1 //===----- TypePromotion.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is an opcode based type promotion pass for small types that would 11 /// otherwise be promoted during legalisation. This works around the limitations 12 /// of selection dag for cyclic regions. The search begins from icmp 13 /// instructions operands where a tree, consisting of non-wrapping or safe 14 /// wrapping instructions, is built, checked and promoted if possible. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/CodeGen/Passes.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Target/TargetMachine.h" 41 42 #define DEBUG_TYPE "type-promotion" 43 #define PASS_NAME "Type Promotion" 44 45 using namespace llvm; 46 47 static cl::opt<bool> 48 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false), 49 cl::desc("Disable type promotion pass")); 50 51 // The goal of this pass is to enable more efficient code generation for 52 // operations on narrow types (i.e. types with < 32-bits) and this is a 53 // motivating IR code example: 54 // 55 // define hidden i32 @cmp(i8 zeroext) { 56 // %2 = add i8 %0, -49 57 // %3 = icmp ult i8 %2, 3 58 // .. 59 // } 60 // 61 // The issue here is that i8 is type-legalized to i32 because i8 is not a 62 // legal type. Thus, arithmetic is done in integer-precision, but then the 63 // byte value is masked out as follows: 64 // 65 // t19: i32 = add t4, Constant:i32<-49> 66 // t24: i32 = and t19, Constant:i32<255> 67 // 68 // Consequently, we generate code like this: 69 // 70 // subs r0, #49 71 // uxtb r1, r0 72 // cmp r1, #3 73 // 74 // This shows that masking out the byte value results in generation of 75 // the UXTB instruction. This is not optimal as r0 already contains the byte 76 // value we need, and so instead we can just generate: 77 // 78 // sub.w r1, r0, #49 79 // cmp r1, #3 80 // 81 // We achieve this by type promoting the IR to i32 like so for this example: 82 // 83 // define i32 @cmp(i8 zeroext %c) { 84 // %0 = zext i8 %c to i32 85 // %c.off = add i32 %0, -49 86 // %1 = icmp ult i32 %c.off, 3 87 // .. 88 // } 89 // 90 // For this to be valid and legal, we need to prove that the i32 add is 91 // producing the same value as the i8 addition, and that e.g. no overflow 92 // happens. 93 // 94 // A brief sketch of the algorithm and some terminology. 95 // We pattern match interesting IR patterns: 96 // - which have "sources": instructions producing narrow values (i8, i16), and 97 // - they have "sinks": instructions consuming these narrow values. 98 // 99 // We collect all instruction connecting sources and sinks in a worklist, so 100 // that we can mutate these instruction and perform type promotion when it is 101 // legal to do so. 102 103 namespace { 104 class IRPromoter { 105 LLVMContext &Ctx; 106 IntegerType *OrigTy = nullptr; 107 unsigned PromotedWidth = 0; 108 SetVector<Value*> &Visited; 109 SetVector<Value*> &Sources; 110 SetVector<Instruction*> &Sinks; 111 SmallVectorImpl<Instruction*> &SafeWrap; 112 IntegerType *ExtTy = nullptr; 113 SmallPtrSet<Value*, 8> NewInsts; 114 SmallPtrSet<Instruction*, 4> InstsToRemove; 115 DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap; 116 SmallPtrSet<Value*, 8> Promoted; 117 118 void ReplaceAllUsersOfWith(Value *From, Value *To); 119 void PrepareWrappingAdds(void); 120 void ExtendSources(void); 121 void ConvertTruncs(void); 122 void PromoteTree(void); 123 void TruncateSinks(void); 124 void Cleanup(void); 125 126 public: 127 IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width, 128 SetVector<Value*> &visited, SetVector<Value*> &sources, 129 SetVector<Instruction*> &sinks, 130 SmallVectorImpl<Instruction*> &wrap) : 131 Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited), 132 Sources(sources), Sinks(sinks), SafeWrap(wrap) { 133 ExtTy = IntegerType::get(Ctx, PromotedWidth); 134 assert(OrigTy->getPrimitiveSizeInBits().getFixedSize() < 135 ExtTy->getPrimitiveSizeInBits().getFixedSize() && 136 "Original type not smaller than extended type"); 137 } 138 139 void Mutate(); 140 }; 141 142 class TypePromotion : public FunctionPass { 143 unsigned TypeSize = 0; 144 LLVMContext *Ctx = nullptr; 145 unsigned RegisterBitWidth = 0; 146 SmallPtrSet<Value*, 16> AllVisited; 147 SmallPtrSet<Instruction*, 8> SafeToPromote; 148 SmallVector<Instruction*, 4> SafeWrap; 149 150 // Does V have the same size result type as TypeSize. 