1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36
37 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)38 TargetLowering::TargetLowering(const TargetMachine &tm)
39 : TargetLoweringBase(tm) {}
40
getTargetNodeName(unsigned Opcode) const41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42 return nullptr;
43 }
44
isPositionIndependent() const45 bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
47 }
48
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52 SDValue &Chain) const {
53 const Function &F = DAG.getMachineFunction().getFunction();
54
55 // First, check if tail calls have been disabled in this function.
56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57 return false;
58
59 // Conservatively require the attributes of the call to match those of
60 // the return. Ignore following attributes because they don't affect the
61 // call sequence.
62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64 Attribute::DereferenceableOrNull, Attribute::NoAlias,
65 Attribute::NonNull, Attribute::NoUndef})
66 CallerAttrs.removeAttribute(Attr);
67
68 if (CallerAttrs.hasAttributes())
69 return false;
70
71 // It's not safe to eliminate the sign / zero extension of the return value.
72 if (CallerAttrs.contains(Attribute::ZExt) ||
73 CallerAttrs.contains(Attribute::SExt))
74 return false;
75
76 // Check if the only use is a function return node.
77 return isUsedByReturnOnly(Node, Chain);
78 }
79
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<SDValue> & OutVals) const80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81 const uint32_t *CallerPreservedMask,
82 const SmallVectorImpl<CCValAssign> &ArgLocs,
83 const SmallVectorImpl<SDValue> &OutVals) const {
84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85 const CCValAssign &ArgLoc = ArgLocs[I];
86 if (!ArgLoc.isRegLoc())
87 continue;
88 MCRegister Reg = ArgLoc.getLocReg();
89 // Only look at callee saved registers.
90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91 continue;
92 // Check that we pass the value used for the caller.
93 // (We look for a CopyFromReg reading a virtual register that is used
94 // for the function live-in value of register Reg)
95 SDValue Value = OutVals[I];
96 if (Value->getOpcode() == ISD::AssertZext)
97 Value = Value.getOperand(0);
98 if (Value->getOpcode() != ISD::CopyFromReg)
99 return false;
100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102 return false;
103 }
104 return true;
105 }
106
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
setAttributes(const CallBase * Call,unsigned ArgIdx)109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110 unsigned ArgIdx) {
111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123 Alignment = Call->getParamStackAlign(ArgIdx);
124 IndirectType = nullptr;
125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126 "multiple ABI attributes?");
127 if (IsByVal) {
128 IndirectType = Call->getParamByValType(ArgIdx);
129 if (!Alignment)
130 Alignment = Call->getParamAlign(ArgIdx);
131 }
132 if (IsPreallocated)
133 IndirectType = Call->getParamPreallocatedType(ArgIdx);
134 if (IsInAlloca)
135 IndirectType = Call->getParamInAllocaType(ArgIdx);
136 if (IsSRet)
137 IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,ArrayRef<SDValue> Ops,MakeLibCallOptions CallOptions,const SDLoc & dl,SDValue InChain) const143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144 ArrayRef<SDValue> Ops,
145 MakeLibCallOptions CallOptions,
146 const SDLoc &dl,
147 SDValue InChain) const {
148 if (!InChain)
149 InChain = DAG.getEntryNode();
150
151 TargetLowering::ArgListTy Args;
152 Args.reserve(Ops.size());
153
154 TargetLowering::ArgListEntry Entry;
155 for (unsigned i = 0; i < Ops.size(); ++i) {
156 SDValue NewOp = Ops[i];
157 Entry.Node = NewOp;
158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160 CallOptions.IsSExt);
161 Entry.IsZExt = !Entry.IsSExt;
162
163 if (CallOptions.IsSoften &&
164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165 Entry.IsSExt = Entry.IsZExt = false;
166 }
167 Args.push_back(Entry);
168 }
169
170 if (LC == RTLIB::UNKNOWN_LIBCALL)
171 report_fatal_error("Unsupported library call operation!");
172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173 getPointerTy(DAG.getDataLayout()));
174
175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176 TargetLowering::CallLoweringInfo CLI(DAG);
177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178 bool zeroExtend = !signExtend;
179
180 if (CallOptions.IsSoften &&
181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182 signExtend = zeroExtend = false;
183 }
184
185 CLI.setDebugLoc(dl)
186 .setChain(InChain)
187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188 .setNoReturn(CallOptions.DoesNotReturn)
189 .setDiscardResult(!CallOptions.IsReturnValueUsed)
190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191 .setSExtResult(signExtend)
192 .setZExtResult(zeroExtend);
193 return LowerCallTo(CLI);
194 }
195
findOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,const MemOp & Op,unsigned DstAS,unsigned SrcAS,const AttributeList & FuncAttributes) const196 bool TargetLowering::findOptimalMemOpLowering(
197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198 unsigned SrcAS, const AttributeList &FuncAttributes) const {
199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200 Op.getSrcAlign() < Op.getDstAlign())
201 return false;
202
203 EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204
205 if (VT == MVT::Other) {
206 // Use the largest integer type whose alignment constraints are satisfied.
207 // We only need to check DstAlign here as SrcAlign is always greater or
208 // equal to DstAlign (or zero).
209 VT = MVT::i64;
210 if (Op.isFixedDstAlign())
211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214 assert(VT.isInteger());
215
216 // Find the largest legal integer type.
217 MVT LVT = MVT::i64;
218 while (!isTypeLegal(LVT))
219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220 assert(LVT.isInteger());
221
222 // If the type we've chosen is larger than the largest legal integer type
223 // then use that instead.
224 if (VT.bitsGT(LVT))
225 VT = LVT;
226 }
227
228 unsigned NumMemOps = 0;
229 uint64_t Size = Op.size();
230 while (Size) {
231 unsigned VTSize = VT.getSizeInBits() / 8;
232 while (VTSize > Size) {
233 // For now, only use non-vector load / store's for the left-over pieces.
234 EVT NewVT = VT;
235 unsigned NewVTSize;
236
237 bool Found = false;
238 if (VT.isVector() || VT.isFloatingPoint()) {
239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241 isSafeMemOpType(NewVT.getSimpleVT()))
242 Found = true;
243 else if (NewVT == MVT::i64 &&
244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245 isSafeMemOpType(MVT::f64)) {
246 // i64 is usually not legal on 32-bit targets, but f64 may be.
247 NewVT = MVT::f64;
248 Found = true;
249 }
250 }
251
252 if (!Found) {
253 do {
254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255 if (NewVT == MVT::i8)
256 break;
257 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258 }
259 NewVTSize = NewVT.getSizeInBits() / 8;
260
261 // If the new VT cannot cover all of the remaining bits, then consider
262 // issuing a (or a pair of) unaligned and overlapping load / store.
263 bool Fast;
264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265 allowsMisalignedMemoryAccesses(
266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267 MachineMemOperand::MONone, &Fast) &&
268 Fast)
269 VTSize = Size;
270 else {
271 VT = NewVT;
272 VTSize = NewVTSize;
273 }
274 }
275
276 if (++NumMemOps > Limit)
277 return false;
278
279 MemOps.push_back(VT);
280 Size -= VTSize;
281 }
282
283 return true;
284 }
285
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS) const288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289 SDValue &NewLHS, SDValue &NewRHS,
290 ISD::CondCode &CCCode,
291 const SDLoc &dl, const SDValue OldLHS,
292 const SDValue OldRHS) const {
293 SDValue Chain;
294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295 OldRHS, Chain);
296 }
297
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS,SDValue & Chain,bool IsSignaling) const298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299 SDValue &NewLHS, SDValue &NewRHS,
300 ISD::CondCode &CCCode,
301 const SDLoc &dl, const SDValue OldLHS,
302 const SDValue OldRHS,
303 SDValue &Chain,
304 bool IsSignaling) const {
305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306 // not supporting it. We can update this code when libgcc provides such
307 // functions.
308
309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310 && "Unsupported setcc type!");
311
312 // Expand into one or more soft-fp libcall(s).
313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314 bool ShouldInvertCC = false;
315 switch (CCCode) {
316 case ISD::SETEQ:
317 case ISD::SETOEQ:
318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321 break;
322 case ISD::SETNE:
323 case ISD::SETUNE:
324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325 (VT == MVT::f64) ? RTLIB::UNE_F64 :
326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327 break;
328 case ISD::SETGE:
329 case ISD::SETOGE:
330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331 (VT == MVT::f64) ? RTLIB::OGE_F64 :
332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333 break;
334 case ISD::SETLT:
335 case ISD::SETOLT:
336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337 (VT == MVT::f64) ? RTLIB::OLT_F64 :
338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339 break;
340 case ISD::SETLE:
341 case ISD::SETOLE:
342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343 (VT == MVT::f64) ? RTLIB::OLE_F64 :
344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345 break;
346 case ISD::SETGT:
347 case ISD::SETOGT:
348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349 (VT == MVT::f64) ? RTLIB::OGT_F64 :
350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351 break;
352 case ISD::SETO:
353 ShouldInvertCC = true;
354 LLVM_FALLTHROUGH;
355 case ISD::SETUO:
356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357 (VT == MVT::f64) ? RTLIB::UO_F64 :
358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359 break;
360 case ISD::SETONE:
361 // SETONE = O && UNE
362 ShouldInvertCC = true;
363 LLVM_FALLTHROUGH;
364 case ISD::SETUEQ:
365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366 (VT == MVT::f64) ? RTLIB::UO_F64 :
367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371 break;
372 default:
373 // Invert CC for unordered comparisons
374 ShouldInvertCC = true;
375 switch (CCCode) {
376 case ISD::SETULT:
377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378 (VT == MVT::f64) ? RTLIB::OGE_F64 :
379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380 break;
381 case ISD::SETULE:
382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383 (VT == MVT::f64) ? RTLIB::OGT_F64 :
384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385 break;
386 case ISD::SETUGT:
387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388 (VT == MVT::f64) ? RTLIB::OLE_F64 :
389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390 break;
391 case ISD::SETUGE:
392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393 (VT == MVT::f64) ? RTLIB::OLT_F64 :
394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395 break;
396 default: llvm_unreachable("Do not know how to soften this setcc!");
397 }
398 }
399
400 // Use the target specific return value for comparions lib calls.
401 EVT RetVT = getCmpLibcallReturnType();
402 SDValue Ops[2] = {NewLHS, NewRHS};
403 TargetLowering::MakeLibCallOptions CallOptions;
404 EVT OpsVT[2] = { OldLHS.getValueType(),
405 OldRHS.getValueType() };
406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408 NewLHS = Call.first;
409 NewRHS = DAG.getConstant(0, dl, RetVT);
410
411 CCCode = getCmpLibcallCC(LC1);
412 if (ShouldInvertCC) {
413 assert(RetVT.isInteger());
414 CCCode = getSetCCInverse(CCCode, RetVT);
415 }
416
417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418 // Update Chain.
419 Chain = Call.second;
420 } else {
421 EVT SetCCVT =
422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425 CCCode = getCmpLibcallCC(LC2);
426 if (ShouldInvertCC)
427 CCCode = getSetCCInverse(CCCode, RetVT);
428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429 if (Chain)
430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431 Call2.second);
432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433 Tmp.getValueType(), Tmp, NewLHS);
434 NewRHS = SDValue();
435 }
436 }
437
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const440 unsigned TargetLowering::getJumpTableEncoding() const {
441 // In non-pic modes, just use the address of a block.
442 if (!isPositionIndependent())
443 return MachineJumpTableInfo::EK_BlockAddress;
444
445 // In PIC mode, if the target supports a GPRel32 directive, use it.
446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448
449 // Otherwise, use a label difference.
450 return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454 SelectionDAG &DAG) const {
455 // If our PIC model is GP relative, use the global offset table as the base.
456 unsigned JTEncoding = getJumpTableEncoding();
457
458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461
462 return Table;
463 }
464
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469 unsigned JTI,MCContext &Ctx) const{
470 // The normal PIC reloc base is the label at the start of the jump table.
471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473
474 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476 const TargetMachine &TM = getTargetMachine();
477 const GlobalValue *GV = GA->getGlobal();
478
479 // If the address is not even local to this DSO we will have to load it from
480 // a got and then add the offset.
481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482 return false;
483
484 // If the code is position independent we will have to add a base register.
485 if (isPositionIndependent())
486 return false;
487
488 // Otherwise we can do it.
489 return true;
490 }
491
492 //===----------------------------------------------------------------------===//
493 // Optimization Methods
494 //===----------------------------------------------------------------------===//
495
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500 const APInt &DemandedBits,
501 const APInt &DemandedElts,
502 TargetLoweringOpt &TLO) const {
503 SDLoc DL(Op);
504 unsigned Opcode = Op.getOpcode();
505
506 // Do target-specific constant optimization.
507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508 return TLO.New.getNode();
509
510 // FIXME: ISD::SELECT, ISD::SELECT_CC
511 switch (Opcode) {
512 default:
513 break;
514 case ISD::XOR:
515 case ISD::AND:
516 case ISD::OR: {
517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518 if (!Op1C || Op1C->isOpaque())
519 return false;
520
521 // If this is a 'not' op, don't touch it because that's a canonical form.
522 const APInt &C = Op1C->getAPIntValue();
523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524 return false;
525
526 if (!C.isSubsetOf(DemandedBits)) {
527 EVT VT = Op.getValueType();
528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530 return TLO.CombineTo(Op, NewOp);
531 }
532
533 break;
534 }
535 }
536
537 return false;
538 }
539
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,TargetLoweringOpt & TLO) const540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541 const APInt &DemandedBits,
542 TargetLoweringOpt &TLO) const {
543 EVT VT = Op.getValueType();
544 APInt DemandedElts = VT.isVector()
545 ? APInt::getAllOnes(VT.getVectorNumElements())
546 : APInt(1, 1);
547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,TargetLoweringOpt & TLO) const553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554 const APInt &Demanded,
555 TargetLoweringOpt &TLO) const {
556 assert(Op.getNumOperands() == 2 &&
557 "ShrinkDemandedOp only supports binary operators!");
558 assert(Op.getNode()->getNumValues() == 1 &&
559 "ShrinkDemandedOp only supports nodes with one result!");
560
561 SelectionDAG &DAG = TLO.DAG;
562 SDLoc dl(Op);
563
564 // Early return, as this function cannot handle vector types.
565 if (Op.getValueType().isVector())
566 return false;
567
568 // Don't do this if the node has another user, which may require the
569 // full value.
570 if (!Op.getNode()->hasOneUse())
571 return false;
572
573 // Search for the smallest integer type with free casts to and from
574 // Op's type. For expedience, just check power-of-2 integer types.
575 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576 unsigned DemandedSize = Demanded.getActiveBits();
577 unsigned SmallVTBits = DemandedSize;
578 if (!isPowerOf2_32(SmallVTBits))
579 SmallVTBits = NextPowerOf2(SmallVTBits);
580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583 TLI.isZExtFree(SmallVT, Op.getValueType())) {
584 // We found a type with free casts.
585 SDValue X = DAG.getNode(
586 Op.getOpcode(), dl, SmallVT,
587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591 return TLO.CombineTo(Op, Z);
592 }
593 }
594 return false;
595 }
596
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,DAGCombinerInfo & DCI) const597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598 DAGCombinerInfo &DCI) const {
599 SelectionDAG &DAG = DCI.DAG;
600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601 !DCI.isBeforeLegalizeOps());
602 KnownBits Known;
603
604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605 if (Simplified) {
606 DCI.AddToWorklist(Op.getNode());
607 DCI.CommitTargetLoweringOpt(TLO);
608 }
609 return Simplified;
610 }
611
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,DAGCombinerInfo & DCI) const612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613 const APInt &DemandedElts,
614 DAGCombinerInfo &DCI) const {
615 SelectionDAG &DAG = DCI.DAG;
616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617 !DCI.isBeforeLegalizeOps());
618 KnownBits Known;
619
620 bool Simplified =
621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622 if (Simplified) {
623 DCI.AddToWorklist(Op.getNode());
624 DCI.CommitTargetLoweringOpt(TLO);
625 }
626 return Simplified;
627 }
628
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630 KnownBits &Known,
631 TargetLoweringOpt &TLO,
632 unsigned Depth,
633 bool AssumeSingleUse) const {
634 EVT VT = Op.getValueType();
635
636 // TODO: We can probably do more work on calculating the known bits and
637 // simplifying the operations for scalable vectors, but for now we just
638 // bail out.
639 if (VT.isScalableVector()) {
640 // Pretend we don't know anything for now.
641 Known = KnownBits(DemandedBits.getBitWidth());
642 return false;
643 }
644
645 APInt DemandedElts = VT.isVector()
646 ? APInt::getAllOnes(VT.getVectorNumElements())
647 : APInt(1, 1);
648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649 AssumeSingleUse);
650 }
651
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656 SelectionDAG &DAG, unsigned Depth) const {
657 EVT VT = Op.getValueType();
658
659 // Pretend we don't know anything about scalable vectors for now.
660 // TODO: We can probably do more work on simplifying the operations for
661 // scalable vectors, but for now we just bail out.
662 if (VT.isScalableVector())
663 return SDValue();
664
665 // Limit search depth.
666 if (Depth >= SelectionDAG::MaxRecursionDepth)
667 return SDValue();
668
669 // Ignore UNDEFs.
670 if (Op.isUndef())
671 return SDValue();
672
673 // Not demanding any bits/elts from Op.
674 if (DemandedBits == 0 || DemandedElts == 0)
675 return DAG.getUNDEF(VT);
676
677 bool IsLE = DAG.getDataLayout().isLittleEndian();
678 unsigned NumElts = DemandedElts.getBitWidth();
679 unsigned BitWidth = DemandedBits.getBitWidth();
680 KnownBits LHSKnown, RHSKnown;
681 switch (Op.getOpcode()) {
682 case ISD::BITCAST: {
683 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
684 EVT SrcVT = Src.getValueType();
685 EVT DstVT = Op.getValueType();
686 if (SrcVT == DstVT)
687 return Src;
688
689 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
690 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
691 if (NumSrcEltBits == NumDstEltBits)
692 if (SDValue V = SimplifyMultipleUseDemandedBits(
693 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
694 return DAG.getBitcast(DstVT, V);
695
696 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
697 unsigned Scale = NumDstEltBits / NumSrcEltBits;
698 unsigned NumSrcElts = SrcVT.getVectorNumElements();
699 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
700 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
701 for (unsigned i = 0; i != Scale; ++i) {
702 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
703 unsigned BitOffset = EltOffset * NumSrcEltBits;
704 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
705 if (!Sub.isZero()) {
706 DemandedSrcBits |= Sub;
707 for (unsigned j = 0; j != NumElts; ++j)
708 if (DemandedElts[j])
709 DemandedSrcElts.setBit((j * Scale) + i);
710 }
711 }
712
713 if (SDValue V = SimplifyMultipleUseDemandedBits(
714 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
715 return DAG.getBitcast(DstVT, V);
716 }
717
718 // TODO - bigendian once we have test coverage.
719 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
720 unsigned Scale = NumSrcEltBits / NumDstEltBits;
721 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
722 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
723 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
724 for (unsigned i = 0; i != NumElts; ++i)
725 if (DemandedElts[i]) {
726 unsigned Offset = (i % Scale) * NumDstEltBits;
727 DemandedSrcBits.insertBits(DemandedBits, Offset);
728 DemandedSrcElts.setBit(i / Scale);
729 }
730
731 if (SDValue V = SimplifyMultipleUseDemandedBits(
732 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
733 return DAG.getBitcast(DstVT, V);
734 }
735
736 break;
737 }
738 case ISD::AND: {
739 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
740 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
741
742 // If all of the demanded bits are known 1 on one side, return the other.
743 // These bits cannot contribute to the result of the 'and' in this
744 // context.
745 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
746 return Op.getOperand(0);
747 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
748 return Op.getOperand(1);
749 break;
750 }
751 case ISD::OR: {
752 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
753 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
754
755 // If all of the demanded bits are known zero on one side, return the
756 // other. These bits cannot contribute to the result of the 'or' in this
757 // context.
758 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
759 return Op.getOperand(0);
760 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
761 return Op.getOperand(1);
762 break;
763 }
764 case ISD::XOR: {
765 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
766 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
767
768 // If all of the demanded bits are known zero on one side, return the
769 // other.
770 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
771 return Op.getOperand(0);
772 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
773 return Op.getOperand(1);
774 break;
775 }
776 case ISD::SHL: {
777 // If we are only demanding sign bits then we can use the shift source
778 // directly.
779 if (const APInt *MaxSA =
780 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
781 SDValue Op0 = Op.getOperand(0);
782 unsigned ShAmt = MaxSA->getZExtValue();
783 unsigned NumSignBits =
784 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
785 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
786 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
787 return Op0;
788 }
789 break;
790 }
791 case ISD::SETCC: {
792 SDValue Op0 = Op.getOperand(0);
793 SDValue Op1 = Op.getOperand(1);
794 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
795 // If (1) we only need the sign-bit, (2) the setcc operands are the same
796 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
797 // -1, we may be able to bypass the setcc.
798 if (DemandedBits.isSignMask() &&
799 Op0.getScalarValueSizeInBits() == BitWidth &&
800 getBooleanContents(Op0.getValueType()) ==
801 BooleanContent::ZeroOrNegativeOneBooleanContent) {
802 // If we're testing X < 0, then this compare isn't needed - just use X!
803 // FIXME: We're limiting to integer types here, but this should also work
804 // if we don't care about FP signed-zero. The use of SETLT with FP means
805 // that we don't care about NaNs.
806 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
807 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
808 return Op0;
809 }
810 break;
811 }
812 case ISD::SIGN_EXTEND_INREG: {
813 // If none of the extended bits are demanded, eliminate the sextinreg.
814 SDValue Op0 = Op.getOperand(0);
815 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
816 unsigned ExBits = ExVT.getScalarSizeInBits();
817 if (DemandedBits.getActiveBits() <= ExBits)
818 return Op0;
819 // If the input is already sign extended, just drop the extension.
820 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
821 if (NumSignBits >= (BitWidth - ExBits + 1))
822 return Op0;
823 break;
824 }
825 case ISD::ANY_EXTEND_VECTOR_INREG:
826 case ISD::SIGN_EXTEND_VECTOR_INREG:
827 case ISD::ZERO_EXTEND_VECTOR_INREG: {
828 // If we only want the lowest element and none of extended bits, then we can
829 // return the bitcasted source vector.
830 SDValue Src = Op.getOperand(0);
831 EVT SrcVT = Src.getValueType();
832 EVT DstVT = Op.getValueType();
833 if (IsLE && DemandedElts == 1 &&
834 DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
835 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
836 return DAG.getBitcast(DstVT, Src);
837 }
838 break;
839 }
840 case ISD::INSERT_VECTOR_ELT: {
841 // If we don't demand the inserted element, return the base vector.
842 SDValue Vec = Op.getOperand(0);
843 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
844 EVT VecVT = Vec.getValueType();
845 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
846 !DemandedElts[CIdx->getZExtValue()])
847 return Vec;
848 break;
849 }
850 case ISD::INSERT_SUBVECTOR: {
851 SDValue Vec = Op.getOperand(0);
852 SDValue Sub = Op.getOperand(1);
853 uint64_t Idx = Op.getConstantOperandVal(2);
854 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
855 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
856 // If we don't demand the inserted subvector, return the base vector.
857 if (DemandedSubElts == 0)
858 return Vec;
859 // If this simply widens the lowest subvector, see if we can do it earlier.
860 if (Idx == 0 && Vec.isUndef()) {
861 if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
862 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
863 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
864 Op.getOperand(0), NewSub, Op.getOperand(2));
865 }
866 break;
867 }
868 case ISD::VECTOR_SHUFFLE: {
869 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
870
871 // If all the demanded elts are from one operand and are inline,
872 // then we can use the operand directly.
873 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
874 for (unsigned i = 0; i != NumElts; ++i) {
875 int M = ShuffleMask[i];
876 if (M < 0 || !DemandedElts[i])
877 continue;
878 AllUndef = false;
879 IdentityLHS &= (M == (int)i);
880 IdentityRHS &= ((M - NumElts) == i);
881 }
882
883 if (AllUndef)
884 return DAG.getUNDEF(Op.getValueType());
885 if (IdentityLHS)
886 return Op.getOperand(0);
887 if (IdentityRHS)
888 return Op.getOperand(1);
889 break;
890 }
891 default:
892 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
893 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
894 Op, DemandedBits, DemandedElts, DAG, Depth))
895 return V;
896 break;
897 }
898 return SDValue();
899 }
900
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,SelectionDAG & DAG,unsigned Depth) const901 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
902 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
903 unsigned Depth) const {
904 EVT VT = Op.getValueType();
905
906 // Pretend we don't know anything about scalable vectors for now.
907 // TODO: We can probably do more work on simplifying the operations for
908 // scalable vectors, but for now we just bail out.
909 if (VT.isScalableVector())
910 return SDValue();
911
912 APInt DemandedElts = VT.isVector()
913 ? APInt::getAllOnes(VT.getVectorNumElements())
914 : APInt(1, 1);
915 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
916 Depth);
917 }
918
SimplifyMultipleUseDemandedVectorElts(SDValue Op,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const919 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
920 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
921 unsigned Depth) const {
922 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
923 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
924 Depth);
925 }
926
927 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
928 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
combineShiftToAVG(SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,const APInt & DemandedBits,const APInt & DemandedElts,unsigned Depth)929 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
930 const TargetLowering &TLI,
931 const APInt &DemandedBits,
932 const APInt &DemandedElts,
933 unsigned Depth) {
934 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
935 "SRL or SRA node is required here!");
936 // Is the right shift using an immediate value of 1?
937 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
938 if (!N1C || !N1C->isOne())
939 return SDValue();
940
941 // We are looking for an avgfloor
942 // add(ext, ext)
943 // or one of these as a avgceil
944 // add(add(ext, ext), 1)
945 // add(add(ext, 1), ext)
946 // add(ext, add(ext, 1))
947 SDValue Add = Op.getOperand(0);
948 if (Add.getOpcode() != ISD::ADD)
949 return SDValue();
950
951 SDValue ExtOpA = Add.getOperand(0);
952 SDValue ExtOpB = Add.getOperand(1);
953 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
954 ConstantSDNode *ConstOp;
955 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
956 ConstOp->isOne()) {
957 ExtOpA = Op2;
958 ExtOpB = Op3;
959 return true;
960 }
961 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
962 ConstOp->isOne()) {
963 ExtOpA = Op1;
964 ExtOpB = Op3;
965 return true;
966 }
967 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
968 ConstOp->isOne()) {
969 ExtOpA = Op1;
970 ExtOpB = Op2;
971 return true;
972 }
973 return false;
974 };
975 bool IsCeil =
976 (ExtOpA.getOpcode() == ISD::ADD &&
977 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
978 (ExtOpB.getOpcode() == ISD::ADD &&
979 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
980
981 // If the shift is signed (sra):
982 // - Needs >= 2 sign bit for both operands.
983 // - Needs >= 2 zero bits.
984 // If the shift is unsigned (srl):
985 // - Needs >= 1 zero bit for both operands.
986 // - Needs 1 demanded bit zero and >= 2 sign bits.
987 unsigned ShiftOpc = Op.getOpcode();
988 bool IsSigned = false;
989 unsigned KnownBits;
990 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
991 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
992 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
993 unsigned NumZeroA =
994 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
995 unsigned NumZeroB =
996 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
997 unsigned NumZero = std::min(NumZeroA, NumZeroB);
998
999 switch (ShiftOpc) {
1000 default:
1001 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1002 case ISD::SRA: {
1003 if (NumZero >= 2 && NumSigned < NumZero) {
1004 IsSigned = false;
1005 KnownBits = NumZero;
1006 break;
1007 }
1008 if (NumSigned >= 1) {
1009 IsSigned = true;
1010 KnownBits = NumSigned;
1011 break;
1012 }
1013 return SDValue();
1014 }
1015 case ISD::SRL: {
1016 if (NumZero >= 1 && NumSigned < NumZero) {
1017 IsSigned = false;
1018 KnownBits = NumZero;
1019 break;
1020 }
1021 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1022 IsSigned = true;
1023 KnownBits = NumSigned;
1024 break;
1025 }
1026 return SDValue();
1027 }
1028 }
1029
1030 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1031 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1032
1033 // Find the smallest power-2 type that is legal for this vector size and
1034 // operation, given the original type size and the number of known sign/zero
1035 // bits.
1036 EVT VT = Op.getValueType();
1037 unsigned MinWidth =
1038 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1039 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1040 if (VT.isVector())
1041 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1042 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1043 return SDValue();
1044
1045 SDLoc DL(Op);
1046 SDValue ResultAVG =
1047 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1048 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1049 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1050 ResultAVG);
1051 }
1052
1053 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1054 /// result of Op are ever used downstream. If we can use this information to
1055 /// simplify Op, create a new simplified DAG node and return true, returning the
1056 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1057 /// return a mask of Known bits for the expression (used to simplify the
1058 /// caller). The Known bits may only be accurate for those bits in the
1059 /// OriginalDemandedBits and OriginalDemandedElts.
SimplifyDemandedBits(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const1060 bool TargetLowering::SimplifyDemandedBits(
1061 SDValue Op, const APInt &OriginalDemandedBits,
1062 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1063 unsigned Depth, bool AssumeSingleUse) const {
1064 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1065 assert(Op.getScalarValueSizeInBits() == BitWidth &&
1066 "Mask size mismatches value type size!");
1067
1068 // Don't know anything.
1069 Known = KnownBits(BitWidth);
1070
1071 // TODO: We can probably do more work on calculating the known bits and
1072 // simplifying the operations for scalable vectors, but for now we just
1073 // bail out.
1074 EVT VT = Op.getValueType();
1075 if (VT.isScalableVector())
1076 return false;
1077
1078 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1079 unsigned NumElts = OriginalDemandedElts.getBitWidth();
1080 assert((!VT.isVector() || NumElts == VT.getVectorNumElements()) &&
1081 "Unexpected vector size");
1082
1083 APInt DemandedBits = OriginalDemandedBits;
1084 APInt DemandedElts = OriginalDemandedElts;
1085 SDLoc dl(Op);
1086 auto &DL = TLO.DAG.getDataLayout();
1087
1088 // Undef operand.
1089 if (Op.isUndef())
1090 return false;
1091
1092 if (Op.getOpcode() == ISD::Constant) {
1093 // We know all of the bits for a constant!
1094 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1095 return false;
1096 }
1097
1098 if (Op.getOpcode() == ISD::ConstantFP) {
1099 // We know all of the bits for a floating point constant!
1100 Known = KnownBits::makeConstant(
1101 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1102 return false;
1103 }
1104
1105 // Other users may use these bits.
1106 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1107 if (Depth != 0) {
1108 // If not at the root, Just compute the Known bits to
1109 // simplify things downstream.
1110 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1111 return false;
1112 }
1113 // If this is the root being simplified, allow it to have multiple uses,
1114 // just set the DemandedBits/Elts to all bits.
1115 DemandedBits = APInt::getAllOnes(BitWidth);
1116 DemandedElts = APInt::getAllOnes(NumElts);
1117 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1118 // Not demanding any bits/elts from Op.
1119 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1120 } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1121 // Limit search depth.
1122 return false;
1123 }
1124
1125 KnownBits Known2;
1126 switch (Op.getOpcode()) {
1127 case ISD::TargetConstant:
1128 llvm_unreachable("Can't simplify this node");
1129 case ISD::SCALAR_TO_VECTOR: {
1130 if (!DemandedElts[0])
1131 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1132
1133 KnownBits SrcKnown;
1134 SDValue Src = Op.getOperand(0);
1135 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1136 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1137 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1138 return true;
1139
1140 // Upper elements are undef, so only get the knownbits if we just demand
1141 // the bottom element.
1142 if (DemandedElts == 1)
1143 Known = SrcKnown.anyextOrTrunc(BitWidth);
1144 break;
1145 }
1146 case ISD::BUILD_VECTOR:
1147 // Collect the known bits that are shared by every demanded element.
1148 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1149 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1150 return false; // Don't fall through, will infinitely loop.
1151 case ISD::LOAD: {
1152 auto *LD = cast<LoadSDNode>(Op);
1153 if (getTargetConstantFromLoad(LD)) {
1154 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1155 return false; // Don't fall through, will infinitely loop.
1156 }
1157 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1158 // If this is a ZEXTLoad and we are looking at the loaded value.
1159 EVT MemVT = LD->getMemoryVT();
1160 unsigned MemBits = MemVT.getScalarSizeInBits();
1161 Known.Zero.setBitsFrom(MemBits);
1162 return false; // Don't fall through, will infinitely loop.
1163 }
1164 break;
1165 }
1166 case ISD::INSERT_VECTOR_ELT: {
1167 SDValue Vec = Op.getOperand(0);
1168 SDValue Scl = Op.getOperand(1);
1169 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1170 EVT VecVT = Vec.getValueType();
1171
1172 // If index isn't constant, assume we need all vector elements AND the
1173 // inserted element.
1174 APInt DemandedVecElts(DemandedElts);
1175 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1176 unsigned Idx = CIdx->getZExtValue();
1177 DemandedVecElts.clearBit(Idx);
1178
1179 // Inserted element is not required.
1180 if (!DemandedElts[Idx])
1181 return TLO.CombineTo(Op, Vec);
1182 }
1183
1184 KnownBits KnownScl;
1185 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1186 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1187 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1188 return true;
1189
1190 Known = KnownScl.anyextOrTrunc(BitWidth);
1191
1192 KnownBits KnownVec;
1193 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1194 Depth + 1))
1195 return true;
1196
1197 if (!!DemandedVecElts)
1198 Known = KnownBits::commonBits(Known, KnownVec);
1199
1200 return false;
1201 }
1202 case ISD::INSERT_SUBVECTOR: {
1203 // Demand any elements from the subvector and the remainder from the src its
1204 // inserted into.
1205 SDValue Src = Op.getOperand(0);
1206 SDValue Sub = Op.getOperand(1);
1207 uint64_t Idx = Op.getConstantOperandVal(2);
1208 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1209 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1210 APInt DemandedSrcElts = DemandedElts;
1211 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1212
1213 KnownBits KnownSub, KnownSrc;
1214 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1215 Depth + 1))
1216 return true;
1217 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1218 Depth + 1))
1219 return true;
1220
1221 Known.Zero.setAllBits();
1222 Known.One.setAllBits();
1223 if (!!DemandedSubElts)
1224 Known = KnownBits::commonBits(Known, KnownSub);
1225 if (!!DemandedSrcElts)
1226 Known = KnownBits::commonBits(Known, KnownSrc);
1227
1228 // Attempt to avoid multi-use src if we don't need anything from it.
1229 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1230 !DemandedSrcElts.isAllOnes()) {
1231 SDValue NewSub = SimplifyMultipleUseDemandedBits(
1232 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1233 SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1234 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1235 if (NewSub || NewSrc) {
1236 NewSub = NewSub ? NewSub : Sub;
1237 NewSrc = NewSrc ? NewSrc : Src;
1238 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1239 Op.getOperand(2));
1240 return TLO.CombineTo(Op, NewOp);
1241 }
1242 }
1243 break;
1244 }
1245 case ISD::EXTRACT_SUBVECTOR: {
1246 // Offset the demanded elts by the subvector index.
1247 SDValue Src = Op.getOperand(0);
1248 if (Src.getValueType().isScalableVector())
1249 break;
1250 uint64_t Idx = Op.getConstantOperandVal(1);
1251 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1252 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1253
1254 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1255 Depth + 1))
1256 return true;
1257
1258 // Attempt to avoid multi-use src if we don't need anything from it.
1259 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1260 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1261 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1262 if (DemandedSrc) {
1263 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1264 Op.getOperand(1));
1265 return TLO.CombineTo(Op, NewOp);
1266 }
1267 }
1268 break;
1269 }
1270 case ISD::CONCAT_VECTORS: {
1271 Known.Zero.setAllBits();
1272 Known.One.setAllBits();
1273 EVT SubVT = Op.getOperand(0).getValueType();
1274 unsigned NumSubVecs = Op.getNumOperands();
1275 unsigned NumSubElts = SubVT.getVectorNumElements();
1276 for (unsigned i = 0; i != NumSubVecs; ++i) {
1277 APInt DemandedSubElts =
1278 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1279 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1280 Known2, TLO, Depth + 1))
1281 return true;
1282 // Known bits are shared by every demanded subvector element.
1283 if (!!DemandedSubElts)
1284 Known = KnownBits::commonBits(Known, Known2);
1285 }
1286 break;
1287 }
1288 case ISD::VECTOR_SHUFFLE: {
1289 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1290
1291 // Collect demanded elements from shuffle operands..
1292 APInt DemandedLHS(NumElts, 0);
1293 APInt DemandedRHS(NumElts, 0);
1294 for (unsigned i = 0; i != NumElts; ++i) {
1295 if (!DemandedElts[i])
1296 continue;
1297 int M = ShuffleMask[i];
1298 if (M < 0) {
1299 // For UNDEF elements, we don't know anything about the common state of
1300 // the shuffle result.
