1 //===----- TypePromotion.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is an opcode based type promotion pass for small types that would 11 /// otherwise be promoted during legalisation. This works around the limitations 12 /// of selection dag for cyclic regions. The search begins from icmp 13 /// instructions operands where a tree, consisting of non-wrapping or safe 14 /// wrapping instructions, is built, checked and promoted if possible. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/CodeGen/Passes.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Target/TargetMachine.h" 41 42 #define DEBUG_TYPE "type-promotion" 43 #define PASS_NAME "Type Promotion" 44 45 using namespace llvm; 46 47 static cl::opt<bool> 48 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false), 49 cl::desc("Disable type promotion pass")); 50 51 // The goal of this pass is to enable more efficient code generation for 52 // operations on narrow types (i.e. types with < 32-bits) and this is a 53 // motivating IR code example: 54 // 55 // define hidden i32 @cmp(i8 zeroext) { 56 // %2 = add i8 %0, -49 57 // %3 = icmp ult i8 %2, 3 58 // .. 59 // } 60 // 61 // The issue here is that i8 is type-legalized to i32 because i8 is not a 62 // legal type. Thus, arithmetic is done in integer-precision, but then the 63 // byte value is masked out as follows: 64 // 65 // t19: i32 = add t4, Constant:i32<-49> 66 // t24: i32 = and t19, Constant:i32<255> 67 // 68 // Consequently, we generate code like this: 69 // 70 // subs r0, #49 71 // uxtb r1, r0 72 // cmp r1, #3 73 // 74 // This shows that masking out the byte value results in generation of 75 // the UXTB instruction. This is not optimal as r0 already contains the byte 76 // value we need, and so instead we can just generate: 77 // 78 // sub.w r1, r0, #49 79 // cmp r1, #3 80 // 81 // We achieve this by type promoting the IR to i32 like so for this example: 82 // 83 // define i32 @cmp(i8 zeroext %c) { 84 // %0 = zext i8 %c to i32 85 // %c.off = add i32 %0, -49 86 // %1 = icmp ult i32 %c.off, 3 87 // .. 88 // } 89 // 90 // For this to be valid and legal, we need to prove that the i32 add is 91 // producing the same value as the i8 addition, and that e.g. no overflow 92 // happens. 93 // 94 // A brief sketch of the algorithm and some terminology. 95 // We pattern match interesting IR patterns: 96 // - which have "sources": instructions producing narrow values (i8, i16), and 97 // - they have "sinks": instructions consuming these narrow values. 98 // 99 // We collect all instruction connecting sources and sinks in a worklist, so 100 // that we can mutate these instruction and perform type promotion when it is 101 // legal to do so. 102 103 namespace { 104 class IRPromoter { 105 LLVMContext &Ctx; 106 IntegerType *OrigTy = nullptr; 107 unsigned PromotedWidth = 0; 108 SetVector<Value*> &Visited; 109 SetVector<Value*> &Sources; 110 SetVector<Instruction*> &Sinks; 111 SmallVectorImpl<Instruction*> &SafeWrap; 112 IntegerType *ExtTy = nullptr; 113 SmallPtrSet<Value*, 8> NewInsts; 114 SmallPtrSet<Instruction*, 4> InstsToRemove; 115 DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap; 116 SmallPtrSet<Value*, 8> Promoted; 117 118 void ReplaceAllUsersOfWith(Value *From, Value *To); 119 void PrepareWrappingAdds(void); 120 void ExtendSources(void); 121 void ConvertTruncs(void); 122 void PromoteTree(void); 123 void TruncateSinks(void); 124 void Cleanup(void); 125 126 public: 127 IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width, 128 SetVector<Value*> &visited, SetVector<Value*> &sources, 129 SetVector<Instruction*> &sinks, 130 SmallVectorImpl<Instruction*> &wrap) : 131 Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited), 132 Sources(sources), Sinks(sinks), SafeWrap(wrap) { 133 ExtTy = IntegerType::get(Ctx, PromotedWidth); 134 assert(OrigTy->getPrimitiveSizeInBits().getFixedSize() < 135 ExtTy->getPrimitiveSizeInBits().getFixedSize() && 136 "Original type not smaller than extended type"); 137 } 138 139 void Mutate(); 140 }; 141 142 class TypePromotion : public FunctionPass { 143 unsigned TypeSize = 0; 144 LLVMContext *Ctx = nullptr; 145 unsigned RegisterBitWidth = 0; 146 SmallPtrSet<Value*, 16> AllVisited; 147 SmallPtrSet<Instruction*, 8> SafeToPromote; 148 SmallVector<Instruction*, 4> SafeWrap; 149 150 // Does V have the same size result type as TypeSize. 