1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 487 TargetLoweringOpt &TLO) const { 488 SDLoc DL(Op); 489 unsigned Opcode = Op.getOpcode(); 490 491 // Do target-specific constant optimization. 492 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 493 return TLO.New.getNode(); 494 495 // FIXME: ISD::SELECT, ISD::SELECT_CC 496 switch (Opcode) { 497 default: 498 break; 499 case ISD::XOR: 500 case ISD::AND: 501 case ISD::OR: { 502 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 503 if (!Op1C) 504 return false; 505 506 // If this is a 'not' op, don't touch it because that's a canonical form. 507 const APInt &C = Op1C->getAPIntValue(); 508 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 509 return false; 510 511 if (!C.isSubsetOf(Demanded)) { 512 EVT VT = Op.getValueType(); 513 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 514 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 515 return TLO.CombineTo(Op, NewOp); 516 } 517 518 break; 519 } 520 } 521 522 return false; 523 } 524 525 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 526 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 527 /// generalized for targets with other types of implicit widening casts. 528 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 529 const APInt &Demanded, 530 TargetLoweringOpt &TLO) const { 531 assert(Op.getNumOperands() == 2 && 532 "ShrinkDemandedOp only supports binary operators!"); 533 assert(Op.getNode()->getNumValues() == 1 && 534 "ShrinkDemandedOp only supports nodes with one result!"); 535 536 SelectionDAG &DAG = TLO.DAG; 537 SDLoc dl(Op); 538 539 // Early return, as this function cannot handle vector types. 540 if (Op.getValueType().isVector()) 541 return false; 542 543 // Don't do this if the node has another user, which may require the 544 // full value. 545 if (!Op.getNode()->hasOneUse()) 546 return false; 547 548 // Search for the smallest integer type with free casts to and from 549 // Op's type. For expedience, just check power-of-2 integer types. 550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 551 unsigned DemandedSize = Demanded.getActiveBits(); 552 unsigned SmallVTBits = DemandedSize; 553 if (!isPowerOf2_32(SmallVTBits)) 554 SmallVTBits = NextPowerOf2(SmallVTBits); 555 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 556 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 557 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 558 TLI.isZExtFree(SmallVT, Op.getValueType())) { 559 // We found a type with free casts. 560 SDValue X = DAG.getNode( 561 Op.getOpcode(), dl, SmallVT, 562 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 563 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 564 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 565 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 566 return TLO.CombineTo(Op, Z); 567 } 568 } 569 return false; 570 } 571 572 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 573 DAGCombinerInfo &DCI) const { 574 SelectionDAG &DAG = DCI.DAG; 575 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 576 !DCI.isBeforeLegalizeOps()); 577 KnownBits Known; 578 579 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 580 if (Simplified) { 581 DCI.AddToWorklist(Op.getNode()); 582 DCI.CommitTargetLoweringOpt(TLO); 583 } 584 return Simplified; 585 } 586 587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 588 KnownBits &Known, 589 TargetLoweringOpt &TLO, 590 unsigned Depth, 591 bool AssumeSingleUse) const { 592 EVT VT = Op.getValueType(); 593 APInt DemandedElts = VT.isVector() 594 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 595 : APInt(1, 1); 596 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 597 AssumeSingleUse); 598 } 599 600 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 601 // TODO: Under what circumstances can we create nodes? Constant folding? 602 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 603 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 604 SelectionDAG &DAG, unsigned Depth) const { 605 // Limit search depth. 606 if (Depth >= SelectionDAG::MaxRecursionDepth) 607 return SDValue(); 608 609 // Ignore UNDEFs. 610 if (Op.isUndef()) 611 return SDValue(); 612 613 // Not demanding any bits/elts from Op. 614 if (DemandedBits == 0 || DemandedElts == 0) 615 return DAG.getUNDEF(Op.getValueType()); 616 617 unsigned NumElts = DemandedElts.getBitWidth(); 618 KnownBits LHSKnown, RHSKnown; 619 switch (Op.getOpcode()) { 620 case ISD::BITCAST: { 621 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 622 EVT SrcVT = Src.getValueType(); 623 EVT DstVT = Op.getValueType(); 624 if (SrcVT == DstVT) 625 return Src; 626 627 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 628 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 629 if (NumSrcEltBits == NumDstEltBits) 630 if (SDValue V = SimplifyMultipleUseDemandedBits( 631 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 632 return DAG.getBitcast(DstVT, V); 633 634 // TODO - bigendian once we have test coverage. 635 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 636 DAG.getDataLayout().isLittleEndian()) { 637 unsigned Scale = NumDstEltBits / NumSrcEltBits; 638 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 639 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 640 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 641 for (unsigned i = 0; i != Scale; ++i) { 642 unsigned Offset = i * NumSrcEltBits; 643 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 644 if (!Sub.isNullValue()) { 645 DemandedSrcBits |= Sub; 646 for (unsigned j = 0; j != NumElts; ++j) 647 if (DemandedElts[j]) 648 DemandedSrcElts.setBit((j * Scale) + i); 649 } 650 } 651 652 if (SDValue V = SimplifyMultipleUseDemandedBits( 653 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 654 return DAG.getBitcast(DstVT, V); 655 } 656 657 // TODO - bigendian once we have test coverage. 658 if ((NumSrcEltBits % NumDstEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumSrcEltBits / NumDstEltBits; 661 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != NumElts; ++i) 665 if (DemandedElts[i]) { 666 unsigned Offset = (i % Scale) * NumDstEltBits; 667 DemandedSrcBits.insertBits(DemandedBits, Offset); 668 DemandedSrcElts.setBit(i / Scale); 669 } 670 671 if (SDValue V = SimplifyMultipleUseDemandedBits( 672 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 673 return DAG.getBitcast(DstVT, V); 674 } 675 676 break; 677 } 678 case ISD::AND: { 679 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 680 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 681 682 // If all of the demanded bits are known 1 on one side, return the other. 683 // These bits cannot contribute to the result of the 'and' in this 684 // context. 685 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 686 return Op.getOperand(0); 687 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 688 return Op.getOperand(1); 689 break; 690 } 691 case ISD::OR: { 692 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 693 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 694 695 // If all of the demanded bits are known zero on one side, return the 696 // other. These bits cannot contribute to the result of the 'or' in this 697 // context. 698 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 699 return Op.getOperand(0); 700 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 701 return Op.getOperand(1); 702 break; 703 } 704 case ISD::XOR: { 705 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 706 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 707 708 // If all of the demanded bits are known zero on one side, return the 709 // other. 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 711 return Op.getOperand(0); 712 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 713 return Op.getOperand(1); 714 break; 715 } 716 case ISD::SHL: { 717 // If we are only demanding sign bits then we can use the shift source 718 // directly. 719 if (const APInt *MaxSA = 720 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 721 SDValue Op0 = Op.getOperand(0); 722 unsigned ShAmt = MaxSA->getZExtValue(); 723 unsigned BitWidth = DemandedBits.getBitWidth(); 724 unsigned NumSignBits = 725 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 726 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 727 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 728 return Op0; 729 } 730 break; 731 } 732 case ISD::SETCC: { 733 SDValue Op0 = Op.getOperand(0); 734 SDValue Op1 = Op.getOperand(1); 735 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 736 // If (1) we only need the sign-bit, (2) the setcc operands are the same 737 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 738 // -1, we may be able to bypass the setcc. 739 if (DemandedBits.isSignMask() && 740 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 741 getBooleanContents(Op0.getValueType()) == 742 BooleanContent::ZeroOrNegativeOneBooleanContent) { 743 // If we're testing X < 0, then this compare isn't needed - just use X! 744 // FIXME: We're limiting to integer types here, but this should also work 745 // if we don't care about FP signed-zero. The use of SETLT with FP means 746 // that we don't care about NaNs. 747 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 748 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 749 return Op0; 750 } 751 break; 752 } 753 case ISD::SIGN_EXTEND_INREG: { 754 // If none of the extended bits are demanded, eliminate the sextinreg. 755 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 756 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 757 return Op.getOperand(0); 758 break; 759 } 760 case ISD::INSERT_VECTOR_ELT: { 761 // If we don't demand the inserted element, return the base vector. 762 SDValue Vec = Op.getOperand(0); 763 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 764 EVT VecVT = Vec.getValueType(); 765 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 766 !DemandedElts[CIdx->getZExtValue()]) 767 return Vec; 768 break; 769 } 770 case ISD::INSERT_SUBVECTOR: { 771 // If we don't demand the inserted subvector, return the base vector. 772 SDValue Vec = Op.getOperand(0); 773 SDValue Sub = Op.getOperand(1); 774 uint64_t Idx = Op.getConstantOperandVal(2); 775 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 776 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 777 return Vec; 778 break; 779 } 780 case ISD::VECTOR_SHUFFLE: { 781 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 782 783 // If all the demanded elts are from one operand and are inline, 784 // then we can use the operand directly. 785 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 786 for (unsigned i = 0; i != NumElts; ++i) { 787 int M = ShuffleMask[i]; 788 if (M < 0 || !DemandedElts[i]) 789 continue; 790 AllUndef = false; 791 IdentityLHS &= (M == (int)i); 792 IdentityRHS &= ((M - NumElts) == i); 793 } 794 795 if (AllUndef) 796 return DAG.getUNDEF(Op.getValueType()); 797 if (IdentityLHS) 798 return Op.getOperand(0); 799 if (IdentityRHS) 800 return Op.getOperand(1); 801 break; 802 } 803 default: 804 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 805 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 806 Op, DemandedBits, DemandedElts, DAG, Depth)) 807 return V; 808 break; 809 } 810 return SDValue(); 811 } 812 813 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 814 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 815 unsigned Depth) const { 816 EVT VT = Op.getValueType(); 817 APInt DemandedElts = VT.isVector() 818 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 819 : APInt(1, 1); 820 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 821 Depth); 822 } 823 824 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 825 /// result of Op are ever used downstream. If we can use this information to 826 /// simplify Op, create a new simplified DAG node and return true, returning the 827 /// original and new nodes in Old and New. Otherwise, analyze the expression and 828 /// return a mask of Known bits for the expression (used to simplify the 829 /// caller). The Known bits may only be accurate for those bits in the 830 /// OriginalDemandedBits and OriginalDemandedElts. 831 bool TargetLowering::SimplifyDemandedBits( 832 SDValue Op, const APInt &OriginalDemandedBits, 833 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 834 unsigned Depth, bool AssumeSingleUse) const { 835 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 836 assert(Op.getScalarValueSizeInBits() == BitWidth && 837 "Mask size mismatches value type size!"); 838 839 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 840 assert((!Op.getValueType().isVector() || 841 NumElts == Op.getValueType().getVectorNumElements()) && 842 "Unexpected vector size"); 843 844 APInt DemandedBits = OriginalDemandedBits; 845 APInt DemandedElts = OriginalDemandedElts; 846 SDLoc dl(Op); 847 auto &DL = TLO.DAG.getDataLayout(); 848 849 // Don't know anything. 850 Known = KnownBits(BitWidth); 851 852 // Undef operand. 853 if (Op.isUndef()) 854 return false; 855 856 if (Op.getOpcode() == ISD::Constant) { 857 // We know all of the bits for a constant! 858 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 859 Known.Zero = ~Known.One; 860 return false; 861 } 862 863 // Other users may use these bits. 864 EVT VT = Op.getValueType(); 865 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 866 if (Depth != 0) { 867 // If not at the root, Just compute the Known bits to 868 // simplify things downstream. 869 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 870 return false; 871 } 872 // If this is the root being simplified, allow it to have multiple uses, 873 // just set the DemandedBits/Elts to all bits. 874 DemandedBits = APInt::getAllOnesValue(BitWidth); 875 DemandedElts = APInt::getAllOnesValue(NumElts); 876 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 877 // Not demanding any bits/elts from Op. 878 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 879 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 880 // Limit search depth. 881 return false; 882 } 883 884 KnownBits Known2; 885 switch (Op.getOpcode()) { 886 case ISD::TargetConstant: 887 llvm_unreachable("Can't simplify this node"); 888 case ISD::SCALAR_TO_VECTOR: { 889 if (!DemandedElts[0]) 890 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 891 892 KnownBits SrcKnown; 893 SDValue Src = Op.getOperand(0); 894 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 895 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 896 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 897 return true; 898 899 // Upper elements are undef, so only get the knownbits if we just demand 900 // the bottom element. 901 if (DemandedElts == 1) 902 Known = SrcKnown.anyextOrTrunc(BitWidth); 903 break; 904 } 905 case ISD::BUILD_VECTOR: 906 // Collect the known bits that are shared by every demanded element. 907 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 908 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 909 return false; // Don't fall through, will infinitely loop. 910 case ISD::LOAD: { 911 LoadSDNode *LD = cast<LoadSDNode>(Op); 912 if (getTargetConstantFromLoad(LD)) { 913 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 914 return false; // Don't fall through, will infinitely loop. 915 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 916 // If this is a ZEXTLoad and we are looking at the loaded value. 917 EVT MemVT = LD->getMemoryVT(); 918 unsigned MemBits = MemVT.getScalarSizeInBits(); 919 Known.Zero.setBitsFrom(MemBits); 920 return false; // Don't fall through, will infinitely loop. 921 } 922 break; 923 } 924 case ISD::INSERT_VECTOR_ELT: { 925 SDValue Vec = Op.getOperand(0); 926 SDValue Scl = Op.getOperand(1); 927 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 928 EVT VecVT = Vec.getValueType(); 929 930 // If index isn't constant, assume we need all vector elements AND the 931 // inserted element. 932 APInt DemandedVecElts(DemandedElts); 933 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 934 unsigned Idx = CIdx->getZExtValue(); 935 DemandedVecElts.clearBit(Idx); 936 937 // Inserted element is not required. 938 if (!DemandedElts[Idx]) 939 return TLO.CombineTo(Op, Vec); 940 } 941 942 KnownBits KnownScl; 943 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 944 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 945 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 946 return true; 947 948 Known = KnownScl.anyextOrTrunc(BitWidth); 949 950 KnownBits KnownVec; 951 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 952 Depth + 1)) 953 return true; 954 955 if (!!DemandedVecElts) { 956 Known.One &= KnownVec.One; 957 Known.Zero &= KnownVec.Zero; 958 } 959 960 return false; 961 } 962 case ISD::INSERT_SUBVECTOR: { 963 // Demand any elements from the subvector and the remainder from the src its 964 // inserted into. 965 SDValue Src = Op.getOperand(0); 966 SDValue Sub = Op.getOperand(1); 967 uint64_t Idx = Op.getConstantOperandVal(2); 968 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 969 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 970 APInt DemandedSrcElts = DemandedElts; 971 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 972 973 KnownBits KnownSub, KnownSrc; 974 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 975 Depth + 1)) 976 return true; 977 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 978 Depth + 1)) 979 return true; 980 981 Known.Zero.setAllBits(); 982 Known.One.setAllBits(); 983 if (!!DemandedSubElts) { 984 Known.One &= KnownSub.One; 985 Known.Zero &= KnownSub.Zero; 986 } 987 if (!!DemandedSrcElts) { 988 Known.One &= KnownSrc.One; 989 Known.Zero &= KnownSrc.Zero; 990 } 991 992 // Attempt to avoid multi-use src if we don't need anything from it. 993 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 994 !DemandedSrcElts.isAllOnesValue()) { 995 SDValue NewSub = SimplifyMultipleUseDemandedBits( 996 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 997 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 998 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 999 if (NewSub || NewSrc) { 1000 NewSub = NewSub ? NewSub : Sub; 1001 NewSrc = NewSrc ? NewSrc : Src; 1002 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1003 Op.getOperand(2)); 1004 return TLO.CombineTo(Op, NewOp); 1005 } 1006 } 1007 break; 1008 } 1009 case ISD::EXTRACT_SUBVECTOR: { 1010 // Offset the demanded elts by the subvector index. 1011 SDValue Src = Op.getOperand(0); 1012 uint64_t Idx = Op.getConstantOperandVal(1); 1013 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1014 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1015 1016 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1017 Depth + 1)) 1018 return true; 1019 1020 // Attempt to avoid multi-use src if we don't need anything from it. 1021 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1022 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1023 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1024 if (DemandedSrc) { 1025 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1026 Op.getOperand(1)); 1027 return TLO.CombineTo(Op, NewOp); 1028 } 1029 } 1030 break; 1031 } 1032 case ISD::CONCAT_VECTORS: { 1033 Known.Zero.setAllBits(); 1034 Known.One.setAllBits(); 1035 EVT SubVT = Op.getOperand(0).getValueType(); 1036 unsigned NumSubVecs = Op.getNumOperands(); 1037 unsigned NumSubElts = SubVT.getVectorNumElements(); 1038 for (unsigned i = 0; i != NumSubVecs; ++i) { 1039 APInt DemandedSubElts = 1040 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1041 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1042 Known2, TLO, Depth + 1)) 1043 return true; 1044 // Known bits are shared by every demanded subvector element. 1045 if (!!DemandedSubElts) { 1046 Known.One &= Known2.One; 1047 Known.Zero &= Known2.Zero; 1048 } 1049 } 1050 break; 1051 } 1052 case ISD::VECTOR_SHUFFLE: { 1053 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1054 1055 // Collect demanded elements from shuffle operands.. 1056 APInt DemandedLHS(NumElts, 0); 1057 APInt DemandedRHS(NumElts, 0); 1058 for (unsigned i = 0; i != NumElts; ++i) { 1059 if (!DemandedElts[i]) 1060 continue; 1061 int M = ShuffleMask[i]; 1062 if (M < 0) { 1063 // For UNDEF elements, we don't know anything about the common state of 1064 // the shuffle result. 1065 DemandedLHS.clearAllBits(); 1066 DemandedRHS.clearAllBits(); 1067 break; 1068 } 1069 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1070 if (M < (int)NumElts) 1071 DemandedLHS.setBit(M); 1072 else 1073 DemandedRHS.setBit(M - NumElts); 1074 } 1075 1076 if (!!DemandedLHS || !!DemandedRHS) { 1077 SDValue Op0 = Op.getOperand(0); 1078 SDValue Op1 = Op.getOperand(1); 1079 1080 Known.Zero.setAllBits(); 1081 Known.One.setAllBits(); 1082 if (!!DemandedLHS) { 1083 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1084 Depth + 1)) 1085 return true; 1086 Known.One &= Known2.One; 1087 Known.Zero &= Known2.Zero; 1088 } 1089 if (!!DemandedRHS) { 1090 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1091 Depth + 1)) 1092 return true; 1093 Known.One &= Known2.One; 1094 Known.Zero &= Known2.Zero; 1095 } 1096 1097 // Attempt to avoid multi-use ops if we don't need anything from them. 1098 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1099 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1100 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1101 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1102 if (DemandedOp0 || DemandedOp1) { 1103 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1104 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1105 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1106 return TLO.CombineTo(Op, NewOp); 1107 } 1108 } 1109 break; 1110 } 1111 case ISD::AND: { 1112 SDValue Op0 = Op.getOperand(0); 1113 SDValue Op1 = Op.getOperand(1); 1114 1115 // If the RHS is a constant, check to see if the LHS would be zero without 1116 // using the bits from the RHS. Below, we use knowledge about the RHS to 1117 // simplify the LHS, here we're using information from the LHS to simplify 1118 // the RHS. 1119 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1120 // Do not increment Depth here; that can cause an infinite loop. 1121 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1122 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1123 if ((LHSKnown.Zero & DemandedBits) == 1124 (~RHSC->getAPIntValue() & DemandedBits)) 1125 return TLO.CombineTo(Op, Op0); 1126 1127 // If any of the set bits in the RHS are known zero on the LHS, shrink 1128 // the constant. 1129 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1130 return true; 1131 1132 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1133 // constant, but if this 'and' is only clearing bits that were just set by 1134 // the xor, then this 'and' can be eliminated by shrinking the mask of 1135 // the xor. For example, for a 32-bit X: 1136 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1137 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1138 LHSKnown.One == ~RHSC->getAPIntValue()) { 1139 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1140 return TLO.CombineTo(Op, Xor); 1141 } 1142 } 1143 1144 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1145 Depth + 1)) 1146 return true; 1147 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1148 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1149 Known2, TLO, Depth + 1)) 1150 return true; 1151 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1152 1153 // Attempt to avoid multi-use ops if we don't need anything from them. 1154 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1155 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1156 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1157 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1158 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1159 if (DemandedOp0 || DemandedOp1) { 1160 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1161 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1162 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1163 return TLO.CombineTo(Op, NewOp); 1164 } 1165 } 1166 1167 // If all of the demanded bits are known one on one side, return the other. 1168 // These bits cannot contribute to the result of the 'and'. 1169 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1170 return TLO.CombineTo(Op, Op0); 1171 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1172 return TLO.CombineTo(Op, Op1); 1173 // If all of the demanded bits in the inputs are known zeros, return zero. 1174 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1175 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1176 // If the RHS is a constant, see if we can simplify it. 1177 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1178 return true; 1179 // If the operation can be done in a smaller type, do so. 1180 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1181 return true; 1182 1183 Known &= Known2; 1184 break; 1185 } 1186 case ISD::OR: { 1187 SDValue Op0 = Op.getOperand(0); 1188 SDValue Op1 = Op.getOperand(1); 1189 1190 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1191 Depth + 1)) 1192 return true; 1193 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1194 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1195 Known2, TLO, Depth + 1)) 1196 return true; 1197 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1198 1199 // Attempt to avoid multi-use ops if we don't need anything from them. 1200 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1201 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1202 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1203 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1204 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1205 if (DemandedOp0 || DemandedOp1) { 1206 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1207 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1208 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1209 return TLO.CombineTo(Op, NewOp); 1210 } 1211 } 1212 1213 // If all of the demanded bits are known zero on one side, return the other. 1214 // These bits cannot contribute to the result of the 'or'. 1215 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1216 return TLO.CombineTo(Op, Op0); 1217 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1218 return TLO.CombineTo(Op, Op1); 1219 // If the RHS is a constant, see if we can simplify it. 1220 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1221 return true; 1222 // If the operation can be done in a smaller type, do so. 1223 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1224 return true; 1225 1226 Known |= Known2; 1227 break; 1228 } 1229 case ISD::XOR: { 1230 SDValue Op0 = Op.getOperand(0); 1231 SDValue Op1 = Op.getOperand(1); 1232 1233 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1234 Depth + 1)) 1235 return true; 1236 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1237 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1238 Depth + 1)) 1239 return true; 1240 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1241 1242 // Attempt to avoid multi-use ops if we don't need anything from them. 1243 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1244 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1245 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1246 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1247 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1248 if (DemandedOp0 || DemandedOp1) { 1249 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1250 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1251 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1252 return TLO.CombineTo(Op, NewOp); 1253 } 1254 } 1255 1256 // If all of the demanded bits are known zero on one side, return the other. 1257 // These bits cannot contribute to the result of the 'xor'. 1258 if (DemandedBits.isSubsetOf(Known.Zero)) 1259 return TLO.CombineTo(Op, Op0); 1260 if (DemandedBits.isSubsetOf(Known2.Zero)) 1261 return TLO.CombineTo(Op, Op1); 1262 // If the operation can be done in a smaller type, do so. 1263 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1264 return true; 1265 1266 // If all of the unknown bits are known to be zero on one side or the other 1267 // (but not both) turn this into an *inclusive* or. 1268 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1269 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1270 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1271 1272 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1273 // If one side is a constant, and all of the known set bits on the other 1274 // side are also set in the constant, turn this into an AND, as we know 1275 // the bits will be cleared. 1276 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1277 // NB: it is okay if more bits are known than are requested 1278 if (C->getAPIntValue() == Known2.One) { 1279 SDValue ANDC = 1280 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1281 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1282 } 1283 1284 // If the RHS is a constant, see if we can change it. Don't alter a -1 1285 // constant because that's a 'not' op, and that is better for combining 1286 // and codegen. 1287 if (!C->isAllOnesValue()) { 1288 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1289 // We're flipping all demanded bits. Flip the undemanded bits too. 1290 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1291 return TLO.CombineTo(Op, New); 1292 } 1293 // If we can't turn this into a 'not', try to shrink the constant. 1294 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1295 return true; 1296 } 1297 } 1298 1299 Known ^= Known2; 1300 break; 1301 } 1302 case ISD::SELECT: 1303 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1304 Depth + 1)) 1305 return true; 1306 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1307 Depth + 1)) 1308 return true; 1309 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1310 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1311 1312 // If the operands are constants, see if we can simplify them. 1313 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1314 return true; 1315 1316 // Only known if known in both the LHS and RHS. 1317 Known.One &= Known2.One; 1318 Known.Zero &= Known2.Zero; 1319 break; 1320 case ISD::SELECT_CC: 1321 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1322 Depth + 1)) 1323 return true; 1324 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1325 Depth + 1)) 1326 return true; 1327 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1328 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1329 1330 // If the operands are constants, see if we can simplify them. 1331 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1332 return true; 1333 1334 // Only known if known in both the LHS and RHS. 1335 Known.One &= Known2.One; 1336 Known.Zero &= Known2.Zero; 1337 break; 1338 case ISD::SETCC: { 1339 SDValue Op0 = Op.getOperand(0); 1340 SDValue Op1 = Op.getOperand(1); 1341 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1342 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1343 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1344 // -1, we may be able to bypass the setcc. 1345 if (DemandedBits.isSignMask() && 1346 Op0.getScalarValueSizeInBits() == BitWidth && 1347 getBooleanContents(Op0.getValueType()) == 1348 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1349 // If we're testing X < 0, then this compare isn't needed - just use X! 1350 // FIXME: We're limiting to integer types here, but this should also work 1351 // if we don't care about FP signed-zero. The use of SETLT with FP means 1352 // that we don't care about NaNs. 1353 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1354 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1355 return TLO.CombineTo(Op, Op0); 1356 1357 // TODO: Should we check for other forms of sign-bit comparisons? 1358 // Examples: X <= -1, X >= 0 1359 } 1360 if (getBooleanContents(Op0.getValueType()) == 1361 TargetLowering::ZeroOrOneBooleanContent && 1362 BitWidth > 1) 1363 Known.Zero.setBitsFrom(1); 1364 break; 1365 } 1366 case ISD::SHL: { 1367 SDValue Op0 = Op.getOperand(0); 1368 SDValue Op1 = Op.getOperand(1); 1369 EVT ShiftVT = Op1.getValueType(); 1370 1371 if (const APInt *SA = 1372 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1373 unsigned ShAmt = SA->getZExtValue(); 1374 if (ShAmt == 0) 1375 return TLO.CombineTo(Op, Op0); 1376 1377 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1378 // single shift. We can do this if the bottom bits (which are shifted 1379 // out) are never demanded. 1380 // TODO - support non-uniform vector amounts. 1381 if (Op0.getOpcode() == ISD::SRL) { 1382 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1383 if (const APInt *SA2 = 1384 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1385 unsigned C1 = SA2->getZExtValue(); 1386 unsigned Opc = ISD::SHL; 1387 int Diff = ShAmt - C1; 1388 if (Diff < 0) { 1389 Diff = -Diff; 1390 Opc = ISD::SRL; 1391 } 1392 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1393 return TLO.CombineTo( 1394 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1395 } 1396 } 1397 } 1398 1399 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1400 // are not demanded. This will likely allow the anyext to be folded away. 1401 // TODO - support non-uniform vector amounts. 