1301 DemandedLHS.clearAllBits();
1302 DemandedRHS.clearAllBits();
1303 break;
1304 }
1305 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1306 if (M < (int)NumElts)
1307 DemandedLHS.setBit(M);
1308 else
1309 DemandedRHS.setBit(M - NumElts);
1310 }
1311
1312 if (!!DemandedLHS || !!DemandedRHS) {
1313 SDValue Op0 = Op.getOperand(0);
1314 SDValue Op1 = Op.getOperand(1);
1315
1316 Known.Zero.setAllBits();
1317 Known.One.setAllBits();
1318 if (!!DemandedLHS) {
1319 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1320 Depth + 1))
1321 return true;
1322 Known = KnownBits::commonBits(Known, Known2);
1323 }
1324 if (!!DemandedRHS) {
1325 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1326 Depth + 1))
1327 return true;
1328 Known = KnownBits::commonBits(Known, Known2);
1329 }
1330
1331 // Attempt to avoid multi-use ops if we don't need anything from them.
1332 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1333 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1334 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1335 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1336 if (DemandedOp0 || DemandedOp1) {
1337 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1338 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1339 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1340 return TLO.CombineTo(Op, NewOp);
1341 }
1342 }
1343 break;
1344 }
1345 case ISD::AND: {
1346 SDValue Op0 = Op.getOperand(0);
1347 SDValue Op1 = Op.getOperand(1);
1348
1349 // If the RHS is a constant, check to see if the LHS would be zero without
1350 // using the bits from the RHS. Below, we use knowledge about the RHS to
1351 // simplify the LHS, here we're using information from the LHS to simplify
1352 // the RHS.
1353 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1354 // Do not increment Depth here; that can cause an infinite loop.
1355 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1356 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1357 if ((LHSKnown.Zero & DemandedBits) ==
1358 (~RHSC->getAPIntValue() & DemandedBits))
1359 return TLO.CombineTo(Op, Op0);
1360
1361 // If any of the set bits in the RHS are known zero on the LHS, shrink
1362 // the constant.
1363 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1364 DemandedElts, TLO))
1365 return true;
1366
1367 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1368 // constant, but if this 'and' is only clearing bits that were just set by
1369 // the xor, then this 'and' can be eliminated by shrinking the mask of
1370 // the xor. For example, for a 32-bit X:
1371 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1372 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1373 LHSKnown.One == ~RHSC->getAPIntValue()) {
1374 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1375 return TLO.CombineTo(Op, Xor);
1376 }
1377 }
1378
1379 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1380 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1381 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1382 (Op0.getOperand(0).isUndef() ||
1383 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1384 Op0->hasOneUse()) {
1385 unsigned NumSubElts =
1386 Op0.getOperand(1).getValueType().getVectorNumElements();
1387 unsigned SubIdx = Op0.getConstantOperandVal(2);
1388 APInt DemandedSub =
1389 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1390 KnownBits KnownSubMask =
1391 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1392 if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1393 SDValue NewAnd =
1394 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1395 SDValue NewInsert =
1396 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1397 Op0.getOperand(1), Op0.getOperand(2));
1398 return TLO.CombineTo(Op, NewInsert);
1399 }
1400 }
1401
1402 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1403 Depth + 1))
1404 return true;
1405 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1406 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1407 Known2, TLO, Depth + 1))
1408 return true;
1409 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1410
1411 // If all of the demanded bits are known one on one side, return the other.
1412 // These bits cannot contribute to the result of the 'and'.
1413 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1414 return TLO.CombineTo(Op, Op0);
1415 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1416 return TLO.CombineTo(Op, Op1);
1417 // If all of the demanded bits in the inputs are known zeros, return zero.
1418 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1419 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1420 // If the RHS is a constant, see if we can simplify it.
1421 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1422 TLO))
1423 return true;
1424 // If the operation can be done in a smaller type, do so.
1425 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1426 return true;
1427
1428 // Attempt to avoid multi-use ops if we don't need anything from them.
1429 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1430 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1431 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1432 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1433 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1434 if (DemandedOp0 || DemandedOp1) {
1435 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1436 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1437 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1438 return TLO.CombineTo(Op, NewOp);
1439 }
1440 }
1441
1442 Known &= Known2;
1443 break;
1444 }
1445 case ISD::OR: {
1446 SDValue Op0 = Op.getOperand(0);
1447 SDValue Op1 = Op.getOperand(1);
1448
1449 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1450 Depth + 1))
1451 return true;
1452 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1453 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1454 Known2, TLO, Depth + 1))
1455 return true;
1456 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1457
1458 // If all of the demanded bits are known zero on one side, return the other.
1459 // These bits cannot contribute to the result of the 'or'.
1460 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1461 return TLO.CombineTo(Op, Op0);
1462 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1463 return TLO.CombineTo(Op, Op1);
1464 // If the RHS is a constant, see if we can simplify it.
1465 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1466 return true;
1467 // If the operation can be done in a smaller type, do so.
1468 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1469 return true;
1470
1471 // Attempt to avoid multi-use ops if we don't need anything from them.
1472 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1473 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1474 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1475 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1476 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1477 if (DemandedOp0 || DemandedOp1) {
1478 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1479 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1480 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1481 return TLO.CombineTo(Op, NewOp);
1482 }
1483 }
1484
1485 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1486 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1487 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1488 Op0->hasOneUse() && Op1->hasOneUse()) {
1489 // Attempt to match all commutations - m_c_Or would've been useful!
1490 for (int I = 0; I != 2; ++I) {
1491 SDValue X = Op.getOperand(I).getOperand(0);
1492 SDValue C1 = Op.getOperand(I).getOperand(1);
1493 SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1494 SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1495 if (Alt.getOpcode() == ISD::OR) {
1496 for (int J = 0; J != 2; ++J) {
1497 if (X == Alt.getOperand(J)) {
1498 SDValue Y = Alt.getOperand(1 - J);
1499 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1500 {C1, C2})) {
1501 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1502 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1503 return TLO.CombineTo(
1504 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1505 }
1506 }
1507 }
1508 }
1509 }
1510 }
1511
1512 Known |= Known2;
1513 break;
1514 }
1515 case ISD::XOR: {
1516 SDValue Op0 = Op.getOperand(0);
1517 SDValue Op1 = Op.getOperand(1);
1518
1519 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1520 Depth + 1))
1521 return true;
1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1524 Depth + 1))
1525 return true;
1526 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1527
1528 // If all of the demanded bits are known zero on one side, return the other.
1529 // These bits cannot contribute to the result of the 'xor'.
1530 if (DemandedBits.isSubsetOf(Known.Zero))
1531 return TLO.CombineTo(Op, Op0);
1532 if (DemandedBits.isSubsetOf(Known2.Zero))
1533 return TLO.CombineTo(Op, Op1);
1534 // If the operation can be done in a smaller type, do so.
1535 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1536 return true;
1537
1538 // If all of the unknown bits are known to be zero on one side or the other
1539 // turn this into an *inclusive* or.
1540 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1541 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1542 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1543
1544 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1545 if (C) {
1546 // If one side is a constant, and all of the set bits in the constant are
1547 // also known set on the other side, turn this into an AND, as we know
1548 // the bits will be cleared.
1549 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1550 // NB: it is okay if more bits are known than are requested
1551 if (C->getAPIntValue() == Known2.One) {
1552 SDValue ANDC =
1553 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1554 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1555 }
1556
1557 // If the RHS is a constant, see if we can change it. Don't alter a -1
1558 // constant because that's a 'not' op, and that is better for combining
1559 // and codegen.
1560 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1561 // We're flipping all demanded bits. Flip the undemanded bits too.
1562 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1563 return TLO.CombineTo(Op, New);
1564 }
1565
1566 unsigned Op0Opcode = Op0.getOpcode();
1567 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1568 if (ConstantSDNode *ShiftC =
1569 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1570 // Don't crash on an oversized shift. We can not guarantee that a
1571 // bogus shift has been simplified to undef.
1572 if (ShiftC->getAPIntValue().ult(BitWidth)) {
1573 uint64_t ShiftAmt = ShiftC->getZExtValue();
1574 APInt Ones = APInt::getAllOnes(BitWidth);
1575 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1576 : Ones.lshr(ShiftAmt);
1577 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1578 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1579 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1580 // If the xor constant is a demanded mask, do a 'not' before the
1581 // shift:
1582 // xor (X << ShiftC), XorC --> (not X) << ShiftC
1583 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1584 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1585 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1586 Op0.getOperand(1)));
1587 }
1588 }
1589 }
1590 }
1591 }
1592
1593 // If we can't turn this into a 'not', try to shrink the constant.
1594 if (!C || !C->isAllOnes())
1595 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1596 return true;
1597
1598 // Attempt to avoid multi-use ops if we don't need anything from them.
1599 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1600 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1601 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1602 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1603 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1604 if (DemandedOp0 || DemandedOp1) {
1605 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1606 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1607 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1608 return TLO.CombineTo(Op, NewOp);
1609 }
1610 }
1611
1612 Known ^= Known2;
1613 break;
1614 }
1615 case ISD::SELECT:
1616 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1617 Depth + 1))
1618 return true;
1619 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1620 Depth + 1))
1621 return true;
1622 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1623 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1624
1625 // If the operands are constants, see if we can simplify them.
1626 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1627 return true;
1628
1629 // Only known if known in both the LHS and RHS.
1630 Known = KnownBits::commonBits(Known, Known2);
1631 break;
1632 case ISD::VSELECT:
1633 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1634 Known, TLO, Depth + 1))
1635 return true;
1636 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1637 Known2, TLO, Depth + 1))
1638 return true;
1639 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1640 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1641
1642 // Only known if known in both the LHS and RHS.
1643 Known = KnownBits::commonBits(Known, Known2);
1644 break;
1645 case ISD::SELECT_CC:
1646 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1647 Depth + 1))
1648 return true;
1649 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1650 Depth + 1))
1651 return true;
1652 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1653 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1654
1655 // If the operands are constants, see if we can simplify them.
1656 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1657 return true;
1658
1659 // Only known if known in both the LHS and RHS.
1660 Known = KnownBits::commonBits(Known, Known2);
1661 break;
1662 case ISD::SETCC: {
1663 SDValue Op0 = Op.getOperand(0);
1664 SDValue Op1 = Op.getOperand(1);
1665 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1666 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1667 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1668 // -1, we may be able to bypass the setcc.
1669 if (DemandedBits.isSignMask() &&
1670 Op0.getScalarValueSizeInBits() == BitWidth &&
1671 getBooleanContents(Op0.getValueType()) ==
1672 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1673 // If we're testing X < 0, then this compare isn't needed - just use X!
1674 // FIXME: We're limiting to integer types here, but this should also work
1675 // if we don't care about FP signed-zero. The use of SETLT with FP means
1676 // that we don't care about NaNs.
1677 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1678 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1679 return TLO.CombineTo(Op, Op0);
1680
1681 // TODO: Should we check for other forms of sign-bit comparisons?
1682 // Examples: X <= -1, X >= 0
1683 }
1684 if (getBooleanContents(Op0.getValueType()) ==
1685 TargetLowering::ZeroOrOneBooleanContent &&
1686 BitWidth > 1)
1687 Known.Zero.setBitsFrom(1);
1688 break;
1689 }
1690 case ISD::SHL: {
1691 SDValue Op0 = Op.getOperand(0);
1692 SDValue Op1 = Op.getOperand(1);
1693 EVT ShiftVT = Op1.getValueType();
1694
1695 if (const APInt *SA =
1696 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1697 unsigned ShAmt = SA->getZExtValue();
1698 if (ShAmt == 0)
1699 return TLO.CombineTo(Op, Op0);
1700
1701 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1702 // single shift. We can do this if the bottom bits (which are shifted
1703 // out) are never demanded.
1704 // TODO - support non-uniform vector amounts.
1705 if (Op0.getOpcode() == ISD::SRL) {
1706 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1707 if (const APInt *SA2 =
1708 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1709 unsigned C1 = SA2->getZExtValue();
1710 unsigned Opc = ISD::SHL;
1711 int Diff = ShAmt - C1;
1712 if (Diff < 0) {
1713 Diff = -Diff;
1714 Opc = ISD::SRL;
1715 }
1716 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1717 return TLO.CombineTo(
1718 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1719 }
1720 }
1721 }
1722
1723 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1724 // are not demanded. This will likely allow the anyext to be folded away.
1725 // TODO - support non-uniform vector amounts.
1726 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1727 SDValue InnerOp = Op0.getOperand(0);
1728 EVT InnerVT = InnerOp.getValueType();
1729 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1730 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1731 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1732 EVT ShTy = getShiftAmountTy(InnerVT, DL);
1733 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1734 ShTy = InnerVT;
1735 SDValue NarrowShl =
1736 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1737 TLO.DAG.getConstant(ShAmt, dl, ShTy));
1738 return TLO.CombineTo(
1739 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1740 }
1741
1742 // Repeat the SHL optimization above in cases where an extension
1743 // intervenes: (shl (anyext (shr x, c1)), c2) to
1744 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1745 // aren't demanded (as above) and that the shifted upper c1 bits of
1746 // x aren't demanded.
1747 // TODO - support non-uniform vector amounts.
1748 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1749 InnerOp.hasOneUse()) {
1750 if (const APInt *SA2 =
1751 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1752 unsigned InnerShAmt = SA2->getZExtValue();
1753 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1754 DemandedBits.getActiveBits() <=
1755 (InnerBits - InnerShAmt + ShAmt) &&
1756 DemandedBits.countTrailingZeros() >= ShAmt) {
1757 SDValue NewSA =
1758 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1759 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1760 InnerOp.getOperand(0));
1761 return TLO.CombineTo(
1762 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1763 }
1764 }
1765 }
1766 }
1767
1768 APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1769 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1770 Depth + 1))
1771 return true;
1772 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1773 Known.Zero <<= ShAmt;
1774 Known.One <<= ShAmt;
1775 // low bits known zero.
1776 Known.Zero.setLowBits(ShAmt);
1777
1778 // Attempt to avoid multi-use ops if we don't need anything from them.
1779 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1780 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1781 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1782 if (DemandedOp0) {
1783 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1784 return TLO.CombineTo(Op, NewOp);
1785 }
1786 }
1787
1788 // Try shrinking the operation as long as the shift amount will still be
1789 // in range.
1790 if ((ShAmt < DemandedBits.getActiveBits()) &&
1791 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1792 return true;
1793 } else {
1794 // This is a variable shift, so we can't shift the demand mask by a known
1795 // amount. But if we are not demanding high bits, then we are not
1796 // demanding those bits from the pre-shifted operand either.
1797 if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
1798 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1799 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1800 Depth + 1)) {
1801 SDNodeFlags Flags = Op.getNode()->getFlags();
1802 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1803 // Disable the nsw and nuw flags. We can no longer guarantee that we
1804 // won't wrap after simplification.
1805 Flags.setNoSignedWrap(false);
1806 Flags.setNoUnsignedWrap(false);
1807 Op->setFlags(Flags);
1808 }
1809 return true;
1810 }
1811 Known.resetAll();
1812 }
1813 }
1814
1815 // If we are only demanding sign bits then we can use the shift source
1816 // directly.
1817 if (const APInt *MaxSA =
1818 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1819 unsigned ShAmt = MaxSA->getZExtValue();
1820 unsigned NumSignBits =
1821 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1822 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1823 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1824 return TLO.CombineTo(Op, Op0);
1825 }
1826 break;
1827 }
1828 case ISD::SRL: {
1829 SDValue Op0 = Op.getOperand(0);
1830 SDValue Op1 = Op.getOperand(1);
1831 EVT ShiftVT = Op1.getValueType();
1832
1833 // Try to match AVG patterns.
1834 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1835 DemandedElts, Depth + 1))
1836 return TLO.CombineTo(Op, AVG);
1837
1838 if (const APInt *SA =
1839 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1840 unsigned ShAmt = SA->getZExtValue();
1841 if (ShAmt == 0)
1842 return TLO.CombineTo(Op, Op0);
1843
1844 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1845 // single shift. We can do this if the top bits (which are shifted out)
1846 // are never demanded.
1847 // TODO - support non-uniform vector amounts.
1848 if (Op0.getOpcode() == ISD::SHL) {
1849 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1850 if (const APInt *SA2 =
1851 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1852 unsigned C1 = SA2->getZExtValue();
1853 unsigned Opc = ISD::SRL;
1854 int Diff = ShAmt - C1;
1855 if (Diff < 0) {
1856 Diff = -Diff;
1857 Opc = ISD::SHL;
1858 }
1859 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1860 return TLO.CombineTo(
1861 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1862 }
1863 }
1864 }
1865
1866 APInt InDemandedMask = (DemandedBits << ShAmt);
1867
1868 // If the shift is exact, then it does demand the low bits (and knows that
1869 // they are zero).
1870 if (Op->getFlags().hasExact())
1871 InDemandedMask.setLowBits(ShAmt);
1872
1873 // Compute the new bits that are at the top now.
1874 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1875 Depth + 1))
1876 return true;
1877 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1878 Known.Zero.lshrInPlace(ShAmt);
1879 Known.One.lshrInPlace(ShAmt);
1880 // High bits known zero.
1881 Known.Zero.setHighBits(ShAmt);
1882 }
1883 break;
1884 }
1885 case ISD::SRA: {
1886 SDValue Op0 = Op.getOperand(0);
1887 SDValue Op1 = Op.getOperand(1);
1888 EVT ShiftVT = Op1.getValueType();
1889
1890 // If we only want bits that already match the signbit then we don't need
1891 // to shift.
1892 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1893 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1894 NumHiDemandedBits)
1895 return TLO.CombineTo(Op, Op0);
1896
1897 // If this is an arithmetic shift right and only the low-bit is set, we can
1898 // always convert this into a logical shr, even if the shift amount is
1899 // variable. The low bit of the shift cannot be an input sign bit unless
1900 // the shift amount is >= the size of the datatype, which is undefined.
1901 if (DemandedBits.isOne())
1902 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1903
1904 // Try to match AVG patterns.
1905 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1906 DemandedElts, Depth + 1))
1907 return TLO.CombineTo(Op, AVG);
1908
1909 if (const APInt *SA =
1910 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1911 unsigned ShAmt = SA->getZExtValue();
1912 if (ShAmt == 0)
1913 return TLO.CombineTo(Op, Op0);
1914
1915 APInt InDemandedMask = (DemandedBits << ShAmt);
1916
1917 // If the shift is exact, then it does demand the low bits (and knows that
1918 // they are zero).
1919 if (Op->getFlags().hasExact())
1920 InDemandedMask.setLowBits(ShAmt);
1921
1922 // If any of the demanded bits are produced by the sign extension, we also
1923 // demand the input sign bit.
1924 if (DemandedBits.countLeadingZeros() < ShAmt)
1925 InDemandedMask.setSignBit();
1926
1927 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1928 Depth + 1))
1929 return true;
1930 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1931 Known.Zero.lshrInPlace(ShAmt);
1932 Known.One.lshrInPlace(ShAmt);
1933
1934 // If the input sign bit is known to be zero, or if none of the top bits
1935 // are demanded, turn this into an unsigned shift right.
1936 if (Known.Zero[BitWidth - ShAmt - 1] ||
1937 DemandedBits.countLeadingZeros() >= ShAmt) {
1938 SDNodeFlags Flags;
1939 Flags.setExact(Op->getFlags().hasExact());
1940 return TLO.CombineTo(
1941 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1942 }
1943
1944 int Log2 = DemandedBits.exactLogBase2();
1945 if (Log2 >= 0) {
1946 // The bit must come from the sign.
1947 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1948 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1949 }
1950
1951 if (Known.One[BitWidth - ShAmt - 1])
1952 // New bits are known one.
1953 Known.One.setHighBits(ShAmt);
1954
1955 // Attempt to avoid multi-use ops if we don't need anything from them.
1956 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1957 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1958 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1959 if (DemandedOp0) {
1960 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1961 return TLO.CombineTo(Op, NewOp);
1962 }
1963 }
1964 }
1965 break;
1966 }
1967 case ISD::FSHL:
1968 case ISD::FSHR: {
1969 SDValue Op0 = Op.getOperand(0);
1970 SDValue Op1 = Op.getOperand(1);
1971 SDValue Op2 = Op.getOperand(2);
1972 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1973
1974 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1975 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1976
1977 // For fshl, 0-shift returns the 1st arg.
1978 // For fshr, 0-shift returns the 2nd arg.
1979 if (Amt == 0) {
1980 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1981 Known, TLO, Depth + 1))
1982 return true;
1983 break;
1984 }
1985
1986 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1987 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1988 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1989 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1990 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1991 Depth + 1))
1992 return true;
1993 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1994 Depth + 1))
1995 return true;
1996
1997 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1998 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1999 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2000 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2001 Known.One |= Known2.One;
2002 Known.Zero |= Known2.Zero;
2003
2004 // Attempt to avoid multi-use ops if we don't need anything from them.
2005 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2006 !DemandedElts.isAllOnes()) {
2007 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2008 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2009 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2010 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2011 if (DemandedOp0 || DemandedOp1) {
2012 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2013 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2014 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2015 DemandedOp1, Op2);
2016 return TLO.CombineTo(Op, NewOp);
2017 }
2018 }
2019 }
2020
2021 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2022 if (isPowerOf2_32(BitWidth)) {
2023 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2024 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2025 Known2, TLO, Depth + 1))
2026 return true;
2027 }
2028 break;
2029 }
2030 case ISD::ROTL:
2031 case ISD::ROTR: {
2032 SDValue Op0 = Op.getOperand(0);
2033 SDValue Op1 = Op.getOperand(1);
2034 bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2035
2036 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2037 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2038 return TLO.CombineTo(Op, Op0);
2039
2040 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2041 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2042 unsigned RevAmt = BitWidth - Amt;
2043
2044 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2045 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2046 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2047 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2048 Depth + 1))
2049 return true;
2050
2051 // rot*(x, 0) --> x
2052 if (Amt == 0)
2053 return TLO.CombineTo(Op, Op0);
2054
2055 // See if we don't demand either half of the rotated bits.
2056 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2057 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
2058 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2059 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2060 }
2061 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2062 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
2063 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2064 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2065 }
2066 }
2067
2068 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2069 if (isPowerOf2_32(BitWidth)) {
2070 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2071 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2072 Depth + 1))
2073 return true;
2074 }
2075 break;
2076 }
2077 case ISD::UMIN: {
2078 // Check if one arg is always less than (or equal) to the other arg.
2079 SDValue Op0 = Op.getOperand(0);
2080 SDValue Op1 = Op.getOperand(1);
2081 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2082 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2083 Known = KnownBits::umin(Known0, Known1);
2084 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2085 return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1);
2086 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2087 return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1);
2088 break;
2089 }
2090 case ISD::UMAX: {
2091 // Check if one arg is always greater than (or equal) to the other arg.
2092 SDValue Op0 = Op.getOperand(0);
2093 SDValue Op1 = Op.getOperand(1);
2094 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2095 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2096 Known = KnownBits::umax(Known0, Known1);
2097 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2098 return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1);
2099 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2100 return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1);
2101 break;
2102 }
2103 case ISD::BITREVERSE: {
2104 SDValue Src = Op.getOperand(0);
2105 APInt DemandedSrcBits = DemandedBits.reverseBits();
2106 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2107 Depth + 1))
2108 return true;
2109 Known.One = Known2.One.reverseBits();
2110 Known.Zero = Known2.Zero.reverseBits();
2111 break;
2112 }
2113 case ISD::BSWAP: {
2114 SDValue Src = Op.getOperand(0);
2115
2116 // If the only bits demanded come from one byte of the bswap result,
2117 // just shift the input byte into position to eliminate the bswap.
2118 unsigned NLZ = DemandedBits.countLeadingZeros();
2119 unsigned NTZ = DemandedBits.countTrailingZeros();
2120
2121 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
2122 // we need all the bits down to bit 8. Likewise, round NLZ. If we
2123 // have 14 leading zeros, round to 8.
2124 NLZ = alignDown(NLZ, 8);
2125 NTZ = alignDown(NTZ, 8);
2126 // If we need exactly one byte, we can do this transformation.
2127 if (BitWidth - NLZ - NTZ == 8) {
2128 // Replace this with either a left or right shift to get the byte into
2129 // the right place.
2130 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2131 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2132 EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2133 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2134 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2135 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2136 return TLO.CombineTo(Op, NewOp);
2137 }
2138 }
2139
2140 APInt DemandedSrcBits = DemandedBits.byteSwap();
2141 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2142 Depth + 1))
2143 return true;
2144 Known.One = Known2.One.byteSwap();
2145 Known.Zero = Known2.Zero.byteSwap();
2146 break;
2147 }
2148 case ISD::CTPOP: {
2149 // If only 1 bit is demanded, replace with PARITY as long as we're before
2150 // op legalization.
2151 // FIXME: Limit to scalars for now.
2152 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2153 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2154 Op.getOperand(0)));
2155
2156 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2157 break;
2158 }
2159 case ISD::SIGN_EXTEND_INREG: {
2160 SDValue Op0 = Op.getOperand(0);
2161 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2162 unsigned ExVTBits = ExVT.getScalarSizeInBits();
2163
2164 // If we only care about the highest bit, don't bother shifting right.
2165 if (DemandedBits.isSignMask()) {
2166 unsigned MinSignedBits =
2167 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2168 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2169 // However if the input is already sign extended we expect the sign
2170 // extension to be dropped altogether later and do not simplify.
2171 if (!AlreadySignExtended) {
2172 // Compute the correct shift amount type, which must be getShiftAmountTy
2173 // for scalar types after legalization.
2174 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2175 getShiftAmountTy(VT, DL));
2176 return TLO.CombineTo(Op,
2177 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2178 }
2179 }
2180
2181 // If none of the extended bits are demanded, eliminate the sextinreg.
2182 if (DemandedBits.getActiveBits() <= ExVTBits)
2183 return TLO.CombineTo(Op, Op0);
2184
2185 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2186
2187 // Since the sign extended bits are demanded, we know that the sign
2188 // bit is demanded.
2189 InputDemandedBits.setBit(ExVTBits - 1);
2190
2191 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2192 Depth + 1))
2193 return true;
2194 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2195
2196 // If the sign bit of the input is known set or clear, then we know the
2197 // top bits of the result.
2198
2199 // If the input sign bit is known zero, convert this into a zero extension.
2200 if (Known.Zero[ExVTBits - 1])
2201 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2202
2203 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2204 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2205 Known.One.setBitsFrom(ExVTBits);
2206 Known.Zero &= Mask;
2207 } else { // Input sign bit unknown
2208 Known.Zero &= Mask;
2209 Known.One &= Mask;
2210 }
2211 break;
2212 }
2213 case ISD::BUILD_PAIR: {
2214 EVT HalfVT = Op.getOperand(0).getValueType();
2215 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2216
2217 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2218 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2219
2220 KnownBits KnownLo, KnownHi;
2221
2222 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2223 return true;
2224
2225 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2226 return true;
2227
2228 Known.Zero = KnownLo.Zero.zext(BitWidth) |
2229 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2230
2231 Known.One = KnownLo.One.zext(BitWidth) |
2232 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2233 break;
2234 }
2235 case ISD::ZERO_EXTEND:
2236 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2237 SDValue Src = Op.getOperand(0);
2238 EVT SrcVT = Src.getValueType();
2239 unsigned InBits = SrcVT.getScalarSizeInBits();
2240 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2241 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2242
2243 // If none of the top bits are demanded, convert this into an any_extend.
2244 if (DemandedBits.getActiveBits() <= InBits) {
2245 // If we only need the non-extended bits of the bottom element
2246 // then we can just bitcast to the result.
2247 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2248 VT.getSizeInBits() == SrcVT.getSizeInBits())
2249 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2250
2251 unsigned Opc =
2252 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2253 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2254 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2255 }
2256
2257 APInt InDemandedBits = DemandedBits.trunc(InBits);
2258 APInt InDemandedElts = DemandedElts.zext(InElts);
2259 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2260 Depth + 1))
2261 return true;
2262 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2263 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2264 Known = Known.zext(BitWidth);
2265
2266 // Attempt to avoid multi-use ops if we don't need anything from them.
2267 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2268 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2269 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2270 break;
2271 }
2272 case ISD::SIGN_EXTEND:
2273 case ISD::SIGN_EXTEND_VECTOR_INREG: {
2274 SDValue Src = Op.getOperand(0);
2275 EVT SrcVT = Src.getValueType();
2276 unsigned InBits = SrcVT.getScalarSizeInBits();
2277 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2278 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2279
2280 // If none of the top bits are demanded, convert this into an any_extend.
2281 if (DemandedBits.getActiveBits() <= InBits) {
2282 // If we only need the non-extended bits of the bottom element
2283 // then we can just bitcast to the result.
2284 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2285 VT.getSizeInBits() == SrcVT.getSizeInBits())
2286 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2287
2288 unsigned Opc =
2289 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2290 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2291 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2292 }
2293
2294 APInt InDemandedBits = DemandedBits.trunc(InBits);
2295 APInt InDemandedElts = DemandedElts.zext(InElts);
2296
2297 // Since some of the sign extended bits are demanded, we know that the sign
2298 // bit is demanded.
2299 InDemandedBits.setBit(InBits - 1);
2300
2301 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2302 Depth + 1))
2303 return true;
2304 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2305 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2306
2307 // If the sign bit is known one, the top bits match.
2308 Known = Known.sext(BitWidth);
2309
2310 // If the sign bit is known zero, convert this to a zero extend.
2311 if (Known.isNonNegative()) {
2312 unsigned Opc =
2313 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2314 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2315 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2316 }
2317
2318 // Attempt to avoid multi-use ops if we don't need anything from them.
2319 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2320 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2321 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2322 break;
2323 }
2324 case ISD::ANY_EXTEND:
2325 case ISD::ANY_EXTEND_VECTOR_INREG: {
2326 SDValue Src = Op.getOperand(0);
2327 EVT SrcVT = Src.getValueType();
2328 unsigned InBits = SrcVT.getScalarSizeInBits();
2329 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2330 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2331
2332 // If we only need the bottom element then we can just bitcast.
2333 // TODO: Handle ANY_EXTEND?
2334 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2335 VT.getSizeInBits() == SrcVT.getSizeInBits())
2336 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2337
2338 APInt InDemandedBits = DemandedBits.trunc(InBits);
2339 APInt InDemandedElts = DemandedElts.zext(InElts);
2340 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2341 Depth + 1))
2342 return true;
2343 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2344 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2345 Known = Known.anyext(BitWidth);
2346
2347 // Attempt to avoid multi-use ops if we don't need anything from them.
2348 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2349 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2350 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2351 break;
2352 }
2353 case ISD::TRUNCATE: {
2354 SDValue Src = Op.getOperand(0);
2355
2356 // Simplify the input, using demanded bit information, and compute the known
2357 // zero/one bits live out.
2358 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2359 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2360 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2361 Depth + 1))
2362 return true;
2363 Known = Known.trunc(BitWidth);
2364
2365 // Attempt to avoid multi-use ops if we don't need anything from them.
2366 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2367 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2368 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2369
2370 // If the input is only used by this truncate, see if we can shrink it based
2371 // on the known demanded bits.
2372 if (Src.getNode()->hasOneUse()) {
2373 switch (Src.getOpcode()) {
2374 default:
2375 break;
2376 case ISD::SRL:
2377 // Shrink SRL by a constant if none of the high bits shifted in are
2378 // demanded.
2379 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2380 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2381 // undesirable.
2382 break;
2383
2384 const APInt *ShAmtC =
2385 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2386 if (!ShAmtC || ShAmtC->uge(BitWidth))
2387 break;
2388 uint64_t ShVal = ShAmtC->getZExtValue();
2389
2390 APInt HighBits =
2391 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2392 HighBits.lshrInPlace(ShVal);
2393 HighBits = HighBits.trunc(BitWidth);
2394
2395 if (!(HighBits & DemandedBits)) {
2396 // None of the shifted in bits are needed. Add a truncate of the
2397 // shift input, then shift it.
2398 SDValue NewShAmt = TLO.DAG.getConstant(
2399 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2400 SDValue NewTrunc =
2401 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2402 return TLO.CombineTo(
2403 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2404 }
2405 break;
2406 }
2407 }
2408
2409 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2410 break;
2411 }
2412 case ISD::AssertZext: {
2413 // AssertZext demands all of the high bits, plus any of the low bits
2414 // demanded by its users.
2415 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2416 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2417 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2418 TLO, Depth + 1))
2419 return true;
2420 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2421
2422 Known.Zero |= ~InMask;
2423 break;
2424 }
2425 case ISD::EXTRACT_VECTOR_ELT: {
2426 SDValue Src = Op.getOperand(0);
2427 SDValue Idx = Op.getOperand(1);
2428 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2429 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2430
2431 if (SrcEltCnt.isScalable())
2432 return false;
2433
2434 // Demand the bits from every vector element without a constant index.
2435 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2436 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2437 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2438 if (CIdx->getAPIntValue().ult(NumSrcElts))
2439 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2440
2441 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2442 // anything about the extended bits.
2443 APInt DemandedSrcBits = DemandedBits;
2444 if (BitWidth > EltBitWidth)
2445 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2446
2447 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2448 Depth + 1))
2449 return true;
2450
2451 // Attempt to avoid multi-use ops if we don't need anything from them.
2452 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2453 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2454 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2455 SDValue NewOp =
2456 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2457 return TLO.CombineTo(Op, NewOp);
2458 }
2459 }
2460
2461 Known = Known2;
2462 if (BitWidth > EltBitWidth)
2463 Known = Known.anyext(BitWidth);
2464 break;
2465 }
2466 case ISD::BITCAST: {
2467 SDValue Src = Op.getOperand(0);
2468 EVT SrcVT = Src.getValueType();
2469 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2470
2471 // If this is an FP->Int bitcast and if the sign bit is the only
2472 // thing demanded, turn this into a FGETSIGN.
2473 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2474 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2475 SrcVT.isFloatingPoint()) {
2476 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2477 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2478 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2479 SrcVT != MVT::f128) {
2480 // Cannot eliminate/lower SHL for f128 yet.
2481 EVT Ty = OpVTLegal ? VT : MVT::i32;
2482 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2483 // place. We expect the SHL to be eliminated by other optimizations.
2484 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2485 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2486 if (!OpVTLegal && OpVTSizeInBits > 32)
2487 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2488 unsigned ShVal = Op.getValueSizeInBits() - 1;
2489 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2490 return TLO.CombineTo(Op,
2491 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2492 }
2493 }
2494
2495 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2496 // Demand the elt/bit if any of the original elts/bits are demanded.
2497 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2498 unsigned Scale = BitWidth / NumSrcEltBits;
2499 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2500 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2501 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2502 for (unsigned i = 0; i != Scale; ++i) {
2503 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2504 unsigned BitOffset = EltOffset * NumSrcEltBits;
2505 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2506 if (!Sub.isZero()) {
2507 DemandedSrcBits |= Sub;
2508 for (unsigned j = 0; j != NumElts; ++j)
2509 if (DemandedElts[j])
2510 DemandedSrcElts.setBit((j * Scale) + i);
2511 }
2512 }
2513
2514 APInt KnownSrcUndef, KnownSrcZero;
2515 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2516 KnownSrcZero, TLO, Depth + 1))
2517 return true;
2518
2519 KnownBits KnownSrcBits;
2520 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2521 KnownSrcBits, TLO, Depth + 1))
2522 return true;
2523 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2524 // TODO - bigendian once we have test coverage.
2525 unsigned Scale = NumSrcEltBits / BitWidth;
2526 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2527 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2528 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2529 for (unsigned i = 0; i != NumElts; ++i)
2530 if (DemandedElts[i]) {
2531 unsigned Offset = (i % Scale) * BitWidth;
2532 DemandedSrcBits.insertBits(DemandedBits, Offset);
2533 DemandedSrcElts.setBit(i / Scale);
2534 }
2535
2536 if (SrcVT.isVector()) {
2537 APInt KnownSrcUndef, KnownSrcZero;
2538 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2539 KnownSrcZero, TLO, Depth + 1))
2540 return true;
2541 }
2542
2543 KnownBits KnownSrcBits;
2544 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2545 KnownSrcBits, TLO, Depth + 1))
2546 return true;
2547 }
2548
2549 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
2550 // recursive call where Known may be useful to the caller.
2551 if (Depth > 0) {
2552 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2553 return false;
2554 }
2555 break;
2556 }
2557 case ISD::MUL:
2558 if (DemandedBits.isPowerOf2()) {
2559 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2560 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2561 // odd (has LSB set), then the left-shifted low bit of X is the answer.
2562 unsigned CTZ = DemandedBits.countTrailingZeros();
2563 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2564 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2565 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2566 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2567 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2568 return TLO.CombineTo(Op, Shl);
2569 }
2570 }
2571 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2572 // X * X is odd iff X is odd.
2573 // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2574 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2575 SDValue One = TLO.DAG.getConstant(1, dl, VT);
2576 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2577 return TLO.CombineTo(Op, And1);
2578 }
2579 LLVM_FALLTHROUGH;
2580 case ISD::ADD:
2581 case ISD::SUB: {
2582 // Add, Sub, and Mul don't demand any bits in positions beyond that
2583 // of the highest bit demanded of them.
