1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsARM.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 
44 #define DEBUG_TYPE "type-promotion"
45 #define PASS_NAME "Type Promotion"
46 
47 using namespace llvm;
48 
49 static cl::opt<bool>
50 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false),
51                  cl::desc("Disable type promotion pass"));
52 
53 // The goal of this pass is to enable more efficient code generation for
54 // operations on narrow types (i.e. types with < 32-bits) and this is a
55 // motivating IR code example:
56 //
57 //   define hidden i32 @cmp(i8 zeroext) {
58 //     %2 = add i8 %0, -49
59 //     %3 = icmp ult i8 %2, 3
60 //     ..
61 //   }
62 //
63 // The issue here is that i8 is type-legalized to i32 because i8 is not a
64 // legal type. Thus, arithmetic is done in integer-precision, but then the
65 // byte value is masked out as follows:
66 //
67 //   t19: i32 = add t4, Constant:i32<-49>
68 //     t24: i32 = and t19, Constant:i32<255>
69 //
70 // Consequently, we generate code like this:
71 //
72 //   subs  r0, #49
73 //   uxtb  r1, r0
74 //   cmp r1, #3
75 //
76 // This shows that masking out the byte value results in generation of
77 // the UXTB instruction. This is not optimal as r0 already contains the byte
78 // value we need, and so instead we can just generate:
79 //
80 //   sub.w r1, r0, #49
81 //   cmp r1, #3
82 //
83 // We achieve this by type promoting the IR to i32 like so for this example:
84 //
85 //   define i32 @cmp(i8 zeroext %c) {
86 //     %0 = zext i8 %c to i32
87 //     %c.off = add i32 %0, -49
88 //     %1 = icmp ult i32 %c.off, 3
89 //     ..
90 //   }
91 //
92 // For this to be valid and legal, we need to prove that the i32 add is
93 // producing the same value as the i8 addition, and that e.g. no overflow
94 // happens.
95 //
96 // A brief sketch of the algorithm and some terminology.
97 // We pattern match interesting IR patterns:
98 // - which have "sources": instructions producing narrow values (i8, i16), and
99 // - they have "sinks": instructions consuming these narrow values.
100 //
101 // We collect all instruction connecting sources and sinks in a worklist, so
102 // that we can mutate these instruction and perform type promotion when it is
103 // legal to do so.
104 
105 namespace {
106 class IRPromoter {
107   LLVMContext &Ctx;
108   IntegerType *OrigTy = nullptr;
109   unsigned PromotedWidth = 0;
110   IntegerType *ExtTy = nullptr;
111   SmallPtrSet<Value*, 8> NewInsts;
112   SmallPtrSet<Instruction*, 4> InstsToRemove;
113   DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
114   SmallPtrSet<Value*, 8> Promoted;
115   SetVector<Value*> *Visited;
116   SmallPtrSetImpl<Value*> *Sources;
117   SmallPtrSetImpl<Instruction*> *Sinks;
118   SmallPtrSetImpl<Instruction*> *SafeToPromote;
119   SmallPtrSetImpl<Instruction*> *SafeWrap;
120 
121   void ReplaceAllUsersOfWith(Value *From, Value *To);
122   void PrepareWrappingAdds(void);
123   void ExtendSources(void);
124   void ConvertTruncs(void);
125   void PromoteTree(void);
126   void TruncateSinks(void);
127   void Cleanup(void);
128 
129 public:
130   IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width) :
131     Ctx(C), OrigTy(Ty), PromotedWidth(Width) {
132     ExtTy = IntegerType::get(Ctx, PromotedWidth);
133     assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits()
134            && "Original type not smaller than extended type");
135   }
136 
137   void Mutate(SetVector<Value*> &Visited,
138               SmallPtrSetImpl<Value*> &Sources,
139               SmallPtrSetImpl<Instruction*> &Sinks,
140               SmallPtrSetImpl<Instruction*> &SafeToPromote,
141               SmallPtrSetImpl<Instruction*> &SafeWrap);
142 };
143 
144 class TypePromotion : public FunctionPass {
145   unsigned TypeSize = 0;
146   LLVMContext *Ctx = nullptr;
147   unsigned RegisterBitWidth = 0;
148   SmallPtrSet<Value*, 16> AllVisited;
149   SmallPtrSet<Instruction*, 8> SafeToPromote;
150   SmallPtrSet<Instruction*, 4> SafeWrap;
151 
152   // Does V have the same size result type as TypeSize.
