1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2, KnownOut; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 Known = SrcKnown.anyextOrTrunc(BitWidth); 879 break; 880 } 881 case ISD::BUILD_VECTOR: 882 // Collect the known bits that are shared by every demanded element. 883 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 884 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 885 return false; // Don't fall through, will infinitely loop. 886 case ISD::LOAD: { 887 LoadSDNode *LD = cast<LoadSDNode>(Op); 888 if (getTargetConstantFromLoad(LD)) { 889 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 890 return false; // Don't fall through, will infinitely loop. 891 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 892 // If this is a ZEXTLoad and we are looking at the loaded value. 893 EVT VT = LD->getMemoryVT(); 894 unsigned MemBits = VT.getScalarSizeInBits(); 895 Known.Zero.setBitsFrom(MemBits); 896 return false; // Don't fall through, will infinitely loop. 897 } 898 break; 899 } 900 case ISD::INSERT_VECTOR_ELT: { 901 SDValue Vec = Op.getOperand(0); 902 SDValue Scl = Op.getOperand(1); 903 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 904 EVT VecVT = Vec.getValueType(); 905 906 // If index isn't constant, assume we need all vector elements AND the 907 // inserted element. 908 APInt DemandedVecElts(DemandedElts); 909 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 910 unsigned Idx = CIdx->getZExtValue(); 911 DemandedVecElts.clearBit(Idx); 912 913 // Inserted element is not required. 914 if (!DemandedElts[Idx]) 915 return TLO.CombineTo(Op, Vec); 916 } 917 918 KnownBits KnownScl; 919 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 920 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 921 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 922 return true; 923 924 Known = KnownScl.anyextOrTrunc(BitWidth); 925 926 KnownBits KnownVec; 927 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 928 Depth + 1)) 929 return true; 930 931 if (!!DemandedVecElts) { 932 Known.One &= KnownVec.One; 933 Known.Zero &= KnownVec.Zero; 934 } 935 936 return false; 937 } 938 case ISD::INSERT_SUBVECTOR: { 939 SDValue Base = Op.getOperand(0); 940 SDValue Sub = Op.getOperand(1); 941 EVT SubVT = Sub.getValueType(); 942 unsigned NumSubElts = SubVT.getVectorNumElements(); 943 944 // If index isn't constant, assume we need the original demanded base 945 // elements and ALL the inserted subvector elements. 946 APInt BaseElts = DemandedElts; 947 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 948 if (isa<ConstantSDNode>(Op.getOperand(2))) { 949 const APInt &Idx = Op.getConstantOperandAPInt(2); 950 if (Idx.ule(NumElts - NumSubElts)) { 951 unsigned SubIdx = Idx.getZExtValue(); 952 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 953 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 954 } 955 } 956 957 KnownBits KnownSub, KnownBase; 958 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 959 Depth + 1)) 960 return true; 961 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 962 Depth + 1)) 963 return true; 964 965 Known.Zero.setAllBits(); 966 Known.One.setAllBits(); 967 if (!!SubElts) { 968 Known.One &= KnownSub.One; 969 Known.Zero &= KnownSub.Zero; 970 } 971 if (!!BaseElts) { 972 Known.One &= KnownBase.One; 973 Known.Zero &= KnownBase.Zero; 974 } 975 976 // Attempt to avoid multi-use src if we don't need anything from it. 977 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 978 !BaseElts.isAllOnesValue()) { 979 SDValue NewSub = SimplifyMultipleUseDemandedBits( 980 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 981 SDValue NewBase = SimplifyMultipleUseDemandedBits( 982 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 983 if (NewSub || NewBase) { 984 NewSub = NewSub ? NewSub : Sub; 985 NewBase = NewBase ? NewBase : Base; 986 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 987 Op.getOperand(2)); 988 return TLO.CombineTo(Op, NewOp); 989 } 990 } 991 break; 992 } 993 case ISD::EXTRACT_SUBVECTOR: { 994 // If index isn't constant, assume we need all the source vector elements. 995 SDValue Src = Op.getOperand(0); 996 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 997 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 998 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 999 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1000 // Offset the demanded elts by the subvector index. 1001 uint64_t Idx = SubIdx->getZExtValue(); 1002 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1003 } 1004 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1005 return true; 1006 1007 // Attempt to avoid multi-use src if we don't need anything from it. 1008 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1009 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1010 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1011 if (DemandedSrc) { 1012 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1013 Op.getOperand(1)); 1014 return TLO.CombineTo(Op, NewOp); 1015 } 1016 } 1017 break; 1018 } 1019 case ISD::CONCAT_VECTORS: { 1020 Known.Zero.setAllBits(); 1021 Known.One.setAllBits(); 1022 EVT SubVT = Op.getOperand(0).getValueType(); 1023 unsigned NumSubVecs = Op.getNumOperands(); 1024 unsigned NumSubElts = SubVT.getVectorNumElements(); 1025 for (unsigned i = 0; i != NumSubVecs; ++i) { 1026 APInt DemandedSubElts = 1027 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1028 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1029 Known2, TLO, Depth + 1)) 1030 return true; 1031 // Known bits are shared by every demanded subvector element. 1032 if (!!DemandedSubElts) { 1033 Known.One &= Known2.One; 1034 Known.Zero &= Known2.Zero; 1035 } 1036 } 1037 break; 1038 } 1039 case ISD::VECTOR_SHUFFLE: { 1040 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1041 1042 // Collect demanded elements from shuffle operands.. 1043 APInt DemandedLHS(NumElts, 0); 1044 APInt DemandedRHS(NumElts, 0); 1045 for (unsigned i = 0; i != NumElts; ++i) { 1046 if (!DemandedElts[i]) 1047 continue; 1048 int M = ShuffleMask[i]; 1049 if (M < 0) { 1050 // For UNDEF elements, we don't know anything about the common state of 1051 // the shuffle result. 1052 DemandedLHS.clearAllBits(); 1053 DemandedRHS.clearAllBits(); 1054 break; 1055 } 1056 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1057 if (M < (int)NumElts) 1058 DemandedLHS.setBit(M); 1059 else 1060 DemandedRHS.setBit(M - NumElts); 1061 } 1062 1063 if (!!DemandedLHS || !!DemandedRHS) { 1064 SDValue Op0 = Op.getOperand(0); 1065 SDValue Op1 = Op.getOperand(1); 1066 1067 Known.Zero.setAllBits(); 1068 Known.One.setAllBits(); 1069 if (!!DemandedLHS) { 1070 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1071 Depth + 1)) 1072 return true; 1073 Known.One &= Known2.One; 1074 Known.Zero &= Known2.Zero; 1075 } 1076 if (!!DemandedRHS) { 1077 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1078 Depth + 1)) 1079 return true; 1080 Known.One &= Known2.One; 1081 Known.Zero &= Known2.Zero; 1082 } 1083 1084 // Attempt to avoid multi-use ops if we don't need anything from them. 1085 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1086 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1087 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1088 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1089 if (DemandedOp0 || DemandedOp1) { 1090 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1091 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1092 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1093 return TLO.CombineTo(Op, NewOp); 1094 } 1095 } 1096 break; 1097 } 1098 case ISD::AND: { 1099 SDValue Op0 = Op.getOperand(0); 1100 SDValue Op1 = Op.getOperand(1); 1101 1102 // If the RHS is a constant, check to see if the LHS would be zero without 1103 // using the bits from the RHS. Below, we use knowledge about the RHS to 1104 // simplify the LHS, here we're using information from the LHS to simplify 1105 // the RHS. 1106 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1107 // Do not increment Depth here; that can cause an infinite loop. 1108 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1109 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1110 if ((LHSKnown.Zero & DemandedBits) == 1111 (~RHSC->getAPIntValue() & DemandedBits)) 1112 return TLO.CombineTo(Op, Op0); 1113 1114 // If any of the set bits in the RHS are known zero on the LHS, shrink 1115 // the constant. 1116 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1117 return true; 1118 1119 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1120 // constant, but if this 'and' is only clearing bits that were just set by 1121 // the xor, then this 'and' can be eliminated by shrinking the mask of 1122 // the xor. For example, for a 32-bit X: 1123 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1124 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1125 LHSKnown.One == ~RHSC->getAPIntValue()) { 1126 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1127 return TLO.CombineTo(Op, Xor); 1128 } 1129 } 1130 1131 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1132 Depth + 1)) 1133 return true; 1134 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1135 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1136 Known2, TLO, Depth + 1)) 1137 return true; 1138 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1139 1140 // Attempt to avoid multi-use ops if we don't need anything from them. 1141 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1142 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1143 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1144 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1145 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1146 if (DemandedOp0 || DemandedOp1) { 1147 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1148 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1149 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1150 return TLO.CombineTo(Op, NewOp); 1151 } 1152 } 1153 1154 // If all of the demanded bits are known one on one side, return the other. 1155 // These bits cannot contribute to the result of the 'and'. 1156 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1157 return TLO.CombineTo(Op, Op0); 1158 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1159 return TLO.CombineTo(Op, Op1); 1160 // If all of the demanded bits in the inputs are known zeros, return zero. 1161 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1162 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1163 // If the RHS is a constant, see if we can simplify it. 1164 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1165 return true; 1166 // If the operation can be done in a smaller type, do so. 1167 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1168 return true; 1169 1170 // Output known-1 bits are only known if set in both the LHS & RHS. 1171 Known.One &= Known2.One; 1172 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1173 Known.Zero |= Known2.Zero; 1174 break; 1175 } 1176 case ISD::OR: { 1177 SDValue Op0 = Op.getOperand(0); 1178 SDValue Op1 = Op.getOperand(1); 1179 1180 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1181 Depth + 1)) 1182 return true; 1183 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1184 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1185 Known2, TLO, Depth + 1)) 1186 return true; 1187 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1188 1189 // Attempt to avoid multi-use ops if we don't need anything from them. 1190 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1191 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1192 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1193 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1194 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1195 if (DemandedOp0 || DemandedOp1) { 1196 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1197 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1198 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1199 return TLO.CombineTo(Op, NewOp); 1200 } 1201 } 1202 1203 // If all of the demanded bits are known zero on one side, return the other. 1204 // These bits cannot contribute to the result of the 'or'. 1205 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1206 return TLO.CombineTo(Op, Op0); 1207 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1208 return TLO.CombineTo(Op, Op1); 1209 // If the RHS is a constant, see if we can simplify it. 1210 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1211 return true; 1212 // If the operation can be done in a smaller type, do so. 1213 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1214 return true; 1215 1216 // Output known-0 bits are only known if clear in both the LHS & RHS. 1217 Known.Zero &= Known2.Zero; 1218 // Output known-1 are known to be set if set in either the LHS | RHS. 1219 Known.One |= Known2.One; 1220 break; 1221 } 1222 case ISD::XOR: { 1223 SDValue Op0 = Op.getOperand(0); 1224 SDValue Op1 = Op.getOperand(1); 1225 1226 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1227 Depth + 1)) 1228 return true; 1229 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1230 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1231 Depth + 1)) 1232 return true; 1233 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1234 1235 // Attempt to avoid multi-use ops if we don't need anything from them. 1236 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1237 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1238 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1239 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1240 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1241 if (DemandedOp0 || DemandedOp1) { 1242 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1243 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1244 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1245 return TLO.CombineTo(Op, NewOp); 1246 } 1247 } 1248 1249 // If all of the demanded bits are known zero on one side, return the other. 1250 // These bits cannot contribute to the result of the 'xor'. 1251 if (DemandedBits.isSubsetOf(Known.Zero)) 1252 return TLO.CombineTo(Op, Op0); 1253 if (DemandedBits.isSubsetOf(Known2.Zero)) 1254 return TLO.CombineTo(Op, Op1); 1255 // If the operation can be done in a smaller type, do so. 1256 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1257 return true; 1258 1259 // If all of the unknown bits are known to be zero on one side or the other 1260 // (but not both) turn this into an *inclusive* or. 1261 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1262 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1263 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1264 1265 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1266 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1267 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1268 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1269 1270 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1271 // If one side is a constant, and all of the known set bits on the other 1272 // side are also set in the constant, turn this into an AND, as we know 1273 // the bits will be cleared. 1274 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1275 // NB: it is okay if more bits are known than are requested 1276 if (C->getAPIntValue() == Known2.One) { 1277 SDValue ANDC = 1278 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1279 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1280 } 1281 1282 // If the RHS is a constant, see if we can change it. Don't alter a -1 1283 // constant because that's a 'not' op, and that is better for combining 1284 // and codegen. 1285 if (!C->isAllOnesValue()) { 1286 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1287 // We're flipping all demanded bits. Flip the undemanded bits too. 1288 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1289 return TLO.CombineTo(Op, New); 1290 } 1291 // If we can't turn this into a 'not', try to shrink the constant. 1292 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1293 return true; 1294 } 1295 } 1296 1297 Known = std::move(KnownOut); 1298 break; 1299 } 1300 case ISD::SELECT: 1301 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1302 Depth + 1)) 1303 return true; 1304 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1305 Depth + 1)) 1306 return true; 1307 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1308 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1309 1310 // If the operands are constants, see if we can simplify them. 1311 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1312 return true; 1313 1314 // Only known if known in both the LHS and RHS. 1315 Known.One &= Known2.One; 1316 Known.Zero &= Known2.Zero; 1317 break; 1318 case ISD::SELECT_CC: 1319 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1320 Depth + 1)) 1321 return true; 1322 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1323 Depth + 1)) 1324 return true; 1325 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1326 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1327 1328 // If the operands are constants, see if we can simplify them. 1329 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1330 return true; 1331 1332 // Only known if known in both the LHS and RHS. 1333 Known.One &= Known2.One; 1334 Known.Zero &= Known2.Zero; 1335 break; 1336 case ISD::SETCC: { 1337 SDValue Op0 = Op.getOperand(0); 1338 SDValue Op1 = Op.getOperand(1); 1339 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1340 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1341 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1342 // -1, we may be able to bypass the setcc. 1343 if (DemandedBits.isSignMask() && 1344 Op0.getScalarValueSizeInBits() == BitWidth && 1345 getBooleanContents(Op0.getValueType()) == 1346 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1347 // If we're testing X < 0, then this compare isn't needed - just use X! 1348 // FIXME: We're limiting to integer types here, but this should also work 1349 // if we don't care about FP signed-zero. The use of SETLT with FP means 1350 // that we don't care about NaNs. 1351 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1352 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1353 return TLO.CombineTo(Op, Op0); 1354 1355 // TODO: Should we check for other forms of sign-bit comparisons? 1356 // Examples: X <= -1, X >= 0 1357 } 1358 if (getBooleanContents(Op0.getValueType()) == 1359 TargetLowering::ZeroOrOneBooleanContent && 1360 BitWidth > 1) 1361 Known.Zero.setBitsFrom(1); 1362 break; 1363 } 1364 case ISD::SHL: { 1365 SDValue Op0 = Op.getOperand(0); 1366 SDValue Op1 = Op.getOperand(1); 1367 1368 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1369 // If the shift count is an invalid immediate, don't do anything. 1370 if (SA->getAPIntValue().uge(BitWidth)) 1371 break; 1372 1373 unsigned ShAmt = SA->getZExtValue(); 1374 if (ShAmt == 0) 1375 return TLO.CombineTo(Op, Op0); 1376 1377 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1378 // single shift. We can do this if the bottom bits (which are shifted 1379 // out) are never demanded. 1380 // TODO - support non-uniform vector amounts. 1381 if (Op0.getOpcode() == ISD::SRL) { 1382 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1383 if (ConstantSDNode *SA2 = 1384 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1385 if (SA2->getAPIntValue().ult(BitWidth)) { 1386 unsigned C1 = SA2->getZExtValue(); 1387 unsigned Opc = ISD::SHL; 1388 int Diff = ShAmt - C1; 1389 if (Diff < 0) { 1390 Diff = -Diff; 1391 Opc = ISD::SRL; 1392 } 1393 1394 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1395 return TLO.CombineTo( 1396 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1397 } 1398 } 1399 } 1400 } 1401 1402 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1403 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1404 Depth + 1)) 1405 return true; 1406 1407 // Try shrinking the operation as long as the shift amount will still be 1408 // in range. 1409 if ((ShAmt < DemandedBits.getActiveBits()) && 1410 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1411 return true; 1412 1413 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1414 // are not demanded. This will likely allow the anyext to be folded away. 1415 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1416 SDValue InnerOp = Op0.getOperand(0); 1417 EVT InnerVT = InnerOp.getValueType(); 1418 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1419 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1420 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1421 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1422 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1423 ShTy = InnerVT; 1424 SDValue NarrowShl = 1425 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1426 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1427 return TLO.CombineTo( 1428 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1429 } 1430 // Repeat the SHL optimization above in cases where an extension 1431 // intervenes: (shl (anyext (shr x, c1)), c2) to 1432 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1433 // aren't demanded (as above) and that the shifted upper c1 bits of 1434 // x aren't demanded. 1435 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1436 InnerOp.hasOneUse()) { 1437 if (ConstantSDNode *SA2 = 1438 isConstOrConstSplat(InnerOp.getOperand(1))) { 1439 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1440 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1441 DemandedBits.getActiveBits() <= 1442 (InnerBits - InnerShAmt + ShAmt) && 1443 DemandedBits.countTrailingZeros() >= ShAmt) { 1444 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1445 Op1.getValueType()); 1446 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1447 InnerOp.getOperand(0)); 1448 return TLO.CombineTo( 1449 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1450 } 1451 } 1452 } 1453 } 1454 1455 Known.Zero <<= ShAmt; 1456 Known.One <<= ShAmt; 1457 // low bits known zero. 1458 Known.Zero.setLowBits(ShAmt); 1459 } 1460 break; 1461 } 1462 case ISD::SRL: { 1463 SDValue Op0 = Op.getOperand(0); 1464 SDValue Op1 = Op.getOperand(1); 1465 1466 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1467 // If the shift count is an invalid immediate, don't do anything. 1468 if (SA->getAPIntValue().uge(BitWidth)) 1469 break; 1470 1471 unsigned ShAmt = SA->getZExtValue(); 1472 if (ShAmt == 0) 1473 return TLO.CombineTo(Op, Op0); 1474 1475 EVT ShiftVT = Op1.getValueType(); 1476 APInt InDemandedMask = (DemandedBits << ShAmt); 1477 1478 // If the shift is exact, then it does demand the low bits (and knows that 1479 // they are zero). 1480 if (Op->getFlags().hasExact()) 1481 InDemandedMask.setLowBits(ShAmt); 1482 1483 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1484 // single shift. We can do this if the top bits (which are shifted out) 1485 // are never demanded. 1486 // TODO - support non-uniform vector amounts. 1487 if (Op0.getOpcode() == ISD::SHL) { 1488 if (ConstantSDNode *SA2 = 1489 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1490 if (!DemandedBits.intersects( 1491 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1492 if (SA2->getAPIntValue().ult(BitWidth)) { 1493 unsigned C1 = SA2->getZExtValue(); 1494 unsigned Opc = ISD::SRL; 1495 int Diff = ShAmt - C1; 1496 if (Diff < 0) { 1497 Diff = -Diff; 1498 Opc = ISD::SHL; 1499 } 1500 1501 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1502 return TLO.CombineTo( 1503 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1504 } 1505 } 1506 } 1507 } 1508 1509 // Compute the new bits that are at the top now. 1510 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1511 Depth + 1)) 1512 return true; 1513 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1514 Known.Zero.lshrInPlace(ShAmt); 1515 Known.One.lshrInPlace(ShAmt); 1516 1517 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1518 } 1519 break; 1520 } 1521 case ISD::SRA: { 1522 SDValue Op0 = Op.getOperand(0); 1523 SDValue Op1 = Op.getOperand(1); 1524 1525 // If we only want bits that already match the signbit then we don't need 1526 // to shift. 1527 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1528 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1529 NumHiDemandedBits) 1530 return TLO.CombineTo(Op, Op0); 1531 1532 // If this is an arithmetic shift right and only the low-bit is set, we can 1533 // always convert this into a logical shr, even if the shift amount is 1534 // variable. The low bit of the shift cannot be an input sign bit unless 1535 // the shift amount is >= the size of the datatype, which is undefined. 1536 if (DemandedBits.isOneValue()) 1537 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1538 1539 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1540 // If the shift count is an invalid immediate, don't do anything. 1541 if (SA->getAPIntValue().uge(BitWidth)) 1542 break; 1543 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 APInt InDemandedMask = (DemandedBits << ShAmt); 1549 1550 // If the shift is exact, then it does demand the low bits (and knows that 1551 // they are zero). 1552 if (Op->getFlags().hasExact()) 1553 InDemandedMask.setLowBits(ShAmt); 1554 1555 // If any of the demanded bits are produced by the sign extension, we also 1556 // demand the input sign bit. 1557 if (DemandedBits.countLeadingZeros() < ShAmt) 1558 InDemandedMask.setSignBit(); 1559 1560 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1561 Depth + 1)) 1562 return true; 1563 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1564 Known.Zero.lshrInPlace(ShAmt); 1565 Known.One.lshrInPlace(ShAmt); 1566 1567 // If the input sign bit is known to be zero, or if none of the top bits 1568 // are demanded, turn this into an unsigned shift right. 1569 if (Known.Zero[BitWidth - ShAmt - 1] || 1570 DemandedBits.countLeadingZeros() >= ShAmt) { 1571 SDNodeFlags Flags; 1572 Flags.setExact(Op->getFlags().hasExact()); 1573 return TLO.CombineTo( 1574 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1575 } 1576 1577 int Log2 = DemandedBits.exactLogBase2(); 1578 if (Log2 >= 0) { 1579 // The bit must come from the sign. 1580 SDValue NewSA = 1581 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1582 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1583 } 1584 1585 if (Known.One[BitWidth - ShAmt - 1]) 1586 // New bits are known one. 1587 Known.One.setHighBits(ShAmt); 1588 1589 // Attempt to avoid multi-use ops if we don't need anything from them. 1590 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1591 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1592 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1593 if (DemandedOp0) { 1594 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1595 return TLO.CombineTo(Op, NewOp); 1596 } 1597 } 1598 } 1599 break; 1600 } 1601 case ISD::FSHL: 1602 case ISD::FSHR: { 1603 SDValue Op0 = Op.getOperand(0); 1604 SDValue Op1 = Op.getOperand(1); 1605 SDValue Op2 = Op.getOperand(2); 1606 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1607 1608 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1609 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1610 1611 // For fshl, 0-shift returns the 1st arg. 1612 // For fshr, 0-shift returns the 2nd arg. 1613 if (Amt == 0) { 1614 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1615 Known, TLO, Depth + 1)) 1616 return true; 1617 break; 1618 } 1619 1620 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1621 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1622 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1623 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1624 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1625 Depth + 1)) 1626 return true; 1627 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1628 Depth + 1)) 1629 return true; 1630 1631 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1632 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1633 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1634 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1635 Known.One |= Known2.One; 1636 Known.Zero |= Known2.Zero; 1637 } 1638 break; 1639 } 1640 case ISD::ROTL: 1641 case ISD::ROTR: { 1642 SDValue Op0 = Op.getOperand(0); 1643 1644 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1645 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1646 return TLO.CombineTo(Op, Op0); 1647 break; 1648 } 1649 case ISD::BITREVERSE: { 1650 SDValue Src = Op.getOperand(0); 1651 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1652 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1653 Depth + 1)) 1654 return true; 1655 Known.One = Known2.One.reverseBits(); 1656 Known.Zero = Known2.Zero.reverseBits(); 1657 break; 1658 } 1659 case ISD::BSWAP: { 1660 SDValue Src = Op.getOperand(0); 1661 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1662 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1663 Depth + 1)) 1664 return true; 1665 Known.One = Known2.One.byteSwap(); 1666 Known.Zero = Known2.Zero.byteSwap(); 1667 break; 1668 } 1669 case ISD::SIGN_EXTEND_INREG: { 1670 SDValue Op0 = Op.getOperand(0); 1671 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1672 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1673 1674 // If we only care about the highest bit, don't bother shifting right. 1675 if (DemandedBits.isSignMask()) { 1676 unsigned NumSignBits = 1677 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1678 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1679 // However if the input is already sign extended we expect the sign 1680 // extension to be dropped altogether later and do not simplify. 1681 if (!AlreadySignExtended) { 1682 // Compute the correct shift amount type, which must be getShiftAmountTy 1683 // for scalar types after legalization. 1684 EVT ShiftAmtTy = VT; 1685 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1686 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1687 1688 SDValue ShiftAmt = 1689 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1690 return TLO.CombineTo(Op, 1691 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1692 } 1693 } 1694 1695 // If none of the extended bits are demanded, eliminate the sextinreg. 1696 if (DemandedBits.getActiveBits() <= ExVTBits) 1697 return TLO.CombineTo(Op, Op0); 1698 1699 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1700 1701 // Since the sign extended bits are demanded, we know that the sign 1702 // bit is demanded. 1703 InputDemandedBits.setBit(ExVTBits - 1); 1704 1705 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1706 return true; 1707 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1708 1709 // If the sign bit of the input is known set or clear, then we know the 1710 // top bits of the result. 1711 1712 // If the input sign bit is known zero, convert this into a zero extension. 