1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The constructor takes ownership of TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm, 39 const TargetLoweringObjectFile *tlof) 40 : TargetLoweringBase(tm, tlof) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = isSigned; 100 Entry.isZExt = !isSigned; 101 Args.push_back(Entry); 102 } 103 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 104 105 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 106 TargetLowering::CallLoweringInfo CLI(DAG); 107 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 108 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, &Args, 0) 109 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 110 .setSExtResult(isSigned).setZExtResult(!isSigned); 111 return LowerCallTo(CLI); 112 } 113 114 115 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 116 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 117 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 118 SDValue &NewLHS, SDValue &NewRHS, 119 ISD::CondCode &CCCode, 120 SDLoc dl) const { 121 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 122 && "Unsupported setcc type!"); 123 124 // Expand into one or more soft-fp libcall(s). 125 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 126 switch (CCCode) { 127 case ISD::SETEQ: 128 case ISD::SETOEQ: 129 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 130 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 131 break; 132 case ISD::SETNE: 133 case ISD::SETUNE: 134 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 135 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 136 break; 137 case ISD::SETGE: 138 case ISD::SETOGE: 139 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 140 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 141 break; 142 case ISD::SETLT: 143 case ISD::SETOLT: 144 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 145 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 146 break; 147 case ISD::SETLE: 148 case ISD::SETOLE: 149 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 150 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 151 break; 152 case ISD::SETGT: 153 case ISD::SETOGT: 154 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 155 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 156 break; 157 case ISD::SETUO: 158 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 159 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 160 break; 161 case ISD::SETO: 162 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 163 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 164 break; 165 default: 166 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 167 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 168 switch (CCCode) { 169 case ISD::SETONE: 170 // SETONE = SETOLT | SETOGT 171 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 172 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 173 // Fallthrough 174 case ISD::SETUGT: 175 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 176 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 177 break; 178 case ISD::SETUGE: 179 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 180 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 181 break; 182 case ISD::SETULT: 183 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 184 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 185 break; 186 case ISD::SETULE: 187 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 189 break; 190 case ISD::SETUEQ: 191 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 192 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 193 break; 194 default: llvm_unreachable("Do not know how to soften this setcc!"); 195 } 196 } 197 198 // Use the target specific return value for comparions lib calls. 199 EVT RetVT = getCmpLibcallReturnType(); 200 SDValue Ops[2] = { NewLHS, NewRHS }; 201 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 202 dl).first; 203 NewRHS = DAG.getConstant(0, RetVT); 204 CCCode = getCmpLibcallCC(LC1); 205 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 206 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 207 getSetCCResultType(*DAG.getContext(), RetVT), 208 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 209 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 210 dl).first; 211 NewLHS = DAG.getNode(ISD::SETCC, dl, 212 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 213 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 214 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 215 NewRHS = SDValue(); 216 } 217 } 218 219 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 220 /// current function. The returned value is a member of the 221 /// MachineJumpTableInfo::JTEntryKind enum. 222 unsigned TargetLowering::getJumpTableEncoding() const { 223 // In non-pic modes, just use the address of a block. 224 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 225 return MachineJumpTableInfo::EK_BlockAddress; 226 227 // In PIC mode, if the target supports a GPRel32 directive, use it. 228 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 229 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 230 231 // Otherwise, use a label difference. 232 return MachineJumpTableInfo::EK_LabelDifference32; 233 } 234 235 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 236 SelectionDAG &DAG) const { 237 // If our PIC model is GP relative, use the global offset table as the base. 238 unsigned JTEncoding = getJumpTableEncoding(); 239 240 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 241 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 242 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 243 244 return Table; 245 } 246 247 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 248 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 249 /// MCExpr. 250 const MCExpr * 251 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 252 unsigned JTI,MCContext &Ctx) const{ 253 // The normal PIC reloc base is the label at the start of the jump table. 