153   bool EqualTypeSize(Value *V);
154   // Does V have the same size, or narrower, result type as TypeSize.
155   bool LessOrEqualTypeSize(Value *V);
156   // Does V have a result type that is wider than TypeSize.
157   bool GreaterThanTypeSize(Value *V);
158   // Does V have a result type that is narrower than TypeSize.
159   bool LessThanTypeSize(Value *V);
160   // Should V be a leaf in the promote tree?
161   bool isSource(Value *V);
162   // Should V be a root in the promotion tree?
163   bool isSink(Value *V);
164   // Should we change the result type of V? It will result in the users of V
165   // being visited.
166   bool shouldPromote(Value *V);
167   // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
168   // result won't affect the computation?
169   bool isSafeWrap(Instruction *I);
170   // Can V have its integer type promoted, or can the type be ignored.
171   bool isSupportedType(Value *V);
172   // Is V an instruction with a supported opcode or another value that we can
173   // handle, such as constants and basic blocks.
174   bool isSupportedValue(Value *V);
175   // Is V an instruction thats result can trivially promoted, or has safe
176   // wrapping.
177   bool isLegalToPromote(Value *V);
178   bool TryToPromote(Value *V, unsigned PromotedWidth);
179 
180 public:
181   static char ID;
182 
183   TypePromotion() : FunctionPass(ID) {}
184 
185   void getAnalysisUsage(AnalysisUsage &AU) const override {
186     AU.addRequired<TargetTransformInfoWrapperPass>();
187     AU.addRequired<TargetPassConfig>();
188   }
189 
190   StringRef getPassName() const override { return PASS_NAME; }
191 
192   bool runOnFunction(Function &F) override;
193 };
194 
195 }
196 
197 static bool GenerateSignBits(Value *V) {
198   if (!isa<Instruction>(V))
199     return false;
200 
201   unsigned Opc = cast<Instruction>(V)->getOpcode();
202   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
203          Opc == Instruction::SRem || Opc == Instruction::SExt;
204 }
205 
206 bool TypePromotion::EqualTypeSize(Value *V) {
207   return V->getType()->getScalarSizeInBits() == TypeSize;
208 }
209 
210 bool TypePromotion::LessOrEqualTypeSize(Value *V) {
211   return V->getType()->getScalarSizeInBits() <= TypeSize;
212 }
213 
214 bool TypePromotion::GreaterThanTypeSize(Value *V) {
215   return V->getType()->getScalarSizeInBits() > TypeSize;
216 }
217 
218 bool TypePromotion::LessThanTypeSize(Value *V) {
219   return V->getType()->getScalarSizeInBits() < TypeSize;
220 }
221 
222 /// Return true if the given value is a source in the use-def chain, producing
223 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
224 /// of the tree to i32. We guarantee that these won't populate the upper bits
225 /// of the register. ZExt on the loads will be free, and the same for call
226 /// return values because we only accept ones that guarantee a zeroext ret val.
227 /// Many arguments will have the zeroext attribute too, so those would be free
228 /// too.
229 bool TypePromotion::isSource(Value *V) {
230   if (!isa<IntegerType>(V->getType()))
231     return false;
232 
233   // TODO Allow zext to be sources.
234   if (isa<Argument>(V))
235     return true;
236   else if (isa<LoadInst>(V))
237     return true;
238   else if (isa<BitCastInst>(V))
239     return true;
240   else if (auto *Call = dyn_cast<CallInst>(V))
241     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
242   else if (auto *Trunc = dyn_cast<TruncInst>(V))
243     return EqualTypeSize(Trunc);
244   return false;
245 }
246 
247 /// Return true if V will require any promoted values to be truncated for the
248 /// the IR to remain valid. We can't mutate the value type of these
249 /// instructions.