151 bool EqualTypeSize(Value *V); 152 // Does V have the same size, or narrower, result type as TypeSize. 153 bool LessOrEqualTypeSize(Value *V); 154 // Does V have a result type that is wider than TypeSize. 155 bool GreaterThanTypeSize(Value *V); 156 // Does V have a result type that is narrower than TypeSize. 157 bool LessThanTypeSize(Value *V); 158 // Should V be a leaf in the promote tree? 159 bool isSource(Value *V); 160 // Should V be a root in the promotion tree? 161 bool isSink(Value *V); 162 // Should we change the result type of V? It will result in the users of V 163 // being visited. 164 bool shouldPromote(Value *V); 165 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping 166 // result won't affect the computation? 167 bool isSafeWrap(Instruction *I); 168 // Can V have its integer type promoted, or can the type be ignored. 169 bool isSupportedType(Value *V); 170 // Is V an instruction with a supported opcode or another value that we can 171 // handle, such as constants and basic blocks. 172 bool isSupportedValue(Value *V); 173 // Is V an instruction thats result can trivially promoted, or has safe 174 // wrapping. 175 bool isLegalToPromote(Value *V); 176 bool TryToPromote(Value *V, unsigned PromotedWidth); 177 178 public: 179 static char ID; 180 181 TypePromotion() : FunctionPass(ID) {} 182 183 void getAnalysisUsage(AnalysisUsage &AU) const override { 184 AU.addRequired<TargetTransformInfoWrapperPass>(); 185 AU.addRequired<TargetPassConfig>(); 186 } 187 188 StringRef getPassName() const override { return PASS_NAME; } 189 190 bool runOnFunction(Function &F) override; 191 }; 192 193 } 194 195 static bool GenerateSignBits(Instruction *I) { 196 unsigned Opc = I->getOpcode(); 197 return Opc == Instruction::AShr || Opc == Instruction::SDiv || 198 Opc == Instruction::SRem || Opc == Instruction::SExt; 199 } 200 201 bool TypePromotion::EqualTypeSize(Value *V) { 202 return V->getType()->getScalarSizeInBits() == TypeSize; 203 } 204 205 bool TypePromotion::LessOrEqualTypeSize(Value *V) { 206 return V->getType()->getScalarSizeInBits() <= TypeSize; 207 } 208 209 bool TypePromotion::GreaterThanTypeSize(Value *V) { 210 return V->getType()->getScalarSizeInBits() > TypeSize; 211 } 212 213 bool TypePromotion::LessThanTypeSize(Value *V) { 214 return V->getType()->getScalarSizeInBits() < TypeSize; 215 } 216 217 /// Return true if the given value is a source in the use-def chain, producing 218 /// a narrow 'TypeSize' value. These values will be zext to start the promotion 219 /// of the tree to i32. We guarantee that these won't populate the upper bits 220 /// of the register. ZExt on the loads will be free, and the same for call 221 /// return values because we only accept ones that guarantee a zeroext ret val. 222 /// Many arguments will have the zeroext attribute too, so those would be free 223 /// too. 224 bool TypePromotion::isSource(Value *V) { 225 if (!isa<IntegerType>(V->getType())) 226 return false; 227 228 // TODO Allow zext to be sources. 229 if (isa<Argument>(V)) 230 return true; 231 else if (isa<LoadInst>(V)) 232 return true; 233 else if (isa<BitCastInst>(V)) 234 return true; 235 else if (auto *Call = dyn_cast<CallInst>(V)) 236 return Call->hasRetAttr(Attribute::AttrKind::ZExt); 237 else if (auto *Trunc = dyn_cast<TruncInst>(V)) 238 return EqualTypeSize(Trunc); 239 return false; 240 } 241 242 /// Return true if V will require any promoted values to be truncated for the 243 /// the IR to remain valid. We can't mutate the value type of these 244 /// instructions. 245 bool TypePromotion::isSink(Value *V) { 246 // TODO The truncate also isn't actually necessary because we would already 247 // proved that the data value is kept within the range of the original data 248 // type. 249 250 // Sinks are: 251 // - points where the value in the register is being observed, such as an 252 // icmp, switch or store. 