151 bool EqualTypeSize(Value *V); 152 // Does V have the same size, or narrower, result type as TypeSize. 153 bool LessOrEqualTypeSize(Value *V); 154 // Does V have a result type that is wider than TypeSize. 155 bool GreaterThanTypeSize(Value *V); 156 // Does V have a result type that is narrower than TypeSize. 157 bool LessThanTypeSize(Value *V); 158 // Should V be a leaf in the promote tree? 159 bool isSource(Value *V); 160 // Should V be a root in the promotion tree? 161 bool isSink(Value *V); 162 // Should we change the result type of V? It will result in the users of V 163 // being visited. 164 bool shouldPromote(Value *V); 165 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping 166 // result won't affect the computation? 167 bool isSafeWrap(Instruction *I); 168 // Can V have its integer type promoted, or can the type be ignored. 169 bool isSupportedType(Value *V); 170 // Is V an instruction with a supported opcode or another value that we can 171 // handle, such as constants and basic blocks. 172 bool isSupportedValue(Value *V); 173 // Is V an instruction thats result can trivially promoted, or has safe 174 // wrapping. 175 bool isLegalToPromote(Value *V); 176 bool TryToPromote(Value *V, unsigned PromotedWidth); 177 178 public: 179 static char ID; 180 181 TypePromotion() : FunctionPass(ID) {} 182 183 void getAnalysisUsage(AnalysisUsage &AU) const override { 184 AU.addRequired<TargetTransformInfoWrapperPass>(); 185 AU.addRequired<TargetPassConfig>(); 186 AU.setPreservesCFG(); 187 } 188 189 StringRef getPassName() const override { return PASS_NAME; } 190 191 bool runOnFunction(Function &F) override; 192 }; 193 194 } 195 196 static bool GenerateSignBits(Instruction *I) { 197 unsigned Opc = I->getOpcode(); 198 return Opc == Instruction::AShr || Opc == Instruction::SDiv || 199 Opc == Instruction::SRem || Opc == Instruction::SExt; 200 } 201 202 bool TypePromotion::EqualTypeSize(Value *V) { 203 return V->getType()->getScalarSizeInBits() == TypeSize; 204 } 205 206 bool TypePromotion::LessOrEqualTypeSize(Value *V) { 207 return V->getType()->getScalarSizeInBits() <= TypeSize; 208 } 209 210 bool TypePromotion::GreaterThanTypeSize(Value *V) { 211 return V->getType()->getScalarSizeInBits() > TypeSize; 212 } 213 214 bool TypePromotion::LessThanTypeSize(Value *V) { 215 return V->getType()->getScalarSizeInBits() < TypeSize; 216 } 217 218 /// Return true if the given value is a source in the use-def chain, producing 219 /// a narrow 'TypeSize' value. These values will be zext to start the promotion 220 /// of the tree to i32. We guarantee that these won't populate the upper bits 221 /// of the register. ZExt on the loads will be free, and the same for call 222 /// return values because we only accept ones that guarantee a zeroext ret val. 223 /// Many arguments will have the zeroext attribute too, so those would be free 224 /// too. 225 bool TypePromotion::isSource(Value *V) { 226 if (!isa<IntegerType>(V->getType())) 227 return false; 228 229 // TODO Allow zext to be sources. 230 if (isa<Argument>(V)) 231 return true; 232 else if (isa<LoadInst>(V)) 233 return true; 234 else if (isa<BitCastInst>(V)) 235 return true; 236 else if (auto *Call = dyn_cast<CallInst>(V)) 237 return Call->hasRetAttr(Attribute::AttrKind::ZExt); 238 else if (auto *Trunc = dyn_cast<TruncInst>(V)) 239 return EqualTypeSize(Trunc); 240 return false; 241 } 242 243 /// Return true if V will require any promoted values to be truncated for the 244 /// the IR to remain valid. We can't mutate the value type of these 245 /// instructions. 