250 bool TypePromotion::isSink(Value *V) {
251   // TODO The truncate also isn't actually necessary because we would already
252   // proved that the data value is kept within the range of the original data
253   // type.
254 
255   // Sinks are:
256   // - points where the value in the register is being observed, such as an
257   //   icmp, switch or store.
258   // - points where value types have to match, such as calls and returns.
259   // - zext are included to ease the transformation and are generally removed
260   //   later on.
261   if (auto *Store = dyn_cast<StoreInst>(V))
262     return LessOrEqualTypeSize(Store->getValueOperand());
263   if (auto *Return = dyn_cast<ReturnInst>(V))
264     return LessOrEqualTypeSize(Return->getReturnValue());
265   if (auto *ZExt = dyn_cast<ZExtInst>(V))
266     return GreaterThanTypeSize(ZExt);
267   if (auto *Switch = dyn_cast<SwitchInst>(V))
268     return LessThanTypeSize(Switch->getCondition());
269   if (auto *ICmp = dyn_cast<ICmpInst>(V))
270     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
271 
272   return isa<CallInst>(V);
273 }
274 
275 /// Return whether this instruction can safely wrap.
276 bool TypePromotion::isSafeWrap(Instruction *I) {
277   // We can support a, potentially, wrapping instruction (I) if:
278   // - It is only used by an unsigned icmp.
279   // - The icmp uses a constant.
280   // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
281   //   around zero to become a larger number than before.
282   // - The wrapping instruction (I) also uses a constant.
283   //
284   // We can then use the two constants to calculate whether the result would
285   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
286   // just underflows the range, the icmp would give the same result whether the
287   // result has been truncated or not. We calculate this by:
288   // - Zero extending both constants, if needed, to 32-bits.
289   // - Take the absolute value of I's constant, adding this to the icmp const.
290   // - Check that this value is not out of range for small type. If it is, it
291   //   means that it has underflowed enough to wrap around the icmp constant.
292   //
293   // For example:
294   //
295   // %sub = sub i8 %a, 2
296   // %cmp = icmp ule i8 %sub, 254
297   //
298   // If %a = 0, %sub = -2 == FE == 254
299   // But if this is evalulated as a i32
300   // %sub = -2 == FF FF FF FE == 4294967294
301   // So the unsigned compares (i8 and i32) would not yield the same result.
302   //
303   // Another way to look at it is:
304   // %a - 2 <= 254
305   // %a + 2 <= 254 + 2
306   // %a <= 256
307   // And we can't represent 256 in the i8 format, so we don't support it.
308   //
309   // Whereas:
310   //
311   // %sub i8 %a, 1
312   // %cmp = icmp ule i8 %sub, 254
313   //
314   // If %a = 0, %sub = -1 == FF == 255
315   // As i32:
316   // %sub = -1 == FF FF FF FF == 4294967295
317   //
318   // In this case, the unsigned compare results would be the same and this
319   // would also be true for ult, uge and ugt:
320   // - (255 < 254) == (0xFFFFFFFF < 254) == false
321   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
322   // - (255 > 254) == (0xFFFFFFFF > 254) == true
323   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
324   //
325   // To demonstrate why we can't handle increasing values:
326   //
327   // %add = add i8 %a, 2
328   // %cmp = icmp ult i8 %add, 127
329   //
330   // If %a = 254, %add = 256 == (i8 1)
331   // As i32:
332   // %add = 256
333   //
334   // (1 < 127) != (256 < 127)
335 
336   unsigned Opc = I->getOpcode();
337   if (Opc != Instruction::Add && Opc != Instruction::Sub)
338     return false;
339 
340   if (!I->hasOneUse() ||
341       !isa<ICmpInst>(*I->user_begin()) ||
342       !isa<ConstantInt>(I->getOperand(1)))
343     return false;
344 
345   ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
346   bool NegImm = OverflowConst->isNegative();
347   bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
348                        ((Opc == Instruction::Add) && NegImm);
349   if (!IsDecreasing)
350     return false;
351 
352   // Don't support an icmp that deals with sign bits.