253 // - points where value types have to match, such as calls and returns. 254 // - zext are included to ease the transformation and are generally removed 255 // later on. 256 if (auto *Store = dyn_cast<StoreInst>(V)) 257 return LessOrEqualTypeSize(Store->getValueOperand()); 258 if (auto *Return = dyn_cast<ReturnInst>(V)) 259 return LessOrEqualTypeSize(Return->getReturnValue()); 260 if (auto *ZExt = dyn_cast<ZExtInst>(V)) 261 return GreaterThanTypeSize(ZExt); 262 if (auto *Switch = dyn_cast<SwitchInst>(V)) 263 return LessThanTypeSize(Switch->getCondition()); 264 if (auto *ICmp = dyn_cast<ICmpInst>(V)) 265 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0)); 266 267 return isa<CallInst>(V); 268 } 269 270 /// Return whether this instruction can safely wrap. 271 bool TypePromotion::isSafeWrap(Instruction *I) { 272 // We can support a, potentially, wrapping instruction (I) if: 273 // - It is only used by an unsigned icmp. 274 // - The icmp uses a constant. 275 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping 276 // around zero to become a larger number than before. 277 // - The wrapping instruction (I) also uses a constant. 278 // 279 // We can then use the two constants to calculate whether the result would 280 // wrap in respect to itself in the original bitwidth. If it doesn't wrap, 281 // just underflows the range, the icmp would give the same result whether the 282 // result has been truncated or not. We calculate this by: 283 // - Zero extending both constants, if needed, to 32-bits. 284 // - Take the absolute value of I's constant, adding this to the icmp const. 285 // - Check that this value is not out of range for small type. If it is, it 286 // means that it has underflowed enough to wrap around the icmp constant. 287 // 288 // For example: 289 // 290 // %sub = sub i8 %a, 2 291 // %cmp = icmp ule i8 %sub, 254 292 // 293 // If %a = 0, %sub = -2 == FE == 254 294 // But if this is evalulated as a i32 295 // %sub = -2 == FF FF FF FE == 4294967294 296 // So the unsigned compares (i8 and i32) would not yield the same result. 297 // 298 // Another way to look at it is: 299 // %a - 2 <= 254 300 // %a + 2 <= 254 + 2 301 // %a <= 256 302 // And we can't represent 256 in the i8 format, so we don't support it. 303 // 304 // Whereas: 305 // 306 // %sub i8 %a, 1 307 // %cmp = icmp ule i8 %sub, 254 308 // 309 // If %a = 0, %sub = -1 == FF == 255 310 // As i32: 311 // %sub = -1 == FF FF FF FF == 4294967295 312 // 313 // In this case, the unsigned compare results would be the same and this 314 // would also be true for ult, uge and ugt: 315 // - (255 < 254) == (0xFFFFFFFF < 254) == false 316 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false 317 // - (255 > 254) == (0xFFFFFFFF > 254) == true 318 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true 319 // 320 // To demonstrate why we can't handle increasing values: 321 // 322 // %add = add i8 %a, 2 323 // %cmp = icmp ult i8 %add, 127 324 // 325 // If %a = 254, %add = 256 == (i8 1) 326 // As i32: 327 // %add = 256 328 // 329 // (1 < 127) != (256 < 127) 330 331 unsigned Opc = I->getOpcode(); 332 if (Opc != Instruction::Add && Opc != Instruction::Sub) 333 return false; 334 335 if (!I->hasOneUse() || 336 !isa<ICmpInst>(*I->user_begin()) || 337 !isa<ConstantInt>(I->getOperand(1))) 338 return false; 339 340 ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1)); 341 bool NegImm = OverflowConst->isNegative(); 342 bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) || 343 ((Opc == Instruction::Add) && NegImm); 344 if (!IsDecreasing) 345 return false; 346 347 // Don't support an icmp that deals with sign bits. 348 auto *CI = cast<ICmpInst>(*I->user_begin()); 349 if (CI->isSigned() || CI->isEquality()) 350 return false; 351 352 ConstantInt *ICmpConst = nullptr; 353 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0))) 354 ICmpConst = Const; 355 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1))) 356 ICmpConst = Const; 357 else 358 return false; 359 360 // Now check that the result can't wrap on itself. 