue; 480 481 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { 482 Value *Op = I->getOperand(i); 483 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType())) 484 continue; 485 486 if (auto *Const = dyn_cast<ConstantInt>(Op)) { 487 Constant *NewConst = (SafeWrap.contains(I) && i == 1) 488 ? ConstantExpr::getSExt(Const, ExtTy) 489 : ConstantExpr::getZExt(Const, ExtTy); 490 I->setOperand(i, NewConst); 491 } else if (isa<UndefValue>(Op)) 492 I->setOperand(i, UndefValue::get(ExtTy)); 493 } 494 495 // Mutate the result type, unless this is an icmp or switch. 496 if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) { 497 I->mutateType(ExtTy); 498 Promoted.insert(I); 499 } 500 } 501 } 502 503 void IRPromoter::TruncateSinks() { 504 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n"); 505 506 IRBuilder<> Builder{Ctx}; 507 508 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * { 509 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType())) 510 return nullptr; 511 512 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V)) 513 return nullptr; 514 515 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for " 516 << *V << "\n"); 517 Builder.SetInsertPoint(cast<Instruction>(V)); 518 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy)); 519 if (Trunc) 520 NewInsts.insert(Trunc); 521 return Trunc; 522 }; 523 524 // Fix up any stores or returns that use the results of the promoted 525 // chain. 526 for (auto I : Sinks) { 527 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n"); 528 529 // Handle calls separately as we need to iterate over arg operands. 530 if (auto *Call = dyn_cast<CallInst>(I)) { 531 for (unsigned i = 0; i < Call->arg_size(); ++i) { 532 Value *Arg = Call->getArgOperand(i); 533 Type *Ty = TruncTysMap[Call][i]; 534 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) { 535 Trunc->moveBefore(Call); 536 Call->setArgOperand(i, Trunc); 537 } 538 } 539 continue; 540 } 541 542 // Special case switches because we need to truncate the condition. 543 if (auto *Switch = dyn_cast<SwitchInst>(I)) { 544 Type *Ty = TruncTysMap[Switch][0]; 545 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) { 546 Trunc->moveBefore(Switch); 547 Switch->setCondition(Trunc); 548 } 549 continue; 550 } 551 552 // Now handle the others. 553 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 554 Type *Ty = TruncTysMap[I][i]; 555 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) { 556 Trunc->moveBefore(I); 557 I->setOperand(i, Trunc); 558 } 559 } 560 } 561 } 562 563 void IRPromoter::Cleanup() { 564 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n"); 565 // Some zexts will now have become redundant, along with their trunc 566 // operands, so remove them 567 for (auto V : Visited) { 568 if (!isa<ZExtInst>(V)) 569 continue; 570 571 auto ZExt = cast<ZExtInst>(V); 572 if (ZExt->getDestTy() != ExtTy) 573 continue; 574 575 Value *Src = ZExt->getOperand(0); 576 if (ZExt->getSrcTy() == ZExt->getDestTy()) { 577 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt 578 << "\n"); 579 ReplaceAllUsersOfWith(ZExt, Src); 580 continue; 581 } 582 583 // Unless they produce a value that is narrower than ExtTy, we can 584 // replace the result of the zext with the input of a newly inserted 585 // trunc. 586 if (NewInsts.count(Src) && isa<TruncInst>(Src) && 587 Src->getType() == OrigTy) { 588 auto *Trunc = cast<TruncInst>(Src); 589 assert(Trunc->getOperand(0)->getType() == ExtTy && 590 "expected inserted trunc to be operating on i32"); 591 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0)); 592 } 593 } 594 595 for (auto *I : InstsToRemove) { 596 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n"); 597 I->dropAllReferences(); 598 I->eraseFromParent(); 599 } 600 } 601 602 void IRPromoter::ConvertTruncs() { 603 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n"); 604 IRBuilder<> Builder{Ctx}; 605 606 for (auto *V : Visited) { 607 if (!isa<TruncInst>(V) || Sources.count(V)) 608 continue; 609 610 auto *Trunc = cast<TruncInst>(V); 611 Builder.SetInsertPoint(Trunc); 612 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType()); 613 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]); 614 615 unsigned NumBits = DestTy->getScalarSizeInBits(); 616 ConstantInt *Mask = 617 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue()); 618 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask); 619 620 if (auto *I = dyn_cast<Instruction>(Masked)) 621 NewInsts.insert(I); 622 623 ReplaceAllUsersOfWith(Trunc, Masked); 624 } 625 } 626 627 void IRPromoter::Mutate() { 628 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from " 629 << OrigTy->getBitWidth() << " to " << PromotedWidth 630 << "-bits\n"); 631 632 // Cache original types of the values that will likely need truncating 633 for (auto *I : Sinks) { 634 if (auto *Call = dyn_cast<CallInst>(I)) { 635 for (Value *Arg : Call->args()) 636 TruncTysMap[Call].push_back(Arg->getType()); 637 } else if (auto *Switch = dyn_cast<SwitchInst>(I)) 638 TruncTysMap[I].push_back(Switch->getCondition()->getType()); 639 else { 640 for (unsigned i = 0; i < I->getNumOperands(); ++i) 641 TruncTysMap[I].push_back(I->getOperand(i)->getType()); 642 } 643 } 644 for (auto *V : Visited) { 645 if (!isa<TruncInst>(V) || Sources.count(V)) 646 continue; 647 auto *Trunc = cast<TruncInst>(V); 648 TruncTysMap[Trunc].push_back(Trunc->getDestTy()); 649 } 650 651 // Insert zext instructions between sources and their users. 