1713 if (Known.Zero[ExVTBits - 1]) 1714 return TLO.CombineTo( 1715 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1716 1717 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1718 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1719 Known.One.setBitsFrom(ExVTBits); 1720 Known.Zero &= Mask; 1721 } else { // Input sign bit unknown 1722 Known.Zero &= Mask; 1723 Known.One &= Mask; 1724 } 1725 break; 1726 } 1727 case ISD::BUILD_PAIR: { 1728 EVT HalfVT = Op.getOperand(0).getValueType(); 1729 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1730 1731 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1732 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1733 1734 KnownBits KnownLo, KnownHi; 1735 1736 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1737 return true; 1738 1739 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1740 return true; 1741 1742 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1743 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1744 1745 Known.One = KnownLo.One.zext(BitWidth) | 1746 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1747 break; 1748 } 1749 case ISD::ZERO_EXTEND: 1750 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1751 SDValue Src = Op.getOperand(0); 1752 EVT SrcVT = Src.getValueType(); 1753 unsigned InBits = SrcVT.getScalarSizeInBits(); 1754 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1755 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1756 1757 // If none of the top bits are demanded, convert this into an any_extend. 1758 if (DemandedBits.getActiveBits() <= InBits) { 1759 // If we only need the non-extended bits of the bottom element 1760 // then we can just bitcast to the result. 1761 if (IsVecInReg && DemandedElts == 1 && 1762 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1763 TLO.DAG.getDataLayout().isLittleEndian()) 1764 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1765 1766 unsigned Opc = 1767 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1768 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1769 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1770 } 1771 1772 APInt InDemandedBits = DemandedBits.trunc(InBits); 1773 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1774 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1775 Depth + 1)) 1776 return true; 1777 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1778 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1779 Known = Known.zext(BitWidth); 1780 break; 1781 } 1782 case ISD::SIGN_EXTEND: 1783 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1784 SDValue Src = Op.getOperand(0); 1785 EVT SrcVT = Src.getValueType(); 1786 unsigned InBits = SrcVT.getScalarSizeInBits(); 1787 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1788 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1789 1790 // If none of the top bits are demanded, convert this into an any_extend. 1791 if (DemandedBits.getActiveBits() <= InBits) { 1792 // If we only need the non-extended bits of the bottom element 1793 // then we can just bitcast to the result. 1794 if (IsVecInReg && DemandedElts == 1 && 1795 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1796 TLO.DAG.getDataLayout().isLittleEndian()) 1797 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1798 1799 unsigned Opc = 1800 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1801 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1802 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1803 } 1804 1805 APInt InDemandedBits = DemandedBits.trunc(InBits); 1806 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1807 1808 // Since some of the sign extended bits are demanded, we know that the sign 1809 // bit is demanded. 1810 InDemandedBits.setBit(InBits - 1); 1811 1812 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1813 Depth + 1)) 1814 return true; 1815 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1816 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1817 1818 // If the sign bit is known one, the top bits match. 1819 Known = Known.sext(BitWidth); 1820 1821 // If the sign bit is known zero, convert this to a zero extend. 1822 if (Known.isNonNegative()) { 1823 unsigned Opc = 1824 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1825 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1826 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1827 } 1828 break; 1829 } 1830 case ISD::ANY_EXTEND: 1831 case ISD::ANY_EXTEND_VECTOR_INREG: { 1832 SDValue Src = Op.getOperand(0); 1833 EVT SrcVT = Src.getValueType(); 1834 unsigned InBits = SrcVT.getScalarSizeInBits(); 1835 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1836 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1837 1838 // If we only need the bottom element then we can just bitcast. 1839 // TODO: Handle ANY_EXTEND? 1840 if (IsVecInReg && DemandedElts == 1 && 1841 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1842 TLO.DAG.getDataLayout().isLittleEndian()) 1843 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1844 1845 APInt InDemandedBits = DemandedBits.trunc(InBits); 1846 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1847 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1848 Depth + 1)) 1849 return true; 1850 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1851 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1852 Known = Known.anyext(BitWidth); 1853 1854 // Attempt to avoid multi-use ops if we don't need anything from them. 1855 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1856 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1857 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1858 break; 1859 } 1860 case ISD::TRUNCATE: { 1861 SDValue Src = Op.getOperand(0); 1862 1863 // Simplify the input, using demanded bit information, and compute the known 1864 // zero/one bits live out. 1865 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1866 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1867 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1868 return true; 1869 Known = Known.trunc(BitWidth); 1870 1871 // Attempt to avoid multi-use ops if we don't need anything from them. 1872 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1873 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1874 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1875 1876 // If the input is only used by this truncate, see if we can shrink it based 1877 // on the known demanded bits. 1878 if (Src.getNode()->hasOneUse()) { 1879 switch (Src.getOpcode()) { 1880 default: 1881 break; 1882 case ISD::SRL: 1883 // Shrink SRL by a constant if none of the high bits shifted in are 1884 // demanded. 1885 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1886 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1887 // undesirable. 1888 break; 1889 1890 SDValue ShAmt = Src.getOperand(1); 1891 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1892 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1893 break; 1894 uint64_t ShVal = ShAmtC->getZExtValue(); 1895 1896 APInt HighBits = 1897 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1898 HighBits.lshrInPlace(ShVal); 1899 HighBits = HighBits.trunc(BitWidth); 1900 1901 if (!(HighBits & DemandedBits)) { 1902 // None of the shifted in bits are needed. Add a truncate of the 1903 // shift input, then shift it. 1904 if (TLO.LegalTypes()) 1905 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1906 SDValue NewTrunc = 1907 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1908 return TLO.CombineTo( 1909 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1910 } 1911 break; 1912 } 1913 } 1914 1915 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1916 break; 1917 } 1918 case ISD::AssertZext: { 1919 // AssertZext demands all of the high bits, plus any of the low bits 1920 // demanded by its users. 1921 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1922 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1923 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1924 TLO, Depth + 1)) 1925 return true; 1926 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1927 1928 Known.Zero |= ~InMask; 1929 break; 1930 } 1931 case ISD::EXTRACT_VECTOR_ELT: { 1932 SDValue Src = Op.getOperand(0); 1933 SDValue Idx = Op.getOperand(1); 1934 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1935 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1936 1937 // Demand the bits from every vector element without a constant index. 1938 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1939 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1940 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1941 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1942 1943 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1944 // anything about the extended bits. 1945 APInt DemandedSrcBits = DemandedBits; 1946 if (BitWidth > EltBitWidth) 1947 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1948 1949 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1950 Depth + 1)) 1951 return true; 1952 1953 // Attempt to avoid multi-use ops if we don't need anything from them. 1954 if (!DemandedSrcBits.isAllOnesValue() || 1955 !DemandedSrcElts.isAllOnesValue()) { 1956 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1957 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1958 SDValue NewOp = 1959 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1960 return TLO.CombineTo(Op, NewOp); 1961 } 1962 } 1963 1964 Known = Known2; 1965 if (BitWidth > EltBitWidth) 1966 Known = Known.anyext(BitWidth); 1967 break; 1968 } 1969 case ISD::BITCAST: { 1970 SDValue Src = Op.getOperand(0); 1971 EVT SrcVT = Src.getValueType(); 1972 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1973 1974 // If this is an FP->Int bitcast and if the sign bit is the only 1975 // thing demanded, turn this into a FGETSIGN. 1976 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1977 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1978 SrcVT.isFloatingPoint()) { 1979 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1980 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1981 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1982 SrcVT != MVT::f128) { 1983 // Cannot eliminate/lower SHL for f128 yet. 1984 EVT Ty = OpVTLegal ? VT : MVT::i32; 1985 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1986 // place. We expect the SHL to be eliminated by other optimizations. 1987 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1988 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1989 if (!OpVTLegal && OpVTSizeInBits > 32) 1990 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1991 unsigned ShVal = Op.getValueSizeInBits() - 1; 1992 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1993 return TLO.CombineTo(Op, 1994 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1995 } 1996 } 1997 1998 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1999 // Demand the elt/bit if any of the original elts/bits are demanded. 2000 // TODO - bigendian once we have test coverage. 2001 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2002 TLO.DAG.getDataLayout().isLittleEndian()) { 2003 unsigned Scale = BitWidth / NumSrcEltBits; 2004 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2005 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2006 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2007 for (unsigned i = 0; i != Scale; ++i) { 2008 unsigned Offset = i * NumSrcEltBits; 2009 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2010 if (!Sub.isNullValue()) { 2011 DemandedSrcBits |= Sub; 2012 for (unsigned j = 0; j != NumElts; ++j) 2013 if (DemandedElts[j]) 2014 DemandedSrcElts.setBit((j * Scale) + i); 2015 } 2016 } 2017 2018 APInt KnownSrcUndef, KnownSrcZero; 2019 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2020 KnownSrcZero, TLO, Depth + 1)) 2021 return true; 2022 2023 KnownBits KnownSrcBits; 2024 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2025 KnownSrcBits, TLO, Depth + 1)) 2026 return true; 2027 } else if ((NumSrcEltBits % BitWidth) == 0 && 2028 TLO.DAG.getDataLayout().isLittleEndian()) { 2029 unsigned Scale = NumSrcEltBits / BitWidth; 2030 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2031 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2032 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2033 for (unsigned i = 0; i != NumElts; ++i) 2034 if (DemandedElts[i]) { 2035 unsigned Offset = (i % Scale) * BitWidth; 2036 DemandedSrcBits.insertBits(DemandedBits, Offset); 2037 DemandedSrcElts.setBit(i / Scale); 2038 } 2039 2040 if (SrcVT.isVector()) { 2041 APInt KnownSrcUndef, KnownSrcZero; 2042 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2043 KnownSrcZero, TLO, Depth + 1)) 2044 return true; 2045 } 2046 2047 KnownBits KnownSrcBits; 2048 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2049 KnownSrcBits, TLO, Depth + 1)) 2050 return true; 2051 } 2052 2053 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2054 // recursive call where Known may be useful to the caller. 2055 if (Depth > 0) { 2056 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2057 return false; 2058 } 2059 break; 2060 } 2061 case ISD::ADD: 2062 case ISD::MUL: 2063 case ISD::SUB: { 2064 // Add, Sub, and Mul don't demand any bits in positions beyond that 2065 // of the highest bit demanded of them. 2066 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2067 SDNodeFlags Flags = Op.getNode()->getFlags(); 2068 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2069 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2070 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2071 Depth + 1) || 2072 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2073 Depth + 1) || 2074 // See if the operation should be performed at a smaller bit width. 2075 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2076 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2077 // Disable the nsw and nuw flags. We can no longer guarantee that we 2078 // won't wrap after simplification. 2079 Flags.setNoSignedWrap(false); 2080 Flags.setNoUnsignedWrap(false); 2081 SDValue NewOp = 2082 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2083 return TLO.CombineTo(Op, NewOp); 2084 } 2085 return true; 2086 } 2087 2088 // Attempt to avoid multi-use ops if we don't need anything from them. 2089 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2090 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2091 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2092 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2093 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2094 if (DemandedOp0 || DemandedOp1) { 2095 Flags.setNoSignedWrap(false); 2096 Flags.setNoUnsignedWrap(false); 2097 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2098 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2099 SDValue NewOp = 2100 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2101 return TLO.CombineTo(Op, NewOp); 2102 } 2103 } 2104 2105 // If we have a constant operand, we may be able to turn it into -1 if we 2106 // do not demand the high bits. This can make the constant smaller to 2107 // encode, allow more general folding, or match specialized instruction 2108 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2109 // is probably not useful (and could be detrimental). 2110 ConstantSDNode *C = isConstOrConstSplat(Op1); 2111 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2112 if (C && !C->isAllOnesValue() && !C->isOne() && 2113 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2114 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2115 // Disable the nsw and nuw flags. We can no longer guarantee that we 2116 // won't wrap after simplification. 2117 Flags.setNoSignedWrap(false); 2118 Flags.setNoUnsignedWrap(false); 2119 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2120 return TLO.CombineTo(Op, NewOp); 2121 } 2122 2123 LLVM_FALLTHROUGH; 2124 } 2125 default: 2126 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2127 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2128 Known, TLO, Depth)) 2129 return true; 2130 break; 2131 } 2132 2133 // Just use computeKnownBits to compute output bits. 2134 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2135 break; 2136 } 2137 2138 // If we know the value of all of the demanded bits, return this as a 2139 // constant. 2140 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2141 // Avoid folding to a constant if any OpaqueConstant is involved. 2142 const SDNode *N = Op.getNode(); 2143 for (SDNodeIterator I = SDNodeIterator::begin(N), 2144 E = SDNodeIterator::end(N); 2145 I != E; ++I) { 2146 SDNode *Op = *I; 2147 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2148 if (C->isOpaque()) 2149 return false; 2150 } 2151 // TODO: Handle float bits as well. 2152 if (VT.isInteger()) 2153 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2154 } 2155 2156 return false; 2157 } 2158 2159 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2160 const APInt &DemandedElts, 2161 APInt &KnownUndef, 2162 APInt &KnownZero, 2163 DAGCombinerInfo &DCI) const { 2164 SelectionDAG &DAG = DCI.DAG; 2165 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2166 !DCI.isBeforeLegalizeOps()); 2167 2168 bool Simplified = 2169 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2170 if (Simplified) { 2171 DCI.AddToWorklist(Op.getNode()); 2172 DCI.CommitTargetLoweringOpt(TLO); 2173 } 2174 2175 return Simplified; 2176 } 2177 2178 /// Given a vector binary operation and known undefined elements for each input 2179 /// operand, compute whether each element of the output is undefined. 2180 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2181 const APInt &UndefOp0, 2182 const APInt &UndefOp1) { 2183 EVT VT = BO.getValueType(); 2184 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2185 "Vector binop only"); 2186 2187 EVT EltVT = VT.getVectorElementType(); 2188 unsigned NumElts = VT.getVectorNumElements(); 2189 assert(UndefOp0.getBitWidth() == NumElts && 2190 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2191 2192 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2193 const APInt &UndefVals) { 2194 if (UndefVals[Index]) 2195 return DAG.getUNDEF(EltVT); 2196 2197 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2198 // Try hard to make sure that the getNode() call is not creating temporary 2199 // nodes. Ignore opaque integers because they do not constant fold. 2200 SDValue Elt = BV->getOperand(Index); 2201 auto *C = dyn_cast<ConstantSDNode>(Elt); 2202 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2203 return Elt; 2204 } 2205 2206 return SDValue(); 2207 }; 2208 2209 APInt KnownUndef = APInt::getNullValue(NumElts); 2210 for (unsigned i = 0; i != NumElts; ++i) { 2211 // If both inputs for this element are either constant or undef and match 2212 // the element type, compute the constant/undef result for this element of 2213 // the vector. 2214 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2215 // not handle FP constants. The code within getNode() should be refactored 2216 // to avoid the danger of creating a bogus temporary node here. 2217 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2218 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2219 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2220 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2221 KnownUndef.setBit(i); 2222 } 2223 return KnownUndef; 2224 } 2225 2226 bool TargetLowering::SimplifyDemandedVectorElts( 2227 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2228 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2229 bool AssumeSingleUse) const { 2230 EVT VT = Op.getValueType(); 2231 APInt DemandedElts = OriginalDemandedElts; 2232 unsigned NumElts = DemandedElts.getBitWidth(); 2233 assert(VT.isVector() && "Expected vector op"); 2234 assert(VT.getVectorNumElements() == NumElts && 2235 "Mask size mismatches value type element count!"); 2236 2237 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2238 2239 // Undef operand. 2240 if (Op.isUndef()) { 2241 KnownUndef.setAllBits(); 2242 return false; 2243 } 2244 2245 // If Op has other users, assume that all elements are needed. 2246 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2247 DemandedElts.setAllBits(); 2248 2249 // Not demanding any elements from Op. 2250 if (DemandedElts == 0) { 2251 KnownUndef.setAllBits(); 2252 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2253 } 2254 2255 // Limit search depth. 2256 if (Depth >= SelectionDAG::MaxRecursionDepth) 2257 return false; 2258 2259 SDLoc DL(Op); 2260 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2261 2262 switch (Op.getOpcode()) { 2263 case ISD::SCALAR_TO_VECTOR: { 2264 if (!DemandedElts[0]) { 2265 KnownUndef.setAllBits(); 2266 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2267 } 2268 KnownUndef.setHighBits(NumElts - 1); 2269 break; 2270 } 2271 case ISD::BITCAST: { 2272 SDValue Src = Op.getOperand(0); 2273 EVT SrcVT = Src.getValueType(); 2274 2275 // We only handle vectors here. 2276 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2277 if (!SrcVT.isVector()) 2278 break; 2279 2280 // Fast handling of 'identity' bitcasts. 2281 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2282 if (NumSrcElts == NumElts) 2283 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2284 KnownZero, TLO, Depth + 1); 2285 2286 APInt SrcZero, SrcUndef; 2287 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2288 2289 // Bitcast from 'large element' src vector to 'small element' vector, we 2290 // must demand a source element if any DemandedElt maps to it. 2291 if ((NumElts % NumSrcElts) == 0) { 2292 unsigned Scale = NumElts / NumSrcElts; 2293 for (unsigned i = 0; i != NumElts; ++i) 2294 if (DemandedElts[i]) 2295 SrcDemandedElts.setBit(i / Scale); 2296 2297 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2298 TLO, Depth + 1)) 2299 return true; 2300 2301 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2302 // of the large element. 2303 // TODO - bigendian once we have test coverage. 2304 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2305 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2306 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2307 for (unsigned i = 0; i != NumElts; ++i) 2308 if (DemandedElts[i]) { 2309 unsigned Ofs = (i % Scale) * EltSizeInBits; 2310 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2311 } 2312 2313 KnownBits Known; 2314 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2315 return true; 2316 } 2317 2318 // If the src element is zero/undef then all the output elements will be - 2319 // only demanded elements are guaranteed to be correct. 2320 for (unsigned i = 0; i != NumSrcElts; ++i) { 2321 if (SrcDemandedElts[i]) { 2322 if (SrcZero[i]) 2323 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2324 if (SrcUndef[i]) 2325 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2326 } 2327 } 2328 } 2329 2330 // Bitcast from 'small element' src vector to 'large element' vector, we 2331 // demand all smaller source elements covered by the larger demanded element 2332 // of this vector. 2333 if ((NumSrcElts % NumElts) == 0) { 2334 unsigned Scale = NumSrcElts / NumElts; 2335 for (unsigned i = 0; i != NumElts; ++i) 2336 if (DemandedElts[i]) 2337 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2338 2339 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2340 TLO, Depth + 1)) 2341 return true; 2342 2343 // If all the src elements covering an output element are zero/undef, then 2344 // the output element will be as well, assuming it was demanded. 2345 for (unsigned i = 0; i != NumElts; ++i) { 2346 if (DemandedElts[i]) { 2347 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2348 KnownZero.setBit(i); 2349 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2350 KnownUndef.setBit(i); 2351 } 2352 } 2353 } 2354 break; 2355 } 2356 case ISD::BUILD_VECTOR: { 2357 // Check all elements and simplify any unused elements with UNDEF. 2358 if (!DemandedElts.isAllOnesValue()) { 2359 // Don't simplify BROADCASTS. 2360 if (llvm::any_of(Op->op_values(), 2361 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2362 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2363 bool Updated = false; 2364 for (unsigned i = 0; i != NumElts; ++i) { 2365 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2366 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2367 KnownUndef.setBit(i); 2368 Updated = true; 2369 } 2370 } 2371 if (Updated) 2372 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2373 } 2374 } 2375 for (unsigned i = 0; i != NumElts; ++i) { 2376 SDValue SrcOp = Op.getOperand(i); 2377 if (SrcOp.isUndef()) { 2378 KnownUndef.setBit(i); 2379 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2380 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2381 KnownZero.setBit(i); 2382 } 2383 } 2384 break; 2385 } 2386 case ISD::CONCAT_VECTORS: { 2387 EVT SubVT = Op.getOperand(0).getValueType(); 2388 unsigned NumSubVecs = Op.getNumOperands(); 2389 unsigned NumSubElts = SubVT.getVectorNumElements(); 2390 for (unsigned i = 0; i != NumSubVecs; ++i) { 2391 SDValue SubOp = Op.getOperand(i); 2392 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2393 APInt SubUndef, SubZero; 2394 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2395 Depth + 1)) 2396 return true; 2397 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2398 KnownZero.insertBits(SubZero, i * NumSubElts); 2399 } 2400 break; 2401 } 2402 case ISD::INSERT_SUBVECTOR: { 2403 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2404 break; 2405 SDValue Base = Op.getOperand(0); 2406 SDValue Sub = Op.getOperand(1); 2407 EVT SubVT = Sub.getValueType(); 2408 unsigned NumSubElts = SubVT.getVectorNumElements(); 2409 const APInt &Idx = Op.getConstantOperandAPInt(2); 2410 if (Idx.ugt(NumElts - NumSubElts)) 2411 break; 2412 unsigned SubIdx = Idx.getZExtValue(); 2413 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2414 APInt SubUndef, SubZero; 2415 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2416 Depth + 1)) 2417 return true; 2418 APInt BaseElts = DemandedElts; 2419 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2420 2421 // If none of the base operand elements are demanded, replace it with undef. 2422 if (!BaseElts && !Base.isUndef()) 2423 return TLO.CombineTo(Op, 2424 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2425 TLO.DAG.getUNDEF(VT), 2426 Op.getOperand(1), 2427 Op.getOperand(2))); 2428 2429 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2430 Depth + 1)) 2431 return true; 2432 KnownUndef.insertBits(SubUndef, SubIdx); 2433 KnownZero.insertBits(SubZero, SubIdx); 2434 break; 2435 } 2436 case ISD::EXTRACT_SUBVECTOR: { 2437 SDValue Src = Op.getOperand(0); 2438 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2439 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2440 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2441 // Offset the demanded elts by the subvector index. 2442 uint64_t Idx = SubIdx->getZExtValue(); 2443 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2444 APInt SrcUndef, SrcZero; 2445 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2446 Depth + 1)) 2447 return true; 2448 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2449 KnownZero = SrcZero.extractBits(NumElts, Idx); 2450 } 2451 break; 2452 } 2453 case ISD::INSERT_VECTOR_ELT: { 2454 SDValue Vec = Op.getOperand(0); 2455 SDValue Scl = Op.getOperand(1); 2456 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2457 2458 // For a legal, constant insertion index, if we don't need this insertion 2459 // then strip it, else remove it from the demanded elts. 2460 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2461 unsigned Idx = CIdx->getZExtValue(); 2462 if (!DemandedElts[Idx]) 2463 return TLO.CombineTo(Op, Vec); 2464 2465 APInt DemandedVecElts(DemandedElts); 2466 DemandedVecElts.clearBit(Idx); 2467 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2468 KnownZero, TLO, Depth + 1)) 2469 return true; 2470 2471 KnownUndef.clearBit(Idx); 2472 if (Scl.isUndef()) 2473 KnownUndef.setBit(Idx); 2474 2475 KnownZero.clearBit(Idx); 2476 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2477 KnownZero.setBit(Idx); 2478 break; 2479 } 2480 2481 APInt VecUndef, VecZero; 2482 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2483 Depth + 1)) 2484 return true; 2485 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2486 break; 2487 } 2488 case ISD::VSELECT: { 2489 // Try to transform the select condition based on the current demanded 2490 // elements. 2491 // TODO: If a condition element is undef, we can choose from one arm of the 2492 // select (and if one arm is undef, then we can propagate that to the 2493 // result). 2494 // TODO - add support for constant vselect masks (see IR version of this). 2495 APInt UnusedUndef, UnusedZero; 2496 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2497 UnusedZero, TLO, Depth + 1)) 2498 return true; 2499 2500 // See if we can simplify either vselect operand. 2501 APInt DemandedLHS(DemandedElts); 2502 APInt DemandedRHS(DemandedElts); 2503 APInt UndefLHS, ZeroLHS; 2504 APInt UndefRHS, ZeroRHS; 2505 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2506 ZeroLHS, TLO, Depth + 1)) 2507 return true; 2508 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2509 ZeroRHS, TLO, Depth + 1)) 2510 return true; 2511 2512 KnownUndef = UndefLHS & UndefRHS; 2513 KnownZero = ZeroLHS & ZeroRHS; 2514 break; 2515 } 2516 case ISD::VECTOR_SHUFFLE: { 2517 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2518 2519 // Collect demanded elements from shuffle operands.. 2520 APInt DemandedLHS(NumElts, 0); 2521 APInt DemandedRHS(NumElts, 0); 2522 for (unsigned i = 0; i != NumElts; ++i) { 2523 int M = ShuffleMask[i]; 2524 if (M < 0 || !DemandedElts[i]) 2525 continue; 2526 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2527 if (M < (int)NumElts) 2528 DemandedLHS.setBit(M); 2529 else 2530 DemandedRHS.setBit(M - NumElts); 2531 } 2532 2533 // See if we can simplify either shuffle operand. 2534 APInt UndefLHS, ZeroLHS; 2535 APInt UndefRHS, ZeroRHS; 2536 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2537 ZeroLHS, TLO, Depth + 1)) 2538 return true; 2539 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2540 ZeroRHS, TLO, Depth + 1)) 2541 return true; 2542 2543 // Simplify mask using undef elements from LHS/RHS. 2544 bool Updated = false; 2545 bool IdentityLHS = true, IdentityRHS = true; 2546 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2547 for (unsigned i = 0; i != NumElts; ++i) { 2548 int &M = NewMask[i]; 2549 if (M < 0) 2550 continue; 2551 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2552 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2553 Updated = true; 2554 M = -1; 2555 } 2556 IdentityLHS &= (M < 0) || (M == (int)i); 2557 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2558 } 2559 2560 // Update legal shuffle masks based on demanded elements if it won't reduce 2561 // to Identity which can cause premature removal of the shuffle mask. 2562 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2563 SDValue LegalShuffle = 2564 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2565 NewMask, TLO.DAG); 2566 if (LegalShuffle) 2567 return TLO.CombineTo(Op, LegalShuffle); 2568 } 2569 2570 // Propagate undef/zero elements from LHS/RHS. 2571 for (unsigned i = 0; i != NumElts; ++i) { 2572 int M = ShuffleMask[i]; 2573 if (M < 0) { 2574 KnownUndef.setBit(i); 2575 } else if (M < (int)NumElts) { 2576 if (UndefLHS[M]) 2577 KnownUndef.setBit(i); 2578 if (ZeroLHS[M]) 2579 KnownZero.setBit(i); 2580 } else { 2581 if (UndefRHS[M - NumElts]) 2582 KnownUndef.setBit(i); 2583 if (ZeroRHS[M - NumElts]) 2584 KnownZero.setBit(i); 2585 } 2586 } 2587 break; 2588 } 2589 case ISD::ANY_EXTEND_VECTOR_INREG: 2590 case ISD::SIGN_EXTEND_VECTOR_INREG: 2591 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2592 APInt SrcUndef, SrcZero; 2593 SDValue Src = Op.getOperand(0); 2594 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2595 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2596 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2597 Depth + 1)) 2598 return true; 2599 KnownZero = SrcZero.zextOrTrunc(NumElts); 2600 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2601 2602 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2603 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2604 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2605 // aext - if we just need the bottom element then we can bitcast. 