246 bool TypePromotion::isSink(Value *V) { 247 // TODO The truncate also isn't actually necessary because we would already 248 // proved that the data value is kept within the range of the original data 249 // type. 250 251 // Sinks are: 252 // - points where the value in the register is being observed, such as an 253 // icmp, switch or store. 254 // - points where value types have to match, such as calls and returns. 255 // - zext are included to ease the transformation and are generally removed 256 // later on. 257 if (auto *Store = dyn_cast<StoreInst>(V)) 258 return LessOrEqualTypeSize(Store->getValueOperand()); 259 if (auto *Return = dyn_cast<ReturnInst>(V)) 260 return LessOrEqualTypeSize(Return->getReturnValue()); 261 if (auto *ZExt = dyn_cast<ZExtInst>(V)) 262 return GreaterThanTypeSize(ZExt); 263 if (auto *Switch = dyn_cast<SwitchInst>(V)) 264 return LessThanTypeSize(Switch->getCondition()); 265 if (auto *ICmp = dyn_cast<ICmpInst>(V)) 266 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0)); 267 268 return isa<CallInst>(V); 269 } 270 271 /// Return whether this instruction can safely wrap. 272 bool TypePromotion::isSafeWrap(Instruction *I) { 273 // We can support a, potentially, wrapping instruction (I) if: 274 // - It is only used by an unsigned icmp. 275 // - The icmp uses a constant. 276 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping 277 // around zero to become a larger number than before. 278 // - The wrapping instruction (I) also uses a constant. 279 // 280 // We can then use the two constants to calculate whether the result would 281 // wrap in respect to itself in the original bitwidth. If it doesn't wrap, 282 // just underflows the range, the icmp would give the same result whether the 283 // result has been truncated or not. We calculate this by: 284 // - Zero extending both constants, if needed, to RegisterBitWidth. 285 // - Take the absolute value of I's constant, adding this to the icmp const. 286 // - Check that this value is not out of range for small type. If it is, it 287 // means that it has underflowed enough to wrap around the icmp constant. 288 // 289 // For example: 290 // 291 // %sub = sub i8 %a, 2 292 // %cmp = icmp ule i8 %sub, 254 293 // 294 // If %a = 0, %sub = -2 == FE == 254 295 // But if this is evalulated as a i32 296 // %sub = -2 == FF FF FF FE == 4294967294 297 // So the unsigned compares (i8 and i32) would not yield the same result. 298 // 299 // Another way to look at it is: 300 // %a - 2 <= 254 301 // %a + 2 <= 254 + 2 302 // %a <= 256 303 // And we can't represent 256 in the i8 format, so we don't support it. 304 // 305 // Whereas: 306 // 307 // %sub i8 %a, 1 308 // %cmp = icmp ule i8 %sub, 254 309 // 310 // If %a = 0, %sub = -1 == FF == 255 311 // As i32: 312 // %sub = -1 == FF FF FF FF == 4294967295 313 // 314 // In this case, the unsigned compare results would be the same and this 315 // would also be true for ult, uge and ugt: 316 // - (255 < 254) == (0xFFFFFFFF < 254) == false 317 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false 318 // - (255 > 254) == (0xFFFFFFFF > 254) == true 319 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true 320 // 321 // To demonstrate why we can't handle increasing values: 322 // 323 // %add = add i8 %a, 2 324 // %cmp = icmp ult i8 %add, 127 325 // 326 // If %a = 254, %add = 256 == (i8 1) 327 // As i32: 328 // %add = 256 329 // 330 // (1 < 127) != (256 < 127) 331 332 unsigned Opc = I->getOpcode(); 333 if (Opc != Instruction::Add && Opc != Instruction::Sub) 334 return false; 335 336 if (!I->hasOneUse() || 337 !isa<ICmpInst>(*I->user_begin()) || 338 !isa<ConstantInt>(I->getOperand(1))) 339 return false; 340 341 ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1)); 342 bool NegImm = OverflowConst->isNegative(); 343 bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) || 344 ((Opc == Instruction::Add) && NegImm); 345 if (!IsDecreasing) 346 return false; 347 348 // Don't support an icmp that deals with sign bits. 349 auto *CI = cast<ICmpInst>(*I->user_begin()); 350 if (CI->isSigned() || CI->isEquality()) 351 return false; 352 353 ConstantInt *ICmpConst = nullptr; 354 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0))) 355 ICmpConst = Const; 356 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1))) 357 ICmpConst = Const; 358 else 359 return false; 360 361 // Now check that the result can't wrap on itself. 