2584 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2585 SDNodeFlags Flags = Op.getNode()->getFlags();
2586 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2587 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2588 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2589 Depth + 1) ||
2590 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2591 Depth + 1) ||
2592 // See if the operation should be performed at a smaller bit width.
2593 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2594 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2595 // Disable the nsw and nuw flags. We can no longer guarantee that we
2596 // won't wrap after simplification.
2597 Flags.setNoSignedWrap(false);
2598 Flags.setNoUnsignedWrap(false);
2599 Op->setFlags(Flags);
2600 }
2601 return true;
2602 }
2603
2604 // Attempt to avoid multi-use ops if we don't need anything from them.
2605 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2606 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2607 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2608 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2609 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2610 if (DemandedOp0 || DemandedOp1) {
2611 Flags.setNoSignedWrap(false);
2612 Flags.setNoUnsignedWrap(false);
2613 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2614 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2615 SDValue NewOp =
2616 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2617 return TLO.CombineTo(Op, NewOp);
2618 }
2619 }
2620
2621 // If we have a constant operand, we may be able to turn it into -1 if we
2622 // do not demand the high bits. This can make the constant smaller to
2623 // encode, allow more general folding, or match specialized instruction
2624 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2625 // is probably not useful (and could be detrimental).
2626 ConstantSDNode *C = isConstOrConstSplat(Op1);
2627 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2628 if (C && !C->isAllOnes() && !C->isOne() &&
2629 (C->getAPIntValue() | HighMask).isAllOnes()) {
2630 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2631 // Disable the nsw and nuw flags. We can no longer guarantee that we
2632 // won't wrap after simplification.
2633 Flags.setNoSignedWrap(false);
2634 Flags.setNoUnsignedWrap(false);
2635 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2636 return TLO.CombineTo(Op, NewOp);
2637 }
2638
2639 // Match a multiply with a disguised negated-power-of-2 and convert to a
2640 // an equivalent shift-left amount.
2641 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2642 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2643 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2644 return 0;
2645
2646 // Don't touch opaque constants. Also, ignore zero and power-of-2
2647 // multiplies. Those will get folded later.
2648 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2649 if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2650 !MulC->getAPIntValue().isPowerOf2()) {
2651 APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2652 if (UnmaskedC.isNegatedPowerOf2())
2653 return (-UnmaskedC).logBase2();
2654 }
2655 return 0;
2656 };
2657
2658 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2659 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2660 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2661 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2662 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2663 return TLO.CombineTo(Op, Res);
2664 };
2665
2666 if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2667 if (Op.getOpcode() == ISD::ADD) {
2668 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2669 if (unsigned ShAmt = getShiftLeftAmt(Op0))
2670 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2671 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2672 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2673 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2674 }
2675 if (Op.getOpcode() == ISD::SUB) {
2676 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2677 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2678 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2679 }
2680 }
2681
2682 LLVM_FALLTHROUGH;
2683 }
2684 default:
2685 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2686 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2687 Known, TLO, Depth))
2688 return true;
2689 break;
2690 }
2691
2692 // Just use computeKnownBits to compute output bits.
2693 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2694 break;
2695 }
2696
2697 // If we know the value of all of the demanded bits, return this as a
2698 // constant.
2699 if (!isTargetCanonicalConstantNode(Op) &&
2700 DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2701 // Avoid folding to a constant if any OpaqueConstant is involved.
2702 const SDNode *N = Op.getNode();
2703 for (SDNode *Op :
2704 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2705 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2706 if (C->isOpaque())
2707 return false;
2708 }
2709 if (VT.isInteger())
2710 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2711 if (VT.isFloatingPoint())
2712 return TLO.CombineTo(
2713 Op,
2714 TLO.DAG.getConstantFP(
2715 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2716 }
2717
2718 return false;
2719 }
2720
SimplifyDemandedVectorElts(SDValue Op,const APInt & DemandedElts,DAGCombinerInfo & DCI) const2721 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2722 const APInt &DemandedElts,
2723 DAGCombinerInfo &DCI) const {
2724 SelectionDAG &DAG = DCI.DAG;
2725 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2726 !DCI.isBeforeLegalizeOps());
2727
2728 APInt KnownUndef, KnownZero;
2729 bool Simplified =
2730 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2731 if (Simplified) {
2732 DCI.AddToWorklist(Op.getNode());
2733 DCI.CommitTargetLoweringOpt(TLO);
2734 }
2735
2736 return Simplified;
2737 }
2738
2739 /// Given a vector binary operation and known undefined elements for each input
2740 /// operand, compute whether each element of the output is undefined.
getKnownUndefForVectorBinop(SDValue BO,SelectionDAG & DAG,const APInt & UndefOp0,const APInt & UndefOp1)2741 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2742 const APInt &UndefOp0,
2743 const APInt &UndefOp1) {
2744 EVT VT = BO.getValueType();
2745 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2746 "Vector binop only");
2747
2748 EVT EltVT = VT.getVectorElementType();
2749 unsigned NumElts = VT.getVectorNumElements();
2750 assert(UndefOp0.getBitWidth() == NumElts &&
2751 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2752
2753 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2754 const APInt &UndefVals) {
2755 if (UndefVals[Index])
2756 return DAG.getUNDEF(EltVT);
2757
2758 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2759 // Try hard to make sure that the getNode() call is not creating temporary
2760 // nodes. Ignore opaque integers because they do not constant fold.
2761 SDValue Elt = BV->getOperand(Index);
2762 auto *C = dyn_cast<ConstantSDNode>(Elt);
2763 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2764 return Elt;
2765 }
2766
2767 return SDValue();
2768 };
2769
2770 APInt KnownUndef = APInt::getZero(NumElts);
2771 for (unsigned i = 0; i != NumElts; ++i) {
2772 // If both inputs for this element are either constant or undef and match
2773 // the element type, compute the constant/undef result for this element of
2774 // the vector.
2775 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2776 // not handle FP constants. The code within getNode() should be refactored
2777 // to avoid the danger of creating a bogus temporary node here.
2778 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2779 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2780 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2781 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2782 KnownUndef.setBit(i);
2783 }
2784 return KnownUndef;
2785 }
2786
SimplifyDemandedVectorElts(SDValue Op,const APInt & OriginalDemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const2787 bool TargetLowering::SimplifyDemandedVectorElts(
2788 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2789 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2790 bool AssumeSingleUse) const {
2791 EVT VT = Op.getValueType();
2792 unsigned Opcode = Op.getOpcode();
2793 APInt DemandedElts = OriginalDemandedElts;
2794 unsigned NumElts = DemandedElts.getBitWidth();
2795 assert(VT.isVector() && "Expected vector op");
2796
2797 KnownUndef = KnownZero = APInt::getZero(NumElts);
2798
2799 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2800 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2801 return false;
2802
2803 // TODO: For now we assume we know nothing about scalable vectors.
2804 if (VT.isScalableVector())
2805 return false;
2806
2807 assert(VT.getVectorNumElements() == NumElts &&
2808 "Mask size mismatches value type element count!");
2809
2810 // Undef operand.
2811 if (Op.isUndef()) {
2812 KnownUndef.setAllBits();
2813 return false;
2814 }
2815
2816 // If Op has other users, assume that all elements are needed.
2817 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2818 DemandedElts.setAllBits();
2819
2820 // Not demanding any elements from Op.
2821 if (DemandedElts == 0) {
2822 KnownUndef.setAllBits();
2823 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2824 }
2825
2826 // Limit search depth.
2827 if (Depth >= SelectionDAG::MaxRecursionDepth)
2828 return false;
2829
2830 SDLoc DL(Op);
2831 unsigned EltSizeInBits = VT.getScalarSizeInBits();
2832 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2833
2834 // Helper for demanding the specified elements and all the bits of both binary
2835 // operands.
2836 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2837 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2838 TLO.DAG, Depth + 1);
2839 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2840 TLO.DAG, Depth + 1);
2841 if (NewOp0 || NewOp1) {
2842 SDValue NewOp = TLO.DAG.getNode(
2843 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2844 return TLO.CombineTo(Op, NewOp);
2845 }
2846 return false;
2847 };
2848
2849 switch (Opcode) {
2850 case ISD::SCALAR_TO_VECTOR: {
2851 if (!DemandedElts[0]) {
2852 KnownUndef.setAllBits();
2853 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2854 }
2855 SDValue ScalarSrc = Op.getOperand(0);
2856 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2857 SDValue Src = ScalarSrc.getOperand(0);
2858 SDValue Idx = ScalarSrc.getOperand(1);
2859 EVT SrcVT = Src.getValueType();
2860
2861 ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2862
2863 if (SrcEltCnt.isScalable())
2864 return false;
2865
2866 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2867 if (isNullConstant(Idx)) {
2868 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2869 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2870 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2871 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2872 TLO, Depth + 1))
2873 return true;
2874 }
2875 }
2876 KnownUndef.setHighBits(NumElts - 1);
2877 break;
2878 }
2879 case ISD::BITCAST: {
2880 SDValue Src = Op.getOperand(0);
2881 EVT SrcVT = Src.getValueType();
2882
2883 // We only handle vectors here.
2884 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2885 if (!SrcVT.isVector())
2886 break;
2887
2888 // Fast handling of 'identity' bitcasts.
2889 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2890 if (NumSrcElts == NumElts)
2891 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2892 KnownZero, TLO, Depth + 1);
2893
2894 APInt SrcDemandedElts, SrcZero, SrcUndef;
2895
2896 // Bitcast from 'large element' src vector to 'small element' vector, we
2897 // must demand a source element if any DemandedElt maps to it.
2898 if ((NumElts % NumSrcElts) == 0) {
2899 unsigned Scale = NumElts / NumSrcElts;
2900 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2901 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2902 TLO, Depth + 1))
2903 return true;
2904
2905 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2906 // of the large element.
2907 // TODO - bigendian once we have test coverage.
2908 if (IsLE) {
2909 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2910 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2911 for (unsigned i = 0; i != NumElts; ++i)
2912 if (DemandedElts[i]) {
2913 unsigned Ofs = (i % Scale) * EltSizeInBits;
2914 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2915 }
2916
2917 KnownBits Known;
2918 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2919 TLO, Depth + 1))
2920 return true;
2921
2922 // The bitcast has split each wide element into a number of
2923 // narrow subelements. We have just computed the Known bits
2924 // for wide elements. See if element splitting results in
2925 // some subelements being zero. Only for demanded elements!
2926 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2927 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2928 .isAllOnes())
2929 continue;
2930 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2931 unsigned Elt = Scale * SrcElt + SubElt;
2932 if (DemandedElts[Elt])
2933 KnownZero.setBit(Elt);
2934 }
2935 }
2936 }
2937
2938 // If the src element is zero/undef then all the output elements will be -
2939 // only demanded elements are guaranteed to be correct.
2940 for (unsigned i = 0; i != NumSrcElts; ++i) {
2941 if (SrcDemandedElts[i]) {
2942 if (SrcZero[i])
2943 KnownZero.setBits(i * Scale, (i + 1) * Scale);
2944 if (SrcUndef[i])
2945 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2946 }
2947 }
2948 }
2949
2950 // Bitcast from 'small element' src vector to 'large element' vector, we
2951 // demand all smaller source elements covered by the larger demanded element
2952 // of this vector.
2953 if ((NumSrcElts % NumElts) == 0) {
2954 unsigned Scale = NumSrcElts / NumElts;
2955 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2956 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2957 TLO, Depth + 1))
2958 return true;
2959
2960 // If all the src elements covering an output element are zero/undef, then
2961 // the output element will be as well, assuming it was demanded.
2962 for (unsigned i = 0; i != NumElts; ++i) {
2963 if (DemandedElts[i]) {
2964 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2965 KnownZero.setBit(i);
2966 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2967 KnownUndef.setBit(i);
2968 }
2969 }
2970 }
2971 break;
2972 }
2973 case ISD::BUILD_VECTOR: {
2974 // Check all elements and simplify any unused elements with UNDEF.
2975 if (!DemandedElts.isAllOnes()) {
2976 // Don't simplify BROADCASTS.
2977 if (llvm::any_of(Op->op_values(),
2978 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2979 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2980 bool Updated = false;
2981 for (unsigned i = 0; i != NumElts; ++i) {
2982 if (!DemandedElts[i] && !Ops[i].isUndef()) {
2983 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2984 KnownUndef.setBit(i);
2985 Updated = true;
2986 }
2987 }
2988 if (Updated)
2989 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2990 }
2991 }
2992 for (unsigned i = 0; i != NumElts; ++i) {
2993 SDValue SrcOp = Op.getOperand(i);
2994 if (SrcOp.isUndef()) {
2995 KnownUndef.setBit(i);
2996 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2997 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2998 KnownZero.setBit(i);
2999 }
3000 }
3001 break;
3002 }
3003 case ISD::CONCAT_VECTORS: {
3004 EVT SubVT = Op.getOperand(0).getValueType();
3005 unsigned NumSubVecs = Op.getNumOperands();
3006 unsigned NumSubElts = SubVT.getVectorNumElements();
3007 for (unsigned i = 0; i != NumSubVecs; ++i) {
3008 SDValue SubOp = Op.getOperand(i);
3009 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3010 APInt SubUndef, SubZero;
3011 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3012 Depth + 1))
3013 return true;
3014 KnownUndef.insertBits(SubUndef, i * NumSubElts);
3015 KnownZero.insertBits(SubZero, i * NumSubElts);
3016 }
3017
3018 // Attempt to avoid multi-use ops if we don't need anything from them.
3019 if (!DemandedElts.isAllOnes()) {
3020 bool FoundNewSub = false;
3021 SmallVector<SDValue, 2> DemandedSubOps;
3022 for (unsigned i = 0; i != NumSubVecs; ++i) {
3023 SDValue SubOp = Op.getOperand(i);
3024 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3025 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3026 SubOp, SubElts, TLO.DAG, Depth + 1);
3027 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3028 FoundNewSub = NewSubOp ? true : FoundNewSub;
3029 }
3030 if (FoundNewSub) {
3031 SDValue NewOp =
3032 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3033 return TLO.CombineTo(Op, NewOp);
3034 }
3035 }
3036 break;
3037 }
3038 case ISD::INSERT_SUBVECTOR: {
3039 // Demand any elements from the subvector and the remainder from the src its
3040 // inserted into.
3041 SDValue Src = Op.getOperand(0);
3042 SDValue Sub = Op.getOperand(1);
3043 uint64_t Idx = Op.getConstantOperandVal(2);
3044 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3045 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3046 APInt DemandedSrcElts = DemandedElts;
3047 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3048
3049 APInt SubUndef, SubZero;
3050 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3051 Depth + 1))
3052 return true;
3053
3054 // If none of the src operand elements are demanded, replace it with undef.
3055 if (!DemandedSrcElts && !Src.isUndef())
3056 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3057 TLO.DAG.getUNDEF(VT), Sub,
3058 Op.getOperand(2)));
3059
3060 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3061 TLO, Depth + 1))
3062 return true;
3063 KnownUndef.insertBits(SubUndef, Idx);
3064 KnownZero.insertBits(SubZero, Idx);
3065
3066 // Attempt to avoid multi-use ops if we don't need anything from them.
3067 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3068 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3069 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3070 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3071 Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3072 if (NewSrc || NewSub) {
3073 NewSrc = NewSrc ? NewSrc : Src;
3074 NewSub = NewSub ? NewSub : Sub;
3075 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3076 NewSub, Op.getOperand(2));
3077 return TLO.CombineTo(Op, NewOp);
3078 }
3079 }
3080 break;
3081 }
3082 case ISD::EXTRACT_SUBVECTOR: {
3083 // Offset the demanded elts by the subvector index.
3084 SDValue Src = Op.getOperand(0);
3085 if (Src.getValueType().isScalableVector())
3086 break;
3087 uint64_t Idx = Op.getConstantOperandVal(1);
3088 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3089 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3090
3091 APInt SrcUndef, SrcZero;
3092 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3093 Depth + 1))
3094 return true;
3095 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3096 KnownZero = SrcZero.extractBits(NumElts, Idx);
3097
3098 // Attempt to avoid multi-use ops if we don't need anything from them.
3099 if (!DemandedElts.isAllOnes()) {
3100 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3101 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3102 if (NewSrc) {
3103 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3104 Op.getOperand(1));
3105 return TLO.CombineTo(Op, NewOp);
3106 }
3107 }
3108 break;
3109 }
3110 case ISD::INSERT_VECTOR_ELT: {
3111 SDValue Vec = Op.getOperand(0);
3112 SDValue Scl = Op.getOperand(1);
3113 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3114
3115 // For a legal, constant insertion index, if we don't need this insertion
3116 // then strip it, else remove it from the demanded elts.
3117 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3118 unsigned Idx = CIdx->getZExtValue();
3119 if (!DemandedElts[Idx])
3120 return TLO.CombineTo(Op, Vec);
3121
3122 APInt DemandedVecElts(DemandedElts);
3123 DemandedVecElts.clearBit(Idx);
3124 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3125 KnownZero, TLO, Depth + 1))
3126 return true;
3127
3128 KnownUndef.setBitVal(Idx, Scl.isUndef());
3129
3130 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3131 break;
3132 }
3133
3134 APInt VecUndef, VecZero;
3135 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3136 Depth + 1))
3137 return true;
3138 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3139 break;
3140 }
3141 case ISD::VSELECT: {
3142 SDValue Sel = Op.getOperand(0);
3143 SDValue LHS = Op.getOperand(1);
3144 SDValue RHS = Op.getOperand(2);
3145
3146 // Try to transform the select condition based on the current demanded
3147 // elements.
3148 APInt UndefSel, UndefZero;
3149 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3150 Depth + 1))
3151 return true;
3152
3153 // See if we can simplify either vselect operand.
3154 APInt DemandedLHS(DemandedElts);
3155 APInt DemandedRHS(DemandedElts);
3156 APInt UndefLHS, ZeroLHS;
3157 APInt UndefRHS, ZeroRHS;
3158 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3159 Depth + 1))
3160 return true;
3161 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3162 Depth + 1))
3163 return true;
3164
3165 KnownUndef = UndefLHS & UndefRHS;
3166 KnownZero = ZeroLHS & ZeroRHS;
3167
3168 // If we know that the selected element is always zero, we don't need the
3169 // select value element.
3170 APInt DemandedSel = DemandedElts & ~KnownZero;
3171 if (DemandedSel != DemandedElts)
3172 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3173 Depth + 1))
3174 return true;
3175
3176 break;
3177 }
3178 case ISD::VECTOR_SHUFFLE: {
3179 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3180
3181 // Collect demanded elements from shuffle operands..
3182 APInt DemandedLHS(NumElts, 0);
3183 APInt DemandedRHS(NumElts, 0);
3184 for (unsigned i = 0; i != NumElts; ++i) {
3185 int M = ShuffleMask[i];
3186 if (M < 0 || !DemandedElts[i])
3187 continue;
3188 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3189 if (M < (int)NumElts)
3190 DemandedLHS.setBit(M);
3191 else
3192 DemandedRHS.setBit(M - NumElts);
3193 }
3194
3195 // See if we can simplify either shuffle operand.
3196 APInt UndefLHS, ZeroLHS;
3197 APInt UndefRHS, ZeroRHS;
3198 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3199 ZeroLHS, TLO, Depth + 1))
3200 return true;
3201 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3202 ZeroRHS, TLO, Depth + 1))
3203 return true;
3204
3205 // Simplify mask using undef elements from LHS/RHS.
3206 bool Updated = false;
3207 bool IdentityLHS = true, IdentityRHS = true;
3208 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3209 for (unsigned i = 0; i != NumElts; ++i) {
3210 int &M = NewMask[i];
3211 if (M < 0)
3212 continue;
3213 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3214 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3215 Updated = true;
3216 M = -1;
3217 }
3218 IdentityLHS &= (M < 0) || (M == (int)i);
3219 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3220 }
3221
3222 // Update legal shuffle masks based on demanded elements if it won't reduce
3223 // to Identity which can cause premature removal of the shuffle mask.
3224 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3225 SDValue LegalShuffle =
3226 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3227 NewMask, TLO.DAG);
3228 if (LegalShuffle)
3229 return TLO.CombineTo(Op, LegalShuffle);
3230 }
3231
3232 // Propagate undef/zero elements from LHS/RHS.
3233 for (unsigned i = 0; i != NumElts; ++i) {
3234 int M = ShuffleMask[i];
3235 if (M < 0) {
3236 KnownUndef.setBit(i);
3237 } else if (M < (int)NumElts) {
3238 if (UndefLHS[M])
3239 KnownUndef.setBit(i);
3240 if (ZeroLHS[M])
3241 KnownZero.setBit(i);
3242 } else {
3243 if (UndefRHS[M - NumElts])
3244 KnownUndef.setBit(i);
3245 if (ZeroRHS[M - NumElts])
3246 KnownZero.setBit(i);
3247 }
3248 }
3249 break;
3250 }
3251 case ISD::ANY_EXTEND_VECTOR_INREG:
3252 case ISD::SIGN_EXTEND_VECTOR_INREG:
3253 case ISD::ZERO_EXTEND_VECTOR_INREG: {
3254 APInt SrcUndef, SrcZero;
3255 SDValue Src = Op.getOperand(0);
3256 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3257 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3258 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3259 Depth + 1))
3260 return true;
3261 KnownZero = SrcZero.zextOrTrunc(NumElts);
3262 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3263
3264 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3265 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3266 DemandedSrcElts == 1) {
3267 // aext - if we just need the bottom element then we can bitcast.
3268 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3269 }
3270
3271 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3272 // zext(undef) upper bits are guaranteed to be zero.
3273 if (DemandedElts.isSubsetOf(KnownUndef))
3274 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3275 KnownUndef.clearAllBits();
3276
3277 // zext - if we just need the bottom element then we can mask:
3278 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3279 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3280 Op->isOnlyUserOf(Src.getNode()) &&
3281 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3282 SDLoc DL(Op);
3283 EVT SrcVT = Src.getValueType();
3284 EVT SrcSVT = SrcVT.getScalarType();
3285 SmallVector<SDValue> MaskElts;
3286 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3287 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3288 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3289 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3290 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3291 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3292 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3293 }
3294 }
3295 }
3296 break;
3297 }
3298
3299 // TODO: There are more binop opcodes that could be handled here - MIN,
3300 // MAX, saturated math, etc.
3301 case ISD::ADD: {
3302 SDValue Op0 = Op.getOperand(0);
3303 SDValue Op1 = Op.getOperand(1);
3304 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3305 APInt UndefLHS, ZeroLHS;
3306 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3307 Depth + 1, /*AssumeSingleUse*/ true))
3308 return true;
3309 }
3310 LLVM_FALLTHROUGH;
3311 }
3312 case ISD::OR:
3313 case ISD::XOR:
3314 case ISD::SUB:
3315 case ISD::FADD:
3316 case ISD::FSUB:
3317 case ISD::FMUL:
3318 case ISD::FDIV:
3319 case ISD::FREM: {
3320 SDValue Op0 = Op.getOperand(0);
3321 SDValue Op1 = Op.getOperand(1);
3322
3323 APInt UndefRHS, ZeroRHS;
3324 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3325 Depth + 1))
3326 return true;
3327 APInt UndefLHS, ZeroLHS;
3328 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3329 Depth + 1))
3330 return true;
3331
3332 KnownZero = ZeroLHS & ZeroRHS;
3333 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3334
3335 // Attempt to avoid multi-use ops if we don't need anything from them.
3336 // TODO - use KnownUndef to relax the demandedelts?
3337 if (!DemandedElts.isAllOnes())
3338 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3339 return true;
3340 break;
3341 }
3342 case ISD::SHL:
3343 case ISD::SRL:
3344 case ISD::SRA:
3345 case ISD::ROTL:
3346 case ISD::ROTR: {
3347 SDValue Op0 = Op.getOperand(0);
3348 SDValue Op1 = Op.getOperand(1);
3349
3350 APInt UndefRHS, ZeroRHS;
3351 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3352 Depth + 1))
3353 return true;
3354 APInt UndefLHS, ZeroLHS;
3355 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3356 Depth + 1))
3357 return true;
3358
3359 KnownZero = ZeroLHS;
3360 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3361
3362 // Attempt to avoid multi-use ops if we don't need anything from them.
3363 // TODO - use KnownUndef to relax the demandedelts?
3364 if (!DemandedElts.isAllOnes())
3365 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3366 return true;
3367 break;
3368 }
3369 case ISD::MUL:
3370 case ISD::AND: {
3371 SDValue Op0 = Op.getOperand(0);
3372 SDValue Op1 = Op.getOperand(1);
3373
3374 APInt SrcUndef, SrcZero;
3375 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3376 Depth + 1))
3377 return true;
3378 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3379 TLO, Depth + 1))
3380 return true;
3381
3382 // If every element pair has a zero/undef then just fold to zero.
3383 // fold (and x, undef) -> 0 / (and x, 0) -> 0
3384 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0
3385 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3386 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3387
3388 // If either side has a zero element, then the result element is zero, even
3389 // if the other is an UNDEF.
3390 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3391 // and then handle 'and' nodes with the rest of the binop opcodes.
3392 KnownZero |= SrcZero;
3393 KnownUndef &= SrcUndef;
3394 KnownUndef &= ~KnownZero;
3395
3396 // Attempt to avoid multi-use ops if we don't need anything from them.
3397 if (!DemandedElts.isAllOnes())
3398 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3399 return true;
3400 break;
3401 }
3402 case ISD::TRUNCATE:
3403 case ISD::SIGN_EXTEND:
3404 case ISD::ZERO_EXTEND:
3405 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3406 KnownZero, TLO, Depth + 1))
3407 return true;
3408
3409 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3410 // zext(undef) upper bits are guaranteed to be zero.
3411 if (DemandedElts.isSubsetOf(KnownUndef))
3412 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3413 KnownUndef.clearAllBits();
3414 }
3415 break;
3416 default: {
3417 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3418 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3419 KnownZero, TLO, Depth))
3420 return true;
3421 } else {
3422 KnownBits Known;
3423 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3424 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3425 TLO, Depth, AssumeSingleUse))
3426 return true;
3427 }
3428 break;
3429 }
3430 }
3431 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3432
3433 // Constant fold all undef cases.
3434 // TODO: Handle zero cases as well.
3435 if (DemandedElts.isSubsetOf(KnownUndef))
3436 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3437
3438 return false;
3439 }
3440
3441 /// Determine which of the bits specified in Mask are known to be either zero or
3442 /// one and return them in the Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const3443 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3444 KnownBits &Known,
3445 const APInt &DemandedElts,
3446 const SelectionDAG &DAG,
3447 unsigned Depth) const {
3448 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3449 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3450 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3451 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3452 "Should use MaskedValueIsZero if you don't know whether Op"
3453 " is a target node!");
3454 Known.resetAll();
3455 }
3456
computeKnownBitsForTargetInstr(GISelKnownBits & Analysis,Register R,KnownBits & Known,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const3457 void TargetLowering::computeKnownBitsForTargetInstr(
3458 GISelKnownBits &Analysis, Register R, KnownBits &Known,
3459 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3460 unsigned Depth) const {
3461 Known.resetAll();
3462 }
3463
computeKnownBitsForFrameIndex(const int FrameIdx,KnownBits & Known,const MachineFunction & MF) const3464 void TargetLowering::computeKnownBitsForFrameIndex(
3465 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3466 // The low bits are known zero if the pointer is aligned.
3467 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3468 }
3469
computeKnownAlignForTargetInstr(GISelKnownBits & Analysis,Register R,const MachineRegisterInfo & MRI,unsigned Depth) const3470 Align TargetLowering::computeKnownAlignForTargetInstr(
3471 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3472 unsigned Depth) const {
3473 return Align(1);
3474 }
3475
3476 /// This method can be implemented by targets that want to expose additional
3477 /// information about sign bits to the DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt &,const SelectionDAG &,unsigned Depth) const3478 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3479 const APInt &,
3480 const SelectionDAG &,
3481 unsigned Depth) const {
3482 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3483 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3484 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3485 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3486 "Should use ComputeNumSignBits if you don't know whether Op"
3487 " is a target node!");
3488 return 1;
3489 }
3490
computeNumSignBitsForTargetInstr(GISelKnownBits & Analysis,Register R,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const3491 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3492 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3493 const MachineRegisterInfo &MRI, unsigned Depth) const {
3494 return 1;
3495 }
3496
SimplifyDemandedVectorEltsForTargetNode(SDValue Op,const APInt & DemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth) const3497 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3498 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3499 TargetLoweringOpt &TLO, unsigned Depth) const {
3500 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3501 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3502 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3503 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3504 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3505 " is a target node!");
3506 return false;
3507 }
3508
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const3509 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3510 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3511 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3512 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3513 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3514 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3515 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3516 "Should use SimplifyDemandedBits if you don't know whether Op"
3517 " is a target node!");
3518 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3519 return false;
3520 }
3521
SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const3522 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3523 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3524 SelectionDAG &DAG, unsigned Depth) const {
3525 assert(
3526 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3527 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3528 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3529 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3530 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3531 " is a target node!");
3532 return SDValue();
3533 }
3534
3535 SDValue
buildLegalVectorShuffle(EVT VT,const SDLoc & DL,SDValue N0,SDValue N1,MutableArrayRef<int> Mask,SelectionDAG & DAG) const3536 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3537 SDValue N1, MutableArrayRef<int> Mask,
3538 SelectionDAG &DAG) const {
3539 bool LegalMask = isShuffleMaskLegal(Mask, VT);
3540 if (!LegalMask) {
3541 std::swap(N0, N1);
3542 ShuffleVectorSDNode::commuteMask(Mask);
3543 LegalMask = isShuffleMaskLegal(Mask, VT);
3544 }
3545
3546 if (!LegalMask)
3547 return SDValue();
3548
3549 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3550 }
3551
getTargetConstantFromLoad(LoadSDNode *) const3552 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3553 return nullptr;
3554 }
3555
isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,bool PoisonOnly,unsigned Depth) const3556 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3557 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3558 bool PoisonOnly, unsigned Depth) const {
3559 assert(
3560 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3561 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3562 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3563 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3564 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3565 " is a target node!");
3566 return false;
3567 }
3568
isKnownNeverNaNForTargetNode(SDValue Op,const SelectionDAG & DAG,bool SNaN,unsigned Depth) const3569 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3570 const SelectionDAG &DAG,
3571 bool SNaN,
3572 unsigned Depth) const {
3573 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3574 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3575 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3576 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3577 "Should use isKnownNeverNaN if you don't know whether Op"
3578 " is a target node!");
3579 return false;
3580 }
3581
isSplatValueForTargetNode(SDValue Op,const APInt & DemandedElts,APInt & UndefElts,unsigned Depth) const3582 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3583 const APInt &DemandedElts,
3584 APInt &UndefElts,
3585 unsigned Depth) const {
3586 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3587 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3588 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3589 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3590 "Should use isSplatValue if you don't know whether Op"
3591 " is a target node!");
3592 return false;
3593 }
3594
3595 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3596 // work with truncating build vectors and vectors with elements of less than
3597 // 8 bits.
isConstTrueVal(SDValue N) const3598 bool TargetLowering::isConstTrueVal(SDValue N) const {
3599 if (!N)
3600 return false;
3601
3602 unsigned EltWidth;
3603 APInt CVal;
3604 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3605 /*AllowTruncation=*/true)) {
3606 CVal = CN->getAPIntValue();
3607 EltWidth = N.getValueType().getScalarSizeInBits();
3608 } else
3609 return false;
3610
3611 // If this is a truncating splat, truncate the splat value.
3612 // Otherwise, we may fail to match the expected values below.
3613 if (EltWidth < CVal.getBitWidth())
3614 CVal = CVal.trunc(EltWidth);
3615
3616 switch (getBooleanContents(N.getValueType())) {
3617 case UndefinedBooleanContent:
3618 return CVal[0];
3619 case ZeroOrOneBooleanContent:
3620 return CVal.isOne();
3621 case ZeroOrNegativeOneBooleanContent:
3622 return CVal.isAllOnes();
3623 }
3624
3625 llvm_unreachable("Invalid boolean contents");
3626 }
3627
isConstFalseVal(SDValue N) const3628 bool TargetLowering::isConstFalseVal(SDValue N) const {
3629 if (!N)
3630 return false;
3631
3632 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3633 if (!CN) {
3634 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3635 if (!BV)
3636 return false;
3637
3638 // Only interested in constant splats, we don't care about undef
3639 // elements in identifying boolean constants and getConstantSplatNode
3640 // returns NULL if all ops are undef;
3641 CN = BV->getConstantSplatNode();
3642 if (!CN)
3643 return false;
3644 }
3645
3646 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3647 return !CN->getAPIntValue()[0];
3648
3649 return CN->isZero();
3650 }
3651
isExtendedTrueVal(const ConstantSDNode * N,EVT VT,bool SExt) const3652 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3653 bool SExt) const {
3654 if (VT == MVT::i1)
3655 return N->isOne();
3656
3657 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3658 switch (Cnt) {
3659 case TargetLowering::ZeroOrOneBooleanContent:
3660 // An extended value of 1 is always true, unless its original type is i1,
3661 // in which case it will be sign extended to -1.
3662 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3663 case TargetLowering::UndefinedBooleanContent:
3664 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3665 return N->isAllOnes() && SExt;
3666 }
3667 llvm_unreachable("Unexpected enumeration.");
3668 }
3669
3670 /// This helper function of SimplifySetCC tries to optimize the comparison when
3671 /// either operand of the SetCC node is a bitwise-and instruction.
foldSetCCWithAnd(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const3672 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3673 ISD::CondCode Cond, const SDLoc &DL,
3674 DAGCombinerInfo &DCI) const {
3675 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3676 std::swap(N0, N1);
3677
3678 SelectionDAG &DAG = DCI.DAG;
3679 EVT OpVT = N0.getValueType();
3680 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3681 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3682 return SDValue();
3683
3684 // (X & Y) != 0 --> zextOrTrunc(X & Y)
3685 // iff everything but LSB is known zero:
3686 if (Cond == ISD::SETNE && isNullConstant(N1) &&
3687 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3688 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3689 unsigned NumEltBits = OpVT.getScalarSizeInBits();
3690 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3691 if (DAG.MaskedValueIsZero(N0, UpperBits))
3692 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3693 }
3694
3695 // Match these patterns in any of their permutations:
3696 // (X & Y) == Y
3697 // (X & Y) != Y
3698 SDValue X, Y;
3699 if (N0.getOperand(0) == N1) {
3700 X = N0.getOperand(1);
3701 Y = N0.getOperand(0);
3702 } else if (N0.getOperand(1) == N1) {
3703 X = N0.getOperand(0);
3704 Y = N0.getOperand(1);
3705 } else {
3706 return SDValue();
3707 }
3708
3709 SDValue Zero = DAG.getConstant(0, DL, OpVT);
3710 if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3711 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3712 // Note that where Y is variable and is known to have at most one bit set
3713 // (for example, if it is Z & 1) we cannot do this; the expressions are not
3714 // equivalent when Y == 0.
3715 assert(OpVT.isInteger());
3716 Cond = ISD::getSetCCInverse(Cond, OpVT);
3717 if (DCI.isBeforeLegalizeOps() ||
3718 isCondCodeLegal(Cond, N0.getSimpleValueType()))
3719 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3720 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3721 // If the target supports an 'and-not' or 'and-complement' logic operation,
3722 // try to use that to make a comparison operation more efficient.
3723 // But don't do this transform if the mask is a single bit because there are
3724 // more efficient ways to deal with that case (for example, 'bt' on x86 or
3725 // 'rlwinm' on PPC).
3726
3727 // Bail out if the compare operand that we want to turn into a zero is
3728 // already a zero (otherwise, infinite loop).
3729 auto *YConst = dyn_cast<ConstantSDNode>(Y);
3730 if (YConst && YConst->isZero())
3731 return SDValue();
3732
3733 // Transform this into: ~X & Y == 0.
3734 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3735 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3736 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3737 }
3738
3739 return SDValue();
3740 }
3741
3742 /// There are multiple IR patterns that could be checking whether certain
3743 /// truncation of a signed number would be lossy or not. The pattern which is
3744 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3745 /// We are looking for the following pattern: (KeptBits is a constant)
3746 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3747 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3748 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
3749 /// We will unfold it into the natural trunc+sext pattern:
3750 /// ((%x << C) a>> C) dstcond %x
3751 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
optimizeSetCCOfSignedTruncationCheck(EVT SCCVT,SDValue N0,SDValue N1,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const3752 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3753 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3754 const SDLoc &DL) const {
3755 // We must be comparing with a constant.
3756 ConstantSDNode *C1;
3757 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3758 return SDValue();
3759
3760 // N0 should be: add %x, (1 << (KeptBits-1))
3761 if (N0->getOpcode() != ISD::ADD)
3762 return SDValue();
3763
3764 // And we must be 'add'ing a constant.
3765 ConstantSDNode *C01;
3766 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3767 return SDValue();
3768
3769 SDValue X = N0->getOperand(0);
3770 EVT XVT = X.getValueType();
3771
3772 // Validate constants ...