2606 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2607 } 2608 2609 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2610 // zext(undef) upper bits are guaranteed to be zero. 2611 if (DemandedElts.isSubsetOf(KnownUndef)) 2612 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2613 KnownUndef.clearAllBits(); 2614 } 2615 break; 2616 } 2617 2618 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2619 // MAX, saturated math, etc. 2620 case ISD::OR: 2621 case ISD::XOR: 2622 case ISD::ADD: 2623 case ISD::SUB: 2624 case ISD::FADD: 2625 case ISD::FSUB: 2626 case ISD::FMUL: 2627 case ISD::FDIV: 2628 case ISD::FREM: { 2629 APInt UndefRHS, ZeroRHS; 2630 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2631 ZeroRHS, TLO, Depth + 1)) 2632 return true; 2633 APInt UndefLHS, ZeroLHS; 2634 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2635 ZeroLHS, TLO, Depth + 1)) 2636 return true; 2637 2638 KnownZero = ZeroLHS & ZeroRHS; 2639 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2640 break; 2641 } 2642 case ISD::SHL: 2643 case ISD::SRL: 2644 case ISD::SRA: 2645 case ISD::ROTL: 2646 case ISD::ROTR: { 2647 APInt UndefRHS, ZeroRHS; 2648 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2649 ZeroRHS, TLO, Depth + 1)) 2650 return true; 2651 APInt UndefLHS, ZeroLHS; 2652 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2653 ZeroLHS, TLO, Depth + 1)) 2654 return true; 2655 2656 KnownZero = ZeroLHS; 2657 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2658 break; 2659 } 2660 case ISD::MUL: 2661 case ISD::AND: { 2662 APInt SrcUndef, SrcZero; 2663 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2664 SrcZero, TLO, Depth + 1)) 2665 return true; 2666 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2667 KnownZero, TLO, Depth + 1)) 2668 return true; 2669 2670 // If either side has a zero element, then the result element is zero, even 2671 // if the other is an UNDEF. 2672 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2673 // and then handle 'and' nodes with the rest of the binop opcodes. 2674 KnownZero |= SrcZero; 2675 KnownUndef &= SrcUndef; 2676 KnownUndef &= ~KnownZero; 2677 break; 2678 } 2679 case ISD::TRUNCATE: 2680 case ISD::SIGN_EXTEND: 2681 case ISD::ZERO_EXTEND: 2682 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2683 KnownZero, TLO, Depth + 1)) 2684 return true; 2685 2686 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2687 // zext(undef) upper bits are guaranteed to be zero. 2688 if (DemandedElts.isSubsetOf(KnownUndef)) 2689 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2690 KnownUndef.clearAllBits(); 2691 } 2692 break; 2693 default: { 2694 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2695 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2696 KnownZero, TLO, Depth)) 2697 return true; 2698 } else { 2699 KnownBits Known; 2700 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2701 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2702 TLO, Depth, AssumeSingleUse)) 2703 return true; 2704 } 2705 break; 2706 } 2707 } 2708 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2709 2710 // Constant fold all undef cases. 2711 // TODO: Handle zero cases as well. 2712 if (DemandedElts.isSubsetOf(KnownUndef)) 2713 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2714 2715 return false; 2716 } 2717 2718 /// Determine which of the bits specified in Mask are known to be either zero or 2719 /// one and return them in the Known. 2720 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2721 KnownBits &Known, 2722 const APInt &DemandedElts, 2723 const SelectionDAG &DAG, 2724 unsigned Depth) const { 2725 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2726 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2727 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2728 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2729 "Should use MaskedValueIsZero if you don't know whether Op" 2730 " is a target node!"); 2731 Known.resetAll(); 2732 } 2733 2734 void TargetLowering::computeKnownBitsForTargetInstr( 2735 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2736 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2737 unsigned Depth) const { 2738 Known.resetAll(); 2739 } 2740 2741 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2742 KnownBits &Known, 2743 const APInt &DemandedElts, 2744 const SelectionDAG &DAG, 2745 unsigned Depth) const { 2746 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2747 2748 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2749 // The low bits are known zero if the pointer is aligned. 2750 Known.Zero.setLowBits(Log2_32(Align)); 2751 } 2752 } 2753 2754 /// This method can be implemented by targets that want to expose additional 2755 /// information about sign bits to the DAG Combiner. 2756 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2757 const APInt &, 2758 const SelectionDAG &, 2759 unsigned Depth) const { 2760 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2761 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2762 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2763 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2764 "Should use ComputeNumSignBits if you don't know whether Op" 2765 " is a target node!"); 2766 return 1; 2767 } 2768 2769 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2770 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2771 TargetLoweringOpt &TLO, unsigned Depth) const { 2772 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2773 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2774 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2775 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2776 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2777 " is a target node!"); 2778 return false; 2779 } 2780 2781 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2782 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2783 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2784 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2785 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2786 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2787 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2788 "Should use SimplifyDemandedBits if you don't know whether Op" 2789 " is a target node!"); 2790 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2791 return false; 2792 } 2793 2794 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2795 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2796 SelectionDAG &DAG, unsigned Depth) const { 2797 assert( 2798 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2799 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2800 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2801 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2802 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2803 " is a target node!"); 2804 return SDValue(); 2805 } 2806 2807 SDValue 2808 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2809 SDValue N1, MutableArrayRef<int> Mask, 2810 SelectionDAG &DAG) const { 2811 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2812 if (!LegalMask) { 2813 std::swap(N0, N1); 2814 ShuffleVectorSDNode::commuteMask(Mask); 2815 LegalMask = isShuffleMaskLegal(Mask, VT); 2816 } 2817 2818 if (!LegalMask) 2819 return SDValue(); 2820 2821 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2822 } 2823 2824 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2825 return nullptr; 2826 } 2827 2828 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2829 const SelectionDAG &DAG, 2830 bool SNaN, 2831 unsigned Depth) const { 2832 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2833 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2834 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2835 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2836 "Should use isKnownNeverNaN if you don't know whether Op" 2837 " is a target node!"); 2838 return false; 2839 } 2840 2841 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2842 // work with truncating build vectors and vectors with elements of less than 2843 // 8 bits. 2844 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2845 if (!N) 2846 return false; 2847 2848 APInt CVal; 2849 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2850 CVal = CN->getAPIntValue(); 2851 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2852 auto *CN = BV->getConstantSplatNode(); 2853 if (!CN) 2854 return false; 2855 2856 // If this is a truncating build vector, truncate the splat value. 2857 // Otherwise, we may fail to match the expected values below. 2858 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2859 CVal = CN->getAPIntValue(); 2860 if (BVEltWidth < CVal.getBitWidth()) 2861 CVal = CVal.trunc(BVEltWidth); 2862 } else { 2863 return false; 2864 } 2865 2866 switch (getBooleanContents(N->getValueType(0))) { 2867 case UndefinedBooleanContent: 2868 return CVal[0]; 2869 case ZeroOrOneBooleanContent: 2870 return CVal.isOneValue(); 2871 case ZeroOrNegativeOneBooleanContent: 2872 return CVal.isAllOnesValue(); 2873 } 2874 2875 llvm_unreachable("Invalid boolean contents"); 2876 } 2877 2878 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2879 if (!N) 2880 return false; 2881 2882 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2883 if (!CN) { 2884 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2885 if (!BV) 2886 return false; 2887 2888 // Only interested in constant splats, we don't care about undef 2889 // elements in identifying boolean constants and getConstantSplatNode 2890 // returns NULL if all ops are undef; 2891 CN = BV->getConstantSplatNode(); 2892 if (!CN) 2893 return false; 2894 } 2895 2896 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2897 return !CN->getAPIntValue()[0]; 2898 2899 return CN->isNullValue(); 2900 } 2901 2902 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2903 bool SExt) const { 2904 if (VT == MVT::i1) 2905 return N->isOne(); 2906 2907 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2908 switch (Cnt) { 2909 case TargetLowering::ZeroOrOneBooleanContent: 2910 // An extended value of 1 is always true, unless its original type is i1, 2911 // in which case it will be sign extended to -1. 2912 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2913 case TargetLowering::UndefinedBooleanContent: 2914 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2915 return N->isAllOnesValue() && SExt; 2916 } 2917 llvm_unreachable("Unexpected enumeration."); 2918 } 2919 2920 /// This helper function of SimplifySetCC tries to optimize the comparison when 2921 /// either operand of the SetCC node is a bitwise-and instruction. 2922 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2923 ISD::CondCode Cond, const SDLoc &DL, 2924 DAGCombinerInfo &DCI) const { 2925 // Match these patterns in any of their permutations: 2926 // (X & Y) == Y 2927 // (X & Y) != Y 2928 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2929 std::swap(N0, N1); 2930 2931 EVT OpVT = N0.getValueType(); 2932 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2933 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2934 return SDValue(); 2935 2936 SDValue X, Y; 2937 if (N0.getOperand(0) == N1) { 2938 X = N0.getOperand(1); 2939 Y = N0.getOperand(0); 2940 } else if (N0.getOperand(1) == N1) { 2941 X = N0.getOperand(0); 2942 Y = N0.getOperand(1); 2943 } else { 2944 return SDValue(); 2945 } 2946 2947 SelectionDAG &DAG = DCI.DAG; 2948 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2949 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2950 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2951 // Note that where Y is variable and is known to have at most one bit set 2952 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2953 // equivalent when Y == 0. 2954 assert(OpVT.isInteger()); 2955 Cond = ISD::getSetCCInverse(Cond, OpVT); 2956 if (DCI.isBeforeLegalizeOps() || 2957 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2958 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2959 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2960 // If the target supports an 'and-not' or 'and-complement' logic operation, 2961 // try to use that to make a comparison operation more efficient. 2962 // But don't do this transform if the mask is a single bit because there are 2963 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2964 // 'rlwinm' on PPC). 2965 2966 // Bail out if the compare operand that we want to turn into a zero is 2967 // already a zero (otherwise, infinite loop). 2968 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2969 if (YConst && YConst->isNullValue()) 2970 return SDValue(); 2971 2972 // Transform this into: ~X & Y == 0. 2973 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2974 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2975 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2976 } 2977 2978 return SDValue(); 2979 } 2980 2981 /// There are multiple IR patterns that could be checking whether certain 2982 /// truncation of a signed number would be lossy or not. The pattern which is 2983 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2984 /// We are looking for the following pattern: (KeptBits is a constant) 2985 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2986 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2987 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2988 /// We will unfold it into the natural trunc+sext pattern: 2989 /// ((%x << C) a>> C) dstcond %x 2990 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2991 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2992 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2993 const SDLoc &DL) const { 2994 // We must be comparing with a constant. 2995 ConstantSDNode *C1; 2996 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2997 return SDValue(); 2998 2999 // N0 should be: add %x, (1 << (KeptBits-1)) 3000 if (N0->getOpcode() != ISD::ADD) 3001 return SDValue(); 3002 3003 // And we must be 'add'ing a constant. 3004 ConstantSDNode *C01; 3005 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3006 return SDValue(); 3007 3008 SDValue X = N0->getOperand(0); 3009 EVT XVT = X.getValueType(); 3010 3011 // Validate constants ... 3012 3013 APInt I1 = C1->getAPIntValue(); 3014 3015 ISD::CondCode NewCond; 3016 if (Cond == ISD::CondCode::SETULT) { 3017 NewCond = ISD::CondCode::SETEQ; 3018 } else if (Cond == ISD::CondCode::SETULE) { 3019 NewCond = ISD::CondCode::SETEQ; 3020 // But need to 'canonicalize' the constant. 3021 I1 += 1; 3022 } else if (Cond == ISD::CondCode::SETUGT) { 3023 NewCond = ISD::CondCode::SETNE; 3024 // But need to 'canonicalize' the constant. 3025 I1 += 1; 3026 } else if (Cond == ISD::CondCode::SETUGE) { 3027 NewCond = ISD::CondCode::SETNE; 3028 } else 3029 return SDValue(); 3030 3031 APInt I01 = C01->getAPIntValue(); 3032 3033 auto checkConstants = [&I1, &I01]() -> bool { 3034 // Both of them must be power-of-two, and the constant from setcc is bigger. 3035 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3036 }; 3037 3038 if (checkConstants()) { 3039 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3040 } else { 3041 // What if we invert constants? (and the target predicate) 3042 I1.negate(); 3043 I01.negate(); 3044 assert(XVT.isInteger()); 3045 NewCond = getSetCCInverse(NewCond, XVT); 3046 if (!checkConstants()) 3047 return SDValue(); 3048 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3049 } 3050 3051 // They are power-of-two, so which bit is set? 3052 const unsigned KeptBits = I1.logBase2(); 3053 const unsigned KeptBitsMinusOne = I01.logBase2(); 3054 3055 // Magic! 3056 if (KeptBits != (KeptBitsMinusOne + 1)) 3057 return SDValue(); 3058 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3059 3060 // We don't want to do this in every single case. 3061 SelectionDAG &DAG = DCI.DAG; 3062 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3063 XVT, KeptBits)) 3064 return SDValue(); 3065 3066 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3067 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3068 3069 // Unfold into: ((%x << C) a>> C) cond %x 3070 // Where 'cond' will be either 'eq' or 'ne'. 3071 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3072 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3073 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3074 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3075 3076 return T2; 3077 } 3078 3079 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3080 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3081 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3082 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3083 assert(isConstOrConstSplat(N1C) && 3084 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3085 "Should be a comparison with 0."); 3086 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3087 "Valid only for [in]equality comparisons."); 3088 3089 unsigned NewShiftOpcode; 3090 SDValue X, C, Y; 3091 3092 SelectionDAG &DAG = DCI.DAG; 3093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3094 3095 // Look for '(C l>>/<< Y)'. 3096 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3097 // The shift should be one-use. 3098 if (!V.hasOneUse()) 3099 return false; 3100 unsigned OldShiftOpcode = V.getOpcode(); 3101 switch (OldShiftOpcode) { 3102 case ISD::SHL: 3103 NewShiftOpcode = ISD::SRL; 3104 break; 3105 case ISD::SRL: 3106 NewShiftOpcode = ISD::SHL; 3107 break; 3108 default: 3109 return false; // must be a logical shift. 3110 } 3111 // We should be shifting a constant. 3112 // FIXME: best to use isConstantOrConstantVector(). 3113 C = V.getOperand(0); 3114 ConstantSDNode *CC = 3115 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3116 if (!CC) 3117 return false; 3118 Y = V.getOperand(1); 3119 3120 ConstantSDNode *XC = 3121 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3122 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3123 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3124 }; 3125 3126 // LHS of comparison should be an one-use 'and'. 3127 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3128 return SDValue(); 3129 3130 X = N0.getOperand(0); 3131 SDValue Mask = N0.getOperand(1); 3132 3133 // 'and' is commutative! 3134 if (!Match(Mask)) { 3135 std::swap(X, Mask); 3136 if (!Match(Mask)) 3137 return SDValue(); 3138 } 3139 3140 EVT VT = X.getValueType(); 3141 3142 // Produce: 3143 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3144 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3145 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3146 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3147 return T2; 3148 } 3149 3150 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3151 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3152 /// handle the commuted versions of these patterns. 3153 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3154 ISD::CondCode Cond, const SDLoc &DL, 3155 DAGCombinerInfo &DCI) const { 3156 unsigned BOpcode = N0.getOpcode(); 3157 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3158 "Unexpected binop"); 3159 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3160 3161 // (X + Y) == X --> Y == 0 3162 // (X - Y) == X --> Y == 0 3163 // (X ^ Y) == X --> Y == 0 3164 SelectionDAG &DAG = DCI.DAG; 3165 EVT OpVT = N0.getValueType(); 3166 SDValue X = N0.getOperand(0); 3167 SDValue Y = N0.getOperand(1); 3168 if (X == N1) 3169 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3170 3171 if (Y != N1) 3172 return SDValue(); 3173 3174 // (X + Y) == Y --> X == 0 3175 // (X ^ Y) == Y --> X == 0 3176 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3177 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3178 3179 // The shift would not be valid if the operands are boolean (i1). 3180 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3181 return SDValue(); 3182 3183 // (X - Y) == Y --> X == Y << 1 3184 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3185 !DCI.isBeforeLegalize()); 3186 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3187 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3188 if (!DCI.isCalledByLegalizer()) 3189 DCI.AddToWorklist(YShl1.getNode()); 3190 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3191 } 3192 3193 /// Try to simplify a setcc built with the specified operands and cc. If it is 3194 /// unable to simplify it, return a null SDValue. 3195 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3196 ISD::CondCode Cond, bool foldBooleans, 3197 DAGCombinerInfo &DCI, 3198 const SDLoc &dl) const { 3199 SelectionDAG &DAG = DCI.DAG; 3200 const DataLayout &Layout = DAG.getDataLayout(); 3201 EVT OpVT = N0.getValueType(); 3202 3203 // Constant fold or commute setcc. 3204 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3205 return Fold; 3206 3207 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3208 // TODO: Handle non-splat vector constants. All undef causes trouble. 3209 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3210 if (isConstOrConstSplat(N0) && 3211 (DCI.isBeforeLegalizeOps() || 3212 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3213 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3214 3215 // If we have a subtract with the same 2 non-constant operands as this setcc 3216 // -- but in reverse order -- then try to commute the operands of this setcc 3217 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3218 // instruction on some targets. 3219 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3220 (DCI.isBeforeLegalizeOps() || 3221 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3222 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3223 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3224 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3225 3226 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3227 const APInt &C1 = N1C->getAPIntValue(); 3228 3229 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3230 // equality comparison, then we're just comparing whether X itself is 3231 // zero. 3232 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3233 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3234 N0.getOperand(1).getOpcode() == ISD::Constant) { 3235 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3236 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3237 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3238 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3239 // (srl (ctlz x), 5) == 0 -> X != 0 3240 // (srl (ctlz x), 5) != 1 -> X != 0 3241 Cond = ISD::SETNE; 3242 } else { 3243 // (srl (ctlz x), 5) != 0 -> X == 0 3244 // (srl (ctlz x), 5) == 1 -> X == 0 3245 Cond = ISD::SETEQ; 3246 } 3247 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3248 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3249 Zero, Cond); 3250 } 3251 } 3252 3253 SDValue CTPOP = N0; 3254 // Look through truncs that don't change the value of a ctpop. 3255 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3256 CTPOP = N0.getOperand(0); 3257 3258 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3259 (N0 == CTPOP || 3260 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3261 EVT CTVT = CTPOP.getValueType(); 3262 SDValue CTOp = CTPOP.getOperand(0); 3263 3264 // (ctpop x) u< 2 -> (x & x-1) == 0 3265 // (ctpop x) u> 1 -> (x & x-1) != 0 3266 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3267 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3268 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3269 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3270 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3271 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3272 } 3273 3274 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3275 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3276 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3277 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3278 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3279 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3280 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3281 assert(CTVT.isInteger()); 3282 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3283 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3284 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3285 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3286 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3287 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3288 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3289 } 3290 } 3291 3292 // (zext x) == C --> x == (trunc C) 3293 // (sext x) == C --> x == (trunc C) 3294 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3295 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3296 unsigned MinBits = N0.getValueSizeInBits(); 3297 SDValue PreExt; 3298 bool Signed = false; 3299 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3300 // ZExt 3301 MinBits = N0->getOperand(0).getValueSizeInBits(); 3302 PreExt = N0->getOperand(0); 3303 } else if (N0->getOpcode() == ISD::AND) { 3304 // DAGCombine turns costly ZExts into ANDs 3305 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3306 if ((C->getAPIntValue()+1).isPowerOf2()) { 3307 MinBits = C->getAPIntValue().countTrailingOnes(); 3308 PreExt = N0->getOperand(0); 3309 } 3310 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3311 // SExt 3312 MinBits = N0->getOperand(0).getValueSizeInBits(); 3313 PreExt = N0->getOperand(0); 3314 Signed = true; 3315 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3316 // ZEXTLOAD / SEXTLOAD 3317 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3318 MinBits = LN0->getMemoryVT().getSizeInBits(); 3319 PreExt = N0; 3320 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3321 Signed = true; 3322 MinBits = LN0->getMemoryVT().getSizeInBits(); 3323 PreExt = N0; 3324 } 3325 } 3326 3327 // Figure out how many bits we need to preserve this constant. 3328 unsigned ReqdBits = Signed ? 3329 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3330 C1.getActiveBits(); 3331 3332 // Make sure we're not losing bits from the constant. 3333 if (MinBits > 0 && 3334 MinBits < C1.getBitWidth() && 3335 MinBits >= ReqdBits) { 3336 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3337 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3338 // Will get folded away. 3339 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3340 if (MinBits == 1 && C1 == 1) 3341 // Invert the condition. 3342 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3343 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3344 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3345 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3346 } 3347 3348 // If truncating the setcc operands is not desirable, we can still 3349 // simplify the expression in some cases: 3350 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3351 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3352 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3353 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3354 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3355 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3356 SDValue TopSetCC = N0->getOperand(0); 3357 unsigned N0Opc = N0->getOpcode(); 3358 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3359 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3360 TopSetCC.getOpcode() == ISD::SETCC && 3361 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3362 (isConstFalseVal(N1C) || 3363 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3364 3365 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3366 (!N1C->isNullValue() && Cond == ISD::SETNE); 3367 3368 if (!Inverse) 3369 return TopSetCC; 3370 3371 ISD::CondCode InvCond = ISD::getSetCCInverse( 3372 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3373 TopSetCC.getOperand(0).getValueType()); 3374 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3375 TopSetCC.getOperand(1), 3376 InvCond); 3377 } 3378 } 3379 } 3380 3381 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3382 // equality or unsigned, and all 1 bits of the const are in the same 3383 // partial word, see if we can shorten the load. 3384 if (DCI.isBeforeLegalize() && 3385 !ISD::isSignedIntSetCC(Cond) && 3386 N0.getOpcode() == ISD::AND && C1 == 0 && 3387 N0.getNode()->hasOneUse() && 3388 isa<LoadSDNode>(N0.getOperand(0)) && 3389 N0.getOperand(0).getNode()->hasOneUse() && 3390 isa<ConstantSDNode>(N0.getOperand(1))) { 3391 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3392 APInt bestMask; 3393 unsigned bestWidth = 0, bestOffset = 0; 3394 if (Lod->isSimple() && Lod->isUnindexed()) { 3395 unsigned origWidth = N0.getValueSizeInBits(); 3396 unsigned maskWidth = origWidth; 3397 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3398 // 8 bits, but have to be careful... 3399 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3400 origWidth = Lod->getMemoryVT().getSizeInBits(); 3401 const APInt &Mask = N0.getConstantOperandAPInt(1); 3402 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3403 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3404 for (unsigned offset=0; offset<origWidth/width; offset++) { 3405 if (Mask.isSubsetOf(newMask)) { 3406 if (Layout.isLittleEndian()) 3407 bestOffset = (uint64_t)offset * (width/8); 3408 else 3409 bestOffset = (origWidth/width - offset - 1) * (width/8); 3410 bestMask = Mask.lshr(offset * (width/8) * 8); 3411 bestWidth = width; 3412 break; 3413 } 3414 newMask <<= width; 3415 } 3416 } 3417 } 3418 if (bestWidth) { 3419 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3420 if (newVT.isRound() && 3421 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3422 SDValue Ptr = Lod->getBasePtr(); 3423 if (bestOffset != 0) 3424 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3425 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3426 SDValue NewLoad = DAG.getLoad( 3427 newVT, dl, Lod->getChain(), Ptr, 3428 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3429 return DAG.getSetCC(dl, VT, 3430 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3431 DAG.getConstant(bestMask.trunc(bestWidth), 3432 dl, newVT)), 3433 DAG.getConstant(0LL, dl, newVT), Cond); 3434 } 3435 } 3436 } 3437 3438 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3439 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3440 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3441 3442 // If the comparison constant has bits in the upper part, the 3443 // zero-extended value could never match. 3444 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3445 C1.getBitWidth() - InSize))) { 3446 switch (Cond) { 3447 case ISD::SETUGT: 3448 case ISD::SETUGE: 3449 case ISD::SETEQ: 3450 return DAG.getConstant(0, dl, VT); 3451 case ISD::SETULT: 3452 case ISD::SETULE: 3453 case ISD::SETNE: 3454 return DAG.getConstant(1, dl, VT); 3455 case ISD::SETGT: 3456 case ISD::SETGE: 3457 // True if the sign bit of C1 is set. 3458 return DAG.getConstant(C1.isNegative(), dl, VT); 3459 case ISD::SETLT: 3460 case ISD::SETLE: 3461 // True if the sign bit of C1 isn't set. 3462 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3463 default: 3464 break; 3465 } 3466 } 3467 3468 // Otherwise, we can perform the comparison with the low bits. 3469 switch (Cond) { 3470 case ISD::SETEQ: 3471 case ISD::SETNE: 3472 case ISD::SETUGT: 3473 case ISD::SETUGE: 3474 case ISD::SETULT: 3475 case ISD::SETULE: { 3476 EVT newVT = N0.getOperand(0).getValueType(); 3477 if (DCI.isBeforeLegalizeOps() || 3478 (isOperationLegal(ISD::SETCC, newVT) && 3479 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3480 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3481 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3482 3483 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3484 NewConst, Cond); 3485 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3486 } 3487 break; 3488 } 3489 default: 3490 break; // todo, be more careful with signed comparisons 3491 } 3492 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3493 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3494 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3495 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3496 EVT ExtDstTy = N0.getValueType(); 3497 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3498 3499 // If the constant doesn't fit into the number of bits for the source of 3500 // the sign extension, it is impossible for both sides to be equal. 