362 APInt Total = ICmpConst->getValue().zextOrSelf(RegisterBitWidth); 363 Total += OverflowConst->getValue().abs().zextOrSelf(RegisterBitWidth); 364 365 APInt Max = APInt::getAllOnes(TypeSize).zextOrSelf(RegisterBitWidth); 366 367 if (Total.ugt(Max)) 368 return false; 369 370 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for " << *I 371 << "\n"); 372 SafeWrap.push_back(I); 373 return true; 374 } 375 376 bool TypePromotion::shouldPromote(Value *V) { 377 if (!isa<IntegerType>(V->getType()) || isSink(V)) 378 return false; 379 380 if (isSource(V)) 381 return true; 382 383 auto *I = dyn_cast<Instruction>(V); 384 if (!I) 385 return false; 386 387 if (isa<ICmpInst>(I)) 388 return false; 389 390 return true; 391 } 392 393 /// Return whether we can safely mutate V's type to ExtTy without having to be 394 /// concerned with zero extending or truncation. 395 static bool isPromotedResultSafe(Instruction *I) { 396 if (GenerateSignBits(I)) 397 return false; 398 399 if (!isa<OverflowingBinaryOperator>(I)) 400 return true; 401 402 return I->hasNoUnsignedWrap(); 403 } 404 405 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) { 406 SmallVector<Instruction*, 4> Users; 407 Instruction *InstTo = dyn_cast<Instruction>(To); 408 bool ReplacedAll = true; 409 410 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To 411 << "\n"); 412 413 for (Use &U : From->uses()) { 414 auto *User = cast<Instruction>(U.getUser()); 415 if (InstTo && User->isIdenticalTo(InstTo)) { 416 ReplacedAll = false; 417 continue; 418 } 419 Users.push_back(User); 420 } 421 422 for (auto *U : Users) 423 U->replaceUsesOfWith(From, To); 424 425 if (ReplacedAll) 426 if (auto *I = dyn_cast<Instruction>(From)) 427 InstsToRemove.insert(I); 428 } 429 430 void IRPromoter::PrepareWrappingAdds() { 431 LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n"); 432 IRBuilder<> Builder{Ctx}; 433 434 // For adds that safely wrap and use a negative immediate as operand 1, we 435 // create an equivalent instruction using a positive immediate. 436 // That positive immediate can then be zext along with all the other 437 // immediates later. 438 for (auto *I : SafeWrap) { 439 if (I->getOpcode() != Instruction::Add) 440 continue; 441 442 LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n"); 443 assert((isa<ConstantInt>(I->getOperand(1)) && 444 cast<ConstantInt>(I->getOperand(1))->isNegative()) && 445 "Wrapping should have a negative immediate as the second operand"); 446 447 auto Const = cast<ConstantInt>(I->getOperand(1)); 448 auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs()); 449 Builder.SetInsertPoint(I); 450 Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst); 451 if (auto *NewInst = dyn_cast<Instruction>(NewVal)) { 452 NewInst->copyIRFlags(I); 453 NewInsts.insert(NewInst); 454 } 455 InstsToRemove.insert(I); 456 I->replaceAllUsesWith(NewVal); 457 LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n"); 458 } 459 for (auto *I : NewInsts) 460 Visited.insert(I); 461 } 462 463 void IRPromoter::ExtendSources() { 464 IRBuilder<> Builder{Ctx}; 465 466 auto InsertZExt = [&](Value *V, Instruction *InsertPt) { 467 assert(V->getType() != ExtTy && "zext already extends to i32"); 468 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n"); 469 Builder.SetInsertPoint(InsertPt); 470 if (auto *I = dyn_cast<Instruction>(V)) 471 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 472 473 Value *ZExt = Builder.CreateZExt(V, ExtTy); 474 if (auto *I = dyn_cast<Instruction>(ZExt)) { 475 if (isa<Argument>(V)) 476 I->moveBefore(InsertPt); 477 else 478 I->moveAfter(InsertPt); 479 NewInsts.insert(I); 480 } 481 482 ReplaceAllUsersOfWith(V, ZExt); 483 }; 484 485 // Now, insert extending instructions between the sources and their users. 