3773
3774 APInt I1 = C1->getAPIntValue();
3775
3776 ISD::CondCode NewCond;
3777 if (Cond == ISD::CondCode::SETULT) {
3778 NewCond = ISD::CondCode::SETEQ;
3779 } else if (Cond == ISD::CondCode::SETULE) {
3780 NewCond = ISD::CondCode::SETEQ;
3781 // But need to 'canonicalize' the constant.
3782 I1 += 1;
3783 } else if (Cond == ISD::CondCode::SETUGT) {
3784 NewCond = ISD::CondCode::SETNE;
3785 // But need to 'canonicalize' the constant.
3786 I1 += 1;
3787 } else if (Cond == ISD::CondCode::SETUGE) {
3788 NewCond = ISD::CondCode::SETNE;
3789 } else
3790 return SDValue();
3791
3792 APInt I01 = C01->getAPIntValue();
3793
3794 auto checkConstants = [&I1, &I01]() -> bool {
3795 // Both of them must be power-of-two, and the constant from setcc is bigger.
3796 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3797 };
3798
3799 if (checkConstants()) {
3800 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
3801 } else {
3802 // What if we invert constants? (and the target predicate)
3803 I1.negate();
3804 I01.negate();
3805 assert(XVT.isInteger());
3806 NewCond = getSetCCInverse(NewCond, XVT);
3807 if (!checkConstants())
3808 return SDValue();
3809 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
3810 }
3811
3812 // They are power-of-two, so which bit is set?
3813 const unsigned KeptBits = I1.logBase2();
3814 const unsigned KeptBitsMinusOne = I01.logBase2();
3815
3816 // Magic!
3817 if (KeptBits != (KeptBitsMinusOne + 1))
3818 return SDValue();
3819 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3820
3821 // We don't want to do this in every single case.
3822 SelectionDAG &DAG = DCI.DAG;
3823 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3824 XVT, KeptBits))
3825 return SDValue();
3826
3827 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3828 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3829
3830 // Unfold into: ((%x << C) a>> C) cond %x
3831 // Where 'cond' will be either 'eq' or 'ne'.
3832 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3833 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3834 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3835 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3836
3837 return T2;
3838 }
3839
3840 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
optimizeSetCCByHoistingAndByConstFromLogicalShift(EVT SCCVT,SDValue N0,SDValue N1C,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const3841 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3842 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3843 DAGCombinerInfo &DCI, const SDLoc &DL) const {
3844 assert(isConstOrConstSplat(N1C) &&
3845 isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3846 "Should be a comparison with 0.");
3847 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3848 "Valid only for [in]equality comparisons.");
3849
3850 unsigned NewShiftOpcode;
3851 SDValue X, C, Y;
3852
3853 SelectionDAG &DAG = DCI.DAG;
3854 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3855
3856 // Look for '(C l>>/<< Y)'.
3857 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3858 // The shift should be one-use.
3859 if (!V.hasOneUse())
3860 return false;
3861 unsigned OldShiftOpcode = V.getOpcode();
3862 switch (OldShiftOpcode) {
3863 case ISD::SHL:
3864 NewShiftOpcode = ISD::SRL;
3865 break;
3866 case ISD::SRL:
3867 NewShiftOpcode = ISD::SHL;
3868 break;
3869 default:
3870 return false; // must be a logical shift.
3871 }
3872 // We should be shifting a constant.
3873 // FIXME: best to use isConstantOrConstantVector().
3874 C = V.getOperand(0);
3875 ConstantSDNode *CC =
3876 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3877 if (!CC)
3878 return false;
3879 Y = V.getOperand(1);
3880
3881 ConstantSDNode *XC =
3882 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3883 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3884 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3885 };
3886
3887 // LHS of comparison should be an one-use 'and'.
3888 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3889 return SDValue();
3890
3891 X = N0.getOperand(0);
3892 SDValue Mask = N0.getOperand(1);
3893
3894 // 'and' is commutative!
3895 if (!Match(Mask)) {
3896 std::swap(X, Mask);
3897 if (!Match(Mask))
3898 return SDValue();
3899 }
3900
3901 EVT VT = X.getValueType();
3902
3903 // Produce:
3904 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3905 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3906 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3907 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3908 return T2;
3909 }
3910
3911 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3912 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3913 /// handle the commuted versions of these patterns.
foldSetCCWithBinOp(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const3914 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3915 ISD::CondCode Cond, const SDLoc &DL,
3916 DAGCombinerInfo &DCI) const {
3917 unsigned BOpcode = N0.getOpcode();
3918 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3919 "Unexpected binop");
3920 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3921
3922 // (X + Y) == X --> Y == 0
3923 // (X - Y) == X --> Y == 0
3924 // (X ^ Y) == X --> Y == 0
3925 SelectionDAG &DAG = DCI.DAG;
3926 EVT OpVT = N0.getValueType();
3927 SDValue X = N0.getOperand(0);
3928 SDValue Y = N0.getOperand(1);
3929 if (X == N1)
3930 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3931
3932 if (Y != N1)
3933 return SDValue();
3934
3935 // (X + Y) == Y --> X == 0
3936 // (X ^ Y) == Y --> X == 0
3937 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3938 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3939
3940 // The shift would not be valid if the operands are boolean (i1).
3941 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3942 return SDValue();
3943
3944 // (X - Y) == Y --> X == Y << 1
3945 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3946 !DCI.isBeforeLegalize());
3947 SDValue One = DAG.getConstant(1, DL, ShiftVT);
3948 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3949 if (!DCI.isCalledByLegalizer())
3950 DCI.AddToWorklist(YShl1.getNode());
3951 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3952 }
3953
simplifySetCCWithCTPOP(const TargetLowering & TLI,EVT VT,SDValue N0,const APInt & C1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)3954 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3955 SDValue N0, const APInt &C1,
3956 ISD::CondCode Cond, const SDLoc &dl,
3957 SelectionDAG &DAG) {
3958 // Look through truncs that don't change the value of a ctpop.
3959 // FIXME: Add vector support? Need to be careful with setcc result type below.
3960 SDValue CTPOP = N0;
3961 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3962 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3963 CTPOP = N0.getOperand(0);
3964
3965 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3966 return SDValue();
3967
3968 EVT CTVT = CTPOP.getValueType();
3969 SDValue CTOp = CTPOP.getOperand(0);
3970
3971 // If this is a vector CTPOP, keep the CTPOP if it is legal.
3972 // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3973 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3974 return SDValue();
3975
3976 // (ctpop x) u< 2 -> (x & x-1) == 0
3977 // (ctpop x) u> 1 -> (x & x-1) != 0
3978 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3979 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3980 if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3981 return SDValue();
3982 if (C1 == 0 && (Cond == ISD::SETULT))
3983 return SDValue(); // This is handled elsewhere.
3984
3985 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3986
3987 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3988 SDValue Result = CTOp;
3989 for (unsigned i = 0; i < Passes; i++) {
3990 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3991 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3992 }
3993 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3994 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3995 }
3996
3997 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3998 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3999 // For scalars, keep CTPOP if it is legal or custom.
4000 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
4001 return SDValue();
4002 // This is based on X86's custom lowering for CTPOP which produces more
4003 // instructions than the expansion here.
4004
4005 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
4006 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
4007 SDValue Zero = DAG.getConstant(0, dl, CTVT);
4008 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4009 assert(CTVT.isInteger());
4010 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
4011 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4012 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4013 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
4014 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4015 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
4016 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
4017 }
4018
4019 return SDValue();
4020 }
4021
foldSetCCWithRotate(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)4022 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4023 ISD::CondCode Cond, const SDLoc &dl,
4024 SelectionDAG &DAG) {
4025 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4026 return SDValue();
4027
4028 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4029 if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4030 return SDValue();
4031
4032 auto getRotateSource = [](SDValue X) {
4033 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4034 return X.getOperand(0);
4035 return SDValue();
4036 };
4037
4038 // Peek through a rotated value compared against 0 or -1:
4039 // (rot X, Y) == 0/-1 --> X == 0/-1
4040 // (rot X, Y) != 0/-1 --> X != 0/-1
4041 if (SDValue R = getRotateSource(N0))
4042 return DAG.getSetCC(dl, VT, R, N1, Cond);
4043
4044 // Peek through an 'or' of a rotated value compared against 0:
4045 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4046 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4047 //
4048 // TODO: Add the 'and' with -1 sibling.
4049 // TODO: Recurse through a series of 'or' ops to find the rotate.
4050 EVT OpVT = N0.getValueType();
4051 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4052 if (SDValue R = getRotateSource(N0.getOperand(0))) {
4053 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4054 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4055 }
4056 if (SDValue R = getRotateSource(N0.getOperand(1))) {
4057 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4058 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4059 }
4060 }
4061
4062 return SDValue();
4063 }
4064
foldSetCCWithFunnelShift(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)4065 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4066 ISD::CondCode Cond, const SDLoc &dl,
4067 SelectionDAG &DAG) {
4068 // If we are testing for all-bits-clear, we might be able to do that with
4069 // less shifting since bit-order does not matter.
4070 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4071 return SDValue();
4072
4073 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4074 if (!C1 || !C1->isZero())
4075 return SDValue();
4076
4077 if (!N0.hasOneUse() ||
4078 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4079 return SDValue();
4080
4081 unsigned BitWidth = N0.getScalarValueSizeInBits();
4082 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4083 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4084 return SDValue();
4085
4086 // Canonicalize fshr as fshl to reduce pattern-matching.
4087 unsigned ShAmt = ShAmtC->getZExtValue();
4088 if (N0.getOpcode() == ISD::FSHR)
4089 ShAmt = BitWidth - ShAmt;
4090
4091 // Match an 'or' with a specific operand 'Other' in either commuted variant.
4092 SDValue X, Y;
4093 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4094 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4095 return false;
4096 if (Or.getOperand(0) == Other) {
4097 X = Or.getOperand(0);
4098 Y = Or.getOperand(1);
4099 return true;
4100 }
4101 if (Or.getOperand(1) == Other) {
4102 X = Or.getOperand(1);
4103 Y = Or.getOperand(0);
4104 return true;
4105 }
4106 return false;
4107 };
4108
4109 EVT OpVT = N0.getValueType();
4110 EVT ShAmtVT = N0.getOperand(2).getValueType();
4111 SDValue F0 = N0.getOperand(0);
4112 SDValue F1 = N0.getOperand(1);
4113 if (matchOr(F0, F1)) {
4114 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4115 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4116 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4117 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4118 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4119 }
4120 if (matchOr(F1, F0)) {
4121 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4122 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4123 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4124 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4125 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4126 }
4127
4128 return SDValue();
4129 }
4130
4131 /// Try to simplify a setcc built with the specified operands and cc. If it is
4132 /// unable to simplify it, return a null SDValue.
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,const SDLoc & dl) const4133 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4134 ISD::CondCode Cond, bool foldBooleans,
4135 DAGCombinerInfo &DCI,
4136 const SDLoc &dl) const {
4137 SelectionDAG &DAG = DCI.DAG;
4138 const DataLayout &Layout = DAG.getDataLayout();
4139 EVT OpVT = N0.getValueType();
4140
4141 // Constant fold or commute setcc.
4142 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4143 return Fold;
4144
4145 bool N0ConstOrSplat =
4146 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4147 bool N1ConstOrSplat =
4148 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4149
4150 // Ensure that the constant occurs on the RHS and fold constant comparisons.
4151 // TODO: Handle non-splat vector constants. All undef causes trouble.
4152 // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4153 // infinite loop here when we encounter one.
4154 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4155 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4156 (DCI.isBeforeLegalizeOps() ||
4157 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4158 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4159
4160 // If we have a subtract with the same 2 non-constant operands as this setcc
4161 // -- but in reverse order -- then try to commute the operands of this setcc
4162 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4163 // instruction on some targets.
4164 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4165 (DCI.isBeforeLegalizeOps() ||
4166 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4167 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4168 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4169 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4170
4171 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4172 return V;
4173
4174 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4175 return V;
4176
4177 if (auto *N1C = isConstOrConstSplat(N1)) {
4178 const APInt &C1 = N1C->getAPIntValue();
4179
4180 // Optimize some CTPOP cases.
4181 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4182 return V;
4183
4184 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4185 // equality comparison, then we're just comparing whether X itself is
4186 // zero.
4187 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4188 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4189 isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4190 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4191 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4192 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4193 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4194 // (srl (ctlz x), 5) == 0 -> X != 0
4195 // (srl (ctlz x), 5) != 1 -> X != 0
4196 Cond = ISD::SETNE;
4197 } else {
4198 // (srl (ctlz x), 5) != 0 -> X == 0
4199 // (srl (ctlz x), 5) == 1 -> X == 0
4200 Cond = ISD::SETEQ;
4201 }
4202 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4203 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4204 Cond);
4205 }
4206 }
4207 }
4208 }
4209
4210 // FIXME: Support vectors.
4211 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4212 const APInt &C1 = N1C->getAPIntValue();
4213
4214 // (zext x) == C --> x == (trunc C)
4215 // (sext x) == C --> x == (trunc C)
4216 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4217 DCI.isBeforeLegalize() && N0->hasOneUse()) {
4218 unsigned MinBits = N0.getValueSizeInBits();
4219 SDValue PreExt;
4220 bool Signed = false;
4221 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4222 // ZExt
4223 MinBits = N0->getOperand(0).getValueSizeInBits();
4224 PreExt = N0->getOperand(0);
4225 } else if (N0->getOpcode() == ISD::AND) {
4226 // DAGCombine turns costly ZExts into ANDs
4227 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4228 if ((C->getAPIntValue()+1).isPowerOf2()) {
4229 MinBits = C->getAPIntValue().countTrailingOnes();
4230 PreExt = N0->getOperand(0);
4231 }
4232 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4233 // SExt
4234 MinBits = N0->getOperand(0).getValueSizeInBits();
4235 PreExt = N0->getOperand(0);
4236 Signed = true;
4237 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4238 // ZEXTLOAD / SEXTLOAD
4239 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4240 MinBits = LN0->getMemoryVT().getSizeInBits();
4241 PreExt = N0;
4242 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4243 Signed = true;
4244 MinBits = LN0->getMemoryVT().getSizeInBits();
4245 PreExt = N0;
4246 }
4247 }
4248
4249 // Figure out how many bits we need to preserve this constant.
4250 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4251
4252 // Make sure we're not losing bits from the constant.
4253 if (MinBits > 0 &&
4254 MinBits < C1.getBitWidth() &&
4255 MinBits >= ReqdBits) {
4256 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4257 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4258 // Will get folded away.
4259 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4260 if (MinBits == 1 && C1 == 1)
4261 // Invert the condition.
4262 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4263 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4264 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4265 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4266 }
4267
4268 // If truncating the setcc operands is not desirable, we can still
4269 // simplify the expression in some cases:
4270 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4271 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4272 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4273 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4274 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4275 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4276 SDValue TopSetCC = N0->getOperand(0);
4277 unsigned N0Opc = N0->getOpcode();
4278 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4279 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4280 TopSetCC.getOpcode() == ISD::SETCC &&
4281 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4282 (isConstFalseVal(N1) ||
4283 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4284
4285 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4286 (!N1C->isZero() && Cond == ISD::SETNE);
4287
4288 if (!Inverse)
4289 return TopSetCC;
4290
4291 ISD::CondCode InvCond = ISD::getSetCCInverse(
4292 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4293 TopSetCC.getOperand(0).getValueType());
4294 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4295 TopSetCC.getOperand(1),
4296 InvCond);
4297 }
4298 }
4299 }
4300
4301 // If the LHS is '(and load, const)', the RHS is 0, the test is for
4302 // equality or unsigned, and all 1 bits of the const are in the same
4303 // partial word, see if we can shorten the load.
4304 if (DCI.isBeforeLegalize() &&
4305 !ISD::isSignedIntSetCC(Cond) &&
4306 N0.getOpcode() == ISD::AND && C1 == 0 &&
4307 N0.getNode()->hasOneUse() &&
4308 isa<LoadSDNode>(N0.getOperand(0)) &&
4309 N0.getOperand(0).getNode()->hasOneUse() &&
4310 isa<ConstantSDNode>(N0.getOperand(1))) {
4311 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4312 APInt bestMask;
4313 unsigned bestWidth = 0, bestOffset = 0;
4314 if (Lod->isSimple() && Lod->isUnindexed()) {
4315 unsigned origWidth = N0.getValueSizeInBits();
4316 unsigned maskWidth = origWidth;
4317 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4318 // 8 bits, but have to be careful...
4319 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4320 origWidth = Lod->getMemoryVT().getSizeInBits();
4321 const APInt &Mask = N0.getConstantOperandAPInt(1);
4322 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4323 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4324 for (unsigned offset=0; offset<origWidth/width; offset++) {
4325 if (Mask.isSubsetOf(newMask)) {
4326 if (Layout.isLittleEndian())
4327 bestOffset = (uint64_t)offset * (width/8);
4328 else
4329 bestOffset = (origWidth/width - offset - 1) * (width/8);
4330 bestMask = Mask.lshr(offset * (width/8) * 8);
4331 bestWidth = width;
4332 break;
4333 }
4334 newMask <<= width;
4335 }
4336 }
4337 }
4338 if (bestWidth) {
4339 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4340 if (newVT.isRound() &&
4341 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4342 SDValue Ptr = Lod->getBasePtr();
4343 if (bestOffset != 0)
4344 Ptr =
4345 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4346 SDValue NewLoad =
4347 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4348 Lod->getPointerInfo().getWithOffset(bestOffset),
4349 Lod->getOriginalAlign());
4350 return DAG.getSetCC(dl, VT,
4351 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4352 DAG.getConstant(bestMask.trunc(bestWidth),
4353 dl, newVT)),
4354 DAG.getConstant(0LL, dl, newVT), Cond);
4355 }
4356 }
4357 }
4358
4359 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4360 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4361 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4362
4363 // If the comparison constant has bits in the upper part, the
4364 // zero-extended value could never match.
4365 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4366 C1.getBitWidth() - InSize))) {
4367 switch (Cond) {
4368 case ISD::SETUGT:
4369 case ISD::SETUGE:
4370 case ISD::SETEQ:
4371 return DAG.getConstant(0, dl, VT);
4372 case ISD::SETULT:
4373 case ISD::SETULE:
4374 case ISD::SETNE:
4375 return DAG.getConstant(1, dl, VT);
4376 case ISD::SETGT:
4377 case ISD::SETGE:
4378 // True if the sign bit of C1 is set.
4379 return DAG.getConstant(C1.isNegative(), dl, VT);
4380 case ISD::SETLT:
4381 case ISD::SETLE:
4382 // True if the sign bit of C1 isn't set.
4383 return DAG.getConstant(C1.isNonNegative(), dl, VT);
4384 default:
4385 break;
4386 }
4387 }
4388
4389 // Otherwise, we can perform the comparison with the low bits.
4390 switch (Cond) {
4391 case ISD::SETEQ:
4392 case ISD::SETNE:
4393 case ISD::SETUGT:
4394 case ISD::SETUGE:
4395 case ISD::SETULT:
4396 case ISD::SETULE: {
4397 EVT newVT = N0.getOperand(0).getValueType();
4398 if (DCI.isBeforeLegalizeOps() ||
4399 (isOperationLegal(ISD::SETCC, newVT) &&
4400 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4401 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4402 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4403
4404 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4405 NewConst, Cond);
4406 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4407 }
4408 break;
4409 }
4410 default:
4411 break; // todo, be more careful with signed comparisons
4412 }
4413 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4414 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4415 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4416 OpVT)) {
4417 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4418 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4419 EVT ExtDstTy = N0.getValueType();
4420 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4421
4422 // If the constant doesn't fit into the number of bits for the source of
4423 // the sign extension, it is impossible for both sides to be equal.
4424 if (C1.getMinSignedBits() > ExtSrcTyBits)
4425 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4426
4427 assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4428 ExtDstTy != ExtSrcTy && "Unexpected types!");
4429 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4430 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4431 DAG.getConstant(Imm, dl, ExtDstTy));
4432 if (!DCI.isCalledByLegalizer())
4433 DCI.AddToWorklist(ZextOp.getNode());
4434 // Otherwise, make this a use of a zext.
4435 return DAG.getSetCC(dl, VT, ZextOp,
4436 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4437 } else if ((N1C->isZero() || N1C->isOne()) &&
4438 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4439 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
4440 if (N0.getOpcode() == ISD::SETCC &&
4441 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4442 (N0.getValueType() == MVT::i1 ||
4443 getBooleanContents(N0.getOperand(0).getValueType()) ==
4444 ZeroOrOneBooleanContent)) {
4445 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4446 if (TrueWhenTrue)
4447 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4448 // Invert the condition.
4449 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4450 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4451 if (DCI.isBeforeLegalizeOps() ||
4452 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4453 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4454 }
4455
4456 if ((N0.getOpcode() == ISD::XOR ||
4457 (N0.getOpcode() == ISD::AND &&
4458 N0.getOperand(0).getOpcode() == ISD::XOR &&
4459 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4460 isOneConstant(N0.getOperand(1))) {
4461 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
4462 // can only do this if the top bits are known zero.
4463 unsigned BitWidth = N0.getValueSizeInBits();
4464 if (DAG.MaskedValueIsZero(N0,
4465 APInt::getHighBitsSet(BitWidth,
4466 BitWidth-1))) {
4467 // Okay, get the un-inverted input value.
4468 SDValue Val;
4469 if (N0.getOpcode() == ISD::XOR) {
4470 Val = N0.getOperand(0);
4471 } else {
4472 assert(N0.getOpcode() == ISD::AND &&
4473 N0.getOperand(0).getOpcode() == ISD::XOR);
4474 // ((X^1)&1)^1 -> X & 1
4475 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4476 N0.getOperand(0).getOperand(0),
4477 N0.getOperand(1));
4478 }
4479
4480 return DAG.getSetCC(dl, VT, Val, N1,
4481 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4482 }
4483 } else if (N1C->isOne()) {
4484 SDValue Op0 = N0;
4485 if (Op0.getOpcode() == ISD::TRUNCATE)
4486 Op0 = Op0.getOperand(0);
4487
4488 if ((Op0.getOpcode() == ISD::XOR) &&
4489 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4490 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4491 SDValue XorLHS = Op0.getOperand(0);
4492 SDValue XorRHS = Op0.getOperand(1);
4493 // Ensure that the input setccs return an i1 type or 0/1 value.
4494 if (Op0.getValueType() == MVT::i1 ||
4495 (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4496 ZeroOrOneBooleanContent &&
4497 getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4498 ZeroOrOneBooleanContent)) {
4499 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4500 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4501 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4502 }
4503 }
4504 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4505 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4506 if (Op0.getValueType().bitsGT(VT))
4507 Op0 = DAG.getNode(ISD::AND, dl, VT,
4508 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4509 DAG.getConstant(1, dl, VT));
4510 else if (Op0.getValueType().bitsLT(VT))
4511 Op0 = DAG.getNode(ISD::AND, dl, VT,
4512 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4513 DAG.getConstant(1, dl, VT));
4514
4515 return DAG.getSetCC(dl, VT, Op0,
4516 DAG.getConstant(0, dl, Op0.getValueType()),
4517 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4518 }
4519 if (Op0.getOpcode() == ISD::AssertZext &&
4520 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4521 return DAG.getSetCC(dl, VT, Op0,
4522 DAG.getConstant(0, dl, Op0.getValueType()),
4523 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4524 }
4525 }
4526
4527 // Given:
4528 // icmp eq/ne (urem %x, %y), 0
4529 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4530 // icmp eq/ne %x, 0
4531 if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4532 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4533 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4534 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4535 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4536 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4537 }
4538
4539 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4540 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4541 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4542 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4543 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4544 N1C && N1C->isAllOnes()) {
4545 return DAG.getSetCC(dl, VT, N0.getOperand(0),
4546 DAG.getConstant(0, dl, OpVT),
4547 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4548 }
4549
4550 if (SDValue V =
4551 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4552 return V;
4553 }
4554
4555 // These simplifications apply to splat vectors as well.
4556 // TODO: Handle more splat vector cases.
4557 if (auto *N1C = isConstOrConstSplat(N1)) {
4558 const APInt &C1 = N1C->getAPIntValue();
4559
4560 APInt MinVal, MaxVal;
4561 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4562 if (ISD::isSignedIntSetCC(Cond)) {
4563 MinVal = APInt::getSignedMinValue(OperandBitSize);
4564 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4565 } else {
4566 MinVal = APInt::getMinValue(OperandBitSize);
4567 MaxVal = APInt::getMaxValue(OperandBitSize);
4568 }
4569
4570 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4571 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4572 // X >= MIN --> true
4573 if (C1 == MinVal)
4574 return DAG.getBoolConstant(true, dl, VT, OpVT);
4575
4576 if (!VT.isVector()) { // TODO: Support this for vectors.
4577 // X >= C0 --> X > (C0 - 1)
4578 APInt C = C1 - 1;
4579 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4580 if ((DCI.isBeforeLegalizeOps() ||
4581 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4582 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4583 isLegalICmpImmediate(C.getSExtValue())))) {
4584 return DAG.getSetCC(dl, VT, N0,
4585 DAG.getConstant(C, dl, N1.getValueType()),
4586 NewCC);
4587 }
4588 }
4589 }
4590
4591 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4592 // X <= MAX --> true
4593 if (C1 == MaxVal)
4594 return DAG.getBoolConstant(true, dl, VT, OpVT);
4595
4596 // X <= C0 --> X < (C0 + 1)
4597 if (!VT.isVector()) { // TODO: Support this for vectors.
4598 APInt C = C1 + 1;
4599 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4600 if ((DCI.isBeforeLegalizeOps() ||
4601 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4602 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4603 isLegalICmpImmediate(C.getSExtValue())))) {
4604 return DAG.getSetCC(dl, VT, N0,
4605 DAG.getConstant(C, dl, N1.getValueType()),
4606 NewCC);
4607 }
4608 }
4609 }
4610
4611 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4612 if (C1 == MinVal)
4613 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4614
4615 // TODO: Support this for vectors after legalize ops.
4616 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4617 // Canonicalize setlt X, Max --> setne X, Max
4618 if (C1 == MaxVal)
4619 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4620
4621 // If we have setult X, 1, turn it into seteq X, 0
4622 if (C1 == MinVal+1)
4623 return DAG.getSetCC(dl, VT, N0,
4624 DAG.getConstant(MinVal, dl, N0.getValueType()),
4625 ISD::SETEQ);
4626 }
4627 }
4628
4629 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4630 if (C1 == MaxVal)
4631 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4632
4633 // TODO: Support this for vectors after legalize ops.
4634 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4635 // Canonicalize setgt X, Min --> setne X, Min
4636 if (C1 == MinVal)
4637 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4638
4639 // If we have setugt X, Max-1, turn it into seteq X, Max
4640 if (C1 == MaxVal-1)
4641 return DAG.getSetCC(dl, VT, N0,
4642 DAG.getConstant(MaxVal, dl, N0.getValueType()),
4643 ISD::SETEQ);
4644 }
4645 }
4646
4647 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4648 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4649 if (C1.isZero())
4650 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4651 VT, N0, N1, Cond, DCI, dl))
4652 return CC;
4653
4654 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4655 // For example, when high 32-bits of i64 X are known clear:
4656 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
4657 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
4658 bool CmpZero = N1C->getAPIntValue().isZero();
4659 bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4660 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4661 // Match or(lo,shl(hi,bw/2)) pattern.
4662 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4663 unsigned EltBits = V.getScalarValueSizeInBits();
4664 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4665 return false;
4666 SDValue LHS = V.getOperand(0);
4667 SDValue RHS = V.getOperand(1);
4668 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4669 // Unshifted element must have zero upperbits.
4670 if (RHS.getOpcode() == ISD::SHL &&
4671 isa<ConstantSDNode>(RHS.getOperand(1)) &&
4672 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4673 DAG.MaskedValueIsZero(LHS, HiBits)) {
4674 Lo = LHS;
4675 Hi = RHS.getOperand(0);
4676 return true;
4677 }
4678 if (LHS.getOpcode() == ISD::SHL &&
4679 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4680 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4681 DAG.MaskedValueIsZero(RHS, HiBits)) {
4682 Lo = RHS;
4683 Hi = LHS.getOperand(0);
4684 return true;
4685 }
4686 return false;
4687 };
4688
4689 auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4690 unsigned EltBits = N0.getScalarValueSizeInBits();
4691 unsigned HalfBits = EltBits / 2;
4692 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4693 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4694 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4695 SDValue NewN0 =
4696 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4697 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4698 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4699 };
4700
4701 SDValue Lo, Hi;
4702 if (IsConcat(N0, Lo, Hi))
4703 return MergeConcat(Lo, Hi);
4704
4705 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4706 SDValue Lo0, Lo1, Hi0, Hi1;
4707 if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4708 IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4709 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4710 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4711 }
4712 }
4713 }
4714 }
4715
4716 // If we have "setcc X, C0", check to see if we can shrink the immediate
4717 // by changing cc.
4718 // TODO: Support this for vectors after legalize ops.
4719 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4720 // SETUGT X, SINTMAX -> SETLT X, 0
4721 // SETUGE X, SINTMIN -> SETLT X, 0
4722 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4723 (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4724 return DAG.getSetCC(dl, VT, N0,
4725 DAG.getConstant(0, dl, N1.getValueType()),
4726 ISD::SETLT);
4727
4728 // SETULT X, SINTMIN -> SETGT X, -1
4729 // SETULE X, SINTMAX -> SETGT X, -1
4730 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4731 (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4732 return DAG.getSetCC(dl, VT, N0,
4733 DAG.getAllOnesConstant(dl, N1.getValueType()),
4734 ISD::SETGT);
4735 }
4736 }
4737
4738 // Back to non-vector simplifications.
4739 // TODO: Can we do these for vector splats?
4740 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4741 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4742 const APInt &C1 = N1C->getAPIntValue();
4743 EVT ShValTy = N0.getValueType();
4744
4745 // Fold bit comparisons when we can. This will result in an
4746 // incorrect value when boolean false is negative one, unless
4747 // the bitsize is 1 in which case the false value is the same
4748 // in practice regardless of the representation.
4749 if ((VT.getSizeInBits() == 1 ||
4750 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4751 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4752 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4753 N0.getOpcode() == ISD::AND) {
4754 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4755 EVT ShiftTy =
4756 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4757 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
4758 // Perform the xform if the AND RHS is a single bit.
4759 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4760 if (AndRHS->getAPIntValue().isPowerOf2() &&
4761 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4762 return DAG.getNode(ISD::TRUNCATE, dl, VT,
4763 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4764 DAG.getConstant(ShCt, dl, ShiftTy)));
4765 }
4766 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4767 // (X & 8) == 8 --> (X & 8) >> 3
4768 // Perform the xform if C1 is a single bit.
4769 unsigned ShCt = C1.logBase2();
4770 if (C1.isPowerOf2() &&
4771 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4772 return DAG.getNode(ISD::TRUNCATE, dl, VT,
4773 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4774 DAG.getConstant(ShCt, dl, ShiftTy)));
4775 }
4776 }
4777 }
4778 }
4779
4780 if (C1.getMinSignedBits() <= 64 &&
4781 !isLegalICmpImmediate(C1.getSExtValue())) {
4782 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4783 // (X & -256) == 256 -> (X >> 8) == 1
4784 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4785 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4786 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4787 const APInt &AndRHSC = AndRHS->getAPIntValue();
4788 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4789 unsigned ShiftBits = AndRHSC.countTrailingZeros();
4790 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4791 SDValue Shift =
4792 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4793 DAG.getConstant(ShiftBits, dl, ShiftTy));
4794 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4795 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4796 }
4797 }
4798 }
4799 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4800 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4801 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4802 // X < 0x100000000 -> (X >> 32) < 1
4803 // X >= 0x100000000 -> (X >> 32) >= 1
4804 // X <= 0x0ffffffff -> (X >> 32) < 1
4805 // X > 0x0ffffffff -> (X >> 32) >= 1
4806 unsigned ShiftBits;
4807 APInt NewC = C1;
4808 ISD::CondCode NewCond = Cond;
4809 if (AdjOne) {
4810 ShiftBits = C1.countTrailingOnes();
4811 NewC = NewC + 1;
4812 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4813 } else {
4814 ShiftBits = C1.countTrailingZeros();
4815 }
4816 NewC.lshrInPlace(ShiftBits);
4817 if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4818 isLegalICmpImmediate(NewC.getSExtValue()) &&
4819 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4820 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4821 DAG.getConstant(ShiftBits, dl, ShiftTy));
4822 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4823 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4824 }
4825 }
4826 }
4827 }
4828
4829 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4830 auto *CFP = cast<ConstantFPSDNode>(N1);
4831 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4832
4833 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
4834 // constant if knowing that the operand is non-nan is enough. We prefer to
4835 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4836 // materialize 0.0.
4837 if (Cond == ISD::SETO || Cond == ISD::SETUO)
4838 return DAG.getSetCC(dl, VT, N0, N0, Cond);
4839
4840 // setcc (fneg x), C -> setcc swap(pred) x, -C
4841 if (N0.getOpcode() == ISD::FNEG) {
4842 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4843 if (DCI.isBeforeLegalizeOps() ||
4844 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4845 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4846 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4847 }
4848 }
4849
4850 // If the condition is not legal, see if we can find an equivalent one
4851 // which is legal.
4852 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4853 // If the comparison was an awkward floating-point == or != and one of
4854 // the comparison operands is infinity or negative infinity, convert the
4855 // condition to a less-awkward <= or >=.
4856 if (CFP->getValueAPF().isInfinity()) {
4857 bool IsNegInf = CFP->getValueAPF().isNegative();
4858 ISD::CondCode NewCond = ISD::SETCC_INVALID;
4859 switch (Cond) {
4860 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4861 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4862 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4863 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4864 default: break;
4865 }
4866 if (NewCond != ISD::SETCC_INVALID &&
4867 isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4868 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4869 }
4870 }
4871 }
4872
4873 if (N0 == N1) {
4874 // The sext(setcc()) => setcc() optimization relies on the appropriate
4875 // constant being emitted.
4876 assert(!N0.getValueType().isInteger() &&
4877 "Integer types should be handled by FoldSetCC");
4878
4879 bool EqTrue = ISD::isTrueWhenEqual(Cond);
4880 unsigned UOF = ISD::getUnorderedFlavor(Cond);
4881 if (UOF == 2) // FP operators that are undefined on NaNs.
4882 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4883 if (UOF == unsigned(EqTrue))
4884 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4885 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
4886 // if it is not already.
4887 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4888 if (NewCond != Cond &&
4889 (DCI.isBeforeLegalizeOps() ||
4890 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4891 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4892 }
4893
4894 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4895 N0.getValueType().isInteger()) {
4896 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4897 N0.getOpcode() == ISD::XOR) {
4898 // Simplify (X+Y) == (X+Z) --> Y == Z
4899 if (N0.getOpcode() == N1.getOpcode()) {
4900 if (N0.getOperand(0) == N1.getOperand(0))
4901 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4902 if (N0.getOperand(1) == N1.getOperand(1))
4903 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4904 if (isCommutativeBinOp(N0.getOpcode())) {
4905 // If X op Y == Y op X, try other combinations.
4906 if (N0.getOperand(0) == N1.getOperand(1))
4907 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4908 Cond);
4909 if (N0.getOperand(1) == N1.getOperand(0))
4910 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4911 Cond);
4912 }
4913 }
4914
4915 // If RHS is a legal immediate value for a compare instruction, we need
4916 // to be careful about increasing register pressure needlessly.
4917 bool LegalRHSImm = false;
4918
4919 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4920 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4921 // Turn (X+C1) == C2 --> X == C2-C1
4922 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4923 return DAG.getSetCC(
4924 dl, VT, N0.getOperand(0),
4925 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4926 dl, N0.getValueType()),
4927 Cond);
4928
4929 // Turn (X^C1) == C2 --> X == C1^C2
4930 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4931 return DAG.getSetCC(
4932 dl, VT, N0.getOperand(0),
4933 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4934 dl, N0.getValueType()),
4935 Cond);
4936 }
4937
4938 // Turn (C1-X) == C2 --> X == C1-C2
4939 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4940 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4941 return DAG.getSetCC(
4942 dl, VT, N0.getOperand(1),
4943 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4944 dl, N0.getValueType()),
4945 Cond);
4946
4947 // Could RHSC fold directly into a compare?
4948 if (RHSC->getValueType(0).getSizeInBits() <= 64)
4949 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4950 }
4951
4952 // (X+Y) == X --> Y == 0 and similar folds.
4953 // Don't do this if X is an immediate that can fold into a cmp
4954 // instruction and X+Y has other uses. It could be an induction variable
4955 // chain, and the transform would increase register pressure.
4956 if (!LegalRHSImm || N0.hasOneUse())
4957 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4958 return V;
4959 }
4960
4961 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4962 N1.getOpcode() == ISD::XOR)
4963 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4964 return V;
4965
4966 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4967 return V;
4968 }
4969
4970 // Fold remainder of division by a constant.
4971 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4972 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4973 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4974
4975 // When division is cheap or optimizing for minimum size,
4976 // fall through to DIVREM creation by skipping this fold.