361 APInt Total = ICmpConst->getValue().getBitWidth() < 32 ? 362 ICmpConst->getValue().zext(32) : ICmpConst->getValue(); 363 364 Total += OverflowConst->getValue().getBitWidth() < 32 ? 365 OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs(); 366 367 APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize); 368 369 if (Total.getBitWidth() > Max.getBitWidth()) { 370 if (Total.ugt(Max.zext(Total.getBitWidth()))) 371 return false; 372 } else if (Max.getBitWidth() > Total.getBitWidth()) { 373 if (Total.zext(Max.getBitWidth()).ugt(Max)) 374 return false; 375 } else if (Total.ugt(Max)) 376 return false; 377 378 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for " 379 << *I << "\n"); 380 SafeWrap.push_back(I); 381 return true; 382 } 383 384 bool TypePromotion::shouldPromote(Value *V) { 385 if (!isa<IntegerType>(V->getType()) || isSink(V)) 386 return false; 387 388 if (isSource(V)) 389 return true; 390 391 auto *I = dyn_cast<Instruction>(V); 392 if (!I) 393 return false; 394 395 if (isa<ICmpInst>(I)) 396 return false; 397 398 return true; 399 } 400 401 /// Return whether we can safely mutate V's type to ExtTy without having to be 402 /// concerned with zero extending or truncation. 403 static bool isPromotedResultSafe(Instruction *I) { 404 if (GenerateSignBits(I)) 405 return false; 406 407 if (!isa<OverflowingBinaryOperator>(I)) 408 return true; 409 410 return I->hasNoUnsignedWrap(); 411 } 412 413 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) { 414 SmallVector<Instruction*, 4> Users; 415 Instruction *InstTo = dyn_cast<Instruction>(To); 416 bool ReplacedAll = true; 417 418 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To 419 << "\n"); 420 421 for (Use &U : From->uses()) { 422 auto *User = cast<Instruction>(U.getUser()); 423 if (InstTo && User->isIdenticalTo(InstTo)) { 424 ReplacedAll = false; 425 continue; 426 } 427 Users.push_back(User); 428 } 429 430 for (auto *U : Users) 431 U->replaceUsesOfWith(From, To); 432 433 if (ReplacedAll) 434 if (auto *I = dyn_cast<Instruction>(From)) 435 InstsToRemove.insert(I); 436 } 437 438 void IRPromoter::PrepareWrappingAdds() { 439 LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n"); 440 IRBuilder<> Builder{Ctx}; 441 442 // For adds that safely wrap and use a negative immediate as operand 1, we 443 // create an equivalent instruction using a positive immediate. 444 // That positive immediate can then be zext along with all the other 445 // immediates later. 446 for (auto *I : SafeWrap) { 447 if (I->getOpcode() != Instruction::Add) 448 continue; 449 450 LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n"); 451 assert((isa<ConstantInt>(I->getOperand(1)) && 452 cast<ConstantInt>(I->getOperand(1))->isNegative()) && 453 "Wrapping should have a negative immediate as the second operand"); 454 455 auto Const = cast<ConstantInt>(I->getOperand(1)); 456 auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs()); 457 Builder.SetInsertPoint(I); 458 Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst); 459 if (auto *NewInst = dyn_cast<Instruction>(NewVal)) { 460 NewInst->copyIRFlags(I); 461 NewInsts.insert(NewInst); 462 } 463 InstsToRemove.insert(I); 464 I->replaceAllUsesWith(NewVal); 465 LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n"); 466 } 467 for (auto *I : NewInsts) 468 Visited.insert(I); 469 } 470 471 void IRPromoter::ExtendSources() { 472 IRBuilder<> Builder{Ctx}; 473 474 auto InsertZExt = [&](Value *V, Instruction *InsertPt) { 475 assert(V->getType() != ExtTy && "zext already extends to i32"); 476 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n"); 477 Builder.SetInsertPoint(InsertPt); 478 if (auto *I = dyn_cast<Instruction>(V)) 479 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 480 481 Value *ZExt = Builder.CreateZExt(V, ExtTy); 482 if (auto *I = dyn_cast<Instruction>(ZExt)) { 483 if (isa<Argument>(V)) 484 I->moveBefore(InsertPt); 485 else 486 I->moveAfter(InsertPt); 487 NewInsts.insert(I); 488 } 489 490 ReplaceAllUsersOfWith(V, ZExt); 491 }; 492 493 // Now, insert extending instructions between the sources and their users. 