486 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n"); 487 for (auto V : Sources) { 488 LLVM_DEBUG(dbgs() << " - " << *V << "\n"); 489 if (auto *I = dyn_cast<Instruction>(V)) 490 InsertZExt(I, I); 491 else if (auto *Arg = dyn_cast<Argument>(V)) { 492 BasicBlock &BB = Arg->getParent()->front(); 493 InsertZExt(Arg, &*BB.getFirstInsertionPt()); 494 } else { 495 llvm_unreachable("unhandled source that needs extending"); 496 } 497 Promoted.insert(V); 498 } 499 } 500 501 void IRPromoter::PromoteTree() { 502 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n"); 503 504 // Mutate the types of the instructions within the tree. Here we handle 505 // constant operands. 506 for (auto *V : Visited) { 507 if (Sources.count(V)) 508 continue; 509 510 auto *I = cast<Instruction>(V); 511 if (Sinks.count(I)) 512 continue; 513 514 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { 515 Value *Op = I->getOperand(i); 516 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType())) 517 continue; 518 519 if (auto *Const = dyn_cast<ConstantInt>(Op)) { 520 Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy); 521 I->setOperand(i, NewConst); 522 } else if (isa<UndefValue>(Op)) 523 I->setOperand(i, UndefValue::get(ExtTy)); 524 } 525 526 // Mutate the result type, unless this is an icmp or switch. 527 if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) { 528 I->mutateType(ExtTy); 529 Promoted.insert(I); 530 } 531 } 532 } 533 534 void IRPromoter::TruncateSinks() { 535 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n"); 536 537 IRBuilder<> Builder{Ctx}; 538 539 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* { 540 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType())) 541 return nullptr; 542 543 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V)) 544 return nullptr; 545 546 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for " 547 << *V << "\n"); 548 Builder.SetInsertPoint(cast<Instruction>(V)); 549 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy)); 550 if (Trunc) 551 NewInsts.insert(Trunc); 552 return Trunc; 553 }; 554 555 // Fix up any stores or returns that use the results of the promoted 556 // chain. 557 for (auto I : Sinks) { 558 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n"); 559 560 // Handle calls separately as we need to iterate over arg operands. 561 if (auto *Call = dyn_cast<CallInst>(I)) { 562 for (unsigned i = 0; i < Call->arg_size(); ++i) { 563 Value *Arg = Call->getArgOperand(i); 564 Type *Ty = TruncTysMap[Call][i]; 565 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) { 566 Trunc->moveBefore(Call); 567 Call->setArgOperand(i, Trunc); 568 } 569 } 570 continue; 571 } 572 573 // Special case switches because we need to truncate the condition. 574 if (auto *Switch = dyn_cast<SwitchInst>(I)) { 575 Type *Ty = TruncTysMap[Switch][0]; 576 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) { 577 Trunc->moveBefore(Switch); 578 Switch->setCondition(Trunc); 579 } 580 continue; 581 } 582 583 // Now handle the others. 584 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 585 Type *Ty = TruncTysMap[I][i]; 586 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) { 587 Trunc->moveBefore(I); 588 I->setOperand(i, Trunc); 589 } 590 } 591 } 592 } 593 594 void IRPromoter::Cleanup() { 595 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n"); 596 // Some zexts will now have become redundant, along with their trunc 597 // operands, so remove them 598 for (auto V : Visited) { 599 if (!isa<ZExtInst>(V)) 600 continue; 601 602 auto ZExt = cast<ZExtInst>(V); 603 if (ZExt->getDestTy() != ExtTy) 604 continue; 605 606 Value *Src = ZExt->getOperand(0); 607 if (ZExt->getSrcTy() == ZExt->getDestTy()) { 608 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt 609 << "\n"); 610 ReplaceAllUsersOfWith(ZExt, Src); 611 continue; 612 } 613 614 // Unless they produce a value that is narrower than ExtTy, we can 615 // replace the result of the zext with the input of a newly inserted 616 // trunc. 