4977 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4978 if (N0.getOpcode() == ISD::UREM) {
4979 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4980 return Folded;
4981 } else if (N0.getOpcode() == ISD::SREM) {
4982 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4983 return Folded;
4984 }
4985 }
4986 }
4987
4988 // Fold away ALL boolean setcc's.
4989 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4990 SDValue Temp;
4991 switch (Cond) {
4992 default: llvm_unreachable("Unknown integer setcc!");
4993 case ISD::SETEQ: // X == Y -> ~(X^Y)
4994 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4995 N0 = DAG.getNOT(dl, Temp, OpVT);
4996 if (!DCI.isCalledByLegalizer())
4997 DCI.AddToWorklist(Temp.getNode());
4998 break;
4999 case ISD::SETNE: // X != Y --> (X^Y)
5000 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5001 break;
5002 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
5003 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
5004 Temp = DAG.getNOT(dl, N0, OpVT);
5005 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5006 if (!DCI.isCalledByLegalizer())
5007 DCI.AddToWorklist(Temp.getNode());
5008 break;
5009 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
5010 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
5011 Temp = DAG.getNOT(dl, N1, OpVT);
5012 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5013 if (!DCI.isCalledByLegalizer())
5014 DCI.AddToWorklist(Temp.getNode());
5015 break;
5016 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
5017 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
5018 Temp = DAG.getNOT(dl, N0, OpVT);
5019 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5020 if (!DCI.isCalledByLegalizer())
5021 DCI.AddToWorklist(Temp.getNode());
5022 break;
5023 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
5024 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
5025 Temp = DAG.getNOT(dl, N1, OpVT);
5026 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5027 break;
5028 }
5029 if (VT.getScalarType() != MVT::i1) {
5030 if (!DCI.isCalledByLegalizer())
5031 DCI.AddToWorklist(N0.getNode());
5032 // FIXME: If running after legalize, we probably can't do this.
5033 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5034 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5035 }
5036 return N0;
5037 }
5038
5039 // Could not fold it.
5040 return SDValue();
5041 }
5042
5043 /// Returns true (and the GlobalValue and the offset) if the node is a
5044 /// GlobalAddress + offset.
isGAPlusOffset(SDNode * WN,const GlobalValue * & GA,int64_t & Offset) const5045 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5046 int64_t &Offset) const {
5047
5048 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5049
5050 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5051 GA = GASD->getGlobal();
5052 Offset += GASD->getOffset();
5053 return true;
5054 }
5055
5056 if (N->getOpcode() == ISD::ADD) {
5057 SDValue N1 = N->getOperand(0);
5058 SDValue N2 = N->getOperand(1);
5059 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5060 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5061 Offset += V->getSExtValue();
5062 return true;
5063 }
5064 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5065 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5066 Offset += V->getSExtValue();
5067 return true;
5068 }
5069 }
5070 }
5071
5072 return false;
5073 }
5074
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5075 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5076 DAGCombinerInfo &DCI) const {
5077 // Default implementation: no optimization.
5078 return SDValue();
5079 }
5080
5081 //===----------------------------------------------------------------------===//
5082 // Inline Assembler Implementation Methods
5083 //===----------------------------------------------------------------------===//
5084
5085 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const5086 TargetLowering::getConstraintType(StringRef Constraint) const {
5087 unsigned S = Constraint.size();
5088
5089 if (S == 1) {
5090 switch (Constraint[0]) {
5091 default: break;
5092 case 'r':
5093 return C_RegisterClass;
5094 case 'm': // memory
5095 case 'o': // offsetable
5096 case 'V': // not offsetable
5097 return C_Memory;
5098 case 'p': // Address.
5099 return C_Address;
5100 case 'n': // Simple Integer
5101 case 'E': // Floating Point Constant
5102 case 'F': // Floating Point Constant
5103 return C_Immediate;
5104 case 'i': // Simple Integer or Relocatable Constant
5105 case 's': // Relocatable Constant
5106 case 'X': // Allow ANY value.
5107 case 'I': // Target registers.
5108 case 'J':
5109 case 'K':
5110 case 'L':
5111 case 'M':
5112 case 'N':
5113 case 'O':
5114 case 'P':
5115 case '<':
5116 case '>':
5117 return C_Other;
5118 }
5119 }
5120
5121 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5122 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5123 return C_Memory;
5124 return C_Register;
5125 }
5126 return C_Unknown;
5127 }
5128
5129 /// Try to replace an X constraint, which matches anything, with another that
5130 /// has more specific requirements based on the type of the corresponding
5131 /// operand.
LowerXConstraint(EVT ConstraintVT) const5132 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5133 if (ConstraintVT.isInteger())
5134 return "r";
5135 if (ConstraintVT.isFloatingPoint())
5136 return "f"; // works for many targets
5137 return nullptr;
5138 }
5139
LowerAsmOutputForConstraint(SDValue & Chain,SDValue & Flag,const SDLoc & DL,const AsmOperandInfo & OpInfo,SelectionDAG & DAG) const5140 SDValue TargetLowering::LowerAsmOutputForConstraint(
5141 SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5142 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5143 return SDValue();
5144 }
5145
5146 /// Lower the specified operand into the Ops vector.
5147 /// If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const5148 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5149 std::string &Constraint,
5150 std::vector<SDValue> &Ops,
5151 SelectionDAG &DAG) const {
5152
5153 if (Constraint.length() > 1) return;
5154
5155 char ConstraintLetter = Constraint[0];
5156 switch (ConstraintLetter) {
5157 default: break;
5158 case 'X': // Allows any operand
5159 case 'i': // Simple Integer or Relocatable Constant
5160 case 'n': // Simple Integer
5161 case 's': { // Relocatable Constant
5162
5163 ConstantSDNode *C;
5164 uint64_t Offset = 0;
5165
5166 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5167 // etc., since getelementpointer is variadic. We can't use
5168 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5169 // while in this case the GA may be furthest from the root node which is
5170 // likely an ISD::ADD.
5171 while (true) {
5172 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5173 // gcc prints these as sign extended. Sign extend value to 64 bits
5174 // now; without this it would get ZExt'd later in
5175 // ScheduleDAGSDNodes::EmitNode, which is very generic.
5176 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5177 BooleanContent BCont = getBooleanContents(MVT::i64);
5178 ISD::NodeType ExtOpc =
5179 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5180 int64_t ExtVal =
5181 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5182 Ops.push_back(
5183 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5184 return;
5185 }
5186 if (ConstraintLetter != 'n') {
5187 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5188 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5189 GA->getValueType(0),
5190 Offset + GA->getOffset()));
5191 return;
5192 }
5193 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5194 Ops.push_back(DAG.getTargetBlockAddress(
5195 BA->getBlockAddress(), BA->getValueType(0),
5196 Offset + BA->getOffset(), BA->getTargetFlags()));
5197 return;
5198 }
5199 if (isa<BasicBlockSDNode>(Op)) {
5200 Ops.push_back(Op);
5201 return;
5202 }
5203 }
5204 const unsigned OpCode = Op.getOpcode();
5205 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5206 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5207 Op = Op.getOperand(1);
5208 // Subtraction is not commutative.
5209 else if (OpCode == ISD::ADD &&
5210 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5211 Op = Op.getOperand(0);
5212 else
5213 return;
5214 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5215 continue;
5216 }
5217 return;
5218 }
5219 break;
5220 }
5221 }
5222 }
5223
5224 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * RI,StringRef Constraint,MVT VT) const5225 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5226 StringRef Constraint,
5227 MVT VT) const {
5228 if (Constraint.empty() || Constraint[0] != '{')
5229 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5230 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5231
5232 // Remove the braces from around the name.
5233 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5234
5235 std::pair<unsigned, const TargetRegisterClass *> R =
5236 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5237
5238 // Figure out which register class contains this reg.
5239 for (const TargetRegisterClass *RC : RI->regclasses()) {
5240 // If none of the value types for this register class are valid, we
5241 // can't use it. For example, 64-bit reg classes on 32-bit targets.
5242 if (!isLegalRC(*RI, *RC))
5243 continue;
5244
5245 for (const MCPhysReg &PR : *RC) {
5246 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5247 std::pair<unsigned, const TargetRegisterClass *> S =
5248 std::make_pair(PR, RC);
5249
5250 // If this register class has the requested value type, return it,
5251 // otherwise keep searching and return the first class found
5252 // if no other is found which explicitly has the requested type.
5253 if (RI->isTypeLegalForClass(*RC, VT))
5254 return S;
5255 if (!R.second)
5256 R = S;
5257 }
5258 }
5259 }
5260
5261 return R;
5262 }
5263
5264 //===----------------------------------------------------------------------===//
5265 // Constraint Selection.
5266
5267 /// Return true of this is an input operand that is a matching constraint like
5268 /// "4".
isMatchingInputConstraint() const5269 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5270 assert(!ConstraintCode.empty() && "No known constraint!");
5271 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5272 }
5273
5274 /// If this is an input matching constraint, this method returns the output
5275 /// operand it matches.
getMatchedOperand() const5276 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5277 assert(!ConstraintCode.empty() && "No known constraint!");
5278 return atoi(ConstraintCode.c_str());
5279 }
5280
5281 /// Split up the constraint string from the inline assembly value into the
5282 /// specific constraints and their prefixes, and also tie in the associated
5283 /// operand values.
5284 /// If this returns an empty vector, and if the constraint string itself
5285 /// isn't empty, there was an error parsing.
5286 TargetLowering::AsmOperandInfoVector
ParseConstraints(const DataLayout & DL,const TargetRegisterInfo * TRI,const CallBase & Call) const5287 TargetLowering::ParseConstraints(const DataLayout &DL,
5288 const TargetRegisterInfo *TRI,
5289 const CallBase &Call) const {
5290 /// Information about all of the constraints.
5291 AsmOperandInfoVector ConstraintOperands;
5292 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5293 unsigned maCount = 0; // Largest number of multiple alternative constraints.
5294
5295 // Do a prepass over the constraints, canonicalizing them, and building up the
5296 // ConstraintOperands list.
5297 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5298 unsigned ResNo = 0; // ResNo - The result number of the next output.
5299 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5300
5301 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5302 ConstraintOperands.emplace_back(std::move(CI));
5303 AsmOperandInfo &OpInfo = ConstraintOperands.back();
5304
5305 // Update multiple alternative constraint count.
5306 if (OpInfo.multipleAlternatives.size() > maCount)
5307 maCount = OpInfo.multipleAlternatives.size();
5308
5309 OpInfo.ConstraintVT = MVT::Other;
5310
5311 // Compute the value type for each operand.
5312 switch (OpInfo.Type) {
5313 case InlineAsm::isOutput:
5314 // Indirect outputs just consume an argument.
5315 if (OpInfo.isIndirect) {
5316 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5317 break;
5318 }
5319
5320 // The return value of the call is this value. As such, there is no
5321 // corresponding argument.
5322 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5323 if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5324 OpInfo.ConstraintVT =
5325 getSimpleValueType(DL, STy->getElementType(ResNo));
5326 } else {
5327 assert(ResNo == 0 && "Asm only has one result!");
5328 OpInfo.ConstraintVT =
5329 getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5330 }
5331 ++ResNo;
5332 break;
5333 case InlineAsm::isInput:
5334 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5335 break;
5336 case InlineAsm::isLabel:
5337 OpInfo.CallOperandVal =
5338 cast<CallBrInst>(&Call)->getBlockAddressForIndirectDest(LabelNo);
5339 OpInfo.ConstraintVT =
5340 getAsmOperandValueType(DL, OpInfo.CallOperandVal->getType())
5341 .getSimpleVT();
5342 ++LabelNo;
5343 continue;
5344 case InlineAsm::isClobber:
5345 // Nothing to do.
5346 break;
5347 }
5348
5349 if (OpInfo.CallOperandVal) {
5350 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5351 if (OpInfo.isIndirect) {
5352 OpTy = Call.getParamElementType(ArgNo);
5353 assert(OpTy && "Indirect operand must have elementtype attribute");
5354 }
5355
5356 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5357 if (StructType *STy = dyn_cast<StructType>(OpTy))
5358 if (STy->getNumElements() == 1)
5359 OpTy = STy->getElementType(0);
5360
5361 // If OpTy is not a single value, it may be a struct/union that we
5362 // can tile with integers.
5363 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5364 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5365 switch (BitSize) {
5366 default: break;
5367 case 1:
5368 case 8:
5369 case 16:
5370 case 32:
5371 case 64:
5372 case 128:
5373 OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5374 break;
5375 }
5376 }
5377
5378 EVT VT = getAsmOperandValueType(DL, OpTy, true);
5379 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5380 ArgNo++;
5381 }
5382 }
5383
5384 // If we have multiple alternative constraints, select the best alternative.
5385 if (!ConstraintOperands.empty()) {
5386 if (maCount) {
5387 unsigned bestMAIndex = 0;
5388 int bestWeight = -1;
5389 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
5390 int weight = -1;
5391 unsigned maIndex;
5392 // Compute the sums of the weights for each alternative, keeping track
5393 // of the best (highest weight) one so far.
5394 for (maIndex = 0; maIndex < maCount; ++maIndex) {
5395 int weightSum = 0;
5396 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5397 cIndex != eIndex; ++cIndex) {
5398 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5399 if (OpInfo.Type == InlineAsm::isClobber)
5400 continue;
5401
5402 // If this is an output operand with a matching input operand,
5403 // look up the matching input. If their types mismatch, e.g. one
5404 // is an integer, the other is floating point, or their sizes are
5405 // different, flag it as an maCantMatch.
5406 if (OpInfo.hasMatchingInput()) {
5407 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5408 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5409 if ((OpInfo.ConstraintVT.isInteger() !=
5410 Input.ConstraintVT.isInteger()) ||
5411 (OpInfo.ConstraintVT.getSizeInBits() !=
5412 Input.ConstraintVT.getSizeInBits())) {
5413 weightSum = -1; // Can't match.
5414 break;
5415 }
5416 }
5417 }
5418 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5419 if (weight == -1) {
5420 weightSum = -1;
5421 break;
5422 }
5423 weightSum += weight;
5424 }
5425 // Update best.
5426 if (weightSum > bestWeight) {
5427 bestWeight = weightSum;
5428 bestMAIndex = maIndex;
5429 }
5430 }
5431
5432 // Now select chosen alternative in each constraint.
5433 for (AsmOperandInfo &cInfo : ConstraintOperands)
5434 if (cInfo.Type != InlineAsm::isClobber)
5435 cInfo.selectAlternative(bestMAIndex);
5436 }
5437 }
5438
5439 // Check and hook up tied operands, choose constraint code to use.
5440 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5441 cIndex != eIndex; ++cIndex) {
5442 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5443
5444 // If this is an output operand with a matching input operand, look up the
5445 // matching input. If their types mismatch, e.g. one is an integer, the
5446 // other is floating point, or their sizes are different, flag it as an
5447 // error.
5448 if (OpInfo.hasMatchingInput()) {
5449 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5450
5451 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5452 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5453 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5454 OpInfo.ConstraintVT);
5455 std::pair<unsigned, const TargetRegisterClass *> InputRC =
5456 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5457 Input.ConstraintVT);
5458 if ((OpInfo.ConstraintVT.isInteger() !=
5459 Input.ConstraintVT.isInteger()) ||
5460 (MatchRC.second != InputRC.second)) {
5461 report_fatal_error("Unsupported asm: input constraint"
5462 " with a matching output constraint of"
5463 " incompatible type!");
5464 }
5465 }
5466 }
5467 }
5468
5469 return ConstraintOperands;
5470 }
5471
5472 /// Return an integer indicating how general CT is.
getConstraintGenerality(TargetLowering::ConstraintType CT)5473 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5474 switch (CT) {
5475 case TargetLowering::C_Immediate:
5476 case TargetLowering::C_Other:
5477 case TargetLowering::C_Unknown:
5478 return 0;
5479 case TargetLowering::C_Register:
5480 return 1;
5481 case TargetLowering::C_RegisterClass:
5482 return 2;
5483 case TargetLowering::C_Memory:
5484 case TargetLowering::C_Address:
5485 return 3;
5486 }
5487 llvm_unreachable("Invalid constraint type");
5488 }
5489
5490 /// Examine constraint type and operand type and determine a weight value.
5491 /// This object must already have been set up with the operand type
5492 /// and the current alternative constraint selected.
5493 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const5494 TargetLowering::getMultipleConstraintMatchWeight(
5495 AsmOperandInfo &info, int maIndex) const {
5496 InlineAsm::ConstraintCodeVector *rCodes;
5497 if (maIndex >= (int)info.multipleAlternatives.size())
5498 rCodes = &info.Codes;
5499 else
5500 rCodes = &info.multipleAlternatives[maIndex].Codes;
5501 ConstraintWeight BestWeight = CW_Invalid;
5502
5503 // Loop over the options, keeping track of the most general one.
5504 for (const std::string &rCode : *rCodes) {
5505 ConstraintWeight weight =
5506 getSingleConstraintMatchWeight(info, rCode.c_str());
5507 if (weight > BestWeight)
5508 BestWeight = weight;
5509 }
5510
5511 return BestWeight;
5512 }
5513
5514 /// Examine constraint type and operand type and determine a weight value.
5515 /// This object must already have been set up with the operand type
5516 /// and the current alternative constraint selected.
5517 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const5518 TargetLowering::getSingleConstraintMatchWeight(
5519 AsmOperandInfo &info, const char *constraint) const {
5520 ConstraintWeight weight = CW_Invalid;
5521 Value *CallOperandVal = info.CallOperandVal;
5522 // If we don't have a value, we can't do a match,
5523 // but allow it at the lowest weight.
5524 if (!CallOperandVal)
5525 return CW_Default;
5526 // Look at the constraint type.
5527 switch (*constraint) {
5528 case 'i': // immediate integer.
5529 case 'n': // immediate integer with a known value.
5530 if (isa<ConstantInt>(CallOperandVal))
5531 weight = CW_Constant;
5532 break;
5533 case 's': // non-explicit intregal immediate.
5534 if (isa<GlobalValue>(CallOperandVal))
5535 weight = CW_Constant;
5536 break;
5537 case 'E': // immediate float if host format.
5538 case 'F': // immediate float.
5539 if (isa<ConstantFP>(CallOperandVal))
5540 weight = CW_Constant;
5541 break;
5542 case '<': // memory operand with autodecrement.
5543 case '>': // memory operand with autoincrement.
5544 case 'm': // memory operand.
5545 case 'o': // offsettable memory operand
5546 case 'V': // non-offsettable memory operand
5547 weight = CW_Memory;
5548 break;
5549 case 'r': // general register.
5550 case 'g': // general register, memory operand or immediate integer.
5551 // note: Clang converts "g" to "imr".
5552 if (CallOperandVal->getType()->isIntegerTy())
5553 weight = CW_Register;
5554 break;
5555 case 'X': // any operand.
5556 default:
5557 weight = CW_Default;
5558 break;
5559 }
5560 return weight;
5561 }
5562
5563 /// If there are multiple different constraints that we could pick for this
5564 /// operand (e.g. "imr") try to pick the 'best' one.
5565 /// This is somewhat tricky: constraints fall into four classes:
5566 /// Other -> immediates and magic values
5567 /// Register -> one specific register
5568 /// RegisterClass -> a group of regs
5569 /// Memory -> memory
5570 /// Ideally, we would pick the most specific constraint possible: if we have
5571 /// something that fits into a register, we would pick it. The problem here
5572 /// is that if we have something that could either be in a register or in
5573 /// memory that use of the register could cause selection of *other*
5574 /// operands to fail: they might only succeed if we pick memory. Because of
5575 /// this the heuristic we use is:
5576 ///
5577 /// 1) If there is an 'other' constraint, and if the operand is valid for
5578 /// that constraint, use it. This makes us take advantage of 'i'
5579 /// constraints when available.
5580 /// 2) Otherwise, pick the most general constraint present. This prefers
5581 /// 'm' over 'r', for example.
5582 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)5583 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5584 const TargetLowering &TLI,
5585 SDValue Op, SelectionDAG *DAG) {
5586 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5587 unsigned BestIdx = 0;
5588 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5589 int BestGenerality = -1;
5590
5591 // Loop over the options, keeping track of the most general one.
5592 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5593 TargetLowering::ConstraintType CType =
5594 TLI.getConstraintType(OpInfo.Codes[i]);
5595
5596 // Indirect 'other' or 'immediate' constraints are not allowed.
5597 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5598 CType == TargetLowering::C_Register ||
5599 CType == TargetLowering::C_RegisterClass))
5600 continue;
5601
5602 // If this is an 'other' or 'immediate' constraint, see if the operand is
5603 // valid for it. For example, on X86 we might have an 'rI' constraint. If
5604 // the operand is an integer in the range [0..31] we want to use I (saving a
5605 // load of a register), otherwise we must use 'r'.
5606 if ((CType == TargetLowering::C_Other ||
5607 CType == TargetLowering::C_Immediate) && Op.getNode()) {
5608 assert(OpInfo.Codes[i].size() == 1 &&
5609 "Unhandled multi-letter 'other' constraint");
5610 std::vector<SDValue> ResultOps;
5611 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5612 ResultOps, *DAG);
5613 if (!ResultOps.empty()) {
5614 BestType = CType;
5615 BestIdx = i;
5616 break;
5617 }
5618 }
5619
5620 // Things with matching constraints can only be registers, per gcc
5621 // documentation. This mainly affects "g" constraints.
5622 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5623 continue;
5624
5625 // This constraint letter is more general than the previous one, use it.
5626 int Generality = getConstraintGenerality(CType);
5627 if (Generality > BestGenerality) {
5628 BestType = CType;
5629 BestIdx = i;
5630 BestGenerality = Generality;
5631 }
5632 }
5633
5634 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5635 OpInfo.ConstraintType = BestType;
5636 }
5637
5638 /// Determines the constraint code and constraint type to use for the specific
5639 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const5640 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5641 SDValue Op,
5642 SelectionDAG *DAG) const {
5643 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5644
5645 // Single-letter constraints ('r') are very common.
5646 if (OpInfo.Codes.size() == 1) {
5647 OpInfo.ConstraintCode = OpInfo.Codes[0];
5648 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5649 } else {
5650 ChooseConstraint(OpInfo, *this, Op, DAG);
5651 }
5652
5653 // 'X' matches anything.
5654 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5655 // Constants are handled elsewhere. For Functions, the type here is the
5656 // type of the result, which is not what we want to look at; leave them
5657 // alone.
5658 Value *v = OpInfo.CallOperandVal;
5659 if (isa<ConstantInt>(v) || isa<Function>(v)) {
5660 return;
5661 }
5662
5663 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5664 OpInfo.ConstraintCode = "i";
5665 return;
5666 }
5667
5668 // Otherwise, try to resolve it to something we know about by looking at
5669 // the actual operand type.
5670 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5671 OpInfo.ConstraintCode = Repl;
5672 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5673 }
5674 }
5675 }
5676
5677 /// Given an exact SDIV by a constant, create a multiplication
5678 /// with the multiplicative inverse of the constant.
BuildExactSDIV(const TargetLowering & TLI,SDNode * N,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created)5679 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5680 const SDLoc &dl, SelectionDAG &DAG,
5681 SmallVectorImpl<SDNode *> &Created) {
5682 SDValue Op0 = N->getOperand(0);
5683 SDValue Op1 = N->getOperand(1);
5684 EVT VT = N->getValueType(0);
5685 EVT SVT = VT.getScalarType();
5686 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5687 EVT ShSVT = ShVT.getScalarType();
5688
5689 bool UseSRA = false;
5690 SmallVector<SDValue, 16> Shifts, Factors;
5691
5692 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5693 if (C->isZero())
5694 return false;
5695 APInt Divisor = C->getAPIntValue();
5696 unsigned Shift = Divisor.countTrailingZeros();
5697 if (Shift) {
5698 Divisor.ashrInPlace(Shift);
5699 UseSRA = true;
5700 }
5701 // Calculate the multiplicative inverse, using Newton's method.
5702 APInt t;
5703 APInt Factor = Divisor;
5704 while ((t = Divisor * Factor) != 1)
5705 Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5706 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5707 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5708 return true;
5709 };
5710
5711 // Collect all magic values from the build vector.
5712 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5713 return SDValue();
5714
5715 SDValue Shift, Factor;
5716 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5717 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5718 Factor = DAG.getBuildVector(VT, dl, Factors);
5719 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5720 assert(Shifts.size() == 1 && Factors.size() == 1 &&
5721 "Expected matchUnaryPredicate to return one element for scalable "
5722 "vectors");
5723 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5724 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5725 } else {
5726 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5727 Shift = Shifts[0];
5728 Factor = Factors[0];
5729 }
5730
5731 SDValue Res = Op0;
5732
5733 // Shift the value upfront if it is even, so the LSB is one.
5734 if (UseSRA) {
5735 // TODO: For UDIV use SRL instead of SRA.
5736 SDNodeFlags Flags;
5737 Flags.setExact(true);
5738 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5739 Created.push_back(Res.getNode());
5740 }
5741
5742 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5743 }
5744
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const5745 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5746 SelectionDAG &DAG,
5747 SmallVectorImpl<SDNode *> &Created) const {
5748 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5749 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5750 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5751 return SDValue(N, 0); // Lower SDIV as SDIV
5752 return SDValue();
5753 }
5754
5755 SDValue
BuildSREMPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const5756 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5757 SelectionDAG &DAG,
5758 SmallVectorImpl<SDNode *> &Created) const {
5759 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5760 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5761 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5762 return SDValue(N, 0); // Lower SREM as SREM
5763 return SDValue();
5764 }
5765
5766 /// Given an ISD::SDIV node expressing a divide by constant,
5767 /// return a DAG expression to select that will generate the same value by
5768 /// multiplying by a magic number.
5769 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const5770 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5771 bool IsAfterLegalization,
5772 SmallVectorImpl<SDNode *> &Created) const {
5773 SDLoc dl(N);
5774 EVT VT = N->getValueType(0);
5775 EVT SVT = VT.getScalarType();
5776 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5777 EVT ShSVT = ShVT.getScalarType();
5778 unsigned EltBits = VT.getScalarSizeInBits();
5779 EVT MulVT;
5780
5781 // Check to see if we can do this.
5782 // FIXME: We should be more aggressive here.
5783 if (!isTypeLegal(VT)) {
5784 // Limit this to simple scalars for now.
5785 if (VT.isVector() || !VT.isSimple())
5786 return SDValue();
5787
5788 // If this type will be promoted to a large enough type with a legal
5789 // multiply operation, we can go ahead and do this transform.
5790 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5791 return SDValue();
5792
5793 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5794 if (MulVT.getSizeInBits() < (2 * EltBits) ||
5795 !isOperationLegal(ISD::MUL, MulVT))
5796 return SDValue();
5797 }
5798
5799 // If the sdiv has an 'exact' bit we can use a simpler lowering.
5800 if (N->getFlags().hasExact())
5801 return BuildExactSDIV(*this, N, dl, DAG, Created);
5802
5803 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5804
5805 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5806 if (C->isZero())
5807 return false;
5808
5809 const APInt &Divisor = C->getAPIntValue();
5810 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5811 int NumeratorFactor = 0;
5812 int ShiftMask = -1;
5813
5814 if (Divisor.isOne() || Divisor.isAllOnes()) {
5815 // If d is +1/-1, we just multiply the numerator by +1/-1.
5816 NumeratorFactor = Divisor.getSExtValue();
5817 magics.Magic = 0;
5818 magics.ShiftAmount = 0;
5819 ShiftMask = 0;
5820 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5821 // If d > 0 and m < 0, add the numerator.
5822 NumeratorFactor = 1;
5823 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5824 // If d < 0 and m > 0, subtract the numerator.
5825 NumeratorFactor = -1;
5826 }
5827
5828 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5829 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5830 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5831 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5832 return true;
5833 };
5834
5835 SDValue N0 = N->getOperand(0);
5836 SDValue N1 = N->getOperand(1);
5837
5838 // Collect the shifts / magic values from each element.
5839 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5840 return SDValue();
5841
5842 SDValue MagicFactor, Factor, Shift, ShiftMask;
5843 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5844 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5845 Factor = DAG.getBuildVector(VT, dl, Factors);
5846 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5847 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5848 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5849 assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5850 Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5851 "Expected matchUnaryPredicate to return one element for scalable "
5852 "vectors");
5853 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5854 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5855 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5856 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5857 } else {
5858 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5859 MagicFactor = MagicFactors[0];
5860 Factor = Factors[0];
5861 Shift = Shifts[0];
5862 ShiftMask = ShiftMasks[0];
5863 }
5864
5865 // Multiply the numerator (operand 0) by the magic value.
5866 // FIXME: We should support doing a MUL in a wider type.
5867 auto GetMULHS = [&](SDValue X, SDValue Y) {
5868 // If the type isn't legal, use a wider mul of the the type calculated
5869 // earlier.
5870 if (!isTypeLegal(VT)) {
5871 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5872 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5873 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5874 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5875 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5876 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5877 }
5878
5879 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5880 return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5881 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5882 SDValue LoHi =
5883 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5884 return SDValue(LoHi.getNode(), 1);
5885 }
5886 return SDValue();
5887 };
5888
5889 SDValue Q = GetMULHS(N0, MagicFactor);
5890 if (!Q)
5891 return SDValue();
5892
5893 Created.push_back(Q.getNode());
5894
5895 // (Optionally) Add/subtract the numerator using Factor.
5896 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5897 Created.push_back(Factor.getNode());
5898 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5899 Created.push_back(Q.getNode());
5900
5901 // Shift right algebraic by shift value.
5902 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5903 Created.push_back(Q.getNode());
5904
5905 // Extract the sign bit, mask it and add it to the quotient.
5906 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5907 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5908 Created.push_back(T.getNode());
5909 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5910 Created.push_back(T.getNode());
5911 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5912 }
5913
5914 /// Given an ISD::UDIV node expressing a divide by constant,
5915 /// return a DAG expression to select that will generate the same value by
5916 /// multiplying by a magic number.
5917 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const5918 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5919 bool IsAfterLegalization,
5920 SmallVectorImpl<SDNode *> &Created) const {
5921 SDLoc dl(N);
5922 EVT VT = N->getValueType(0);
5923 EVT SVT = VT.getScalarType();
5924 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5925 EVT ShSVT = ShVT.getScalarType();
5926 unsigned EltBits = VT.getScalarSizeInBits();
5927 EVT MulVT;
5928
5929 // Check to see if we can do this.
5930 // FIXME: We should be more aggressive here.
5931 if (!isTypeLegal(VT)) {
5932 // Limit this to simple scalars for now.
5933 if (VT.isVector() || !VT.isSimple())
5934 return SDValue();
5935
5936 // If this type will be promoted to a large enough type with a legal
5937 // multiply operation, we can go ahead and do this transform.
5938 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5939 return SDValue();
5940
5941 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5942 if (MulVT.getSizeInBits() < (2 * EltBits) ||
5943 !isOperationLegal(ISD::MUL, MulVT))
5944 return SDValue();
5945 }
5946
5947 bool UseNPQ = false;
5948 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5949
5950 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5951 if (C->isZero())
5952 return false;
5953 // FIXME: We should use a narrower constant when the upper
5954 // bits are known to be zero.
5955 const APInt& Divisor = C->getAPIntValue();
5956 UnsignedDivisionByConstantInfo magics =
5957 UnsignedDivisionByConstantInfo::get(Divisor);
5958 unsigned PreShift = 0, PostShift = 0;
5959
5960 // If the divisor is even, we can avoid using the expensive fixup by
5961 // shifting the divided value upfront.
5962 if (magics.IsAdd && !Divisor[0]) {
5963 PreShift = Divisor.countTrailingZeros();
5964 // Get magic number for the shifted divisor.
5965 magics =
5966 UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5967 assert(!magics.IsAdd && "Should use cheap fixup now");
5968 }
5969
5970 unsigned SelNPQ;
5971 if (!magics.IsAdd || Divisor.isOne()) {
5972 assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5973 "We shouldn't generate an undefined shift!");
5974 PostShift = magics.ShiftAmount;
5975 SelNPQ = false;
5976 } else {
5977 PostShift = magics.ShiftAmount - 1;
5978 SelNPQ = true;
5979 }
5980
5981 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5982 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5983 NPQFactors.push_back(
5984 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5985 : APInt::getZero(EltBits),
5986 dl, SVT));
5987 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5988 UseNPQ |= SelNPQ;
5989 return true;
5990 };
5991
5992 SDValue N0 = N->getOperand(0);
5993 SDValue N1 = N->getOperand(1);
5994
5995 // Collect the shifts/magic values from each element.
5996 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5997 return SDValue();
5998
5999 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6000 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6001 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6002 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6003 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6004 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6005 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6006 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6007 NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6008 "Expected matchUnaryPredicate to return one for scalable vectors");
6009 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6010 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6011 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6012 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6013 } else {
6014 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6015 PreShift = PreShifts[0];
6016 MagicFactor = MagicFactors[0];
6017 PostShift = PostShifts[0];
6018 }
6019
6020 SDValue Q = N0;
6021 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6022 Created.push_back(Q.getNode());
6023
6024 // FIXME: We should support doing a MUL in a wider type.
6025 auto GetMULHU = [&](SDValue X, SDValue Y) {
6026 // If the type isn't legal, use a wider mul of the the type calculated
6027 // earlier.
6028 if (!isTypeLegal(VT)) {
6029 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6030 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6031 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6032 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6033 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6034 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6035 }
6036
6037 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6038 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6039 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6040 SDValue LoHi =
6041 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6042 return SDValue(LoHi.getNode(), 1);
6043 }
6044 return SDValue(); // No mulhu or equivalent
6045 };
6046
6047 // Multiply the numerator (operand 0) by the magic value.
6048 Q = GetMULHU(Q, MagicFactor);
6049 if (!Q)
6050 return SDValue();
6051
6052 Created.push_back(Q.getNode());
6053
6054 if (UseNPQ) {
6055 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6056 Created.push_back(NPQ.getNode());
6057
6058 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6059 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6060 if (VT.isVector())
6061 NPQ = GetMULHU(NPQ, NPQFactor);
6062 else
6063 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6064
6065 Created.push_back(NPQ.getNode());
6066
6067 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6068 Created.push_back(Q.getNode());
6069 }
6070
6071 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6072 Created.push_back(Q.getNode());
6073
6074 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6075
6076 SDValue One = DAG.getConstant(1, dl, VT);
6077 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6078 return DAG.getSelect(dl, VT, IsOne, N0, Q);
6079 }
6080
6081 /// If all values in Values that *don't* match the predicate are same 'splat'
6082 /// value, then replace all values with that splat value.
6083 /// Else, if AlternativeReplacement was provided, then replace all values that
6084 /// do match predicate with AlternativeReplacement value.
6085 static void
turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,std::function<bool (SDValue)> Predicate,SDValue AlternativeReplacement=SDValue ())6086 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6087 std::function<bool(SDValue)> Predicate,
6088 SDValue AlternativeReplacement = SDValue()) {
6089 SDValue Replacement;
6090 // Is there a value for which the Predicate does *NOT* match? What is it?
6091 auto SplatValue = llvm::find_if_not(Values, Predicate);
6092 if (SplatValue != Values.end()) {
6093 // Does Values consist only of SplatValue's and values matching Predicate?
6094 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6095 return Value == *SplatValue || Predicate(Value);
6096 })) // Then we shall replace values matching predicate with SplatValue.
6097 Replacement = *SplatValue;
6098 }
6099 if (!Replacement) {
6100 // Oops, we did not find the "baseline" splat value.
6101 if (!AlternativeReplacement)
6102 return; // Nothing to do.
6103 // Let's replace with provided value then.
6104 Replacement = AlternativeReplacement;
6105 }
6106 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6107 }
6108
6109 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6110 /// where the divisor is constant and the comparison target is zero,
6111 /// return a DAG expression that will generate the same comparison result
6112 /// using only multiplications, additions and shifts/rotations.
6113 /// Ref: "Hacker's Delight" 10-17.
buildUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const6114 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6115 SDValue CompTargetNode,
6116 ISD::CondCode Cond,
6117 DAGCombinerInfo &DCI,
6118 const SDLoc &DL) const {
6119 SmallVector<SDNode *, 5> Built;
6120 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6121 DCI, DL, Built)) {
6122 for (SDNode *N : Built)
6123 DCI.AddToWorklist(N);
6124 return Folded;
6125 }
6126
6127 return SDValue();
6128 }
6129
6130 SDValue
prepareUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const6131 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6132 SDValue CompTargetNode, ISD::CondCode Cond,
6133 DAGCombinerInfo &DCI, const SDLoc &DL,
6134 SmallVectorImpl<SDNode *> &Created) const {
6135 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6136 // - D must be constant, with D = D0 * 2^K where D0 is odd
6137 // - P is the multiplicative inverse of D0 modulo 2^W
6138 // - Q = floor(((2^W) - 1) / D)
6139 // where W is the width of the common type of N and D.
6140 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6141 "Only applicable for (in)equality comparisons.");
6142
6143 SelectionDAG &DAG = DCI.DAG;
6144
6145 EVT VT = REMNode.getValueType();
6146 EVT SVT = VT.getScalarType();
6147 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6148 EVT ShSVT = ShVT.getScalarType();
6149
6150 // If MUL is unavailable, we cannot proceed in any case.