254 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 255 } 256 257 bool 258 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 259 // Assume that everything is safe in static mode. 260 if (getTargetMachine().getRelocationModel() == Reloc::Static) 261 return true; 262 263 // In dynamic-no-pic mode, assume that known defined values are safe. 264 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 265 GA && 266 !GA->getGlobal()->isDeclaration() && 267 !GA->getGlobal()->isWeakForLinker()) 268 return true; 269 270 // Otherwise assume nothing is safe. 271 return false; 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Optimization Methods 276 //===----------------------------------------------------------------------===// 277 278 /// ShrinkDemandedConstant - Check to see if the specified operand of the 279 /// specified instruction is a constant integer. If so, check to see if there 280 /// are any bits set in the constant that are not demanded. If so, shrink the 281 /// constant and return true. 282 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 283 const APInt &Demanded) { 284 SDLoc dl(Op); 285 286 // FIXME: ISD::SELECT, ISD::SELECT_CC 287 switch (Op.getOpcode()) { 288 default: break; 289 case ISD::XOR: 290 case ISD::AND: 291 case ISD::OR: { 292 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 293 if (!C) return false; 294 295 if (Op.getOpcode() == ISD::XOR && 296 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 297 return false; 298 299 // if we can expand it to have all bits set, do it 300 if (C->getAPIntValue().intersects(~Demanded)) { 301 EVT VT = Op.getValueType(); 302 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 303 DAG.getConstant(Demanded & 304 C->getAPIntValue(), 305 VT)); 306 return CombineTo(Op, New); 307 } 308 309 break; 310 } 311 } 312 313 return false; 314 } 315 316 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 317 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 318 /// cast, but it could be generalized for targets with other types of 319 /// implicit widening casts. 320 bool 321 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 322 unsigned BitWidth, 323 const APInt &Demanded, 324 SDLoc dl) { 325 assert(Op.getNumOperands() == 2 && 326 "ShrinkDemandedOp only supports binary operators!"); 327 assert(Op.getNode()->getNumValues() == 1 && 328 "ShrinkDemandedOp only supports nodes with one result!"); 329 330 // Don't do this if the node has another user, which may require the 331 // full value. 332 if (!Op.getNode()->hasOneUse()) 333 return false; 334 335 // Search for the smallest integer type with free casts to and from 336 // Op's type. For expedience, just check power-of-2 integer types. 337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 338 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 339 unsigned SmallVTBits = DemandedSize; 340 if (!isPowerOf2_32(SmallVTBits)) 341 SmallVTBits = NextPowerOf2(SmallVTBits); 342 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 343 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 344 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 345 TLI.isZExtFree(SmallVT, Op.getValueType())) { 346 // We found a type with free casts. 347 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 348 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 349 Op.getNode()->getOperand(0)), 350 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 351 Op.getNode()->getOperand(1))); 352 bool NeedZext = DemandedSize > SmallVTBits; 353 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 354 dl, Op.getValueType(), X); 355 return CombineTo(Op, Z); 356 } 357 } 358 return false; 359 } 360 361 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 362 /// DemandedMask bits of the result of Op are ever used downstream. If we can 363 /// use this information to simplify Op, create a new simplified DAG node and 364 /// return true, returning the original and new nodes in Old and New. Otherwise, 365 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 366 /// the expression (used to simplify the caller). The KnownZero/One bits may 367 /// only be accurate for those bits in the DemandedMask. 368 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 369 const APInt &DemandedMask, 370 APInt &KnownZero, 371 APInt &KnownOne, 372 TargetLoweringOpt &TLO, 373 unsigned Depth) const { 374 unsigned BitWidth = DemandedMask.getBitWidth(); 375 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 376 "Mask size mismatches value type size!"); 377 APInt NewMask = DemandedMask; 378 SDLoc dl(Op); 379 380 // Don't know anything. 381 KnownZero = KnownOne = APInt(BitWidth, 0); 382 383 // Other users may use these bits. 384 if (!Op.getNode()->hasOneUse()) { 385 if (Depth != 0) { 386 // If not at the root, Just compute the KnownZero/KnownOne bits to 387 // simplify things downstream. 388 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 389 return false; 390 } 391 // If this is the root being simplified, allow it to have multiple uses, 392 // just set the NewMask to all bits. 393 NewMask = APInt::getAllOnesValue(BitWidth); 394 } else if (DemandedMask == 0) { 395 // Not demanding any bits from Op. 396 if (Op.getOpcode() != ISD::UNDEF) 397 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 398 return false; 399 } else if (Depth == 6) { // Limit search depth. 400 return false; 401 } 402 403 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 404 switch (Op.getOpcode()) { 405 case ISD::Constant: 406 // We know all of the bits for a constant! 407 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 408 KnownZero = ~KnownOne; 409 return false; // Don't fall through, will infinitely loop. 410 case ISD::AND: 411 // If the RHS is a constant, check to see if the LHS would be zero without 412 // using the bits from the RHS. Below, we use knowledge about the RHS to 413 // simplify the LHS, here we're using information from the LHS to simplify 414 // the RHS. 415 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 416 APInt LHSZero, LHSOne; 417 // Do not increment Depth here; that can cause an infinite loop. 418 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 419 // If the LHS already has zeros where RHSC does, this and is dead. 420 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 421 return TLO.CombineTo(Op, Op.getOperand(0)); 422 // If any of the set bits in the RHS are known zero on the LHS, shrink 423 // the constant. 424 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 425 return true; 426 } 427 428 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 429 KnownOne, TLO, Depth+1)) 430 return true; 431 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 432 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 433 KnownZero2, KnownOne2, TLO, Depth+1)) 434 return true; 435 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 436 437 // If all of the demanded bits are known one on one side, return the other. 438 // These bits cannot contribute to the result of the 'and'. 