617 if (NewInsts.count(Src) && isa<TruncInst>(Src) && 618 Src->getType() == OrigTy) { 619 auto *Trunc = cast<TruncInst>(Src); 620 assert(Trunc->getOperand(0)->getType() == ExtTy && 621 "expected inserted trunc to be operating on i32"); 622 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0)); 623 } 624 } 625 626 for (auto *I : InstsToRemove) { 627 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n"); 628 I->dropAllReferences(); 629 I->eraseFromParent(); 630 } 631 } 632 633 void IRPromoter::ConvertTruncs() { 634 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n"); 635 IRBuilder<> Builder{Ctx}; 636 637 for (auto *V : Visited) { 638 if (!isa<TruncInst>(V) || Sources.count(V)) 639 continue; 640 641 auto *Trunc = cast<TruncInst>(V); 642 Builder.SetInsertPoint(Trunc); 643 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType()); 644 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]); 645 646 unsigned NumBits = DestTy->getScalarSizeInBits(); 647 ConstantInt *Mask = 648 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue()); 649 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask); 650 651 if (auto *I = dyn_cast<Instruction>(Masked)) 652 NewInsts.insert(I); 653 654 ReplaceAllUsersOfWith(Trunc, Masked); 655 } 656 } 657 658 void IRPromoter::Mutate() { 659 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from " 660 << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n"); 661 662 // Cache original types of the values that will likely need truncating 663 for (auto *I : Sinks) { 664 if (auto *Call = dyn_cast<CallInst>(I)) { 665 for (Value *Arg : Call->args()) 666 TruncTysMap[Call].push_back(Arg->getType()); 667 } else if (auto *Switch = dyn_cast<SwitchInst>(I)) 668 TruncTysMap[I].push_back(Switch->getCondition()->getType()); 669 else { 670 for (unsigned i = 0; i < I->getNumOperands(); ++i) 671 TruncTysMap[I].push_back(I->getOperand(i)->getType()); 672 } 673 } 674 for (auto *V : Visited) { 675 if (!isa<TruncInst>(V) || Sources.count(V)) 676 continue; 677 auto *Trunc = cast<TruncInst>(V); 678 TruncTysMap[Trunc].push_back(Trunc->getDestTy()); 679 } 680 681 // Convert adds using negative immediates to equivalent instructions that use 682 // positive constants. 683 PrepareWrappingAdds(); 684 685 // Insert zext instructions between sources and their users. 686 ExtendSources(); 687 688 // Promote visited instructions, mutating their types in place. 689 PromoteTree(); 690 691 // Convert any truncs, that aren't sources, into AND masks. 692 ConvertTruncs(); 693 694 // Insert trunc instructions for use by calls, stores etc... 695 TruncateSinks(); 696 697 // Finally, remove unecessary zexts and truncs, delete old instructions and 698 // clear the data structures. 699 Cleanup(); 700 701 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n"); 702 } 703 704 /// We disallow booleans to make life easier when dealing with icmps but allow 705 /// any other integer that fits in a scalar register. Void types are accepted 706 /// so we can handle switches. 707 bool TypePromotion::isSupportedType(Value *V) { 708 Type *Ty = V->getType(); 709 710 // Allow voids and pointers, these won't be promoted. 711 if (Ty->isVoidTy() || Ty->isPointerTy()) 712 return true; 713 714 if (!isa<IntegerType>(Ty) || 715 cast<IntegerType>(Ty)->getBitWidth() == 1 || 716 cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth) 717 return false; 718 719 return LessOrEqualTypeSize(V); 720 } 721 722 /// We accept most instructions, as well as Arguments and ConstantInsts. We 723 /// Disallow casts other than zext and truncs and only allow calls if their 724 /// return value is zeroext. We don't allow opcodes that can introduce sign 725 /// bits. 726 bool TypePromotion::isSupportedValue(Value *V) { 727 if (auto *I = dyn_cast<Instruction>(V)) { 728 switch (I->getOpcode()) { 729 default: 730 return isa<BinaryOperator>(I) && isSupportedType(I) && 731 !GenerateSignBits(I); 732 case Instruction::GetElementPtr: 733 case Instruction::Store: 734 case Instruction::Br: 735 case Instruction::Switch: 736 return true; 737 case Instruction::PHI: 738 case Instruction::Select: 739 case Instruction::Ret: 740 case Instruction::Load: 741 case Instruction::Trunc: 742 case Instruction::BitCast: 743 return isSupportedType(I); 744 case Instruction::ZExt: 745 return isSupportedType(I->getOperand(0)); 746 case Instruction::ICmp: 747 // Now that we allow small types than TypeSize, only allow icmp of 748 // TypeSize because they will require a trunc to be legalised. 