6151 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6152 return SDValue();
6153
6154 bool ComparingWithAllZeros = true;
6155 bool AllComparisonsWithNonZerosAreTautological = true;
6156 bool HadTautologicalLanes = false;
6157 bool AllLanesAreTautological = true;
6158 bool HadEvenDivisor = false;
6159 bool AllDivisorsArePowerOfTwo = true;
6160 bool HadTautologicalInvertedLanes = false;
6161 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6162
6163 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6164 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6165 if (CDiv->isZero())
6166 return false;
6167
6168 const APInt &D = CDiv->getAPIntValue();
6169 const APInt &Cmp = CCmp->getAPIntValue();
6170
6171 ComparingWithAllZeros &= Cmp.isZero();
6172
6173 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6174 // if C2 is not less than C1, the comparison is always false.
6175 // But we will only be able to produce the comparison that will give the
6176 // opposive tautological answer. So this lane would need to be fixed up.
6177 bool TautologicalInvertedLane = D.ule(Cmp);
6178 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6179
6180 // If all lanes are tautological (either all divisors are ones, or divisor
6181 // is not greater than the constant we are comparing with),
6182 // we will prefer to avoid the fold.
6183 bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6184 HadTautologicalLanes |= TautologicalLane;
6185 AllLanesAreTautological &= TautologicalLane;
6186
6187 // If we are comparing with non-zero, we need'll need to subtract said
6188 // comparison value from the LHS. But there is no point in doing that if
6189 // every lane where we are comparing with non-zero is tautological..
6190 if (!Cmp.isZero())
6191 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6192
6193 // Decompose D into D0 * 2^K
6194 unsigned K = D.countTrailingZeros();
6195 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6196 APInt D0 = D.lshr(K);
6197
6198 // D is even if it has trailing zeros.
6199 HadEvenDivisor |= (K != 0);
6200 // D is a power-of-two if D0 is one.
6201 // If all divisors are power-of-two, we will prefer to avoid the fold.
6202 AllDivisorsArePowerOfTwo &= D0.isOne();
6203
6204 // P = inv(D0, 2^W)
6205 // 2^W requires W + 1 bits, so we have to extend and then truncate.
6206 unsigned W = D.getBitWidth();
6207 APInt P = D0.zext(W + 1)
6208 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6209 .trunc(W);
6210 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6211 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6212
6213 // Q = floor((2^W - 1) u/ D)
6214 // R = ((2^W - 1) u% D)
6215 APInt Q, R;
6216 APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6217
6218 // If we are comparing with zero, then that comparison constant is okay,
6219 // else it may need to be one less than that.
6220 if (Cmp.ugt(R))
6221 Q -= 1;
6222
6223 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6224 "We are expecting that K is always less than all-ones for ShSVT");
6225
6226 // If the lane is tautological the result can be constant-folded.
6227 if (TautologicalLane) {
6228 // Set P and K amount to a bogus values so we can try to splat them.
6229 P = 0;
6230 K = -1;
6231 // And ensure that comparison constant is tautological,
6232 // it will always compare true/false.
6233 Q = -1;
6234 }
6235
6236 PAmts.push_back(DAG.getConstant(P, DL, SVT));
6237 KAmts.push_back(
6238 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6239 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6240 return true;
6241 };
6242
6243 SDValue N = REMNode.getOperand(0);
6244 SDValue D = REMNode.getOperand(1);
6245
6246 // Collect the values from each element.
6247 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6248 return SDValue();
6249
6250 // If all lanes are tautological, the result can be constant-folded.
6251 if (AllLanesAreTautological)
6252 return SDValue();
6253
6254 // If this is a urem by a powers-of-two, avoid the fold since it can be
6255 // best implemented as a bit test.
6256 if (AllDivisorsArePowerOfTwo)
6257 return SDValue();
6258
6259 SDValue PVal, KVal, QVal;
6260 if (D.getOpcode() == ISD::BUILD_VECTOR) {
6261 if (HadTautologicalLanes) {
6262 // Try to turn PAmts into a splat, since we don't care about the values
6263 // that are currently '0'. If we can't, just keep '0'`s.
6264 turnVectorIntoSplatVector(PAmts, isNullConstant);
6265 // Try to turn KAmts into a splat, since we don't care about the values
6266 // that are currently '-1'. If we can't, change them to '0'`s.
6267 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6268 DAG.getConstant(0, DL, ShSVT));
6269 }
6270
6271 PVal = DAG.getBuildVector(VT, DL, PAmts);
6272 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6273 QVal = DAG.getBuildVector(VT, DL, QAmts);
6274 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6275 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6276 "Expected matchBinaryPredicate to return one element for "
6277 "SPLAT_VECTORs");
6278 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6279 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6280 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6281 } else {
6282 PVal = PAmts[0];
6283 KVal = KAmts[0];
6284 QVal = QAmts[0];
6285 }
6286
6287 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6288 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6289 return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6290 assert(CompTargetNode.getValueType() == N.getValueType() &&
6291 "Expecting that the types on LHS and RHS of comparisons match.");
6292 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6293 }
6294
6295 // (mul N, P)
6296 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6297 Created.push_back(Op0.getNode());
6298
6299 // Rotate right only if any divisor was even. We avoid rotates for all-odd
6300 // divisors as a performance improvement, since rotating by 0 is a no-op.
6301 if (HadEvenDivisor) {
6302 // We need ROTR to do this.
6303 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6304 return SDValue();
6305 // UREM: (rotr (mul N, P), K)
6306 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6307 Created.push_back(Op0.getNode());
6308 }
6309
6310 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6311 SDValue NewCC =
6312 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6313 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6314 if (!HadTautologicalInvertedLanes)
6315 return NewCC;
6316
6317 // If any lanes previously compared always-false, the NewCC will give
6318 // always-true result for them, so we need to fixup those lanes.
6319 // Or the other way around for inequality predicate.
6320 assert(VT.isVector() && "Can/should only get here for vectors.");
6321 Created.push_back(NewCC.getNode());
6322
6323 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6324 // if C2 is not less than C1, the comparison is always false.
6325 // But we have produced the comparison that will give the
6326 // opposive tautological answer. So these lanes would need to be fixed up.
6327 SDValue TautologicalInvertedChannels =
6328 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6329 Created.push_back(TautologicalInvertedChannels.getNode());
6330
6331 // NOTE: we avoid letting illegal types through even if we're before legalize
6332 // ops – legalization has a hard time producing good code for this.
6333 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6334 // If we have a vector select, let's replace the comparison results in the
6335 // affected lanes with the correct tautological result.
6336 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6337 DL, SETCCVT, SETCCVT);
6338 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6339 Replacement, NewCC);
6340 }
6341
6342 // Else, we can just invert the comparison result in the appropriate lanes.
6343 //
6344 // NOTE: see the note above VSELECT above.
6345 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6346 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6347 TautologicalInvertedChannels);
6348
6349 return SDValue(); // Don't know how to lower.
6350 }
6351
6352 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6353 /// where the divisor is constant and the comparison target is zero,
6354 /// return a DAG expression that will generate the same comparison result
6355 /// using only multiplications, additions and shifts/rotations.
6356 /// Ref: "Hacker's Delight" 10-17.
buildSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const6357 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6358 SDValue CompTargetNode,
6359 ISD::CondCode Cond,
6360 DAGCombinerInfo &DCI,
6361 const SDLoc &DL) const {
6362 SmallVector<SDNode *, 7> Built;
6363 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6364 DCI, DL, Built)) {
6365 assert(Built.size() <= 7 && "Max size prediction failed.");
6366 for (SDNode *N : Built)
6367 DCI.AddToWorklist(N);
6368 return Folded;
6369 }
6370
6371 return SDValue();
6372 }
6373
6374 SDValue
prepareSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const6375 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6376 SDValue CompTargetNode, ISD::CondCode Cond,
6377 DAGCombinerInfo &DCI, const SDLoc &DL,
6378 SmallVectorImpl<SDNode *> &Created) const {
6379 // Fold:
6380 // (seteq/ne (srem N, D), 0)
6381 // To:
6382 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
6383 //
6384 // - D must be constant, with D = D0 * 2^K where D0 is odd
6385 // - P is the multiplicative inverse of D0 modulo 2^W
6386 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6387 // - Q = floor((2 * A) / (2^K))
6388 // where W is the width of the common type of N and D.
6389 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6390 "Only applicable for (in)equality comparisons.");
6391
6392 SelectionDAG &DAG = DCI.DAG;
6393
6394 EVT VT = REMNode.getValueType();
6395 EVT SVT = VT.getScalarType();
6396 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6397 EVT ShSVT = ShVT.getScalarType();
6398
6399 // If we are after ops legalization, and MUL is unavailable, we can not
6400 // proceed.
6401 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6402 return SDValue();
6403
6404 // TODO: Could support comparing with non-zero too.
6405 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6406 if (!CompTarget || !CompTarget->isZero())
6407 return SDValue();
6408
6409 bool HadIntMinDivisor = false;
6410 bool HadOneDivisor = false;
6411 bool AllDivisorsAreOnes = true;
6412 bool HadEvenDivisor = false;
6413 bool NeedToApplyOffset = false;
6414 bool AllDivisorsArePowerOfTwo = true;
6415 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6416
6417 auto BuildSREMPattern = [&](ConstantSDNode *C) {
6418 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6419 if (C->isZero())
6420 return false;
6421
6422 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6423
6424 // WARNING: this fold is only valid for positive divisors!
6425 APInt D = C->getAPIntValue();
6426 if (D.isNegative())
6427 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
6428
6429 HadIntMinDivisor |= D.isMinSignedValue();
6430
6431 // If all divisors are ones, we will prefer to avoid the fold.
6432 HadOneDivisor |= D.isOne();
6433 AllDivisorsAreOnes &= D.isOne();
6434
6435 // Decompose D into D0 * 2^K
6436 unsigned K = D.countTrailingZeros();
6437 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6438 APInt D0 = D.lshr(K);
6439
6440 if (!D.isMinSignedValue()) {
6441 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6442 // we don't care about this lane in this fold, we'll special-handle it.
6443 HadEvenDivisor |= (K != 0);
6444 }
6445
6446 // D is a power-of-two if D0 is one. This includes INT_MIN.
6447 // If all divisors are power-of-two, we will prefer to avoid the fold.
6448 AllDivisorsArePowerOfTwo &= D0.isOne();
6449
6450 // P = inv(D0, 2^W)
6451 // 2^W requires W + 1 bits, so we have to extend and then truncate.
6452 unsigned W = D.getBitWidth();
6453 APInt P = D0.zext(W + 1)
6454 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6455 .trunc(W);
6456 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6457 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6458
6459 // A = floor((2^(W - 1) - 1) / D0) & -2^K
6460 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6461 A.clearLowBits(K);
6462
6463 if (!D.isMinSignedValue()) {
6464 // If divisor INT_MIN, then we don't care about this lane in this fold,
6465 // we'll special-handle it.
6466 NeedToApplyOffset |= A != 0;
6467 }
6468
6469 // Q = floor((2 * A) / (2^K))
6470 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6471
6472 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6473 "We are expecting that A is always less than all-ones for SVT");
6474 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6475 "We are expecting that K is always less than all-ones for ShSVT");
6476
6477 // If the divisor is 1 the result can be constant-folded. Likewise, we
6478 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6479 if (D.isOne()) {
6480 // Set P, A and K to a bogus values so we can try to splat them.
6481 P = 0;
6482 A = -1;
6483 K = -1;
6484
6485 // x ?% 1 == 0 <--> true <--> x u<= -1
6486 Q = -1;
6487 }
6488
6489 PAmts.push_back(DAG.getConstant(P, DL, SVT));
6490 AAmts.push_back(DAG.getConstant(A, DL, SVT));
6491 KAmts.push_back(
6492 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6493 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6494 return true;
6495 };
6496
6497 SDValue N = REMNode.getOperand(0);
6498 SDValue D = REMNode.getOperand(1);
6499
6500 // Collect the values from each element.
6501 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6502 return SDValue();
6503
6504 // If this is a srem by a one, avoid the fold since it can be constant-folded.
6505 if (AllDivisorsAreOnes)
6506 return SDValue();
6507
6508 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6509 // since it can be best implemented as a bit test.
6510 if (AllDivisorsArePowerOfTwo)
6511 return SDValue();
6512
6513 SDValue PVal, AVal, KVal, QVal;
6514 if (D.getOpcode() == ISD::BUILD_VECTOR) {
6515 if (HadOneDivisor) {
6516 // Try to turn PAmts into a splat, since we don't care about the values
6517 // that are currently '0'. If we can't, just keep '0'`s.
6518 turnVectorIntoSplatVector(PAmts, isNullConstant);
6519 // Try to turn AAmts into a splat, since we don't care about the
6520 // values that are currently '-1'. If we can't, change them to '0'`s.
6521 turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6522 DAG.getConstant(0, DL, SVT));
6523 // Try to turn KAmts into a splat, since we don't care about the values
6524 // that are currently '-1'. If we can't, change them to '0'`s.
6525 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6526 DAG.getConstant(0, DL, ShSVT));
6527 }
6528
6529 PVal = DAG.getBuildVector(VT, DL, PAmts);
6530 AVal = DAG.getBuildVector(VT, DL, AAmts);
6531 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6532 QVal = DAG.getBuildVector(VT, DL, QAmts);
6533 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6534 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6535 QAmts.size() == 1 &&
6536 "Expected matchUnaryPredicate to return one element for scalable "
6537 "vectors");
6538 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6539 AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6540 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6541 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6542 } else {
6543 assert(isa<ConstantSDNode>(D) && "Expected a constant");
6544 PVal = PAmts[0];
6545 AVal = AAmts[0];
6546 KVal = KAmts[0];
6547 QVal = QAmts[0];
6548 }
6549
6550 // (mul N, P)
6551 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6552 Created.push_back(Op0.getNode());
6553
6554 if (NeedToApplyOffset) {
6555 // We need ADD to do this.
6556 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6557 return SDValue();
6558
6559 // (add (mul N, P), A)
6560 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6561 Created.push_back(Op0.getNode());
6562 }
6563
6564 // Rotate right only if any divisor was even. We avoid rotates for all-odd
6565 // divisors as a performance improvement, since rotating by 0 is a no-op.
6566 if (HadEvenDivisor) {
6567 // We need ROTR to do this.
6568 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6569 return SDValue();
6570 // SREM: (rotr (add (mul N, P), A), K)
6571 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6572 Created.push_back(Op0.getNode());
6573 }
6574
6575 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6576 SDValue Fold =
6577 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6578 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6579
6580 // If we didn't have lanes with INT_MIN divisor, then we're done.
6581 if (!HadIntMinDivisor)
6582 return Fold;
6583
6584 // That fold is only valid for positive divisors. Which effectively means,
6585 // it is invalid for INT_MIN divisors. So if we have such a lane,
6586 // we must fix-up results for said lanes.
6587 assert(VT.isVector() && "Can/should only get here for vectors.");
6588
6589 // NOTE: we avoid letting illegal types through even if we're before legalize
6590 // ops – legalization has a hard time producing good code for the code that
6591 // follows.
6592 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6593 !isOperationLegalOrCustom(ISD::AND, VT) ||
6594 !isOperationLegalOrCustom(Cond, VT) ||
6595 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6596 return SDValue();
6597
6598 Created.push_back(Fold.getNode());
6599
6600 SDValue IntMin = DAG.getConstant(
6601 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6602 SDValue IntMax = DAG.getConstant(
6603 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6604 SDValue Zero =
6605 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6606
6607 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6608 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6609 Created.push_back(DivisorIsIntMin.getNode());
6610
6611 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
6612 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6613 Created.push_back(Masked.getNode());
6614 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6615 Created.push_back(MaskedIsZero.getNode());
6616
6617 // To produce final result we need to blend 2 vectors: 'SetCC' and
6618 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6619 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6620 // constant-folded, select can get lowered to a shuffle with constant mask.
6621 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6622 MaskedIsZero, Fold);
6623
6624 return Blended;
6625 }
6626
6627 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const6628 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6629 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6630 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6631 "be a constant integer");
6632 return true;
6633 }
6634
6635 return false;
6636 }
6637
getSqrtInputTest(SDValue Op,SelectionDAG & DAG,const DenormalMode & Mode) const6638 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6639 const DenormalMode &Mode) const {
6640 SDLoc DL(Op);
6641 EVT VT = Op.getValueType();
6642 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6643 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6644 // Testing it with denormal inputs to avoid wrong estimate.
6645 if (Mode.Input == DenormalMode::IEEE) {
6646 // This is specifically a check for the handling of denormal inputs,
6647 // not the result.
6648
6649 // Test = fabs(X) < SmallestNormal
6650 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6651 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6652 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6653 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6654 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6655 }
6656 // Test = X == 0.0
6657 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6658 }
6659
getNegatedExpression(SDValue Op,SelectionDAG & DAG,bool LegalOps,bool OptForSize,NegatibleCost & Cost,unsigned Depth) const6660 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6661 bool LegalOps, bool OptForSize,
6662 NegatibleCost &Cost,
6663 unsigned Depth) const {
6664 // fneg is removable even if it has multiple uses.
6665 if (Op.getOpcode() == ISD::FNEG) {
6666 Cost = NegatibleCost::Cheaper;
6667 return Op.getOperand(0);
6668 }
6669
6670 // Don't recurse exponentially.
6671 if (Depth > SelectionDAG::MaxRecursionDepth)
6672 return SDValue();
6673
6674 // Pre-increment recursion depth for use in recursive calls.
6675 ++Depth;
6676 const SDNodeFlags Flags = Op->getFlags();
6677 const TargetOptions &Options = DAG.getTarget().Options;
6678 EVT VT = Op.getValueType();
6679 unsigned Opcode = Op.getOpcode();
6680
6681 // Don't allow anything with multiple uses unless we know it is free.
6682 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6683 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6684 isFPExtFree(VT, Op.getOperand(0).getValueType());
6685 if (!IsFreeExtend)
6686 return SDValue();
6687 }
6688
6689 auto RemoveDeadNode = [&](SDValue N) {
6690 if (N && N.getNode()->use_empty())
6691 DAG.RemoveDeadNode(N.getNode());
6692 };
6693
6694 SDLoc DL(Op);
6695
6696 // Because getNegatedExpression can delete nodes we need a handle to keep
6697 // temporary nodes alive in case the recursion manages to create an identical
6698 // node.
6699 std::list<HandleSDNode> Handles;
6700
6701 switch (Opcode) {
6702 case ISD::ConstantFP: {
6703 // Don't invert constant FP values after legalization unless the target says
6704 // the negated constant is legal.
6705 bool IsOpLegal =
6706 isOperationLegal(ISD::ConstantFP, VT) ||
6707 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6708 OptForSize);
6709
6710 if (LegalOps && !IsOpLegal)
6711 break;
6712
6713 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6714 V.changeSign();
6715 SDValue CFP = DAG.getConstantFP(V, DL, VT);
6716
6717 // If we already have the use of the negated floating constant, it is free
6718 // to negate it even it has multiple uses.
6719 if (!Op.hasOneUse() && CFP.use_empty())
6720 break;
6721 Cost = NegatibleCost::Neutral;
6722 return CFP;
6723 }
6724 case ISD::BUILD_VECTOR: {
6725 // Only permit BUILD_VECTOR of constants.
6726 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6727 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6728 }))
6729 break;
6730
6731 bool IsOpLegal =
6732 (isOperationLegal(ISD::ConstantFP, VT) &&
6733 isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6734 llvm::all_of(Op->op_values(), [&](SDValue N) {
6735 return N.isUndef() ||
6736 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6737 OptForSize);
6738 });
6739
6740 if (LegalOps && !IsOpLegal)
6741 break;
6742
6743 SmallVector<SDValue, 4> Ops;
6744 for (SDValue C : Op->op_values()) {
6745 if (C.isUndef()) {
6746 Ops.push_back(C);
6747 continue;
6748 }
6749 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6750 V.changeSign();
6751 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6752 }
6753 Cost = NegatibleCost::Neutral;
6754 return DAG.getBuildVector(VT, DL, Ops);
6755 }
6756 case ISD::FADD: {
6757 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6758 break;
6759
6760 // After operation legalization, it might not be legal to create new FSUBs.
6761 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6762 break;
6763 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6764
6765 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6766 NegatibleCost CostX = NegatibleCost::Expensive;
6767 SDValue NegX =
6768 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6769 // Prevent this node from being deleted by the next call.
6770 if (NegX)
6771 Handles.emplace_back(NegX);
6772
6773 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6774 NegatibleCost CostY = NegatibleCost::Expensive;
6775 SDValue NegY =
6776 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6777
6778 // We're done with the handles.
6779 Handles.clear();
6780
6781 // Negate the X if its cost is less or equal than Y.
6782 if (NegX && (CostX <= CostY)) {
6783 Cost = CostX;
6784 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6785 if (NegY != N)
6786 RemoveDeadNode(NegY);
6787 return N;
6788 }
6789
6790 // Negate the Y if it is not expensive.
6791 if (NegY) {
6792 Cost = CostY;
6793 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6794 if (NegX != N)
6795 RemoveDeadNode(NegX);
6796 return N;
6797 }
6798 break;
6799 }
6800 case ISD::FSUB: {
6801 // We can't turn -(A-B) into B-A when we honor signed zeros.
6802 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6803 break;
6804
6805 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6806 // fold (fneg (fsub 0, Y)) -> Y
6807 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6808 if (C->isZero()) {
6809 Cost = NegatibleCost::Cheaper;
6810 return Y;
6811 }
6812
6813 // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6814 Cost = NegatibleCost::Neutral;
6815 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6816 }
6817 case ISD::FMUL:
6818 case ISD::FDIV: {
6819 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6820
6821 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6822 NegatibleCost CostX = NegatibleCost::Expensive;
6823 SDValue NegX =
6824 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6825 // Prevent this node from being deleted by the next call.
6826 if (NegX)
6827 Handles.emplace_back(NegX);
6828
6829 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6830 NegatibleCost CostY = NegatibleCost::Expensive;
6831 SDValue NegY =
6832 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6833
6834 // We're done with the handles.
6835 Handles.clear();
6836
6837 // Negate the X if its cost is less or equal than Y.
6838 if (NegX && (CostX <= CostY)) {
6839 Cost = CostX;
6840 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6841 if (NegY != N)
6842 RemoveDeadNode(NegY);
6843 return N;
6844 }
6845
6846 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6847 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6848 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6849 break;
6850
6851 // Negate the Y if it is not expensive.
6852 if (NegY) {
6853 Cost = CostY;
6854 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6855 if (NegX != N)
6856 RemoveDeadNode(NegX);
6857 return N;
6858 }
6859 break;
6860 }
6861 case ISD::FMA:
6862 case ISD::FMAD: {
6863 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6864 break;
6865
6866 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6867 NegatibleCost CostZ = NegatibleCost::Expensive;
6868 SDValue NegZ =
6869 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6870 // Give up if fail to negate the Z.
6871 if (!NegZ)
6872 break;
6873
6874 // Prevent this node from being deleted by the next two calls.
6875 Handles.emplace_back(NegZ);
6876
6877 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6878 NegatibleCost CostX = NegatibleCost::Expensive;
6879 SDValue NegX =
6880 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6881 // Prevent this node from being deleted by the next call.
6882 if (NegX)
6883 Handles.emplace_back(NegX);
6884
6885 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6886 NegatibleCost CostY = NegatibleCost::Expensive;
6887 SDValue NegY =
6888 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6889
6890 // We're done with the handles.
6891 Handles.clear();
6892
6893 // Negate the X if its cost is less or equal than Y.
6894 if (NegX && (CostX <= CostY)) {
6895 Cost = std::min(CostX, CostZ);
6896 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6897 if (NegY != N)
6898 RemoveDeadNode(NegY);
6899 return N;
6900 }
6901
6902 // Negate the Y if it is not expensive.
6903 if (NegY) {
6904 Cost = std::min(CostY, CostZ);
6905 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6906 if (NegX != N)
6907 RemoveDeadNode(NegX);
6908 return N;
6909 }
6910 break;
6911 }
6912
6913 case ISD::FP_EXTEND:
6914 case ISD::FSIN:
6915 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6916 OptForSize, Cost, Depth))
6917 return DAG.getNode(Opcode, DL, VT, NegV);
6918 break;
6919 case ISD::FP_ROUND:
6920 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6921 OptForSize, Cost, Depth))
6922 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6923 break;
6924 }
6925
6926 return SDValue();
6927 }
6928
6929 //===----------------------------------------------------------------------===//
6930 // Legalization Utilities
6931 //===----------------------------------------------------------------------===//
6932
expandMUL_LOHI(unsigned Opcode,EVT VT,const SDLoc & dl,SDValue LHS,SDValue RHS,SmallVectorImpl<SDValue> & Result,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const6933 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6934 SDValue LHS, SDValue RHS,
6935 SmallVectorImpl<SDValue> &Result,
6936 EVT HiLoVT, SelectionDAG &DAG,
6937 MulExpansionKind Kind, SDValue LL,
6938 SDValue LH, SDValue RL, SDValue RH) const {
6939 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6940 Opcode == ISD::SMUL_LOHI);
6941
6942 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6943 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6944 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6945 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6946 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6947 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6948 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6949 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6950
6951 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6952 return false;
6953
6954 unsigned OuterBitSize = VT.getScalarSizeInBits();
6955 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6956
6957 // LL, LH, RL, and RH must be either all NULL or all set to a value.
6958 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6959 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6960
6961 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6962 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6963 bool Signed) -> bool {
6964 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6965 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6966 Hi = SDValue(Lo.getNode(), 1);
6967 return true;
6968 }
6969 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6970 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6971 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6972 return true;
6973 }
6974 return false;
6975 };
6976
6977 SDValue Lo, Hi;
6978
6979 if (!LL.getNode() && !RL.getNode() &&
6980 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6981 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6982 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6983 }
6984
6985 if (!LL.getNode())
6986 return false;
6987
6988 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6989 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6990 DAG.MaskedValueIsZero(RHS, HighMask)) {
6991 // The inputs are both zero-extended.
6992 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6993 Result.push_back(Lo);
6994 Result.push_back(Hi);
6995 if (Opcode != ISD::MUL) {
6996 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6997 Result.push_back(Zero);
6998 Result.push_back(Zero);
6999 }
7000 return true;
7001 }
7002 }
7003
7004 if (!VT.isVector() && Opcode == ISD::MUL &&
7005 DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
7006 DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
7007 // The input values are both sign-extended.
7008 // TODO non-MUL case?
7009 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7010 Result.push_back(Lo);
7011 Result.push_back(Hi);
7012 return true;
7013 }
7014 }
7015
7016 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7017 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
7018 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
7019
7020 if (!LH.getNode() && !RH.getNode() &&
7021 isOperationLegalOrCustom(ISD::SRL, VT) &&
7022 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7023 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7024 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7025 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7026 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7027 }
7028
7029 if (!LH.getNode())
7030 return false;
7031
7032 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7033 return false;
7034
7035 Result.push_back(Lo);
7036
7037 if (Opcode == ISD::MUL) {
7038 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7039 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7040 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7041 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7042 Result.push_back(Hi);
7043 return true;
7044 }
7045
7046 // Compute the full width result.
7047 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7048 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7049 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7050 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7051 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7052 };
7053
7054 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7055 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7056 return false;
7057
7058 // This is effectively the add part of a multiply-add of half-sized operands,
7059 // so it cannot overflow.
7060 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7061
7062 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7063 return false;
7064
7065 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7066 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7067
7068 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7069 isOperationLegalOrCustom(ISD::ADDE, VT));
7070 if (UseGlue)
7071 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7072 Merge(Lo, Hi));
7073 else
7074 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
7075 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7076
7077 SDValue Carry = Next.getValue(1);
7078 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7079 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7080
7081 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7082 return false;
7083
7084 if (UseGlue)
7085 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7086 Carry);
7087 else
7088 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7089 Zero, Carry);
7090
7091 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7092
7093 if (Opcode == ISD::SMUL_LOHI) {
7094 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7095 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7096 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7097
7098 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7099 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7100 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7101 }
7102
7103 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7104 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7105 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7106 return true;
7107 }
7108
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const7109 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7110 SelectionDAG &DAG, MulExpansionKind Kind,
7111 SDValue LL, SDValue LH, SDValue RL,
7112 SDValue RH) const {
7113 SmallVector<SDValue, 2> Result;
7114 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7115 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7116 DAG, Kind, LL, LH, RL, RH);
7117 if (Ok) {
7118 assert(Result.size() == 2);
7119 Lo = Result[0];
7120 Hi = Result[1];
7121 }
7122 return Ok;
7123 }
7124
7125 // Check that (every element of) Z is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(SDValue Z,unsigned BW)7126 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7127 return ISD::matchUnaryPredicate(
7128 Z,
7129 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7130 true);
7131 }
7132
expandFunnelShift(SDNode * Node,SelectionDAG & DAG) const7133 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7134 SelectionDAG &DAG) const {
7135 EVT VT = Node->getValueType(0);
7136
7137 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7138 !isOperationLegalOrCustom(ISD::SRL, VT) ||
7139 !isOperationLegalOrCustom(ISD::SUB, VT) ||
7140 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7141 return SDValue();
7142
7143 SDValue X = Node->getOperand(0);
7144 SDValue Y = Node->getOperand(1);
7145 SDValue Z = Node->getOperand(2);
7146
7147 unsigned BW = VT.getScalarSizeInBits();
7148 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7149 SDLoc DL(SDValue(Node, 0));
7150
7151 EVT ShVT = Z.getValueType();
7152
7153 // If a funnel shift in the other direction is more supported, use it.
7154 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7155 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7156 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7157 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7158 // fshl X, Y, Z -> fshr X, Y, -Z
7159 // fshr X, Y, Z -> fshl X, Y, -Z
7160 SDValue Zero = DAG.getConstant(0, DL, ShVT);
7161 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7162 } else {
7163 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7164 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7165 SDValue One = DAG.getConstant(1, DL, ShVT);
7166 if (IsFSHL) {
7167 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7168 X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7169 } else {
7170 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7171 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7172 }
7173 Z = DAG.getNOT(DL, Z, ShVT);
7174 }
7175 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7176 }
7177
7178 SDValue ShX, ShY;
7179 SDValue ShAmt, InvShAmt;
7180 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7181 // fshl: X << C | Y >> (BW - C)
7182 // fshr: X << (BW - C) | Y >> C
7183 // where C = Z % BW is not zero
7184 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7185 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7186 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7187 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7188 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7189 } else {
7190 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7191 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7192 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7193 if (isPowerOf2_32(BW)) {
7194 // Z % BW -> Z & (BW - 1)
7195 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7196 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7197 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7198 } else {
7199 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7200 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7201 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7202 }
7203
7204 SDValue One = DAG.getConstant(1, DL, ShVT);
7205 if (IsFSHL) {
7206 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7207 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7208 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7209 } else {
7210 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7211 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7212 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7213 }
7214 }
7215 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7216 }
7217
7218 // TODO: Merge with expandFunnelShift.
expandROT(SDNode * Node,bool AllowVectorOps,SelectionDAG & DAG) const7219 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7220 SelectionDAG &DAG) const {
7221 EVT VT = Node->getValueType(0);
7222 unsigned EltSizeInBits = VT.getScalarSizeInBits();
7223 bool IsLeft = Node->getOpcode() == ISD::ROTL;
7224 SDValue Op0 = Node->getOperand(0);
7225 SDValue Op1 = Node->getOperand(1);
7226 SDLoc DL(SDValue(Node, 0));
7227
7228 EVT ShVT = Op1.getValueType();
7229 SDValue Zero = DAG.getConstant(0, DL, ShVT);
7230
7231 // If a rotate in the other direction is more supported, use it.
7232 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7233 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7234 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7235 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7236 return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7237 }
7238
7239 if (!AllowVectorOps && VT.isVector() &&
7240 (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7241 !isOperationLegalOrCustom(ISD::SRL, VT) ||
7242 !isOperationLegalOrCustom(ISD::SUB, VT) ||
7243 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7244 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7245 return SDValue();
7246
7247 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7248 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7249 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7250 SDValue ShVal;
7251 SDValue HsVal;
7252 if (isPowerOf2_32(EltSizeInBits)) {
7253 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7254 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7255 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7256 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7257 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7258 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7259 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7260 } else {
7261 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7262 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7263 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7264 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7265 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7266 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7267 SDValue One = DAG.getConstant(1, DL, ShVT);
7268 HsVal =
7269 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7270 }
7271 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7272 }
7273
expandShiftParts(SDNode * Node,SDValue & Lo,SDValue & Hi,SelectionDAG & DAG) const7274 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7275 SelectionDAG &DAG) const {
7276 assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7277 EVT VT = Node->getValueType(0);
7278 unsigned VTBits = VT.getScalarSizeInBits();
7279 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7280
7281 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7282 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7283 SDValue ShOpLo = Node->getOperand(0);
7284 SDValue ShOpHi = Node->getOperand(1);
7285 SDValue ShAmt = Node->getOperand(2);
7286 EVT ShAmtVT = ShAmt.getValueType();
7287 EVT ShAmtCCVT =
7288 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7289 SDLoc dl(Node);
7290
7291 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7292 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7293 // away during isel.
7294 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7295 DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7296 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7297 DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7298 : DAG.getConstant(0, dl, VT);
7299
7300 SDValue Tmp2, Tmp3;
7301 if (IsSHL) {
7302 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7303 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7304 } else {
7305 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7306 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7307 }
7308
7309 // If the shift amount is larger or equal than the width of a part we don't
7310 // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7311 // values for large shift amounts.
7312 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7313 DAG.getConstant(VTBits, dl, ShAmtVT));
7314 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7315 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7316
7317 if (IsSHL) {
7318 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7319 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7320 } else {
7321 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7322 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7323 }
7324 }
7325
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const7326 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7327 SelectionDAG &DAG) const {
7328 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7329 SDValue Src = Node->getOperand(OpNo);
7330 EVT SrcVT = Src.getValueType();
7331 EVT DstVT = Node->getValueType(0);
7332 SDLoc dl(SDValue(Node, 0));
7333
7334 // FIXME: Only f32 to i64 conversions are supported.
7335 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7336 return false;
7337
7338 if (Node->isStrictFPOpcode())
7339 // When a NaN is converted to an integer a trap is allowed. We can't
7340 // use this expansion here because it would eliminate that trap. Other
7341 // traps are also allowed and cannot be eliminated. See
7342 // IEEE 754-2008 sec 5.8.
7343 return false;
7344
7345 // Expand f32 -> i64 conversion
7346 // This algorithm comes from compiler-rt's implementation of fixsfdi:
7347 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7348 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7349 EVT IntVT = SrcVT.changeTypeToInteger();
7350 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7351
7352 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7353 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7354 SDValue Bias = DAG.getConstant(127, dl, IntVT);
7355 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7356 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7357 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7358
7359 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7360
7361 SDValue ExponentBits = DAG.getNode(
7362 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7363 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7364 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7365
7366 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7367 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7368 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7369 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7370
7371 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7372 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7373 DAG.getConstant(0x00800000, dl, IntVT));
7374
7375 R = DAG.getZExtOrTrunc(R, dl, DstVT);
7376
7377 R = DAG.getSelectCC(
7378 dl, Exponent, ExponentLoBit,
7379 DAG.getNode(ISD::SHL, dl, DstVT, R,
7380 DAG.getZExtOrTrunc(
7381 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7382 dl, IntShVT)),
7383 DAG.getNode(ISD::SRL, dl, DstVT, R,
7384 DAG.getZExtOrTrunc(
7385 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7386 dl, IntShVT)),
7387 ISD::SETGT);
7388
7389 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7390 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7391
7392 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7393 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7394 return true;
7395 }
7396
expandFP_TO_UINT(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const7397 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7398 SDValue &Chain,
7399 SelectionDAG &DAG) const {
7400 SDLoc dl(SDValue(Node, 0));
7401 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7402 SDValue Src = Node->getOperand(OpNo);
7403
7404 EVT SrcVT = Src.getValueType();
7405 EVT DstVT = Node->getValueType(0);
7406 EVT SetCCVT =
7407 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7408 EVT DstSetCCVT =
7409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7410
7411 // Only expand vector types if we have the appropriate vector bit operations.
7412 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7413 ISD::FP_TO_SINT;
7414 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7415 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7416 return false;
7417
7418 // If the maximum float value is smaller then the signed integer range,
7419 // the destination signmask can't be represented by the float, so we can
7420 // just use FP_TO_SINT directly.
7421 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7422 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7423 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7424 if (APFloat::opOverflow &
7425 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7426 if (Node->isStrictFPOpcode()) {
7427 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7428 { Node->getOperand(0), Src });
7429 Chain = Result.getValue(1);
7430 } else
7431 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7432 return true;
7433 }
7434
7435 // Don't expand it if there isn't cheap fsub instruction.