1402 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1403 SDValue InnerOp = Op0.getOperand(0); 1404 EVT InnerVT = InnerOp.getValueType(); 1405 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1406 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1407 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1408 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1409 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1410 ShTy = InnerVT; 1411 SDValue NarrowShl = 1412 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1413 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1414 return TLO.CombineTo( 1415 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1416 } 1417 1418 // Repeat the SHL optimization above in cases where an extension 1419 // intervenes: (shl (anyext (shr x, c1)), c2) to 1420 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1421 // aren't demanded (as above) and that the shifted upper c1 bits of 1422 // x aren't demanded. 1423 // TODO - support non-uniform vector amounts. 1424 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1425 InnerOp.hasOneUse()) { 1426 if (const APInt *SA2 = 1427 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1428 unsigned InnerShAmt = SA2->getZExtValue(); 1429 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1430 DemandedBits.getActiveBits() <= 1431 (InnerBits - InnerShAmt + ShAmt) && 1432 DemandedBits.countTrailingZeros() >= ShAmt) { 1433 SDValue NewSA = 1434 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1435 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1436 InnerOp.getOperand(0)); 1437 return TLO.CombineTo( 1438 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1439 } 1440 } 1441 } 1442 } 1443 1444 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1445 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1446 Depth + 1)) 1447 return true; 1448 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1449 Known.Zero <<= ShAmt; 1450 Known.One <<= ShAmt; 1451 // low bits known zero. 1452 Known.Zero.setLowBits(ShAmt); 1453 1454 // Try shrinking the operation as long as the shift amount will still be 1455 // in range. 1456 if ((ShAmt < DemandedBits.getActiveBits()) && 1457 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1458 return true; 1459 } 1460 1461 // If we are only demanding sign bits then we can use the shift source 1462 // directly. 1463 if (const APInt *MaxSA = 1464 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1465 unsigned ShAmt = MaxSA->getZExtValue(); 1466 unsigned NumSignBits = 1467 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1468 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1469 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1470 return TLO.CombineTo(Op, Op0); 1471 } 1472 break; 1473 } 1474 case ISD::SRL: { 1475 SDValue Op0 = Op.getOperand(0); 1476 SDValue Op1 = Op.getOperand(1); 1477 EVT ShiftVT = Op1.getValueType(); 1478 1479 if (const APInt *SA = 1480 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1481 unsigned ShAmt = SA->getZExtValue(); 1482 if (ShAmt == 0) 1483 return TLO.CombineTo(Op, Op0); 1484 1485 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1486 // single shift. We can do this if the top bits (which are shifted out) 1487 // are never demanded. 1488 // TODO - support non-uniform vector amounts. 1489 if (Op0.getOpcode() == ISD::SHL) { 1490 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1491 if (const APInt *SA2 = 1492 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1493 unsigned C1 = SA2->getZExtValue(); 1494 unsigned Opc = ISD::SRL; 1495 int Diff = ShAmt - C1; 1496 if (Diff < 0) { 1497 Diff = -Diff; 1498 Opc = ISD::SHL; 1499 } 1500 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1501 return TLO.CombineTo( 1502 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1503 } 1504 } 1505 } 1506 1507 APInt InDemandedMask = (DemandedBits << ShAmt); 1508 1509 // If the shift is exact, then it does demand the low bits (and knows that 1510 // they are zero). 1511 if (Op->getFlags().hasExact()) 1512 InDemandedMask.setLowBits(ShAmt); 1513 1514 // Compute the new bits that are at the top now. 1515 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1516 Depth + 1)) 1517 return true; 1518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1519 Known.Zero.lshrInPlace(ShAmt); 1520 Known.One.lshrInPlace(ShAmt); 1521 // High bits known zero. 1522 Known.Zero.setHighBits(ShAmt); 1523 } 1524 break; 1525 } 1526 case ISD::SRA: { 1527 SDValue Op0 = Op.getOperand(0); 1528 SDValue Op1 = Op.getOperand(1); 1529 EVT ShiftVT = Op1.getValueType(); 1530 1531 // If we only want bits that already match the signbit then we don't need 1532 // to shift. 1533 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1534 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1535 NumHiDemandedBits) 1536 return TLO.CombineTo(Op, Op0); 1537 1538 // If this is an arithmetic shift right and only the low-bit is set, we can 1539 // always convert this into a logical shr, even if the shift amount is 1540 // variable. The low bit of the shift cannot be an input sign bit unless 1541 // the shift amount is >= the size of the datatype, which is undefined. 1542 if (DemandedBits.isOneValue()) 1543 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1544 1545 if (const APInt *SA = 1546 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1547 unsigned ShAmt = SA->getZExtValue(); 1548 if (ShAmt == 0) 1549 return TLO.CombineTo(Op, Op0); 1550 1551 APInt InDemandedMask = (DemandedBits << ShAmt); 1552 1553 // If the shift is exact, then it does demand the low bits (and knows that 1554 // they are zero). 1555 if (Op->getFlags().hasExact()) 1556 InDemandedMask.setLowBits(ShAmt); 1557 1558 // If any of the demanded bits are produced by the sign extension, we also 1559 // demand the input sign bit. 1560 if (DemandedBits.countLeadingZeros() < ShAmt) 1561 InDemandedMask.setSignBit(); 1562 1563 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1564 Depth + 1)) 1565 return true; 1566 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1567 Known.Zero.lshrInPlace(ShAmt); 1568 Known.One.lshrInPlace(ShAmt); 1569 1570 // If the input sign bit is known to be zero, or if none of the top bits 1571 // are demanded, turn this into an unsigned shift right. 1572 if (Known.Zero[BitWidth - ShAmt - 1] || 1573 DemandedBits.countLeadingZeros() >= ShAmt) { 1574 SDNodeFlags Flags; 1575 Flags.setExact(Op->getFlags().hasExact()); 1576 return TLO.CombineTo( 1577 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1578 } 1579 1580 int Log2 = DemandedBits.exactLogBase2(); 1581 if (Log2 >= 0) { 1582 // The bit must come from the sign. 1583 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1584 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1585 } 1586 1587 if (Known.One[BitWidth - ShAmt - 1]) 1588 // New bits are known one. 1589 Known.One.setHighBits(ShAmt); 1590 1591 // Attempt to avoid multi-use ops if we don't need anything from them. 1592 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1593 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1594 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1595 if (DemandedOp0) { 1596 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1597 return TLO.CombineTo(Op, NewOp); 1598 } 1599 } 1600 } 1601 break; 1602 } 1603 case ISD::FSHL: 1604 case ISD::FSHR: { 1605 SDValue Op0 = Op.getOperand(0); 1606 SDValue Op1 = Op.getOperand(1); 1607 SDValue Op2 = Op.getOperand(2); 1608 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1609 1610 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1611 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1612 1613 // For fshl, 0-shift returns the 1st arg. 1614 // For fshr, 0-shift returns the 2nd arg. 1615 if (Amt == 0) { 1616 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1617 Known, TLO, Depth + 1)) 1618 return true; 1619 break; 1620 } 1621 1622 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1623 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1624 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1625 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1626 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1627 Depth + 1)) 1628 return true; 1629 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1630 Depth + 1)) 1631 return true; 1632 1633 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1634 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1635 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1636 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1637 Known.One |= Known2.One; 1638 Known.Zero |= Known2.Zero; 1639 } 1640 1641 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1642 if (isPowerOf2_32(BitWidth)) { 1643 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1644 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1645 Known2, TLO, Depth + 1)) 1646 return true; 1647 } 1648 break; 1649 } 1650 case ISD::ROTL: 1651 case ISD::ROTR: { 1652 SDValue Op0 = Op.getOperand(0); 1653 SDValue Op1 = Op.getOperand(1); 1654 1655 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1656 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1657 return TLO.CombineTo(Op, Op0); 1658 1659 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1660 if (isPowerOf2_32(BitWidth)) { 1661 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1662 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1663 Depth + 1)) 1664 return true; 1665 } 1666 break; 1667 } 1668 case ISD::BITREVERSE: { 1669 SDValue Src = Op.getOperand(0); 1670 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1671 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1672 Depth + 1)) 1673 return true; 1674 Known.One = Known2.One.reverseBits(); 1675 Known.Zero = Known2.Zero.reverseBits(); 1676 break; 1677 } 1678 case ISD::BSWAP: { 1679 SDValue Src = Op.getOperand(0); 1680 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1681 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1682 Depth + 1)) 1683 return true; 1684 Known.One = Known2.One.byteSwap(); 1685 Known.Zero = Known2.Zero.byteSwap(); 1686 break; 1687 } 1688 case ISD::SIGN_EXTEND_INREG: { 1689 SDValue Op0 = Op.getOperand(0); 1690 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1691 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1692 1693 // If we only care about the highest bit, don't bother shifting right. 1694 if (DemandedBits.isSignMask()) { 1695 unsigned NumSignBits = 1696 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1697 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1698 // However if the input is already sign extended we expect the sign 1699 // extension to be dropped altogether later and do not simplify. 1700 if (!AlreadySignExtended) { 1701 // Compute the correct shift amount type, which must be getShiftAmountTy 1702 // for scalar types after legalization. 1703 EVT ShiftAmtTy = VT; 1704 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1705 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1706 1707 SDValue ShiftAmt = 1708 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1709 return TLO.CombineTo(Op, 1710 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1711 } 1712 } 1713 1714 // If none of the extended bits are demanded, eliminate the sextinreg. 1715 if (DemandedBits.getActiveBits() <= ExVTBits) 1716 return TLO.CombineTo(Op, Op0); 1717 1718 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1719 1720 // Since the sign extended bits are demanded, we know that the sign 1721 // bit is demanded. 1722 InputDemandedBits.setBit(ExVTBits - 1); 1723 1724 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1725 return true; 1726 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1727 1728 // If the sign bit of the input is known set or clear, then we know the 1729 // top bits of the result. 1730 1731 // If the input sign bit is known zero, convert this into a zero extension. 1732 if (Known.Zero[ExVTBits - 1]) 1733 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1734 1735 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1736 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1737 Known.One.setBitsFrom(ExVTBits); 1738 Known.Zero &= Mask; 1739 } else { // Input sign bit unknown 1740 Known.Zero &= Mask; 1741 Known.One &= Mask; 1742 } 1743 break; 1744 } 1745 case ISD::BUILD_PAIR: { 1746 EVT HalfVT = Op.getOperand(0).getValueType(); 1747 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1748 1749 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1750 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1751 1752 KnownBits KnownLo, KnownHi; 1753 1754 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1755 return true; 1756 1757 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1758 return true; 1759 1760 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1761 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1762 1763 Known.One = KnownLo.One.zext(BitWidth) | 1764 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1765 break; 1766 } 1767 case ISD::ZERO_EXTEND: 1768 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1769 SDValue Src = Op.getOperand(0); 1770 EVT SrcVT = Src.getValueType(); 1771 unsigned InBits = SrcVT.getScalarSizeInBits(); 1772 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1773 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1774 1775 // If none of the top bits are demanded, convert this into an any_extend. 1776 if (DemandedBits.getActiveBits() <= InBits) { 1777 // If we only need the non-extended bits of the bottom element 1778 // then we can just bitcast to the result. 1779 if (IsVecInReg && DemandedElts == 1 && 1780 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1781 TLO.DAG.getDataLayout().isLittleEndian()) 1782 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1783 1784 unsigned Opc = 1785 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1786 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1787 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1788 } 1789 1790 APInt InDemandedBits = DemandedBits.trunc(InBits); 1791 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1792 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1793 Depth + 1)) 1794 return true; 1795 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1796 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1797 Known = Known.zext(BitWidth); 1798 break; 1799 } 1800 case ISD::SIGN_EXTEND: 1801 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1802 SDValue Src = Op.getOperand(0); 1803 EVT SrcVT = Src.getValueType(); 1804 unsigned InBits = SrcVT.getScalarSizeInBits(); 1805 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1806 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1807 1808 // If none of the top bits are demanded, convert this into an any_extend. 1809 if (DemandedBits.getActiveBits() <= InBits) { 1810 // If we only need the non-extended bits of the bottom element 1811 // then we can just bitcast to the result. 1812 if (IsVecInReg && DemandedElts == 1 && 1813 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1814 TLO.DAG.getDataLayout().isLittleEndian()) 1815 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1816 1817 unsigned Opc = 1818 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1819 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1820 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1821 } 1822 1823 APInt InDemandedBits = DemandedBits.trunc(InBits); 1824 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1825 1826 // Since some of the sign extended bits are demanded, we know that the sign 1827 // bit is demanded. 1828 InDemandedBits.setBit(InBits - 1); 1829 1830 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1831 Depth + 1)) 1832 return true; 1833 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1834 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1835 1836 // If the sign bit is known one, the top bits match. 1837 Known = Known.sext(BitWidth); 1838 1839 // If the sign bit is known zero, convert this to a zero extend. 1840 if (Known.isNonNegative()) { 1841 unsigned Opc = 1842 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1843 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1844 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1845 } 1846 break; 1847 } 1848 case ISD::ANY_EXTEND: 1849 case ISD::ANY_EXTEND_VECTOR_INREG: { 1850 SDValue Src = Op.getOperand(0); 1851 EVT SrcVT = Src.getValueType(); 1852 unsigned InBits = SrcVT.getScalarSizeInBits(); 1853 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1854 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1855 1856 // If we only need the bottom element then we can just bitcast. 1857 // TODO: Handle ANY_EXTEND? 1858 if (IsVecInReg && DemandedElts == 1 && 1859 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1860 TLO.DAG.getDataLayout().isLittleEndian()) 1861 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1862 1863 APInt InDemandedBits = DemandedBits.trunc(InBits); 1864 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1865 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1866 Depth + 1)) 1867 return true; 1868 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1869 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1870 Known = Known.anyext(BitWidth); 1871 1872 // Attempt to avoid multi-use ops if we don't need anything from them. 1873 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1874 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1875 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1876 break; 1877 } 1878 case ISD::TRUNCATE: { 1879 SDValue Src = Op.getOperand(0); 1880 1881 // Simplify the input, using demanded bit information, and compute the known 1882 // zero/one bits live out. 1883 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1884 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1885 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1886 return true; 1887 Known = Known.trunc(BitWidth); 1888 1889 // Attempt to avoid multi-use ops if we don't need anything from them. 1890 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1891 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1892 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1893 1894 // If the input is only used by this truncate, see if we can shrink it based 1895 // on the known demanded bits. 1896 if (Src.getNode()->hasOneUse()) { 1897 switch (Src.getOpcode()) { 1898 default: 1899 break; 1900 case ISD::SRL: 1901 // Shrink SRL by a constant if none of the high bits shifted in are 1902 // demanded. 1903 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1904 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1905 // undesirable. 1906 break; 1907 1908 SDValue ShAmt = Src.getOperand(1); 1909 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1910 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1911 break; 1912 uint64_t ShVal = ShAmtC->getZExtValue(); 1913 1914 APInt HighBits = 1915 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1916 HighBits.lshrInPlace(ShVal); 1917 HighBits = HighBits.trunc(BitWidth); 1918 1919 if (!(HighBits & DemandedBits)) { 1920 // None of the shifted in bits are needed. Add a truncate of the 1921 // shift input, then shift it. 1922 if (TLO.LegalTypes()) 1923 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1924 SDValue NewTrunc = 1925 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1926 return TLO.CombineTo( 1927 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1928 } 1929 break; 1930 } 1931 } 1932 1933 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1934 break; 1935 } 1936 case ISD::AssertZext: { 1937 // AssertZext demands all of the high bits, plus any of the low bits 1938 // demanded by its users. 1939 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1940 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1941 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1942 TLO, Depth + 1)) 1943 return true; 1944 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1945 1946 Known.Zero |= ~InMask; 1947 break; 1948 } 1949 case ISD::EXTRACT_VECTOR_ELT: { 1950 SDValue Src = Op.getOperand(0); 1951 SDValue Idx = Op.getOperand(1); 1952 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1953 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1954 1955 // Demand the bits from every vector element without a constant index. 1956 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1957 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1958 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1959 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1960 1961 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1962 // anything about the extended bits. 1963 APInt DemandedSrcBits = DemandedBits; 1964 if (BitWidth > EltBitWidth) 1965 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1966 1967 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1968 Depth + 1)) 1969 return true; 1970 1971 // Attempt to avoid multi-use ops if we don't need anything from them. 1972 if (!DemandedSrcBits.isAllOnesValue() || 1973 !DemandedSrcElts.isAllOnesValue()) { 1974 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1975 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1976 SDValue NewOp = 1977 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1978 return TLO.CombineTo(Op, NewOp); 1979 } 1980 } 1981 1982 Known = Known2; 1983 if (BitWidth > EltBitWidth) 1984 Known = Known.anyext(BitWidth); 1985 break; 1986 } 1987 case ISD::BITCAST: { 1988 SDValue Src = Op.getOperand(0); 1989 EVT SrcVT = Src.getValueType(); 1990 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1991 1992 // If this is an FP->Int bitcast and if the sign bit is the only 1993 // thing demanded, turn this into a FGETSIGN. 1994 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1995 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1996 SrcVT.isFloatingPoint()) { 1997 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1998 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1999 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2000 SrcVT != MVT::f128) { 2001 // Cannot eliminate/lower SHL for f128 yet. 2002 EVT Ty = OpVTLegal ? VT : MVT::i32; 2003 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2004 // place. We expect the SHL to be eliminated by other optimizations. 2005 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2006 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2007 if (!OpVTLegal && OpVTSizeInBits > 32) 2008 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2009 unsigned ShVal = Op.getValueSizeInBits() - 1; 2010 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2011 return TLO.CombineTo(Op, 2012 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2013 } 2014 } 2015 2016 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2017 // Demand the elt/bit if any of the original elts/bits are demanded. 2018 // TODO - bigendian once we have test coverage. 2019 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2020 TLO.DAG.getDataLayout().isLittleEndian()) { 2021 unsigned Scale = BitWidth / NumSrcEltBits; 2022 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2023 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2024 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2025 for (unsigned i = 0; i != Scale; ++i) { 2026 unsigned Offset = i * NumSrcEltBits; 2027 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2028 if (!Sub.isNullValue()) { 2029 DemandedSrcBits |= Sub; 2030 for (unsigned j = 0; j != NumElts; ++j) 2031 if (DemandedElts[j]) 2032 DemandedSrcElts.setBit((j * Scale) + i); 2033 } 2034 } 2035 2036 APInt KnownSrcUndef, KnownSrcZero; 2037 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2038 KnownSrcZero, TLO, Depth + 1)) 2039 return true; 2040 2041 KnownBits KnownSrcBits; 2042 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2043 KnownSrcBits, TLO, Depth + 1)) 2044 return true; 2045 } else if ((NumSrcEltBits % BitWidth) == 0 && 2046 TLO.DAG.getDataLayout().isLittleEndian()) { 2047 unsigned Scale = NumSrcEltBits / BitWidth; 2048 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2049 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2050 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2051 for (unsigned i = 0; i != NumElts; ++i) 2052 if (DemandedElts[i]) { 2053 unsigned Offset = (i % Scale) * BitWidth; 2054 DemandedSrcBits.insertBits(DemandedBits, Offset); 2055 DemandedSrcElts.setBit(i / Scale); 2056 } 2057 2058 if (SrcVT.isVector()) { 2059 APInt KnownSrcUndef, KnownSrcZero; 2060 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2061 KnownSrcZero, TLO, Depth + 1)) 2062 return true; 2063 } 2064 2065 KnownBits KnownSrcBits; 2066 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2067 KnownSrcBits, TLO, Depth + 1)) 2068 return true; 2069 } 2070 2071 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2072 // recursive call where Known may be useful to the caller. 2073 if (Depth > 0) { 2074 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2075 return false; 2076 } 2077 break; 2078 } 2079 case ISD::ADD: 2080 case ISD::MUL: 2081 case ISD::SUB: { 2082 // Add, Sub, and Mul don't demand any bits in positions beyond that 2083 // of the highest bit demanded of them. 2084 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2085 SDNodeFlags Flags = Op.getNode()->getFlags(); 2086 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2087 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2088 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2089 Depth + 1) || 2090 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2091 Depth + 1) || 2092 // See if the operation should be performed at a smaller bit width. 2093 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2094 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2095 // Disable the nsw and nuw flags. We can no longer guarantee that we 2096 // won't wrap after simplification. 2097 Flags.setNoSignedWrap(false); 2098 Flags.setNoUnsignedWrap(false); 2099 SDValue NewOp = 2100 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2101 return TLO.CombineTo(Op, NewOp); 2102 } 2103 return true; 2104 } 2105 2106 // Attempt to avoid multi-use ops if we don't need anything from them. 2107 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2108 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2109 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2110 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2111 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2112 if (DemandedOp0 || DemandedOp1) { 2113 Flags.setNoSignedWrap(false); 2114 Flags.setNoUnsignedWrap(false); 2115 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2116 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2117 SDValue NewOp = 2118 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2119 return TLO.CombineTo(Op, NewOp); 2120 } 2121 } 2122 2123 // If we have a constant operand, we may be able to turn it into -1 if we 2124 // do not demand the high bits. This can make the constant smaller to 2125 // encode, allow more general folding, or match specialized instruction 2126 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2127 // is probably not useful (and could be detrimental). 2128 ConstantSDNode *C = isConstOrConstSplat(Op1); 2129 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2130 if (C && !C->isAllOnesValue() && !C->isOne() && 2131 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2132 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2133 // Disable the nsw and nuw flags. We can no longer guarantee that we 2134 // won't wrap after simplification. 2135 Flags.setNoSignedWrap(false); 2136 Flags.setNoUnsignedWrap(false); 2137 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2138 return TLO.CombineTo(Op, NewOp); 2139 } 2140 2141 LLVM_FALLTHROUGH; 2142 } 2143 default: 2144 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2145 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2146 Known, TLO, Depth)) 2147 return true; 2148 break; 2149 } 2150 2151 // Just use computeKnownBits to compute output bits. 2152 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2153 break; 2154 } 2155 2156 // If we know the value of all of the demanded bits, return this as a 2157 // constant. 2158 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2159 // Avoid folding to a constant if any OpaqueConstant is involved. 2160 const SDNode *N = Op.getNode(); 2161 for (SDNodeIterator I = SDNodeIterator::begin(N), 2162 E = SDNodeIterator::end(N); 2163 I != E; ++I) { 2164 SDNode *Op = *I; 2165 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2166 if (C->isOpaque()) 2167 return false; 2168 } 2169 // TODO: Handle float bits as well. 2170 if (VT.isInteger()) 2171 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2172 } 2173 2174 return false; 2175 } 2176 2177 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2178 const APInt &DemandedElts, 2179 APInt &KnownUndef, 2180 APInt &KnownZero, 2181 DAGCombinerInfo &DCI) const { 2182 SelectionDAG &DAG = DCI.DAG; 2183 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2184 !DCI.isBeforeLegalizeOps()); 2185 2186 bool Simplified = 2187 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2188 if (Simplified) { 2189 DCI.AddToWorklist(Op.getNode()); 2190 DCI.CommitTargetLoweringOpt(TLO); 2191 } 2192 2193 return Simplified; 2194 } 2195 2196 /// Given a vector binary operation and known undefined elements for each input 2197 /// operand, compute whether each element of the output is undefined. 2198 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2199 const APInt &UndefOp0, 2200 const APInt &UndefOp1) { 2201 EVT VT = BO.getValueType(); 2202 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2203 "Vector binop only"); 2204 2205 EVT EltVT = VT.getVectorElementType(); 2206 unsigned NumElts = VT.getVectorNumElements(); 2207 assert(UndefOp0.getBitWidth() == NumElts && 2208 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2209 2210 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2211 const APInt &UndefVals) { 2212 if (UndefVals[Index]) 2213 return DAG.getUNDEF(EltVT); 2214 2215 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2216 // Try hard to make sure that the getNode() call is not creating temporary 2217 // nodes. Ignore opaque integers because they do not constant fold. 2218 SDValue Elt = BV->getOperand(Index); 2219 auto *C = dyn_cast<ConstantSDNode>(Elt); 2220 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2221 return Elt; 2222 } 2223 2224 return SDValue(); 2225 }; 2226 2227 APInt KnownUndef = APInt::getNullValue(NumElts); 2228 for (unsigned i = 0; i != NumElts; ++i) { 2229 // If both inputs for this element are either constant or undef and match 2230 // the element type, compute the constant/undef result for this element of 2231 // the vector. 2232 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2233 // not handle FP constants. The code within getNode() should be refactored 2234 // to avoid the danger of creating a bogus temporary node here. 2235 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2236 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2237 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2238 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2239 KnownUndef.setBit(i); 2240 } 2241 return KnownUndef; 2242 } 2243 2244 bool TargetLowering::SimplifyDemandedVectorElts( 2245 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2246 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2247 bool AssumeSingleUse) const { 2248 EVT VT = Op.getValueType(); 2249 unsigned Opcode = Op.getOpcode(); 2250 APInt DemandedElts = OriginalDemandedElts; 2251 unsigned NumElts = DemandedElts.getBitWidth(); 2252 assert(VT.isVector() && "Expected vector op"); 2253 assert(VT.getVectorNumElements() == NumElts && 2254 "Mask size mismatches value type element count!"); 2255 2256 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2257 2258 // Undef operand. 2259 if (Op.isUndef()) { 2260 KnownUndef.setAllBits(); 2261 return false; 2262 } 2263 2264 // If Op has other users, assume that all elements are needed. 2265 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2266 DemandedElts.setAllBits(); 2267 2268 // Not demanding any elements from Op. 2269 if (DemandedElts == 0) { 2270 KnownUndef.setAllBits(); 2271 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2272 } 2273 2274 // Limit search depth. 2275 if (Depth >= SelectionDAG::MaxRecursionDepth) 2276 return false; 2277 2278 SDLoc DL(Op); 2279 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2280 2281 // Helper for demanding the specified elements and all the bits of both binary 2282 // operands. 2283 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2284 unsigned NumBits0 = Op0.getScalarValueSizeInBits(); 2285 unsigned NumBits1 = Op1.getScalarValueSizeInBits(); 2286 APInt DemandedBits0 = APInt::getAllOnesValue(NumBits0); 2287 APInt DemandedBits1 = APInt::getAllOnesValue(NumBits1); 2288 SDValue NewOp0 = SimplifyMultipleUseDemandedBits( 2289 Op0, DemandedBits0, DemandedElts, TLO.DAG, Depth + 1); 2290 SDValue NewOp1 = SimplifyMultipleUseDemandedBits( 2291 Op1, DemandedBits1, DemandedElts, TLO.DAG, Depth + 1); 2292 if (NewOp0 || NewOp1) { 2293 SDValue NewOp = TLO.DAG.getNode( 2294 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2295 return TLO.CombineTo(Op, NewOp); 2296 } 2297 return false; 2298 }; 2299 2300 switch (Opcode) { 2301 case ISD::SCALAR_TO_VECTOR: { 2302 if (!DemandedElts[0]) { 2303 KnownUndef.setAllBits(); 2304 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2305 } 2306 KnownUndef.setHighBits(NumElts - 1); 2307 break; 2308 } 2309 case ISD::BITCAST: { 2310 SDValue Src = Op.getOperand(0); 2311 EVT SrcVT = Src.getValueType(); 2312 2313 // We only handle vectors here. 2314 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2315 if (!SrcVT.isVector()) 2316 break; 2317 2318 // Fast handling of 'identity' bitcasts. 