652 ExtendSources(); 653 654 // Promote visited instructions, mutating their types in place. 655 PromoteTree(); 656 657 // Convert any truncs, that aren't sources, into AND masks. 658 ConvertTruncs(); 659 660 // Insert trunc instructions for use by calls, stores etc... 661 TruncateSinks(); 662 663 // Finally, remove unecessary zexts and truncs, delete old instructions and 664 // clear the data structures. 665 Cleanup(); 666 667 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n"); 668 } 669 670 /// We disallow booleans to make life easier when dealing with icmps but allow 671 /// any other integer that fits in a scalar register. Void types are accepted 672 /// so we can handle switches. 673 bool TypePromotion::isSupportedType(Value *V) { 674 Type *Ty = V->getType(); 675 676 // Allow voids and pointers, these won't be promoted. 677 if (Ty->isVoidTy() || Ty->isPointerTy()) 678 return true; 679 680 if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 || 681 cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth) 682 return false; 683 684 return LessOrEqualTypeSize(V); 685 } 686 687 /// We accept most instructions, as well as Arguments and ConstantInsts. We 688 /// Disallow casts other than zext and truncs and only allow calls if their 689 /// return value is zeroext. We don't allow opcodes that can introduce sign 690 /// bits. 691 bool TypePromotion::isSupportedValue(Value *V) { 692 if (auto *I = dyn_cast<Instruction>(V)) { 693 switch (I->getOpcode()) { 694 default: 695 return isa<BinaryOperator>(I) && isSupportedType(I) && 696 !GenerateSignBits(I); 697 case Instruction::GetElementPtr: 698 case Instruction::Store: 699 case Instruction::Br: 700 case Instruction::Switch: 701 return true; 702 case Instruction::PHI: 703 case Instruction::Select: 704 case Instruction::Ret: 705 case Instruction::Load: 706 case Instruction::Trunc: 707 case Instruction::BitCast: 708 return isSupportedType(I); 709 case Instruction::ZExt: 710 return isSupportedType(I->getOperand(0)); 711 case Instruction::ICmp: 712 // Now that we allow small types than TypeSize, only allow icmp of 713 // TypeSize because they will require a trunc to be legalised. 714 // TODO: Allow icmp of smaller types, and calculate at the end 715 // whether the transform would be beneficial. 716 if (isa<PointerType>(I->getOperand(0)->getType())) 717 return true; 718 return EqualTypeSize(I->getOperand(0)); 719 case Instruction::Call: { 720 // Special cases for calls as we need to check for zeroext 721 // TODO We should accept calls even if they don't have zeroext, as they 722 // can still be sinks. 723 auto *Call = cast<CallInst>(I); 724 return isSupportedType(Call) && 725 Call->hasRetAttr(Attribute::AttrKind::ZExt); 726 } 727 } 728 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) { 729 return isSupportedType(V); 730 } else if (isa<Argument>(V)) 731 return isSupportedType(V); 732 733 return isa<BasicBlock>(V); 734 } 735 736 /// Check that the type of V would be promoted and that the original type is 737 /// smaller than the targeted promoted type. Check that we're not trying to 738 /// promote something larger than our base 'TypeSize' type. 739 bool TypePromotion::isLegalToPromote(Value *V) { 740 auto *I = dyn_cast<Instruction>(V); 741 if (!I) 742 return true; 743 744 if (SafeToPromote.count(I)) 745 return true; 746 747 if (isPromotedResultSafe(I) || isSafeWrap(I)) { 748 SafeToPromote.insert(I); 749 return true; 750 } 751 return false; 752 } 753 754 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) { 755 Type *OrigTy = V->getType(); 756 TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize(); 757 SafeToPromote.clear(); 758 SafeWrap.clear(); 759 760 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V)) 761 return false; 762 763 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from " 764 << TypeSize << " bits to " << PromotedWidth << "\n"); 765 766 SetVector<Value *> WorkList; 767 SetVector<Value *> Sources; 768 SetVector<Instruction *> Sinks; 769 SetVector<Value *> CurrentVisited; 770 WorkList.insert(V); 771 772 // Return true if V was added to the worklist as a supported instruction, 773 // if it was already visited, or if we don't need to explore it (e.g. 774 // pointer values and GEPs), and false otherwise. 775 auto AddLegalInst = [&](Value *V) { 776 if (CurrentVisited.count(V)) 777 return true; 778 779 // Ignore GEPs because they don't need promoting and the constant indices 780 // will prevent the transformation. 