749 // TODO: Allow icmp of smaller types, and calculate at the end 750 // whether the transform would be beneficial. 751 if (isa<PointerType>(I->getOperand(0)->getType())) 752 return true; 753 return EqualTypeSize(I->getOperand(0)); 754 case Instruction::Call: { 755 // Special cases for calls as we need to check for zeroext 756 // TODO We should accept calls even if they don't have zeroext, as they 757 // can still be sinks. 758 auto *Call = cast<CallInst>(I); 759 return isSupportedType(Call) && 760 Call->hasRetAttr(Attribute::AttrKind::ZExt); 761 } 762 } 763 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) { 764 return isSupportedType(V); 765 } else if (isa<Argument>(V)) 766 return isSupportedType(V); 767 768 return isa<BasicBlock>(V); 769 } 770 771 /// Check that the type of V would be promoted and that the original type is 772 /// smaller than the targeted promoted type. Check that we're not trying to 773 /// promote something larger than our base 'TypeSize' type. 774 bool TypePromotion::isLegalToPromote(Value *V) { 775 776 auto *I = dyn_cast<Instruction>(V); 777 if (!I) 778 return true; 779 780 if (SafeToPromote.count(I)) 781 return true; 782 783 if (isPromotedResultSafe(I) || isSafeWrap(I)) { 784 SafeToPromote.insert(I); 785 return true; 786 } 787 return false; 788 } 789 790 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) { 791 Type *OrigTy = V->getType(); 792 TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize(); 793 SafeToPromote.clear(); 794 SafeWrap.clear(); 795 796 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V)) 797 return false; 798 799 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from " 800 << TypeSize << " bits to " << PromotedWidth << "\n"); 801 802 SetVector<Value*> WorkList; 803 SetVector<Value*> Sources; 804 SetVector<Instruction*> Sinks; 805 SetVector<Value*> CurrentVisited; 806 WorkList.insert(V); 807 808 // Return true if V was added to the worklist as a supported instruction, 809 // if it was already visited, or if we don't need to explore it (e.g. 810 // pointer values and GEPs), and false otherwise. 811 auto AddLegalInst = [&](Value *V) { 812 if (CurrentVisited.count(V)) 813 return true; 814 815 // Ignore GEPs because they don't need promoting and the constant indices 816 // will prevent the transformation. 817 if (isa<GetElementPtrInst>(V)) 818 return true; 819 820 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) { 821 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n"); 822 return false; 823 } 824 825 WorkList.insert(V); 826 return true; 827 }; 828 829 // Iterate through, and add to, a tree of operands and users in the use-def. 830 while (!WorkList.empty()) { 831 Value *V = WorkList.pop_back_val(); 832 if (CurrentVisited.count(V)) 833 continue; 834 835 // Ignore non-instructions, other than arguments. 836 if (!isa<Instruction>(V) && !isSource(V)) 837 continue; 838 839 // If we've already visited this value from somewhere, bail now because 840 // the tree has already been explored. 841 // TODO: This could limit the transform, ie if we try to promote something 842 // from an i8 and fail first, before trying an i16. 843 if (AllVisited.count(V)) 844 return false; 845 846 CurrentVisited.insert(V); 847 AllVisited.insert(V); 848 849 // Calls can be both sources and sinks. 850 if (isSink(V)) 851 Sinks.insert(cast<Instruction>(V)); 852 853 if (isSource(V)) 854 Sources.insert(V); 855 856 if (!isSink(V) && !isSource(V)) { 857 if (auto *I = dyn_cast<Instruction>(V)) { 858 // Visit operands of any instruction visited. 