7436 if (!isOperationLegalOrCustom(
7437 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7438 return false;
7439
7440 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7441 SDValue Sel;
7442
7443 if (Node->isStrictFPOpcode()) {
7444 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7445 Node->getOperand(0), /*IsSignaling*/ true);
7446 Chain = Sel.getValue(1);
7447 } else {
7448 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7449 }
7450
7451 bool Strict = Node->isStrictFPOpcode() ||
7452 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7453
7454 if (Strict) {
7455 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7456 // signmask then offset (the result of which should be fully representable).
7457 // Sel = Src < 0x8000000000000000
7458 // FltOfs = select Sel, 0, 0x8000000000000000
7459 // IntOfs = select Sel, 0, 0x8000000000000000
7460 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7461
7462 // TODO: Should any fast-math-flags be set for the FSUB?
7463 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7464 DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7465 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7466 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7467 DAG.getConstant(0, dl, DstVT),
7468 DAG.getConstant(SignMask, dl, DstVT));
7469 SDValue SInt;
7470 if (Node->isStrictFPOpcode()) {
7471 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7472 { Chain, Src, FltOfs });
7473 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7474 { Val.getValue(1), Val });
7475 Chain = SInt.getValue(1);
7476 } else {
7477 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7478 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7479 }
7480 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7481 } else {
7482 // Expand based on maximum range of FP_TO_SINT:
7483 // True = fp_to_sint(Src)
7484 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7485 // Result = select (Src < 0x8000000000000000), True, False
7486
7487 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7488 // TODO: Should any fast-math-flags be set for the FSUB?
7489 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7490 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7491 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7492 DAG.getConstant(SignMask, dl, DstVT));
7493 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7494 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7495 }
7496 return true;
7497 }
7498
expandUINT_TO_FP(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const7499 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7500 SDValue &Chain,
7501 SelectionDAG &DAG) const {
7502 // This transform is not correct for converting 0 when rounding mode is set
7503 // to round toward negative infinity which will produce -0.0. So disable under
7504 // strictfp.
7505 if (Node->isStrictFPOpcode())
7506 return false;
7507
7508 SDValue Src = Node->getOperand(0);
7509 EVT SrcVT = Src.getValueType();
7510 EVT DstVT = Node->getValueType(0);
7511
7512 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7513 return false;
7514
7515 // Only expand vector types if we have the appropriate vector bit operations.
7516 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7517 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7518 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7519 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7520 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7521 return false;
7522
7523 SDLoc dl(SDValue(Node, 0));
7524 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7525
7526 // Implementation of unsigned i64 to f64 following the algorithm in
7527 // __floatundidf in compiler_rt. This implementation performs rounding
7528 // correctly in all rounding modes with the exception of converting 0
7529 // when rounding toward negative infinity. In that case the fsub will produce
7530 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7531 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7532 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7533 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7534 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7535 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7536 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7537
7538 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7539 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7540 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7541 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7542 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7543 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7544 SDValue HiSub =
7545 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7546 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7547 return true;
7548 }
7549
7550 SDValue
createSelectForFMINNUM_FMAXNUM(SDNode * Node,SelectionDAG & DAG) const7551 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7552 SelectionDAG &DAG) const {
7553 unsigned Opcode = Node->getOpcode();
7554 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7555 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7556 "Wrong opcode");
7557
7558 if (Node->getFlags().hasNoNaNs()) {
7559 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7560 SDValue Op1 = Node->getOperand(0);
7561 SDValue Op2 = Node->getOperand(1);
7562 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7563 // Copy FMF flags, but always set the no-signed-zeros flag
7564 // as this is implied by the FMINNUM/FMAXNUM semantics.
7565 SDNodeFlags Flags = Node->getFlags();
7566 Flags.setNoSignedZeros(true);
7567 SelCC->setFlags(Flags);
7568 return SelCC;
7569 }
7570
7571 return SDValue();
7572 }
7573
expandFMINNUM_FMAXNUM(SDNode * Node,SelectionDAG & DAG) const7574 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7575 SelectionDAG &DAG) const {
7576 SDLoc dl(Node);
7577 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7578 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7579 EVT VT = Node->getValueType(0);
7580
7581 if (VT.isScalableVector())
7582 report_fatal_error(
7583 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7584
7585 if (isOperationLegalOrCustom(NewOp, VT)) {
7586 SDValue Quiet0 = Node->getOperand(0);
7587 SDValue Quiet1 = Node->getOperand(1);
7588
7589 if (!Node->getFlags().hasNoNaNs()) {
7590 // Insert canonicalizes if it's possible we need to quiet to get correct
7591 // sNaN behavior.
7592 if (!DAG.isKnownNeverSNaN(Quiet0)) {
7593 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7594 Node->getFlags());
7595 }
7596 if (!DAG.isKnownNeverSNaN(Quiet1)) {
7597 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7598 Node->getFlags());
7599 }
7600 }
7601
7602 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7603 }
7604
7605 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7606 // instead if there are no NaNs.
7607 if (Node->getFlags().hasNoNaNs()) {
7608 unsigned IEEE2018Op =
7609 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7610 if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7611 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7612 Node->getOperand(1), Node->getFlags());
7613 }
7614 }
7615
7616 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7617 return SelCC;
7618
7619 return SDValue();
7620 }
7621
expandIS_FPCLASS(EVT ResultVT,SDValue Op,unsigned Test,SDNodeFlags Flags,const SDLoc & DL,SelectionDAG & DAG) const7622 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7623 unsigned Test, SDNodeFlags Flags,
7624 const SDLoc &DL,
7625 SelectionDAG &DAG) const {
7626 EVT OperandVT = Op.getValueType();
7627 assert(OperandVT.isFloatingPoint());
7628
7629 // Degenerated cases.
7630 if (Test == 0)
7631 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7632 if ((Test & fcAllFlags) == fcAllFlags)
7633 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7634
7635 // PPC double double is a pair of doubles, of which the higher part determines
7636 // the value class.
7637 if (OperandVT == MVT::ppcf128) {
7638 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7639 DAG.getConstant(1, DL, MVT::i32));
7640 OperandVT = MVT::f64;
7641 }
7642
7643 // Some checks may be represented as inversion of simpler check, for example
7644 // "inf|normal|subnormal|zero" => !"nan".
7645 bool IsInverted = false;
7646 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7647 IsInverted = true;
7648 Test = InvertedCheck;
7649 }
7650
7651 // Floating-point type properties.
7652 EVT ScalarFloatVT = OperandVT.getScalarType();
7653 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7654 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7655 bool IsF80 = (ScalarFloatVT == MVT::f80);
7656
7657 // Some checks can be implemented using float comparisons, if floating point
7658 // exceptions are ignored.
7659 if (Flags.hasNoFPExcept() &&
7660 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7661 if (Test == fcZero)
7662 return DAG.getSetCC(DL, ResultVT, Op,
7663 DAG.getConstantFP(0.0, DL, OperandVT),
7664 IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7665 if (Test == fcNan)
7666 return DAG.getSetCC(DL, ResultVT, Op, Op,
7667 IsInverted ? ISD::SETO : ISD::SETUO);
7668 }
7669
7670 // In the general case use integer operations.
7671 unsigned BitSize = OperandVT.getScalarSizeInBits();
7672 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7673 if (OperandVT.isVector())
7674 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7675 OperandVT.getVectorElementCount());
7676 SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7677
7678 // Various masks.
7679 APInt SignBit = APInt::getSignMask(BitSize);
7680 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
7681 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7682 const unsigned ExplicitIntBitInF80 = 63;
7683 APInt ExpMask = Inf;
7684 if (IsF80)
7685 ExpMask.clearBit(ExplicitIntBitInF80);
7686 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7687 APInt QNaNBitMask =
7688 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7689 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7690
7691 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7692 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7693 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7694 SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7695 SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7696 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7697
7698 SDValue Res;
7699 const auto appendResult = [&](SDValue PartialRes) {
7700 if (PartialRes) {
7701 if (Res)
7702 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7703 else
7704 Res = PartialRes;
7705 }
7706 };
7707
7708 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7709 const auto getIntBitIsSet = [&]() -> SDValue {
7710 if (!IntBitIsSetV) {
7711 APInt IntBitMask(BitSize, 0);
7712 IntBitMask.setBit(ExplicitIntBitInF80);
7713 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7714 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7715 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7716 }
7717 return IntBitIsSetV;
7718 };
7719
7720 // Split the value into sign bit and absolute value.
7721 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7722 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7723 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7724
7725 // Tests that involve more than one class should be processed first.
7726 SDValue PartialRes;
7727
7728 if (IsF80)
7729 ; // Detect finite numbers of f80 by checking individual classes because
7730 // they have different settings of the explicit integer bit.
7731 else if ((Test & fcFinite) == fcFinite) {
7732 // finite(V) ==> abs(V) < exp_mask
7733 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7734 Test &= ~fcFinite;
7735 } else if ((Test & fcFinite) == fcPosFinite) {
7736 // finite(V) && V > 0 ==> V < exp_mask
7737 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7738 Test &= ~fcPosFinite;
7739 } else if ((Test & fcFinite) == fcNegFinite) {
7740 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7741 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7742 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7743 Test &= ~fcNegFinite;
7744 }
7745 appendResult(PartialRes);
7746
7747 // Check for individual classes.
7748
7749 if (unsigned PartialCheck = Test & fcZero) {
7750 if (PartialCheck == fcPosZero)
7751 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7752 else if (PartialCheck == fcZero)
7753 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7754 else // ISD::fcNegZero
7755 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7756 appendResult(PartialRes);
7757 }
7758
7759 if (unsigned PartialCheck = Test & fcInf) {
7760 if (PartialCheck == fcPosInf)
7761 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7762 else if (PartialCheck == fcInf)
7763 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7764 else { // ISD::fcNegInf
7765 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7766 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7767 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7768 }
7769 appendResult(PartialRes);
7770 }
7771
7772 if (unsigned PartialCheck = Test & fcNan) {
7773 APInt InfWithQnanBit = Inf | QNaNBitMask;
7774 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7775 if (PartialCheck == fcNan) {
7776 // isnan(V) ==> abs(V) > int(inf)
7777 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7778 if (IsF80) {
7779 // Recognize unsupported values as NaNs for compatibility with glibc.
7780 // In them (exp(V)==0) == int_bit.
7781 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7782 SDValue ExpIsZero =
7783 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7784 SDValue IsPseudo =
7785 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7786 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7787 }
7788 } else if (PartialCheck == fcQNan) {
7789 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7790 PartialRes =
7791 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7792 } else { // ISD::fcSNan
7793 // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7794 // abs(V) < (unsigned(Inf) | quiet_bit)
7795 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7796 SDValue IsNotQnan =
7797 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7798 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7799 }
7800 appendResult(PartialRes);
7801 }
7802
7803 if (unsigned PartialCheck = Test & fcSubnormal) {
7804 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7805 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7806 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7807 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7808 SDValue VMinusOneV =
7809 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7810 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7811 if (PartialCheck == fcNegSubnormal)
7812 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7813 appendResult(PartialRes);
7814 }
7815
7816 if (unsigned PartialCheck = Test & fcNormal) {
7817 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7818 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7819 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7820 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7821 APInt ExpLimit = ExpMask - ExpLSB;
7822 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7823 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7824 if (PartialCheck == fcNegNormal)
7825 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7826 else if (PartialCheck == fcPosNormal) {
7827 SDValue PosSignV =
7828 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7829 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7830 }
7831 if (IsF80)
7832 PartialRes =
7833 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7834 appendResult(PartialRes);
7835 }
7836
7837 if (!Res)
7838 return DAG.getConstant(IsInverted, DL, ResultVT);
7839 if (IsInverted)
7840 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7841 return Res;
7842 }
7843
7844 // Only expand vector types if we have the appropriate vector bit operations.
canExpandVectorCTPOP(const TargetLowering & TLI,EVT VT)7845 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7846 assert(VT.isVector() && "Expected vector type");
7847 unsigned Len = VT.getScalarSizeInBits();
7848 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7849 TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7850 TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7851 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7852 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7853 }
7854
expandCTPOP(SDNode * Node,SelectionDAG & DAG) const7855 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7856 SDLoc dl(Node);
7857 EVT VT = Node->getValueType(0);
7858 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7859 SDValue Op = Node->getOperand(0);
7860 unsigned Len = VT.getScalarSizeInBits();
7861 assert(VT.isInteger() && "CTPOP not implemented for this type.");
7862
7863 // TODO: Add support for irregular type lengths.
7864 if (!(Len <= 128 && Len % 8 == 0))
7865 return SDValue();
7866
7867 // Only expand vector types if we have the appropriate vector bit operations.
7868 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7869 return SDValue();
7870
7871 // This is the "best" algorithm from
7872 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7873 SDValue Mask55 =
7874 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7875 SDValue Mask33 =
7876 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7877 SDValue Mask0F =
7878 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7879
7880 // v = v - ((v >> 1) & 0x55555555...)
7881 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7882 DAG.getNode(ISD::AND, dl, VT,
7883 DAG.getNode(ISD::SRL, dl, VT, Op,
7884 DAG.getConstant(1, dl, ShVT)),
7885 Mask55));
7886 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7887 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7888 DAG.getNode(ISD::AND, dl, VT,
7889 DAG.getNode(ISD::SRL, dl, VT, Op,
7890 DAG.getConstant(2, dl, ShVT)),
7891 Mask33));
7892 // v = (v + (v >> 4)) & 0x0F0F0F0F...
7893 Op = DAG.getNode(ISD::AND, dl, VT,
7894 DAG.getNode(ISD::ADD, dl, VT, Op,
7895 DAG.getNode(ISD::SRL, dl, VT, Op,
7896 DAG.getConstant(4, dl, ShVT))),
7897 Mask0F);
7898
7899 if (Len <= 8)
7900 return Op;
7901
7902 // Avoid the multiply if we only have 2 bytes to add.
7903 // TODO: Only doing this for scalars because vectors weren't as obviously
7904 // improved.
7905 if (Len == 16 && !VT.isVector()) {
7906 // v = (v + (v >> 8)) & 0x00FF;
7907 return DAG.getNode(ISD::AND, dl, VT,
7908 DAG.getNode(ISD::ADD, dl, VT, Op,
7909 DAG.getNode(ISD::SRL, dl, VT, Op,
7910 DAG.getConstant(8, dl, ShVT))),
7911 DAG.getConstant(0xFF, dl, VT));
7912 }
7913
7914 // v = (v * 0x01010101...) >> (Len - 8)
7915 SDValue Mask01 =
7916 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7917 return DAG.getNode(ISD::SRL, dl, VT,
7918 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7919 DAG.getConstant(Len - 8, dl, ShVT));
7920 }
7921
expandCTLZ(SDNode * Node,SelectionDAG & DAG) const7922 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7923 SDLoc dl(Node);
7924 EVT VT = Node->getValueType(0);
7925 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7926 SDValue Op = Node->getOperand(0);
7927 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7928
7929 // If the non-ZERO_UNDEF version is supported we can use that instead.
7930 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7931 isOperationLegalOrCustom(ISD::CTLZ, VT))
7932 return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7933
7934 // If the ZERO_UNDEF version is supported use that and handle the zero case.
7935 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7936 EVT SetCCVT =
7937 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7938 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7939 SDValue Zero = DAG.getConstant(0, dl, VT);
7940 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7941 return DAG.getSelect(dl, VT, SrcIsZero,
7942 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7943 }
7944
7945 // Only expand vector types if we have the appropriate vector bit operations.
7946 // This includes the operations needed to expand CTPOP if it isn't supported.
7947 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7948 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7949 !canExpandVectorCTPOP(*this, VT)) ||
7950 !isOperationLegalOrCustom(ISD::SRL, VT) ||
7951 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7952 return SDValue();
7953
7954 // for now, we do this:
7955 // x = x | (x >> 1);
7956 // x = x | (x >> 2);
7957 // ...
7958 // x = x | (x >>16);
7959 // x = x | (x >>32); // for 64-bit input
7960 // return popcount(~x);
7961 //
7962 // Ref: "Hacker's Delight" by Henry Warren
7963 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
7964 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7965 Op = DAG.getNode(ISD::OR, dl, VT, Op,
7966 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7967 }
7968 Op = DAG.getNOT(dl, Op, VT);
7969 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7970 }
7971
expandCTTZ(SDNode * Node,SelectionDAG & DAG) const7972 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7973 SDLoc dl(Node);
7974 EVT VT = Node->getValueType(0);
7975 SDValue Op = Node->getOperand(0);
7976 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7977
7978 // If the non-ZERO_UNDEF version is supported we can use that instead.
7979 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7980 isOperationLegalOrCustom(ISD::CTTZ, VT))
7981 return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7982
7983 // If the ZERO_UNDEF version is supported use that and handle the zero case.
7984 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7985 EVT SetCCVT =
7986 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7987 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7988 SDValue Zero = DAG.getConstant(0, dl, VT);
7989 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7990 return DAG.getSelect(dl, VT, SrcIsZero,
7991 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7992 }
7993
7994 // Only expand vector types if we have the appropriate vector bit operations.
7995 // This includes the operations needed to expand CTPOP if it isn't supported.
7996 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7997 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7998 !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7999 !canExpandVectorCTPOP(*this, VT)) ||
8000 !isOperationLegalOrCustom(ISD::SUB, VT) ||
8001 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
8002 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8003 return SDValue();
8004
8005 // for now, we use: { return popcount(~x & (x - 1)); }
8006 // unless the target has ctlz but not ctpop, in which case we use:
8007 // { return 32 - nlz(~x & (x-1)); }
8008 // Ref: "Hacker's Delight" by Henry Warren
8009 SDValue Tmp = DAG.getNode(
8010 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
8011 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
8012
8013 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
8014 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
8015 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
8016 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
8017 }
8018
8019 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
8020 }
8021
expandABS(SDNode * N,SelectionDAG & DAG,bool IsNegative) const8022 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
8023 bool IsNegative) const {
8024 SDLoc dl(N);
8025 EVT VT = N->getValueType(0);
8026 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8027 SDValue Op = N->getOperand(0);
8028
8029 // abs(x) -> smax(x,sub(0,x))
8030 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8031 isOperationLegal(ISD::SMAX, VT)) {
8032 SDValue Zero = DAG.getConstant(0, dl, VT);
8033 return DAG.getNode(ISD::SMAX, dl, VT, Op,
8034 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8035 }
8036
8037 // abs(x) -> umin(x,sub(0,x))
8038 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
8039 isOperationLegal(ISD::UMIN, VT)) {
8040 SDValue Zero = DAG.getConstant(0, dl, VT);
8041 Op = DAG.getFreeze(Op);
8042 return DAG.getNode(ISD::UMIN, dl, VT, Op,
8043 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8044 }
8045
8046 // 0 - abs(x) -> smin(x, sub(0,x))
8047 if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
8048 isOperationLegal(ISD::SMIN, VT)) {
8049 Op = DAG.getFreeze(Op);
8050 SDValue Zero = DAG.getConstant(0, dl, VT);
8051 return DAG.getNode(ISD::SMIN, dl, VT, Op,
8052 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8053 }
8054
8055 // Only expand vector types if we have the appropriate vector operations.
8056 if (VT.isVector() &&
8057 (!isOperationLegalOrCustom(ISD::SRA, VT) ||
8058 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
8059 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
8060 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8061 return SDValue();
8062
8063 Op = DAG.getFreeze(Op);
8064 SDValue Shift =
8065 DAG.getNode(ISD::SRA, dl, VT, Op,
8066 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
8067 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
8068
8069 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
8070 if (!IsNegative)
8071 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
8072
8073 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
8074 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
8075 }
8076
expandBSWAP(SDNode * N,SelectionDAG & DAG) const8077 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
8078 SDLoc dl(N);
8079 EVT VT = N->getValueType(0);
8080 SDValue Op = N->getOperand(0);
8081
8082 if (!VT.isSimple())
8083 return SDValue();
8084
8085 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8086 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8087 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8088 default:
8089 return SDValue();
8090 case MVT::i16:
8091 // Use a rotate by 8. This can be further expanded if necessary.
8092 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8093 case MVT::i32:
8094 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8095 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8096 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8097 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8098 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8099 DAG.getConstant(0xFF0000, dl, VT));
8100 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8101 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8102 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8103 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8104 case MVT::i64:
8105 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8106 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8107 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8108 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8109 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8110 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8111 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8112 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8113 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8114 DAG.getConstant(255ULL<<48, dl, VT));
8115 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8116 DAG.getConstant(255ULL<<40, dl, VT));
8117 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8118 DAG.getConstant(255ULL<<32, dl, VT));
8119 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8120 DAG.getConstant(255ULL<<24, dl, VT));
8121 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8122 DAG.getConstant(255ULL<<16, dl, VT));
8123 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8124 DAG.getConstant(255ULL<<8 , dl, VT));
8125 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8126 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8127 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8128 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8129 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8130 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8131 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8132 }
8133 }
8134
expandBITREVERSE(SDNode * N,SelectionDAG & DAG) const8135 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8136 SDLoc dl(N);
8137 EVT VT = N->getValueType(0);
8138 SDValue Op = N->getOperand(0);
8139 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8140 unsigned Sz = VT.getScalarSizeInBits();
8141
8142 SDValue Tmp, Tmp2, Tmp3;
8143
8144 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8145 // and finally the i1 pairs.
8146 // TODO: We can easily support i4/i2 legal types if any target ever does.
8147 if (Sz >= 8 && isPowerOf2_32(Sz)) {
8148 // Create the masks - repeating the pattern every byte.
8149 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8150 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8151 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8152
8153 // BSWAP if the type is wider than a single byte.
8154 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8155
8156 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8157 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8158 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8159 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8160 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8161 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8162
8163 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8164 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8165 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8166 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8167 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8168 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8169
8170 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8171 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8172 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8173 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8174 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8175 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8176 return Tmp;
8177 }
8178
8179 Tmp = DAG.getConstant(0, dl, VT);
8180 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8181 if (I < J)
8182 Tmp2 =
8183 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8184 else
8185 Tmp2 =
8186 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8187
8188 APInt Shift(Sz, 1);
8189 Shift <<= J;
8190 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8191 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8192 }
8193
8194 return Tmp;
8195 }
8196
8197 std::pair<SDValue, SDValue>
scalarizeVectorLoad(LoadSDNode * LD,SelectionDAG & DAG) const8198 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8199 SelectionDAG &DAG) const {
8200 SDLoc SL(LD);
8201 SDValue Chain = LD->getChain();
8202 SDValue BasePTR = LD->getBasePtr();
8203 EVT SrcVT = LD->getMemoryVT();
8204 EVT DstVT = LD->getValueType(0);
8205 ISD::LoadExtType ExtType = LD->getExtensionType();
8206
8207 if (SrcVT.isScalableVector())
8208 report_fatal_error("Cannot scalarize scalable vector loads");
8209
8210 unsigned NumElem = SrcVT.getVectorNumElements();
8211
8212 EVT SrcEltVT = SrcVT.getScalarType();
8213 EVT DstEltVT = DstVT.getScalarType();
8214
8215 // A vector must always be stored in memory as-is, i.e. without any padding
8216 // between the elements, since various code depend on it, e.g. in the
8217 // handling of a bitcast of a vector type to int, which may be done with a
8218 // vector store followed by an integer load. A vector that does not have
8219 // elements that are byte-sized must therefore be stored as an integer
8220 // built out of the extracted vector elements.
8221 if (!SrcEltVT.isByteSized()) {
8222 unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8223 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8224
8225 unsigned NumSrcBits = SrcVT.getSizeInBits();
8226 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8227
8228 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8229 SDValue SrcEltBitMask = DAG.getConstant(
8230 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8231
8232 // Load the whole vector and avoid masking off the top bits as it makes
8233 // the codegen worse.
8234 SDValue Load =
8235 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8236 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8237 LD->getMemOperand()->getFlags(), LD->getAAInfo());
8238
8239 SmallVector<SDValue, 8> Vals;
8240 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8241 unsigned ShiftIntoIdx =
8242 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8243 SDValue ShiftAmount =
8244 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8245 LoadVT, SL, /*LegalTypes=*/false);
8246 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8247 SDValue Elt =
8248 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8249 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8250
8251 if (ExtType != ISD::NON_EXTLOAD) {
8252 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8253 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8254 }
8255
8256 Vals.push_back(Scalar);
8257 }
8258
8259 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8260 return std::make_pair(Value, Load.getValue(1));
8261 }
8262
8263 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8264 assert(SrcEltVT.isByteSized());
8265
8266 SmallVector<SDValue, 8> Vals;
8267 SmallVector<SDValue, 8> LoadChains;
8268
8269 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8270 SDValue ScalarLoad =
8271 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8272 LD->getPointerInfo().getWithOffset(Idx * Stride),
8273 SrcEltVT, LD->getOriginalAlign(),
8274 LD->getMemOperand()->getFlags(), LD->getAAInfo());
8275
8276 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8277
8278 Vals.push_back(ScalarLoad.getValue(0));
8279 LoadChains.push_back(ScalarLoad.getValue(1));
8280 }
8281
8282 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8283 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8284
8285 return std::make_pair(Value, NewChain);
8286 }
8287
scalarizeVectorStore(StoreSDNode * ST,SelectionDAG & DAG) const8288 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8289 SelectionDAG &DAG) const {
8290 SDLoc SL(ST);
8291
8292 SDValue Chain = ST->getChain();
8293 SDValue BasePtr = ST->getBasePtr();
8294 SDValue Value = ST->getValue();
8295 EVT StVT = ST->getMemoryVT();
8296
8297 if (StVT.isScalableVector())
8298 report_fatal_error("Cannot scalarize scalable vector stores");
8299
8300 // The type of the data we want to save
8301 EVT RegVT = Value.getValueType();
8302 EVT RegSclVT = RegVT.getScalarType();
8303
8304 // The type of data as saved in memory.
8305 EVT MemSclVT = StVT.getScalarType();
8306
8307 unsigned NumElem = StVT.getVectorNumElements();
8308
8309 // A vector must always be stored in memory as-is, i.e. without any padding
8310 // between the elements, since various code depend on it, e.g. in the
8311 // handling of a bitcast of a vector type to int, which may be done with a
8312 // vector store followed by an integer load. A vector that does not have
8313 // elements that are byte-sized must therefore be stored as an integer
8314 // built out of the extracted vector elements.
8315 if (!MemSclVT.isByteSized()) {
8316 unsigned NumBits = StVT.getSizeInBits();
8317 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8318
8319 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8320
8321 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8322 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8323 DAG.getVectorIdxConstant(Idx, SL));
8324 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8325 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8326 unsigned ShiftIntoIdx =
8327 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8328 SDValue ShiftAmount =
8329 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8330 SDValue ShiftedElt =
8331 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8332 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8333 }
8334
8335 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8336 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8337 ST->getAAInfo());
8338 }
8339
8340 // Store Stride in bytes
8341 unsigned Stride = MemSclVT.getSizeInBits() / 8;
8342 assert(Stride && "Zero stride!");
8343 // Extract each of the elements from the original vector and save them into
8344 // memory individually.
8345 SmallVector<SDValue, 8> Stores;
8346 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8347 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8348 DAG.getVectorIdxConstant(Idx, SL));
8349
8350 SDValue Ptr =
8351 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8352
8353 // This scalar TruncStore may be illegal, but we legalize it later.
8354 SDValue Store = DAG.getTruncStore(
8355 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8356 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8357 ST->getAAInfo());
8358
8359 Stores.push_back(Store);
8360 }
8361
8362 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8363 }
8364
8365 std::pair<SDValue, SDValue>
expandUnalignedLoad(LoadSDNode * LD,SelectionDAG & DAG) const8366 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8367 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8368 "unaligned indexed loads not implemented!");
8369 SDValue Chain = LD->getChain();
8370 SDValue Ptr = LD->getBasePtr();
8371 EVT VT = LD->getValueType(0);
8372 EVT LoadedVT = LD->getMemoryVT();
8373 SDLoc dl(LD);
8374 auto &MF = DAG.getMachineFunction();
8375
8376 if (VT.isFloatingPoint() || VT.isVector()) {
8377 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8378 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8379 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8380 LoadedVT.isVector()) {
8381 // Scalarize the load and let the individual components be handled.
8382 return scalarizeVectorLoad(LD, DAG);
8383 }
8384
8385 // Expand to a (misaligned) integer load of the same size,
8386 // then bitconvert to floating point or vector.
8387 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8388 LD->getMemOperand());
8389 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8390 if (LoadedVT != VT)
8391 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8392 ISD::ANY_EXTEND, dl, VT, Result);
8393
8394 return std::make_pair(Result, newLoad.getValue(1));
8395 }
8396
8397 // Copy the value to a (aligned) stack slot using (unaligned) integer
8398 // loads and stores, then do a (aligned) load from the stack slot.
8399 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8400 unsigned LoadedBytes = LoadedVT.getStoreSize();
8401 unsigned RegBytes = RegVT.getSizeInBits() / 8;
8402 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8403
8404 // Make sure the stack slot is also aligned for the register type.
8405 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8406 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8407 SmallVector<SDValue, 8> Stores;
8408 SDValue StackPtr = StackBase;
8409 unsigned Offset = 0;
8410
8411 EVT PtrVT = Ptr.getValueType();
8412 EVT StackPtrVT = StackPtr.getValueType();
8413
8414 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8415 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8416
8417 // Do all but one copies using the full register width.
8418 for (unsigned i = 1; i < NumRegs; i++) {
8419 // Load one integer register's worth from the original location.
8420 SDValue Load = DAG.getLoad(
8421 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8422 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8423 LD->getAAInfo());
8424 // Follow the load with a store to the stack slot. Remember the store.
8425 Stores.push_back(DAG.getStore(
8426 Load.getValue(1), dl, Load, StackPtr,
8427 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8428 // Increment the pointers.
8429 Offset += RegBytes;
8430
8431 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8432 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8433 }
8434
8435 // The last copy may be partial. Do an extending load.
8436 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8437 8 * (LoadedBytes - Offset));
8438 SDValue Load =
8439 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8440 LD->getPointerInfo().getWithOffset(Offset), MemVT,
8441 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8442 LD->getAAInfo());
8443 // Follow the load with a store to the stack slot. Remember the store.
8444 // On big-endian machines this requires a truncating store to ensure
8445 // that the bits end up in the right place.
8446 Stores.push_back(DAG.getTruncStore(
8447 Load.getValue(1), dl, Load, StackPtr,
8448 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8449
8450 // The order of the stores doesn't matter - say it with a TokenFactor.
8451 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8452
8453 // Finally, perform the original load only redirected to the stack slot.
8454 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8455 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8456 LoadedVT);
8457
8458 // Callers expect a MERGE_VALUES node.
8459 return std::make_pair(Load, TF);
8460 }
8461
8462 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8463 "Unaligned load of unsupported type.");
8464
8465 // Compute the new VT that is half the size of the old one. This is an
8466 // integer MVT.
8467 unsigned NumBits = LoadedVT.getSizeInBits();
8468 EVT NewLoadedVT;
8469 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8470 NumBits >>= 1;
8471
8472 Align Alignment = LD->getOriginalAlign();
8473 unsigned IncrementSize = NumBits / 8;
8474 ISD::LoadExtType HiExtType = LD->getExtensionType();
8475
8476 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8477 if (HiExtType == ISD::NON_EXTLOAD)
8478 HiExtType = ISD::ZEXTLOAD;
8479
8480 // Load the value in two parts
8481 SDValue Lo, Hi;
8482 if (DAG.getDataLayout().isLittleEndian()) {
8483 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8484 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8485 LD->getAAInfo());
8486
8487 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8488 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8489 LD->getPointerInfo().getWithOffset(IncrementSize),
8490 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8491 LD->getAAInfo());
8492 } else {
8493 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8494 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8495 LD->getAAInfo());
8496
8497 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8498 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8499 LD->getPointerInfo().getWithOffset(IncrementSize),
8500 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8501 LD->getAAInfo());
8502 }
8503
8504 // aggregate the two parts
8505 SDValue ShiftAmount =
8506 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8507 DAG.getDataLayout()));
8508 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8509 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8510
8511 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8512 Hi.getValue(1));
8513
8514 return std::make_pair(Result, TF);
8515 }
8516
expandUnalignedStore(StoreSDNode * ST,SelectionDAG & DAG) const8517 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8518 SelectionDAG &DAG) const {
8519 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8520 "unaligned indexed stores not implemented!");
8521 SDValue Chain = ST->getChain();
8522 SDValue Ptr = ST->getBasePtr();
8523 SDValue Val = ST->getValue();
8524 EVT VT = Val.getValueType();
8525 Align Alignment = ST->getOriginalAlign();
8526 auto &MF = DAG.getMachineFunction();
8527 EVT StoreMemVT = ST->getMemoryVT();
8528
8529 SDLoc dl(ST);
8530 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8531 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8532 if (isTypeLegal(intVT)) {
8533 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8534 StoreMemVT.isVector()) {
8535 // Scalarize the store and let the individual components be handled.
8536 SDValue Result = scalarizeVectorStore(ST, DAG);
8537 return Result;
8538 }
8539 // Expand to a bitconvert of the value to the integer type of the
8540 // same size, then a (misaligned) int store.
8541 // FIXME: Does not handle truncating floating point stores!
8542 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8543 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8544 Alignment, ST->getMemOperand()->getFlags());
8545 return Result;
8546 }
8547 // Do a (aligned) store to a stack slot, then copy from the stack slot
8548 // to the final destination using (unaligned) integer loads and stores.
8549 MVT RegVT = getRegisterType(
8550 *DAG.getContext(),
8551 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8552 EVT PtrVT = Ptr.getValueType();
8553 unsigned StoredBytes = StoreMemVT.getStoreSize();
8554 unsigned RegBytes = RegVT.getSizeInBits() / 8;
8555 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8556
8557 // Make sure the stack slot is also aligned for the register type.
8558 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8559 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8560
8561 // Perform the original store, only redirected to the stack slot.
8562 SDValue Store = DAG.getTruncStore(
8563 Chain, dl, Val, StackPtr,
8564 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8565
8566 EVT StackPtrVT = StackPtr.getValueType();
8567
8568 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8569 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8570 SmallVector<SDValue, 8> Stores;
8571 unsigned Offset = 0;
8572
8573 // Do all but one copies using the full register width.
8574 for (unsigned i = 1; i < NumRegs; i++) {
8575 // Load one integer register's worth from the stack slot.
8576 SDValue Load = DAG.getLoad(
8577 RegVT, dl, Store, StackPtr,
8578 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8579 // Store it to the final location. Remember the store.
8580 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8581 ST->getPointerInfo().getWithOffset(Offset),
8582 ST->getOriginalAlign(),
8583 ST->getMemOperand()->getFlags()));
8584 // Increment the pointers.
8585 Offset += RegBytes;
8586 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8587 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8588 }
8589
8590 // The last store may be partial. Do a truncating store. On big-endian
8591 // machines this requires an extending load from the stack slot to ensure
8592 // that the bits are in the right place.
8593 EVT LoadMemVT =
8594 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8595
8596 // Load from the stack slot.
8597 SDValue Load = DAG.getExtLoad(
8598 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8599 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8600
8601 Stores.push_back(
8602 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8603 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8604 ST->getOriginalAlign(),
8605 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8606 // The order of the stores doesn't matter - say it with a TokenFactor.
8607 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8608 return Result;
8609 }
8610
8611 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8612 "Unaligned store of unknown type.");
8613 // Get the half-size VT
8614 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8615 unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8616 unsigned IncrementSize = NumBits / 8;
8617
8618 // Divide the stored value in two parts.
8619 SDValue ShiftAmount = DAG.getConstant(
8620 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8621 SDValue Lo = Val;
8622 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8623
8624 // Store the two parts
8625 SDValue Store1, Store2;
8626 Store1 = DAG.getTruncStore(Chain, dl,
8627 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8628 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8629 ST->getMemOperand()->getFlags());
8630
8631 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8632 Store2 = DAG.getTruncStore(
8633 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8634 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8635 ST->getMemOperand()->getFlags(), ST->getAAInfo());
8636
8637 SDValue Result =
8638 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8639 return Result;
8640 }
8641
8642 SDValue
IncrementMemoryAddress(SDValue Addr,SDValue Mask,const SDLoc & DL,EVT DataVT,SelectionDAG & DAG,bool IsCompressedMemory) const8643 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8644 const SDLoc &DL, EVT DataVT,
8645 SelectionDAG &DAG,
8646 bool IsCompressedMemory) const {
8647 SDValue Increment;
8648 EVT AddrVT = Addr.getValueType();
8649 EVT MaskVT = Mask.getValueType();
8650 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8651 "Incompatible types of Data and Mask");
8652 if (IsCompressedMemory) {
8653 if (DataVT.isScalableVector())
8654 report_fatal_error(
8655 "Cannot currently handle compressed memory with scalable vectors");
8656 // Incrementing the pointer according to number of '1's in the mask.
8657 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8658 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8659 if (MaskIntVT.getSizeInBits() < 32) {
8660 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8661 MaskIntVT = MVT::i32;
8662 }
8663
8664 // Count '1's with POPCNT.
8665 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8666 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8667 // Scale is an element size in bytes.