3501 if (C1.getMinSignedBits() > ExtSrcTyBits) 3502 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3503 3504 SDValue ZextOp; 3505 EVT Op0Ty = N0.getOperand(0).getValueType(); 3506 if (Op0Ty == ExtSrcTy) { 3507 ZextOp = N0.getOperand(0); 3508 } else { 3509 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3510 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3511 DAG.getConstant(Imm, dl, Op0Ty)); 3512 } 3513 if (!DCI.isCalledByLegalizer()) 3514 DCI.AddToWorklist(ZextOp.getNode()); 3515 // Otherwise, make this a use of a zext. 3516 return DAG.getSetCC(dl, VT, ZextOp, 3517 DAG.getConstant(C1 & APInt::getLowBitsSet( 3518 ExtDstTyBits, 3519 ExtSrcTyBits), 3520 dl, ExtDstTy), 3521 Cond); 3522 } else if ((N1C->isNullValue() || N1C->isOne()) && 3523 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3524 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3525 if (N0.getOpcode() == ISD::SETCC && 3526 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3527 (N0.getValueType() == MVT::i1 || 3528 getBooleanContents(N0.getOperand(0).getValueType()) == 3529 ZeroOrOneBooleanContent)) { 3530 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3531 if (TrueWhenTrue) 3532 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3533 // Invert the condition. 3534 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3535 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3536 if (DCI.isBeforeLegalizeOps() || 3537 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3538 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3539 } 3540 3541 if ((N0.getOpcode() == ISD::XOR || 3542 (N0.getOpcode() == ISD::AND && 3543 N0.getOperand(0).getOpcode() == ISD::XOR && 3544 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3545 isa<ConstantSDNode>(N0.getOperand(1)) && 3546 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3547 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3548 // can only do this if the top bits are known zero. 3549 unsigned BitWidth = N0.getValueSizeInBits(); 3550 if (DAG.MaskedValueIsZero(N0, 3551 APInt::getHighBitsSet(BitWidth, 3552 BitWidth-1))) { 3553 // Okay, get the un-inverted input value. 3554 SDValue Val; 3555 if (N0.getOpcode() == ISD::XOR) { 3556 Val = N0.getOperand(0); 3557 } else { 3558 assert(N0.getOpcode() == ISD::AND && 3559 N0.getOperand(0).getOpcode() == ISD::XOR); 3560 // ((X^1)&1)^1 -> X & 1 3561 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3562 N0.getOperand(0).getOperand(0), 3563 N0.getOperand(1)); 3564 } 3565 3566 return DAG.getSetCC(dl, VT, Val, N1, 3567 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3568 } 3569 } else if (N1C->isOne()) { 3570 SDValue Op0 = N0; 3571 if (Op0.getOpcode() == ISD::TRUNCATE) 3572 Op0 = Op0.getOperand(0); 3573 3574 if ((Op0.getOpcode() == ISD::XOR) && 3575 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3576 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3577 SDValue XorLHS = Op0.getOperand(0); 3578 SDValue XorRHS = Op0.getOperand(1); 3579 // Ensure that the input setccs return an i1 type or 0/1 value. 3580 if (Op0.getValueType() == MVT::i1 || 3581 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3582 ZeroOrOneBooleanContent && 3583 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3584 ZeroOrOneBooleanContent)) { 3585 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3586 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3587 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3588 } 3589 } 3590 if (Op0.getOpcode() == ISD::AND && 3591 isa<ConstantSDNode>(Op0.getOperand(1)) && 3592 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3593 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3594 if (Op0.getValueType().bitsGT(VT)) 3595 Op0 = DAG.getNode(ISD::AND, dl, VT, 3596 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3597 DAG.getConstant(1, dl, VT)); 3598 else if (Op0.getValueType().bitsLT(VT)) 3599 Op0 = DAG.getNode(ISD::AND, dl, VT, 3600 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3601 DAG.getConstant(1, dl, VT)); 3602 3603 return DAG.getSetCC(dl, VT, Op0, 3604 DAG.getConstant(0, dl, Op0.getValueType()), 3605 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3606 } 3607 if (Op0.getOpcode() == ISD::AssertZext && 3608 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3609 return DAG.getSetCC(dl, VT, Op0, 3610 DAG.getConstant(0, dl, Op0.getValueType()), 3611 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3612 } 3613 } 3614 3615 // Given: 3616 // icmp eq/ne (urem %x, %y), 0 3617 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3618 // icmp eq/ne %x, 0 3619 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3620 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3621 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3622 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3623 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3624 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3625 } 3626 3627 if (SDValue V = 3628 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3629 return V; 3630 } 3631 3632 // These simplifications apply to splat vectors as well. 3633 // TODO: Handle more splat vector cases. 3634 if (auto *N1C = isConstOrConstSplat(N1)) { 3635 const APInt &C1 = N1C->getAPIntValue(); 3636 3637 APInt MinVal, MaxVal; 3638 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3639 if (ISD::isSignedIntSetCC(Cond)) { 3640 MinVal = APInt::getSignedMinValue(OperandBitSize); 3641 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3642 } else { 3643 MinVal = APInt::getMinValue(OperandBitSize); 3644 MaxVal = APInt::getMaxValue(OperandBitSize); 3645 } 3646 3647 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3648 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3649 // X >= MIN --> true 3650 if (C1 == MinVal) 3651 return DAG.getBoolConstant(true, dl, VT, OpVT); 3652 3653 if (!VT.isVector()) { // TODO: Support this for vectors. 3654 // X >= C0 --> X > (C0 - 1) 3655 APInt C = C1 - 1; 3656 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3657 if ((DCI.isBeforeLegalizeOps() || 3658 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3659 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3660 isLegalICmpImmediate(C.getSExtValue())))) { 3661 return DAG.getSetCC(dl, VT, N0, 3662 DAG.getConstant(C, dl, N1.getValueType()), 3663 NewCC); 3664 } 3665 } 3666 } 3667 3668 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3669 // X <= MAX --> true 3670 if (C1 == MaxVal) 3671 return DAG.getBoolConstant(true, dl, VT, OpVT); 3672 3673 // X <= C0 --> X < (C0 + 1) 3674 if (!VT.isVector()) { // TODO: Support this for vectors. 3675 APInt C = C1 + 1; 3676 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3677 if ((DCI.isBeforeLegalizeOps() || 3678 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3679 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3680 isLegalICmpImmediate(C.getSExtValue())))) { 3681 return DAG.getSetCC(dl, VT, N0, 3682 DAG.getConstant(C, dl, N1.getValueType()), 3683 NewCC); 3684 } 3685 } 3686 } 3687 3688 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3689 if (C1 == MinVal) 3690 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3691 3692 // TODO: Support this for vectors after legalize ops. 3693 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3694 // Canonicalize setlt X, Max --> setne X, Max 3695 if (C1 == MaxVal) 3696 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3697 3698 // If we have setult X, 1, turn it into seteq X, 0 3699 if (C1 == MinVal+1) 3700 return DAG.getSetCC(dl, VT, N0, 3701 DAG.getConstant(MinVal, dl, N0.getValueType()), 3702 ISD::SETEQ); 3703 } 3704 } 3705 3706 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3707 if (C1 == MaxVal) 3708 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3709 3710 // TODO: Support this for vectors after legalize ops. 3711 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3712 // Canonicalize setgt X, Min --> setne X, Min 3713 if (C1 == MinVal) 3714 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3715 3716 // If we have setugt X, Max-1, turn it into seteq X, Max 3717 if (C1 == MaxVal-1) 3718 return DAG.getSetCC(dl, VT, N0, 3719 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3720 ISD::SETEQ); 3721 } 3722 } 3723 3724 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3725 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3726 if (C1.isNullValue()) 3727 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3728 VT, N0, N1, Cond, DCI, dl)) 3729 return CC; 3730 } 3731 3732 // If we have "setcc X, C0", check to see if we can shrink the immediate 3733 // by changing cc. 3734 // TODO: Support this for vectors after legalize ops. 3735 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3736 // SETUGT X, SINTMAX -> SETLT X, 0 3737 if (Cond == ISD::SETUGT && 3738 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3739 return DAG.getSetCC(dl, VT, N0, 3740 DAG.getConstant(0, dl, N1.getValueType()), 3741 ISD::SETLT); 3742 3743 // SETULT X, SINTMIN -> SETGT X, -1 3744 if (Cond == ISD::SETULT && 3745 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3746 SDValue ConstMinusOne = 3747 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3748 N1.getValueType()); 3749 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3750 } 3751 } 3752 } 3753 3754 // Back to non-vector simplifications. 3755 // TODO: Can we do these for vector splats? 3756 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3758 const APInt &C1 = N1C->getAPIntValue(); 3759 EVT ShValTy = N0.getValueType(); 3760 3761 // Fold bit comparisons when we can. 3762 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3763 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3764 N0.getOpcode() == ISD::AND) { 3765 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3766 EVT ShiftTy = 3767 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3768 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3769 // Perform the xform if the AND RHS is a single bit. 3770 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3771 if (AndRHS->getAPIntValue().isPowerOf2() && 3772 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3773 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3774 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3775 DAG.getConstant(ShCt, dl, ShiftTy))); 3776 } 3777 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3778 // (X & 8) == 8 --> (X & 8) >> 3 3779 // Perform the xform if C1 is a single bit. 3780 unsigned ShCt = C1.logBase2(); 3781 if (C1.isPowerOf2() && 3782 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3783 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3784 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3785 DAG.getConstant(ShCt, dl, ShiftTy))); 3786 } 3787 } 3788 } 3789 } 3790 3791 if (C1.getMinSignedBits() <= 64 && 3792 !isLegalICmpImmediate(C1.getSExtValue())) { 3793 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3794 // (X & -256) == 256 -> (X >> 8) == 1 3795 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3796 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3797 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3798 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3799 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3800 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3801 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3802 SDValue Shift = 3803 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3804 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3805 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3806 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3807 } 3808 } 3809 } 3810 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3811 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3812 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3813 // X < 0x100000000 -> (X >> 32) < 1 3814 // X >= 0x100000000 -> (X >> 32) >= 1 3815 // X <= 0x0ffffffff -> (X >> 32) < 1 3816 // X > 0x0ffffffff -> (X >> 32) >= 1 3817 unsigned ShiftBits; 3818 APInt NewC = C1; 3819 ISD::CondCode NewCond = Cond; 3820 if (AdjOne) { 3821 ShiftBits = C1.countTrailingOnes(); 3822 NewC = NewC + 1; 3823 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3824 } else { 3825 ShiftBits = C1.countTrailingZeros(); 3826 } 3827 NewC.lshrInPlace(ShiftBits); 3828 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3829 isLegalICmpImmediate(NewC.getSExtValue()) && 3830 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3831 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3832 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3833 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3834 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3835 } 3836 } 3837 } 3838 } 3839 3840 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3841 auto *CFP = cast<ConstantFPSDNode>(N1); 3842 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3843 3844 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3845 // constant if knowing that the operand is non-nan is enough. We prefer to 3846 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3847 // materialize 0.0. 3848 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3849 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3850 3851 // setcc (fneg x), C -> setcc swap(pred) x, -C 3852 if (N0.getOpcode() == ISD::FNEG) { 3853 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3854 if (DCI.isBeforeLegalizeOps() || 3855 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3856 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3857 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3858 } 3859 } 3860 3861 // If the condition is not legal, see if we can find an equivalent one 3862 // which is legal. 3863 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3864 // If the comparison was an awkward floating-point == or != and one of 3865 // the comparison operands is infinity or negative infinity, convert the 3866 // condition to a less-awkward <= or >=. 3867 if (CFP->getValueAPF().isInfinity()) { 3868 if (CFP->getValueAPF().isNegative()) { 3869 if (Cond == ISD::SETOEQ && 3870 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3871 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3872 if (Cond == ISD::SETUEQ && 3873 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3874 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3875 if (Cond == ISD::SETUNE && 3876 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3877 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3878 if (Cond == ISD::SETONE && 3879 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3880 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3881 } else { 3882 if (Cond == ISD::SETOEQ && 3883 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3884 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3885 if (Cond == ISD::SETUEQ && 3886 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3887 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3888 if (Cond == ISD::SETUNE && 3889 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3890 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3891 if (Cond == ISD::SETONE && 3892 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3893 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3894 } 3895 } 3896 } 3897 } 3898 3899 if (N0 == N1) { 3900 // The sext(setcc()) => setcc() optimization relies on the appropriate 3901 // constant being emitted. 3902 assert(!N0.getValueType().isInteger() && 3903 "Integer types should be handled by FoldSetCC"); 3904 3905 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3906 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3907 if (UOF == 2) // FP operators that are undefined on NaNs. 3908 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3909 if (UOF == unsigned(EqTrue)) 3910 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3911 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3912 // if it is not already. 3913 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3914 if (NewCond != Cond && 3915 (DCI.isBeforeLegalizeOps() || 3916 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3917 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3918 } 3919 3920 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3921 N0.getValueType().isInteger()) { 3922 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3923 N0.getOpcode() == ISD::XOR) { 3924 // Simplify (X+Y) == (X+Z) --> Y == Z 3925 if (N0.getOpcode() == N1.getOpcode()) { 3926 if (N0.getOperand(0) == N1.getOperand(0)) 3927 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3928 if (N0.getOperand(1) == N1.getOperand(1)) 3929 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3930 if (isCommutativeBinOp(N0.getOpcode())) { 3931 // If X op Y == Y op X, try other combinations. 3932 if (N0.getOperand(0) == N1.getOperand(1)) 3933 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3934 Cond); 3935 if (N0.getOperand(1) == N1.getOperand(0)) 3936 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3937 Cond); 3938 } 3939 } 3940 3941 // If RHS is a legal immediate value for a compare instruction, we need 3942 // to be careful about increasing register pressure needlessly. 3943 bool LegalRHSImm = false; 3944 3945 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3946 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3947 // Turn (X+C1) == C2 --> X == C2-C1 3948 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3949 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3950 DAG.getConstant(RHSC->getAPIntValue()- 3951 LHSR->getAPIntValue(), 3952 dl, N0.getValueType()), Cond); 3953 } 3954 3955 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3956 if (N0.getOpcode() == ISD::XOR) 3957 // If we know that all of the inverted bits are zero, don't bother 3958 // performing the inversion. 3959 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3960 return 3961 DAG.getSetCC(dl, VT, N0.getOperand(0), 3962 DAG.getConstant(LHSR->getAPIntValue() ^ 3963 RHSC->getAPIntValue(), 3964 dl, N0.getValueType()), 3965 Cond); 3966 } 3967 3968 // Turn (C1-X) == C2 --> X == C1-C2 3969 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3970 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3971 return 3972 DAG.getSetCC(dl, VT, N0.getOperand(1), 3973 DAG.getConstant(SUBC->getAPIntValue() - 3974 RHSC->getAPIntValue(), 3975 dl, N0.getValueType()), 3976 Cond); 3977 } 3978 } 3979 3980 // Could RHSC fold directly into a compare? 3981 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3982 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3983 } 3984 3985 // (X+Y) == X --> Y == 0 and similar folds. 3986 // Don't do this if X is an immediate that can fold into a cmp 3987 // instruction and X+Y has other uses. It could be an induction variable 3988 // chain, and the transform would increase register pressure. 3989 if (!LegalRHSImm || N0.hasOneUse()) 3990 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3991 return V; 3992 } 3993 3994 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3995 N1.getOpcode() == ISD::XOR) 3996 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3997 return V; 3998 3999 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4000 return V; 4001 } 4002 4003 // Fold remainder of division by a constant. 4004 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4005 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4006 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4007 4008 // When division is cheap or optimizing for minimum size, 4009 // fall through to DIVREM creation by skipping this fold. 4010 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4011 if (N0.getOpcode() == ISD::UREM) { 4012 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4013 return Folded; 4014 } else if (N0.getOpcode() == ISD::SREM) { 4015 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4016 return Folded; 4017 } 4018 } 4019 } 4020 4021 // Fold away ALL boolean setcc's. 4022 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4023 SDValue Temp; 4024 switch (Cond) { 4025 default: llvm_unreachable("Unknown integer setcc!"); 4026 case ISD::SETEQ: // X == Y -> ~(X^Y) 4027 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4028 N0 = DAG.getNOT(dl, Temp, OpVT); 4029 if (!DCI.isCalledByLegalizer()) 4030 DCI.AddToWorklist(Temp.getNode()); 4031 break; 4032 case ISD::SETNE: // X != Y --> (X^Y) 4033 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4034 break; 4035 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4036 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4037 Temp = DAG.getNOT(dl, N0, OpVT); 4038 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4039 if (!DCI.isCalledByLegalizer()) 4040 DCI.AddToWorklist(Temp.getNode()); 4041 break; 4042 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4043 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4044 Temp = DAG.getNOT(dl, N1, OpVT); 4045 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4046 if (!DCI.isCalledByLegalizer()) 4047 DCI.AddToWorklist(Temp.getNode()); 4048 break; 4049 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4050 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4051 Temp = DAG.getNOT(dl, N0, OpVT); 4052 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4053 if (!DCI.isCalledByLegalizer()) 4054 DCI.AddToWorklist(Temp.getNode()); 4055 break; 4056 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4057 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4058 Temp = DAG.getNOT(dl, N1, OpVT); 4059 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4060 break; 4061 } 4062 if (VT.getScalarType() != MVT::i1) { 4063 if (!DCI.isCalledByLegalizer()) 4064 DCI.AddToWorklist(N0.getNode()); 4065 // FIXME: If running after legalize, we probably can't do this. 4066 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4067 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4068 } 4069 return N0; 4070 } 4071 4072 // Could not fold it. 4073 return SDValue(); 4074 } 4075 4076 /// Returns true (and the GlobalValue and the offset) if the node is a 4077 /// GlobalAddress + offset. 4078 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4079 int64_t &Offset) const { 4080 4081 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4082 4083 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4084 GA = GASD->getGlobal(); 4085 Offset += GASD->getOffset(); 4086 return true; 4087 } 4088 4089 if (N->getOpcode() == ISD::ADD) { 4090 SDValue N1 = N->getOperand(0); 4091 SDValue N2 = N->getOperand(1); 4092 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4093 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4094 Offset += V->getSExtValue(); 4095 return true; 4096 } 4097 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4098 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4099 Offset += V->getSExtValue(); 4100 return true; 4101 } 4102 } 4103 } 4104 4105 return false; 4106 } 4107 4108 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4109 DAGCombinerInfo &DCI) const { 4110 // Default implementation: no optimization. 4111 return SDValue(); 4112 } 4113 4114 //===----------------------------------------------------------------------===// 4115 // Inline Assembler Implementation Methods 4116 //===----------------------------------------------------------------------===// 4117 4118 TargetLowering::ConstraintType 4119 TargetLowering::getConstraintType(StringRef Constraint) const { 4120 unsigned S = Constraint.size(); 4121 4122 if (S == 1) { 4123 switch (Constraint[0]) { 4124 default: break; 4125 case 'r': 4126 return C_RegisterClass; 4127 case 'm': // memory 4128 case 'o': // offsetable 4129 case 'V': // not offsetable 4130 return C_Memory; 4131 case 'n': // Simple Integer 4132 case 'E': // Floating Point Constant 4133 case 'F': // Floating Point Constant 4134 return C_Immediate; 4135 case 'i': // Simple Integer or Relocatable Constant 4136 case 's': // Relocatable Constant 4137 case 'p': // Address. 4138 case 'X': // Allow ANY value. 4139 case 'I': // Target registers. 4140 case 'J': 4141 case 'K': 4142 case 'L': 4143 case 'M': 4144 case 'N': 4145 case 'O': 4146 case 'P': 4147 case '<': 4148 case '>': 4149 return C_Other; 4150 } 4151 } 4152 4153 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4154 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4155 return C_Memory; 4156 return C_Register; 4157 } 4158 return C_Unknown; 4159 } 4160 4161 /// Try to replace an X constraint, which matches anything, with another that 4162 /// has more specific requirements based on the type of the corresponding 4163 /// operand. 4164 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4165 if (ConstraintVT.isInteger()) 4166 return "r"; 4167 if (ConstraintVT.isFloatingPoint()) 4168 return "f"; // works for many targets 4169 return nullptr; 4170 } 4171 4172 SDValue TargetLowering::LowerAsmOutputForConstraint( 4173 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4174 SelectionDAG &DAG) const { 4175 return SDValue(); 4176 } 4177 4178 /// Lower the specified operand into the Ops vector. 4179 /// If it is invalid, don't add anything to Ops. 4180 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4181 std::string &Constraint, 4182 std::vector<SDValue> &Ops, 4183 SelectionDAG &DAG) const { 4184 4185 if (Constraint.length() > 1) return; 4186 4187 char ConstraintLetter = Constraint[0]; 4188 switch (ConstraintLetter) { 4189 default: break; 4190 case 'X': // Allows any operand; labels (basic block) use this. 4191 if (Op.getOpcode() == ISD::BasicBlock || 4192 Op.getOpcode() == ISD::TargetBlockAddress) { 4193 Ops.push_back(Op); 4194 return; 4195 } 4196 LLVM_FALLTHROUGH; 4197 case 'i': // Simple Integer or Relocatable Constant 4198 case 'n': // Simple Integer 4199 case 's': { // Relocatable Constant 4200 4201 GlobalAddressSDNode *GA; 4202 ConstantSDNode *C; 4203 BlockAddressSDNode *BA; 4204 uint64_t Offset = 0; 4205 4206 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4207 // etc., since getelementpointer is variadic. We can't use 4208 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4209 // while in this case the GA may be furthest from the root node which is 4210 // likely an ISD::ADD. 4211 while (1) { 4212 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4213 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4214 GA->getValueType(0), 4215 Offset + GA->getOffset())); 4216 return; 4217 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4218 ConstraintLetter != 's') { 4219 // gcc prints these as sign extended. Sign extend value to 64 bits 4220 // now; without this it would get ZExt'd later in 4221 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4222 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4223 BooleanContent BCont = getBooleanContents(MVT::i64); 4224 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4225 : ISD::SIGN_EXTEND; 4226 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4227 : C->getSExtValue(); 4228 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4229 SDLoc(C), MVT::i64)); 4230 return; 4231 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4232 ConstraintLetter != 'n') { 4233 Ops.push_back(DAG.getTargetBlockAddress( 4234 BA->getBlockAddress(), BA->getValueType(0), 4235 Offset + BA->getOffset(), BA->getTargetFlags())); 4236 return; 4237 } else { 4238 const unsigned OpCode = Op.getOpcode(); 4239 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4240 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4241 Op = Op.getOperand(1); 4242 // Subtraction is not commutative. 4243 else if (OpCode == ISD::ADD && 4244 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4245 Op = Op.getOperand(0); 4246 else 4247 return; 4248 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4249 continue; 4250 } 4251 } 4252 return; 4253 } 4254 break; 4255 } 4256 } 4257 } 4258 4259 std::pair<unsigned, const TargetRegisterClass *> 4260 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4261 StringRef Constraint, 4262 MVT VT) const { 4263 if (Constraint.empty() || Constraint[0] != '{') 4264 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4265 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4266 4267 // Remove the braces from around the name. 4268 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4269 4270 std::pair<unsigned, const TargetRegisterClass *> R = 4271 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4272 4273 // Figure out which register class contains this reg. 4274 for (const TargetRegisterClass *RC : RI->regclasses()) { 4275 // If none of the value types for this register class are valid, we 4276 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4277 if (!isLegalRC(*RI, *RC)) 4278 continue; 4279 4280 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4281 I != E; ++I) { 4282 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4283 std::pair<unsigned, const TargetRegisterClass *> S = 4284 std::make_pair(*I, RC); 4285 4286 // If this register class has the requested value type, return it, 4287 // otherwise keep searching and return the first class found 4288 // if no other is found which explicitly has the requested type. 4289 if (RI->isTypeLegalForClass(*RC, VT)) 4290 return S; 4291 if (!R.second) 4292 R = S; 4293 } 4294 } 4295 } 4296 4297 return R; 4298 } 4299 4300 //===----------------------------------------------------------------------===// 4301 // Constraint Selection. 4302 4303 /// Return true of this is an input operand that is a matching constraint like 4304 /// "4". 4305 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4306 assert(!ConstraintCode.empty() && "No known constraint!"); 4307 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4308 } 4309 4310 /// If this is an input matching constraint, this method returns the output 4311 /// operand it matches. 4312 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4313 assert(!ConstraintCode.empty() && "No known constraint!"); 4314 return atoi(ConstraintCode.c_str()); 4315 } 4316 4317 /// Split up the constraint string from the inline assembly value into the 4318 /// specific constraints and their prefixes, and also tie in the associated 4319 /// operand values. 4320 /// If this returns an empty vector, and if the constraint string itself 4321 /// isn't empty, there was an error parsing. 4322 TargetLowering::AsmOperandInfoVector 4323 TargetLowering::ParseConstraints(const DataLayout &DL, 4324 const TargetRegisterInfo *TRI, 4325 ImmutableCallSite CS) const { 4326 /// Information about all of the constraints. 4327 AsmOperandInfoVector ConstraintOperands; 4328 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4329 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4330 4331 // Do a prepass over the constraints, canonicalizing them, and building up the 4332 // ConstraintOperands list. 4333 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4334 unsigned ResNo = 0; // ResNo - The result number of the next output. 