2319 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2320 if (NumSrcElts == NumElts) 2321 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2322 KnownZero, TLO, Depth + 1); 2323 2324 APInt SrcZero, SrcUndef; 2325 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2326 2327 // Bitcast from 'large element' src vector to 'small element' vector, we 2328 // must demand a source element if any DemandedElt maps to it. 2329 if ((NumElts % NumSrcElts) == 0) { 2330 unsigned Scale = NumElts / NumSrcElts; 2331 for (unsigned i = 0; i != NumElts; ++i) 2332 if (DemandedElts[i]) 2333 SrcDemandedElts.setBit(i / Scale); 2334 2335 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2336 TLO, Depth + 1)) 2337 return true; 2338 2339 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2340 // of the large element. 2341 // TODO - bigendian once we have test coverage. 2342 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2343 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2344 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2345 for (unsigned i = 0; i != NumElts; ++i) 2346 if (DemandedElts[i]) { 2347 unsigned Ofs = (i % Scale) * EltSizeInBits; 2348 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2349 } 2350 2351 KnownBits Known; 2352 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2353 TLO, Depth + 1)) 2354 return true; 2355 } 2356 2357 // If the src element is zero/undef then all the output elements will be - 2358 // only demanded elements are guaranteed to be correct. 2359 for (unsigned i = 0; i != NumSrcElts; ++i) { 2360 if (SrcDemandedElts[i]) { 2361 if (SrcZero[i]) 2362 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2363 if (SrcUndef[i]) 2364 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2365 } 2366 } 2367 } 2368 2369 // Bitcast from 'small element' src vector to 'large element' vector, we 2370 // demand all smaller source elements covered by the larger demanded element 2371 // of this vector. 2372 if ((NumSrcElts % NumElts) == 0) { 2373 unsigned Scale = NumSrcElts / NumElts; 2374 for (unsigned i = 0; i != NumElts; ++i) 2375 if (DemandedElts[i]) 2376 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2377 2378 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2379 TLO, Depth + 1)) 2380 return true; 2381 2382 // If all the src elements covering an output element are zero/undef, then 2383 // the output element will be as well, assuming it was demanded. 2384 for (unsigned i = 0; i != NumElts; ++i) { 2385 if (DemandedElts[i]) { 2386 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2387 KnownZero.setBit(i); 2388 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2389 KnownUndef.setBit(i); 2390 } 2391 } 2392 } 2393 break; 2394 } 2395 case ISD::BUILD_VECTOR: { 2396 // Check all elements and simplify any unused elements with UNDEF. 2397 if (!DemandedElts.isAllOnesValue()) { 2398 // Don't simplify BROADCASTS. 2399 if (llvm::any_of(Op->op_values(), 2400 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2401 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2402 bool Updated = false; 2403 for (unsigned i = 0; i != NumElts; ++i) { 2404 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2405 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2406 KnownUndef.setBit(i); 2407 Updated = true; 2408 } 2409 } 2410 if (Updated) 2411 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2412 } 2413 } 2414 for (unsigned i = 0; i != NumElts; ++i) { 2415 SDValue SrcOp = Op.getOperand(i); 2416 if (SrcOp.isUndef()) { 2417 KnownUndef.setBit(i); 2418 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2419 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2420 KnownZero.setBit(i); 2421 } 2422 } 2423 break; 2424 } 2425 case ISD::CONCAT_VECTORS: { 2426 EVT SubVT = Op.getOperand(0).getValueType(); 2427 unsigned NumSubVecs = Op.getNumOperands(); 2428 unsigned NumSubElts = SubVT.getVectorNumElements(); 2429 for (unsigned i = 0; i != NumSubVecs; ++i) { 2430 SDValue SubOp = Op.getOperand(i); 2431 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2432 APInt SubUndef, SubZero; 2433 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2434 Depth + 1)) 2435 return true; 2436 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2437 KnownZero.insertBits(SubZero, i * NumSubElts); 2438 } 2439 break; 2440 } 2441 case ISD::INSERT_SUBVECTOR: { 2442 // Demand any elements from the subvector and the remainder from the src its 2443 // inserted into. 2444 SDValue Src = Op.getOperand(0); 2445 SDValue Sub = Op.getOperand(1); 2446 uint64_t Idx = Op.getConstantOperandVal(2); 2447 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2448 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2449 APInt DemandedSrcElts = DemandedElts; 2450 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2451 2452 APInt SubUndef, SubZero; 2453 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2454 Depth + 1)) 2455 return true; 2456 2457 // If none of the src operand elements are demanded, replace it with undef. 2458 if (!DemandedSrcElts && !Src.isUndef()) 2459 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2460 TLO.DAG.getUNDEF(VT), Sub, 2461 Op.getOperand(2))); 2462 2463 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2464 TLO, Depth + 1)) 2465 return true; 2466 KnownUndef.insertBits(SubUndef, Idx); 2467 KnownZero.insertBits(SubZero, Idx); 2468 2469 // Attempt to avoid multi-use ops if we don't need anything from them. 2470 if (!DemandedSrcElts.isAllOnesValue() || 2471 !DemandedSubElts.isAllOnesValue()) { 2472 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2473 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2474 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 2475 SDValue NewSub = SimplifyMultipleUseDemandedBits( 2476 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 2477 if (NewSrc || NewSub) { 2478 NewSrc = NewSrc ? NewSrc : Src; 2479 NewSub = NewSub ? NewSub : Sub; 2480 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2481 NewSub, Op.getOperand(2)); 2482 return TLO.CombineTo(Op, NewOp); 2483 } 2484 } 2485 break; 2486 } 2487 case ISD::EXTRACT_SUBVECTOR: { 2488 // Offset the demanded elts by the subvector index. 2489 SDValue Src = Op.getOperand(0); 2490 uint64_t Idx = Op.getConstantOperandVal(1); 2491 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2492 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2493 2494 APInt SrcUndef, SrcZero; 2495 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2496 Depth + 1)) 2497 return true; 2498 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2499 KnownZero = SrcZero.extractBits(NumElts, Idx); 2500 2501 // Attempt to avoid multi-use ops if we don't need anything from them. 2502 if (!DemandedElts.isAllOnesValue()) { 2503 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2504 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2505 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 2506 if (NewSrc) { 2507 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2508 Op.getOperand(1)); 2509 return TLO.CombineTo(Op, NewOp); 2510 } 2511 } 2512 break; 2513 } 2514 case ISD::INSERT_VECTOR_ELT: { 2515 SDValue Vec = Op.getOperand(0); 2516 SDValue Scl = Op.getOperand(1); 2517 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2518 2519 // For a legal, constant insertion index, if we don't need this insertion 2520 // then strip it, else remove it from the demanded elts. 2521 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2522 unsigned Idx = CIdx->getZExtValue(); 2523 if (!DemandedElts[Idx]) 2524 return TLO.CombineTo(Op, Vec); 2525 2526 APInt DemandedVecElts(DemandedElts); 2527 DemandedVecElts.clearBit(Idx); 2528 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2529 KnownZero, TLO, Depth + 1)) 2530 return true; 2531 2532 KnownUndef.clearBit(Idx); 2533 if (Scl.isUndef()) 2534 KnownUndef.setBit(Idx); 2535 2536 KnownZero.clearBit(Idx); 2537 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2538 KnownZero.setBit(Idx); 2539 break; 2540 } 2541 2542 APInt VecUndef, VecZero; 2543 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2544 Depth + 1)) 2545 return true; 2546 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2547 break; 2548 } 2549 case ISD::VSELECT: { 2550 // Try to transform the select condition based on the current demanded 2551 // elements. 2552 // TODO: If a condition element is undef, we can choose from one arm of the 2553 // select (and if one arm is undef, then we can propagate that to the 2554 // result). 2555 // TODO - add support for constant vselect masks (see IR version of this). 2556 APInt UnusedUndef, UnusedZero; 2557 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2558 UnusedZero, TLO, Depth + 1)) 2559 return true; 2560 2561 // See if we can simplify either vselect operand. 2562 APInt DemandedLHS(DemandedElts); 2563 APInt DemandedRHS(DemandedElts); 2564 APInt UndefLHS, ZeroLHS; 2565 APInt UndefRHS, ZeroRHS; 2566 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2567 ZeroLHS, TLO, Depth + 1)) 2568 return true; 2569 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2570 ZeroRHS, TLO, Depth + 1)) 2571 return true; 2572 2573 KnownUndef = UndefLHS & UndefRHS; 2574 KnownZero = ZeroLHS & ZeroRHS; 2575 break; 2576 } 2577 case ISD::VECTOR_SHUFFLE: { 2578 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2579 2580 // Collect demanded elements from shuffle operands.. 2581 APInt DemandedLHS(NumElts, 0); 2582 APInt DemandedRHS(NumElts, 0); 2583 for (unsigned i = 0; i != NumElts; ++i) { 2584 int M = ShuffleMask[i]; 2585 if (M < 0 || !DemandedElts[i]) 2586 continue; 2587 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2588 if (M < (int)NumElts) 2589 DemandedLHS.setBit(M); 2590 else 2591 DemandedRHS.setBit(M - NumElts); 2592 } 2593 2594 // See if we can simplify either shuffle operand. 2595 APInt UndefLHS, ZeroLHS; 2596 APInt UndefRHS, ZeroRHS; 2597 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2598 ZeroLHS, TLO, Depth + 1)) 2599 return true; 2600 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2601 ZeroRHS, TLO, Depth + 1)) 2602 return true; 2603 2604 // Simplify mask using undef elements from LHS/RHS. 2605 bool Updated = false; 2606 bool IdentityLHS = true, IdentityRHS = true; 2607 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2608 for (unsigned i = 0; i != NumElts; ++i) { 2609 int &M = NewMask[i]; 2610 if (M < 0) 2611 continue; 2612 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2613 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2614 Updated = true; 2615 M = -1; 2616 } 2617 IdentityLHS &= (M < 0) || (M == (int)i); 2618 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2619 } 2620 2621 // Update legal shuffle masks based on demanded elements if it won't reduce 2622 // to Identity which can cause premature removal of the shuffle mask. 2623 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2624 SDValue LegalShuffle = 2625 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2626 NewMask, TLO.DAG); 2627 if (LegalShuffle) 2628 return TLO.CombineTo(Op, LegalShuffle); 2629 } 2630 2631 // Propagate undef/zero elements from LHS/RHS. 2632 for (unsigned i = 0; i != NumElts; ++i) { 2633 int M = ShuffleMask[i]; 2634 if (M < 0) { 2635 KnownUndef.setBit(i); 2636 } else if (M < (int)NumElts) { 2637 if (UndefLHS[M]) 2638 KnownUndef.setBit(i); 2639 if (ZeroLHS[M]) 2640 KnownZero.setBit(i); 2641 } else { 2642 if (UndefRHS[M - NumElts]) 2643 KnownUndef.setBit(i); 2644 if (ZeroRHS[M - NumElts]) 2645 KnownZero.setBit(i); 2646 } 2647 } 2648 break; 2649 } 2650 case ISD::ANY_EXTEND_VECTOR_INREG: 2651 case ISD::SIGN_EXTEND_VECTOR_INREG: 2652 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2653 APInt SrcUndef, SrcZero; 2654 SDValue Src = Op.getOperand(0); 2655 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2656 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2657 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2658 Depth + 1)) 2659 return true; 2660 KnownZero = SrcZero.zextOrTrunc(NumElts); 2661 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2662 2663 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2664 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2665 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2666 // aext - if we just need the bottom element then we can bitcast. 2667 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2668 } 2669 2670 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2671 // zext(undef) upper bits are guaranteed to be zero. 2672 if (DemandedElts.isSubsetOf(KnownUndef)) 2673 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2674 KnownUndef.clearAllBits(); 2675 } 2676 break; 2677 } 2678 2679 // TODO: There are more binop opcodes that could be handled here - MIN, 2680 // MAX, saturated math, etc. 2681 case ISD::OR: 2682 case ISD::XOR: 2683 case ISD::ADD: 2684 case ISD::SUB: 2685 case ISD::FADD: 2686 case ISD::FSUB: 2687 case ISD::FMUL: 2688 case ISD::FDIV: 2689 case ISD::FREM: { 2690 SDValue Op0 = Op.getOperand(0); 2691 SDValue Op1 = Op.getOperand(1); 2692 2693 APInt UndefRHS, ZeroRHS; 2694 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2695 Depth + 1)) 2696 return true; 2697 APInt UndefLHS, ZeroLHS; 2698 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2699 Depth + 1)) 2700 return true; 2701 2702 KnownZero = ZeroLHS & ZeroRHS; 2703 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2704 2705 // Attempt to avoid multi-use ops if we don't need anything from them. 2706 // TODO - use KnownUndef to relax the demandedelts? 2707 if (!DemandedElts.isAllOnesValue()) 2708 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2709 return true; 2710 break; 2711 } 2712 case ISD::SHL: 2713 case ISD::SRL: 2714 case ISD::SRA: 2715 case ISD::ROTL: 2716 case ISD::ROTR: { 2717 SDValue Op0 = Op.getOperand(0); 2718 SDValue Op1 = Op.getOperand(1); 2719 2720 APInt UndefRHS, ZeroRHS; 2721 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2722 Depth + 1)) 2723 return true; 2724 APInt UndefLHS, ZeroLHS; 2725 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2726 Depth + 1)) 2727 return true; 2728 2729 KnownZero = ZeroLHS; 2730 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2731 2732 // Attempt to avoid multi-use ops if we don't need anything from them. 2733 // TODO - use KnownUndef to relax the demandedelts? 2734 if (!DemandedElts.isAllOnesValue()) 2735 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2736 return true; 2737 break; 2738 } 2739 case ISD::MUL: 2740 case ISD::AND: { 2741 SDValue Op0 = Op.getOperand(0); 2742 SDValue Op1 = Op.getOperand(1); 2743 2744 APInt SrcUndef, SrcZero; 2745 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2746 Depth + 1)) 2747 return true; 2748 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2749 TLO, Depth + 1)) 2750 return true; 2751 2752 // If either side has a zero element, then the result element is zero, even 2753 // if the other is an UNDEF. 2754 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2755 // and then handle 'and' nodes with the rest of the binop opcodes. 2756 KnownZero |= SrcZero; 2757 KnownUndef &= SrcUndef; 2758 KnownUndef &= ~KnownZero; 2759 2760 // Attempt to avoid multi-use ops if we don't need anything from them. 2761 // TODO - use KnownUndef to relax the demandedelts? 2762 if (!DemandedElts.isAllOnesValue()) 2763 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2764 return true; 2765 break; 2766 } 2767 case ISD::TRUNCATE: 2768 case ISD::SIGN_EXTEND: 2769 case ISD::ZERO_EXTEND: 2770 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2771 KnownZero, TLO, Depth + 1)) 2772 return true; 2773 2774 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2775 // zext(undef) upper bits are guaranteed to be zero. 2776 if (DemandedElts.isSubsetOf(KnownUndef)) 2777 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2778 KnownUndef.clearAllBits(); 2779 } 2780 break; 2781 default: { 2782 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2783 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2784 KnownZero, TLO, Depth)) 2785 return true; 2786 } else { 2787 KnownBits Known; 2788 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2789 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2790 TLO, Depth, AssumeSingleUse)) 2791 return true; 2792 } 2793 break; 2794 } 2795 } 2796 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2797 2798 // Constant fold all undef cases. 2799 // TODO: Handle zero cases as well. 2800 if (DemandedElts.isSubsetOf(KnownUndef)) 2801 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2802 2803 return false; 2804 } 2805 2806 /// Determine which of the bits specified in Mask are known to be either zero or 2807 /// one and return them in the Known. 2808 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2809 KnownBits &Known, 2810 const APInt &DemandedElts, 2811 const SelectionDAG &DAG, 2812 unsigned Depth) const { 2813 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2814 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2815 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2816 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2817 "Should use MaskedValueIsZero if you don't know whether Op" 2818 " is a target node!"); 2819 Known.resetAll(); 2820 } 2821 2822 void TargetLowering::computeKnownBitsForTargetInstr( 2823 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2824 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2825 unsigned Depth) const { 2826 Known.resetAll(); 2827 } 2828 2829 void TargetLowering::computeKnownBitsForFrameIndex( 2830 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2831 // The low bits are known zero if the pointer is aligned. 2832 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2833 } 2834 2835 Align TargetLowering::computeKnownAlignForTargetInstr( 2836 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2837 unsigned Depth) const { 2838 return Align(1); 2839 } 2840 2841 /// This method can be implemented by targets that want to expose additional 2842 /// information about sign bits to the DAG Combiner. 2843 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2844 const APInt &, 2845 const SelectionDAG &, 2846 unsigned Depth) const { 2847 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2848 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2849 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2850 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2851 "Should use ComputeNumSignBits if you don't know whether Op" 2852 " is a target node!"); 2853 return 1; 2854 } 2855 2856 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2857 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2858 const MachineRegisterInfo &MRI, unsigned Depth) const { 2859 return 1; 2860 } 2861 2862 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2863 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2864 TargetLoweringOpt &TLO, unsigned Depth) const { 2865 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2866 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2867 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2868 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2869 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2870 " is a target node!"); 2871 return false; 2872 } 2873 2874 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2875 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2876 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2877 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2878 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2879 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2880 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2881 "Should use SimplifyDemandedBits if you don't know whether Op" 2882 " is a target node!"); 2883 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2884 return false; 2885 } 2886 2887 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2888 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2889 SelectionDAG &DAG, unsigned Depth) const { 2890 assert( 2891 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2892 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2893 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2894 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2895 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2896 " is a target node!"); 2897 return SDValue(); 2898 } 2899 2900 SDValue 2901 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2902 SDValue N1, MutableArrayRef<int> Mask, 2903 SelectionDAG &DAG) const { 2904 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2905 if (!LegalMask) { 2906 std::swap(N0, N1); 2907 ShuffleVectorSDNode::commuteMask(Mask); 2908 LegalMask = isShuffleMaskLegal(Mask, VT); 2909 } 2910 2911 if (!LegalMask) 2912 return SDValue(); 2913 2914 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2915 } 2916 2917 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2918 return nullptr; 2919 } 2920 2921 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2922 const SelectionDAG &DAG, 2923 bool SNaN, 2924 unsigned Depth) const { 2925 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2926 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2927 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2928 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2929 "Should use isKnownNeverNaN if you don't know whether Op" 2930 " is a target node!"); 2931 return false; 2932 } 2933 2934 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2935 // work with truncating build vectors and vectors with elements of less than 2936 // 8 bits. 2937 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2938 if (!N) 2939 return false; 2940 2941 APInt CVal; 2942 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2943 CVal = CN->getAPIntValue(); 2944 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2945 auto *CN = BV->getConstantSplatNode(); 2946 if (!CN) 2947 return false; 2948 2949 // If this is a truncating build vector, truncate the splat value. 2950 // Otherwise, we may fail to match the expected values below. 2951 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2952 CVal = CN->getAPIntValue(); 2953 if (BVEltWidth < CVal.getBitWidth()) 2954 CVal = CVal.trunc(BVEltWidth); 2955 } else { 2956 return false; 2957 } 2958 2959 switch (getBooleanContents(N->getValueType(0))) { 2960 case UndefinedBooleanContent: 2961 return CVal[0]; 2962 case ZeroOrOneBooleanContent: 2963 return CVal.isOneValue(); 2964 case ZeroOrNegativeOneBooleanContent: 2965 return CVal.isAllOnesValue(); 2966 } 2967 2968 llvm_unreachable("Invalid boolean contents"); 2969 } 2970 2971 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2972 if (!N) 2973 return false; 2974 2975 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2976 if (!CN) { 2977 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2978 if (!BV) 2979 return false; 2980 2981 // Only interested in constant splats, we don't care about undef 2982 // elements in identifying boolean constants and getConstantSplatNode 2983 // returns NULL if all ops are undef; 2984 CN = BV->getConstantSplatNode(); 2985 if (!CN) 2986 return false; 2987 } 2988 2989 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2990 return !CN->getAPIntValue()[0]; 2991 2992 return CN->isNullValue(); 2993 } 2994 2995 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2996 bool SExt) const { 2997 if (VT == MVT::i1) 2998 return N->isOne(); 2999 3000 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3001 switch (Cnt) { 3002 case TargetLowering::ZeroOrOneBooleanContent: 3003 // An extended value of 1 is always true, unless its original type is i1, 3004 // in which case it will be sign extended to -1. 3005 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3006 case TargetLowering::UndefinedBooleanContent: 3007 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3008 return N->isAllOnesValue() && SExt; 3009 } 3010 llvm_unreachable("Unexpected enumeration."); 3011 } 3012 3013 /// This helper function of SimplifySetCC tries to optimize the comparison when 3014 /// either operand of the SetCC node is a bitwise-and instruction. 3015 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3016 ISD::CondCode Cond, const SDLoc &DL, 3017 DAGCombinerInfo &DCI) const { 3018 // Match these patterns in any of their permutations: 3019 // (X & Y) == Y 3020 // (X & Y) != Y 3021 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3022 std::swap(N0, N1); 3023 3024 EVT OpVT = N0.getValueType(); 3025 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3026 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3027 return SDValue(); 3028 3029 SDValue X, Y; 3030 if (N0.getOperand(0) == N1) { 3031 X = N0.getOperand(1); 3032 Y = N0.getOperand(0); 3033 } else if (N0.getOperand(1) == N1) { 3034 X = N0.getOperand(0); 3035 Y = N0.getOperand(1); 3036 } else { 3037 return SDValue(); 3038 } 3039 3040 SelectionDAG &DAG = DCI.DAG; 3041 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3042 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3043 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3044 // Note that where Y is variable and is known to have at most one bit set 3045 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3046 // equivalent when Y == 0. 3047 assert(OpVT.isInteger()); 3048 Cond = ISD::getSetCCInverse(Cond, OpVT); 3049 if (DCI.isBeforeLegalizeOps() || 3050 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3051 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3052 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3053 // If the target supports an 'and-not' or 'and-complement' logic operation, 3054 // try to use that to make a comparison operation more efficient. 3055 // But don't do this transform if the mask is a single bit because there are 3056 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3057 // 'rlwinm' on PPC). 3058 3059 // Bail out if the compare operand that we want to turn into a zero is 3060 // already a zero (otherwise, infinite loop). 3061 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3062 if (YConst && YConst->isNullValue()) 3063 return SDValue(); 3064 3065 // Transform this into: ~X & Y == 0. 3066 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3067 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3068 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3069 } 3070 3071 return SDValue(); 3072 } 3073 3074 /// There are multiple IR patterns that could be checking whether certain 3075 /// truncation of a signed number would be lossy or not. The pattern which is 3076 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3077 /// We are looking for the following pattern: (KeptBits is a constant) 3078 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3079 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3080 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3081 /// We will unfold it into the natural trunc+sext pattern: 3082 /// ((%x << C) a>> C) dstcond %x 3083 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3084 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3085 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3086 const SDLoc &DL) const { 3087 // We must be comparing with a constant. 3088 ConstantSDNode *C1; 3089 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3090 return SDValue(); 3091 3092 // N0 should be: add %x, (1 << (KeptBits-1)) 3093 if (N0->getOpcode() != ISD::ADD) 3094 return SDValue(); 3095 3096 // And we must be 'add'ing a constant. 3097 ConstantSDNode *C01; 3098 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3099 return SDValue(); 3100 3101 SDValue X = N0->getOperand(0); 3102 EVT XVT = X.getValueType(); 3103 3104 // Validate constants ... 3105 3106 APInt I1 = C1->getAPIntValue(); 3107 3108 ISD::CondCode NewCond; 3109 if (Cond == ISD::CondCode::SETULT) { 3110 NewCond = ISD::CondCode::SETEQ; 3111 } else if (Cond == ISD::CondCode::SETULE) { 3112 NewCond = ISD::CondCode::SETEQ; 3113 // But need to 'canonicalize' the constant. 3114 I1 += 1; 3115 } else if (Cond == ISD::CondCode::SETUGT) { 3116 NewCond = ISD::CondCode::SETNE; 3117 // But need to 'canonicalize' the constant. 3118 I1 += 1; 3119 } else if (Cond == ISD::CondCode::SETUGE) { 3120 NewCond = ISD::CondCode::SETNE; 3121 } else 3122 return SDValue(); 3123 3124 APInt I01 = C01->getAPIntValue(); 3125 3126 auto checkConstants = [&I1, &I01]() -> bool { 3127 // Both of them must be power-of-two, and the constant from setcc is bigger. 3128 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3129 }; 3130 3131 if (checkConstants()) { 3132 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3133 } else { 3134 // What if we invert constants? (and the target predicate) 3135 I1.negate(); 3136 I01.negate(); 3137 assert(XVT.isInteger()); 3138 NewCond = getSetCCInverse(NewCond, XVT); 3139 if (!checkConstants()) 3140 return SDValue(); 3141 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3142 } 3143 3144 // They are power-of-two, so which bit is set? 3145 const unsigned KeptBits = I1.logBase2(); 3146 const unsigned KeptBitsMinusOne = I01.logBase2(); 3147 3148 // Magic! 3149 if (KeptBits != (KeptBitsMinusOne + 1)) 3150 return SDValue(); 3151 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3152 3153 // We don't want to do this in every single case. 3154 SelectionDAG &DAG = DCI.DAG; 3155 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3156 XVT, KeptBits)) 3157 return SDValue(); 3158 3159 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3160 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3161 3162 // Unfold into: ((%x << C) a>> C) cond %x 3163 // Where 'cond' will be either 'eq' or 'ne'. 3164 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3165 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3166 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3167 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3168 3169 return T2; 3170 } 3171 3172 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3173 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3174 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3175 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3176 assert(isConstOrConstSplat(N1C) && 3177 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3178 "Should be a comparison with 0."); 3179 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3180 "Valid only for [in]equality comparisons."); 3181 3182 unsigned NewShiftOpcode; 3183 SDValue X, C, Y; 3184 3185 SelectionDAG &DAG = DCI.DAG; 3186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3187 3188 // Look for '(C l>>/<< Y)'. 3189 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3190 // The shift should be one-use. 3191 if (!V.hasOneUse()) 3192 return false; 3193 unsigned OldShiftOpcode = V.getOpcode(); 3194 switch (OldShiftOpcode) { 3195 case ISD::SHL: 3196 NewShiftOpcode = ISD::SRL; 3197 break; 3198 case ISD::SRL: 3199 NewShiftOpcode = ISD::SHL; 3200 break; 3201 default: 3202 return false; // must be a logical shift. 3203 } 3204 // We should be shifting a constant. 3205 // FIXME: best to use isConstantOrConstantVector(). 3206 C = V.getOperand(0); 3207 ConstantSDNode *CC = 3208 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3209 if (!CC) 3210 return false; 3211 Y = V.getOperand(1); 3212 3213 ConstantSDNode *XC = 3214 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3215 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3216 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3217 }; 3218 3219 // LHS of comparison should be an one-use 'and'. 3220 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3221 return SDValue(); 3222 3223 X = N0.getOperand(0); 3224 SDValue Mask = N0.getOperand(1); 3225 3226 // 'and' is commutative! 3227 if (!Match(Mask)) { 3228 std::swap(X, Mask); 3229 if (!Match(Mask)) 3230 return SDValue(); 3231 } 3232 3233 EVT VT = X.getValueType(); 3234 3235 // Produce: 3236 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3237 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3238 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3239 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3240 return T2; 3241 } 3242 3243 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3244 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3245 /// handle the commuted versions of these patterns. 3246 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3247 ISD::CondCode Cond, const SDLoc &DL, 3248 DAGCombinerInfo &DCI) const { 3249 unsigned BOpcode = N0.getOpcode(); 3250 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3251 "Unexpected binop"); 3252 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3253 3254 // (X + Y) == X --> Y == 0 3255 // (X - Y) == X --> Y == 0 3256 // (X ^ Y) == X --> Y == 0 3257 SelectionDAG &DAG = DCI.DAG; 3258 EVT OpVT = N0.getValueType(); 3259 SDValue X = N0.getOperand(0); 3260 SDValue Y = N0.getOperand(1); 3261 if (X == N1) 3262 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3263 3264 if (Y != N1) 3265 return SDValue(); 3266 3267 // (X + Y) == Y --> X == 0 3268 // (X ^ Y) == Y --> X == 0 3269 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3270 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3271 3272 // The shift would not be valid if the operands are boolean (i1). 3273 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3274 return SDValue(); 3275 3276 // (X - Y) == Y --> X == Y << 1 3277 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3278 !DCI.isBeforeLegalize()); 3279 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3280 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3281 if (!DCI.isCalledByLegalizer()) 3282 DCI.AddToWorklist(YShl1.getNode()); 3283 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3284 } 3285 3286 /// Try to simplify a setcc built with the specified operands and cc. If it is 3287 /// unable to simplify it, return a null SDValue. 3288 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3289 ISD::CondCode Cond, bool foldBooleans, 3290 DAGCombinerInfo &DCI, 3291 const SDLoc &dl) const { 3292 SelectionDAG &DAG = DCI.DAG; 3293 const DataLayout &Layout = DAG.getDataLayout(); 3294 EVT OpVT = N0.getValueType(); 3295 3296 // Constant fold or commute setcc. 