353   auto *CI = cast<ICmpInst>(*I->user_begin());
354   if (CI->isSigned() || CI->isEquality())
355     return false;
356 
357   ConstantInt *ICmpConst = nullptr;
358   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
359     ICmpConst = Const;
360   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
361     ICmpConst = Const;
362   else
363     return false;
364 
365   // Now check that the result can't wrap on itself.
366   APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
367     ICmpConst->getValue().zext(32) : ICmpConst->getValue();
368 
369   Total += OverflowConst->getValue().getBitWidth() < 32 ?
370     OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
371 
372   APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
373 
374   if (Total.getBitWidth() > Max.getBitWidth()) {
375     if (Total.ugt(Max.zext(Total.getBitWidth())))
376       return false;
377   } else if (Max.getBitWidth() > Total.getBitWidth()) {
378     if (Total.zext(Max.getBitWidth()).ugt(Max))
379       return false;
380   } else if (Total.ugt(Max))
381     return false;
382 
383   LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
384              << *I << "\n");
385   SafeWrap.insert(I);
386   return true;
387 }
388 
389 bool TypePromotion::shouldPromote(Value *V) {
390   if (!isa<IntegerType>(V->getType()) || isSink(V))
391     return false;
392 
393   if (isSource(V))
394     return true;
395 
396   auto *I = dyn_cast<Instruction>(V);
397   if (!I)
398     return false;
399 
400   if (isa<ICmpInst>(I))
401     return false;
402 
403   return true;
404 }
405 
406 /// Return whether we can safely mutate V's type to ExtTy without having to be
407 /// concerned with zero extending or truncation.
408 static bool isPromotedResultSafe(Value *V) {
409   if (GenerateSignBits(V))
410     return false;
411 
412   if (!isa<Instruction>(V))
413     return true;
414 
415   if (!isa<OverflowingBinaryOperator>(V))
416     return true;
417 
418   return cast<Instruction>(V)->hasNoUnsignedWrap();
419 }
420 
421 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
422   SmallVector<Instruction*, 4> Users;
423   Instruction *InstTo = dyn_cast<Instruction>(To);
424   bool ReplacedAll = true;
425 
426   LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
427              << "\n");
428 
429   for (Use &U : From->uses()) {
430     auto *User = cast<Instruction>(U.getUser());
431     if (InstTo && User->isIdenticalTo(InstTo)) {
432       ReplacedAll = false;
433       continue;
434     }
435     Users.push_back(User);
436   }
437 
438   for (auto *U : Users)
439     U->replaceUsesOfWith(From, To);
440 
441   if (ReplacedAll)
442     if (auto *I = dyn_cast<Instruction>(From))
443       InstsToRemove.insert(I);
444 }
445 
446 void IRPromoter::PrepareWrappingAdds() {
447   LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
448   IRBuilder<> Builder{Ctx};
449 
450   // For adds that safely wrap and use a negative immediate as operand 1, we
451   // create an equivalent instruction using a positive immediate.
452   // That positive immediate can then be zext along with all the other
453   // immediates later.
454   for (auto *I : *SafeWrap) {
455     if (I->getOpcode() != Instruction::Add)
456       continue;
457 
458     LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
459     assert((isa<ConstantInt>(I->getOperand(1)) &&
460             cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
461            "Wrapping should have a negative immediate as the second operand");
462 
463     auto Const = cast<ConstantInt>(I->getOperand(1));
464     auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
465     Builder.SetInsertPoint(I);
466     Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
467     if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
468       NewInst->copyIRFlags(I);
469       NewInsts.insert(NewInst);
470     }
471     InstsToRemove.insert(I);
472     I->replaceAllUsesWith(NewVal);
473     LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
474   }
475   for (auto *I : NewInsts)
476     Visited->insert(I);
477 }
478 
479 void IRPromoter::ExtendSources() {
480   IRBuilder<> Builder{Ctx};
481 
482   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
483     assert(V->getType() != ExtTy && "zext already extends to i32");
484     LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
485     Builder.SetInsertPoint(InsertPt);
486     if (auto *I = dyn_cast<Instruction>(V))
487       Builder.SetCurrentDebugLocation(I->getDebugLoc());
488 
489     Value *ZExt = Builder.CreateZExt(V, ExtTy);
490     if (auto *I = dyn_cast<Instruction>(ZExt)) {
491       if (isa<Argument>(V))
492         I->moveBefore(InsertPt);
493       else
494         I->moveAfter(InsertPt);
495       NewInsts.insert(I);
496     }
497 
498     ReplaceAllUsersOfWith(V, ZExt);
499   };
500 
501   // Now, insert extending instructions between the sources and their users.