494 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n"); 495 for (auto V : Sources) { 496 LLVM_DEBUG(dbgs() << " - " << *V << "\n"); 497 if (auto *I = dyn_cast<Instruction>(V)) 498 InsertZExt(I, I); 499 else if (auto *Arg = dyn_cast<Argument>(V)) { 500 BasicBlock &BB = Arg->getParent()->front(); 501 InsertZExt(Arg, &*BB.getFirstInsertionPt()); 502 } else { 503 llvm_unreachable("unhandled source that needs extending"); 504 } 505 Promoted.insert(V); 506 } 507 } 508 509 void IRPromoter::PromoteTree() { 510 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n"); 511 512 IRBuilder<> Builder{Ctx}; 513 514 // Mutate the types of the instructions within the tree. Here we handle 515 // constant operands. 516 for (auto *V : Visited) { 517 if (Sources.count(V)) 518 continue; 519 520 auto *I = cast<Instruction>(V); 521 if (Sinks.count(I)) 522 continue; 523 524 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { 525 Value *Op = I->getOperand(i); 526 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType())) 527 continue; 528 529 if (auto *Const = dyn_cast<ConstantInt>(Op)) { 530 Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy); 531 I->setOperand(i, NewConst); 532 } else if (isa<UndefValue>(Op)) 533 I->setOperand(i, UndefValue::get(ExtTy)); 534 } 535 536 // Mutate the result type, unless this is an icmp or switch. 537 if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) { 538 I->mutateType(ExtTy); 539 Promoted.insert(I); 540 } 541 } 542 } 543 544 void IRPromoter::TruncateSinks() { 545 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n"); 546 547 IRBuilder<> Builder{Ctx}; 548 549 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* { 550 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType())) 551 return nullptr; 552 553 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V)) 554 return nullptr; 555 556 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for " 557 << *V << "\n"); 558 Builder.SetInsertPoint(cast<Instruction>(V)); 559 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy)); 560 if (Trunc) 561 NewInsts.insert(Trunc); 562 return Trunc; 563 }; 564 565 // Fix up any stores or returns that use the results of the promoted 566 // chain. 567 for (auto I : Sinks) { 568 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n"); 569 570 // Handle calls separately as we need to iterate over arg operands. 571 if (auto *Call = dyn_cast<CallInst>(I)) { 572 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) { 573 Value *Arg = Call->getArgOperand(i); 574 Type *Ty = TruncTysMap[Call][i]; 575 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) { 576 Trunc->moveBefore(Call); 577 Call->setArgOperand(i, Trunc); 578 } 579 } 580 continue; 581 } 582 583 // Special case switches because we need to truncate the condition. 584 if (auto *Switch = dyn_cast<SwitchInst>(I)) { 585 Type *Ty = TruncTysMap[Switch][0]; 586 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) { 587 Trunc->moveBefore(Switch); 588 Switch->setCondition(Trunc); 589 } 590 continue; 591 } 592 593 // Now handle the others. 594 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 595 Type *Ty = TruncTysMap[I][i]; 596 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) { 597 Trunc->moveBefore(I); 598 I->setOperand(i, Trunc); 599 } 600 } 601 } 602 } 603 604 void IRPromoter::Cleanup() { 605 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n"); 606 // Some zexts will now have become redundant, along with their trunc 607 // operands, so remove them 608 for (auto V : Visited) { 609 if (!isa<ZExtInst>(V)) 610 continue; 611 612 auto ZExt = cast<ZExtInst>(V); 613 if (ZExt->getDestTy() != ExtTy) 614 continue; 615 616 Value *Src = ZExt->getOperand(0); 617 if (ZExt->getSrcTy() == ZExt->getDestTy()) { 618 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt 619 << "\n"); 620 ReplaceAllUsersOfWith(ZExt, Src); 621 continue; 622 } 623 624 // Unless they produce a value that is narrower than ExtTy, we can 625 // replace the result of the zext with the input of a newly inserted 626 // trunc. 