3297 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3298 return Fold; 3299 3300 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3301 // TODO: Handle non-splat vector constants. All undef causes trouble. 3302 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3303 if (isConstOrConstSplat(N0) && 3304 (DCI.isBeforeLegalizeOps() || 3305 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3306 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3307 3308 // If we have a subtract with the same 2 non-constant operands as this setcc 3309 // -- but in reverse order -- then try to commute the operands of this setcc 3310 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3311 // instruction on some targets. 3312 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3313 (DCI.isBeforeLegalizeOps() || 3314 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3315 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3316 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3317 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3318 3319 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3320 const APInt &C1 = N1C->getAPIntValue(); 3321 3322 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3323 // equality comparison, then we're just comparing whether X itself is 3324 // zero. 3325 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3326 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3327 N0.getOperand(1).getOpcode() == ISD::Constant) { 3328 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3329 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3330 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3331 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3332 // (srl (ctlz x), 5) == 0 -> X != 0 3333 // (srl (ctlz x), 5) != 1 -> X != 0 3334 Cond = ISD::SETNE; 3335 } else { 3336 // (srl (ctlz x), 5) != 0 -> X == 0 3337 // (srl (ctlz x), 5) == 1 -> X == 0 3338 Cond = ISD::SETEQ; 3339 } 3340 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3341 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3342 Zero, Cond); 3343 } 3344 } 3345 3346 SDValue CTPOP = N0; 3347 // Look through truncs that don't change the value of a ctpop. 3348 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3349 CTPOP = N0.getOperand(0); 3350 3351 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3352 (N0 == CTPOP || 3353 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3354 EVT CTVT = CTPOP.getValueType(); 3355 SDValue CTOp = CTPOP.getOperand(0); 3356 3357 // (ctpop x) u< 2 -> (x & x-1) == 0 3358 // (ctpop x) u> 1 -> (x & x-1) != 0 3359 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3360 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3361 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3362 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3363 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3364 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3365 } 3366 3367 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3368 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3369 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3370 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3371 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3372 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3373 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3374 assert(CTVT.isInteger()); 3375 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3376 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3377 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3378 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3379 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3380 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3381 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3382 } 3383 } 3384 3385 // (zext x) == C --> x == (trunc C) 3386 // (sext x) == C --> x == (trunc C) 3387 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3388 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3389 unsigned MinBits = N0.getValueSizeInBits(); 3390 SDValue PreExt; 3391 bool Signed = false; 3392 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3393 // ZExt 3394 MinBits = N0->getOperand(0).getValueSizeInBits(); 3395 PreExt = N0->getOperand(0); 3396 } else if (N0->getOpcode() == ISD::AND) { 3397 // DAGCombine turns costly ZExts into ANDs 3398 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3399 if ((C->getAPIntValue()+1).isPowerOf2()) { 3400 MinBits = C->getAPIntValue().countTrailingOnes(); 3401 PreExt = N0->getOperand(0); 3402 } 3403 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3404 // SExt 3405 MinBits = N0->getOperand(0).getValueSizeInBits(); 3406 PreExt = N0->getOperand(0); 3407 Signed = true; 3408 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3409 // ZEXTLOAD / SEXTLOAD 3410 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3411 MinBits = LN0->getMemoryVT().getSizeInBits(); 3412 PreExt = N0; 3413 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3414 Signed = true; 3415 MinBits = LN0->getMemoryVT().getSizeInBits(); 3416 PreExt = N0; 3417 } 3418 } 3419 3420 // Figure out how many bits we need to preserve this constant. 3421 unsigned ReqdBits = Signed ? 3422 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3423 C1.getActiveBits(); 3424 3425 // Make sure we're not losing bits from the constant. 3426 if (MinBits > 0 && 3427 MinBits < C1.getBitWidth() && 3428 MinBits >= ReqdBits) { 3429 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3430 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3431 // Will get folded away. 3432 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3433 if (MinBits == 1 && C1 == 1) 3434 // Invert the condition. 3435 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3436 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3437 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3438 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3439 } 3440 3441 // If truncating the setcc operands is not desirable, we can still 3442 // simplify the expression in some cases: 3443 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3444 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3445 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3446 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3447 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3448 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3449 SDValue TopSetCC = N0->getOperand(0); 3450 unsigned N0Opc = N0->getOpcode(); 3451 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3452 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3453 TopSetCC.getOpcode() == ISD::SETCC && 3454 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3455 (isConstFalseVal(N1C) || 3456 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3457 3458 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3459 (!N1C->isNullValue() && Cond == ISD::SETNE); 3460 3461 if (!Inverse) 3462 return TopSetCC; 3463 3464 ISD::CondCode InvCond = ISD::getSetCCInverse( 3465 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3466 TopSetCC.getOperand(0).getValueType()); 3467 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3468 TopSetCC.getOperand(1), 3469 InvCond); 3470 } 3471 } 3472 } 3473 3474 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3475 // equality or unsigned, and all 1 bits of the const are in the same 3476 // partial word, see if we can shorten the load. 3477 if (DCI.isBeforeLegalize() && 3478 !ISD::isSignedIntSetCC(Cond) && 3479 N0.getOpcode() == ISD::AND && C1 == 0 && 3480 N0.getNode()->hasOneUse() && 3481 isa<LoadSDNode>(N0.getOperand(0)) && 3482 N0.getOperand(0).getNode()->hasOneUse() && 3483 isa<ConstantSDNode>(N0.getOperand(1))) { 3484 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3485 APInt bestMask; 3486 unsigned bestWidth = 0, bestOffset = 0; 3487 if (Lod->isSimple() && Lod->isUnindexed()) { 3488 unsigned origWidth = N0.getValueSizeInBits(); 3489 unsigned maskWidth = origWidth; 3490 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3491 // 8 bits, but have to be careful... 3492 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3493 origWidth = Lod->getMemoryVT().getSizeInBits(); 3494 const APInt &Mask = N0.getConstantOperandAPInt(1); 3495 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3496 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3497 for (unsigned offset=0; offset<origWidth/width; offset++) { 3498 if (Mask.isSubsetOf(newMask)) { 3499 if (Layout.isLittleEndian()) 3500 bestOffset = (uint64_t)offset * (width/8); 3501 else 3502 bestOffset = (origWidth/width - offset - 1) * (width/8); 3503 bestMask = Mask.lshr(offset * (width/8) * 8); 3504 bestWidth = width; 3505 break; 3506 } 3507 newMask <<= width; 3508 } 3509 } 3510 } 3511 if (bestWidth) { 3512 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3513 if (newVT.isRound() && 3514 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3515 SDValue Ptr = Lod->getBasePtr(); 3516 if (bestOffset != 0) 3517 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3518 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3519 SDValue NewLoad = DAG.getLoad( 3520 newVT, dl, Lod->getChain(), Ptr, 3521 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3522 return DAG.getSetCC(dl, VT, 3523 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3524 DAG.getConstant(bestMask.trunc(bestWidth), 3525 dl, newVT)), 3526 DAG.getConstant(0LL, dl, newVT), Cond); 3527 } 3528 } 3529 } 3530 3531 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3532 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3533 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3534 3535 // If the comparison constant has bits in the upper part, the 3536 // zero-extended value could never match. 3537 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3538 C1.getBitWidth() - InSize))) { 3539 switch (Cond) { 3540 case ISD::SETUGT: 3541 case ISD::SETUGE: 3542 case ISD::SETEQ: 3543 return DAG.getConstant(0, dl, VT); 3544 case ISD::SETULT: 3545 case ISD::SETULE: 3546 case ISD::SETNE: 3547 return DAG.getConstant(1, dl, VT); 3548 case ISD::SETGT: 3549 case ISD::SETGE: 3550 // True if the sign bit of C1 is set. 3551 return DAG.getConstant(C1.isNegative(), dl, VT); 3552 case ISD::SETLT: 3553 case ISD::SETLE: 3554 // True if the sign bit of C1 isn't set. 3555 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3556 default: 3557 break; 3558 } 3559 } 3560 3561 // Otherwise, we can perform the comparison with the low bits. 3562 switch (Cond) { 3563 case ISD::SETEQ: 3564 case ISD::SETNE: 3565 case ISD::SETUGT: 3566 case ISD::SETUGE: 3567 case ISD::SETULT: 3568 case ISD::SETULE: { 3569 EVT newVT = N0.getOperand(0).getValueType(); 3570 if (DCI.isBeforeLegalizeOps() || 3571 (isOperationLegal(ISD::SETCC, newVT) && 3572 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3573 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3574 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3575 3576 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3577 NewConst, Cond); 3578 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3579 } 3580 break; 3581 } 3582 default: 3583 break; // todo, be more careful with signed comparisons 3584 } 3585 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3586 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3587 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3588 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3589 EVT ExtDstTy = N0.getValueType(); 3590 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3591 3592 // If the constant doesn't fit into the number of bits for the source of 3593 // the sign extension, it is impossible for both sides to be equal. 3594 if (C1.getMinSignedBits() > ExtSrcTyBits) 3595 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3596 3597 SDValue ZextOp; 3598 EVT Op0Ty = N0.getOperand(0).getValueType(); 3599 if (Op0Ty == ExtSrcTy) { 3600 ZextOp = N0.getOperand(0); 3601 } else { 3602 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3603 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3604 DAG.getConstant(Imm, dl, Op0Ty)); 3605 } 3606 if (!DCI.isCalledByLegalizer()) 3607 DCI.AddToWorklist(ZextOp.getNode()); 3608 // Otherwise, make this a use of a zext. 3609 return DAG.getSetCC(dl, VT, ZextOp, 3610 DAG.getConstant(C1 & APInt::getLowBitsSet( 3611 ExtDstTyBits, 3612 ExtSrcTyBits), 3613 dl, ExtDstTy), 3614 Cond); 3615 } else if ((N1C->isNullValue() || N1C->isOne()) && 3616 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3617 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3618 if (N0.getOpcode() == ISD::SETCC && 3619 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3620 (N0.getValueType() == MVT::i1 || 3621 getBooleanContents(N0.getOperand(0).getValueType()) == 3622 ZeroOrOneBooleanContent)) { 3623 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3624 if (TrueWhenTrue) 3625 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3626 // Invert the condition. 3627 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3628 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3629 if (DCI.isBeforeLegalizeOps() || 3630 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3631 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3632 } 3633 3634 if ((N0.getOpcode() == ISD::XOR || 3635 (N0.getOpcode() == ISD::AND && 3636 N0.getOperand(0).getOpcode() == ISD::XOR && 3637 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3638 isa<ConstantSDNode>(N0.getOperand(1)) && 3639 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3640 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3641 // can only do this if the top bits are known zero. 3642 unsigned BitWidth = N0.getValueSizeInBits(); 3643 if (DAG.MaskedValueIsZero(N0, 3644 APInt::getHighBitsSet(BitWidth, 3645 BitWidth-1))) { 3646 // Okay, get the un-inverted input value. 3647 SDValue Val; 3648 if (N0.getOpcode() == ISD::XOR) { 3649 Val = N0.getOperand(0); 3650 } else { 3651 assert(N0.getOpcode() == ISD::AND && 3652 N0.getOperand(0).getOpcode() == ISD::XOR); 3653 // ((X^1)&1)^1 -> X & 1 3654 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3655 N0.getOperand(0).getOperand(0), 3656 N0.getOperand(1)); 3657 } 3658 3659 return DAG.getSetCC(dl, VT, Val, N1, 3660 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3661 } 3662 } else if (N1C->isOne()) { 3663 SDValue Op0 = N0; 3664 if (Op0.getOpcode() == ISD::TRUNCATE) 3665 Op0 = Op0.getOperand(0); 3666 3667 if ((Op0.getOpcode() == ISD::XOR) && 3668 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3669 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3670 SDValue XorLHS = Op0.getOperand(0); 3671 SDValue XorRHS = Op0.getOperand(1); 3672 // Ensure that the input setccs return an i1 type or 0/1 value. 3673 if (Op0.getValueType() == MVT::i1 || 3674 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3675 ZeroOrOneBooleanContent && 3676 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3677 ZeroOrOneBooleanContent)) { 3678 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3679 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3680 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3681 } 3682 } 3683 if (Op0.getOpcode() == ISD::AND && 3684 isa<ConstantSDNode>(Op0.getOperand(1)) && 3685 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3686 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3687 if (Op0.getValueType().bitsGT(VT)) 3688 Op0 = DAG.getNode(ISD::AND, dl, VT, 3689 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3690 DAG.getConstant(1, dl, VT)); 3691 else if (Op0.getValueType().bitsLT(VT)) 3692 Op0 = DAG.getNode(ISD::AND, dl, VT, 3693 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3694 DAG.getConstant(1, dl, VT)); 3695 3696 return DAG.getSetCC(dl, VT, Op0, 3697 DAG.getConstant(0, dl, Op0.getValueType()), 3698 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3699 } 3700 if (Op0.getOpcode() == ISD::AssertZext && 3701 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3702 return DAG.getSetCC(dl, VT, Op0, 3703 DAG.getConstant(0, dl, Op0.getValueType()), 3704 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3705 } 3706 } 3707 3708 // Given: 3709 // icmp eq/ne (urem %x, %y), 0 3710 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3711 // icmp eq/ne %x, 0 3712 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3713 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3714 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3715 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3716 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3717 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3718 } 3719 3720 if (SDValue V = 3721 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3722 return V; 3723 } 3724 3725 // These simplifications apply to splat vectors as well. 3726 // TODO: Handle more splat vector cases. 3727 if (auto *N1C = isConstOrConstSplat(N1)) { 3728 const APInt &C1 = N1C->getAPIntValue(); 3729 3730 APInt MinVal, MaxVal; 3731 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3732 if (ISD::isSignedIntSetCC(Cond)) { 3733 MinVal = APInt::getSignedMinValue(OperandBitSize); 3734 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3735 } else { 3736 MinVal = APInt::getMinValue(OperandBitSize); 3737 MaxVal = APInt::getMaxValue(OperandBitSize); 3738 } 3739 3740 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3741 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3742 // X >= MIN --> true 3743 if (C1 == MinVal) 3744 return DAG.getBoolConstant(true, dl, VT, OpVT); 3745 3746 if (!VT.isVector()) { // TODO: Support this for vectors. 3747 // X >= C0 --> X > (C0 - 1) 3748 APInt C = C1 - 1; 3749 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3750 if ((DCI.isBeforeLegalizeOps() || 3751 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3752 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3753 isLegalICmpImmediate(C.getSExtValue())))) { 3754 return DAG.getSetCC(dl, VT, N0, 3755 DAG.getConstant(C, dl, N1.getValueType()), 3756 NewCC); 3757 } 3758 } 3759 } 3760 3761 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3762 // X <= MAX --> true 3763 if (C1 == MaxVal) 3764 return DAG.getBoolConstant(true, dl, VT, OpVT); 3765 3766 // X <= C0 --> X < (C0 + 1) 3767 if (!VT.isVector()) { // TODO: Support this for vectors. 3768 APInt C = C1 + 1; 3769 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3770 if ((DCI.isBeforeLegalizeOps() || 3771 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3772 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3773 isLegalICmpImmediate(C.getSExtValue())))) { 3774 return DAG.getSetCC(dl, VT, N0, 3775 DAG.getConstant(C, dl, N1.getValueType()), 3776 NewCC); 3777 } 3778 } 3779 } 3780 3781 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3782 if (C1 == MinVal) 3783 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3784 3785 // TODO: Support this for vectors after legalize ops. 3786 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3787 // Canonicalize setlt X, Max --> setne X, Max 3788 if (C1 == MaxVal) 3789 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3790 3791 // If we have setult X, 1, turn it into seteq X, 0 3792 if (C1 == MinVal+1) 3793 return DAG.getSetCC(dl, VT, N0, 3794 DAG.getConstant(MinVal, dl, N0.getValueType()), 3795 ISD::SETEQ); 3796 } 3797 } 3798 3799 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3800 if (C1 == MaxVal) 3801 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3802 3803 // TODO: Support this for vectors after legalize ops. 3804 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3805 // Canonicalize setgt X, Min --> setne X, Min 3806 if (C1 == MinVal) 3807 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3808 3809 // If we have setugt X, Max-1, turn it into seteq X, Max 3810 if (C1 == MaxVal-1) 3811 return DAG.getSetCC(dl, VT, N0, 3812 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3813 ISD::SETEQ); 3814 } 3815 } 3816 3817 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3818 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3819 if (C1.isNullValue()) 3820 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3821 VT, N0, N1, Cond, DCI, dl)) 3822 return CC; 3823 } 3824 3825 // If we have "setcc X, C0", check to see if we can shrink the immediate 3826 // by changing cc. 3827 // TODO: Support this for vectors after legalize ops. 3828 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3829 // SETUGT X, SINTMAX -> SETLT X, 0 3830 if (Cond == ISD::SETUGT && 3831 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3832 return DAG.getSetCC(dl, VT, N0, 3833 DAG.getConstant(0, dl, N1.getValueType()), 3834 ISD::SETLT); 3835 3836 // SETULT X, SINTMIN -> SETGT X, -1 3837 if (Cond == ISD::SETULT && 3838 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3839 SDValue ConstMinusOne = 3840 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3841 N1.getValueType()); 3842 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3843 } 3844 } 3845 } 3846 3847 // Back to non-vector simplifications. 3848 // TODO: Can we do these for vector splats? 3849 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3851 const APInt &C1 = N1C->getAPIntValue(); 3852 EVT ShValTy = N0.getValueType(); 3853 3854 // Fold bit comparisons when we can. 3855 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3856 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3857 N0.getOpcode() == ISD::AND) { 3858 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3859 EVT ShiftTy = 3860 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3861 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3862 // Perform the xform if the AND RHS is a single bit. 3863 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3864 if (AndRHS->getAPIntValue().isPowerOf2() && 3865 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3866 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3867 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3868 DAG.getConstant(ShCt, dl, ShiftTy))); 3869 } 3870 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3871 // (X & 8) == 8 --> (X & 8) >> 3 3872 // Perform the xform if C1 is a single bit. 3873 unsigned ShCt = C1.logBase2(); 3874 if (C1.isPowerOf2() && 3875 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3876 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3877 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3878 DAG.getConstant(ShCt, dl, ShiftTy))); 3879 } 3880 } 3881 } 3882 } 3883 3884 if (C1.getMinSignedBits() <= 64 && 3885 !isLegalICmpImmediate(C1.getSExtValue())) { 3886 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3887 // (X & -256) == 256 -> (X >> 8) == 1 3888 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3889 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3890 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3891 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3892 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3893 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3894 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3895 SDValue Shift = 3896 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3897 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3898 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3899 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3900 } 3901 } 3902 } 3903 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3904 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3905 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3906 // X < 0x100000000 -> (X >> 32) < 1 3907 // X >= 0x100000000 -> (X >> 32) >= 1 3908 // X <= 0x0ffffffff -> (X >> 32) < 1 3909 // X > 0x0ffffffff -> (X >> 32) >= 1 3910 unsigned ShiftBits; 3911 APInt NewC = C1; 3912 ISD::CondCode NewCond = Cond; 3913 if (AdjOne) { 3914 ShiftBits = C1.countTrailingOnes(); 3915 NewC = NewC + 1; 3916 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3917 } else { 3918 ShiftBits = C1.countTrailingZeros(); 3919 } 3920 NewC.lshrInPlace(ShiftBits); 3921 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3922 isLegalICmpImmediate(NewC.getSExtValue()) && 3923 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3924 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3925 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3926 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3927 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3928 } 3929 } 3930 } 3931 } 3932 3933 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3934 auto *CFP = cast<ConstantFPSDNode>(N1); 3935 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3936 3937 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3938 // constant if knowing that the operand is non-nan is enough. We prefer to 3939 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3940 // materialize 0.0. 3941 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3942 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3943 3944 // setcc (fneg x), C -> setcc swap(pred) x, -C 3945 if (N0.getOpcode() == ISD::FNEG) { 3946 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3947 if (DCI.isBeforeLegalizeOps() || 3948 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3949 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3950 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3951 } 3952 } 3953 3954 // If the condition is not legal, see if we can find an equivalent one 3955 // which is legal. 3956 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3957 // If the comparison was an awkward floating-point == or != and one of 3958 // the comparison operands is infinity or negative infinity, convert the 3959 // condition to a less-awkward <= or >=. 3960 if (CFP->getValueAPF().isInfinity()) { 3961 bool IsNegInf = CFP->getValueAPF().isNegative(); 3962 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3963 switch (Cond) { 3964 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3965 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3966 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3967 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3968 default: break; 3969 } 3970 if (NewCond != ISD::SETCC_INVALID && 3971 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3972 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3973 } 3974 } 3975 } 3976 3977 if (N0 == N1) { 3978 // The sext(setcc()) => setcc() optimization relies on the appropriate 3979 // constant being emitted. 3980 assert(!N0.getValueType().isInteger() && 3981 "Integer types should be handled by FoldSetCC"); 3982 3983 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3984 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3985 if (UOF == 2) // FP operators that are undefined on NaNs. 3986 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3987 if (UOF == unsigned(EqTrue)) 3988 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3989 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3990 // if it is not already. 3991 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3992 if (NewCond != Cond && 3993 (DCI.isBeforeLegalizeOps() || 3994 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3995 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3996 } 3997 3998 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3999 N0.getValueType().isInteger()) { 4000 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4001 N0.getOpcode() == ISD::XOR) { 4002 // Simplify (X+Y) == (X+Z) --> Y == Z 4003 if (N0.getOpcode() == N1.getOpcode()) { 4004 if (N0.getOperand(0) == N1.getOperand(0)) 4005 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4006 if (N0.getOperand(1) == N1.getOperand(1)) 4007 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4008 if (isCommutativeBinOp(N0.getOpcode())) { 4009 // If X op Y == Y op X, try other combinations. 4010 if (N0.getOperand(0) == N1.getOperand(1)) 4011 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4012 Cond); 4013 if (N0.getOperand(1) == N1.getOperand(0)) 4014 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4015 Cond); 4016 } 4017 } 4018 4019 // If RHS is a legal immediate value for a compare instruction, we need 4020 // to be careful about increasing register pressure needlessly. 4021 bool LegalRHSImm = false; 4022 4023 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4024 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4025 // Turn (X+C1) == C2 --> X == C2-C1 4026 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4027 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4028 DAG.getConstant(RHSC->getAPIntValue()- 4029 LHSR->getAPIntValue(), 4030 dl, N0.getValueType()), Cond); 4031 } 4032 4033 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4034 if (N0.getOpcode() == ISD::XOR) 4035 // If we know that all of the inverted bits are zero, don't bother 4036 // performing the inversion. 4037 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4038 return 4039 DAG.getSetCC(dl, VT, N0.getOperand(0), 4040 DAG.getConstant(LHSR->getAPIntValue() ^ 4041 RHSC->getAPIntValue(), 4042 dl, N0.getValueType()), 4043 Cond); 4044 } 4045 4046 // Turn (C1-X) == C2 --> X == C1-C2 4047 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4048 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4049 return 4050 DAG.getSetCC(dl, VT, N0.getOperand(1), 4051 DAG.getConstant(SUBC->getAPIntValue() - 4052 RHSC->getAPIntValue(), 4053 dl, N0.getValueType()), 4054 Cond); 4055 } 4056 } 4057 4058 // Could RHSC fold directly into a compare? 4059 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4060 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4061 } 4062 4063 // (X+Y) == X --> Y == 0 and similar folds. 4064 // Don't do this if X is an immediate that can fold into a cmp 4065 // instruction and X+Y has other uses. It could be an induction variable 4066 // chain, and the transform would increase register pressure. 4067 if (!LegalRHSImm || N0.hasOneUse()) 4068 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4069 return V; 4070 } 4071 4072 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4073 N1.getOpcode() == ISD::XOR) 4074 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4075 return V; 4076 4077 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4078 return V; 4079 } 4080 4081 // Fold remainder of division by a constant. 4082 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4083 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4084 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4085 4086 // When division is cheap or optimizing for minimum size, 4087 // fall through to DIVREM creation by skipping this fold. 4088 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4089 if (N0.getOpcode() == ISD::UREM) { 4090 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4091 return Folded; 4092 } else if (N0.getOpcode() == ISD::SREM) { 4093 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4094 return Folded; 4095 } 4096 } 4097 } 4098 4099 // Fold away ALL boolean setcc's. 4100 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4101 SDValue Temp; 4102 switch (Cond) { 4103 default: llvm_unreachable("Unknown integer setcc!"); 4104 case ISD::SETEQ: // X == Y -> ~(X^Y) 4105 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4106 N0 = DAG.getNOT(dl, Temp, OpVT); 4107 if (!DCI.isCalledByLegalizer()) 4108 DCI.AddToWorklist(Temp.getNode()); 4109 break; 4110 case ISD::SETNE: // X != Y --> (X^Y) 4111 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4112 break; 4113 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4114 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4115 Temp = DAG.getNOT(dl, N0, OpVT); 4116 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4117 if (!DCI.isCalledByLegalizer()) 4118 DCI.AddToWorklist(Temp.getNode()); 4119 break; 4120 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4121 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4122 Temp = DAG.getNOT(dl, N1, OpVT); 4123 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4124 if (!DCI.isCalledByLegalizer()) 4125 DCI.AddToWorklist(Temp.getNode()); 4126 break; 4127 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4128 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4129 Temp = DAG.getNOT(dl, N0, OpVT); 4130 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4131 if (!DCI.isCalledByLegalizer()) 4132 DCI.AddToWorklist(Temp.getNode()); 4133 break; 4134 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4135 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4136 Temp = DAG.getNOT(dl, N1, OpVT); 4137 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4138 break; 4139 } 4140 if (VT.getScalarType() != MVT::i1) { 4141 if (!DCI.isCalledByLegalizer()) 4142 DCI.AddToWorklist(N0.getNode()); 4143 // FIXME: If running after legalize, we probably can't do this. 4144 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4145 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4146 } 4147 return N0; 4148 } 4149 4150 // Could not fold it. 4151 return SDValue(); 4152 } 4153 4154 /// Returns true (and the GlobalValue and the offset) if the node is a 4155 /// GlobalAddress + offset. 4156 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4157 int64_t &Offset) const { 4158 4159 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4160 4161 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4162 GA = GASD->getGlobal(); 4163 Offset += GASD->getOffset(); 4164 return true; 4165 } 4166 4167 if (N->getOpcode() == ISD::ADD) { 4168 SDValue N1 = N->getOperand(0); 4169 SDValue N2 = N->getOperand(1); 4170 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4171 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4172 Offset += V->getSExtValue(); 4173 return true; 4174 } 4175 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4176 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4177 Offset += V->getSExtValue(); 4178 return true; 4179 } 4180 } 4181 } 4182 4183 return false; 4184 } 4185 4186 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4187 DAGCombinerInfo &DCI) const { 4188 // Default implementation: no optimization. 