4335 4336 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4337 ConstraintOperands.emplace_back(std::move(CI)); 4338 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4339 4340 // Update multiple alternative constraint count. 4341 if (OpInfo.multipleAlternatives.size() > maCount) 4342 maCount = OpInfo.multipleAlternatives.size(); 4343 4344 OpInfo.ConstraintVT = MVT::Other; 4345 4346 // Compute the value type for each operand. 4347 switch (OpInfo.Type) { 4348 case InlineAsm::isOutput: 4349 // Indirect outputs just consume an argument. 4350 if (OpInfo.isIndirect) { 4351 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4352 break; 4353 } 4354 4355 // The return value of the call is this value. As such, there is no 4356 // corresponding argument. 4357 assert(!CS.getType()->isVoidTy() && 4358 "Bad inline asm!"); 4359 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4360 OpInfo.ConstraintVT = 4361 getSimpleValueType(DL, STy->getElementType(ResNo)); 4362 } else { 4363 assert(ResNo == 0 && "Asm only has one result!"); 4364 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4365 } 4366 ++ResNo; 4367 break; 4368 case InlineAsm::isInput: 4369 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4370 break; 4371 case InlineAsm::isClobber: 4372 // Nothing to do. 4373 break; 4374 } 4375 4376 if (OpInfo.CallOperandVal) { 4377 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4378 if (OpInfo.isIndirect) { 4379 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4380 if (!PtrTy) 4381 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4382 OpTy = PtrTy->getElementType(); 4383 } 4384 4385 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4386 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4387 if (STy->getNumElements() == 1) 4388 OpTy = STy->getElementType(0); 4389 4390 // If OpTy is not a single value, it may be a struct/union that we 4391 // can tile with integers. 4392 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4393 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4394 switch (BitSize) { 4395 default: break; 4396 case 1: 4397 case 8: 4398 case 16: 4399 case 32: 4400 case 64: 4401 case 128: 4402 OpInfo.ConstraintVT = 4403 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4404 break; 4405 } 4406 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4407 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4408 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4409 } else { 4410 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4411 } 4412 } 4413 } 4414 4415 // If we have multiple alternative constraints, select the best alternative. 4416 if (!ConstraintOperands.empty()) { 4417 if (maCount) { 4418 unsigned bestMAIndex = 0; 4419 int bestWeight = -1; 4420 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4421 int weight = -1; 4422 unsigned maIndex; 4423 // Compute the sums of the weights for each alternative, keeping track 4424 // of the best (highest weight) one so far. 4425 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4426 int weightSum = 0; 4427 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4428 cIndex != eIndex; ++cIndex) { 4429 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4430 if (OpInfo.Type == InlineAsm::isClobber) 4431 continue; 4432 4433 // If this is an output operand with a matching input operand, 4434 // look up the matching input. If their types mismatch, e.g. one 4435 // is an integer, the other is floating point, or their sizes are 4436 // different, flag it as an maCantMatch. 4437 if (OpInfo.hasMatchingInput()) { 4438 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4439 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4440 if ((OpInfo.ConstraintVT.isInteger() != 4441 Input.ConstraintVT.isInteger()) || 4442 (OpInfo.ConstraintVT.getSizeInBits() != 4443 Input.ConstraintVT.getSizeInBits())) { 4444 weightSum = -1; // Can't match. 4445 break; 4446 } 4447 } 4448 } 4449 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4450 if (weight == -1) { 4451 weightSum = -1; 4452 break; 4453 } 4454 weightSum += weight; 4455 } 4456 // Update best. 4457 if (weightSum > bestWeight) { 4458 bestWeight = weightSum; 4459 bestMAIndex = maIndex; 4460 } 4461 } 4462 4463 // Now select chosen alternative in each constraint. 4464 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4465 cIndex != eIndex; ++cIndex) { 4466 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4467 if (cInfo.Type == InlineAsm::isClobber) 4468 continue; 4469 cInfo.selectAlternative(bestMAIndex); 4470 } 4471 } 4472 } 4473 4474 // Check and hook up tied operands, choose constraint code to use. 4475 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4476 cIndex != eIndex; ++cIndex) { 4477 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4478 4479 // If this is an output operand with a matching input operand, look up the 4480 // matching input. If their types mismatch, e.g. one is an integer, the 4481 // other is floating point, or their sizes are different, flag it as an 4482 // error. 4483 if (OpInfo.hasMatchingInput()) { 4484 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4485 4486 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4487 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4488 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4489 OpInfo.ConstraintVT); 4490 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4491 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4492 Input.ConstraintVT); 4493 if ((OpInfo.ConstraintVT.isInteger() != 4494 Input.ConstraintVT.isInteger()) || 4495 (MatchRC.second != InputRC.second)) { 4496 report_fatal_error("Unsupported asm: input constraint" 4497 " with a matching output constraint of" 4498 " incompatible type!"); 4499 } 4500 } 4501 } 4502 } 4503 4504 return ConstraintOperands; 4505 } 4506 4507 /// Return an integer indicating how general CT is. 4508 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4509 switch (CT) { 4510 case TargetLowering::C_Immediate: 4511 case TargetLowering::C_Other: 4512 case TargetLowering::C_Unknown: 4513 return 0; 4514 case TargetLowering::C_Register: 4515 return 1; 4516 case TargetLowering::C_RegisterClass: 4517 return 2; 4518 case TargetLowering::C_Memory: 4519 return 3; 4520 } 4521 llvm_unreachable("Invalid constraint type"); 4522 } 4523 4524 /// Examine constraint type and operand type and determine a weight value. 4525 /// This object must already have been set up with the operand type 4526 /// and the current alternative constraint selected. 4527 TargetLowering::ConstraintWeight 4528 TargetLowering::getMultipleConstraintMatchWeight( 4529 AsmOperandInfo &info, int maIndex) const { 4530 InlineAsm::ConstraintCodeVector *rCodes; 4531 if (maIndex >= (int)info.multipleAlternatives.size()) 4532 rCodes = &info.Codes; 4533 else 4534 rCodes = &info.multipleAlternatives[maIndex].Codes; 4535 ConstraintWeight BestWeight = CW_Invalid; 4536 4537 // Loop over the options, keeping track of the most general one. 4538 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4539 ConstraintWeight weight = 4540 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4541 if (weight > BestWeight) 4542 BestWeight = weight; 4543 } 4544 4545 return BestWeight; 4546 } 4547 4548 /// Examine constraint type and operand type and determine a weight value. 4549 /// This object must already have been set up with the operand type 4550 /// and the current alternative constraint selected. 4551 TargetLowering::ConstraintWeight 4552 TargetLowering::getSingleConstraintMatchWeight( 4553 AsmOperandInfo &info, const char *constraint) const { 4554 ConstraintWeight weight = CW_Invalid; 4555 Value *CallOperandVal = info.CallOperandVal; 4556 // If we don't have a value, we can't do a match, 4557 // but allow it at the lowest weight. 4558 if (!CallOperandVal) 4559 return CW_Default; 4560 // Look at the constraint type. 4561 switch (*constraint) { 4562 case 'i': // immediate integer. 4563 case 'n': // immediate integer with a known value. 4564 if (isa<ConstantInt>(CallOperandVal)) 4565 weight = CW_Constant; 4566 break; 4567 case 's': // non-explicit intregal immediate. 4568 if (isa<GlobalValue>(CallOperandVal)) 4569 weight = CW_Constant; 4570 break; 4571 case 'E': // immediate float if host format. 4572 case 'F': // immediate float. 4573 if (isa<ConstantFP>(CallOperandVal)) 4574 weight = CW_Constant; 4575 break; 4576 case '<': // memory operand with autodecrement. 4577 case '>': // memory operand with autoincrement. 4578 case 'm': // memory operand. 4579 case 'o': // offsettable memory operand 4580 case 'V': // non-offsettable memory operand 4581 weight = CW_Memory; 4582 break; 4583 case 'r': // general register. 4584 case 'g': // general register, memory operand or immediate integer. 4585 // note: Clang converts "g" to "imr". 4586 if (CallOperandVal->getType()->isIntegerTy()) 4587 weight = CW_Register; 4588 break; 4589 case 'X': // any operand. 4590 default: 4591 weight = CW_Default; 4592 break; 4593 } 4594 return weight; 4595 } 4596 4597 /// If there are multiple different constraints that we could pick for this 4598 /// operand (e.g. "imr") try to pick the 'best' one. 4599 /// This is somewhat tricky: constraints fall into four classes: 4600 /// Other -> immediates and magic values 4601 /// Register -> one specific register 4602 /// RegisterClass -> a group of regs 4603 /// Memory -> memory 4604 /// Ideally, we would pick the most specific constraint possible: if we have 4605 /// something that fits into a register, we would pick it. The problem here 4606 /// is that if we have something that could either be in a register or in 4607 /// memory that use of the register could cause selection of *other* 4608 /// operands to fail: they might only succeed if we pick memory. Because of 4609 /// this the heuristic we use is: 4610 /// 4611 /// 1) If there is an 'other' constraint, and if the operand is valid for 4612 /// that constraint, use it. This makes us take advantage of 'i' 4613 /// constraints when available. 4614 /// 2) Otherwise, pick the most general constraint present. This prefers 4615 /// 'm' over 'r', for example. 4616 /// 4617 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4618 const TargetLowering &TLI, 4619 SDValue Op, SelectionDAG *DAG) { 4620 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4621 unsigned BestIdx = 0; 4622 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4623 int BestGenerality = -1; 4624 4625 // Loop over the options, keeping track of the most general one. 4626 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4627 TargetLowering::ConstraintType CType = 4628 TLI.getConstraintType(OpInfo.Codes[i]); 4629 4630 // Indirect 'other' or 'immediate' constraints are not allowed. 4631 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4632 CType == TargetLowering::C_Register || 4633 CType == TargetLowering::C_RegisterClass)) 4634 continue; 4635 4636 // If this is an 'other' or 'immediate' constraint, see if the operand is 4637 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4638 // the operand is an integer in the range [0..31] we want to use I (saving a 4639 // load of a register), otherwise we must use 'r'. 4640 if ((CType == TargetLowering::C_Other || 4641 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4642 assert(OpInfo.Codes[i].size() == 1 && 4643 "Unhandled multi-letter 'other' constraint"); 4644 std::vector<SDValue> ResultOps; 4645 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4646 ResultOps, *DAG); 4647 if (!ResultOps.empty()) { 4648 BestType = CType; 4649 BestIdx = i; 4650 break; 4651 } 4652 } 4653 4654 // Things with matching constraints can only be registers, per gcc 4655 // documentation. This mainly affects "g" constraints. 4656 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4657 continue; 4658 4659 // This constraint letter is more general than the previous one, use it. 4660 int Generality = getConstraintGenerality(CType); 4661 if (Generality > BestGenerality) { 4662 BestType = CType; 4663 BestIdx = i; 4664 BestGenerality = Generality; 4665 } 4666 } 4667 4668 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4669 OpInfo.ConstraintType = BestType; 4670 } 4671 4672 /// Determines the constraint code and constraint type to use for the specific 4673 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4674 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4675 SDValue Op, 4676 SelectionDAG *DAG) const { 4677 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4678 4679 // Single-letter constraints ('r') are very common. 4680 if (OpInfo.Codes.size() == 1) { 4681 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4682 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4683 } else { 4684 ChooseConstraint(OpInfo, *this, Op, DAG); 4685 } 4686 4687 // 'X' matches anything. 4688 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4689 // Labels and constants are handled elsewhere ('X' is the only thing 4690 // that matches labels). For Functions, the type here is the type of 4691 // the result, which is not what we want to look at; leave them alone. 4692 Value *v = OpInfo.CallOperandVal; 4693 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4694 OpInfo.CallOperandVal = v; 4695 return; 4696 } 4697 4698 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4699 return; 4700 4701 // Otherwise, try to resolve it to something we know about by looking at 4702 // the actual operand type. 4703 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4704 OpInfo.ConstraintCode = Repl; 4705 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4706 } 4707 } 4708 } 4709 4710 /// Given an exact SDIV by a constant, create a multiplication 4711 /// with the multiplicative inverse of the constant. 4712 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4713 const SDLoc &dl, SelectionDAG &DAG, 4714 SmallVectorImpl<SDNode *> &Created) { 4715 SDValue Op0 = N->getOperand(0); 4716 SDValue Op1 = N->getOperand(1); 4717 EVT VT = N->getValueType(0); 4718 EVT SVT = VT.getScalarType(); 4719 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4720 EVT ShSVT = ShVT.getScalarType(); 4721 4722 bool UseSRA = false; 4723 SmallVector<SDValue, 16> Shifts, Factors; 4724 4725 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4726 if (C->isNullValue()) 4727 return false; 4728 APInt Divisor = C->getAPIntValue(); 4729 unsigned Shift = Divisor.countTrailingZeros(); 4730 if (Shift) { 4731 Divisor.ashrInPlace(Shift); 4732 UseSRA = true; 4733 } 4734 // Calculate the multiplicative inverse, using Newton's method. 4735 APInt t; 4736 APInt Factor = Divisor; 4737 while ((t = Divisor * Factor) != 1) 4738 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4739 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4740 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4741 return true; 4742 }; 4743 4744 // Collect all magic values from the build vector. 4745 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4746 return SDValue(); 4747 4748 SDValue Shift, Factor; 4749 if (VT.isVector()) { 4750 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4751 Factor = DAG.getBuildVector(VT, dl, Factors); 4752 } else { 4753 Shift = Shifts[0]; 4754 Factor = Factors[0]; 4755 } 4756 4757 SDValue Res = Op0; 4758 4759 // Shift the value upfront if it is even, so the LSB is one. 4760 if (UseSRA) { 4761 // TODO: For UDIV use SRL instead of SRA. 4762 SDNodeFlags Flags; 4763 Flags.setExact(true); 4764 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4765 Created.push_back(Res.getNode()); 4766 } 4767 4768 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4769 } 4770 4771 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4772 SelectionDAG &DAG, 4773 SmallVectorImpl<SDNode *> &Created) const { 4774 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4776 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4777 return SDValue(N, 0); // Lower SDIV as SDIV 4778 return SDValue(); 4779 } 4780 4781 /// Given an ISD::SDIV node expressing a divide by constant, 4782 /// return a DAG expression to select that will generate the same value by 4783 /// multiplying by a magic number. 4784 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4785 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4786 bool IsAfterLegalization, 4787 SmallVectorImpl<SDNode *> &Created) const { 4788 SDLoc dl(N); 4789 EVT VT = N->getValueType(0); 4790 EVT SVT = VT.getScalarType(); 4791 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4792 EVT ShSVT = ShVT.getScalarType(); 4793 unsigned EltBits = VT.getScalarSizeInBits(); 4794 4795 // Check to see if we can do this. 4796 // FIXME: We should be more aggressive here. 4797 if (!isTypeLegal(VT)) 4798 return SDValue(); 4799 4800 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4801 if (N->getFlags().hasExact()) 4802 return BuildExactSDIV(*this, N, dl, DAG, Created); 4803 4804 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4805 4806 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4807 if (C->isNullValue()) 4808 return false; 4809 4810 const APInt &Divisor = C->getAPIntValue(); 4811 APInt::ms magics = Divisor.magic(); 4812 int NumeratorFactor = 0; 4813 int ShiftMask = -1; 4814 4815 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4816 // If d is +1/-1, we just multiply the numerator by +1/-1. 4817 NumeratorFactor = Divisor.getSExtValue(); 4818 magics.m = 0; 4819 magics.s = 0; 4820 ShiftMask = 0; 4821 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4822 // If d > 0 and m < 0, add the numerator. 4823 NumeratorFactor = 1; 4824 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4825 // If d < 0 and m > 0, subtract the numerator. 4826 NumeratorFactor = -1; 4827 } 4828 4829 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4830 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4831 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4832 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4833 return true; 4834 }; 4835 4836 SDValue N0 = N->getOperand(0); 4837 SDValue N1 = N->getOperand(1); 4838 4839 // Collect the shifts / magic values from each element. 4840 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4841 return SDValue(); 4842 4843 SDValue MagicFactor, Factor, Shift, ShiftMask; 4844 if (VT.isVector()) { 4845 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4846 Factor = DAG.getBuildVector(VT, dl, Factors); 4847 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4848 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4849 } else { 4850 MagicFactor = MagicFactors[0]; 4851 Factor = Factors[0]; 4852 Shift = Shifts[0]; 4853 ShiftMask = ShiftMasks[0]; 4854 } 4855 4856 // Multiply the numerator (operand 0) by the magic value. 4857 // FIXME: We should support doing a MUL in a wider type. 4858 SDValue Q; 4859 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4860 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4861 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4862 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4863 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4864 SDValue LoHi = 4865 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4866 Q = SDValue(LoHi.getNode(), 1); 4867 } else 4868 return SDValue(); // No mulhs or equivalent. 4869 Created.push_back(Q.getNode()); 4870 4871 // (Optionally) Add/subtract the numerator using Factor. 4872 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4873 Created.push_back(Factor.getNode()); 4874 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4875 Created.push_back(Q.getNode()); 4876 4877 // Shift right algebraic by shift value. 4878 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4879 Created.push_back(Q.getNode()); 4880 4881 // Extract the sign bit, mask it and add it to the quotient. 4882 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4883 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4884 Created.push_back(T.getNode()); 4885 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4886 Created.push_back(T.getNode()); 4887 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4888 } 4889 4890 /// Given an ISD::UDIV node expressing a divide by constant, 4891 /// return a DAG expression to select that will generate the same value by 4892 /// multiplying by a magic number. 4893 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4894 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4895 bool IsAfterLegalization, 4896 SmallVectorImpl<SDNode *> &Created) const { 4897 SDLoc dl(N); 4898 EVT VT = N->getValueType(0); 4899 EVT SVT = VT.getScalarType(); 4900 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4901 EVT ShSVT = ShVT.getScalarType(); 4902 unsigned EltBits = VT.getScalarSizeInBits(); 4903 4904 // Check to see if we can do this. 4905 // FIXME: We should be more aggressive here. 4906 if (!isTypeLegal(VT)) 4907 return SDValue(); 4908 4909 bool UseNPQ = false; 4910 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4911 4912 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4913 if (C->isNullValue()) 4914 return false; 4915 // FIXME: We should use a narrower constant when the upper 4916 // bits are known to be zero. 4917 APInt Divisor = C->getAPIntValue(); 4918 APInt::mu magics = Divisor.magicu(); 4919 unsigned PreShift = 0, PostShift = 0; 4920 4921 // If the divisor is even, we can avoid using the expensive fixup by 4922 // shifting the divided value upfront. 4923 if (magics.a != 0 && !Divisor[0]) { 4924 PreShift = Divisor.countTrailingZeros(); 4925 // Get magic number for the shifted divisor. 4926 magics = Divisor.lshr(PreShift).magicu(PreShift); 4927 assert(magics.a == 0 && "Should use cheap fixup now"); 4928 } 4929 4930 APInt Magic = magics.m; 4931 4932 unsigned SelNPQ; 4933 if (magics.a == 0 || Divisor.isOneValue()) { 4934 assert(magics.s < Divisor.getBitWidth() && 4935 "We shouldn't generate an undefined shift!"); 4936 PostShift = magics.s; 4937 SelNPQ = false; 4938 } else { 4939 PostShift = magics.s - 1; 4940 SelNPQ = true; 4941 } 4942 4943 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4944 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4945 NPQFactors.push_back( 4946 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4947 : APInt::getNullValue(EltBits), 4948 dl, SVT)); 4949 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4950 UseNPQ |= SelNPQ; 4951 return true; 4952 }; 4953 4954 SDValue N0 = N->getOperand(0); 4955 SDValue N1 = N->getOperand(1); 4956 4957 // Collect the shifts/magic values from each element. 4958 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4959 return SDValue(); 4960 4961 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4962 if (VT.isVector()) { 4963 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4964 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4965 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4966 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4967 } else { 4968 PreShift = PreShifts[0]; 4969 MagicFactor = MagicFactors[0]; 4970 PostShift = PostShifts[0]; 4971 } 4972 4973 SDValue Q = N0; 4974 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4975 Created.push_back(Q.getNode()); 4976 4977 // FIXME: We should support doing a MUL in a wider type. 4978 auto GetMULHU = [&](SDValue X, SDValue Y) { 4979 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4980 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4981 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4982 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4983 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4984 SDValue LoHi = 4985 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4986 return SDValue(LoHi.getNode(), 1); 4987 } 4988 return SDValue(); // No mulhu or equivalent 4989 }; 4990 4991 // Multiply the numerator (operand 0) by the magic value. 4992 Q = GetMULHU(Q, MagicFactor); 4993 if (!Q) 4994 return SDValue(); 4995 4996 Created.push_back(Q.getNode()); 4997 4998 if (UseNPQ) { 4999 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5000 Created.push_back(NPQ.getNode()); 5001 5002 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5003 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5004 if (VT.isVector()) 5005 NPQ = GetMULHU(NPQ, NPQFactor); 5006 else 5007 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5008 5009 Created.push_back(NPQ.getNode()); 5010 5011 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5012 Created.push_back(Q.getNode()); 5013 } 5014 5015 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5016 Created.push_back(Q.getNode()); 5017 5018 SDValue One = DAG.getConstant(1, dl, VT); 5019 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5020 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5021 } 5022 5023 /// If all values in Values that *don't* match the predicate are same 'splat' 5024 /// value, then replace all values with that splat value. 5025 /// Else, if AlternativeReplacement was provided, then replace all values that 5026 /// do match predicate with AlternativeReplacement value. 5027 static void 5028 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5029 std::function<bool(SDValue)> Predicate, 5030 SDValue AlternativeReplacement = SDValue()) { 5031 SDValue Replacement; 5032 // Is there a value for which the Predicate does *NOT* match? What is it? 5033 auto SplatValue = llvm::find_if_not(Values, Predicate); 5034 if (SplatValue != Values.end()) { 5035 // Does Values consist only of SplatValue's and values matching Predicate? 5036 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5037 return Value == *SplatValue || Predicate(Value); 5038 })) // Then we shall replace values matching predicate with SplatValue. 5039 Replacement = *SplatValue; 5040 } 5041 if (!Replacement) { 5042 // Oops, we did not find the "baseline" splat value. 5043 if (!AlternativeReplacement) 5044 return; // Nothing to do. 5045 // Let's replace with provided value then. 5046 Replacement = AlternativeReplacement; 5047 } 5048 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5049 } 5050 5051 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5052 /// where the divisor is constant and the comparison target is zero, 5053 /// return a DAG expression that will generate the same comparison result 5054 /// using only multiplications, additions and shifts/rotations. 5055 /// Ref: "Hacker's Delight" 10-17. 5056 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5057 SDValue CompTargetNode, 5058 ISD::CondCode Cond, 5059 DAGCombinerInfo &DCI, 5060 const SDLoc &DL) const { 5061 SmallVector<SDNode *, 5> Built; 5062 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5063 DCI, DL, Built)) { 5064 for (SDNode *N : Built) 5065 DCI.AddToWorklist(N); 5066 return Folded; 5067 } 5068 5069 return SDValue(); 5070 } 5071 5072 SDValue 5073 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5074 SDValue CompTargetNode, ISD::CondCode Cond, 5075 DAGCombinerInfo &DCI, const SDLoc &DL, 5076 SmallVectorImpl<SDNode *> &Created) const { 5077 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5078 // - D must be constant, with D = D0 * 2^K where D0 is odd 5079 // - P is the multiplicative inverse of D0 modulo 2^W 5080 // - Q = floor(((2^W) - 1) / D) 5081 // where W is the width of the common type of N and D. 5082 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5083 "Only applicable for (in)equality comparisons."); 5084 5085 SelectionDAG &DAG = DCI.DAG; 5086 5087 EVT VT = REMNode.getValueType(); 5088 EVT SVT = VT.getScalarType(); 5089 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5090 EVT ShSVT = ShVT.getScalarType(); 5091 5092 // If MUL is unavailable, we cannot proceed in any case. 5093 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5094 return SDValue(); 5095 5096 bool ComparingWithAllZeros = true; 5097 bool AllComparisonsWithNonZerosAreTautological = true; 5098 bool HadTautologicalLanes = false; 5099 bool AllLanesAreTautological = true; 5100 bool HadEvenDivisor = false; 5101 bool AllDivisorsArePowerOfTwo = true; 5102 bool HadTautologicalInvertedLanes = false; 5103 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5104 5105 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5106 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5107 if (CDiv->isNullValue()) 5108 return false; 5109 5110 const APInt &D = CDiv->getAPIntValue(); 5111 const APInt &Cmp = CCmp->getAPIntValue(); 5112 5113 ComparingWithAllZeros &= Cmp.isNullValue(); 5114 5115 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5116 // if C2 is not less than C1, the comparison is always false. 5117 // But we will only be able to produce the comparison that will give the 5118 // opposive tautological answer. So this lane would need to be fixed up. 5119 bool TautologicalInvertedLane = D.ule(Cmp); 5120 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5121 5122 // If all lanes are tautological (either all divisors are ones, or divisor 5123 // is not greater than the constant we are comparing with), 5124 // we will prefer to avoid the fold. 5125 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5126 HadTautologicalLanes |= TautologicalLane; 5127 AllLanesAreTautological &= TautologicalLane; 5128 5129 // If we are comparing with non-zero, we need'll need to subtract said 5130 // comparison value from the LHS. But there is no point in doing that if 5131 // every lane where we are comparing with non-zero is tautological.. 5132 if (!Cmp.isNullValue()) 5133 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5134 5135 // Decompose D into D0 * 2^K 5136 unsigned K = D.countTrailingZeros(); 5137 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5138 APInt D0 = D.lshr(K); 5139 5140 // D is even if it has trailing zeros. 5141 HadEvenDivisor |= (K != 0); 5142 // D is a power-of-two if D0 is one. 5143 // If all divisors are power-of-two, we will prefer to avoid the fold. 5144 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5145 5146 // P = inv(D0, 2^W) 5147 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5148 unsigned W = D.getBitWidth(); 5149 APInt P = D0.zext(W + 1) 5150 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5151 .trunc(W); 5152 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5153 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5154 5155 // Q = floor((2^W - 1) u/ D) 5156 // R = ((2^W - 1) u% D) 5157 APInt Q, R; 5158 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5159 5160 // If we are comparing with zero, then that comparison constant is okay, 5161 // else it may need to be one less than that. 5162 if (Cmp.ugt(R)) 5163 Q -= 1; 5164 5165 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5166 "We are expecting that K is always less than all-ones for ShSVT"); 5167 5168 // If the lane is tautological the result can be constant-folded. 5169 if (TautologicalLane) { 5170 // Set P and K amount to a bogus values so we can try to splat them. 5171 P = 0; 5172 K = -1; 5173 // And ensure that comparison constant is tautological, 5174 // it will always compare true/false. 5175 Q = -1; 5176 } 5177 5178 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5179 KAmts.push_back( 5180 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5181 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5182 return true; 5183 }; 5184 5185 SDValue N = REMNode.getOperand(0); 5186 SDValue D = REMNode.getOperand(1); 5187 5188 // Collect the values from each element. 5189 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5190 return SDValue(); 5191 5192 // If all lanes are tautological, the result can be constant-folded. 