627 if (NewInsts.count(Src) && isa<TruncInst>(Src) && 628 Src->getType() == OrigTy) { 629 auto *Trunc = cast<TruncInst>(Src); 630 assert(Trunc->getOperand(0)->getType() == ExtTy && 631 "expected inserted trunc to be operating on i32"); 632 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0)); 633 } 634 } 635 636 for (auto *I : InstsToRemove) { 637 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n"); 638 I->dropAllReferences(); 639 I->eraseFromParent(); 640 } 641 } 642 643 void IRPromoter::ConvertTruncs() { 644 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n"); 645 IRBuilder<> Builder{Ctx}; 646 647 for (auto *V : Visited) { 648 if (!isa<TruncInst>(V) || Sources.count(V)) 649 continue; 650 651 auto *Trunc = cast<TruncInst>(V); 652 Builder.SetInsertPoint(Trunc); 653 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType()); 654 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]); 655 656 unsigned NumBits = DestTy->getScalarSizeInBits(); 657 ConstantInt *Mask = 658 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue()); 659 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask); 660 661 if (auto *I = dyn_cast<Instruction>(Masked)) 662 NewInsts.insert(I); 663 664 ReplaceAllUsersOfWith(Trunc, Masked); 665 } 666 } 667 668 void IRPromoter::Mutate() { 669 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from " 670 << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n"); 671 672 // Cache original types of the values that will likely need truncating 673 for (auto *I : Sinks) { 674 if (auto *Call = dyn_cast<CallInst>(I)) { 675 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) { 676 Value *Arg = Call->getArgOperand(i); 677 TruncTysMap[Call].push_back(Arg->getType()); 678 } 679 } else if (auto *Switch = dyn_cast<SwitchInst>(I)) 680 TruncTysMap[I].push_back(Switch->getCondition()->getType()); 681 else { 682 for (unsigned i = 0; i < I->getNumOperands(); ++i) 683 TruncTysMap[I].push_back(I->getOperand(i)->getType()); 684 } 685 } 686 for (auto *V : Visited) { 687 if (!isa<TruncInst>(V) || Sources.count(V)) 688 continue; 689 auto *Trunc = cast<TruncInst>(V); 690 TruncTysMap[Trunc].push_back(Trunc->getDestTy()); 691 } 692 693 // Convert adds using negative immediates to equivalent instructions that use 694 // positive constants. 695 PrepareWrappingAdds(); 696 697 // Insert zext instructions between sources and their users. 698 ExtendSources(); 699 700 // Promote visited instructions, mutating their types in place. 701 PromoteTree(); 702 703 // Convert any truncs, that aren't sources, into AND masks. 704 ConvertTruncs(); 705 706 // Insert trunc instructions for use by calls, stores etc... 707 TruncateSinks(); 708 709 // Finally, remove unecessary zexts and truncs, delete old instructions and 710 // clear the data structures. 711 Cleanup(); 712 713 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n"); 714 } 715 716 /// We disallow booleans to make life easier when dealing with icmps but allow 717 /// any other integer that fits in a scalar register. Void types are accepted 718 /// so we can handle switches. 719 bool TypePromotion::isSupportedType(Value *V) { 720 Type *Ty = V->getType(); 721 722 // Allow voids and pointers, these won't be promoted. 723 if (Ty->isVoidTy() || Ty->isPointerTy()) 724 return true; 725 726 if (!isa<IntegerType>(Ty) || 727 cast<IntegerType>(Ty)->getBitWidth() == 1 || 728 cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth) 729 return false; 730 731 return LessOrEqualTypeSize(V); 732 } 733 734 /// We accept most instructions, as well as Arguments and ConstantInsts. We 735 /// Disallow casts other than zext and truncs and only allow calls if their 736 /// return value is zeroext. We don't allow opcodes that can introduce sign 737 /// bits. 738 bool TypePromotion::isSupportedValue(Value *V) { 739 if (auto *I = dyn_cast<Instruction>(V)) { 740 switch (I->getOpcode()) { 741 default: 742 return