781 if (isa<GetElementPtrInst>(V)) 782 return true; 783 784 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) { 785 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n"); 786 return false; 787 } 788 789 WorkList.insert(V); 790 return true; 791 }; 792 793 // Iterate through, and add to, a tree of operands and users in the use-def. 794 while (!WorkList.empty()) { 795 Value *V = WorkList.pop_back_val(); 796 if (CurrentVisited.count(V)) 797 continue; 798 799 // Ignore non-instructions, other than arguments. 800 if (!isa<Instruction>(V) && !isSource(V)) 801 continue; 802 803 // If we've already visited this value from somewhere, bail now because 804 // the tree has already been explored. 805 // TODO: This could limit the transform, ie if we try to promote something 806 // from an i8 and fail first, before trying an i16. 807 if (AllVisited.count(V)) 808 return false; 809 810 CurrentVisited.insert(V); 811 AllVisited.insert(V); 812 813 // Calls can be both sources and sinks. 814 if (isSink(V)) 815 Sinks.insert(cast<Instruction>(V)); 816 817 if (isSource(V)) 818 Sources.insert(V); 819 820 if (!isSink(V) && !isSource(V)) { 821 if (auto *I = dyn_cast<Instruction>(V)) { 822 // Visit operands of any instruction visited. 823 for (auto &U : I->operands()) { 824 if (!AddLegalInst(U)) 825 return false; 826 } 827 } 828 } 829 830 // Don't visit users of a node which isn't going to be mutated unless its a 831 // source. 832 if (isSource(V) || shouldPromote(V)) { 833 for (Use &U : V->uses()) { 834 if (!AddLegalInst(U.getUser())) 835 return false; 836 } 837 } 838 } 839 840 LLVM_DEBUG({ 841 dbgs() << "IR Promotion: Visited nodes:\n"; 842 for (auto *I : CurrentVisited) 843 I->dump(); 844 }); 845 846 unsigned ToPromote = 0; 847 unsigned NonFreeArgs = 0; 848 SmallPtrSet<BasicBlock *, 4> Blocks; 849 for (auto *V : CurrentVisited) { 850 if (auto *I = dyn_cast<Instruction>(V)) 851 Blocks.insert(I->getParent()); 852 853 if (Sources.count(V)) { 854 if (auto *Arg = dyn_cast<Argument>(V)) 855 if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr()) 856 ++NonFreeArgs; 857 continue; 858 } 859 860 if (Sinks.count(cast<Instruction>(V))) 861 continue; 862 ++ToPromote; 863 } 864 865 // DAG optimizations should be able to handle these cases better, especially 866 // for function arguments. 867 if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size()))) 868 return false; 869 870 IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth, 871 CurrentVisited, Sources, Sinks, SafeWrap); 872 Promoter.Mutate(); 873 return true; 874 } 875 876 bool TypePromotion::runOnFunction(Function &F) { 877 if (skipFunction(F) || DisablePromotion) 878 return false; 879 880 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n"); 881 882 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 883 if (!TPC) 884 return false; 885 886 AllVisited.clear(); 887 SafeToPromote.clear(); 888 SafeWrap.clear(); 889 bool MadeChange = false; 890 const DataLayout &DL = F.getParent()->getDataLayout(); 891 const TargetMachine &TM = TPC->getTM<TargetMachine>(); 892 const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F); 893 const TargetLowering *TLI = SubtargetInfo->getTargetLowering(); 894 const TargetTransformInfo &TII = 895 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 896 RegisterBitWidth = 897 TII.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedSize(); 898 Ctx = &F.getParent()->getContext(); 899 900 // Search up from icmps to try to promote their operands. 901 for (BasicBlock &BB : F) { 902 for (Instruction &I : BB) { 903 if (AllVisited.count(&I)) 904 continue; 905 906 if (!isa<ICmpInst>(&I)) 907 continue; 908 909 auto *ICmp = cast<ICmpInst>(&I); 910 // Skip signed or pointer compares 911 if (ICmp->isSigned() || !isa<IntegerType>(ICmp->getOperand(0)->getType())) 912 continue; 913 914 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n"); 915 916 for (auto &Op : ICmp->operands()) { 917 if (auto *I = dyn_cast<Instruction>(Op)) { 918 EVT SrcVT = TLI->getValueType(DL, I->getType()); 919 if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT())) 920 break; 921 922 if (TLI->getTypeAction(*Ctx, SrcVT) != 923 TargetLowering::TypePromoteInteger) 924 break; 925 EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT); 926 if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) { 927 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register " 928 << "for promoted type\n"); 929 break; 930 } 931 932 MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits()); 933 break; 934 } 935 } 936 } 937 } 938 939 AllVisited.clear(); 940 SafeToPromote.clear(); 941 SafeWrap.clear(); 942 943 return MadeChange; 944 } 945 946 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false) 947 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false) 948 949 char TypePromotion::ID = 0; 950 951 FunctionPass *llvm::createTypePromotionPass() { return new TypePromotion(); } 952