5193 if (AllLanesAreTautological) 5194 return SDValue(); 5195 5196 // If this is a urem by a powers-of-two, avoid the fold since it can be 5197 // best implemented as a bit test. 5198 if (AllDivisorsArePowerOfTwo) 5199 return SDValue(); 5200 5201 SDValue PVal, KVal, QVal; 5202 if (VT.isVector()) { 5203 if (HadTautologicalLanes) { 5204 // Try to turn PAmts into a splat, since we don't care about the values 5205 // that are currently '0'. If we can't, just keep '0'`s. 5206 turnVectorIntoSplatVector(PAmts, isNullConstant); 5207 // Try to turn KAmts into a splat, since we don't care about the values 5208 // that are currently '-1'. If we can't, change them to '0'`s. 5209 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5210 DAG.getConstant(0, DL, ShSVT)); 5211 } 5212 5213 PVal = DAG.getBuildVector(VT, DL, PAmts); 5214 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5215 QVal = DAG.getBuildVector(VT, DL, QAmts); 5216 } else { 5217 PVal = PAmts[0]; 5218 KVal = KAmts[0]; 5219 QVal = QAmts[0]; 5220 } 5221 5222 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5223 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5224 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5225 assert(CompTargetNode.getValueType() == N.getValueType() && 5226 "Expecting that the types on LHS and RHS of comparisons match."); 5227 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5228 } 5229 5230 // (mul N, P) 5231 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5232 Created.push_back(Op0.getNode()); 5233 5234 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5235 // divisors as a performance improvement, since rotating by 0 is a no-op. 5236 if (HadEvenDivisor) { 5237 // We need ROTR to do this. 5238 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5239 return SDValue(); 5240 SDNodeFlags Flags; 5241 Flags.setExact(true); 5242 // UREM: (rotr (mul N, P), K) 5243 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5244 Created.push_back(Op0.getNode()); 5245 } 5246 5247 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5248 SDValue NewCC = 5249 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5250 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5251 if (!HadTautologicalInvertedLanes) 5252 return NewCC; 5253 5254 // If any lanes previously compared always-false, the NewCC will give 5255 // always-true result for them, so we need to fixup those lanes. 5256 // Or the other way around for inequality predicate. 5257 assert(VT.isVector() && "Can/should only get here for vectors."); 5258 Created.push_back(NewCC.getNode()); 5259 5260 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5261 // if C2 is not less than C1, the comparison is always false. 5262 // But we have produced the comparison that will give the 5263 // opposive tautological answer. So these lanes would need to be fixed up. 5264 SDValue TautologicalInvertedChannels = 5265 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5266 Created.push_back(TautologicalInvertedChannels.getNode()); 5267 5268 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5269 // If we have a vector select, let's replace the comparison results in the 5270 // affected lanes with the correct tautological result. 5271 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5272 DL, SETCCVT, SETCCVT); 5273 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5274 Replacement, NewCC); 5275 } 5276 5277 // Else, we can just invert the comparison result in the appropriate lanes. 5278 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5279 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5280 TautologicalInvertedChannels); 5281 5282 return SDValue(); // Don't know how to lower. 5283 } 5284 5285 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5286 /// where the divisor is constant and the comparison target is zero, 5287 /// return a DAG expression that will generate the same comparison result 5288 /// using only multiplications, additions and shifts/rotations. 5289 /// Ref: "Hacker's Delight" 10-17. 5290 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5291 SDValue CompTargetNode, 5292 ISD::CondCode Cond, 5293 DAGCombinerInfo &DCI, 5294 const SDLoc &DL) const { 5295 SmallVector<SDNode *, 7> Built; 5296 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5297 DCI, DL, Built)) { 5298 assert(Built.size() <= 7 && "Max size prediction failed."); 5299 for (SDNode *N : Built) 5300 DCI.AddToWorklist(N); 5301 return Folded; 5302 } 5303 5304 return SDValue(); 5305 } 5306 5307 SDValue 5308 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5309 SDValue CompTargetNode, ISD::CondCode Cond, 5310 DAGCombinerInfo &DCI, const SDLoc &DL, 5311 SmallVectorImpl<SDNode *> &Created) const { 5312 // Fold: 5313 // (seteq/ne (srem N, D), 0) 5314 // To: 5315 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5316 // 5317 // - D must be constant, with D = D0 * 2^K where D0 is odd 5318 // - P is the multiplicative inverse of D0 modulo 2^W 5319 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5320 // - Q = floor((2 * A) / (2^K)) 5321 // where W is the width of the common type of N and D. 5322 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5323 "Only applicable for (in)equality comparisons."); 5324 5325 SelectionDAG &DAG = DCI.DAG; 5326 5327 EVT VT = REMNode.getValueType(); 5328 EVT SVT = VT.getScalarType(); 5329 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5330 EVT ShSVT = ShVT.getScalarType(); 5331 5332 // If MUL is unavailable, we cannot proceed in any case. 5333 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5334 return SDValue(); 5335 5336 // TODO: Could support comparing with non-zero too. 5337 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5338 if (!CompTarget || !CompTarget->isNullValue()) 5339 return SDValue(); 5340 5341 bool HadIntMinDivisor = false; 5342 bool HadOneDivisor = false; 5343 bool AllDivisorsAreOnes = true; 5344 bool HadEvenDivisor = false; 5345 bool NeedToApplyOffset = false; 5346 bool AllDivisorsArePowerOfTwo = true; 5347 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5348 5349 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5350 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5351 if (C->isNullValue()) 5352 return false; 5353 5354 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5355 5356 // WARNING: this fold is only valid for positive divisors! 5357 APInt D = C->getAPIntValue(); 5358 if (D.isNegative()) 5359 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5360 5361 HadIntMinDivisor |= D.isMinSignedValue(); 5362 5363 // If all divisors are ones, we will prefer to avoid the fold. 5364 HadOneDivisor |= D.isOneValue(); 5365 AllDivisorsAreOnes &= D.isOneValue(); 5366 5367 // Decompose D into D0 * 2^K 5368 unsigned K = D.countTrailingZeros(); 5369 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5370 APInt D0 = D.lshr(K); 5371 5372 if (!D.isMinSignedValue()) { 5373 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5374 // we don't care about this lane in this fold, we'll special-handle it. 5375 HadEvenDivisor |= (K != 0); 5376 } 5377 5378 // D is a power-of-two if D0 is one. This includes INT_MIN. 5379 // If all divisors are power-of-two, we will prefer to avoid the fold. 5380 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5381 5382 // P = inv(D0, 2^W) 5383 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5384 unsigned W = D.getBitWidth(); 5385 APInt P = D0.zext(W + 1) 5386 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5387 .trunc(W); 5388 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5389 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5390 5391 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5392 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5393 A.clearLowBits(K); 5394 5395 if (!D.isMinSignedValue()) { 5396 // If divisor INT_MIN, then we don't care about this lane in this fold, 5397 // we'll special-handle it. 5398 NeedToApplyOffset |= A != 0; 5399 } 5400 5401 // Q = floor((2 * A) / (2^K)) 5402 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5403 5404 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5405 "We are expecting that A is always less than all-ones for SVT"); 5406 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5407 "We are expecting that K is always less than all-ones for ShSVT"); 5408 5409 // If the divisor is 1 the result can be constant-folded. Likewise, we 5410 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5411 if (D.isOneValue()) { 5412 // Set P, A and K to a bogus values so we can try to splat them. 5413 P = 0; 5414 A = -1; 5415 K = -1; 5416 5417 // x ?% 1 == 0 <--> true <--> x u<= -1 5418 Q = -1; 5419 } 5420 5421 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5422 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5423 KAmts.push_back( 5424 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5425 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5426 return true; 5427 }; 5428 5429 SDValue N = REMNode.getOperand(0); 5430 SDValue D = REMNode.getOperand(1); 5431 5432 // Collect the values from each element. 5433 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5434 return SDValue(); 5435 5436 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5437 if (AllDivisorsAreOnes) 5438 return SDValue(); 5439 5440 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5441 // since it can be best implemented as a bit test. 5442 if (AllDivisorsArePowerOfTwo) 5443 return SDValue(); 5444 5445 SDValue PVal, AVal, KVal, QVal; 5446 if (VT.isVector()) { 5447 if (HadOneDivisor) { 5448 // Try to turn PAmts into a splat, since we don't care about the values 5449 // that are currently '0'. If we can't, just keep '0'`s. 5450 turnVectorIntoSplatVector(PAmts, isNullConstant); 5451 // Try to turn AAmts into a splat, since we don't care about the 5452 // values that are currently '-1'. If we can't, change them to '0'`s. 5453 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5454 DAG.getConstant(0, DL, SVT)); 5455 // Try to turn KAmts into a splat, since we don't care about the values 5456 // that are currently '-1'. If we can't, change them to '0'`s. 5457 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5458 DAG.getConstant(0, DL, ShSVT)); 5459 } 5460 5461 PVal = DAG.getBuildVector(VT, DL, PAmts); 5462 AVal = DAG.getBuildVector(VT, DL, AAmts); 5463 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5464 QVal = DAG.getBuildVector(VT, DL, QAmts); 5465 } else { 5466 PVal = PAmts[0]; 5467 AVal = AAmts[0]; 5468 KVal = KAmts[0]; 5469 QVal = QAmts[0]; 5470 } 5471 5472 // (mul N, P) 5473 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5474 Created.push_back(Op0.getNode()); 5475 5476 if (NeedToApplyOffset) { 5477 // We need ADD to do this. 5478 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5479 return SDValue(); 5480 5481 // (add (mul N, P), A) 5482 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5483 Created.push_back(Op0.getNode()); 5484 } 5485 5486 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5487 // divisors as a performance improvement, since rotating by 0 is a no-op. 5488 if (HadEvenDivisor) { 5489 // We need ROTR to do this. 5490 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5491 return SDValue(); 5492 SDNodeFlags Flags; 5493 Flags.setExact(true); 5494 // SREM: (rotr (add (mul N, P), A), K) 5495 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5496 Created.push_back(Op0.getNode()); 5497 } 5498 5499 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5500 SDValue Fold = 5501 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5502 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5503 5504 // If we didn't have lanes with INT_MIN divisor, then we're done. 5505 if (!HadIntMinDivisor) 5506 return Fold; 5507 5508 // That fold is only valid for positive divisors. Which effectively means, 5509 // it is invalid for INT_MIN divisors. So if we have such a lane, 5510 // we must fix-up results for said lanes. 5511 assert(VT.isVector() && "Can/should only get here for vectors."); 5512 5513 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5514 !isOperationLegalOrCustom(ISD::AND, VT) || 5515 !isOperationLegalOrCustom(Cond, VT) || 5516 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5517 return SDValue(); 5518 5519 Created.push_back(Fold.getNode()); 5520 5521 SDValue IntMin = DAG.getConstant( 5522 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5523 SDValue IntMax = DAG.getConstant( 5524 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5525 SDValue Zero = 5526 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5527 5528 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5529 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5530 Created.push_back(DivisorIsIntMin.getNode()); 5531 5532 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5533 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5534 Created.push_back(Masked.getNode()); 5535 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5536 Created.push_back(MaskedIsZero.getNode()); 5537 5538 // To produce final result we need to blend 2 vectors: 'SetCC' and 5539 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5540 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5541 // constant-folded, select can get lowered to a shuffle with constant mask. 5542 SDValue Blended = 5543 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5544 5545 return Blended; 5546 } 5547 5548 bool TargetLowering:: 5549 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5550 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5551 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5552 "be a constant integer"); 5553 return true; 5554 } 5555 5556 return false; 5557 } 5558 5559 TargetLowering::NegatibleCost 5560 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5561 bool LegalOperations, bool ForCodeSize, 5562 unsigned Depth) const { 5563 // fneg is removable even if it has multiple uses. 5564 if (Op.getOpcode() == ISD::FNEG) 5565 return NegatibleCost::Cheaper; 5566 5567 // Don't allow anything with multiple uses unless we know it is free. 5568 EVT VT = Op.getValueType(); 5569 const SDNodeFlags Flags = Op->getFlags(); 5570 const TargetOptions &Options = DAG.getTarget().Options; 5571 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5572 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5573 return NegatibleCost::Expensive; 5574 5575 // Don't recurse exponentially. 5576 if (Depth > SelectionDAG::MaxRecursionDepth) 5577 return NegatibleCost::Expensive; 5578 5579 switch (Op.getOpcode()) { 5580 case ISD::ConstantFP: { 5581 if (!LegalOperations) 5582 return NegatibleCost::Neutral; 5583 5584 // Don't invert constant FP values after legalization unless the target says 5585 // the negated constant is legal. 5586 if (isOperationLegal(ISD::ConstantFP, VT) || 5587 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5588 ForCodeSize)) 5589 return NegatibleCost::Neutral; 5590 break; 5591 } 5592 case ISD::BUILD_VECTOR: { 5593 // Only permit BUILD_VECTOR of constants. 5594 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5595 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5596 })) 5597 return NegatibleCost::Expensive; 5598 if (!LegalOperations) 5599 return NegatibleCost::Neutral; 5600 if (isOperationLegal(ISD::ConstantFP, VT) && 5601 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5602 return NegatibleCost::Neutral; 5603 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5604 return N.isUndef() || 5605 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5606 ForCodeSize); 5607 })) 5608 return NegatibleCost::Neutral; 5609 break; 5610 } 5611 case ISD::FADD: { 5612 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5613 return NegatibleCost::Expensive; 5614 5615 // After operation legalization, it might not be legal to create new FSUBs. 5616 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5617 return NegatibleCost::Expensive; 5618 5619 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5620 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5621 ForCodeSize, Depth + 1); 5622 if (V0 != NegatibleCost::Expensive) 5623 return V0; 5624 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5625 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5626 Depth + 1); 5627 } 5628 case ISD::FSUB: 5629 // We can't turn -(A-B) into B-A when we honor signed zeros. 5630 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5631 return NegatibleCost::Expensive; 5632 5633 // fold (fneg (fsub A, B)) -> (fsub B, A) 5634 return NegatibleCost::Neutral; 5635 case ISD::FMUL: 5636 case ISD::FDIV: { 5637 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5638 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5639 ForCodeSize, Depth + 1); 5640 if (V0 != NegatibleCost::Expensive) 5641 return V0; 5642 5643 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5644 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5645 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5646 return NegatibleCost::Expensive; 5647 5648 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5649 Depth + 1); 5650 } 5651 case ISD::FMA: 5652 case ISD::FMAD: { 5653 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5654 return NegatibleCost::Expensive; 5655 5656 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5657 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5658 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5659 ForCodeSize, Depth + 1); 5660 if (NegatibleCost::Expensive == V2) 5661 return NegatibleCost::Expensive; 5662 5663 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5664 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5665 ForCodeSize, Depth + 1); 5666 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5667 ForCodeSize, Depth + 1); 5668 NegatibleCost V01 = std::max(V0, V1); 5669 if (V01 == NegatibleCost::Expensive) 5670 return NegatibleCost::Expensive; 5671 return std::max(V01, V2); 5672 } 5673 5674 case ISD::FP_EXTEND: 5675 case ISD::FP_ROUND: 5676 case ISD::FSIN: 5677 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5678 Depth + 1); 5679 } 5680 5681 return NegatibleCost::Expensive; 5682 } 5683 5684 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5685 bool LegalOperations, 5686 bool ForCodeSize, 5687 unsigned Depth) const { 5688 // fneg is removable even if it has multiple uses. 5689 if (Op.getOpcode() == ISD::FNEG) 5690 return Op.getOperand(0); 5691 5692 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5693 "getNegatedExpression doesn't match getNegatibleCost"); 5694 const SDNodeFlags Flags = Op->getFlags(); 5695 5696 switch (Op.getOpcode()) { 5697 case ISD::ConstantFP: { 5698 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5699 V.changeSign(); 5700 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5701 } 5702 case ISD::BUILD_VECTOR: { 5703 SmallVector<SDValue, 4> Ops; 5704 for (SDValue C : Op->op_values()) { 5705 if (C.isUndef()) { 5706 Ops.push_back(C); 5707 continue; 5708 } 5709 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5710 V.changeSign(); 5711 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5712 } 5713 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5714 } 5715 case ISD::FADD: { 5716 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5717 Flags.hasNoSignedZeros()) && 5718 "Expected NSZ fp-flag"); 5719 5720 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5721 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5722 ForCodeSize, Depth + 1); 5723 if (V0 != NegatibleCost::Expensive) 5724 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5725 getNegatedExpression(Op.getOperand(0), DAG, 5726 LegalOperations, ForCodeSize, 5727 Depth + 1), 5728 Op.getOperand(1), Flags); 5729 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5730 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5731 getNegatedExpression(Op.getOperand(1), DAG, 5732 LegalOperations, ForCodeSize, 5733 Depth + 1), 5734 Op.getOperand(0), Flags); 5735 } 5736 case ISD::FSUB: 5737 // fold (fneg (fsub 0, B)) -> B 5738 if (ConstantFPSDNode *N0CFP = 5739 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5740 if (N0CFP->isZero()) 5741 return Op.getOperand(1); 5742 5743 // fold (fneg (fsub A, B)) -> (fsub B, A) 5744 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5745 Op.getOperand(1), Op.getOperand(0), Flags); 5746 5747 case ISD::FMUL: 5748 case ISD::FDIV: { 5749 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5750 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5751 ForCodeSize, Depth + 1); 5752 if (V0 != NegatibleCost::Expensive) 5753 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5754 getNegatedExpression(Op.getOperand(0), DAG, 5755 LegalOperations, ForCodeSize, 5756 Depth + 1), 5757 Op.getOperand(1), Flags); 5758 5759 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5760 return DAG.getNode( 5761 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5762 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5763 ForCodeSize, Depth + 1), 5764 Flags); 5765 } 5766 case ISD::FMA: 5767 case ISD::FMAD: { 5768 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5769 Flags.hasNoSignedZeros()) && 5770 "Expected NSZ fp-flag"); 5771 5772 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5773 ForCodeSize, Depth + 1); 5774 5775 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5776 ForCodeSize, Depth + 1); 5777 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5778 ForCodeSize, Depth + 1); 5779 // TODO: This is a hack. It is possible that costs have changed between now 5780 // and the initial calls to getNegatibleCost(). That is because we 5781 // are rewriting the expression, and that may change the number of 5782 // uses (and therefore the cost) of values. If the negation costs are 5783 // equal, only negate this value if it is a constant. Otherwise, try 5784 // operand 1. A better fix would eliminate uses as a cost factor or 5785 // track the change in uses as we rewrite the expression. 5786 if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) { 5787 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5788 SDValue Neg0 = getNegatedExpression( 5789 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5790 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5791 Op.getOperand(1), Neg2, Flags); 5792 } 5793 5794 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5795 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5796 ForCodeSize, Depth + 1); 5797 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5798 Op.getOperand(0), Neg1, Neg2, Flags); 5799 } 5800 5801 case ISD::FP_EXTEND: 5802 case ISD::FSIN: 5803 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5804 getNegatedExpression(Op.getOperand(0), DAG, 5805 LegalOperations, ForCodeSize, 5806 Depth + 1)); 5807 case ISD::FP_ROUND: 5808 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5809 getNegatedExpression(Op.getOperand(0), DAG, 5810 LegalOperations, ForCodeSize, 5811 Depth + 1), 5812 Op.getOperand(1)); 5813 } 5814 5815 llvm_unreachable("Unknown code"); 5816 } 5817 5818 //===----------------------------------------------------------------------===// 5819 // Legalization Utilities 5820 //===----------------------------------------------------------------------===// 5821 5822 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5823 SDValue LHS, SDValue RHS, 5824 SmallVectorImpl<SDValue> &Result, 5825 EVT HiLoVT, SelectionDAG &DAG, 5826 MulExpansionKind Kind, SDValue LL, 5827 SDValue LH, SDValue RL, SDValue RH) const { 5828 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5829 Opcode == ISD::SMUL_LOHI); 5830 5831 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5832 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5833 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5834 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5835 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5836 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5837 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5838 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5839 5840 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5841 return false; 5842 5843 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5844 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5845 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5846 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5847 5848 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5849 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5850 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5851 5852 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5853 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5854 bool Signed) -> bool { 5855 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5856 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5857 Hi = SDValue(Lo.getNode(), 1); 5858 return true; 5859 } 5860 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5861 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5862 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5863 return true; 5864 } 5865 return false; 5866 }; 5867 5868 SDValue Lo, Hi; 5869 5870 if (!LL.getNode() && !RL.getNode() && 5871 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5872 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5873 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5874 } 5875 5876 if (!LL.getNode()) 5877 return false; 5878 5879 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5880 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5881 DAG.MaskedValueIsZero(RHS, HighMask)) { 5882 // The inputs are both zero-extended. 5883 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5884 Result.push_back(Lo); 5885 Result.push_back(Hi); 5886 if (Opcode != ISD::MUL) { 5887 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5888 Result.push_back(Zero); 5889 Result.push_back(Zero); 5890 } 5891 return true; 5892 } 5893 } 5894 5895 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5896 RHSSB > InnerBitSize) { 5897 // The input values are both sign-extended. 5898 // TODO non-MUL case? 5899 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5900 Result.push_back(Lo); 5901 Result.push_back(Hi); 5902 return true; 5903 } 5904 } 5905 5906 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5907 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5908 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5909 // FIXME getShiftAmountTy does not always return a sensible result when VT 5910 // is an illegal type, and so the type may be too small to fit the shift 5911 // amount. Override it with i32. The shift will have to be legalized. 5912 ShiftAmountTy = MVT::i32; 5913 } 5914 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5915 5916 if (!LH.getNode() && !RH.getNode() && 5917 isOperationLegalOrCustom(ISD::SRL, VT) && 5918 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5919 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5920 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5921 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5922 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5923 } 5924 5925 if (!LH.getNode()) 5926 return false; 5927 5928 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5929 return false; 5930 5931 Result.push_back(Lo); 5932 5933 if (Opcode == ISD::MUL) { 5934 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5935 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5936 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5937 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5938 Result.push_back(Hi); 5939 return true; 5940 } 5941 5942 // Compute the full width result. 5943 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5944 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5945 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5946 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5947 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5948 }; 5949 5950 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5951 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5952 return false; 5953 5954 // This is effectively the add part of a multiply-add of half-sized operands, 5955 // so it cannot overflow. 5956 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5957 5958 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5959 return false; 5960 5961 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5962 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5963 5964 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5965 isOperationLegalOrCustom(ISD::ADDE, VT)); 5966 if (UseGlue) 5967 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5968 Merge(Lo, Hi)); 5969 else 5970 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5971 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5972 5973 SDValue Carry = Next.getValue(1); 5974 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5975 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5976 5977 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5978 return false; 5979 5980 if (UseGlue) 5981 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5982 Carry); 5983 else 5984 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5985 Zero, Carry); 5986 5987 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5988 5989 if (Opcode == ISD::SMUL_LOHI) { 5990 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5991 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5992 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5993 5994 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5995 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5996 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5997 } 5998 5999 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6000 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6001 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6002 return true; 6003 } 6004 6005 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6006 SelectionDAG &DAG, MulExpansionKind Kind, 6007 SDValue LL, SDValue LH, SDValue RL, 6008 SDValue RH) const { 6009 SmallVector<SDValue, 2> Result; 6010 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6011 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6012 DAG, Kind, LL, LH, RL, RH); 6013 if (Ok) { 6014 assert(Result.size() == 2); 6015 Lo = Result[0]; 6016 Hi = Result[1]; 6017 } 6018 return Ok; 6019 } 6020 6021 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6022 SelectionDAG &DAG) const { 6023 EVT VT = Node->getValueType(0); 6024 6025 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6026 !isOperationLegalOrCustom(ISD::SRL, VT) || 6027 !isOperationLegalOrCustom(ISD::SUB, VT) || 6028 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6029 return false; 6030 6031 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6032 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6033 SDValue X = Node->getOperand(0); 6034 SDValue Y = Node->getOperand(1); 6035 SDValue Z = Node->getOperand(2); 6036 6037 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6038 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6039 SDLoc DL(SDValue(Node, 0)); 6040 6041 EVT ShVT = Z.getValueType(); 6042 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6043 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6044 6045 SDValue ShAmt; 6046 if (isPowerOf2_32(EltSizeInBits)) { 6047 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6048 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6049 } else { 6050 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6051 } 6052 6053 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6054 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6055 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6056 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6057 6058 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6059 // and that is undefined. We must compare and select to avoid UB. 6060 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6061 6062 // For fshl, 0-shift returns the 1st arg (X). 6063 // For fshr, 0-shift returns the 2nd arg (Y). 