4189 return SDValue(); 4190 } 4191 4192 //===----------------------------------------------------------------------===// 4193 // Inline Assembler Implementation Methods 4194 //===----------------------------------------------------------------------===// 4195 4196 TargetLowering::ConstraintType 4197 TargetLowering::getConstraintType(StringRef Constraint) const { 4198 unsigned S = Constraint.size(); 4199 4200 if (S == 1) { 4201 switch (Constraint[0]) { 4202 default: break; 4203 case 'r': 4204 return C_RegisterClass; 4205 case 'm': // memory 4206 case 'o': // offsetable 4207 case 'V': // not offsetable 4208 return C_Memory; 4209 case 'n': // Simple Integer 4210 case 'E': // Floating Point Constant 4211 case 'F': // Floating Point Constant 4212 return C_Immediate; 4213 case 'i': // Simple Integer or Relocatable Constant 4214 case 's': // Relocatable Constant 4215 case 'p': // Address. 4216 case 'X': // Allow ANY value. 4217 case 'I': // Target registers. 4218 case 'J': 4219 case 'K': 4220 case 'L': 4221 case 'M': 4222 case 'N': 4223 case 'O': 4224 case 'P': 4225 case '<': 4226 case '>': 4227 return C_Other; 4228 } 4229 } 4230 4231 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4232 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4233 return C_Memory; 4234 return C_Register; 4235 } 4236 return C_Unknown; 4237 } 4238 4239 /// Try to replace an X constraint, which matches anything, with another that 4240 /// has more specific requirements based on the type of the corresponding 4241 /// operand. 4242 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4243 if (ConstraintVT.isInteger()) 4244 return "r"; 4245 if (ConstraintVT.isFloatingPoint()) 4246 return "f"; // works for many targets 4247 return nullptr; 4248 } 4249 4250 SDValue TargetLowering::LowerAsmOutputForConstraint( 4251 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4252 SelectionDAG &DAG) const { 4253 return SDValue(); 4254 } 4255 4256 /// Lower the specified operand into the Ops vector. 4257 /// If it is invalid, don't add anything to Ops. 4258 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4259 std::string &Constraint, 4260 std::vector<SDValue> &Ops, 4261 SelectionDAG &DAG) const { 4262 4263 if (Constraint.length() > 1) return; 4264 4265 char ConstraintLetter = Constraint[0]; 4266 switch (ConstraintLetter) { 4267 default: break; 4268 case 'X': // Allows any operand; labels (basic block) use this. 4269 if (Op.getOpcode() == ISD::BasicBlock || 4270 Op.getOpcode() == ISD::TargetBlockAddress) { 4271 Ops.push_back(Op); 4272 return; 4273 } 4274 LLVM_FALLTHROUGH; 4275 case 'i': // Simple Integer or Relocatable Constant 4276 case 'n': // Simple Integer 4277 case 's': { // Relocatable Constant 4278 4279 GlobalAddressSDNode *GA; 4280 ConstantSDNode *C; 4281 BlockAddressSDNode *BA; 4282 uint64_t Offset = 0; 4283 4284 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4285 // etc., since getelementpointer is variadic. We can't use 4286 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4287 // while in this case the GA may be furthest from the root node which is 4288 // likely an ISD::ADD. 4289 while (1) { 4290 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4291 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4292 GA->getValueType(0), 4293 Offset + GA->getOffset())); 4294 return; 4295 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4296 ConstraintLetter != 's') { 4297 // gcc prints these as sign extended. Sign extend value to 64 bits 4298 // now; without this it would get ZExt'd later in 4299 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4300 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4301 BooleanContent BCont = getBooleanContents(MVT::i64); 4302 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4303 : ISD::SIGN_EXTEND; 4304 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4305 : C->getSExtValue(); 4306 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4307 SDLoc(C), MVT::i64)); 4308 return; 4309 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4310 ConstraintLetter != 'n') { 4311 Ops.push_back(DAG.getTargetBlockAddress( 4312 BA->getBlockAddress(), BA->getValueType(0), 4313 Offset + BA->getOffset(), BA->getTargetFlags())); 4314 return; 4315 } else { 4316 const unsigned OpCode = Op.getOpcode(); 4317 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4318 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4319 Op = Op.getOperand(1); 4320 // Subtraction is not commutative. 4321 else if (OpCode == ISD::ADD && 4322 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4323 Op = Op.getOperand(0); 4324 else 4325 return; 4326 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4327 continue; 4328 } 4329 } 4330 return; 4331 } 4332 break; 4333 } 4334 } 4335 } 4336 4337 std::pair<unsigned, const TargetRegisterClass *> 4338 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4339 StringRef Constraint, 4340 MVT VT) const { 4341 if (Constraint.empty() || Constraint[0] != '{') 4342 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4343 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4344 4345 // Remove the braces from around the name. 4346 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4347 4348 std::pair<unsigned, const TargetRegisterClass *> R = 4349 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4350 4351 // Figure out which register class contains this reg. 4352 for (const TargetRegisterClass *RC : RI->regclasses()) { 4353 // If none of the value types for this register class are valid, we 4354 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4355 if (!isLegalRC(*RI, *RC)) 4356 continue; 4357 4358 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4359 I != E; ++I) { 4360 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4361 std::pair<unsigned, const TargetRegisterClass *> S = 4362 std::make_pair(*I, RC); 4363 4364 // If this register class has the requested value type, return it, 4365 // otherwise keep searching and return the first class found 4366 // if no other is found which explicitly has the requested type. 4367 if (RI->isTypeLegalForClass(*RC, VT)) 4368 return S; 4369 if (!R.second) 4370 R = S; 4371 } 4372 } 4373 } 4374 4375 return R; 4376 } 4377 4378 //===----------------------------------------------------------------------===// 4379 // Constraint Selection. 4380 4381 /// Return true of this is an input operand that is a matching constraint like 4382 /// "4". 4383 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4384 assert(!ConstraintCode.empty() && "No known constraint!"); 4385 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4386 } 4387 4388 /// If this is an input matching constraint, this method returns the output 4389 /// operand it matches. 4390 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4391 assert(!ConstraintCode.empty() && "No known constraint!"); 4392 return atoi(ConstraintCode.c_str()); 4393 } 4394 4395 /// Split up the constraint string from the inline assembly value into the 4396 /// specific constraints and their prefixes, and also tie in the associated 4397 /// operand values. 4398 /// If this returns an empty vector, and if the constraint string itself 4399 /// isn't empty, there was an error parsing. 4400 TargetLowering::AsmOperandInfoVector 4401 TargetLowering::ParseConstraints(const DataLayout &DL, 4402 const TargetRegisterInfo *TRI, 4403 const CallBase &Call) const { 4404 /// Information about all of the constraints. 4405 AsmOperandInfoVector ConstraintOperands; 4406 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4407 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4408 4409 // Do a prepass over the constraints, canonicalizing them, and building up the 4410 // ConstraintOperands list. 4411 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4412 unsigned ResNo = 0; // ResNo - The result number of the next output. 4413 4414 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4415 ConstraintOperands.emplace_back(std::move(CI)); 4416 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4417 4418 // Update multiple alternative constraint count. 4419 if (OpInfo.multipleAlternatives.size() > maCount) 4420 maCount = OpInfo.multipleAlternatives.size(); 4421 4422 OpInfo.ConstraintVT = MVT::Other; 4423 4424 // Compute the value type for each operand. 4425 switch (OpInfo.Type) { 4426 case InlineAsm::isOutput: 4427 // Indirect outputs just consume an argument. 4428 if (OpInfo.isIndirect) { 4429 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4430 break; 4431 } 4432 4433 // The return value of the call is this value. As such, there is no 4434 // corresponding argument. 4435 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4436 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4437 OpInfo.ConstraintVT = 4438 getSimpleValueType(DL, STy->getElementType(ResNo)); 4439 } else { 4440 assert(ResNo == 0 && "Asm only has one result!"); 4441 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4442 } 4443 ++ResNo; 4444 break; 4445 case InlineAsm::isInput: 4446 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4447 break; 4448 case InlineAsm::isClobber: 4449 // Nothing to do. 4450 break; 4451 } 4452 4453 if (OpInfo.CallOperandVal) { 4454 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4455 if (OpInfo.isIndirect) { 4456 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4457 if (!PtrTy) 4458 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4459 OpTy = PtrTy->getElementType(); 4460 } 4461 4462 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4463 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4464 if (STy->getNumElements() == 1) 4465 OpTy = STy->getElementType(0); 4466 4467 // If OpTy is not a single value, it may be a struct/union that we 4468 // can tile with integers. 4469 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4470 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4471 switch (BitSize) { 4472 default: break; 4473 case 1: 4474 case 8: 4475 case 16: 4476 case 32: 4477 case 64: 4478 case 128: 4479 OpInfo.ConstraintVT = 4480 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4481 break; 4482 } 4483 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4484 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4485 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4486 } else { 4487 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4488 } 4489 } 4490 } 4491 4492 // If we have multiple alternative constraints, select the best alternative. 4493 if (!ConstraintOperands.empty()) { 4494 if (maCount) { 4495 unsigned bestMAIndex = 0; 4496 int bestWeight = -1; 4497 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4498 int weight = -1; 4499 unsigned maIndex; 4500 // Compute the sums of the weights for each alternative, keeping track 4501 // of the best (highest weight) one so far. 4502 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4503 int weightSum = 0; 4504 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4505 cIndex != eIndex; ++cIndex) { 4506 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4507 if (OpInfo.Type == InlineAsm::isClobber) 4508 continue; 4509 4510 // If this is an output operand with a matching input operand, 4511 // look up the matching input. If their types mismatch, e.g. one 4512 // is an integer, the other is floating point, or their sizes are 4513 // different, flag it as an maCantMatch. 4514 if (OpInfo.hasMatchingInput()) { 4515 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4516 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4517 if ((OpInfo.ConstraintVT.isInteger() != 4518 Input.ConstraintVT.isInteger()) || 4519 (OpInfo.ConstraintVT.getSizeInBits() != 4520 Input.ConstraintVT.getSizeInBits())) { 4521 weightSum = -1; // Can't match. 4522 break; 4523 } 4524 } 4525 } 4526 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4527 if (weight == -1) { 4528 weightSum = -1; 4529 break; 4530 } 4531 weightSum += weight; 4532 } 4533 // Update best. 4534 if (weightSum > bestWeight) { 4535 bestWeight = weightSum; 4536 bestMAIndex = maIndex; 4537 } 4538 } 4539 4540 // Now select chosen alternative in each constraint. 4541 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4542 cIndex != eIndex; ++cIndex) { 4543 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4544 if (cInfo.Type == InlineAsm::isClobber) 4545 continue; 4546 cInfo.selectAlternative(bestMAIndex); 4547 } 4548 } 4549 } 4550 4551 // Check and hook up tied operands, choose constraint code to use. 4552 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4553 cIndex != eIndex; ++cIndex) { 4554 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4555 4556 // If this is an output operand with a matching input operand, look up the 4557 // matching input. If their types mismatch, e.g. one is an integer, the 4558 // other is floating point, or their sizes are different, flag it as an 4559 // error. 4560 if (OpInfo.hasMatchingInput()) { 4561 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4562 4563 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4564 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4565 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4566 OpInfo.ConstraintVT); 4567 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4568 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4569 Input.ConstraintVT); 4570 if ((OpInfo.ConstraintVT.isInteger() != 4571 Input.ConstraintVT.isInteger()) || 4572 (MatchRC.second != InputRC.second)) { 4573 report_fatal_error("Unsupported asm: input constraint" 4574 " with a matching output constraint of" 4575 " incompatible type!"); 4576 } 4577 } 4578 } 4579 } 4580 4581 return ConstraintOperands; 4582 } 4583 4584 /// Return an integer indicating how general CT is. 4585 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4586 switch (CT) { 4587 case TargetLowering::C_Immediate: 4588 case TargetLowering::C_Other: 4589 case TargetLowering::C_Unknown: 4590 return 0; 4591 case TargetLowering::C_Register: 4592 return 1; 4593 case TargetLowering::C_RegisterClass: 4594 return 2; 4595 case TargetLowering::C_Memory: 4596 return 3; 4597 } 4598 llvm_unreachable("Invalid constraint type"); 4599 } 4600 4601 /// Examine constraint type and operand type and determine a weight value. 4602 /// This object must already have been set up with the operand type 4603 /// and the current alternative constraint selected. 4604 TargetLowering::ConstraintWeight 4605 TargetLowering::getMultipleConstraintMatchWeight( 4606 AsmOperandInfo &info, int maIndex) const { 4607 InlineAsm::ConstraintCodeVector *rCodes; 4608 if (maIndex >= (int)info.multipleAlternatives.size()) 4609 rCodes = &info.Codes; 4610 else 4611 rCodes = &info.multipleAlternatives[maIndex].Codes; 4612 ConstraintWeight BestWeight = CW_Invalid; 4613 4614 // Loop over the options, keeping track of the most general one. 4615 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4616 ConstraintWeight weight = 4617 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4618 if (weight > BestWeight) 4619 BestWeight = weight; 4620 } 4621 4622 return BestWeight; 4623 } 4624 4625 /// Examine constraint type and operand type and determine a weight value. 4626 /// This object must already have been set up with the operand type 4627 /// and the current alternative constraint selected. 4628 TargetLowering::ConstraintWeight 4629 TargetLowering::getSingleConstraintMatchWeight( 4630 AsmOperandInfo &info, const char *constraint) const { 4631 ConstraintWeight weight = CW_Invalid; 4632 Value *CallOperandVal = info.CallOperandVal; 4633 // If we don't have a value, we can't do a match, 4634 // but allow it at the lowest weight. 4635 if (!CallOperandVal) 4636 return CW_Default; 4637 // Look at the constraint type. 4638 switch (*constraint) { 4639 case 'i': // immediate integer. 4640 case 'n': // immediate integer with a known value. 4641 if (isa<ConstantInt>(CallOperandVal)) 4642 weight = CW_Constant; 4643 break; 4644 case 's': // non-explicit intregal immediate. 4645 if (isa<GlobalValue>(CallOperandVal)) 4646 weight = CW_Constant; 4647 break; 4648 case 'E': // immediate float if host format. 4649 case 'F': // immediate float. 4650 if (isa<ConstantFP>(CallOperandVal)) 4651 weight = CW_Constant; 4652 break; 4653 case '<': // memory operand with autodecrement. 4654 case '>': // memory operand with autoincrement. 4655 case 'm': // memory operand. 4656 case 'o': // offsettable memory operand 4657 case 'V': // non-offsettable memory operand 4658 weight = CW_Memory; 4659 break; 4660 case 'r': // general register. 4661 case 'g': // general register, memory operand or immediate integer. 4662 // note: Clang converts "g" to "imr". 4663 if (CallOperandVal->getType()->isIntegerTy()) 4664 weight = CW_Register; 4665 break; 4666 case 'X': // any operand. 4667 default: 4668 weight = CW_Default; 4669 break; 4670 } 4671 return weight; 4672 } 4673 4674 /// If there are multiple different constraints that we could pick for this 4675 /// operand (e.g. "imr") try to pick the 'best' one. 4676 /// This is somewhat tricky: constraints fall into four classes: 4677 /// Other -> immediates and magic values 4678 /// Register -> one specific register 4679 /// RegisterClass -> a group of regs 4680 /// Memory -> memory 4681 /// Ideally, we would pick the most specific constraint possible: if we have 4682 /// something that fits into a register, we would pick it. The problem here 4683 /// is that if we have something that could either be in a register or in 4684 /// memory that use of the register could cause selection of *other* 4685 /// operands to fail: they might only succeed if we pick memory. Because of 4686 /// this the heuristic we use is: 4687 /// 4688 /// 1) If there is an 'other' constraint, and if the operand is valid for 4689 /// that constraint, use it. This makes us take advantage of 'i' 4690 /// constraints when available. 4691 /// 2) Otherwise, pick the most general constraint present. This prefers 4692 /// 'm' over 'r', for example. 4693 /// 4694 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4695 const TargetLowering &TLI, 4696 SDValue Op, SelectionDAG *DAG) { 4697 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4698 unsigned BestIdx = 0; 4699 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4700 int BestGenerality = -1; 4701 4702 // Loop over the options, keeping track of the most general one. 4703 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4704 TargetLowering::ConstraintType CType = 4705 TLI.getConstraintType(OpInfo.Codes[i]); 4706 4707 // Indirect 'other' or 'immediate' constraints are not allowed. 4708 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4709 CType == TargetLowering::C_Register || 4710 CType == TargetLowering::C_RegisterClass)) 4711 continue; 4712 4713 // If this is an 'other' or 'immediate' constraint, see if the operand is 4714 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4715 // the operand is an integer in the range [0..31] we want to use I (saving a 4716 // load of a register), otherwise we must use 'r'. 4717 if ((CType == TargetLowering::C_Other || 4718 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4719 assert(OpInfo.Codes[i].size() == 1 && 4720 "Unhandled multi-letter 'other' constraint"); 4721 std::vector<SDValue> ResultOps; 4722 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4723 ResultOps, *DAG); 4724 if (!ResultOps.empty()) { 4725 BestType = CType; 4726 BestIdx = i; 4727 break; 4728 } 4729 } 4730 4731 // Things with matching constraints can only be registers, per gcc 4732 // documentation. This mainly affects "g" constraints. 4733 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4734 continue; 4735 4736 // This constraint letter is more general than the previous one, use it. 4737 int Generality = getConstraintGenerality(CType); 4738 if (Generality > BestGenerality) { 4739 BestType = CType; 4740 BestIdx = i; 4741 BestGenerality = Generality; 4742 } 4743 } 4744 4745 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4746 OpInfo.ConstraintType = BestType; 4747 } 4748 4749 /// Determines the constraint code and constraint type to use for the specific 4750 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4751 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4752 SDValue Op, 4753 SelectionDAG *DAG) const { 4754 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4755 4756 // Single-letter constraints ('r') are very common. 4757 if (OpInfo.Codes.size() == 1) { 4758 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4759 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4760 } else { 4761 ChooseConstraint(OpInfo, *this, Op, DAG); 4762 } 4763 4764 // 'X' matches anything. 4765 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4766 // Labels and constants are handled elsewhere ('X' is the only thing 4767 // that matches labels). For Functions, the type here is the type of 4768 // the result, which is not what we want to look at; leave them alone. 4769 Value *v = OpInfo.CallOperandVal; 4770 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4771 OpInfo.CallOperandVal = v; 4772 return; 4773 } 4774 4775 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4776 return; 4777 4778 // Otherwise, try to resolve it to something we know about by looking at 4779 // the actual operand type. 4780 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4781 OpInfo.ConstraintCode = Repl; 4782 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4783 } 4784 } 4785 } 4786 4787 /// Given an exact SDIV by a constant, create a multiplication 4788 /// with the multiplicative inverse of the constant. 4789 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4790 const SDLoc &dl, SelectionDAG &DAG, 4791 SmallVectorImpl<SDNode *> &Created) { 4792 SDValue Op0 = N->getOperand(0); 4793 SDValue Op1 = N->getOperand(1); 4794 EVT VT = N->getValueType(0); 4795 EVT SVT = VT.getScalarType(); 4796 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4797 EVT ShSVT = ShVT.getScalarType(); 4798 4799 bool UseSRA = false; 4800 SmallVector<SDValue, 16> Shifts, Factors; 4801 4802 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4803 if (C->isNullValue()) 4804 return false; 4805 APInt Divisor = C->getAPIntValue(); 4806 unsigned Shift = Divisor.countTrailingZeros(); 4807 if (Shift) { 4808 Divisor.ashrInPlace(Shift); 4809 UseSRA = true; 4810 } 4811 // Calculate the multiplicative inverse, using Newton's method. 4812 APInt t; 4813 APInt Factor = Divisor; 4814 while ((t = Divisor * Factor) != 1) 4815 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4816 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4817 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4818 return true; 4819 }; 4820 4821 // Collect all magic values from the build vector. 4822 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4823 return SDValue(); 4824 4825 SDValue Shift, Factor; 4826 if (VT.isVector()) { 4827 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4828 Factor = DAG.getBuildVector(VT, dl, Factors); 4829 } else { 4830 Shift = Shifts[0]; 4831 Factor = Factors[0]; 4832 } 4833 4834 SDValue Res = Op0; 4835 4836 // Shift the value upfront if it is even, so the LSB is one. 4837 if (UseSRA) { 4838 // TODO: For UDIV use SRL instead of SRA. 4839 SDNodeFlags Flags; 4840 Flags.setExact(true); 4841 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4842 Created.push_back(Res.getNode()); 4843 } 4844 4845 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4846 } 4847 4848 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4849 SelectionDAG &DAG, 4850 SmallVectorImpl<SDNode *> &Created) const { 4851 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4853 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4854 return SDValue(N, 0); // Lower SDIV as SDIV 4855 return SDValue(); 4856 } 4857 4858 /// Given an ISD::SDIV node expressing a divide by constant, 4859 /// return a DAG expression to select that will generate the same value by 4860 /// multiplying by a magic number. 4861 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4862 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4863 bool IsAfterLegalization, 4864 SmallVectorImpl<SDNode *> &Created) const { 4865 SDLoc dl(N); 4866 EVT VT = N->getValueType(0); 4867 EVT SVT = VT.getScalarType(); 4868 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4869 EVT ShSVT = ShVT.getScalarType(); 4870 unsigned EltBits = VT.getScalarSizeInBits(); 4871 4872 // Check to see if we can do this. 4873 // FIXME: We should be more aggressive here. 4874 if (!isTypeLegal(VT)) 4875 return SDValue(); 4876 4877 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4878 if (N->getFlags().hasExact()) 4879 return BuildExactSDIV(*this, N, dl, DAG, Created); 4880 4881 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4882 4883 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4884 if (C->isNullValue()) 4885 return false; 4886 4887 const APInt &Divisor = C->getAPIntValue(); 4888 APInt::ms magics = Divisor.magic(); 4889 int NumeratorFactor = 0; 4890 int ShiftMask = -1; 4891 4892 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4893 // If d is +1/-1, we just multiply the numerator by +1/-1. 4894 NumeratorFactor = Divisor.getSExtValue(); 4895 magics.m = 0; 4896 magics.s = 0; 4897 ShiftMask = 0; 4898 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4899 // If d > 0 and m < 0, add the numerator. 4900 NumeratorFactor = 1; 4901 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4902 // If d < 0 and m > 0, subtract the numerator. 4903 NumeratorFactor = -1; 4904 } 4905 4906 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4907 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4908 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4909 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4910 return true; 4911 }; 4912 4913 SDValue N0 = N->getOperand(0); 4914 SDValue N1 = N->getOperand(1); 4915 4916 // Collect the shifts / magic values from each element. 4917 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4918 return SDValue(); 4919 4920 SDValue MagicFactor, Factor, Shift, ShiftMask; 4921 if (VT.isVector()) { 4922 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4923 Factor = DAG.getBuildVector(VT, dl, Factors); 4924 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4925 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4926 } else { 4927 MagicFactor = MagicFactors[0]; 4928 Factor = Factors[0]; 4929 Shift = Shifts[0]; 4930 ShiftMask = ShiftMasks[0]; 4931 } 4932 4933 // Multiply the numerator (operand 0) by the magic value. 4934 // FIXME: We should support doing a MUL in a wider type. 4935 SDValue Q; 4936 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4937 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4938 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4939 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4940 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4941 SDValue LoHi = 4942 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4943 Q = SDValue(LoHi.getNode(), 1); 4944 } else 4945 return SDValue(); // No mulhs or equivalent. 4946 Created.push_back(Q.getNode()); 4947 4948 // (Optionally) Add/subtract the numerator using Factor. 4949 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4950 Created.push_back(Factor.getNode()); 4951 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4952 Created.push_back(Q.getNode()); 4953 4954 // Shift right algebraic by shift value. 4955 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4956 Created.push_back(Q.getNode()); 4957 4958 // Extract the sign bit, mask it and add it to the quotient. 4959 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4960 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4961 Created.push_back(T.getNode()); 4962 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4963 Created.push_back(T.getNode()); 4964 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4965 } 4966 4967 /// Given an ISD::UDIV node expressing a divide by constant, 4968 /// return a DAG expression to select that will generate the same value by 4969 /// multiplying by a magic number. 4970 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4971 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4972 bool IsAfterLegalization, 4973 SmallVectorImpl<SDNode *> &Created) const { 4974 SDLoc dl(N); 4975 EVT VT = N->getValueType(0); 4976 EVT SVT = VT.getScalarType(); 4977 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4978 EVT ShSVT = ShVT.getScalarType(); 4979 unsigned EltBits = VT.getScalarSizeInBits(); 4980 4981 // Check to see if we can do this. 4982 // FIXME: We should be more aggressive here. 4983 if (!isTypeLegal(VT)) 4984 return SDValue(); 4985 4986 bool UseNPQ = false; 4987 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4988 4989 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4990 if (C->isNullValue()) 4991 return false; 4992 // FIXME: We should use a narrower constant when the upper 4993 // bits are known to be zero. 4994 APInt Divisor = C->getAPIntValue(); 4995 APInt::mu magics = Divisor.magicu(); 4996 unsigned PreShift = 0, PostShift = 0; 4997 4998 // If the divisor is even, we can avoid using the expensive fixup by 4999 // shifting the divided value upfront. 5000 if (magics.a != 0 && !Divisor[0]) { 5001 PreShift = Divisor.countTrailingZeros(); 5002 // Get magic number for the shifted divisor. 5003 magics = Divisor.lshr(PreShift).magicu(PreShift); 5004 assert(magics.a == 0 && "Should use cheap fixup now"); 5005 } 5006 5007 APInt Magic = magics.m; 5008 5009 unsigned SelNPQ; 5010 if (magics.a == 0 || Divisor.isOneValue()) { 5011 assert(magics.s < Divisor.getBitWidth() && 5012 "We shouldn't generate an undefined shift!"); 5013 PostShift = magics.s; 5014 SelNPQ = false; 5015 } else { 5016 PostShift = magics.s - 1; 5017 SelNPQ = true; 5018 } 5019 5020 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5021 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5022 NPQFactors.push_back( 5023 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5024 : APInt::getNullValue(EltBits), 5025 dl, SVT)); 5026 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5027 UseNPQ |= SelNPQ; 5028 return true; 5029 }; 5030 5031 SDValue N0 = N->getOperand(0); 5032 SDValue N1 = N->getOperand(1); 5033 5034 // Collect the shifts/magic values from each element. 5035 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5036 return SDValue(); 5037 5038 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5039 if (VT.isVector()) { 5040 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5041 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5042 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5043 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5044 } else { 5045 PreShift = PreShifts[0]; 5046 MagicFactor = MagicFactors[0]; 5047 PostShift = PostShifts[0]; 5048 } 5049 5050 SDValue Q = N0; 5051 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5052 Created.push_back(Q.getNode()); 5053 5054 // FIXME: We should support doing a MUL in a wider type. 5055 auto GetMULHU = [&](SDValue X, SDValue Y) { 5056 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5057 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5058 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5059 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5060 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5061 SDValue LoHi = 5062 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5063 return SDValue(LoHi.getNode(), 1); 5064 } 5065 return SDValue(); // No mulhu or equivalent 5066 }; 5067 5068 // Multiply the numerator (operand 0) by the magic value. 5069 Q = GetMULHU(Q, MagicFactor); 5070 if (!Q) 5071 return SDValue(); 5072 5073 Created.push_back(Q.getNode()); 5074 5075 if (UseNPQ) { 5076 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5077 Created.push_back(NPQ.getNode()); 5078 5079 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5080 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5081 if (VT.isVector()) 5082 NPQ = GetMULHU(NPQ, NPQFactor); 5083 else 5084 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5085 5086 Created.push_back(NPQ.getNode()); 5087 5088 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5089 Created.push_back(Q.getNode()); 5090 } 5091 5092 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5093 Created.push_back(Q.getNode()); 5094 5095 SDValue One = DAG.getConstant(1, dl, VT); 5096 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5097 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5098 } 5099 5100 /// If all values in Values that *don't* match the predicate are same 'splat' 5101 /// value, then replace all values with that splat value. 5102 /// Else, if AlternativeReplacement was provided, then replace all values that 5103 /// do match predicate with AlternativeReplacement value. 5104 static void 5105 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5106 std::function<bool(SDValue)> Predicate, 5107 SDValue AlternativeReplacement = SDValue()) { 5108 SDValue Replacement; 5109 // Is there a value for which the Predicate does *NOT* match? What is it? 5110 auto SplatValue = llvm::find_if_not(Values, Predicate); 5111 if (SplatValue != Values.end()) { 5112 // Does Values consist only of SplatValue's and values matching Predicate? 5113 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5114 return Value == *SplatValue || Predicate(Value); 5115 })) // Then we shall replace values matching predicate with SplatValue. 5116 Replacement = *SplatValue; 5117 } 5118 if (!Replacement) { 5119 // Oops, we did not find the "baseline" splat value. 