439 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 440 return TLO.CombineTo(Op, Op.getOperand(0)); 441 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 442 return TLO.CombineTo(Op, Op.getOperand(1)); 443 // If all of the demanded bits in the inputs are known zeros, return zero. 444 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 445 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 446 // If the RHS is a constant, see if we can simplify it. 447 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 448 return true; 449 // If the operation can be done in a smaller type, do so. 450 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 451 return true; 452 453 // Output known-1 bits are only known if set in both the LHS & RHS. 454 KnownOne &= KnownOne2; 455 // Output known-0 are known to be clear if zero in either the LHS | RHS. 456 KnownZero |= KnownZero2; 457 break; 458 case ISD::OR: 459 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 460 KnownOne, TLO, Depth+1)) 461 return true; 462 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 463 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 464 KnownZero2, KnownOne2, TLO, Depth+1)) 465 return true; 466 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 467 468 // If all of the demanded bits are known zero on one side, return the other. 469 // These bits cannot contribute to the result of the 'or'. 470 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 471 return TLO.CombineTo(Op, Op.getOperand(0)); 472 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 473 return TLO.CombineTo(Op, Op.getOperand(1)); 474 // If all of the potentially set bits on one side are known to be set on 475 // the other side, just use the 'other' side. 476 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 477 return TLO.CombineTo(Op, Op.getOperand(0)); 478 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 479 return TLO.CombineTo(Op, Op.getOperand(1)); 480 // If the RHS is a constant, see if we can simplify it. 481 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 482 return true; 483 // If the operation can be done in a smaller type, do so. 484 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 485 return true; 486 487 // Output known-0 bits are only known if clear in both the LHS & RHS. 488 KnownZero &= KnownZero2; 489 // Output known-1 are known to be set if set in either the LHS | RHS. 490 KnownOne |= KnownOne2; 491 break; 492 case ISD::XOR: 493 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 494 KnownOne, TLO, Depth+1)) 495 return true; 496 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 497 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 498 KnownOne2, TLO, Depth+1)) 499 return true; 500 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 501 502 // If all of the demanded bits are known zero on one side, return the other. 503 // These bits cannot contribute to the result of the 'xor'. 504 if ((KnownZero & NewMask) == NewMask) 505 return TLO.CombineTo(Op, Op.getOperand(0)); 506 if ((KnownZero2 & NewMask) == NewMask) 507 return TLO.CombineTo(Op, Op.getOperand(1)); 508 // If the operation can be done in a smaller type, do so. 509 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 510 return true; 511 512 // If all of the unknown bits are known to be zero on one side or the other 513 // (but not both) turn this into an *inclusive* or. 514 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 515 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 516 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 517 Op.getOperand(0), 518 Op.getOperand(1))); 519 520 // Output known-0 bits are known if clear or set in both the LHS & RHS. 521 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 522 // Output known-1 are known to be set if set in only one of the LHS, RHS. 523 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 524 525 // If all of the demanded bits on one side are known, and all of the set 526 // bits on that side are also known to be set on the other side, turn this 527 // into an AND, as we know the bits will be cleared. 528 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 529 // NB: it is okay if more bits are known than are requested 530 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 531 if (KnownOne == KnownOne2) { // set bits are the same on both sides 532 EVT VT = Op.getValueType(); 533 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 534 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 535 Op.getOperand(0), ANDC)); 536 } 537 } 538 539 // If the RHS is a constant, see if we can simplify it. 540 // for XOR, we prefer to force bits to 1 if they will make a -1. 541 // if we can't force bits, try to shrink constant 542 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 543 APInt Expanded = C->getAPIntValue() | (~NewMask); 544 // if we can expand it to have all bits set, do it 545 if (Expanded.isAllOnesValue()) { 546 if (Expanded != C->getAPIntValue()) { 547 EVT VT = Op.getValueType(); 548 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 549 TLO.DAG.getConstant(Expanded, VT)); 550 return TLO.CombineTo(Op, New); 551 } 552 // if it already has all the bits set, nothing to change 553 // but don't shrink either! 554 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 555 return true; 556 } 557 } 558 559 KnownZero = KnownZeroOut; 560 KnownOne = KnownOneOut; 561 break; 562 case ISD::SELECT: 563 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 564 KnownOne, TLO, Depth+1)) 565 return true; 566 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 567 KnownOne2, TLO, Depth+1)) 568 return true; 569 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 570 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 571 572 // If the operands are constants, see if we can simplify them. 573 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 574 return true; 575 576 // Only known if known in both the LHS and RHS. 577 KnownOne &= KnownOne2; 578 KnownZero &= KnownZero2; 579 break; 580 case ISD::SELECT_CC: 581 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 582 KnownOne, TLO, Depth+1)) 583 return true; 584 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 585 KnownOne2, TLO, Depth+1)) 586 return true; 587 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 588 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 589 590 // If the operands are constants, see if we can simplify them. 591 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 592 return true; 593 594 // Only known if known in both the LHS and RHS. 595 KnownOne &= KnownOne2; 596 KnownZero &= KnownZero2; 597 break; 598 case ISD::SHL: 599 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 600 unsigned ShAmt = SA->getZExtValue(); 601 SDValue InOp = Op.getOperand(0); 602 603 // If the shift count is an invalid immediate, don't do anything. 