502   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
503   for (auto V : *Sources) {
504     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
505     if (auto *I = dyn_cast<Instruction>(V))
506       InsertZExt(I, I);
507     else if (auto *Arg = dyn_cast<Argument>(V)) {
508       BasicBlock &BB = Arg->getParent()->front();
509       InsertZExt(Arg, &*BB.getFirstInsertionPt());
510     } else {
511       llvm_unreachable("unhandled source that needs extending");
512     }
513     Promoted.insert(V);
514   }
515 }
516 
517 void IRPromoter::PromoteTree() {
518   LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
519 
520   IRBuilder<> Builder{Ctx};
521 
522   // Mutate the types of the instructions within the tree. Here we handle
523   // constant operands.
524   for (auto *V : *Visited) {
525     if (Sources->count(V))
526       continue;
527 
528     auto *I = cast<Instruction>(V);
529     if (Sinks->count(I))
530       continue;
531 
532     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
533       Value *Op = I->getOperand(i);
534       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
535         continue;
536 
537       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
538         Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
539         I->setOperand(i, NewConst);
540       } else if (isa<UndefValue>(Op))
541         I->setOperand(i, UndefValue::get(ExtTy));
542     }
543 
544     // Mutate the result type, unless this is an icmp.
545     if (!isa<ICmpInst>(I)) {
546       I->mutateType(ExtTy);
547       Promoted.insert(I);
548     }
549   }
550 }
551 
552 void IRPromoter::TruncateSinks() {
553   LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
554 
555   IRBuilder<> Builder{Ctx};
556 
557   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
558     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
559       return nullptr;
560 
561     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
562       return nullptr;
563 
564     LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
565                << *V << "\n");
566     Builder.SetInsertPoint(cast<Instruction>(V));
567     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
568     if (Trunc)
569       NewInsts.insert(Trunc);
570     return Trunc;
571   };
572 
573   // Fix up any stores or returns that use the results of the promoted
574   // chain.
575   for (auto I : *Sinks) {
576     LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
577 
578     // Handle calls separately as we need to iterate over arg operands.
579     if (auto *Call = dyn_cast<CallInst>(I)) {
580       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
581         Value *Arg = Call->getArgOperand(i);
582         Type *Ty = TruncTysMap[Call][i];
583         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
584           Trunc->moveBefore(Call);
585           Call->setArgOperand(i, Trunc);
586         }
587       }
588       continue;
589     }
590 
591     // Special case switches because we need to truncate the condition.
592     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
593       Type *Ty = TruncTysMap[Switch][0];
594       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
595         Trunc->moveBefore(Switch);
596         Switch->setCondition(Trunc);
597       }
598       continue;
599     }
600 
601     // Now handle the others.
602     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
603       Type *Ty = TruncTysMap[I][i];
604       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
605         Trunc->moveBefore(I);
606         I->setOperand(i, Trunc);
607       }
608     }
609   }
610 }
611 
612 void IRPromoter::Cleanup() {
613   LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
614   // Some zexts will now have become redundant, along with their trunc
615   // operands, so remove them
616   for (auto V : *Visited) {
617     if (!isa<ZExtInst>(V))
618       continue;
619 
620     auto ZExt = cast<ZExtInst>(V);
621     if (ZExt->getDestTy() != ExtTy)
622       continue;
623 
624     Value *Src = ZExt->getOperand(0);
625     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
626       LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
627                  << "\n");
628       ReplaceAllUsersOfWith(ZExt, Src);
629       continue;
630     }
631 
632     // Unless they produce a value that is narrower than ExtTy, we can
633     // replace the result of the zext with the input of a newly inserted
634     // trunc.