5120 if (!AlternativeReplacement) 5121 return; // Nothing to do. 5122 // Let's replace with provided value then. 5123 Replacement = AlternativeReplacement; 5124 } 5125 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5126 } 5127 5128 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5129 /// where the divisor is constant and the comparison target is zero, 5130 /// return a DAG expression that will generate the same comparison result 5131 /// using only multiplications, additions and shifts/rotations. 5132 /// Ref: "Hacker's Delight" 10-17. 5133 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5134 SDValue CompTargetNode, 5135 ISD::CondCode Cond, 5136 DAGCombinerInfo &DCI, 5137 const SDLoc &DL) const { 5138 SmallVector<SDNode *, 5> Built; 5139 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5140 DCI, DL, Built)) { 5141 for (SDNode *N : Built) 5142 DCI.AddToWorklist(N); 5143 return Folded; 5144 } 5145 5146 return SDValue(); 5147 } 5148 5149 SDValue 5150 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5151 SDValue CompTargetNode, ISD::CondCode Cond, 5152 DAGCombinerInfo &DCI, const SDLoc &DL, 5153 SmallVectorImpl<SDNode *> &Created) const { 5154 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5155 // - D must be constant, with D = D0 * 2^K where D0 is odd 5156 // - P is the multiplicative inverse of D0 modulo 2^W 5157 // - Q = floor(((2^W) - 1) / D) 5158 // where W is the width of the common type of N and D. 5159 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5160 "Only applicable for (in)equality comparisons."); 5161 5162 SelectionDAG &DAG = DCI.DAG; 5163 5164 EVT VT = REMNode.getValueType(); 5165 EVT SVT = VT.getScalarType(); 5166 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5167 EVT ShSVT = ShVT.getScalarType(); 5168 5169 // If MUL is unavailable, we cannot proceed in any case. 5170 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5171 return SDValue(); 5172 5173 bool ComparingWithAllZeros = true; 5174 bool AllComparisonsWithNonZerosAreTautological = true; 5175 bool HadTautologicalLanes = false; 5176 bool AllLanesAreTautological = true; 5177 bool HadEvenDivisor = false; 5178 bool AllDivisorsArePowerOfTwo = true; 5179 bool HadTautologicalInvertedLanes = false; 5180 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5181 5182 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5183 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5184 if (CDiv->isNullValue()) 5185 return false; 5186 5187 const APInt &D = CDiv->getAPIntValue(); 5188 const APInt &Cmp = CCmp->getAPIntValue(); 5189 5190 ComparingWithAllZeros &= Cmp.isNullValue(); 5191 5192 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5193 // if C2 is not less than C1, the comparison is always false. 5194 // But we will only be able to produce the comparison that will give the 5195 // opposive tautological answer. So this lane would need to be fixed up. 5196 bool TautologicalInvertedLane = D.ule(Cmp); 5197 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5198 5199 // If all lanes are tautological (either all divisors are ones, or divisor 5200 // is not greater than the constant we are comparing with), 5201 // we will prefer to avoid the fold. 5202 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5203 HadTautologicalLanes |= TautologicalLane; 5204 AllLanesAreTautological &= TautologicalLane; 5205 5206 // If we are comparing with non-zero, we need'll need to subtract said 5207 // comparison value from the LHS. But there is no point in doing that if 5208 // every lane where we are comparing with non-zero is tautological.. 5209 if (!Cmp.isNullValue()) 5210 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5211 5212 // Decompose D into D0 * 2^K 5213 unsigned K = D.countTrailingZeros(); 5214 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5215 APInt D0 = D.lshr(K); 5216 5217 // D is even if it has trailing zeros. 5218 HadEvenDivisor |= (K != 0); 5219 // D is a power-of-two if D0 is one. 5220 // If all divisors are power-of-two, we will prefer to avoid the fold. 5221 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5222 5223 // P = inv(D0, 2^W) 5224 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5225 unsigned W = D.getBitWidth(); 5226 APInt P = D0.zext(W + 1) 5227 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5228 .trunc(W); 5229 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5230 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5231 5232 // Q = floor((2^W - 1) u/ D) 5233 // R = ((2^W - 1) u% D) 5234 APInt Q, R; 5235 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5236 5237 // If we are comparing with zero, then that comparison constant is okay, 5238 // else it may need to be one less than that. 5239 if (Cmp.ugt(R)) 5240 Q -= 1; 5241 5242 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5243 "We are expecting that K is always less than all-ones for ShSVT"); 5244 5245 // If the lane is tautological the result can be constant-folded. 5246 if (TautologicalLane) { 5247 // Set P and K amount to a bogus values so we can try to splat them. 5248 P = 0; 5249 K = -1; 5250 // And ensure that comparison constant is tautological, 5251 // it will always compare true/false. 5252 Q = -1; 5253 } 5254 5255 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5256 KAmts.push_back( 5257 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5258 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5259 return true; 5260 }; 5261 5262 SDValue N = REMNode.getOperand(0); 5263 SDValue D = REMNode.getOperand(1); 5264 5265 // Collect the values from each element. 5266 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5267 return SDValue(); 5268 5269 // If all lanes are tautological, the result can be constant-folded. 5270 if (AllLanesAreTautological) 5271 return SDValue(); 5272 5273 // If this is a urem by a powers-of-two, avoid the fold since it can be 5274 // best implemented as a bit test. 5275 if (AllDivisorsArePowerOfTwo) 5276 return SDValue(); 5277 5278 SDValue PVal, KVal, QVal; 5279 if (VT.isVector()) { 5280 if (HadTautologicalLanes) { 5281 // Try to turn PAmts into a splat, since we don't care about the values 5282 // that are currently '0'. If we can't, just keep '0'`s. 5283 turnVectorIntoSplatVector(PAmts, isNullConstant); 5284 // Try to turn KAmts into a splat, since we don't care about the values 5285 // that are currently '-1'. If we can't, change them to '0'`s. 5286 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5287 DAG.getConstant(0, DL, ShSVT)); 5288 } 5289 5290 PVal = DAG.getBuildVector(VT, DL, PAmts); 5291 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5292 QVal = DAG.getBuildVector(VT, DL, QAmts); 5293 } else { 5294 PVal = PAmts[0]; 5295 KVal = KAmts[0]; 5296 QVal = QAmts[0]; 5297 } 5298 5299 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5300 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5301 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5302 assert(CompTargetNode.getValueType() == N.getValueType() && 5303 "Expecting that the types on LHS and RHS of comparisons match."); 5304 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5305 } 5306 5307 // (mul N, P) 5308 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5309 Created.push_back(Op0.getNode()); 5310 5311 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5312 // divisors as a performance improvement, since rotating by 0 is a no-op. 5313 if (HadEvenDivisor) { 5314 // We need ROTR to do this. 5315 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5316 return SDValue(); 5317 SDNodeFlags Flags; 5318 Flags.setExact(true); 5319 // UREM: (rotr (mul N, P), K) 5320 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5321 Created.push_back(Op0.getNode()); 5322 } 5323 5324 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5325 SDValue NewCC = 5326 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5327 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5328 if (!HadTautologicalInvertedLanes) 5329 return NewCC; 5330 5331 // If any lanes previously compared always-false, the NewCC will give 5332 // always-true result for them, so we need to fixup those lanes. 5333 // Or the other way around for inequality predicate. 5334 assert(VT.isVector() && "Can/should only get here for vectors."); 5335 Created.push_back(NewCC.getNode()); 5336 5337 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5338 // if C2 is not less than C1, the comparison is always false. 5339 // But we have produced the comparison that will give the 5340 // opposive tautological answer. So these lanes would need to be fixed up. 5341 SDValue TautologicalInvertedChannels = 5342 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5343 Created.push_back(TautologicalInvertedChannels.getNode()); 5344 5345 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5346 // If we have a vector select, let's replace the comparison results in the 5347 // affected lanes with the correct tautological result. 5348 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5349 DL, SETCCVT, SETCCVT); 5350 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5351 Replacement, NewCC); 5352 } 5353 5354 // Else, we can just invert the comparison result in the appropriate lanes. 5355 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5356 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5357 TautologicalInvertedChannels); 5358 5359 return SDValue(); // Don't know how to lower. 5360 } 5361 5362 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5363 /// where the divisor is constant and the comparison target is zero, 5364 /// return a DAG expression that will generate the same comparison result 5365 /// using only multiplications, additions and shifts/rotations. 5366 /// Ref: "Hacker's Delight" 10-17. 5367 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5368 SDValue CompTargetNode, 5369 ISD::CondCode Cond, 5370 DAGCombinerInfo &DCI, 5371 const SDLoc &DL) const { 5372 SmallVector<SDNode *, 7> Built; 5373 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5374 DCI, DL, Built)) { 5375 assert(Built.size() <= 7 && "Max size prediction failed."); 5376 for (SDNode *N : Built) 5377 DCI.AddToWorklist(N); 5378 return Folded; 5379 } 5380 5381 return SDValue(); 5382 } 5383 5384 SDValue 5385 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5386 SDValue CompTargetNode, ISD::CondCode Cond, 5387 DAGCombinerInfo &DCI, const SDLoc &DL, 5388 SmallVectorImpl<SDNode *> &Created) const { 5389 // Fold: 5390 // (seteq/ne (srem N, D), 0) 5391 // To: 5392 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5393 // 5394 // - D must be constant, with D = D0 * 2^K where D0 is odd 5395 // - P is the multiplicative inverse of D0 modulo 2^W 5396 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5397 // - Q = floor((2 * A) / (2^K)) 5398 // where W is the width of the common type of N and D. 5399 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5400 "Only applicable for (in)equality comparisons."); 5401 5402 SelectionDAG &DAG = DCI.DAG; 5403 5404 EVT VT = REMNode.getValueType(); 5405 EVT SVT = VT.getScalarType(); 5406 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5407 EVT ShSVT = ShVT.getScalarType(); 5408 5409 // If MUL is unavailable, we cannot proceed in any case. 5410 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5411 return SDValue(); 5412 5413 // TODO: Could support comparing with non-zero too. 5414 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5415 if (!CompTarget || !CompTarget->isNullValue()) 5416 return SDValue(); 5417 5418 bool HadIntMinDivisor = false; 5419 bool HadOneDivisor = false; 5420 bool AllDivisorsAreOnes = true; 5421 bool HadEvenDivisor = false; 5422 bool NeedToApplyOffset = false; 5423 bool AllDivisorsArePowerOfTwo = true; 5424 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5425 5426 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5427 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5428 if (C->isNullValue()) 5429 return false; 5430 5431 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5432 5433 // WARNING: this fold is only valid for positive divisors! 5434 APInt D = C->getAPIntValue(); 5435 if (D.isNegative()) 5436 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5437 5438 HadIntMinDivisor |= D.isMinSignedValue(); 5439 5440 // If all divisors are ones, we will prefer to avoid the fold. 5441 HadOneDivisor |= D.isOneValue(); 5442 AllDivisorsAreOnes &= D.isOneValue(); 5443 5444 // Decompose D into D0 * 2^K 5445 unsigned K = D.countTrailingZeros(); 5446 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5447 APInt D0 = D.lshr(K); 5448 5449 if (!D.isMinSignedValue()) { 5450 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5451 // we don't care about this lane in this fold, we'll special-handle it. 5452 HadEvenDivisor |= (K != 0); 5453 } 5454 5455 // D is a power-of-two if D0 is one. This includes INT_MIN. 5456 // If all divisors are power-of-two, we will prefer to avoid the fold. 5457 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5458 5459 // P = inv(D0, 2^W) 5460 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5461 unsigned W = D.getBitWidth(); 5462 APInt P = D0.zext(W + 1) 5463 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5464 .trunc(W); 5465 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5466 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5467 5468 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5469 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5470 A.clearLowBits(K); 5471 5472 if (!D.isMinSignedValue()) { 5473 // If divisor INT_MIN, then we don't care about this lane in this fold, 5474 // we'll special-handle it. 5475 NeedToApplyOffset |= A != 0; 5476 } 5477 5478 // Q = floor((2 * A) / (2^K)) 5479 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5480 5481 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5482 "We are expecting that A is always less than all-ones for SVT"); 5483 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5484 "We are expecting that K is always less than all-ones for ShSVT"); 5485 5486 // If the divisor is 1 the result can be constant-folded. Likewise, we 5487 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5488 if (D.isOneValue()) { 5489 // Set P, A and K to a bogus values so we can try to splat them. 5490 P = 0; 5491 A = -1; 5492 K = -1; 5493 5494 // x ?% 1 == 0 <--> true <--> x u<= -1 5495 Q = -1; 5496 } 5497 5498 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5499 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5500 KAmts.push_back( 5501 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5502 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5503 return true; 5504 }; 5505 5506 SDValue N = REMNode.getOperand(0); 5507 SDValue D = REMNode.getOperand(1); 5508 5509 // Collect the values from each element. 5510 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5511 return SDValue(); 5512 5513 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5514 if (AllDivisorsAreOnes) 5515 return SDValue(); 5516 5517 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5518 // since it can be best implemented as a bit test. 5519 if (AllDivisorsArePowerOfTwo) 5520 return SDValue(); 5521 5522 SDValue PVal, AVal, KVal, QVal; 5523 if (VT.isVector()) { 5524 if (HadOneDivisor) { 5525 // Try to turn PAmts into a splat, since we don't care about the values 5526 // that are currently '0'. If we can't, just keep '0'`s. 5527 turnVectorIntoSplatVector(PAmts, isNullConstant); 5528 // Try to turn AAmts into a splat, since we don't care about the 5529 // values that are currently '-1'. If we can't, change them to '0'`s. 5530 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5531 DAG.getConstant(0, DL, SVT)); 5532 // Try to turn KAmts into a splat, since we don't care about the values 5533 // that are currently '-1'. If we can't, change them to '0'`s. 5534 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5535 DAG.getConstant(0, DL, ShSVT)); 5536 } 5537 5538 PVal = DAG.getBuildVector(VT, DL, PAmts); 5539 AVal = DAG.getBuildVector(VT, DL, AAmts); 5540 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5541 QVal = DAG.getBuildVector(VT, DL, QAmts); 5542 } else { 5543 PVal = PAmts[0]; 5544 AVal = AAmts[0]; 5545 KVal = KAmts[0]; 5546 QVal = QAmts[0]; 5547 } 5548 5549 // (mul N, P) 5550 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5551 Created.push_back(Op0.getNode()); 5552 5553 if (NeedToApplyOffset) { 5554 // We need ADD to do this. 5555 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5556 return SDValue(); 5557 5558 // (add (mul N, P), A) 5559 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5560 Created.push_back(Op0.getNode()); 5561 } 5562 5563 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5564 // divisors as a performance improvement, since rotating by 0 is a no-op. 5565 if (HadEvenDivisor) { 5566 // We need ROTR to do this. 5567 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5568 return SDValue(); 5569 SDNodeFlags Flags; 5570 Flags.setExact(true); 5571 // SREM: (rotr (add (mul N, P), A), K) 5572 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5573 Created.push_back(Op0.getNode()); 5574 } 5575 5576 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5577 SDValue Fold = 5578 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5579 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5580 5581 // If we didn't have lanes with INT_MIN divisor, then we're done. 5582 if (!HadIntMinDivisor) 5583 return Fold; 5584 5585 // That fold is only valid for positive divisors. Which effectively means, 5586 // it is invalid for INT_MIN divisors. So if we have such a lane, 5587 // we must fix-up results for said lanes. 5588 assert(VT.isVector() && "Can/should only get here for vectors."); 5589 5590 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5591 !isOperationLegalOrCustom(ISD::AND, VT) || 5592 !isOperationLegalOrCustom(Cond, VT) || 5593 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5594 return SDValue(); 5595 5596 Created.push_back(Fold.getNode()); 5597 5598 SDValue IntMin = DAG.getConstant( 5599 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5600 SDValue IntMax = DAG.getConstant( 5601 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5602 SDValue Zero = 5603 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5604 5605 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5606 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5607 Created.push_back(DivisorIsIntMin.getNode()); 5608 5609 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5610 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5611 Created.push_back(Masked.getNode()); 5612 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5613 Created.push_back(MaskedIsZero.getNode()); 5614 5615 // To produce final result we need to blend 2 vectors: 'SetCC' and 5616 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5617 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5618 // constant-folded, select can get lowered to a shuffle with constant mask. 5619 SDValue Blended = 5620 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5621 5622 return Blended; 5623 } 5624 5625 bool TargetLowering:: 5626 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5627 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5628 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5629 "be a constant integer"); 5630 return true; 5631 } 5632 5633 return false; 5634 } 5635 5636 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5637 bool LegalOps, bool OptForSize, 5638 NegatibleCost &Cost, 5639 unsigned Depth) const { 5640 // fneg is removable even if it has multiple uses. 5641 if (Op.getOpcode() == ISD::FNEG) { 5642 Cost = NegatibleCost::Cheaper; 5643 return Op.getOperand(0); 5644 } 5645 5646 // Don't recurse exponentially. 5647 if (Depth > SelectionDAG::MaxRecursionDepth) 5648 return SDValue(); 5649 5650 // Pre-increment recursion depth for use in recursive calls. 5651 ++Depth; 5652 const SDNodeFlags Flags = Op->getFlags(); 5653 const TargetOptions &Options = DAG.getTarget().Options; 5654 EVT VT = Op.getValueType(); 5655 unsigned Opcode = Op.getOpcode(); 5656 5657 // Don't allow anything with multiple uses unless we know it is free. 5658 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5659 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5660 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5661 if (!IsFreeExtend) 5662 return SDValue(); 5663 } 5664 5665 SDLoc DL(Op); 5666 5667 switch (Opcode) { 5668 case ISD::ConstantFP: { 5669 // Don't invert constant FP values after legalization unless the target says 5670 // the negated constant is legal. 5671 bool IsOpLegal = 5672 isOperationLegal(ISD::ConstantFP, VT) || 5673 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5674 OptForSize); 5675 5676 if (LegalOps && !IsOpLegal) 5677 break; 5678 5679 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5680 V.changeSign(); 5681 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5682 5683 // If we already have the use of the negated floating constant, it is free 5684 // to negate it even it has multiple uses. 5685 if (!Op.hasOneUse() && CFP.use_empty()) 5686 break; 5687 Cost = NegatibleCost::Neutral; 5688 return CFP; 5689 } 5690 case ISD::BUILD_VECTOR: { 5691 // Only permit BUILD_VECTOR of constants. 5692 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5693 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5694 })) 5695 break; 5696 5697 bool IsOpLegal = 5698 (isOperationLegal(ISD::ConstantFP, VT) && 5699 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5700 llvm::all_of(Op->op_values(), [&](SDValue N) { 5701 return N.isUndef() || 5702 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5703 OptForSize); 5704 }); 5705 5706 if (LegalOps && !IsOpLegal) 5707 break; 5708 5709 SmallVector<SDValue, 4> Ops; 5710 for (SDValue C : Op->op_values()) { 5711 if (C.isUndef()) { 5712 Ops.push_back(C); 5713 continue; 5714 } 5715 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5716 V.changeSign(); 5717 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5718 } 5719 Cost = NegatibleCost::Neutral; 5720 return DAG.getBuildVector(VT, DL, Ops); 5721 } 5722 case ISD::FADD: { 5723 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5724 break; 5725 5726 // After operation legalization, it might not be legal to create new FSUBs. 5727 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5728 break; 5729 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5730 5731 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5732 NegatibleCost CostX = NegatibleCost::Expensive; 5733 SDValue NegX = 5734 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5735 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5736 NegatibleCost CostY = NegatibleCost::Expensive; 5737 SDValue NegY = 5738 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5739 5740 // Negate the X if its cost is less or equal than Y. 5741 if (NegX && (CostX <= CostY)) { 5742 Cost = CostX; 5743 return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5744 } 5745 5746 // Negate the Y if it is not expensive. 5747 if (NegY) { 5748 Cost = CostY; 5749 return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5750 } 5751 break; 5752 } 5753 case ISD::FSUB: { 5754 // We can't turn -(A-B) into B-A when we honor signed zeros. 5755 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5756 break; 5757 5758 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5759 // fold (fneg (fsub 0, Y)) -> Y 5760 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5761 if (C->isZero()) { 5762 Cost = NegatibleCost::Cheaper; 5763 return Y; 5764 } 5765 5766 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5767 Cost = NegatibleCost::Neutral; 5768 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5769 } 5770 case ISD::FMUL: 5771 case ISD::FDIV: { 5772 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5773 5774 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5775 NegatibleCost CostX = NegatibleCost::Expensive; 5776 SDValue NegX = 5777 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5778 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5779 NegatibleCost CostY = NegatibleCost::Expensive; 5780 SDValue NegY = 5781 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5782 5783 // Negate the X if its cost is less or equal than Y. 5784 if (NegX && (CostX <= CostY)) { 5785 Cost = CostX; 5786 return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 5787 } 5788 5789 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5790 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5791 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5792 break; 5793 5794 // Negate the Y if it is not expensive. 5795 if (NegY) { 5796 Cost = CostY; 5797 return DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 5798 } 5799 break; 5800 } 5801 case ISD::FMA: 5802 case ISD::FMAD: { 5803 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5804 break; 5805 5806 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5807 NegatibleCost CostZ = NegatibleCost::Expensive; 5808 SDValue NegZ = 5809 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 5810 // Give up if fail to negate the Z. 5811 if (!NegZ) 5812 break; 5813 5814 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5815 NegatibleCost CostX = NegatibleCost::Expensive; 5816 SDValue NegX = 5817 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5818 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5819 NegatibleCost CostY = NegatibleCost::Expensive; 5820 SDValue NegY = 5821 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5822 5823 // Negate the X if its cost is less or equal than Y. 5824 if (NegX && (CostX <= CostY)) { 5825 Cost = std::min(CostX, CostZ); 5826 return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5827 } 5828 5829 // Negate the Y if it is not expensive. 5830 if (NegY) { 5831 Cost = std::min(CostY, CostZ); 5832 return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5833 } 5834 break; 5835 } 5836 5837 case ISD::FP_EXTEND: 5838 case ISD::FSIN: 5839 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5840 OptForSize, Cost, Depth)) 5841 return DAG.getNode(Opcode, DL, VT, NegV); 5842 break; 5843 case ISD::FP_ROUND: 5844 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5845 OptForSize, Cost, Depth)) 5846 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 5847 break; 5848 } 5849 5850 return SDValue(); 5851 } 5852 5853 //===----------------------------------------------------------------------===// 5854 // Legalization Utilities 5855 //===----------------------------------------------------------------------===// 5856 5857 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5858 SDValue LHS, SDValue RHS, 5859 SmallVectorImpl<SDValue> &Result, 5860 EVT HiLoVT, SelectionDAG &DAG, 5861 MulExpansionKind Kind, SDValue LL, 5862 SDValue LH, SDValue RL, SDValue RH) const { 5863 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5864 Opcode == ISD::SMUL_LOHI); 5865 5866 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5867 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5868 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5869 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5870 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5871 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5872 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5873 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5874 5875 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5876 return false; 5877 5878 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5879 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5880 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5881 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5882 5883 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5884 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5885 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5886 5887 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5888 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5889 bool Signed) -> bool { 5890 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5891 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5892 Hi = SDValue(Lo.getNode(), 1); 5893 return true; 5894 } 5895 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5896 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5897 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5898 return true; 5899 } 5900 return false; 5901 }; 5902 5903 SDValue Lo, Hi; 5904 5905 if (!LL.getNode() && !RL.getNode() && 5906 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5907 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5908 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5909 } 5910 5911 if (!LL.getNode()) 5912 return false; 5913 5914 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5915 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5916 DAG.MaskedValueIsZero(RHS, HighMask)) { 5917 // The inputs are both zero-extended. 5918 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5919 Result.push_back(Lo); 5920 Result.push_back(Hi); 5921 if (Opcode != ISD::MUL) { 5922 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5923 Result.push_back(Zero); 5924 Result.push_back(Zero); 5925 } 5926 return true; 5927 } 5928 } 5929 5930 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5931 RHSSB > InnerBitSize) { 5932 // The input values are both sign-extended. 5933 // TODO non-MUL case? 5934 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5935 Result.push_back(Lo); 5936 Result.push_back(Hi); 5937 return true; 5938 } 5939 } 5940 5941 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5942 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5943 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5944 // FIXME getShiftAmountTy does not always return a sensible result when VT 5945 // is an illegal type, and so the type may be too small to fit the shift 5946 // amount. Override it with i32. The shift will have to be legalized. 5947 ShiftAmountTy = MVT::i32; 5948 } 5949 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5950 5951 if (!LH.getNode() && !RH.getNode() && 5952 isOperationLegalOrCustom(ISD::SRL, VT) && 5953 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5954 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5955 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5956 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5957 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5958 } 5959 5960 if (!LH.getNode()) 5961 return false; 5962 5963 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5964 return false; 5965 5966 Result.push_back(Lo); 5967 5968 if (Opcode == ISD::MUL) { 5969 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5970 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5971 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5972 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5973 Result.push_back(Hi); 5974 return true; 5975 } 5976 5977 // Compute the full width result. 5978 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5979 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5980 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5981 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5982 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5983 }; 5984 5985 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5986 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5987 return false; 5988 5989 // This is effectively the add part of a multiply-add of half-sized operands, 5990 // so it cannot overflow. 5991 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5992 5993 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5994 return false; 5995 5996 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5997 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5998 5999 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6000 isOperationLegalOrCustom(ISD::ADDE, VT)); 6001 if (UseGlue) 6002 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6003 Merge(Lo, Hi)); 6004 else 6005 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6006 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6007 6008 SDValue Carry = Next.getValue(1); 6009 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6010 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6011 6012 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6013 return false; 6014 6015 if (UseGlue) 6016 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6017 Carry); 6018 else 6019 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6020 Zero, Carry); 6021 6022 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6023 6024 if (Opcode == ISD::SMUL_LOHI) { 6025 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6026 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6027 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6028 6029 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6030 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6031 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6032 } 6033 6034 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6035 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6036 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6037 return true; 6038 } 6039 6040 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6041 SelectionDAG &DAG, MulExpansionKind Kind, 6042 SDValue LL, SDValue LH, SDValue RL, 6043 SDValue RH) const { 6044 SmallVector<SDValue, 2> Result; 6045 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6046 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6047 DAG, Kind, LL, LH, RL, RH); 6048 if (Ok) { 6049 assert(Result.size() == 2); 6050 Lo = Result[0]; 6051 Hi = Result[1]; 6052 } 6053 return Ok; 6054 } 6055 6056 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6057 SelectionDAG &DAG) const { 6058 EVT VT = Node->getValueType(0); 6059 6060 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6061 !isOperationLegalOrCustom(ISD::SRL, VT) || 6062 !isOperationLegalOrCustom(ISD::SUB, VT) || 6063 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6064 return false; 6065 6066 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6067 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6068 SDValue X = Node->getOperand(0); 6069 SDValue Y = Node->getOperand(1); 6070 SDValue Z = Node->getOperand(2); 6071 6072 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6073 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6074 SDLoc DL(SDValue(Node, 0)); 6075 6076 EVT ShVT = Z.getValueType(); 6077 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6078 SDValue ShAmt, InvShAmt; 6079 if (isPowerOf2_32(EltSizeInBits)) { 6080 // Z % BW -> Z & (BW - 1) 6081 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6082 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6083 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6084 } else { 6085 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6086 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6087 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6088 } 6089 6090 SDValue One = DAG.getConstant(1, DL, ShVT); 6091 SDValue ShX, ShY; 6092 if (IsFSHL) { 6093 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6094 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6095 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6096 } else { 6097 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6098 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6099 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6100 } 6101 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6102 return true; 6103 } 6104 6105 // TODO: Merge with expandFunnelShift. 