604 if (ShAmt >= BitWidth) 605 break; 606 607 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 608 // single shift. We can do this if the bottom bits (which are shifted 609 // out) are never demanded. 610 if (InOp.getOpcode() == ISD::SRL && 611 isa<ConstantSDNode>(InOp.getOperand(1))) { 612 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 613 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 614 unsigned Opc = ISD::SHL; 615 int Diff = ShAmt-C1; 616 if (Diff < 0) { 617 Diff = -Diff; 618 Opc = ISD::SRL; 619 } 620 621 SDValue NewSA = 622 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 623 EVT VT = Op.getValueType(); 624 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 625 InOp.getOperand(0), NewSA)); 626 } 627 } 628 629 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 630 KnownZero, KnownOne, TLO, Depth+1)) 631 return true; 632 633 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 634 // are not demanded. This will likely allow the anyext to be folded away. 635 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 636 SDValue InnerOp = InOp.getNode()->getOperand(0); 637 EVT InnerVT = InnerOp.getValueType(); 638 unsigned InnerBits = InnerVT.getSizeInBits(); 639 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 640 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 641 EVT ShTy = getShiftAmountTy(InnerVT); 642 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 643 ShTy = InnerVT; 644 SDValue NarrowShl = 645 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 646 TLO.DAG.getConstant(ShAmt, ShTy)); 647 return 648 TLO.CombineTo(Op, 649 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 650 NarrowShl)); 651 } 652 // Repeat the SHL optimization above in cases where an extension 653 // intervenes: (shl (anyext (shr x, c1)), c2) to 654 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 655 // aren't demanded (as above) and that the shifted upper c1 bits of 656 // x aren't demanded. 657 if (InOp.hasOneUse() && 658 InnerOp.getOpcode() == ISD::SRL && 659 InnerOp.hasOneUse() && 660 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 661 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 662 ->getZExtValue(); 663 if (InnerShAmt < ShAmt && 664 InnerShAmt < InnerBits && 665 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 666 NewMask.trunc(ShAmt) == 0) { 667 SDValue NewSA = 668 TLO.DAG.getConstant(ShAmt - InnerShAmt, 669 Op.getOperand(1).getValueType()); 670 EVT VT = Op.getValueType(); 671 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 672 InnerOp.getOperand(0)); 673 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 674 NewExt, NewSA)); 675 } 676 } 677 } 678 679 KnownZero <<= SA->getZExtValue(); 680 KnownOne <<= SA->getZExtValue(); 681 // low bits known zero. 682 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 683 } 684 break; 685 case ISD::SRL: 686 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 687 EVT VT = Op.getValueType(); 688 unsigned ShAmt = SA->getZExtValue(); 689 unsigned VTSize = VT.getSizeInBits(); 690 SDValue InOp = Op.getOperand(0); 691 692 // If the shift count is an invalid immediate, don't do anything. 693 if (ShAmt >= BitWidth) 694 break; 695 696 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 697 // single shift. We can do this if the top bits (which are shifted out) 698 // are never demanded. 699 if (InOp.getOpcode() == ISD::SHL && 700 isa<ConstantSDNode>(InOp.getOperand(1))) { 701 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 702 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 703 unsigned Opc = ISD::SRL; 704 int Diff = ShAmt-C1; 705 if (Diff < 0) { 706 Diff = -Diff; 707 Opc = ISD::SHL; 708 } 709 710 SDValue NewSA = 711 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 712 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 713 InOp.getOperand(0), NewSA)); 714 } 715 } 716 717 // Compute the new bits that are at the top now. 718 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 719 KnownZero, KnownOne, TLO, Depth+1)) 720 return true; 721 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 722 KnownZero = KnownZero.lshr(ShAmt); 723 KnownOne = KnownOne.lshr(ShAmt); 724 725 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 726 KnownZero |= HighBits; // High bits known zero. 727 } 728 break; 729 case ISD::SRA: 730 // If this is an arithmetic shift right and only the low-bit is set, we can 731 // always convert this into a logical shr, even if the shift amount is 732 // variable. The low bit of the shift cannot be an input sign bit unless 733 // the shift amount is >= the size of the datatype, which is undefined. 734 if (NewMask == 1) 735 return TLO.CombineTo(Op, 736 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 737 Op.getOperand(0), Op.getOperand(1))); 738 739 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 740 EVT VT = Op.getValueType(); 741 unsigned ShAmt = SA->getZExtValue(); 742 743 // If the shift count is an invalid immediate, don't do anything. 744 if (ShAmt >= BitWidth) 745 break; 746 747 APInt InDemandedMask = (NewMask << ShAmt); 748 749 // If any of the demanded bits are produced by the sign extension, we also 750 // demand the input sign bit. 751 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 752 if (HighBits.intersects(NewMask)) 753 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 754 755 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 756 KnownZero, KnownOne, TLO, Depth+1)) 757 return true; 758 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 759 KnownZero = KnownZero.lshr(ShAmt); 760 KnownOne = KnownOne.lshr(ShAmt); 761 762 // Handle the sign bit, adjusted to where it is now in the mask. 763 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 764 765 // If the input sign bit is known to be zero, or if none of the top bits 766 // are demanded, turn this into an unsigned shift right. 767 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) 768 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 769 Op.getOperand(0), 770 Op.getOperand(1))); 771 772 int Log2 = NewMask.exactLogBase2(); 773 if (Log2 >= 0) { 774 // The bit must come from the sign. 775 SDValue NewSA = 776 TLO.DAG.getConstant(BitWidth - 1 - Log2, 777 Op.getOperand(1).getValueType()); 778 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 779 Op.getOperand(0), NewSA)); 780 } 781 782 if (KnownOne.intersects(SignBit)) 783 // New bits are known one. 784 KnownOne |= HighBits; 785 } 786 break; 787 case ISD::SIGN_EXTEND_INREG: { 788 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 789 790 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 791 // If we only care about the highest bit, don't bother shifting right. 