isa<BinaryOperator>(I) && isSupportedType(I) && 743 !GenerateSignBits(I); 744 case Instruction::GetElementPtr: 745 case Instruction::Store: 746 case Instruction::Br: 747 case Instruction::Switch: 748 return true; 749 case Instruction::PHI: 750 case Instruction::Select: 751 case Instruction::Ret: 752 case Instruction::Load: 753 case Instruction::Trunc: 754 case Instruction::BitCast: 755 return isSupportedType(I); 756 case Instruction::ZExt: 757 return isSupportedType(I->getOperand(0)); 758 case Instruction::ICmp: 759 // Now that we allow small types than TypeSize, only allow icmp of 760 // TypeSize because they will require a trunc to be legalised. 761 // TODO: Allow icmp of smaller types, and calculate at the end 762 // whether the transform would be beneficial. 763 if (isa<PointerType>(I->getOperand(0)->getType())) 764 return true; 765 return EqualTypeSize(I->getOperand(0)); 766 case Instruction::Call: { 767 // Special cases for calls as we need to check for zeroext 768 // TODO We should accept calls even if they don't have zeroext, as they 769 // can still be sinks. 770 auto *Call = cast<CallInst>(I); 771 return isSupportedType(Call) && 772 Call->hasRetAttr(Attribute::AttrKind::ZExt); 773 } 774 } 775 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) { 776 return isSupportedType(V); 777 } else if (isa<Argument>(V)) 778 return isSupportedType(V); 779 780 return isa<BasicBlock>(V); 781 } 782 783 /// Check that the type of V would be promoted and that the original type is 784 /// smaller than the targeted promoted type. Check that we're not trying to 785 /// promote something larger than our base 'TypeSize' type. 786 bool TypePromotion::isLegalToPromote(Value *V) { 787 788 auto *I = dyn_cast<Instruction>(V); 789 if (!I) 790 return true; 791 792 if (SafeToPromote.count(I)) 793 return true; 794 795 if (isPromotedResultSafe(I) || isSafeWrap(I)) { 796 SafeToPromote.insert(I); 797 return true; 798 } 799 return false; 800 } 801 802 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) { 803 Type *OrigTy = V->getType(); 804 TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize(); 805 SafeToPromote.clear(); 806 SafeWrap.clear(); 807 808 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V)) 809 return false; 810 811 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from " 812 << TypeSize << " bits to " << PromotedWidth << "\n"); 813 814 SetVector<Value*> WorkList; 815 SetVector<Value*> Sources; 816 SetVector<Instruction*> Sinks; 817 SetVector<Value*> CurrentVisited; 818 WorkList.insert(V); 819 820 // Return true if V was added to the worklist as a supported instruction, 821 // if it was already visited, or if we don't need to explore it (e.g. 822 // pointer values and GEPs), and false otherwise. 823 auto AddLegalInst = [&](Value *V) { 824 if (CurrentVisited.count(V)) 825 return true; 826 827 // Ignore GEPs because they don't need promoting and the constant indices 828 // will prevent the transformation. 829 if (isa<GetElementPtrInst>(V)) 830 return true; 831 832 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) { 833 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n"); 834 return false; 835 } 836 837 WorkList.insert(V); 838 return true; 839 }; 840 841 // Iterate through, and add to, a tree of operands and users in the use-def. 842 while (!WorkList.empty()) { 843 Value *V = WorkList.pop_back_val(); 844 if (CurrentVisited.count(V)) 845 continue; 846 847 // Ignore non-instructions, other than arguments. 848 if (!isa<Instruction>(V) && !isSource(V)) 849 continue; 850 851 // If we've already visited this value from somewhere, bail now because 852 // the tree has already been explored. 853 // TODO: This could limit the transform, ie if we try to promote something 854 // from an i8 and fail first, before trying an i16. 855 if (AllVisited.count(V)) 856 return false; 857 858 CurrentVisited.insert(V); 859 AllVisited.insert(V); 860 861 // Calls can be both sources and sinks. 