6106 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6107 SelectionDAG &DAG) const { 6108 EVT VT = Node->getValueType(0); 6109 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6110 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6111 SDValue Op0 = Node->getOperand(0); 6112 SDValue Op1 = Node->getOperand(1); 6113 SDLoc DL(SDValue(Node, 0)); 6114 6115 EVT ShVT = Op1.getValueType(); 6116 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6117 6118 // If a rotate in the other direction is legal, use it. 6119 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6120 if (isOperationLegal(RevRot, VT)) { 6121 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6122 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6123 return true; 6124 } 6125 6126 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6127 !isOperationLegalOrCustom(ISD::SRL, VT) || 6128 !isOperationLegalOrCustom(ISD::SUB, VT) || 6129 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6130 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6131 return false; 6132 6133 // Otherwise, 6134 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6135 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6136 // 6137 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6138 "Expecting the type bitwidth to be a power of 2"); 6139 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6140 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6141 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6142 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6143 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6144 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6145 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6146 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6147 return true; 6148 } 6149 6150 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6151 SelectionDAG &DAG) const { 6152 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6153 SDValue Src = Node->getOperand(OpNo); 6154 EVT SrcVT = Src.getValueType(); 6155 EVT DstVT = Node->getValueType(0); 6156 SDLoc dl(SDValue(Node, 0)); 6157 6158 // FIXME: Only f32 to i64 conversions are supported. 6159 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6160 return false; 6161 6162 if (Node->isStrictFPOpcode()) 6163 // When a NaN is converted to an integer a trap is allowed. We can't 6164 // use this expansion here because it would eliminate that trap. Other 6165 // traps are also allowed and cannot be eliminated. See 6166 // IEEE 754-2008 sec 5.8. 6167 return false; 6168 6169 // Expand f32 -> i64 conversion 6170 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6171 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6172 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6173 EVT IntVT = SrcVT.changeTypeToInteger(); 6174 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6175 6176 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6177 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6178 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6179 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6180 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6181 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6182 6183 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6184 6185 SDValue ExponentBits = DAG.getNode( 6186 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6187 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6188 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6189 6190 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6191 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6192 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6193 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6194 6195 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6196 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6197 DAG.getConstant(0x00800000, dl, IntVT)); 6198 6199 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6200 6201 R = DAG.getSelectCC( 6202 dl, Exponent, ExponentLoBit, 6203 DAG.getNode(ISD::SHL, dl, DstVT, R, 6204 DAG.getZExtOrTrunc( 6205 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6206 dl, IntShVT)), 6207 DAG.getNode(ISD::SRL, dl, DstVT, R, 6208 DAG.getZExtOrTrunc( 6209 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6210 dl, IntShVT)), 6211 ISD::SETGT); 6212 6213 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6214 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6215 6216 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6217 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6218 return true; 6219 } 6220 6221 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6222 SDValue &Chain, 6223 SelectionDAG &DAG) const { 6224 SDLoc dl(SDValue(Node, 0)); 6225 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6226 SDValue Src = Node->getOperand(OpNo); 6227 6228 EVT SrcVT = Src.getValueType(); 6229 EVT DstVT = Node->getValueType(0); 6230 EVT SetCCVT = 6231 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6232 EVT DstSetCCVT = 6233 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6234 6235 // Only expand vector types if we have the appropriate vector bit operations. 6236 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6237 ISD::FP_TO_SINT; 6238 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6239 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6240 return false; 6241 6242 // If the maximum float value is smaller then the signed integer range, 6243 // the destination signmask can't be represented by the float, so we can 6244 // just use FP_TO_SINT directly. 6245 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6246 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6247 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6248 if (APFloat::opOverflow & 6249 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6250 if (Node->isStrictFPOpcode()) { 6251 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6252 { Node->getOperand(0), Src }); 6253 Chain = Result.getValue(1); 6254 } else 6255 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6256 return true; 6257 } 6258 6259 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6260 SDValue Sel; 6261 6262 if (Node->isStrictFPOpcode()) { 6263 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6264 Node->getOperand(0), /*IsSignaling*/ true); 6265 Chain = Sel.getValue(1); 6266 } else { 6267 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6268 } 6269 6270 bool Strict = Node->isStrictFPOpcode() || 6271 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6272 6273 if (Strict) { 6274 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6275 // signmask then offset (the result of which should be fully representable). 6276 // Sel = Src < 0x8000000000000000 6277 // FltOfs = select Sel, 0, 0x8000000000000000 6278 // IntOfs = select Sel, 0, 0x8000000000000000 6279 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6280 6281 // TODO: Should any fast-math-flags be set for the FSUB? 6282 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6283 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6284 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6285 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6286 DAG.getConstant(0, dl, DstVT), 6287 DAG.getConstant(SignMask, dl, DstVT)); 6288 SDValue SInt; 6289 if (Node->isStrictFPOpcode()) { 6290 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6291 { Chain, Src, FltOfs }); 6292 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6293 { Val.getValue(1), Val }); 6294 Chain = SInt.getValue(1); 6295 } else { 6296 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6297 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6298 } 6299 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6300 } else { 6301 // Expand based on maximum range of FP_TO_SINT: 6302 // True = fp_to_sint(Src) 6303 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6304 // Result = select (Src < 0x8000000000000000), True, False 6305 6306 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6307 // TODO: Should any fast-math-flags be set for the FSUB? 6308 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6309 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6310 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6311 DAG.getConstant(SignMask, dl, DstVT)); 6312 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6313 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6314 } 6315 return true; 6316 } 6317 6318 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6319 SDValue &Chain, 6320 SelectionDAG &DAG) const { 6321 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6322 SDValue Src = Node->getOperand(OpNo); 6323 EVT SrcVT = Src.getValueType(); 6324 EVT DstVT = Node->getValueType(0); 6325 6326 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6327 return false; 6328 6329 // Only expand vector types if we have the appropriate vector bit operations. 6330 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6331 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6332 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6333 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6334 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6335 return false; 6336 6337 SDLoc dl(SDValue(Node, 0)); 6338 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6339 6340 // Implementation of unsigned i64 to f64 following the algorithm in 6341 // __floatundidf in compiler_rt. This implementation has the advantage 6342 // of performing rounding correctly, both in the default rounding mode 6343 // and in all alternate rounding modes. 6344 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6345 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6346 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6347 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6348 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6349 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6350 6351 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6352 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6353 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6354 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6355 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6356 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6357 if (Node->isStrictFPOpcode()) { 6358 SDValue HiSub = 6359 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6360 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6361 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6362 {HiSub.getValue(1), LoFlt, HiSub}); 6363 Chain = Result.getValue(1); 6364 } else { 6365 SDValue HiSub = 6366 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6367 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6368 } 6369 return true; 6370 } 6371 6372 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6373 SelectionDAG &DAG) const { 6374 SDLoc dl(Node); 6375 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6376 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6377 EVT VT = Node->getValueType(0); 6378 if (isOperationLegalOrCustom(NewOp, VT)) { 6379 SDValue Quiet0 = Node->getOperand(0); 6380 SDValue Quiet1 = Node->getOperand(1); 6381 6382 if (!Node->getFlags().hasNoNaNs()) { 6383 // Insert canonicalizes if it's possible we need to quiet to get correct 6384 // sNaN behavior. 6385 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6386 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6387 Node->getFlags()); 6388 } 6389 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6390 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6391 Node->getFlags()); 6392 } 6393 } 6394 6395 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6396 } 6397 6398 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6399 // instead if there are no NaNs. 6400 if (Node->getFlags().hasNoNaNs()) { 6401 unsigned IEEE2018Op = 6402 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6403 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6404 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6405 Node->getOperand(1), Node->getFlags()); 6406 } 6407 } 6408 6409 // If none of the above worked, but there are no NaNs, then expand to 6410 // a compare/select sequence. This is required for correctness since 6411 // InstCombine might have canonicalized a fcmp+select sequence to a 6412 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6413 // expansion to libcall, we might introduce a link-time dependency 6414 // on libm into a file that originally did not have one. 6415 if (Node->getFlags().hasNoNaNs()) { 6416 ISD::CondCode Pred = 6417 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6418 SDValue Op1 = Node->getOperand(0); 6419 SDValue Op2 = Node->getOperand(1); 6420 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6421 // Copy FMF flags, but always set the no-signed-zeros flag 6422 // as this is implied by the FMINNUM/FMAXNUM semantics. 6423 SDNodeFlags Flags = Node->getFlags(); 6424 Flags.setNoSignedZeros(true); 6425 SelCC->setFlags(Flags); 6426 return SelCC; 6427 } 6428 6429 return SDValue(); 6430 } 6431 6432 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6433 SelectionDAG &DAG) const { 6434 SDLoc dl(Node); 6435 EVT VT = Node->getValueType(0); 6436 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6437 SDValue Op = Node->getOperand(0); 6438 unsigned Len = VT.getScalarSizeInBits(); 6439 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6440 6441 // TODO: Add support for irregular type lengths. 6442 if (!(Len <= 128 && Len % 8 == 0)) 6443 return false; 6444 6445 // Only expand vector types if we have the appropriate vector bit operations. 6446 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6447 !isOperationLegalOrCustom(ISD::SUB, VT) || 6448 !isOperationLegalOrCustom(ISD::SRL, VT) || 6449 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6450 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6451 return false; 6452 6453 // This is the "best" algorithm from 6454 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6455 SDValue Mask55 = 6456 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6457 SDValue Mask33 = 6458 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6459 SDValue Mask0F = 6460 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6461 SDValue Mask01 = 6462 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6463 6464 // v = v - ((v >> 1) & 0x55555555...) 6465 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6466 DAG.getNode(ISD::AND, dl, VT, 6467 DAG.getNode(ISD::SRL, dl, VT, Op, 6468 DAG.getConstant(1, dl, ShVT)), 6469 Mask55)); 6470 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6471 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6472 DAG.getNode(ISD::AND, dl, VT, 6473 DAG.getNode(ISD::SRL, dl, VT, Op, 6474 DAG.getConstant(2, dl, ShVT)), 6475 Mask33)); 6476 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6477 Op = DAG.getNode(ISD::AND, dl, VT, 6478 DAG.getNode(ISD::ADD, dl, VT, Op, 6479 DAG.getNode(ISD::SRL, dl, VT, Op, 6480 DAG.getConstant(4, dl, ShVT))), 6481 Mask0F); 6482 // v = (v * 0x01010101...) >> (Len - 8) 6483 if (Len > 8) 6484 Op = 6485 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6486 DAG.getConstant(Len - 8, dl, ShVT)); 6487 6488 Result = Op; 6489 return true; 6490 } 6491 6492 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6493 SelectionDAG &DAG) const { 6494 SDLoc dl(Node); 6495 EVT VT = Node->getValueType(0); 6496 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6497 SDValue Op = Node->getOperand(0); 6498 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6499 6500 // If the non-ZERO_UNDEF version is supported we can use that instead. 6501 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6502 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6503 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6504 return true; 6505 } 6506 6507 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6508 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6509 EVT SetCCVT = 6510 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6511 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6512 SDValue Zero = DAG.getConstant(0, dl, VT); 6513 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6514 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6515 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6516 return true; 6517 } 6518 6519 // Only expand vector types if we have the appropriate vector bit operations. 6520 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6521 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6522 !isOperationLegalOrCustom(ISD::SRL, VT) || 6523 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6524 return false; 6525 6526 // for now, we do this: 6527 // x = x | (x >> 1); 6528 // x = x | (x >> 2); 6529 // ... 6530 // x = x | (x >>16); 6531 // x = x | (x >>32); // for 64-bit input 6532 // return popcount(~x); 6533 // 6534 // Ref: "Hacker's Delight" by Henry Warren 6535 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6536 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6537 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6538 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6539 } 6540 Op = DAG.getNOT(dl, Op, VT); 6541 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6542 return true; 6543 } 6544 6545 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6546 SelectionDAG &DAG) const { 6547 SDLoc dl(Node); 6548 EVT VT = Node->getValueType(0); 6549 SDValue Op = Node->getOperand(0); 6550 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6551 6552 // If the non-ZERO_UNDEF version is supported we can use that instead. 6553 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6554 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6555 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6556 return true; 6557 } 6558 6559 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6560 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6561 EVT SetCCVT = 6562 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6563 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6564 SDValue Zero = DAG.getConstant(0, dl, VT); 6565 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6566 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6567 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6568 return true; 6569 } 6570 6571 // Only expand vector types if we have the appropriate vector bit operations. 6572 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6573 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6574 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6575 !isOperationLegalOrCustom(ISD::SUB, VT) || 6576 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6577 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6578 return false; 6579 6580 // for now, we use: { return popcount(~x & (x - 1)); } 6581 // unless the target has ctlz but not ctpop, in which case we use: 6582 // { return 32 - nlz(~x & (x-1)); } 6583 // Ref: "Hacker's Delight" by Henry Warren 6584 SDValue Tmp = DAG.getNode( 6585 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6586 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6587 6588 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6589 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6590 Result = 6591 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6592 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6593 return true; 6594 } 6595 6596 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6597 return true; 6598 } 6599 6600 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6601 SelectionDAG &DAG) const { 6602 SDLoc dl(N); 6603 EVT VT = N->getValueType(0); 6604 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6605 SDValue Op = N->getOperand(0); 6606 6607 // Only expand vector types if we have the appropriate vector operations. 6608 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6609 !isOperationLegalOrCustom(ISD::ADD, VT) || 6610 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6611 return false; 6612 6613 SDValue Shift = 6614 DAG.getNode(ISD::SRA, dl, VT, Op, 6615 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6616 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6617 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6618 return true; 6619 } 6620 6621 std::pair<SDValue, SDValue> 6622 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6623 SelectionDAG &DAG) const { 6624 SDLoc SL(LD); 6625 SDValue Chain = LD->getChain(); 6626 SDValue BasePTR = LD->getBasePtr(); 6627 EVT SrcVT = LD->getMemoryVT(); 6628 EVT DstVT = LD->getValueType(0); 6629 ISD::LoadExtType ExtType = LD->getExtensionType(); 6630 6631 unsigned NumElem = SrcVT.getVectorNumElements(); 6632 6633 EVT SrcEltVT = SrcVT.getScalarType(); 6634 EVT DstEltVT = DstVT.getScalarType(); 6635 6636 // A vector must always be stored in memory as-is, i.e. without any padding 6637 // between the elements, since various code depend on it, e.g. in the 6638 // handling of a bitcast of a vector type to int, which may be done with a 6639 // vector store followed by an integer load. A vector that does not have 6640 // elements that are byte-sized must therefore be stored as an integer 6641 // built out of the extracted vector elements. 6642 if (!SrcEltVT.isByteSized()) { 6643 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6644 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6645 6646 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6647 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6648 6649 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6650 SDValue SrcEltBitMask = DAG.getConstant( 6651 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6652 6653 // Load the whole vector and avoid masking off the top bits as it makes 6654 // the codegen worse. 6655 SDValue Load = 6656 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6657 LD->getPointerInfo(), SrcIntVT, LD->getAlignment(), 6658 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6659 6660 SmallVector<SDValue, 8> Vals; 6661 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6662 unsigned ShiftIntoIdx = 6663 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6664 SDValue ShiftAmount = 6665 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6666 LoadVT, SL, /*LegalTypes=*/false); 6667 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6668 SDValue Elt = 6669 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6670 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6671 6672 if (ExtType != ISD::NON_EXTLOAD) { 6673 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6674 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6675 } 6676 6677 Vals.push_back(Scalar); 6678 } 6679 6680 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6681 return std::make_pair(Value, Load.getValue(1)); 6682 } 6683 6684 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6685 assert(SrcEltVT.isByteSized()); 6686 6687 SmallVector<SDValue, 8> Vals; 6688 SmallVector<SDValue, 8> LoadChains; 6689 6690 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6691 SDValue ScalarLoad = 6692 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6693 LD->getPointerInfo().getWithOffset(Idx * Stride), 6694 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6695 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6696 6697 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6698 6699 Vals.push_back(ScalarLoad.getValue(0)); 6700 LoadChains.push_back(ScalarLoad.getValue(1)); 6701 } 6702 6703 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6704 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6705 6706 return std::make_pair(Value, NewChain); 6707 } 6708 6709 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6710 SelectionDAG &DAG) const { 6711 SDLoc SL(ST); 6712 6713 SDValue Chain = ST->getChain(); 6714 SDValue BasePtr = ST->getBasePtr(); 6715 SDValue Value = ST->getValue(); 6716 EVT StVT = ST->getMemoryVT(); 6717 6718 // The type of the data we want to save 6719 EVT RegVT = Value.getValueType(); 6720 EVT RegSclVT = RegVT.getScalarType(); 6721 6722 // The type of data as saved in memory. 6723 EVT MemSclVT = StVT.getScalarType(); 6724 6725 unsigned NumElem = StVT.getVectorNumElements(); 6726 6727 // A vector must always be stored in memory as-is, i.e. without any padding 6728 // between the elements, since various code depend on it, e.g. in the 6729 // handling of a bitcast of a vector type to int, which may be done with a 6730 // vector store followed by an integer load. A vector that does not have 6731 // elements that are byte-sized must therefore be stored as an integer 6732 // built out of the extracted vector elements. 6733 if (!MemSclVT.isByteSized()) { 6734 unsigned NumBits = StVT.getSizeInBits(); 6735 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6736 6737 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6738 6739 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6740 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6741 DAG.getVectorIdxConstant(Idx, SL)); 6742 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6743 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6744 unsigned ShiftIntoIdx = 6745 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6746 SDValue ShiftAmount = 6747 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6748 SDValue ShiftedElt = 6749 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6750 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6751 } 6752 6753 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6754 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6755 ST->getAAInfo()); 6756 } 6757 6758 // Store Stride in bytes 6759 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6760 assert(Stride && "Zero stride!"); 6761 // Extract each of the elements from the original vector and save them into 6762 // memory individually. 6763 SmallVector<SDValue, 8> Stores; 6764 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6765 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6766 DAG.getVectorIdxConstant(Idx, SL)); 6767 6768 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6769 6770 // This scalar TruncStore may be illegal, but we legalize it later. 6771 SDValue Store = DAG.getTruncStore( 6772 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6773 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6774 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6775 6776 Stores.push_back(Store); 6777 } 6778 6779 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6780 } 6781 6782 std::pair<SDValue, SDValue> 6783 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6784 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6785 "unaligned indexed loads not implemented!"); 6786 SDValue Chain = LD->getChain(); 6787 SDValue Ptr = LD->getBasePtr(); 6788 EVT VT = LD->getValueType(0); 6789 EVT LoadedVT = LD->getMemoryVT(); 6790 SDLoc dl(LD); 6791 auto &MF = DAG.getMachineFunction(); 6792 6793 if (VT.isFloatingPoint() || VT.isVector()) { 6794 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6795 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6796 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6797 LoadedVT.isVector()) { 6798 // Scalarize the load and let the individual components be handled. 6799 return scalarizeVectorLoad(LD, DAG); 6800 } 6801 6802 // Expand to a (misaligned) integer load of the same size, 6803 // then bitconvert to floating point or vector. 6804 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6805 LD->getMemOperand()); 6806 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6807 if (LoadedVT != VT) 6808 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6809 ISD::ANY_EXTEND, dl, VT, Result); 6810 6811 return std::make_pair(Result, newLoad.getValue(1)); 6812 } 6813 6814 // Copy the value to a (aligned) stack slot using (unaligned) integer 6815 // loads and stores, then do a (aligned) load from the stack slot. 6816 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6817 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6818 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6819 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6820 6821 // Make sure the stack slot is also aligned for the register type. 6822 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6823 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6824 SmallVector<SDValue, 8> Stores; 6825 SDValue StackPtr = StackBase; 6826 unsigned Offset = 0; 6827 6828 EVT PtrVT = Ptr.getValueType(); 6829 EVT StackPtrVT = StackPtr.getValueType(); 6830 6831 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6832 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6833 6834 // Do all but one copies using the full register width. 6835 for (unsigned i = 1; i < NumRegs; i++) { 6836 // Load one integer register's worth from the original location. 6837 SDValue Load = DAG.getLoad( 6838 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6839 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6840 LD->getAAInfo()); 6841 // Follow the load with a store to the stack slot. Remember the store. 6842 Stores.push_back(DAG.getStore( 6843 Load.getValue(1), dl, Load, StackPtr, 6844 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6845 // Increment the pointers. 6846 Offset += RegBytes; 6847 6848 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6849 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6850 } 6851 6852 // The last copy may be partial. Do an extending load. 6853 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6854 8 * (LoadedBytes - Offset)); 6855 SDValue Load = 6856 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6857 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6858 MinAlign(LD->getAlignment(), Offset), 6859 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6860 // Follow the load with a store to the stack slot. Remember the store. 6861 // On big-endian machines this requires a truncating store to ensure 6862 // that the bits end up in the right place. 6863 Stores.push_back(DAG.getTruncStore( 6864 Load.getValue(1), dl, Load, StackPtr, 6865 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6866 6867 // The order of the stores doesn't matter - say it with a TokenFactor. 6868 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6869 6870 // Finally, perform the original load only redirected to the stack slot. 6871 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6872 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6873 LoadedVT); 6874 6875 // Callers expect a MERGE_VALUES node. 6876 return std::make_pair(Load, TF); 6877 } 6878 6879 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6880 "Unaligned load of unsupported type."); 6881 6882 // Compute the new VT that is half the size of the old one. This is an 6883 // integer MVT. 6884 unsigned NumBits = LoadedVT.getSizeInBits(); 6885 EVT NewLoadedVT; 6886 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6887 NumBits >>= 1; 6888 6889 unsigned Alignment = LD->getAlignment(); 6890 unsigned IncrementSize = NumBits / 8; 6891 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6892 6893 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6894 if (HiExtType == ISD::NON_EXTLOAD) 6895 HiExtType = ISD::ZEXTLOAD; 6896 6897 // Load the value in two parts 6898 SDValue Lo, Hi; 6899 if (DAG.getDataLayout().isLittleEndian()) { 6900 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6901 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6902 LD->getAAInfo()); 6903 6904 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6905 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6906 LD->getPointerInfo().getWithOffset(IncrementSize), 6907 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6908 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6909 } else { 6910 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6911 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6912 LD->getAAInfo()); 6913 6914 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6915 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6916 LD->getPointerInfo().getWithOffset(IncrementSize), 6917 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6918 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6919 } 6920 6921 // aggregate the two parts 6922 SDValue ShiftAmount = 6923 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6924 DAG.getDataLayout())); 6925 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6926 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6927 6928 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6929 Hi.getValue(1)); 6930 6931 return std::make_pair(Result, TF); 6932 } 6933 6934 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6935 SelectionDAG &DAG) const { 6936 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6937 "unaligned indexed stores not implemented!"); 6938 SDValue Chain = ST->getChain(); 6939 SDValue Ptr = ST->getBasePtr(); 6940 SDValue Val = ST->getValue(); 6941 EVT VT = Val.getValueType(); 6942 int Alignment = ST->getAlignment(); 6943 auto &MF = DAG.getMachineFunction(); 6944 EVT StoreMemVT = ST->getMemoryVT(); 6945 6946 SDLoc dl(ST); 6947 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6948 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6949 if (isTypeLegal(intVT)) { 6950 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6951 StoreMemVT.isVector()) { 6952 // Scalarize the store and let the individual components be handled. 