6064 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6065 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6066 return true; 6067 } 6068 6069 // TODO: Merge with expandFunnelShift. 6070 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6071 SelectionDAG &DAG) const { 6072 EVT VT = Node->getValueType(0); 6073 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6074 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6075 SDValue Op0 = Node->getOperand(0); 6076 SDValue Op1 = Node->getOperand(1); 6077 SDLoc DL(SDValue(Node, 0)); 6078 6079 EVT ShVT = Op1.getValueType(); 6080 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6081 6082 // If a rotate in the other direction is legal, use it. 6083 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6084 if (isOperationLegal(RevRot, VT)) { 6085 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6086 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6087 return true; 6088 } 6089 6090 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6091 !isOperationLegalOrCustom(ISD::SRL, VT) || 6092 !isOperationLegalOrCustom(ISD::SUB, VT) || 6093 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6094 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6095 return false; 6096 6097 // Otherwise, 6098 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6099 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6100 // 6101 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6102 "Expecting the type bitwidth to be a power of 2"); 6103 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6104 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6105 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6106 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6107 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6108 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6109 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6110 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6111 return true; 6112 } 6113 6114 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6115 SelectionDAG &DAG) const { 6116 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6117 SDValue Src = Node->getOperand(OpNo); 6118 EVT SrcVT = Src.getValueType(); 6119 EVT DstVT = Node->getValueType(0); 6120 SDLoc dl(SDValue(Node, 0)); 6121 6122 // FIXME: Only f32 to i64 conversions are supported. 6123 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6124 return false; 6125 6126 if (Node->isStrictFPOpcode()) 6127 // When a NaN is converted to an integer a trap is allowed. We can't 6128 // use this expansion here because it would eliminate that trap. Other 6129 // traps are also allowed and cannot be eliminated. See 6130 // IEEE 754-2008 sec 5.8. 6131 return false; 6132 6133 // Expand f32 -> i64 conversion 6134 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6135 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6136 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6137 EVT IntVT = SrcVT.changeTypeToInteger(); 6138 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6139 6140 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6141 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6142 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6143 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6144 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6145 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6146 6147 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6148 6149 SDValue ExponentBits = DAG.getNode( 6150 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6151 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6152 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6153 6154 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6155 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6156 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6157 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6158 6159 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6160 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6161 DAG.getConstant(0x00800000, dl, IntVT)); 6162 6163 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6164 6165 R = DAG.getSelectCC( 6166 dl, Exponent, ExponentLoBit, 6167 DAG.getNode(ISD::SHL, dl, DstVT, R, 6168 DAG.getZExtOrTrunc( 6169 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6170 dl, IntShVT)), 6171 DAG.getNode(ISD::SRL, dl, DstVT, R, 6172 DAG.getZExtOrTrunc( 6173 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6174 dl, IntShVT)), 6175 ISD::SETGT); 6176 6177 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6178 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6179 6180 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6181 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6182 return true; 6183 } 6184 6185 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6186 SDValue &Chain, 6187 SelectionDAG &DAG) const { 6188 SDLoc dl(SDValue(Node, 0)); 6189 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6190 SDValue Src = Node->getOperand(OpNo); 6191 6192 EVT SrcVT = Src.getValueType(); 6193 EVT DstVT = Node->getValueType(0); 6194 EVT SetCCVT = 6195 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6196 EVT DstSetCCVT = 6197 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6198 6199 // Only expand vector types if we have the appropriate vector bit operations. 6200 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6201 ISD::FP_TO_SINT; 6202 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6203 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6204 return false; 6205 6206 // If the maximum float value is smaller then the signed integer range, 6207 // the destination signmask can't be represented by the float, so we can 6208 // just use FP_TO_SINT directly. 6209 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6210 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6211 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6212 if (APFloat::opOverflow & 6213 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6214 if (Node->isStrictFPOpcode()) { 6215 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6216 { Node->getOperand(0), Src }); 6217 Chain = Result.getValue(1); 6218 } else 6219 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6220 return true; 6221 } 6222 6223 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6224 SDValue Sel; 6225 6226 if (Node->isStrictFPOpcode()) { 6227 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6228 Node->getOperand(0), /*IsSignaling*/ true); 6229 Chain = Sel.getValue(1); 6230 } else { 6231 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6232 } 6233 6234 bool Strict = Node->isStrictFPOpcode() || 6235 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6236 6237 if (Strict) { 6238 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6239 // signmask then offset (the result of which should be fully representable). 6240 // Sel = Src < 0x8000000000000000 6241 // FltOfs = select Sel, 0, 0x8000000000000000 6242 // IntOfs = select Sel, 0, 0x8000000000000000 6243 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6244 6245 // TODO: Should any fast-math-flags be set for the FSUB? 6246 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6247 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6248 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6249 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6250 DAG.getConstant(0, dl, DstVT), 6251 DAG.getConstant(SignMask, dl, DstVT)); 6252 SDValue SInt; 6253 if (Node->isStrictFPOpcode()) { 6254 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6255 { Chain, Src, FltOfs }); 6256 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6257 { Val.getValue(1), Val }); 6258 Chain = SInt.getValue(1); 6259 } else { 6260 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6261 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6262 } 6263 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6264 } else { 6265 // Expand based on maximum range of FP_TO_SINT: 6266 // True = fp_to_sint(Src) 6267 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6268 // Result = select (Src < 0x8000000000000000), True, False 6269 6270 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6271 // TODO: Should any fast-math-flags be set for the FSUB? 6272 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6273 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6274 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6275 DAG.getConstant(SignMask, dl, DstVT)); 6276 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6277 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6278 } 6279 return true; 6280 } 6281 6282 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6283 SDValue &Chain, 6284 SelectionDAG &DAG) const { 6285 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6286 SDValue Src = Node->getOperand(OpNo); 6287 EVT SrcVT = Src.getValueType(); 6288 EVT DstVT = Node->getValueType(0); 6289 6290 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6291 return false; 6292 6293 // Only expand vector types if we have the appropriate vector bit operations. 6294 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6295 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6296 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6297 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6298 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6299 return false; 6300 6301 SDLoc dl(SDValue(Node, 0)); 6302 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6303 6304 // Implementation of unsigned i64 to f64 following the algorithm in 6305 // __floatundidf in compiler_rt. This implementation has the advantage 6306 // of performing rounding correctly, both in the default rounding mode 6307 // and in all alternate rounding modes. 6308 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6309 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6310 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6311 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6312 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6313 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6314 6315 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6316 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6317 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6318 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6319 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6320 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6321 if (Node->isStrictFPOpcode()) { 6322 SDValue HiSub = 6323 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6324 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6325 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6326 {HiSub.getValue(1), LoFlt, HiSub}); 6327 Chain = Result.getValue(1); 6328 } else { 6329 SDValue HiSub = 6330 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6331 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6332 } 6333 return true; 6334 } 6335 6336 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6337 SelectionDAG &DAG) const { 6338 SDLoc dl(Node); 6339 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6340 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6341 EVT VT = Node->getValueType(0); 6342 if (isOperationLegalOrCustom(NewOp, VT)) { 6343 SDValue Quiet0 = Node->getOperand(0); 6344 SDValue Quiet1 = Node->getOperand(1); 6345 6346 if (!Node->getFlags().hasNoNaNs()) { 6347 // Insert canonicalizes if it's possible we need to quiet to get correct 6348 // sNaN behavior. 6349 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6350 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6351 Node->getFlags()); 6352 } 6353 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6354 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6355 Node->getFlags()); 6356 } 6357 } 6358 6359 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6360 } 6361 6362 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6363 // instead if there are no NaNs. 6364 if (Node->getFlags().hasNoNaNs()) { 6365 unsigned IEEE2018Op = 6366 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6367 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6368 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6369 Node->getOperand(1), Node->getFlags()); 6370 } 6371 } 6372 6373 // If none of the above worked, but there are no NaNs, then expand to 6374 // a compare/select sequence. This is required for correctness since 6375 // InstCombine might have canonicalized a fcmp+select sequence to a 6376 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6377 // expansion to libcall, we might introduce a link-time dependency 6378 // on libm into a file that originally did not have one. 6379 if (Node->getFlags().hasNoNaNs()) { 6380 ISD::CondCode Pred = 6381 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6382 SDValue Op1 = Node->getOperand(0); 6383 SDValue Op2 = Node->getOperand(1); 6384 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6385 // Copy FMF flags, but always set the no-signed-zeros flag 6386 // as this is implied by the FMINNUM/FMAXNUM semantics. 6387 SDNodeFlags Flags = Node->getFlags(); 6388 Flags.setNoSignedZeros(true); 6389 SelCC->setFlags(Flags); 6390 return SelCC; 6391 } 6392 6393 return SDValue(); 6394 } 6395 6396 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6397 SelectionDAG &DAG) const { 6398 SDLoc dl(Node); 6399 EVT VT = Node->getValueType(0); 6400 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6401 SDValue Op = Node->getOperand(0); 6402 unsigned Len = VT.getScalarSizeInBits(); 6403 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6404 6405 // TODO: Add support for irregular type lengths. 6406 if (!(Len <= 128 && Len % 8 == 0)) 6407 return false; 6408 6409 // Only expand vector types if we have the appropriate vector bit operations. 6410 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6411 !isOperationLegalOrCustom(ISD::SUB, VT) || 6412 !isOperationLegalOrCustom(ISD::SRL, VT) || 6413 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6414 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6415 return false; 6416 6417 // This is the "best" algorithm from 6418 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6419 SDValue Mask55 = 6420 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6421 SDValue Mask33 = 6422 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6423 SDValue Mask0F = 6424 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6425 SDValue Mask01 = 6426 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6427 6428 // v = v - ((v >> 1) & 0x55555555...) 6429 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6430 DAG.getNode(ISD::AND, dl, VT, 6431 DAG.getNode(ISD::SRL, dl, VT, Op, 6432 DAG.getConstant(1, dl, ShVT)), 6433 Mask55)); 6434 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6435 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6436 DAG.getNode(ISD::AND, dl, VT, 6437 DAG.getNode(ISD::SRL, dl, VT, Op, 6438 DAG.getConstant(2, dl, ShVT)), 6439 Mask33)); 6440 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6441 Op = DAG.getNode(ISD::AND, dl, VT, 6442 DAG.getNode(ISD::ADD, dl, VT, Op, 6443 DAG.getNode(ISD::SRL, dl, VT, Op, 6444 DAG.getConstant(4, dl, ShVT))), 6445 Mask0F); 6446 // v = (v * 0x01010101...) >> (Len - 8) 6447 if (Len > 8) 6448 Op = 6449 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6450 DAG.getConstant(Len - 8, dl, ShVT)); 6451 6452 Result = Op; 6453 return true; 6454 } 6455 6456 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6457 SelectionDAG &DAG) const { 6458 SDLoc dl(Node); 6459 EVT VT = Node->getValueType(0); 6460 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6461 SDValue Op = Node->getOperand(0); 6462 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6463 6464 // If the non-ZERO_UNDEF version is supported we can use that instead. 6465 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6466 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6467 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6468 return true; 6469 } 6470 6471 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6472 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6473 EVT SetCCVT = 6474 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6475 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6476 SDValue Zero = DAG.getConstant(0, dl, VT); 6477 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6478 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6479 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6480 return true; 6481 } 6482 6483 // Only expand vector types if we have the appropriate vector bit operations. 6484 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6485 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6486 !isOperationLegalOrCustom(ISD::SRL, VT) || 6487 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6488 return false; 6489 6490 // for now, we do this: 6491 // x = x | (x >> 1); 6492 // x = x | (x >> 2); 6493 // ... 6494 // x = x | (x >>16); 6495 // x = x | (x >>32); // for 64-bit input 6496 // return popcount(~x); 6497 // 6498 // Ref: "Hacker's Delight" by Henry Warren 6499 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6500 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6501 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6502 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6503 } 6504 Op = DAG.getNOT(dl, Op, VT); 6505 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6506 return true; 6507 } 6508 6509 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6510 SelectionDAG &DAG) const { 6511 SDLoc dl(Node); 6512 EVT VT = Node->getValueType(0); 6513 SDValue Op = Node->getOperand(0); 6514 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6515 6516 // If the non-ZERO_UNDEF version is supported we can use that instead. 6517 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6518 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6519 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6520 return true; 6521 } 6522 6523 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6524 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6525 EVT SetCCVT = 6526 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6527 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6528 SDValue Zero = DAG.getConstant(0, dl, VT); 6529 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6530 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6531 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6532 return true; 6533 } 6534 6535 // Only expand vector types if we have the appropriate vector bit operations. 6536 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6537 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6538 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6539 !isOperationLegalOrCustom(ISD::SUB, VT) || 6540 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6541 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6542 return false; 6543 6544 // for now, we use: { return popcount(~x & (x - 1)); } 6545 // unless the target has ctlz but not ctpop, in which case we use: 6546 // { return 32 - nlz(~x & (x-1)); } 6547 // Ref: "Hacker's Delight" by Henry Warren 6548 SDValue Tmp = DAG.getNode( 6549 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6550 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6551 6552 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6553 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6554 Result = 6555 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6556 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6557 return true; 6558 } 6559 6560 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6561 return true; 6562 } 6563 6564 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6565 SelectionDAG &DAG) const { 6566 SDLoc dl(N); 6567 EVT VT = N->getValueType(0); 6568 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6569 SDValue Op = N->getOperand(0); 6570 6571 // Only expand vector types if we have the appropriate vector operations. 6572 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6573 !isOperationLegalOrCustom(ISD::ADD, VT) || 6574 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6575 return false; 6576 6577 SDValue Shift = 6578 DAG.getNode(ISD::SRA, dl, VT, Op, 6579 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6580 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6581 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6582 return true; 6583 } 6584 6585 std::pair<SDValue, SDValue> 6586 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6587 SelectionDAG &DAG) const { 6588 SDLoc SL(LD); 6589 SDValue Chain = LD->getChain(); 6590 SDValue BasePTR = LD->getBasePtr(); 6591 EVT SrcVT = LD->getMemoryVT(); 6592 ISD::LoadExtType ExtType = LD->getExtensionType(); 6593 6594 unsigned NumElem = SrcVT.getVectorNumElements(); 6595 6596 EVT SrcEltVT = SrcVT.getScalarType(); 6597 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6598 6599 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6600 assert(SrcEltVT.isByteSized()); 6601 6602 SmallVector<SDValue, 8> Vals; 6603 SmallVector<SDValue, 8> LoadChains; 6604 6605 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6606 SDValue ScalarLoad = 6607 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6608 LD->getPointerInfo().getWithOffset(Idx * Stride), 6609 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6610 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6611 6612 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6613 6614 Vals.push_back(ScalarLoad.getValue(0)); 6615 LoadChains.push_back(ScalarLoad.getValue(1)); 6616 } 6617 6618 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6619 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6620 6621 return std::make_pair(Value, NewChain); 6622 } 6623 6624 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6625 SelectionDAG &DAG) const { 6626 SDLoc SL(ST); 6627 6628 SDValue Chain = ST->getChain(); 6629 SDValue BasePtr = ST->getBasePtr(); 6630 SDValue Value = ST->getValue(); 6631 EVT StVT = ST->getMemoryVT(); 6632 6633 // The type of the data we want to save 6634 EVT RegVT = Value.getValueType(); 6635 EVT RegSclVT = RegVT.getScalarType(); 6636 6637 // The type of data as saved in memory. 6638 EVT MemSclVT = StVT.getScalarType(); 6639 6640 unsigned NumElem = StVT.getVectorNumElements(); 6641 6642 // A vector must always be stored in memory as-is, i.e. without any padding 6643 // between the elements, since various code depend on it, e.g. in the 6644 // handling of a bitcast of a vector type to int, which may be done with a 6645 // vector store followed by an integer load. A vector that does not have 6646 // elements that are byte-sized must therefore be stored as an integer 6647 // built out of the extracted vector elements. 6648 if (!MemSclVT.isByteSized()) { 6649 unsigned NumBits = StVT.getSizeInBits(); 6650 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6651 6652 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6653 6654 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6655 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6656 DAG.getVectorIdxConstant(Idx, SL)); 6657 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6658 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6659 unsigned ShiftIntoIdx = 6660 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6661 SDValue ShiftAmount = 6662 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6663 SDValue ShiftedElt = 6664 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6665 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6666 } 6667 6668 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6669 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6670 ST->getAAInfo()); 6671 } 6672 6673 // Store Stride in bytes 6674 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6675 assert(Stride && "Zero stride!"); 6676 // Extract each of the elements from the original vector and save them into 6677 // memory individually. 6678 SmallVector<SDValue, 8> Stores; 6679 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6680 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6681 DAG.getVectorIdxConstant(Idx, SL)); 6682 6683 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6684 6685 // This scalar TruncStore may be illegal, but we legalize it later. 6686 SDValue Store = DAG.getTruncStore( 6687 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6688 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6689 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6690 6691 Stores.push_back(Store); 6692 } 6693 6694 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6695 } 6696 6697 std::pair<SDValue, SDValue> 6698 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6699 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6700 "unaligned indexed loads not implemented!"); 6701 SDValue Chain = LD->getChain(); 6702 SDValue Ptr = LD->getBasePtr(); 6703 EVT VT = LD->getValueType(0); 6704 EVT LoadedVT = LD->getMemoryVT(); 6705 SDLoc dl(LD); 6706 auto &MF = DAG.getMachineFunction(); 6707 6708 if (VT.isFloatingPoint() || VT.isVector()) { 6709 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6710 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6711 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6712 LoadedVT.isVector()) { 6713 // Scalarize the load and let the individual components be handled. 6714 return scalarizeVectorLoad(LD, DAG); 6715 } 6716 6717 // Expand to a (misaligned) integer load of the same size, 6718 // then bitconvert to floating point or vector. 6719 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6720 LD->getMemOperand()); 6721 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6722 if (LoadedVT != VT) 6723 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6724 ISD::ANY_EXTEND, dl, VT, Result); 6725 6726 return std::make_pair(Result, newLoad.getValue(1)); 6727 } 6728 6729 // Copy the value to a (aligned) stack slot using (unaligned) integer 6730 // loads and stores, then do a (aligned) load from the stack slot. 6731 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6732 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6733 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6734 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6735 6736 // Make sure the stack slot is also aligned for the register type. 6737 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6738 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6739 SmallVector<SDValue, 8> Stores; 6740 SDValue StackPtr = StackBase; 6741 unsigned Offset = 0; 6742 6743 EVT PtrVT = Ptr.getValueType(); 6744 EVT StackPtrVT = StackPtr.getValueType(); 6745 6746 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6747 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6748 6749 // Do all but one copies using the full register width. 6750 for (unsigned i = 1; i < NumRegs; i++) { 6751 // Load one integer register's worth from the original location. 6752 SDValue Load = DAG.getLoad( 6753 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6754 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6755 LD->getAAInfo()); 6756 // Follow the load with a store to the stack slot. Remember the store. 6757 Stores.push_back(DAG.getStore( 6758 Load.getValue(1), dl, Load, StackPtr, 6759 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6760 // Increment the pointers. 6761 Offset += RegBytes; 6762 6763 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6764 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6765 } 6766 6767 // The last copy may be partial. Do an extending load. 6768 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6769 8 * (LoadedBytes - Offset)); 6770 SDValue Load = 6771 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6772 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6773 MinAlign(LD->getAlignment(), Offset), 6774 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6775 // Follow the load with a store to the stack slot. Remember the store. 6776 // On big-endian machines this requires a truncating store to ensure 6777 // that the bits end up in the right place. 6778 Stores.push_back(DAG.getTruncStore( 6779 Load.getValue(1), dl, Load, StackPtr, 6780 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6781 6782 // The order of the stores doesn't matter - say it with a TokenFactor. 6783 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6784 6785 // Finally, perform the original load only redirected to the stack slot. 6786 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6787 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6788 LoadedVT); 6789 6790 // Callers expect a MERGE_VALUES node. 6791 return std::make_pair(Load, TF); 6792 } 6793 6794 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6795 "Unaligned load of unsupported type."); 6796 6797 // Compute the new VT that is half the size of the old one. This is an 6798 // integer MVT. 6799 unsigned NumBits = LoadedVT.getSizeInBits(); 6800 EVT NewLoadedVT; 6801 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6802 NumBits >>= 1; 6803 6804 unsigned Alignment = LD->getAlignment(); 6805 unsigned IncrementSize = NumBits / 8; 6806 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6807 6808 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6809 if (HiExtType == ISD::NON_EXTLOAD) 6810 HiExtType = ISD::ZEXTLOAD; 6811 6812 // Load the value in two parts 6813 SDValue Lo, Hi; 6814 if (DAG.getDataLayout().isLittleEndian()) { 6815 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6816 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6817 LD->getAAInfo()); 6818 6819 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6820 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6821 LD->getPointerInfo().getWithOffset(IncrementSize), 6822 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6823 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6824 } else { 6825 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6826 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6827 LD->getAAInfo()); 6828 6829 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6830 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6831 LD->getPointerInfo().getWithOffset(IncrementSize), 6832 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6833 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6834 } 6835 6836 // aggregate the two parts 6837 SDValue ShiftAmount = 6838 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6839 DAG.getDataLayout())); 6840 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6841 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6842 6843 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6844 Hi.getValue(1)); 6845 6846 return std::make_pair(Result, TF); 6847 } 6848 6849 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6850 SelectionDAG &DAG) const { 6851 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6852 "unaligned indexed stores not implemented!"); 6853 SDValue Chain = ST->getChain(); 6854 SDValue Ptr = ST->getBasePtr(); 6855 SDValue Val = ST->getValue(); 6856 EVT VT = Val.getValueType(); 6857 int Alignment = ST->getAlignment(); 6858 auto &MF = DAG.getMachineFunction(); 6859 EVT StoreMemVT = ST->getMemoryVT(); 6860 6861 SDLoc dl(ST); 6862 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6863 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6864 if (isTypeLegal(intVT)) { 6865 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6866 StoreMemVT.isVector()) { 6867 // Scalarize the store and let the individual components be handled. 6868 SDValue Result = scalarizeVectorStore(ST, DAG); 6869 return Result; 6870 } 6871 // Expand to a bitconvert of the value to the integer type of the 6872 // same size, then a (misaligned) int store. 