859 for (auto &U : I->operands()) { 860 if (!AddLegalInst(U)) 861 return false; 862 } 863 } 864 } 865 866 // Don't visit users of a node which isn't going to be mutated unless its a 867 // source. 868 if (isSource(V) || shouldPromote(V)) { 869 for (Use &U : V->uses()) { 870 if (!AddLegalInst(U.getUser())) 871 return false; 872 } 873 } 874 } 875 876 LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n"; 877 for (auto *I : CurrentVisited) 878 I->dump(); 879 ); 880 881 unsigned ToPromote = 0; 882 unsigned NonFreeArgs = 0; 883 SmallPtrSet<BasicBlock*, 4> Blocks; 884 for (auto *V : CurrentVisited) { 885 if (auto *I = dyn_cast<Instruction>(V)) 886 Blocks.insert(I->getParent()); 887 888 if (Sources.count(V)) { 889 if (auto *Arg = dyn_cast<Argument>(V)) 890 if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr()) 891 ++NonFreeArgs; 892 continue; 893 } 894 895 if (Sinks.count(cast<Instruction>(V))) 896 continue; 897 ++ToPromote; 898 } 899 900 // DAG optimizations should be able to handle these cases better, especially 901 // for function arguments. 902 if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size()))) 903 return false; 904 905 IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth, 906 CurrentVisited, Sources, Sinks, SafeWrap); 907 Promoter.Mutate(); 908 return true; 909 } 910 911 bool TypePromotion::runOnFunction(Function &F) { 912 if (skipFunction(F) || DisablePromotion) 913 return false; 914 915 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n"); 916 917 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 918 if (!TPC) 919 return false; 920 921 AllVisited.clear(); 922 SafeToPromote.clear(); 923 SafeWrap.clear(); 924 bool MadeChange = false; 925 const DataLayout &DL = F.getParent()->getDataLayout(); 926 const TargetMachine &TM = TPC->getTM<TargetMachine>(); 927 const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F); 928 const TargetLowering *TLI = SubtargetInfo->getTargetLowering(); 929 const TargetTransformInfo &TII = 930 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 931 RegisterBitWidth = 932 TII.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedSize(); 933 Ctx = &F.getParent()->getContext(); 934 935 // Search up from icmps to try to promote their operands. 936 for (BasicBlock &BB : F) { 937 for (auto &I : BB) { 938 if (AllVisited.count(&I)) 939 continue; 940 941 if (!isa<ICmpInst>(&I)) 942 continue; 943 944 auto *ICmp = cast<ICmpInst>(&I); 945 // Skip signed or pointer compares 946 if (ICmp->isSigned() || 947 !isa<IntegerType>(ICmp->getOperand(0)->getType())) 948 continue; 949 950 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n"); 951 952 for (auto &Op : ICmp->operands()) { 953 if (auto *I = dyn_cast<Instruction>(Op)) { 954 EVT SrcVT = TLI->getValueType(DL, I->getType()); 955 if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT())) 956 break; 957 958 if (TLI->getTypeAction(ICmp->getContext(), SrcVT) != 959 TargetLowering::TypePromoteInteger) 960 break; 961 EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT); 962 if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) { 963 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register " 964 << "for promoted type\n"); 965 break; 966 } 967 968 MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits()); 969 break; 970 } 971 } 972 } 973 LLVM_DEBUG(if (verifyFunction(F, &dbgs())) { 974 dbgs() << F; 975 report_fatal_error("Broken function after type promotion"); 976 }); 977 } 978 if (MadeChange) 979 LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n"); 980 981 AllVisited.clear(); 982 SafeToPromote.clear(); 983 SafeWrap.clear(); 984 985 return MadeChange; 986 } 987 988 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false) 989 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false) 990 991 char TypePromotion::ID = 0; 992 993 FunctionPass *llvm::createTypePromotionPass() { 994 return new TypePromotion(); 995 } 996