6953 SDValue Result = scalarizeVectorStore(ST, DAG); 6954 return Result; 6955 } 6956 // Expand to a bitconvert of the value to the integer type of the 6957 // same size, then a (misaligned) int store. 6958 // FIXME: Does not handle truncating floating point stores! 6959 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6960 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6961 Alignment, ST->getMemOperand()->getFlags()); 6962 return Result; 6963 } 6964 // Do a (aligned) store to a stack slot, then copy from the stack slot 6965 // to the final destination using (unaligned) integer loads and stores. 6966 MVT RegVT = getRegisterType( 6967 *DAG.getContext(), 6968 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6969 EVT PtrVT = Ptr.getValueType(); 6970 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6971 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6972 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6973 6974 // Make sure the stack slot is also aligned for the register type. 6975 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6976 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6977 6978 // Perform the original store, only redirected to the stack slot. 6979 SDValue Store = DAG.getTruncStore( 6980 Chain, dl, Val, StackPtr, 6981 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6982 6983 EVT StackPtrVT = StackPtr.getValueType(); 6984 6985 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6986 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6987 SmallVector<SDValue, 8> Stores; 6988 unsigned Offset = 0; 6989 6990 // Do all but one copies using the full register width. 6991 for (unsigned i = 1; i < NumRegs; i++) { 6992 // Load one integer register's worth from the stack slot. 6993 SDValue Load = DAG.getLoad( 6994 RegVT, dl, Store, StackPtr, 6995 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6996 // Store it to the final location. Remember the store. 6997 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6998 ST->getPointerInfo().getWithOffset(Offset), 6999 MinAlign(ST->getAlignment(), Offset), 7000 ST->getMemOperand()->getFlags())); 7001 // Increment the pointers. 7002 Offset += RegBytes; 7003 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7004 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7005 } 7006 7007 // The last store may be partial. Do a truncating store. On big-endian 7008 // machines this requires an extending load from the stack slot to ensure 7009 // that the bits are in the right place. 7010 EVT LoadMemVT = 7011 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7012 7013 // Load from the stack slot. 7014 SDValue Load = DAG.getExtLoad( 7015 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7016 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7017 7018 Stores.push_back( 7019 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7020 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7021 MinAlign(ST->getAlignment(), Offset), 7022 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7023 // The order of the stores doesn't matter - say it with a TokenFactor. 7024 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7025 return Result; 7026 } 7027 7028 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7029 "Unaligned store of unknown type."); 7030 // Get the half-size VT 7031 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7032 int NumBits = NewStoredVT.getSizeInBits(); 7033 int IncrementSize = NumBits / 8; 7034 7035 // Divide the stored value in two parts. 7036 SDValue ShiftAmount = DAG.getConstant( 7037 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7038 SDValue Lo = Val; 7039 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7040 7041 // Store the two parts 7042 SDValue Store1, Store2; 7043 Store1 = DAG.getTruncStore(Chain, dl, 7044 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7045 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7046 ST->getMemOperand()->getFlags()); 7047 7048 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7049 Alignment = MinAlign(Alignment, IncrementSize); 7050 Store2 = DAG.getTruncStore( 7051 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7052 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7053 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7054 7055 SDValue Result = 7056 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7057 return Result; 7058 } 7059 7060 SDValue 7061 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7062 const SDLoc &DL, EVT DataVT, 7063 SelectionDAG &DAG, 7064 bool IsCompressedMemory) const { 7065 SDValue Increment; 7066 EVT AddrVT = Addr.getValueType(); 7067 EVT MaskVT = Mask.getValueType(); 7068 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7069 "Incompatible types of Data and Mask"); 7070 if (IsCompressedMemory) { 7071 // Incrementing the pointer according to number of '1's in the mask. 7072 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7073 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7074 if (MaskIntVT.getSizeInBits() < 32) { 7075 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7076 MaskIntVT = MVT::i32; 7077 } 7078 7079 // Count '1's with POPCNT. 7080 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7081 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7082 // Scale is an element size in bytes. 7083 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7084 AddrVT); 7085 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7086 } else 7087 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7088 7089 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7090 } 7091 7092 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7093 SDValue Idx, 7094 EVT VecVT, 7095 const SDLoc &dl) { 7096 if (isa<ConstantSDNode>(Idx)) 7097 return Idx; 7098 7099 EVT IdxVT = Idx.getValueType(); 7100 unsigned NElts = VecVT.getVectorNumElements(); 7101 if (isPowerOf2_32(NElts)) { 7102 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7103 Log2_32(NElts)); 7104 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7105 DAG.getConstant(Imm, dl, IdxVT)); 7106 } 7107 7108 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7109 DAG.getConstant(NElts - 1, dl, IdxVT)); 7110 } 7111 7112 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7113 SDValue VecPtr, EVT VecVT, 7114 SDValue Index) const { 7115 SDLoc dl(Index); 7116 // Make sure the index type is big enough to compute in. 7117 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7118 7119 EVT EltVT = VecVT.getVectorElementType(); 7120 7121 // Calculate the element offset and add it to the pointer. 7122 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7123 assert(EltSize * 8 == EltVT.getSizeInBits() && 7124 "Converting bits to bytes lost precision"); 7125 7126 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7127 7128 EVT IdxVT = Index.getValueType(); 7129 7130 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7131 DAG.getConstant(EltSize, dl, IdxVT)); 7132 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7133 } 7134 7135 //===----------------------------------------------------------------------===// 7136 // Implementation of Emulated TLS Model 7137 //===----------------------------------------------------------------------===// 7138 7139 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7140 SelectionDAG &DAG) const { 7141 // Access to address of TLS varialbe xyz is lowered to a function call: 7142 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7143 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7144 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7145 SDLoc dl(GA); 7146 7147 ArgListTy Args; 7148 ArgListEntry Entry; 7149 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7150 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7151 StringRef EmuTlsVarName(NameString); 7152 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7153 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7154 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7155 Entry.Ty = VoidPtrType; 7156 Args.push_back(Entry); 7157 7158 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7159 7160 TargetLowering::CallLoweringInfo CLI(DAG); 7161 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7162 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7163 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7164 7165 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7166 // At last for X86 targets, maybe good for other targets too? 7167 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7168 MFI.setAdjustsStack(true); // Is this only for X86 target? 7169 MFI.setHasCalls(true); 7170 7171 assert((GA->getOffset() == 0) && 7172 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7173 return CallResult.first; 7174 } 7175 7176 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7177 SelectionDAG &DAG) const { 7178 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7179 if (!isCtlzFast()) 7180 return SDValue(); 7181 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7182 SDLoc dl(Op); 7183 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7184 if (C->isNullValue() && CC == ISD::SETEQ) { 7185 EVT VT = Op.getOperand(0).getValueType(); 7186 SDValue Zext = Op.getOperand(0); 7187 if (VT.bitsLT(MVT::i32)) { 7188 VT = MVT::i32; 7189 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7190 } 7191 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7192 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7193 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7194 DAG.getConstant(Log2b, dl, MVT::i32)); 7195 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7196 } 7197 } 7198 return SDValue(); 7199 } 7200 7201 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7202 unsigned Opcode = Node->getOpcode(); 7203 SDValue LHS = Node->getOperand(0); 7204 SDValue RHS = Node->getOperand(1); 7205 EVT VT = LHS.getValueType(); 7206 SDLoc dl(Node); 7207 7208 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7209 assert(VT.isInteger() && "Expected operands to be integers"); 7210 7211 // usub.sat(a, b) -> umax(a, b) - b 7212 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7213 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7214 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7215 } 7216 7217 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7218 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7219 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7220 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7221 } 7222 7223 unsigned OverflowOp; 7224 switch (Opcode) { 7225 case ISD::SADDSAT: 7226 OverflowOp = ISD::SADDO; 7227 break; 7228 case ISD::UADDSAT: 7229 OverflowOp = ISD::UADDO; 7230 break; 7231 case ISD::SSUBSAT: 7232 OverflowOp = ISD::SSUBO; 7233 break; 7234 case ISD::USUBSAT: 7235 OverflowOp = ISD::USUBO; 7236 break; 7237 default: 7238 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7239 "addition or subtraction node."); 7240 } 7241 7242 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7243 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7244 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7245 LHS, RHS); 7246 SDValue SumDiff = Result.getValue(0); 7247 SDValue Overflow = Result.getValue(1); 7248 SDValue Zero = DAG.getConstant(0, dl, VT); 7249 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7250 7251 if (Opcode == ISD::UADDSAT) { 7252 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7253 // (LHS + RHS) | OverflowMask 7254 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7255 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7256 } 7257 // Overflow ? 0xffff.... : (LHS + RHS) 7258 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7259 } else if (Opcode == ISD::USUBSAT) { 7260 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7261 // (LHS - RHS) & ~OverflowMask 7262 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7263 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7264 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7265 } 7266 // Overflow ? 0 : (LHS - RHS) 7267 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7268 } else { 7269 // SatMax -> Overflow && SumDiff < 0 7270 // SatMin -> Overflow && SumDiff >= 0 7271 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7272 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7273 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7274 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7275 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7276 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7277 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7278 } 7279 } 7280 7281 SDValue 7282 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7283 assert((Node->getOpcode() == ISD::SMULFIX || 7284 Node->getOpcode() == ISD::UMULFIX || 7285 Node->getOpcode() == ISD::SMULFIXSAT || 7286 Node->getOpcode() == ISD::UMULFIXSAT) && 7287 "Expected a fixed point multiplication opcode"); 7288 7289 SDLoc dl(Node); 7290 SDValue LHS = Node->getOperand(0); 7291 SDValue RHS = Node->getOperand(1); 7292 EVT VT = LHS.getValueType(); 7293 unsigned Scale = Node->getConstantOperandVal(2); 7294 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7295 Node->getOpcode() == ISD::UMULFIXSAT); 7296 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7297 Node->getOpcode() == ISD::SMULFIXSAT); 7298 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7299 unsigned VTSize = VT.getScalarSizeInBits(); 7300 7301 if (!Scale) { 7302 // [us]mul.fix(a, b, 0) -> mul(a, b) 7303 if (!Saturating) { 7304 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7305 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7306 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7307 SDValue Result = 7308 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7309 SDValue Product = Result.getValue(0); 7310 SDValue Overflow = Result.getValue(1); 7311 SDValue Zero = DAG.getConstant(0, dl, VT); 7312 7313 APInt MinVal = APInt::getSignedMinValue(VTSize); 7314 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7315 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7316 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7317 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7318 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7319 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7320 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7321 SDValue Result = 7322 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7323 SDValue Product = Result.getValue(0); 7324 SDValue Overflow = Result.getValue(1); 7325 7326 APInt MaxVal = APInt::getMaxValue(VTSize); 7327 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7328 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7329 } 7330 } 7331 7332 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7333 "Expected scale to be less than the number of bits if signed or at " 7334 "most the number of bits if unsigned."); 7335 assert(LHS.getValueType() == RHS.getValueType() && 7336 "Expected both operands to be the same type"); 7337 7338 // Get the upper and lower bits of the result. 7339 SDValue Lo, Hi; 7340 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7341 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7342 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7343 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7344 Lo = Result.getValue(0); 7345 Hi = Result.getValue(1); 7346 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7347 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7348 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7349 } else if (VT.isVector()) { 7350 return SDValue(); 7351 } else { 7352 report_fatal_error("Unable to expand fixed point multiplication."); 7353 } 7354 7355 if (Scale == VTSize) 7356 // Result is just the top half since we'd be shifting by the width of the 7357 // operand. Overflow impossible so this works for both UMULFIX and 7358 // UMULFIXSAT. 7359 return Hi; 7360 7361 // The result will need to be shifted right by the scale since both operands 7362 // are scaled. The result is given to us in 2 halves, so we only want part of 7363 // both in the result. 7364 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7365 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7366 DAG.getConstant(Scale, dl, ShiftTy)); 7367 if (!Saturating) 7368 return Result; 7369 7370 if (!Signed) { 7371 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7372 // widened multiplication) aren't all zeroes. 7373 7374 // Saturate to max if ((Hi >> Scale) != 0), 7375 // which is the same as if (Hi > ((1 << Scale) - 1)) 7376 APInt MaxVal = APInt::getMaxValue(VTSize); 7377 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7378 dl, VT); 7379 Result = DAG.getSelectCC(dl, Hi, LowMask, 7380 DAG.getConstant(MaxVal, dl, VT), Result, 7381 ISD::SETUGT); 7382 7383 return Result; 7384 } 7385 7386 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7387 // widened multiplication) aren't all ones or all zeroes. 7388 7389 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7390 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7391 7392 if (Scale == 0) { 7393 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7394 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7395 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7396 // Saturated to SatMin if wide product is negative, and SatMax if wide 7397 // product is positive ... 7398 SDValue Zero = DAG.getConstant(0, dl, VT); 7399 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7400 ISD::SETLT); 7401 // ... but only if we overflowed. 7402 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7403 } 7404 7405 // We handled Scale==0 above so all the bits to examine is in Hi. 7406 7407 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7408 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7409 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7410 dl, VT); 7411 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7412 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7413 // which is the same as if (HI < (-1 << (Scale - 1)) 7414 SDValue HighMask = 7415 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7416 dl, VT); 7417 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7418 return Result; 7419 } 7420 7421 SDValue 7422 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7423 SDValue LHS, SDValue RHS, 7424 unsigned Scale, SelectionDAG &DAG) const { 7425 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7426 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7427 "Expected a fixed point division opcode"); 7428 7429 EVT VT = LHS.getValueType(); 7430 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7431 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7432 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7433 7434 // If there is enough room in the type to upscale the LHS or downscale the 7435 // RHS before the division, we can perform it in this type without having to 7436 // resize. For signed operations, the LHS headroom is the number of 7437 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7438 // The headroom for the RHS is the number of trailing zeroes. 7439 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7440 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7441 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7442 7443 // For signed saturating operations, we need to be able to detect true integer 7444 // division overflow; that is, when you have MIN / -EPS. However, this 7445 // is undefined behavior and if we emit divisions that could take such 7446 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7447 // example). 7448 // Avoid this by requiring an extra bit so that we never get this case. 7449 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7450 // signed saturating division, we need to emit a whopping 32-bit division. 7451 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7452 return SDValue(); 7453 7454 unsigned LHSShift = std::min(LHSLead, Scale); 7455 unsigned RHSShift = Scale - LHSShift; 7456 7457 // At this point, we know that if we shift the LHS up by LHSShift and the 7458 // RHS down by RHSShift, we can emit a regular division with a final scaling 7459 // factor of Scale. 7460 7461 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7462 if (LHSShift) 7463 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7464 DAG.getConstant(LHSShift, dl, ShiftTy)); 7465 if (RHSShift) 7466 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7467 DAG.getConstant(RHSShift, dl, ShiftTy)); 7468 7469 SDValue Quot; 7470 if (Signed) { 7471 // For signed operations, if the resulting quotient is negative and the 7472 // remainder is nonzero, subtract 1 from the quotient to round towards 7473 // negative infinity. 7474 SDValue Rem; 7475 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7476 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7477 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7478 if (isTypeLegal(VT) && 7479 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7480 Quot = DAG.getNode(ISD::SDIVREM, dl, 7481 DAG.getVTList(VT, VT), 7482 LHS, RHS); 7483 Rem = Quot.getValue(1); 7484 Quot = Quot.getValue(0); 7485 } else { 7486 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7487 LHS, RHS); 7488 Rem = DAG.getNode(ISD::SREM, dl, VT, 7489 LHS, RHS); 7490 } 7491 SDValue Zero = DAG.getConstant(0, dl, VT); 7492 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7493 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7494 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7495 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7496 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7497 DAG.getConstant(1, dl, VT)); 7498 Quot = DAG.getSelect(dl, VT, 7499 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7500 Sub1, Quot); 7501 } else 7502 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7503 LHS, RHS); 7504 7505 return Quot; 7506 } 7507 7508 void TargetLowering::expandUADDSUBO( 7509 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7510 SDLoc dl(Node); 7511 SDValue LHS = Node->getOperand(0); 7512 SDValue RHS = Node->getOperand(1); 7513 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7514 7515 // If ADD/SUBCARRY is legal, use that instead. 7516 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7517 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7518 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7519 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7520 { LHS, RHS, CarryIn }); 7521 Result = SDValue(NodeCarry.getNode(), 0); 7522 Overflow = SDValue(NodeCarry.getNode(), 1); 7523 return; 7524 } 7525 7526 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7527 LHS.getValueType(), LHS, RHS); 7528 7529 EVT ResultType = Node->getValueType(1); 7530 EVT SetCCType = getSetCCResultType( 7531 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7532 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7533 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7534 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7535 } 7536 7537 void TargetLowering::expandSADDSUBO( 7538 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7539 SDLoc dl(Node); 7540 SDValue LHS = Node->getOperand(0); 7541 SDValue RHS = Node->getOperand(1); 7542 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7543 7544 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7545 LHS.getValueType(), LHS, RHS); 7546 7547 EVT ResultType = Node->getValueType(1); 7548 EVT OType = getSetCCResultType( 7549 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7550 7551 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7552 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7553 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7554 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7555 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7556 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7557 return; 7558 } 7559 7560 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7561 7562 // For an addition, the result should be less than one of the operands (LHS) 7563 // if and only if the other operand (RHS) is negative, otherwise there will 7564 // be overflow. 7565 // For a subtraction, the result should be less than one of the operands 7566 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7567 // otherwise there will be overflow. 7568 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7569 SDValue ConditionRHS = 7570 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7571 7572 Overflow = DAG.getBoolExtOrTrunc( 7573 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7574 ResultType, ResultType); 7575 } 7576 7577 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7578 SDValue &Overflow, SelectionDAG &DAG) const { 7579 SDLoc dl(Node); 7580 EVT VT = Node->getValueType(0); 7581 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7582 SDValue LHS = Node->getOperand(0); 7583 SDValue RHS = Node->getOperand(1); 7584 bool isSigned = Node->getOpcode() == ISD::SMULO; 7585 7586 // For power-of-two multiplications we can use a simpler shift expansion. 7587 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7588 const APInt &C = RHSC->getAPIntValue(); 7589 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7590 if (C.isPowerOf2()) { 7591 // smulo(x, signed_min) is same as umulo(x, signed_min). 7592 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7593 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7594 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7595 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7596 Overflow = DAG.getSetCC(dl, SetCCVT, 7597 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7598 dl, VT, Result, ShiftAmt), 7599 LHS, ISD::SETNE); 7600 return true; 7601 } 7602 } 7603 7604 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7605 if (VT.isVector()) 7606 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7607 VT.getVectorNumElements()); 7608 7609 SDValue BottomHalf; 7610 SDValue TopHalf; 7611 static const unsigned Ops[2][3] = 7612 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7613 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7614 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7615 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7616 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7617 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7618 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7619 RHS); 7620 TopHalf = BottomHalf.getValue(1); 7621 } else if (isTypeLegal(WideVT)) { 7622 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7623 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7624 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7625 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7626 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7627 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7628 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7629 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7630 } else { 7631 if (VT.isVector()) 7632 return false; 7633 7634 // We can fall back to a libcall with an illegal type for the MUL if we 7635 // have a libcall big enough. 7636 // Also, we can fall back to a division in some cases, but that's a big 7637 // performance hit in the general case. 7638 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7639 if (WideVT == MVT::i16) 7640 LC = RTLIB::MUL_I16; 7641 else if (WideVT == MVT::i32) 7642 LC = RTLIB::MUL_I32; 7643 else if (WideVT == MVT::i64) 7644 LC = RTLIB::MUL_I64; 7645 else if (WideVT == MVT::i128) 7646 LC = RTLIB::MUL_I128; 7647 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7648 7649 SDValue HiLHS; 7650 SDValue HiRHS; 7651 if (isSigned) { 7652 // The high part is obtained by SRA'ing all but one of the bits of low 7653 // part. 7654 unsigned LoSize = VT.getSizeInBits(); 7655 HiLHS = 7656 DAG.getNode(ISD::SRA, dl, VT, LHS, 7657 DAG.getConstant(LoSize - 1, dl, 7658 getPointerTy(DAG.getDataLayout()))); 7659 HiRHS = 7660 DAG.getNode(ISD::SRA, dl, VT, RHS, 7661 DAG.getConstant(LoSize - 1, dl, 7662 getPointerTy(DAG.getDataLayout()))); 7663 } else { 7664 HiLHS = DAG.getConstant(0, dl, VT); 7665 HiRHS = DAG.getConstant(0, dl, VT); 7666 } 7667 7668 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7669 // pre-lowered to the correct types. This all depends upon WideVT not 7670 // being a legal type for the architecture and thus has to be split to 7671 // two arguments. 7672 SDValue Ret; 7673 TargetLowering::MakeLibCallOptions CallOptions; 7674 CallOptions.setSExt(isSigned); 7675 CallOptions.setIsPostTypeLegalization(true); 7676 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7677 // Halves of WideVT are packed into registers in different order 7678 // depending on platform endianness. This is usually handled by 7679 // the C calling convention, but we can't defer to it in 7680 // the legalizer. 7681 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7682 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7683 } else { 7684 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7685 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7686 } 7687 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7688 "Ret value is a collection of constituent nodes holding result."); 7689 if (DAG.getDataLayout().isLittleEndian()) { 7690 // Same as above. 7691 BottomHalf = Ret.getOperand(0); 7692 TopHalf = Ret.getOperand(1); 7693 } else { 7694 BottomHalf = Ret.getOperand(1); 7695 TopHalf = Ret.getOperand(0); 7696 } 7697 } 7698 7699 Result = BottomHalf; 7700 if (isSigned) { 7701 SDValue ShiftAmt = DAG.getConstant( 7702 VT.getScalarSizeInBits() - 1, dl, 7703 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7704 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7705 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7706 } else { 7707 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7708 DAG.getConstant(0, dl, VT), ISD::SETNE); 7709 } 7710 7711 // Truncate the result if SetCC returns a larger type than needed. 7712 EVT RType = Node->getValueType(1); 7713 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7714 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7715 7716 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7717 "Unexpected result type for S/UMULO legalization"); 7718 return true; 7719 } 7720 7721 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7722 SDLoc dl(Node); 7723 bool NoNaN = Node->getFlags().hasNoNaNs(); 7724 unsigned BaseOpcode = 0; 7725 switch (Node->getOpcode()) { 7726 default: llvm_unreachable("Expected VECREDUCE opcode"); 7727 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7728 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7729 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7730 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7731 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7732 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7733 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7734 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7735 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7736 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7737 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7738 case ISD::VECREDUCE_FMAX: 7739 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7740 break; 7741 case ISD::VECREDUCE_FMIN: 7742 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7743 break; 7744 } 7745 7746 SDValue Op = Node->getOperand(0); 7747 EVT VT = Op.getValueType(); 7748 7749 // Try to use a shuffle reduction for power of two vectors. 7750 if (VT.isPow2VectorType()) { 7751 while (VT.getVectorNumElements() > 1) { 7752 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7753 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7754 break; 7755 7756 SDValue Lo, Hi; 7757 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7758 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7759 VT = HalfVT; 7760 } 7761 } 7762 7763 EVT EltVT = VT.getVectorElementType(); 7764 unsigned NumElts = VT.getVectorNumElements(); 7765 7766 SmallVector<SDValue, 8> Ops; 7767 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7768 7769 SDValue Res = Ops[0]; 7770 for (unsigned i = 1; i < NumElts; i++) 7771 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7772 7773 // Result type may be wider than element type. 7774 if (EltVT != Node->getValueType(0)) 7775 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7776 return Res; 7777 } 7778