792 if (MsbMask == DemandedMask) { 793 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 794 SDValue InOp = Op.getOperand(0); 795 796 // Compute the correct shift amount type, which must be getShiftAmountTy 797 // for scalar types after legalization. 798 EVT ShiftAmtTy = Op.getValueType(); 799 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 800 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 801 802 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 803 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 804 Op.getValueType(), InOp, ShiftAmt)); 805 } 806 807 // Sign extension. Compute the demanded bits in the result that are not 808 // present in the input. 809 APInt NewBits = 810 APInt::getHighBitsSet(BitWidth, 811 BitWidth - ExVT.getScalarType().getSizeInBits()); 812 813 // If none of the extended bits are demanded, eliminate the sextinreg. 814 if ((NewBits & NewMask) == 0) 815 return TLO.CombineTo(Op, Op.getOperand(0)); 816 817 APInt InSignBit = 818 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 819 APInt InputDemandedBits = 820 APInt::getLowBitsSet(BitWidth, 821 ExVT.getScalarType().getSizeInBits()) & 822 NewMask; 823 824 // Since the sign extended bits are demanded, we know that the sign 825 // bit is demanded. 826 InputDemandedBits |= InSignBit; 827 828 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 829 KnownZero, KnownOne, TLO, Depth+1)) 830 return true; 831 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 832 833 // If the sign bit of the input is known set or clear, then we know the 834 // top bits of the result. 835 836 // If the input sign bit is known zero, convert this into a zero extension. 837 if (KnownZero.intersects(InSignBit)) 838 return TLO.CombineTo(Op, 839 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 840 841 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 842 KnownOne |= NewBits; 843 KnownZero &= ~NewBits; 844 } else { // Input sign bit unknown 845 KnownZero &= ~NewBits; 846 KnownOne &= ~NewBits; 847 } 848 break; 849 } 850 case ISD::BUILD_PAIR: { 851 EVT HalfVT = Op.getOperand(0).getValueType(); 852 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 853 854 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 855 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 856 857 APInt KnownZeroLo, KnownOneLo; 858 APInt KnownZeroHi, KnownOneHi; 859 860 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 861 KnownOneLo, TLO, Depth + 1)) 862 return true; 863 864 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 865 KnownOneHi, TLO, Depth + 1)) 866 return true; 867 868 KnownZero = KnownZeroLo.zext(BitWidth) | 869 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 870 871 KnownOne = KnownOneLo.zext(BitWidth) | 872 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 873 break; 874 } 875 case ISD::ZERO_EXTEND: { 876 unsigned OperandBitWidth = 877 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 878 APInt InMask = NewMask.trunc(OperandBitWidth); 879 880 // If none of the top bits are demanded, convert this into an any_extend. 881 APInt NewBits = 882 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 883 if (!NewBits.intersects(NewMask)) 884 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 885 Op.getValueType(), 886 Op.getOperand(0))); 887 888 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 889 KnownZero, KnownOne, TLO, Depth+1)) 890 return true; 891 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 892 KnownZero = KnownZero.zext(BitWidth); 893 KnownOne = KnownOne.zext(BitWidth); 894 KnownZero |= NewBits; 895 break; 896 } 897 case ISD::SIGN_EXTEND: { 898 EVT InVT = Op.getOperand(0).getValueType(); 899 unsigned InBits = InVT.getScalarType().getSizeInBits(); 900 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 901 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 902 APInt NewBits = ~InMask & NewMask; 903 904 // If none of the top bits are demanded, convert this into an any_extend. 905 if (NewBits == 0) 906 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 907 Op.getValueType(), 908 Op.getOperand(0))); 909 910 // Since some of the sign extended bits are demanded, we know that the sign 911 // bit is demanded. 912 APInt InDemandedBits = InMask & NewMask; 913 InDemandedBits |= InSignBit; 914 InDemandedBits = InDemandedBits.trunc(InBits); 915 916 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 917 KnownOne, TLO, Depth+1)) 918 return true; 919 KnownZero = KnownZero.zext(BitWidth); 920 KnownOne = KnownOne.zext(BitWidth); 921 922 // If the sign bit is known zero, convert this to a zero extend. 923 if (KnownZero.intersects(InSignBit)) 924 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 925 Op.getValueType(), 926 Op.getOperand(0))); 927 928 // If the sign bit is known one, the top bits match. 929 if (KnownOne.intersects(InSignBit)) { 930 KnownOne |= NewBits; 931 assert((KnownZero & NewBits) == 0); 932 } else { // Otherwise, top bits aren't known. 933 assert((KnownOne & NewBits) == 0); 934 assert((KnownZero & NewBits) == 0); 935 } 936 break; 937 } 938 case ISD::ANY_EXTEND: { 939 unsigned OperandBitWidth = 940 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 941 APInt InMask = NewMask.trunc(OperandBitWidth); 942 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 943 KnownZero, KnownOne, TLO, Depth+1)) 944 return true; 945 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 946 KnownZero = KnownZero.zext(BitWidth); 947 KnownOne = KnownOne.zext(BitWidth); 948 break; 949 } 950 case ISD::TRUNCATE: { 951 // Simplify the input, using demanded bit information, and compute the known 952 // zero/one bits live out. 953 unsigned OperandBitWidth = 954 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 955 APInt TruncMask = NewMask.zext(OperandBitWidth); 956 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 957 KnownZero, KnownOne, TLO, Depth+1)) 958 return true; 959 KnownZero = KnownZero.trunc(BitWidth); 960 KnownOne = KnownOne.trunc(BitWidth); 961 962 // If the input is only used by this truncate, see if we can shrink it based 963 // on the known demanded bits. 964 if (Op.getOperand(0).getNode()->hasOneUse()) { 965 SDValue In = Op.getOperand(0); 966 switch (In.getOpcode()) { 967 default: break; 968 case ISD::SRL: 969 // Shrink SRL by a constant if none of the high bits shifted in are 970 // demanded. 971 if (TLO.LegalTypes() && 972 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 973 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 974 // undesirable. 