8668 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8669 AddrVT);
8670 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8671 } else if (DataVT.isScalableVector()) {
8672 Increment = DAG.getVScale(DL, AddrVT,
8673 APInt(AddrVT.getFixedSizeInBits(),
8674 DataVT.getStoreSize().getKnownMinSize()));
8675 } else
8676 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8677
8678 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8679 }
8680
clampDynamicVectorIndex(SelectionDAG & DAG,SDValue Idx,EVT VecVT,const SDLoc & dl,ElementCount SubEC)8681 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8682 EVT VecVT, const SDLoc &dl,
8683 ElementCount SubEC) {
8684 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8685 "Cannot index a scalable vector within a fixed-width vector");
8686
8687 unsigned NElts = VecVT.getVectorMinNumElements();
8688 unsigned NumSubElts = SubEC.getKnownMinValue();
8689 EVT IdxVT = Idx.getValueType();
8690
8691 if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8692 // If this is a constant index and we know the value plus the number of the
8693 // elements in the subvector minus one is less than the minimum number of
8694 // elements then it's safe to return Idx.
8695 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8696 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8697 return Idx;
8698 SDValue VS =
8699 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8700 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8701 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8702 DAG.getConstant(NumSubElts, dl, IdxVT));
8703 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8704 }
8705 if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8706 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8707 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8708 DAG.getConstant(Imm, dl, IdxVT));
8709 }
8710 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8711 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8712 DAG.getConstant(MaxIndex, dl, IdxVT));
8713 }
8714
getVectorElementPointer(SelectionDAG & DAG,SDValue VecPtr,EVT VecVT,SDValue Index) const8715 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8716 SDValue VecPtr, EVT VecVT,
8717 SDValue Index) const {
8718 return getVectorSubVecPointer(
8719 DAG, VecPtr, VecVT,
8720 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8721 Index);
8722 }
8723
getVectorSubVecPointer(SelectionDAG & DAG,SDValue VecPtr,EVT VecVT,EVT SubVecVT,SDValue Index) const8724 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8725 SDValue VecPtr, EVT VecVT,
8726 EVT SubVecVT,
8727 SDValue Index) const {
8728 SDLoc dl(Index);
8729 // Make sure the index type is big enough to compute in.
8730 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8731
8732 EVT EltVT = VecVT.getVectorElementType();
8733
8734 // Calculate the element offset and add it to the pointer.
8735 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8736 assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8737 "Converting bits to bytes lost precision");
8738 assert(SubVecVT.getVectorElementType() == EltVT &&
8739 "Sub-vector must be a vector with matching element type");
8740 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8741 SubVecVT.getVectorElementCount());
8742
8743 EVT IdxVT = Index.getValueType();
8744 if (SubVecVT.isScalableVector())
8745 Index =
8746 DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8747 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8748
8749 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8750 DAG.getConstant(EltSize, dl, IdxVT));
8751 return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8752 }
8753
8754 //===----------------------------------------------------------------------===//
8755 // Implementation of Emulated TLS Model
8756 //===----------------------------------------------------------------------===//
8757
LowerToTLSEmulatedModel(const GlobalAddressSDNode * GA,SelectionDAG & DAG) const8758 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8759 SelectionDAG &DAG) const {
8760 // Access to address of TLS varialbe xyz is lowered to a function call:
8761 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8762 EVT PtrVT = getPointerTy(DAG.getDataLayout());
8763 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8764 SDLoc dl(GA);
8765
8766 ArgListTy Args;
8767 ArgListEntry Entry;
8768 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8769 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8770 StringRef EmuTlsVarName(NameString);
8771 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8772 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8773 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8774 Entry.Ty = VoidPtrType;
8775 Args.push_back(Entry);
8776
8777 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8778
8779 TargetLowering::CallLoweringInfo CLI(DAG);
8780 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8781 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8782 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8783
8784 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8785 // At last for X86 targets, maybe good for other targets too?
8786 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8787 MFI.setAdjustsStack(true); // Is this only for X86 target?
8788 MFI.setHasCalls(true);
8789
8790 assert((GA->getOffset() == 0) &&
8791 "Emulated TLS must have zero offset in GlobalAddressSDNode");
8792 return CallResult.first;
8793 }
8794
lowerCmpEqZeroToCtlzSrl(SDValue Op,SelectionDAG & DAG) const8795 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8796 SelectionDAG &DAG) const {
8797 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8798 if (!isCtlzFast())
8799 return SDValue();
8800 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8801 SDLoc dl(Op);
8802 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8803 if (C->isZero() && CC == ISD::SETEQ) {
8804 EVT VT = Op.getOperand(0).getValueType();
8805 SDValue Zext = Op.getOperand(0);
8806 if (VT.bitsLT(MVT::i32)) {
8807 VT = MVT::i32;
8808 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8809 }
8810 unsigned Log2b = Log2_32(VT.getSizeInBits());
8811 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8812 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8813 DAG.getConstant(Log2b, dl, MVT::i32));
8814 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8815 }
8816 }
8817 return SDValue();
8818 }
8819
expandIntMINMAX(SDNode * Node,SelectionDAG & DAG) const8820 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8821 SDValue Op0 = Node->getOperand(0);
8822 SDValue Op1 = Node->getOperand(1);
8823 EVT VT = Op0.getValueType();
8824 unsigned Opcode = Node->getOpcode();
8825 SDLoc DL(Node);
8826
8827 // umin(x,y) -> sub(x,usubsat(x,y))
8828 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8829 isOperationLegal(ISD::USUBSAT, VT)) {
8830 return DAG.getNode(ISD::SUB, DL, VT, Op0,
8831 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8832 }
8833
8834 // umax(x,y) -> add(x,usubsat(y,x))
8835 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8836 isOperationLegal(ISD::USUBSAT, VT)) {
8837 return DAG.getNode(ISD::ADD, DL, VT, Op0,
8838 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8839 }
8840
8841 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8842 ISD::CondCode CC;
8843 switch (Opcode) {
8844 default: llvm_unreachable("How did we get here?");
8845 case ISD::SMAX: CC = ISD::SETGT; break;
8846 case ISD::SMIN: CC = ISD::SETLT; break;
8847 case ISD::UMAX: CC = ISD::SETUGT; break;
8848 case ISD::UMIN: CC = ISD::SETULT; break;
8849 }
8850
8851 // FIXME: Should really try to split the vector in case it's legal on a
8852 // subvector.
8853 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8854 return DAG.UnrollVectorOp(Node);
8855
8856 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8857 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8858 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8859 }
8860
expandAddSubSat(SDNode * Node,SelectionDAG & DAG) const8861 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8862 unsigned Opcode = Node->getOpcode();
8863 SDValue LHS = Node->getOperand(0);
8864 SDValue RHS = Node->getOperand(1);
8865 EVT VT = LHS.getValueType();
8866 SDLoc dl(Node);
8867
8868 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8869 assert(VT.isInteger() && "Expected operands to be integers");
8870
8871 // usub.sat(a, b) -> umax(a, b) - b
8872 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8873 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8874 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8875 }
8876
8877 // uadd.sat(a, b) -> umin(a, ~b) + b
8878 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8879 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8880 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8881 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8882 }
8883
8884 unsigned OverflowOp;
8885 switch (Opcode) {
8886 case ISD::SADDSAT:
8887 OverflowOp = ISD::SADDO;
8888 break;
8889 case ISD::UADDSAT:
8890 OverflowOp = ISD::UADDO;
8891 break;
8892 case ISD::SSUBSAT:
8893 OverflowOp = ISD::SSUBO;
8894 break;
8895 case ISD::USUBSAT:
8896 OverflowOp = ISD::USUBO;
8897 break;
8898 default:
8899 llvm_unreachable("Expected method to receive signed or unsigned saturation "
8900 "addition or subtraction node.");
8901 }
8902
8903 // FIXME: Should really try to split the vector in case it's legal on a
8904 // subvector.
8905 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8906 return DAG.UnrollVectorOp(Node);
8907
8908 unsigned BitWidth = LHS.getScalarValueSizeInBits();
8909 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8910 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8911 SDValue SumDiff = Result.getValue(0);
8912 SDValue Overflow = Result.getValue(1);
8913 SDValue Zero = DAG.getConstant(0, dl, VT);
8914 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8915
8916 if (Opcode == ISD::UADDSAT) {
8917 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8918 // (LHS + RHS) | OverflowMask
8919 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8920 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8921 }
8922 // Overflow ? 0xffff.... : (LHS + RHS)
8923 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8924 }
8925
8926 if (Opcode == ISD::USUBSAT) {
8927 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8928 // (LHS - RHS) & ~OverflowMask
8929 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8930 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8931 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8932 }
8933 // Overflow ? 0 : (LHS - RHS)
8934 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8935 }
8936
8937 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8938 APInt MinVal = APInt::getSignedMinValue(BitWidth);
8939 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8940 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8941 DAG.getConstant(BitWidth - 1, dl, VT));
8942 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8943 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8944 }
8945
expandShlSat(SDNode * Node,SelectionDAG & DAG) const8946 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8947 unsigned Opcode = Node->getOpcode();
8948 bool IsSigned = Opcode == ISD::SSHLSAT;
8949 SDValue LHS = Node->getOperand(0);
8950 SDValue RHS = Node->getOperand(1);
8951 EVT VT = LHS.getValueType();
8952 SDLoc dl(Node);
8953
8954 assert((Node->getOpcode() == ISD::SSHLSAT ||
8955 Node->getOpcode() == ISD::USHLSAT) &&
8956 "Expected a SHLSAT opcode");
8957 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8958 assert(VT.isInteger() && "Expected operands to be integers");
8959
8960 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8961
8962 unsigned BW = VT.getScalarSizeInBits();
8963 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8964 SDValue Orig =
8965 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8966
8967 SDValue SatVal;
8968 if (IsSigned) {
8969 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8970 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8971 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8972 SatMin, SatMax, ISD::SETLT);
8973 } else {
8974 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8975 }
8976 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8977
8978 return Result;
8979 }
8980
8981 SDValue
expandFixedPointMul(SDNode * Node,SelectionDAG & DAG) const8982 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8983 assert((Node->getOpcode() == ISD::SMULFIX ||
8984 Node->getOpcode() == ISD::UMULFIX ||
8985 Node->getOpcode() == ISD::SMULFIXSAT ||
8986 Node->getOpcode() == ISD::UMULFIXSAT) &&
8987 "Expected a fixed point multiplication opcode");
8988
8989 SDLoc dl(Node);
8990 SDValue LHS = Node->getOperand(0);
8991 SDValue RHS = Node->getOperand(1);
8992 EVT VT = LHS.getValueType();
8993 unsigned Scale = Node->getConstantOperandVal(2);
8994 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8995 Node->getOpcode() == ISD::UMULFIXSAT);
8996 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8997 Node->getOpcode() == ISD::SMULFIXSAT);
8998 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8999 unsigned VTSize = VT.getScalarSizeInBits();
9000
9001 if (!Scale) {
9002 // [us]mul.fix(a, b, 0) -> mul(a, b)
9003 if (!Saturating) {
9004 if (isOperationLegalOrCustom(ISD::MUL, VT))
9005 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9006 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
9007 SDValue Result =
9008 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9009 SDValue Product = Result.getValue(0);
9010 SDValue Overflow = Result.getValue(1);
9011 SDValue Zero = DAG.getConstant(0, dl, VT);
9012
9013 APInt MinVal = APInt::getSignedMinValue(VTSize);
9014 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
9015 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
9016 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9017 // Xor the inputs, if resulting sign bit is 0 the product will be
9018 // positive, else negative.
9019 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9020 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
9021 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
9022 return DAG.getSelect(dl, VT, Overflow, Result, Product);
9023 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
9024 SDValue Result =
9025 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
9026 SDValue Product = Result.getValue(0);
9027 SDValue Overflow = Result.getValue(1);
9028
9029 APInt MaxVal = APInt::getMaxValue(VTSize);
9030 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
9031 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
9032 }
9033 }
9034
9035 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
9036 "Expected scale to be less than the number of bits if signed or at "
9037 "most the number of bits if unsigned.");
9038 assert(LHS.getValueType() == RHS.getValueType() &&
9039 "Expected both operands to be the same type");
9040
9041 // Get the upper and lower bits of the result.
9042 SDValue Lo, Hi;
9043 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
9044 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
9045 if (isOperationLegalOrCustom(LoHiOp, VT)) {
9046 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
9047 Lo = Result.getValue(0);
9048 Hi = Result.getValue(1);
9049 } else if (isOperationLegalOrCustom(HiOp, VT)) {
9050 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9051 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
9052 } else if (VT.isVector()) {
9053 return SDValue();
9054 } else {
9055 report_fatal_error("Unable to expand fixed point multiplication.");
9056 }
9057
9058 if (Scale == VTSize)
9059 // Result is just the top half since we'd be shifting by the width of the
9060 // operand. Overflow impossible so this works for both UMULFIX and
9061 // UMULFIXSAT.
9062 return Hi;
9063
9064 // The result will need to be shifted right by the scale since both operands
9065 // are scaled. The result is given to us in 2 halves, so we only want part of
9066 // both in the result.
9067 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9068 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
9069 DAG.getConstant(Scale, dl, ShiftTy));
9070 if (!Saturating)
9071 return Result;
9072
9073 if (!Signed) {
9074 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
9075 // widened multiplication) aren't all zeroes.
9076
9077 // Saturate to max if ((Hi >> Scale) != 0),
9078 // which is the same as if (Hi > ((1 << Scale) - 1))
9079 APInt MaxVal = APInt::getMaxValue(VTSize);
9080 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
9081 dl, VT);
9082 Result = DAG.getSelectCC(dl, Hi, LowMask,
9083 DAG.getConstant(MaxVal, dl, VT), Result,
9084 ISD::SETUGT);
9085
9086 return Result;
9087 }
9088
9089 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
9090 // widened multiplication) aren't all ones or all zeroes.
9091
9092 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
9093 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
9094
9095 if (Scale == 0) {
9096 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
9097 DAG.getConstant(VTSize - 1, dl, ShiftTy));
9098 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
9099 // Saturated to SatMin if wide product is negative, and SatMax if wide
9100 // product is positive ...
9101 SDValue Zero = DAG.getConstant(0, dl, VT);
9102 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
9103 ISD::SETLT);
9104 // ... but only if we overflowed.
9105 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9106 }
9107
9108 // We handled Scale==0 above so all the bits to examine is in Hi.
9109
9110 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9111 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9112 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9113 dl, VT);
9114 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9115 // Saturate to min if (Hi >> (Scale - 1)) < -1),
9116 // which is the same as if (HI < (-1 << (Scale - 1))
9117 SDValue HighMask =
9118 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9119 dl, VT);
9120 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9121 return Result;
9122 }
9123
9124 SDValue
expandFixedPointDiv(unsigned Opcode,const SDLoc & dl,SDValue LHS,SDValue RHS,unsigned Scale,SelectionDAG & DAG) const9125 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9126 SDValue LHS, SDValue RHS,
9127 unsigned Scale, SelectionDAG &DAG) const {
9128 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9129 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9130 "Expected a fixed point division opcode");
9131
9132 EVT VT = LHS.getValueType();
9133 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9134 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9135 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9136
9137 // If there is enough room in the type to upscale the LHS or downscale the
9138 // RHS before the division, we can perform it in this type without having to
9139 // resize. For signed operations, the LHS headroom is the number of
9140 // redundant sign bits, and for unsigned ones it is the number of zeroes.
9141 // The headroom for the RHS is the number of trailing zeroes.
9142 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9143 : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9144 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9145
9146 // For signed saturating operations, we need to be able to detect true integer
9147 // division overflow; that is, when you have MIN / -EPS. However, this
9148 // is undefined behavior and if we emit divisions that could take such
9149 // values it may cause undesired behavior (arithmetic exceptions on x86, for
9150 // example).
9151 // Avoid this by requiring an extra bit so that we never get this case.
9152 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9153 // signed saturating division, we need to emit a whopping 32-bit division.
9154 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9155 return SDValue();
9156
9157 unsigned LHSShift = std::min(LHSLead, Scale);
9158 unsigned RHSShift = Scale - LHSShift;
9159
9160 // At this point, we know that if we shift the LHS up by LHSShift and the
9161 // RHS down by RHSShift, we can emit a regular division with a final scaling
9162 // factor of Scale.
9163
9164 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9165 if (LHSShift)
9166 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9167 DAG.getConstant(LHSShift, dl, ShiftTy));
9168 if (RHSShift)
9169 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9170 DAG.getConstant(RHSShift, dl, ShiftTy));
9171
9172 SDValue Quot;
9173 if (Signed) {
9174 // For signed operations, if the resulting quotient is negative and the
9175 // remainder is nonzero, subtract 1 from the quotient to round towards
9176 // negative infinity.
9177 SDValue Rem;
9178 // FIXME: Ideally we would always produce an SDIVREM here, but if the
9179 // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9180 // we couldn't just form a libcall, but the type legalizer doesn't do it.
9181 if (isTypeLegal(VT) &&
9182 isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9183 Quot = DAG.getNode(ISD::SDIVREM, dl,
9184 DAG.getVTList(VT, VT),
9185 LHS, RHS);
9186 Rem = Quot.getValue(1);
9187 Quot = Quot.getValue(0);
9188 } else {
9189 Quot = DAG.getNode(ISD::SDIV, dl, VT,
9190 LHS, RHS);
9191 Rem = DAG.getNode(ISD::SREM, dl, VT,
9192 LHS, RHS);
9193 }
9194 SDValue Zero = DAG.getConstant(0, dl, VT);
9195 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9196 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9197 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9198 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9199 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9200 DAG.getConstant(1, dl, VT));
9201 Quot = DAG.getSelect(dl, VT,
9202 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9203 Sub1, Quot);
9204 } else
9205 Quot = DAG.getNode(ISD::UDIV, dl, VT,
9206 LHS, RHS);
9207
9208 return Quot;
9209 }
9210
expandUADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const9211 void TargetLowering::expandUADDSUBO(
9212 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9213 SDLoc dl(Node);
9214 SDValue LHS = Node->getOperand(0);
9215 SDValue RHS = Node->getOperand(1);
9216 bool IsAdd = Node->getOpcode() == ISD::UADDO;
9217
9218 // If ADD/SUBCARRY is legal, use that instead.
9219 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9220 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9221 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9222 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9223 { LHS, RHS, CarryIn });
9224 Result = SDValue(NodeCarry.getNode(), 0);
9225 Overflow = SDValue(NodeCarry.getNode(), 1);
9226 return;
9227 }
9228
9229 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9230 LHS.getValueType(), LHS, RHS);
9231
9232 EVT ResultType = Node->getValueType(1);
9233 EVT SetCCType = getSetCCResultType(
9234 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9235 SDValue SetCC;
9236 if (IsAdd && isOneConstant(RHS)) {
9237 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9238 // the live range of X. We assume comparing with 0 is cheap.
9239 // The general case (X + C) < C is not necessarily beneficial. Although we
9240 // reduce the live range of X, we may introduce the materialization of
9241 // constant C.
9242 SetCC =
9243 DAG.getSetCC(dl, SetCCType, Result,
9244 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9245 } else {
9246 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9247 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9248 }
9249 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9250 }
9251
expandSADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const9252 void TargetLowering::expandSADDSUBO(
9253 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9254 SDLoc dl(Node);
9255 SDValue LHS = Node->getOperand(0);
9256 SDValue RHS = Node->getOperand(1);
9257 bool IsAdd = Node->getOpcode() == ISD::SADDO;
9258
9259 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9260 LHS.getValueType(), LHS, RHS);
9261
9262 EVT ResultType = Node->getValueType(1);
9263 EVT OType = getSetCCResultType(
9264 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9265
9266 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9267 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9268 if (isOperationLegal(OpcSat, LHS.getValueType())) {
9269 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9270 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9271 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9272 return;
9273 }
9274
9275 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9276
9277 // For an addition, the result should be less than one of the operands (LHS)
9278 // if and only if the other operand (RHS) is negative, otherwise there will
9279 // be overflow.
9280 // For a subtraction, the result should be less than one of the operands
9281 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9282 // otherwise there will be overflow.
9283 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9284 SDValue ConditionRHS =
9285 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9286
9287 Overflow = DAG.getBoolExtOrTrunc(
9288 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9289 ResultType, ResultType);
9290 }
9291
expandMULO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const9292 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9293 SDValue &Overflow, SelectionDAG &DAG) const {
9294 SDLoc dl(Node);
9295 EVT VT = Node->getValueType(0);
9296 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9297 SDValue LHS = Node->getOperand(0);
9298 SDValue RHS = Node->getOperand(1);
9299 bool isSigned = Node->getOpcode() == ISD::SMULO;
9300
9301 // For power-of-two multiplications we can use a simpler shift expansion.
9302 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9303 const APInt &C = RHSC->getAPIntValue();
9304 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9305 if (C.isPowerOf2()) {
9306 // smulo(x, signed_min) is same as umulo(x, signed_min).
9307 bool UseArithShift = isSigned && !C.isMinSignedValue();
9308 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9309 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9310 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9311 Overflow = DAG.getSetCC(dl, SetCCVT,
9312 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9313 dl, VT, Result, ShiftAmt),
9314 LHS, ISD::SETNE);
9315 return true;
9316 }
9317 }
9318
9319 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9320 if (VT.isVector())
9321 WideVT =
9322 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9323
9324 SDValue BottomHalf;
9325 SDValue TopHalf;
9326 static const unsigned Ops[2][3] =
9327 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9328 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9329 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9330 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9331 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9332 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9333 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9334 RHS);
9335 TopHalf = BottomHalf.getValue(1);
9336 } else if (isTypeLegal(WideVT)) {
9337 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9338 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9339 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9340 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9341 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9342 getShiftAmountTy(WideVT, DAG.getDataLayout()));
9343 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9344 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9345 } else {
9346 if (VT.isVector())
9347 return false;
9348
9349 // We can fall back to a libcall with an illegal type for the MUL if we
9350 // have a libcall big enough.
9351 // Also, we can fall back to a division in some cases, but that's a big
9352 // performance hit in the general case.
9353 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9354 if (WideVT == MVT::i16)
9355 LC = RTLIB::MUL_I16;
9356 else if (WideVT == MVT::i32)
9357 LC = RTLIB::MUL_I32;
9358 else if (WideVT == MVT::i64)
9359 LC = RTLIB::MUL_I64;
9360 else if (WideVT == MVT::i128)
9361 LC = RTLIB::MUL_I128;
9362 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9363
9364 SDValue HiLHS;
9365 SDValue HiRHS;
9366 if (isSigned) {
9367 // The high part is obtained by SRA'ing all but one of the bits of low
9368 // part.
9369 unsigned LoSize = VT.getFixedSizeInBits();
9370 HiLHS =
9371 DAG.getNode(ISD::SRA, dl, VT, LHS,
9372 DAG.getConstant(LoSize - 1, dl,
9373 getPointerTy(DAG.getDataLayout())));
9374 HiRHS =
9375 DAG.getNode(ISD::SRA, dl, VT, RHS,
9376 DAG.getConstant(LoSize - 1, dl,
9377 getPointerTy(DAG.getDataLayout())));
9378 } else {
9379 HiLHS = DAG.getConstant(0, dl, VT);
9380 HiRHS = DAG.getConstant(0, dl, VT);
9381 }
9382
9383 // Here we're passing the 2 arguments explicitly as 4 arguments that are
9384 // pre-lowered to the correct types. This all depends upon WideVT not
9385 // being a legal type for the architecture and thus has to be split to
9386 // two arguments.
9387 SDValue Ret;
9388 TargetLowering::MakeLibCallOptions CallOptions;
9389 CallOptions.setSExt(isSigned);
9390 CallOptions.setIsPostTypeLegalization(true);
9391 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9392 // Halves of WideVT are packed into registers in different order
9393 // depending on platform endianness. This is usually handled by
9394 // the C calling convention, but we can't defer to it in
9395 // the legalizer.
9396 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9397 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9398 } else {
9399 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9400 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9401 }
9402 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9403 "Ret value is a collection of constituent nodes holding result.");
9404 if (DAG.getDataLayout().isLittleEndian()) {
9405 // Same as above.
9406 BottomHalf = Ret.getOperand(0);
9407 TopHalf = Ret.getOperand(1);
9408 } else {
9409 BottomHalf = Ret.getOperand(1);
9410 TopHalf = Ret.getOperand(0);
9411 }
9412 }
9413
9414 Result = BottomHalf;
9415 if (isSigned) {
9416 SDValue ShiftAmt = DAG.getConstant(
9417 VT.getScalarSizeInBits() - 1, dl,
9418 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9419 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9420 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9421 } else {
9422 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9423 DAG.getConstant(0, dl, VT), ISD::SETNE);
9424 }
9425
9426 // Truncate the result if SetCC returns a larger type than needed.
9427 EVT RType = Node->getValueType(1);
9428 if (RType.bitsLT(Overflow.getValueType()))
9429 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9430
9431 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9432 "Unexpected result type for S/UMULO legalization");
9433 return true;
9434 }
9435
expandVecReduce(SDNode * Node,SelectionDAG & DAG) const9436 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9437 SDLoc dl(Node);
9438 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9439 SDValue Op = Node->getOperand(0);
9440 EVT VT = Op.getValueType();
9441
9442 if (VT.isScalableVector())
9443 report_fatal_error(
9444 "Expanding reductions for scalable vectors is undefined.");
9445
9446 // Try to use a shuffle reduction for power of two vectors.
9447 if (VT.isPow2VectorType()) {
9448 while (VT.getVectorNumElements() > 1) {
9449 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9450 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9451 break;
9452
9453 SDValue Lo, Hi;
9454 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9455 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9456 VT = HalfVT;
9457 }
9458 }
9459
9460 EVT EltVT = VT.getVectorElementType();
9461 unsigned NumElts = VT.getVectorNumElements();
9462
9463 SmallVector<SDValue, 8> Ops;
9464 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9465
9466 SDValue Res = Ops[0];
9467 for (unsigned i = 1; i < NumElts; i++)
9468 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9469
9470 // Result type may be wider than element type.
9471 if (EltVT != Node->getValueType(0))
9472 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9473 return Res;
9474 }
9475
expandVecReduceSeq(SDNode * Node,SelectionDAG & DAG) const9476 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9477 SDLoc dl(Node);
9478 SDValue AccOp = Node->getOperand(0);
9479 SDValue VecOp = Node->getOperand(1);
9480 SDNodeFlags Flags = Node->getFlags();
9481
9482 EVT VT = VecOp.getValueType();
9483 EVT EltVT = VT.getVectorElementType();
9484
9485 if (VT.isScalableVector())
9486 report_fatal_error(
9487 "Expanding reductions for scalable vectors is undefined.");
9488
9489 unsigned NumElts = VT.getVectorNumElements();
9490
9491 SmallVector<SDValue, 8> Ops;
9492 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9493
9494 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9495
9496 SDValue Res = AccOp;
9497 for (unsigned i = 0; i < NumElts; i++)
9498 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9499
9500 return Res;
9501 }
9502
expandREM(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const9503 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9504 SelectionDAG &DAG) const {
9505 EVT VT = Node->getValueType(0);
9506 SDLoc dl(Node);
9507 bool isSigned = Node->getOpcode() == ISD::SREM;
9508 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9509 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9510 SDValue Dividend = Node->getOperand(0);
9511 SDValue Divisor = Node->getOperand(1);
9512 if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9513 SDVTList VTs = DAG.getVTList(VT, VT);
9514 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9515 return true;
9516 }
9517 if (isOperationLegalOrCustom(DivOpc, VT)) {
9518 // X % Y -> X-X/Y*Y
9519 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9520 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9521 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9522 return true;
9523 }
9524 return false;
9525 }
9526
expandFP_TO_INT_SAT(SDNode * Node,SelectionDAG & DAG) const9527 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9528 SelectionDAG &DAG) const {
9529 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9530 SDLoc dl(SDValue(Node, 0));
9531 SDValue Src = Node->getOperand(0);
9532
9533 // DstVT is the result type, while SatVT is the size to which we saturate
9534 EVT SrcVT = Src.getValueType();
9535 EVT DstVT = Node->getValueType(0);
9536
9537 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9538 unsigned SatWidth = SatVT.getScalarSizeInBits();
9539 unsigned DstWidth = DstVT.getScalarSizeInBits();
9540 assert(SatWidth <= DstWidth &&
9541 "Expected saturation width smaller than result width");
9542
9543 // Determine minimum and maximum integer values and their corresponding
9544 // floating-point values.
9545 APInt MinInt, MaxInt;
9546 if (IsSigned) {
9547 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9548 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9549 } else {
9550 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9551 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9552 }
9553
9554 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9555 // libcall emission cannot handle this. Large result types will fail.
9556 if (SrcVT == MVT::f16) {
9557 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9558 SrcVT = Src.getValueType();
9559 }
9560
9561 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9562 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9563
9564 APFloat::opStatus MinStatus =
9565 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9566 APFloat::opStatus MaxStatus =
9567 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9568 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9569 !(MaxStatus & APFloat::opStatus::opInexact);
9570
9571 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9572 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9573
9574 // If the integer bounds are exactly representable as floats and min/max are
9575 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9576 // of comparisons and selects.
9577 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9578 isOperationLegal(ISD::FMAXNUM, SrcVT);
9579 if (AreExactFloatBounds && MinMaxLegal) {
9580 SDValue Clamped = Src;
9581
9582 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9583 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9584 // Clamp by MaxFloat from above. NaN cannot occur.
9585 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9586 // Convert clamped value to integer.
9587 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9588 dl, DstVT, Clamped);
9589
9590 // In the unsigned case we're done, because we mapped NaN to MinFloat,
9591 // which will cast to zero.
9592 if (!IsSigned)
9593 return FpToInt;
9594
9595 // Otherwise, select 0 if Src is NaN.
9596 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9597 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9598 ISD::CondCode::SETUO);
9599 }
9600
9601 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9602 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9603
9604 // Result of direct conversion. The assumption here is that the operation is
9605 // non-trapping and it's fine to apply it to an out-of-range value if we
9606 // select it away later.
9607 SDValue FpToInt =
9608 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9609
9610 SDValue Select = FpToInt;
9611
9612 // If Src ULT MinFloat, select MinInt. In particular, this also selects
9613 // MinInt if Src is NaN.
9614 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9615 ISD::CondCode::SETULT);
9616 // If Src OGT MaxFloat, select MaxInt.
9617 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9618 ISD::CondCode::SETOGT);
9619
9620 // In the unsigned case we are done, because we mapped NaN to MinInt, which
9621 // is already zero.
9622 if (!IsSigned)
9623 return Select;
9624
9625 // Otherwise, select 0 if Src is NaN.
9626 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9627 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9628 }
9629
expandVectorSplice(SDNode * Node,SelectionDAG & DAG) const9630 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9631 SelectionDAG &DAG) const {
9632 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9633 assert(Node->getValueType(0).isScalableVector() &&
9634 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9635
9636 EVT VT = Node->getValueType(0);
9637 SDValue V1 = Node->getOperand(0);
9638 SDValue V2 = Node->getOperand(1);
9639 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9640 SDLoc DL(Node);
9641
9642 // Expand through memory thusly:
9643 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9644 // Store V1, Ptr
9645 // Store V2, Ptr + sizeof(V1)
9646 // If (Imm < 0)
9647 // TrailingElts = -Imm
9648 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9649 // else
9650 // Ptr = Ptr + (Imm * sizeof(VT.Elt))
9651 // Res = Load Ptr
9652
9653 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9654
9655 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9656 VT.getVectorElementCount() * 2);
9657 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9658 EVT PtrVT = StackPtr.getValueType();
9659 auto &MF = DAG.getMachineFunction();
9660 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9661 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9662
9663 // Store the lo part of CONCAT_VECTORS(V1, V2)
9664 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9665 // Store the hi part of CONCAT_VECTORS(V1, V2)
9666 SDValue OffsetToV2 = DAG.getVScale(
9667 DL, PtrVT,
9668 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9669 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9670 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9671
9672 if (Imm >= 0) {
9673 // Load back the required element. getVectorElementPointer takes care of
9674 // clamping the index if it's out-of-bounds.
9675 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9676 // Load the spliced result
9677 return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9678 MachinePointerInfo::getUnknownStack(MF));
9679 }
9680
9681 uint64_t TrailingElts = -Imm;
9682
9683 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9684 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9685 SDValue TrailingBytes =
9686 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9687
9688 if (TrailingElts > VT.getVectorMinNumElements()) {
9689 SDValue VLBytes = DAG.getVScale(
9690 DL, PtrVT,
9691 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9692 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9693 }
9694
9695 // Calculate the start address of the spliced result.
9696 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9697
9698 // Load the spliced result
9699 return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9700 MachinePointerInfo::getUnknownStack(MF));
9701 }
9702
LegalizeSetCCCondCode(SelectionDAG & DAG,EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,SDValue Mask,SDValue EVL,bool & NeedInvert,const SDLoc & dl,SDValue & Chain,bool IsSignaling) const9703 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9704 SDValue &LHS, SDValue &RHS,
9705 SDValue &CC, SDValue Mask,
9706 SDValue EVL, bool &NeedInvert,
9707 const SDLoc &dl, SDValue &Chain,
9708 bool IsSignaling) const {
9709 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9710 MVT OpVT = LHS.getSimpleValueType();
9711 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9712 NeedInvert = false;
9713 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9714 bool IsNonVP = !EVL;
9715 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9716 default:
9717 llvm_unreachable("Unknown condition code action!");
9718 case TargetLowering::Legal:
9719 // Nothing to do.
9720 break;
9721 case TargetLowering::Expand: {
9722 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9723 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9724 std::swap(LHS, RHS);
9725 CC = DAG.getCondCode(InvCC);
9726 return true;
9727 }
9728 // Swapping operands didn't work. Try inverting the condition.
9729 bool NeedSwap = false;
9730 InvCC = getSetCCInverse(CCCode, OpVT);
9731 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9732 // If inverting the condition is not enough, try swapping operands
9733 // on top of it.
9734 InvCC = ISD::getSetCCSwappedOperands(InvCC);
9735 NeedSwap = true;
9736 }
9737 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9738 CC = DAG.getCondCode(InvCC);
9739 NeedInvert = true;
9740 if (NeedSwap)
9741 std::swap(LHS, RHS);
9742 return true;
9743 }
9744
9745 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9746 unsigned Opc = 0;
9747 switch (CCCode) {
9748 default:
9749 llvm_unreachable("Don't know how to expand this condition!");
9750 case ISD::SETUO:
9751 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9752 CC1 = ISD::SETUNE;
9753 CC2 = ISD::SETUNE;
9754 Opc = ISD::OR;
9755 break;
9756 }
9757 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9758 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9759 NeedInvert = true;
9760 LLVM_FALLTHROUGH;
9761 case ISD::SETO:
9762 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9763 "If SETO is expanded, SETOEQ must be legal!");
9764 CC1 = ISD::SETOEQ;
9765 CC2 = ISD::SETOEQ;
9766 Opc = ISD::AND;
9767 break;
9768 case ISD::SETONE:
9769 case ISD::SETUEQ:
9770 // If the SETUO or SETO CC isn't legal, we might be able to use
9771 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9772 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9773 // the operands.
9774 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9775 if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9776 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9777 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9778 CC1 = ISD::SETOGT;
9779 CC2 = ISD::SETOLT;
9780 Opc = ISD::OR;
9781 NeedInvert = ((unsigned)CCCode & 0x8U);
9782 break;
9783 }
9784 LLVM_FALLTHROUGH;
9785 case ISD::SETOEQ:
9786 case ISD::SETOGT:
9787 case ISD::SETOGE:
9788 case ISD::SETOLT:
9789 case ISD::SETOLE:
9790 case ISD::SETUNE:
9791 case ISD::SETUGT:
9792 case ISD::SETUGE:
9793 case ISD::SETULT:
9794 case ISD::SETULE:
9795 // If we are floating point, assign and break, otherwise fall through.
9796 if (!OpVT.isInteger()) {
9797 // We can use the 4th bit to tell if we are the unordered
9798 // or ordered version of the opcode.
9799 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9800 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9801 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9802 break;
9803 }
9804 // Fallthrough if we are unsigned integer.
9805 LLVM_FALLTHROUGH;
9806 case ISD::SETLE:
9807 case ISD::SETGT:
9808 case ISD::SETGE:
9809 case ISD::SETLT:
9810 case ISD::SETNE:
9811 case ISD::SETEQ:
9812 // If all combinations of inverting the condition and swapping operands
9813 // didn't work then we have no means to expand the condition.
9814 llvm_unreachable("Don't know how to expand this condition!");
9815 }
9816
9817 SDValue SetCC1, SetCC2;
9818 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9819 // If we aren't the ordered or unorder operation,
9820 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9821 if (IsNonVP) {
9822 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9823 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9824 } else {
9825 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9826 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9827 }
9828 } else {
9829 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9830 if (IsNonVP) {
9831 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9832 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9833 } else {
9834 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9835 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9836 }
9837 }
9838 if (Chain)
9839 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9840 SetCC2.getValue(1));
9841 if (IsNonVP)
9842 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9843 else {
9844 // Transform the binary opcode to the VP equivalent.
9845 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9846 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9847 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9848 }
9849 RHS = SDValue();
9850 CC = SDValue();
9851 return true;
9852 }
9853 }
9854 return false;
9855 }
9856