635     if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
636         Src->getType() == OrigTy) {
637       auto *Trunc = cast<TruncInst>(Src);
638       assert(Trunc->getOperand(0)->getType() == ExtTy &&
639              "expected inserted trunc to be operating on i32");
640       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
641     }
642   }
643 
644   for (auto *I : InstsToRemove) {
645     LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
646     I->dropAllReferences();
647     I->eraseFromParent();
648   }
649 }
650 
651 void IRPromoter::ConvertTruncs() {
652   LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
653   IRBuilder<> Builder{Ctx};
654 
655   for (auto *V : *Visited) {
656     if (!isa<TruncInst>(V) || Sources->count(V))
657       continue;
658 
659     auto *Trunc = cast<TruncInst>(V);
660     Builder.SetInsertPoint(Trunc);
661     IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
662     IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
663 
664     unsigned NumBits = DestTy->getScalarSizeInBits();
665     ConstantInt *Mask =
666       ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
667     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
668 
669     if (auto *I = dyn_cast<Instruction>(Masked))
670       NewInsts.insert(I);
671 
672     ReplaceAllUsersOfWith(Trunc, Masked);
673   }
674 }
675 
676 void IRPromoter::Mutate(SetVector<Value*> &Visited,
677                         SmallPtrSetImpl<Value*> &Sources,
678                         SmallPtrSetImpl<Instruction*> &Sinks,
679                         SmallPtrSetImpl<Instruction*> &SafeToPromote,
680                         SmallPtrSetImpl<Instruction*> &SafeWrap) {
681   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
682              << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n");
683 
684   this->Visited = &Visited;
685   this->Sources = &Sources;
686   this->Sinks = &Sinks;
687   this->SafeToPromote = &SafeToPromote;
688   this->SafeWrap = &SafeWrap;
689 
690   // Cache original types of the values that will likely need truncating
691   for (auto *I : Sinks) {
692     if (auto *Call = dyn_cast<CallInst>(I)) {
693       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
694         Value *Arg = Call->getArgOperand(i);
695         TruncTysMap[Call].push_back(Arg->getType());
696       }
697     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
698       TruncTysMap[I].push_back(Switch->getCondition()->getType());
699     else {
700       for (unsigned i = 0; i < I->getNumOperands(); ++i)
701         TruncTysMap[I].push_back(I->getOperand(i)->getType());
702     }
703   }
704   for (auto *V : Visited) {
705     if (!isa<TruncInst>(V) || Sources.count(V))
706       continue;
707     auto *Trunc = cast<TruncInst>(V);
708     TruncTysMap[Trunc].push_back(Trunc->getDestTy());
709   }
710 
711   // Convert adds using negative immediates to equivalent instructions that use
712   // positive constants.
713   PrepareWrappingAdds();
714 
715   // Insert zext instructions between sources and their users.
716   ExtendSources();
717 
718   // Promote visited instructions, mutating their types in place.
719   PromoteTree();
720 
721   // Convert any truncs, that aren't sources, into AND masks.
722   ConvertTruncs();
723 
724   // Insert trunc instructions for use by calls, stores etc...
725   TruncateSinks();
726 
727   // Finally, remove unecessary zexts and truncs, delete old instructions and
728   // clear the data structures.
729   Cleanup();
730 
731   LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
732 }
733 
734 /// We disallow booleans to make life easier when dealing with icmps but allow
735 /// any other integer that fits in a scalar register. Void types are accepted
736 /// so we can handle switches.
737 bool TypePromotion::isSupportedType(Value *V) {
738   Type *Ty = V->getType();
739 
740   // Allow voids and pointers, these won't be promoted.
741   if (Ty->isVoidTy() || Ty->isPointerTy())
742     return true;
743 
744   if (!isa<IntegerType>(Ty) ||
745       cast<IntegerType>(Ty)->getBitWidth() == 1 ||
746       cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
747     return false;
748 
749   return LessOrEqualTypeSize(V);
750 }
751 
752 /// We accept most instructions, as well as Arguments and ConstantInsts. We
753 /// Disallow casts other than zext and truncs and only allow calls if their
754 /// return value is zeroext. We don't allow opcodes that can introduce sign
755 /// bits.