975 break; 976 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 977 if (!ShAmt) 978 break; 979 SDValue Shift = In.getOperand(1); 980 if (TLO.LegalTypes()) { 981 uint64_t ShVal = ShAmt->getZExtValue(); 982 Shift = 983 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 984 } 985 986 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 987 OperandBitWidth - BitWidth); 988 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 989 990 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 991 // None of the shifted in bits are needed. Add a truncate of the 992 // shift input, then shift it. 993 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 994 Op.getValueType(), 995 In.getOperand(0)); 996 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 997 Op.getValueType(), 998 NewTrunc, 999 Shift)); 1000 } 1001 break; 1002 } 1003 } 1004 1005 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1006 break; 1007 } 1008 case ISD::AssertZext: { 1009 // AssertZext demands all of the high bits, plus any of the low bits 1010 // demanded by its users. 1011 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1012 APInt InMask = APInt::getLowBitsSet(BitWidth, 1013 VT.getSizeInBits()); 1014 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1015 KnownZero, KnownOne, TLO, Depth+1)) 1016 return true; 1017 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1018 1019 KnownZero |= ~InMask & NewMask; 1020 break; 1021 } 1022 case ISD::BITCAST: 1023 // If this is an FP->Int bitcast and if the sign bit is the only 1024 // thing demanded, turn this into a FGETSIGN. 1025 if (!TLO.LegalOperations() && 1026 !Op.getValueType().isVector() && 1027 !Op.getOperand(0).getValueType().isVector() && 1028 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1029 Op.getOperand(0).getValueType().isFloatingPoint()) { 1030 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1031 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1032 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1033 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1034 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1035 // place. We expect the SHL to be eliminated by other optimizations. 1036 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1037 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1038 if (!OpVTLegal && OpVTSizeInBits > 32) 1039 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1040 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1041 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1042 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1043 Op.getValueType(), 1044 Sign, ShAmt)); 1045 } 1046 } 1047 break; 1048 case ISD::ADD: 1049 case ISD::MUL: 1050 case ISD::SUB: { 1051 // Add, Sub, and Mul don't demand any bits in positions beyond that 1052 // of the highest bit demanded of them. 1053 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1054 BitWidth - NewMask.countLeadingZeros()); 1055 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1056 KnownOne2, TLO, Depth+1)) 1057 return true; 1058 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1059 KnownOne2, TLO, Depth+1)) 1060 return true; 1061 // See if the operation should be performed at a smaller bit width. 1062 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1063 return true; 1064 } 1065 // FALL THROUGH 1066 default: 1067 // Just use computeKnownBits to compute output bits. 1068 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1069 break; 1070 } 1071 1072 // If we know the value of all of the demanded bits, return this as a 1073 // constant. 1074 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1075 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1076 1077 return false; 1078 } 1079 1080 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1081 /// in Mask are known to be either zero or one and return them in the 1082 /// KnownZero/KnownOne bitsets. 1083 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1084 APInt &KnownZero, 1085 APInt &KnownOne, 1086 const SelectionDAG &DAG, 1087 unsigned Depth) const { 1088 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1089 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1090 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1091 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1092 "Should use MaskedValueIsZero if you don't know whether Op" 1093 " is a target node!"); 1094 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1095 } 1096 1097 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1098 /// targets that want to expose additional information about sign bits to the 1099 /// DAG Combiner. 1100 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1101 const SelectionDAG &, 1102 unsigned Depth) const { 1103 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1104 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1105 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1106 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1107 "Should use ComputeNumSignBits if you don't know whether Op" 1108 " is a target node!"); 1109 return 1; 1110 } 1111 1112 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1113 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1114 /// determine which bit is set. 1115 /// 1116 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1117 // A left-shift of a constant one will have exactly one bit set, because 1118 // shifting the bit off the end is undefined. 1119 if (Val.getOpcode() == ISD::SHL) 1120 if (ConstantSDNode *C = 1121 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1122 if (C->getAPIntValue() == 1) 1123 return true; 1124 1125 // Similarly, a right-shift of a constant sign-bit will have exactly 1126 // one bit set. 1127 if (Val.getOpcode() == ISD::SRL) 1128 if (ConstantSDNode *C = 1129 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1130 if (C->getAPIntValue().isSignBit()) 1131 return true; 1132 1133 // More could be done here, though the above checks are enough 1134 // to handle some common cases. 1135 1136 // Fall back to computeKnownBits to catch other known cases. 