6873 // FIXME: Does not handle truncating floating point stores! 6874 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6875 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6876 Alignment, ST->getMemOperand()->getFlags()); 6877 return Result; 6878 } 6879 // Do a (aligned) store to a stack slot, then copy from the stack slot 6880 // to the final destination using (unaligned) integer loads and stores. 6881 MVT RegVT = getRegisterType( 6882 *DAG.getContext(), 6883 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6884 EVT PtrVT = Ptr.getValueType(); 6885 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6886 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6887 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6888 6889 // Make sure the stack slot is also aligned for the register type. 6890 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6891 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6892 6893 // Perform the original store, only redirected to the stack slot. 6894 SDValue Store = DAG.getTruncStore( 6895 Chain, dl, Val, StackPtr, 6896 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6897 6898 EVT StackPtrVT = StackPtr.getValueType(); 6899 6900 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6901 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6902 SmallVector<SDValue, 8> Stores; 6903 unsigned Offset = 0; 6904 6905 // Do all but one copies using the full register width. 6906 for (unsigned i = 1; i < NumRegs; i++) { 6907 // Load one integer register's worth from the stack slot. 6908 SDValue Load = DAG.getLoad( 6909 RegVT, dl, Store, StackPtr, 6910 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6911 // Store it to the final location. Remember the store. 6912 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6913 ST->getPointerInfo().getWithOffset(Offset), 6914 MinAlign(ST->getAlignment(), Offset), 6915 ST->getMemOperand()->getFlags())); 6916 // Increment the pointers. 6917 Offset += RegBytes; 6918 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6919 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6920 } 6921 6922 // The last store may be partial. Do a truncating store. On big-endian 6923 // machines this requires an extending load from the stack slot to ensure 6924 // that the bits are in the right place. 6925 EVT LoadMemVT = 6926 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6927 6928 // Load from the stack slot. 6929 SDValue Load = DAG.getExtLoad( 6930 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6931 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6932 6933 Stores.push_back( 6934 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6935 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6936 MinAlign(ST->getAlignment(), Offset), 6937 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6938 // The order of the stores doesn't matter - say it with a TokenFactor. 6939 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6940 return Result; 6941 } 6942 6943 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6944 "Unaligned store of unknown type."); 6945 // Get the half-size VT 6946 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6947 int NumBits = NewStoredVT.getSizeInBits(); 6948 int IncrementSize = NumBits / 8; 6949 6950 // Divide the stored value in two parts. 6951 SDValue ShiftAmount = DAG.getConstant( 6952 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6953 SDValue Lo = Val; 6954 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6955 6956 // Store the two parts 6957 SDValue Store1, Store2; 6958 Store1 = DAG.getTruncStore(Chain, dl, 6959 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6960 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6961 ST->getMemOperand()->getFlags()); 6962 6963 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6964 Alignment = MinAlign(Alignment, IncrementSize); 6965 Store2 = DAG.getTruncStore( 6966 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6967 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6968 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6969 6970 SDValue Result = 6971 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6972 return Result; 6973 } 6974 6975 SDValue 6976 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6977 const SDLoc &DL, EVT DataVT, 6978 SelectionDAG &DAG, 6979 bool IsCompressedMemory) const { 6980 SDValue Increment; 6981 EVT AddrVT = Addr.getValueType(); 6982 EVT MaskVT = Mask.getValueType(); 6983 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6984 "Incompatible types of Data and Mask"); 6985 if (IsCompressedMemory) { 6986 // Incrementing the pointer according to number of '1's in the mask. 6987 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6988 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6989 if (MaskIntVT.getSizeInBits() < 32) { 6990 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6991 MaskIntVT = MVT::i32; 6992 } 6993 6994 // Count '1's with POPCNT. 6995 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6996 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6997 // Scale is an element size in bytes. 6998 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6999 AddrVT); 7000 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7001 } else 7002 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7003 7004 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7005 } 7006 7007 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7008 SDValue Idx, 7009 EVT VecVT, 7010 const SDLoc &dl) { 7011 if (isa<ConstantSDNode>(Idx)) 7012 return Idx; 7013 7014 EVT IdxVT = Idx.getValueType(); 7015 unsigned NElts = VecVT.getVectorNumElements(); 7016 if (isPowerOf2_32(NElts)) { 7017 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7018 Log2_32(NElts)); 7019 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7020 DAG.getConstant(Imm, dl, IdxVT)); 7021 } 7022 7023 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7024 DAG.getConstant(NElts - 1, dl, IdxVT)); 7025 } 7026 7027 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7028 SDValue VecPtr, EVT VecVT, 7029 SDValue Index) const { 7030 SDLoc dl(Index); 7031 // Make sure the index type is big enough to compute in. 7032 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7033 7034 EVT EltVT = VecVT.getVectorElementType(); 7035 7036 // Calculate the element offset and add it to the pointer. 7037 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7038 assert(EltSize * 8 == EltVT.getSizeInBits() && 7039 "Converting bits to bytes lost precision"); 7040 7041 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7042 7043 EVT IdxVT = Index.getValueType(); 7044 7045 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7046 DAG.getConstant(EltSize, dl, IdxVT)); 7047 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7048 } 7049 7050 //===----------------------------------------------------------------------===// 7051 // Implementation of Emulated TLS Model 7052 //===----------------------------------------------------------------------===// 7053 7054 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7055 SelectionDAG &DAG) const { 7056 // Access to address of TLS varialbe xyz is lowered to a function call: 7057 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7058 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7059 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7060 SDLoc dl(GA); 7061 7062 ArgListTy Args; 7063 ArgListEntry Entry; 7064 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7065 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7066 StringRef EmuTlsVarName(NameString); 7067 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7068 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7069 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7070 Entry.Ty = VoidPtrType; 7071 Args.push_back(Entry); 7072 7073 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7074 7075 TargetLowering::CallLoweringInfo CLI(DAG); 7076 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7077 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7078 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7079 7080 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7081 // At last for X86 targets, maybe good for other targets too? 7082 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7083 MFI.setAdjustsStack(true); // Is this only for X86 target? 7084 MFI.setHasCalls(true); 7085 7086 assert((GA->getOffset() == 0) && 7087 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7088 return CallResult.first; 7089 } 7090 7091 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7092 SelectionDAG &DAG) const { 7093 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7094 if (!isCtlzFast()) 7095 return SDValue(); 7096 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7097 SDLoc dl(Op); 7098 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7099 if (C->isNullValue() && CC == ISD::SETEQ) { 7100 EVT VT = Op.getOperand(0).getValueType(); 7101 SDValue Zext = Op.getOperand(0); 7102 if (VT.bitsLT(MVT::i32)) { 7103 VT = MVT::i32; 7104 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7105 } 7106 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7107 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7108 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7109 DAG.getConstant(Log2b, dl, MVT::i32)); 7110 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7111 } 7112 } 7113 return SDValue(); 7114 } 7115 7116 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7117 unsigned Opcode = Node->getOpcode(); 7118 SDValue LHS = Node->getOperand(0); 7119 SDValue RHS = Node->getOperand(1); 7120 EVT VT = LHS.getValueType(); 7121 SDLoc dl(Node); 7122 7123 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7124 assert(VT.isInteger() && "Expected operands to be integers"); 7125 7126 // usub.sat(a, b) -> umax(a, b) - b 7127 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7128 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7129 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7130 } 7131 7132 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7133 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7134 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7135 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7136 } 7137 7138 unsigned OverflowOp; 7139 switch (Opcode) { 7140 case ISD::SADDSAT: 7141 OverflowOp = ISD::SADDO; 7142 break; 7143 case ISD::UADDSAT: 7144 OverflowOp = ISD::UADDO; 7145 break; 7146 case ISD::SSUBSAT: 7147 OverflowOp = ISD::SSUBO; 7148 break; 7149 case ISD::USUBSAT: 7150 OverflowOp = ISD::USUBO; 7151 break; 7152 default: 7153 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7154 "addition or subtraction node."); 7155 } 7156 7157 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7158 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7159 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7160 LHS, RHS); 7161 SDValue SumDiff = Result.getValue(0); 7162 SDValue Overflow = Result.getValue(1); 7163 SDValue Zero = DAG.getConstant(0, dl, VT); 7164 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7165 7166 if (Opcode == ISD::UADDSAT) { 7167 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7168 // (LHS + RHS) | OverflowMask 7169 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7170 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7171 } 7172 // Overflow ? 0xffff.... : (LHS + RHS) 7173 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7174 } else if (Opcode == ISD::USUBSAT) { 7175 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7176 // (LHS - RHS) & ~OverflowMask 7177 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7178 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7179 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7180 } 7181 // Overflow ? 0 : (LHS - RHS) 7182 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7183 } else { 7184 // SatMax -> Overflow && SumDiff < 0 7185 // SatMin -> Overflow && SumDiff >= 0 7186 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7187 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7188 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7189 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7190 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7191 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7192 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7193 } 7194 } 7195 7196 SDValue 7197 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7198 assert((Node->getOpcode() == ISD::SMULFIX || 7199 Node->getOpcode() == ISD::UMULFIX || 7200 Node->getOpcode() == ISD::SMULFIXSAT || 7201 Node->getOpcode() == ISD::UMULFIXSAT) && 7202 "Expected a fixed point multiplication opcode"); 7203 7204 SDLoc dl(Node); 7205 SDValue LHS = Node->getOperand(0); 7206 SDValue RHS = Node->getOperand(1); 7207 EVT VT = LHS.getValueType(); 7208 unsigned Scale = Node->getConstantOperandVal(2); 7209 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7210 Node->getOpcode() == ISD::UMULFIXSAT); 7211 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7212 Node->getOpcode() == ISD::SMULFIXSAT); 7213 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7214 unsigned VTSize = VT.getScalarSizeInBits(); 7215 7216 if (!Scale) { 7217 // [us]mul.fix(a, b, 0) -> mul(a, b) 7218 if (!Saturating) { 7219 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7220 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7221 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7222 SDValue Result = 7223 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7224 SDValue Product = Result.getValue(0); 7225 SDValue Overflow = Result.getValue(1); 7226 SDValue Zero = DAG.getConstant(0, dl, VT); 7227 7228 APInt MinVal = APInt::getSignedMinValue(VTSize); 7229 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7230 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7231 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7232 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7233 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7234 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7235 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7236 SDValue Result = 7237 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7238 SDValue Product = Result.getValue(0); 7239 SDValue Overflow = Result.getValue(1); 7240 7241 APInt MaxVal = APInt::getMaxValue(VTSize); 7242 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7243 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7244 } 7245 } 7246 7247 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7248 "Expected scale to be less than the number of bits if signed or at " 7249 "most the number of bits if unsigned."); 7250 assert(LHS.getValueType() == RHS.getValueType() && 7251 "Expected both operands to be the same type"); 7252 7253 // Get the upper and lower bits of the result. 7254 SDValue Lo, Hi; 7255 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7256 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7257 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7258 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7259 Lo = Result.getValue(0); 7260 Hi = Result.getValue(1); 7261 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7262 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7263 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7264 } else if (VT.isVector()) { 7265 return SDValue(); 7266 } else { 7267 report_fatal_error("Unable to expand fixed point multiplication."); 7268 } 7269 7270 if (Scale == VTSize) 7271 // Result is just the top half since we'd be shifting by the width of the 7272 // operand. Overflow impossible so this works for both UMULFIX and 7273 // UMULFIXSAT. 7274 return Hi; 7275 7276 // The result will need to be shifted right by the scale since both operands 7277 // are scaled. The result is given to us in 2 halves, so we only want part of 7278 // both in the result. 7279 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7280 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7281 DAG.getConstant(Scale, dl, ShiftTy)); 7282 if (!Saturating) 7283 return Result; 7284 7285 if (!Signed) { 7286 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7287 // widened multiplication) aren't all zeroes. 7288 7289 // Saturate to max if ((Hi >> Scale) != 0), 7290 // which is the same as if (Hi > ((1 << Scale) - 1)) 7291 APInt MaxVal = APInt::getMaxValue(VTSize); 7292 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7293 dl, VT); 7294 Result = DAG.getSelectCC(dl, Hi, LowMask, 7295 DAG.getConstant(MaxVal, dl, VT), Result, 7296 ISD::SETUGT); 7297 7298 return Result; 7299 } 7300 7301 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7302 // widened multiplication) aren't all ones or all zeroes. 7303 7304 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7305 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7306 7307 if (Scale == 0) { 7308 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7309 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7310 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7311 // Saturated to SatMin if wide product is negative, and SatMax if wide 7312 // product is positive ... 7313 SDValue Zero = DAG.getConstant(0, dl, VT); 7314 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7315 ISD::SETLT); 7316 // ... but only if we overflowed. 7317 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7318 } 7319 7320 // We handled Scale==0 above so all the bits to examine is in Hi. 7321 7322 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7323 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7324 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7325 dl, VT); 7326 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7327 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7328 // which is the same as if (HI < (-1 << (Scale - 1)) 7329 SDValue HighMask = 7330 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7331 dl, VT); 7332 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7333 return Result; 7334 } 7335 7336 SDValue 7337 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7338 SDValue LHS, SDValue RHS, 7339 unsigned Scale, SelectionDAG &DAG) const { 7340 assert((Opcode == ISD::SDIVFIX || 7341 Opcode == ISD::UDIVFIX) && 7342 "Expected a fixed point division opcode"); 7343 7344 EVT VT = LHS.getValueType(); 7345 bool Signed = Opcode == ISD::SDIVFIX; 7346 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7347 7348 // If there is enough room in the type to upscale the LHS or downscale the 7349 // RHS before the division, we can perform it in this type without having to 7350 // resize. For signed operations, the LHS headroom is the number of 7351 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7352 // The headroom for the RHS is the number of trailing zeroes. 7353 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7354 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7355 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7356 7357 if (LHSLead + RHSTrail < Scale) 7358 return SDValue(); 7359 7360 unsigned LHSShift = std::min(LHSLead, Scale); 7361 unsigned RHSShift = Scale - LHSShift; 7362 7363 // At this point, we know that if we shift the LHS up by LHSShift and the 7364 // RHS down by RHSShift, we can emit a regular division with a final scaling 7365 // factor of Scale. 7366 7367 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7368 if (LHSShift) 7369 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7370 DAG.getConstant(LHSShift, dl, ShiftTy)); 7371 if (RHSShift) 7372 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7373 DAG.getConstant(RHSShift, dl, ShiftTy)); 7374 7375 SDValue Quot; 7376 if (Signed) { 7377 // For signed operations, if the resulting quotient is negative and the 7378 // remainder is nonzero, subtract 1 from the quotient to round towards 7379 // negative infinity. 7380 SDValue Rem; 7381 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7382 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7383 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7384 if (isTypeLegal(VT) && 7385 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7386 Quot = DAG.getNode(ISD::SDIVREM, dl, 7387 DAG.getVTList(VT, VT), 7388 LHS, RHS); 7389 Rem = Quot.getValue(1); 7390 Quot = Quot.getValue(0); 7391 } else { 7392 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7393 LHS, RHS); 7394 Rem = DAG.getNode(ISD::SREM, dl, VT, 7395 LHS, RHS); 7396 } 7397 SDValue Zero = DAG.getConstant(0, dl, VT); 7398 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7399 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7400 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7401 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7402 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7403 DAG.getConstant(1, dl, VT)); 7404 Quot = DAG.getSelect(dl, VT, 7405 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7406 Sub1, Quot); 7407 } else 7408 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7409 LHS, RHS); 7410 7411 // TODO: Saturation. 7412 7413 return Quot; 7414 } 7415 7416 void TargetLowering::expandUADDSUBO( 7417 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7418 SDLoc dl(Node); 7419 SDValue LHS = Node->getOperand(0); 7420 SDValue RHS = Node->getOperand(1); 7421 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7422 7423 // If ADD/SUBCARRY is legal, use that instead. 7424 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7425 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7426 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7427 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7428 { LHS, RHS, CarryIn }); 7429 Result = SDValue(NodeCarry.getNode(), 0); 7430 Overflow = SDValue(NodeCarry.getNode(), 1); 7431 return; 7432 } 7433 7434 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7435 LHS.getValueType(), LHS, RHS); 7436 7437 EVT ResultType = Node->getValueType(1); 7438 EVT SetCCType = getSetCCResultType( 7439 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7440 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7441 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7442 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7443 } 7444 7445 void TargetLowering::expandSADDSUBO( 7446 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7447 SDLoc dl(Node); 7448 SDValue LHS = Node->getOperand(0); 7449 SDValue RHS = Node->getOperand(1); 7450 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7451 7452 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7453 LHS.getValueType(), LHS, RHS); 7454 7455 EVT ResultType = Node->getValueType(1); 7456 EVT OType = getSetCCResultType( 7457 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7458 7459 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7460 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7461 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7462 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7463 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7464 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7465 return; 7466 } 7467 7468 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7469 7470 // For an addition, the result should be less than one of the operands (LHS) 7471 // if and only if the other operand (RHS) is negative, otherwise there will 7472 // be overflow. 7473 // For a subtraction, the result should be less than one of the operands 7474 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7475 // otherwise there will be overflow. 7476 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7477 SDValue ConditionRHS = 7478 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7479 7480 Overflow = DAG.getBoolExtOrTrunc( 7481 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7482 ResultType, ResultType); 7483 } 7484 7485 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7486 SDValue &Overflow, SelectionDAG &DAG) const { 7487 SDLoc dl(Node); 7488 EVT VT = Node->getValueType(0); 7489 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7490 SDValue LHS = Node->getOperand(0); 7491 SDValue RHS = Node->getOperand(1); 7492 bool isSigned = Node->getOpcode() == ISD::SMULO; 7493 7494 // For power-of-two multiplications we can use a simpler shift expansion. 7495 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7496 const APInt &C = RHSC->getAPIntValue(); 7497 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7498 if (C.isPowerOf2()) { 7499 // smulo(x, signed_min) is same as umulo(x, signed_min). 7500 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7501 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7502 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7503 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7504 Overflow = DAG.getSetCC(dl, SetCCVT, 7505 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7506 dl, VT, Result, ShiftAmt), 7507 LHS, ISD::SETNE); 7508 return true; 7509 } 7510 } 7511 7512 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7513 if (VT.isVector()) 7514 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7515 VT.getVectorNumElements()); 7516 7517 SDValue BottomHalf; 7518 SDValue TopHalf; 7519 static const unsigned Ops[2][3] = 7520 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7521 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7522 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7523 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7524 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7525 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7526 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7527 RHS); 7528 TopHalf = BottomHalf.getValue(1); 7529 } else if (isTypeLegal(WideVT)) { 7530 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7531 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7532 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7533 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7534 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7535 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7536 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7537 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7538 } else { 7539 if (VT.isVector()) 7540 return false; 7541 7542 // We can fall back to a libcall with an illegal type for the MUL if we 7543 // have a libcall big enough. 7544 // Also, we can fall back to a division in some cases, but that's a big 7545 // performance hit in the general case. 7546 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7547 if (WideVT == MVT::i16) 7548 LC = RTLIB::MUL_I16; 7549 else if (WideVT == MVT::i32) 7550 LC = RTLIB::MUL_I32; 7551 else if (WideVT == MVT::i64) 7552 LC = RTLIB::MUL_I64; 7553 else if (WideVT == MVT::i128) 7554 LC = RTLIB::MUL_I128; 7555 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7556 7557 SDValue HiLHS; 7558 SDValue HiRHS; 7559 if (isSigned) { 7560 // The high part is obtained by SRA'ing all but one of the bits of low 7561 // part. 7562 unsigned LoSize = VT.getSizeInBits(); 7563 HiLHS = 7564 DAG.getNode(ISD::SRA, dl, VT, LHS, 7565 DAG.getConstant(LoSize - 1, dl, 7566 getPointerTy(DAG.getDataLayout()))); 7567 HiRHS = 7568 DAG.getNode(ISD::SRA, dl, VT, RHS, 7569 DAG.getConstant(LoSize - 1, dl, 7570 getPointerTy(DAG.getDataLayout()))); 7571 } else { 7572 HiLHS = DAG.getConstant(0, dl, VT); 7573 HiRHS = DAG.getConstant(0, dl, VT); 7574 } 7575 7576 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7577 // pre-lowered to the correct types. This all depends upon WideVT not 7578 // being a legal type for the architecture and thus has to be split to 7579 // two arguments. 7580 SDValue Ret; 7581 TargetLowering::MakeLibCallOptions CallOptions; 7582 CallOptions.setSExt(isSigned); 7583 CallOptions.setIsPostTypeLegalization(true); 7584 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7585 // Halves of WideVT are packed into registers in different order 7586 // depending on platform endianness. This is usually handled by 7587 // the C calling convention, but we can't defer to it in 7588 // the legalizer. 7589 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7590 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7591 } else { 7592 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7593 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7594 } 7595 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7596 "Ret value is a collection of constituent nodes holding result."); 7597 if (DAG.getDataLayout().isLittleEndian()) { 7598 // Same as above. 7599 BottomHalf = Ret.getOperand(0); 7600 TopHalf = Ret.getOperand(1); 7601 } else { 7602 BottomHalf = Ret.getOperand(1); 7603 TopHalf = Ret.getOperand(0); 7604 } 7605 } 7606 7607 Result = BottomHalf; 7608 if (isSigned) { 7609 SDValue ShiftAmt = DAG.getConstant( 7610 VT.getScalarSizeInBits() - 1, dl, 7611 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7612 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7613 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7614 } else { 7615 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7616 DAG.getConstant(0, dl, VT), ISD::SETNE); 7617 } 7618 7619 // Truncate the result if SetCC returns a larger type than needed. 7620 EVT RType = Node->getValueType(1); 7621 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7622 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7623 7624 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7625 "Unexpected result type for S/UMULO legalization"); 7626 return true; 7627 } 7628 7629 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7630 SDLoc dl(Node); 7631 bool NoNaN = Node->getFlags().hasNoNaNs(); 7632 unsigned BaseOpcode = 0; 7633 switch (Node->getOpcode()) { 7634 default: llvm_unreachable("Expected VECREDUCE opcode"); 7635 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7636 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7637 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7638 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7639 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7640 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7641 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7642 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7643 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7644 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7645 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7646 case ISD::VECREDUCE_FMAX: 7647 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7648 break; 7649 case ISD::VECREDUCE_FMIN: 7650 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7651 break; 7652 } 7653 7654 SDValue Op = Node->getOperand(0); 7655 EVT VT = Op.getValueType(); 7656 7657 // Try to use a shuffle reduction for power of two vectors. 7658 if (VT.isPow2VectorType()) { 7659 while (VT.getVectorNumElements() > 1) { 7660 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7661 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7662 break; 7663 7664 SDValue Lo, Hi; 7665 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7666 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7667 VT = HalfVT; 7668 } 7669 } 7670 7671 EVT EltVT = VT.getVectorElementType(); 7672 unsigned NumElts = VT.getVectorNumElements(); 7673 7674 SmallVector<SDValue, 8> Ops; 7675 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7676 7677 SDValue Res = Ops[0]; 7678 for (unsigned i = 1; i < NumElts; i++) 7679 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7680 7681 // Result type may be wider than element type. 7682 if (EltVT != Node->getValueType(0)) 7683 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7684 return Res; 7685 } 7686