756 bool TypePromotion::isSupportedValue(Value *V) {
757   if (auto *I = dyn_cast<Instruction>(V)) {
758     switch (I->getOpcode()) {
759     default:
760       return isa<BinaryOperator>(I) && isSupportedType(I) &&
761              !GenerateSignBits(I);
762     case Instruction::GetElementPtr:
763     case Instruction::Store:
764     case Instruction::Br:
765     case Instruction::Switch:
766       return true;
767     case Instruction::PHI:
768     case Instruction::Select:
769     case Instruction::Ret:
770     case Instruction::Load:
771     case Instruction::Trunc:
772     case Instruction::BitCast:
773       return isSupportedType(I);
774     case Instruction::ZExt:
775       return isSupportedType(I->getOperand(0));
776     case Instruction::ICmp:
777       // Now that we allow small types than TypeSize, only allow icmp of
778       // TypeSize because they will require a trunc to be legalised.
779       // TODO: Allow icmp of smaller types, and calculate at the end
780       // whether the transform would be beneficial.
781       if (isa<PointerType>(I->getOperand(0)->getType()))
782         return true;
783       return EqualTypeSize(I->getOperand(0));
784     case Instruction::Call: {
785       // Special cases for calls as we need to check for zeroext
786       // TODO We should accept calls even if they don't have zeroext, as they
787       // can still be sinks.
788       auto *Call = cast<CallInst>(I);
789       return isSupportedType(Call) &&
790              Call->hasRetAttr(Attribute::AttrKind::ZExt);
791     }
792     }
793   } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
794     return isSupportedType(V);
795   } else if (isa<Argument>(V))
796     return isSupportedType(V);
797 
798   return isa<BasicBlock>(V);
799 }
800 
801 /// Check that the type of V would be promoted and that the original type is
802 /// smaller than the targeted promoted type. Check that we're not trying to
803 /// promote something larger than our base 'TypeSize' type.
804 bool TypePromotion::isLegalToPromote(Value *V) {
805 
806   auto *I = dyn_cast<Instruction>(V);
807   if (!I)
808     return true;
809 
810   if (SafeToPromote.count(I))
811    return true;
812 
813   if (isPromotedResultSafe(V) || isSafeWrap(I)) {
814     SafeToPromote.insert(I);
815     return true;
816   }
817   return false;
818 }
819 
820 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
821   Type *OrigTy = V->getType();
822   TypeSize = OrigTy->getPrimitiveSizeInBits();
823   SafeToPromote.clear();
824   SafeWrap.clear();
825 
826   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
827     return false;
828 
829   LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
830              << TypeSize << " bits to " << PromotedWidth << "\n");
831 
832   SetVector<Value*> WorkList;
833   SmallPtrSet<Value*, 8> Sources;
834   SmallPtrSet<Instruction*, 4> Sinks;
835   SetVector<Value*> CurrentVisited;
836   WorkList.insert(V);
837 
838   // Return true if V was added to the worklist as a supported instruction,
839   // if it was already visited, or if we don't need to explore it (e.g.
840   // pointer values and GEPs), and false otherwise.
841   auto AddLegalInst = [&](Value *V) {
842     if (CurrentVisited.count(V))
843       return true;
844 
845     // Ignore GEPs because they don't need promoting and the constant indices
846     // will prevent the transformation.
847     if (isa<GetElementPtrInst>(V))
848       return true;
849 
850     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
851       LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
852       return false;
853     }
854 
855     WorkList.insert(V);
856     return true;
857   };
858 
859   // Iterate through, and add to, a tree of operands and users in the use-def.
860   while (!WorkList.empty()) {
861     Value *V = WorkList.back();
862     WorkList.pop_back();
863     if (CurrentVisited.count(V))
864       continue;
865 
866     // Ignore non-instructions, other than arguments.
867     if (!isa<Instruction>(V) && !isSource(V))
868       continue;
869 
870     // If we've already visited this value from somewhere, bail now because
871     // the tree has already been explored.
872     // TODO: This could limit the transform, ie if we try to promote something
873     // from an i8 and fail first, before trying an i16.