1137 EVT OpVT = Val.getValueType(); 1138 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1139 APInt KnownZero, KnownOne; 1140 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1141 return (KnownZero.countPopulation() == BitWidth - 1) && 1142 (KnownOne.countPopulation() == 1); 1143 } 1144 1145 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1146 if (!N) 1147 return false; 1148 1149 bool IsVec = false; 1150 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1151 if (!CN) { 1152 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1153 if (!BV) 1154 return false; 1155 1156 IsVec = true; 1157 CN = BV->getConstantSplatValue(); 1158 } 1159 1160 switch (getBooleanContents(IsVec)) { 1161 case UndefinedBooleanContent: 1162 return CN->getAPIntValue()[0]; 1163 case ZeroOrOneBooleanContent: 1164 return CN->isOne(); 1165 case ZeroOrNegativeOneBooleanContent: 1166 return CN->isAllOnesValue(); 1167 } 1168 1169 llvm_unreachable("Invalid boolean contents"); 1170 } 1171 1172 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1173 if (!N) 1174 return false; 1175 1176 bool IsVec = false; 1177 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1178 if (!CN) { 1179 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1180 if (!BV) 1181 return false; 1182 1183 IsVec = true; 1184 CN = BV->getConstantSplatValue(); 1185 } 1186 1187 if (getBooleanContents(IsVec) == UndefinedBooleanContent) 1188 return !CN->getAPIntValue()[0]; 1189 1190 return CN->isNullValue(); 1191 } 1192 1193 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1194 /// and cc. If it is unable to simplify it, return a null SDValue. 1195 SDValue 1196 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1197 ISD::CondCode Cond, bool foldBooleans, 1198 DAGCombinerInfo &DCI, SDLoc dl) const { 1199 SelectionDAG &DAG = DCI.DAG; 1200 1201 // These setcc operations always fold. 1202 switch (Cond) { 1203 default: break; 1204 case ISD::SETFALSE: 1205 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1206 case ISD::SETTRUE: 1207 case ISD::SETTRUE2: { 1208 TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector()); 1209 return DAG.getConstant( 1210 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT); 1211 } 1212 } 1213 1214 // Ensure that the constant occurs on the RHS, and fold constant 1215 // comparisons. 1216 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1217 if (isa<ConstantSDNode>(N0.getNode()) && 1218 (DCI.isBeforeLegalizeOps() || 1219 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1220 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1221 1222 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1223 const APInt &C1 = N1C->getAPIntValue(); 1224 1225 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1226 // equality comparison, then we're just comparing whether X itself is 1227 // zero. 1228 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1229 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1230 N0.getOperand(1).getOpcode() == ISD::Constant) { 1231 const APInt &ShAmt 1232 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1233 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1234 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1235 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1236 // (srl (ctlz x), 5) == 0 -> X != 0 1237 // (srl (ctlz x), 5) != 1 -> X != 0 1238 Cond = ISD::SETNE; 1239 } else { 1240 // (srl (ctlz x), 5) != 0 -> X == 0 1241 // (srl (ctlz x), 5) == 1 -> X == 0 1242 Cond = ISD::SETEQ; 1243 } 1244 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1245 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1246 Zero, Cond); 1247 } 1248 } 1249 1250 SDValue CTPOP = N0; 1251 // Look through truncs that don't change the value of a ctpop. 1252 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1253 CTPOP = N0.getOperand(0); 1254 1255 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1256 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1257 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1258 EVT CTVT = CTPOP.getValueType(); 1259 SDValue CTOp = CTPOP.getOperand(0); 1260 1261 // (ctpop x) u< 2 -> (x & x-1) == 0 1262 // (ctpop x) u> 1 -> (x & x-1) != 0 1263 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1264 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1265 DAG.getConstant(1, CTVT)); 1266 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1267 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1268 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1269 } 1270 1271 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1272 } 1273 1274 // (zext x) == C --> x == (trunc C) 1275 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 1276 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1277 unsigned MinBits = N0.getValueSizeInBits(); 1278 SDValue PreZExt; 1279 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1280 // ZExt 1281 MinBits = N0->getOperand(0).getValueSizeInBits(); 1282 PreZExt = N0->getOperand(0); 1283 } else if (N0->getOpcode() == ISD::AND) { 1284 // DAGCombine turns costly ZExts into ANDs 1285 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1286 if ((C->getAPIntValue()+1).isPowerOf2()) { 1287 MinBits = C->getAPIntValue().countTrailingOnes(); 1288 PreZExt = N0->getOperand(0); 1289 } 1290 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1291 // ZEXTLOAD 1292 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1293 MinBits = LN0->getMemoryVT().getSizeInBits(); 1294 PreZExt = N0; 1295 } 1296 } 1297 1298 // Make sure we're not losing bits from the constant. 1299 if (MinBits > 0 && 1300 MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { 1301 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1302 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1303 // Will get folded away. 1304 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 1305 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 1306 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1307 } 1308 } 1309 } 1310 1311 // If the LHS is '(and load, const)', the RHS is 0, 1312 // the test is for equality or unsigned, and all 1 bits of the const are 1313 // in the same partial word, see if we can shorten the load. 1314 if (DCI.isBeforeLegalize() && 1315 !ISD::isSignedIntSetCC(Cond) && 1316 N0.getOpcode() == ISD::AND && C1 == 0 && 1317 N0.getNode()->hasOneUse() && 1318 isa<LoadSDNode>(N0.getOperand(0)) && 1319 N0.getOperand(0).getNode()->hasOneUse() && 1320 isa<ConstantSDNode>(N0.getOperand(1))) { 1321 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1322 APInt bestMask; 1323 unsigned bestWidth = 0, bestOffset = 0; 1324 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1325 unsigned origWidth = N0.getValueType().getSizeInBits(); 1326 unsigned maskWidth = origWidth; 1327 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1328 // 8 bits, but have to be careful... 