862 if (isSink(V)) 863 Sinks.insert(cast<Instruction>(V)); 864 865 if (isSource(V)) 866 Sources.insert(V); 867 868 if (!isSink(V) && !isSource(V)) { 869 if (auto *I = dyn_cast<Instruction>(V)) { 870 // Visit operands of any instruction visited. 871 for (auto &U : I->operands()) { 872 if (!AddLegalInst(U)) 873 return false; 874 } 875 } 876 } 877 878 // Don't visit users of a node which isn't going to be mutated unless its a 879 // source. 880 if (isSource(V) || shouldPromote(V)) { 881 for (Use &U : V->uses()) { 882 if (!AddLegalInst(U.getUser())) 883 return false; 884 } 885 } 886 } 887 888 LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n"; 889 for (auto *I : CurrentVisited) 890 I->dump(); 891 ); 892 893 unsigned ToPromote = 0; 894 unsigned NonFreeArgs = 0; 895 SmallPtrSet<BasicBlock*, 4> Blocks; 896 for (auto *V : CurrentVisited) { 897 if (auto *I = dyn_cast<Instruction>(V)) 898 Blocks.insert(I->getParent()); 899 900 if (Sources.count(V)) { 901 if (auto *Arg = dyn_cast<Argument>(V)) 902 if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr()) 903 ++NonFreeArgs; 904 continue; 905 } 906 907 if (Sinks.count(cast<Instruction>(V))) 908 continue; 909 ++ToPromote; 910 } 911 912 // DAG optimizations should be able to handle these cases better, especially 913 // for function arguments. 914 if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size()))) 915 return false; 916 917 IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth, 918 CurrentVisited, Sources, Sinks, SafeWrap); 919 Promoter.Mutate(); 920 return true; 921 } 922 923 bool TypePromotion::runOnFunction(Function &F) { 924 if (skipFunction(F) || DisablePromotion) 925 return false; 926 927 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n"); 928 929 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 930 if (!TPC) 931 return false; 932 933 AllVisited.clear(); 934 SafeToPromote.clear(); 935 SafeWrap.clear(); 936 bool MadeChange = false; 937 const DataLayout &DL = F.getParent()->getDataLayout(); 938 const TargetMachine &TM = TPC->getTM<TargetMachine>(); 939 const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F); 940 const TargetLowering *TLI = SubtargetInfo->getTargetLowering(); 941 const TargetTransformInfo &TII = 942 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 943 RegisterBitWidth = 944 TII.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedSize(); 945 Ctx = &F.getParent()->getContext(); 946 947 // Search up from icmps to try to promote their operands. 948 for (BasicBlock &BB : F) { 949 for (auto &I : BB) { 950 if (AllVisited.count(&I)) 951 continue; 952 953 if (!isa<ICmpInst>(&I)) 954 continue; 955 956 auto *ICmp = cast<ICmpInst>(&I); 957 // Skip signed or pointer compares 958 if (ICmp->isSigned() || 959 !isa<IntegerType>(ICmp->getOperand(0)->getType())) 960 continue; 961 962 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n"); 963 964 for (auto &Op : ICmp->operands()) { 965 if (auto *I = dyn_cast<Instruction>(Op)) { 966 EVT SrcVT = TLI->getValueType(DL, I->getType()); 967 if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT())) 968 break; 969 970 if (TLI->getTypeAction(ICmp->getContext(), SrcVT) != 971 TargetLowering::TypePromoteInteger) 972 break; 973 EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT); 974 if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) { 975 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register " 976 << "for promoted type\n"); 977 break; 978 } 979 980 MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits()); 981 break; 982 } 983 } 984 } 985 LLVM_DEBUG(if (verifyFunction(F, &dbgs())) { 986 dbgs() << F; 987 report_fatal_error("Broken function after type promotion"); 988 }); 989 } 990 if (MadeChange) 991 LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n"); 992 993 AllVisited.clear(); 994 SafeToPromote.clear(); 995 SafeWrap.clear(); 996 997 return MadeChange; 998 } 999 1000 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false) 1001 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false) 1002 1003 char TypePromotion::ID = 0; 1004 1005 FunctionPass *llvm::createTypePromotionPass() { 1006 return new TypePromotion(); 1007 } 1008