874     if (AllVisited.count(V))
875       return false;
876 
877     CurrentVisited.insert(V);
878     AllVisited.insert(V);
879 
880     // Calls can be both sources and sinks.
881     if (isSink(V))
882       Sinks.insert(cast<Instruction>(V));
883 
884     if (isSource(V))
885       Sources.insert(V);
886 
887     if (!isSink(V) && !isSource(V)) {
888       if (auto *I = dyn_cast<Instruction>(V)) {
889         // Visit operands of any instruction visited.
890         for (auto &U : I->operands()) {
891           if (!AddLegalInst(U))
892             return false;
893         }
894       }
895     }
896 
897     // Don't visit users of a node which isn't going to be mutated unless its a
898     // source.
899     if (isSource(V) || shouldPromote(V)) {
900       for (Use &U : V->uses()) {
901         if (!AddLegalInst(U.getUser()))
902           return false;
903       }
904     }
905   }
906 
907   LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
908              for (auto *I : CurrentVisited)
909                I->dump();
910              );
911 
912   unsigned ToPromote = 0;
913   unsigned NonFreeArgs = 0;
914   SmallPtrSet<BasicBlock*, 4> Blocks;
915   for (auto *V : CurrentVisited) {
916     if (auto *I = dyn_cast<Instruction>(V))
917       Blocks.insert(I->getParent());
918 
919     if (Sources.count(V)) {
920       if (auto *Arg = dyn_cast<Argument>(V))
921         if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
922           ++NonFreeArgs;
923       continue;
924     }
925 
926     if (Sinks.count(cast<Instruction>(V)))
927       continue;
928      ++ToPromote;
929    }
930 
931   // DAG optimisations should be able to handle these cases better, especially
932   // for function arguments.
933   if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
934     return false;
935 
936   if (ToPromote < 2)
937     return false;
938 
939   IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth);
940   Promoter.Mutate(CurrentVisited, Sources, Sinks, SafeToPromote, SafeWrap);
941   return true;
942 }
943 
944 bool TypePromotion::runOnFunction(Function &F) {
945   if (skipFunction(F) || DisablePromotion)
946     return false;
947 
948   LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
949 
950   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
951   if (!TPC)
952     return false;
953 
954   bool MadeChange = false;
955   const DataLayout &DL = F.getParent()->getDataLayout();
956   const TargetMachine &TM = TPC->getTM<TargetMachine>();
957   const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
958   const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
959   const TargetTransformInfo &TII =
960     getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
961   RegisterBitWidth = TII.getRegisterBitWidth(false);
962   Ctx = &F.getParent()->getContext();
963 
964   // Search up from icmps to try to promote their operands.
965   for (BasicBlock &BB : F) {
966     for (auto &I : BB) {
967       if (AllVisited.count(&I))
968         continue;
969 
970       if (!isa<ICmpInst>(&I))
971         continue;
972 
973       auto *ICmp = cast<ICmpInst>(&I);
974       // Skip signed or pointer compares
975       if (ICmp->isSigned() ||
976           !isa<IntegerType>(ICmp->getOperand(0)->getType()))
977         continue;
978 
979       LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
980 
981       for (auto &Op : ICmp->operands()) {
982         if (auto *I = dyn_cast<Instruction>(Op)) {
983           EVT SrcVT = TLI->getValueType(DL, I->getType());
984           if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
985             break;
986 
987           if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
988               TargetLowering::TypePromoteInteger)
989             break;
990 
991           EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
992           if (RegisterBitWidth < PromotedVT.getSizeInBits()) {
993             LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
994                        << "for promoted type\n");
995             break;
996           }
997 
998           MadeChange |= TryToPromote(I, PromotedVT.getSizeInBits());
999           break;
1000         }
1001       }
1002     }
1003     LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
1004                 dbgs() << F;
1005                 report_fatal_error("Broken function after type promotion");
1006                });
1007   }
1008   if (MadeChange)
1009     LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
1010 
1011   return MadeChange;
1012 }
1013 
1014 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1015 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1016 
1017 char TypePromotion::ID = 0;
1018 
1019 FunctionPass *llvm::createTypePromotionPass() {
1020   return new TypePromotion();
1021 }
1022