1329 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1330 origWidth = Lod->getMemoryVT().getSizeInBits(); 1331 const APInt &Mask = 1332 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1333 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1334 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1335 for (unsigned offset=0; offset<origWidth/width; offset++) { 1336 if ((newMask & Mask) == Mask) { 1337 if (!getDataLayout()->isLittleEndian()) 1338 bestOffset = (origWidth/width - offset - 1) * (width/8); 1339 else 1340 bestOffset = (uint64_t)offset * (width/8); 1341 bestMask = Mask.lshr(offset * (width/8) * 8); 1342 bestWidth = width; 1343 break; 1344 } 1345 newMask = newMask << width; 1346 } 1347 } 1348 } 1349 if (bestWidth) { 1350 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1351 if (newVT.isRound()) { 1352 EVT PtrType = Lod->getOperand(1).getValueType(); 1353 SDValue Ptr = Lod->getBasePtr(); 1354 if (bestOffset != 0) 1355 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1356 DAG.getConstant(bestOffset, PtrType)); 1357 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1358 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1359 Lod->getPointerInfo().getWithOffset(bestOffset), 1360 false, false, false, NewAlign); 1361 return DAG.getSetCC(dl, VT, 1362 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1363 DAG.getConstant(bestMask.trunc(bestWidth), 1364 newVT)), 1365 DAG.getConstant(0LL, newVT), Cond); 1366 } 1367 } 1368 } 1369 1370 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1371 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1372 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1373 1374 // If the comparison constant has bits in the upper part, the 1375 // zero-extended value could never match. 1376 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1377 C1.getBitWidth() - InSize))) { 1378 switch (Cond) { 1379 case ISD::SETUGT: 1380 case ISD::SETUGE: 1381 case ISD::SETEQ: return DAG.getConstant(0, VT); 1382 case ISD::SETULT: 1383 case ISD::SETULE: 1384 case ISD::SETNE: return DAG.getConstant(1, VT); 1385 case ISD::SETGT: 1386 case ISD::SETGE: 1387 // True if the sign bit of C1 is set. 1388 return DAG.getConstant(C1.isNegative(), VT); 1389 case ISD::SETLT: 1390 case ISD::SETLE: 1391 // True if the sign bit of C1 isn't set. 1392 return DAG.getConstant(C1.isNonNegative(), VT); 1393 default: 1394 break; 1395 } 1396 } 1397 1398 // Otherwise, we can perform the comparison with the low bits. 1399 switch (Cond) { 1400 case ISD::SETEQ: 1401 case ISD::SETNE: 1402 case ISD::SETUGT: 1403 case ISD::SETUGE: 1404 case ISD::SETULT: 1405 case ISD::SETULE: { 1406 EVT newVT = N0.getOperand(0).getValueType(); 1407 if (DCI.isBeforeLegalizeOps() || 1408 (isOperationLegal(ISD::SETCC, newVT) && 1409 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1410 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT); 1411 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT); 1412 1413 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1414 NewConst, Cond); 1415 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT); 1416 } 1417 break; 1418 } 1419 default: 1420 break; // todo, be more careful with signed comparisons 1421 } 1422 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1423 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1424 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1425 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1426 EVT ExtDstTy = N0.getValueType(); 1427 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1428 1429 // If the constant doesn't fit into the number of bits for the source of 1430 // the sign extension, it is impossible for both sides to be equal. 1431 if (C1.getMinSignedBits() > ExtSrcTyBits) 1432 return DAG.getConstant(Cond == ISD::SETNE, VT); 1433 1434 SDValue ZextOp; 1435 EVT Op0Ty = N0.getOperand(0).getValueType(); 1436 if (Op0Ty == ExtSrcTy) { 1437 ZextOp = N0.getOperand(0); 1438 } else { 1439 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1440 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1441 DAG.getConstant(Imm, Op0Ty)); 1442 } 1443 if (!DCI.isCalledByLegalizer()) 1444 DCI.AddToWorklist(ZextOp.getNode()); 1445 // Otherwise, make this a use of a zext. 1446 return DAG.getSetCC(dl, VT, ZextOp, 1447 DAG.getConstant(C1 & APInt::getLowBitsSet( 1448 ExtDstTyBits, 1449 ExtSrcTyBits), 1450 ExtDstTy), 1451 Cond); 1452 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1453 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1454 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1455 if (N0.getOpcode() == ISD::SETCC && 1456 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1457 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1458 if (TrueWhenTrue) 1459 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1460 // Invert the condition. 1461 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1462 CC = ISD::getSetCCInverse(CC, 1463 N0.getOperand(0).getValueType().isInteger()); 1464 if (DCI.isBeforeLegalizeOps() || 1465 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1466 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1467 } 1468 1469 if ((N0.getOpcode() == ISD::XOR || 1470 (N0.getOpcode() == ISD::AND && 1471 N0.getOperand(0).getOpcode() == ISD::XOR && 1472 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1473 isa<ConstantSDNode>(N0.getOperand(1)) && 1474 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1475 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1476 // can only do this if the top bits are known zero. 1477 unsigned BitWidth = N0.getValueSizeInBits(); 1478 if (DAG.MaskedValueIsZero(N0, 1479 APInt::getHighBitsSet(BitWidth, 1480 BitWidth-1))) { 1481 // Okay, get the un-inverted input value. 1482 SDValue Val; 1483 if (N0.getOpcode() == ISD::XOR) 1484 Val = N0.getOperand(0); 1485 else { 1486 assert(N0.getOpcode() == ISD::AND && 1487 N0.getOperand(0).getOpcode() == ISD::XOR); 1488 // ((X^1)&1)^1 -> X & 1 1489 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1490 N0.getOperand(0).getOperand(0), 1491 N0.getOperand(1)); 1492 } 1493 1494 return DAG.getSetCC(dl, VT, Val, N1, 1495 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1496 } 1497 } else if (N1C->getAPIntValue() == 1 && 1498 (VT == MVT::i1 || 1499 getBooleanContents(false) == ZeroOrOneBooleanContent)) { 1500 SDValue Op0 = N0; 1501 if (Op0.getOpcode() == ISD::TRUNCATE) 1502 Op0 = Op0.getOperand(0); 1503 1504 if ((Op0.getOpcode() == ISD::XOR) && 1505 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1506 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1507 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1508 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1509 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1510 Cond); 1511 } 1512 if (Op0.getOpcode() == ISD::AND && 1513 isa<ConstantSDNode>(Op0.getOperand(1)) && 1514 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1515 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1516 if (Op0.getValueType().bitsGT(VT)) 1517 Op0 = DAG.getNode(ISD::AND, dl, VT, 1518 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1519 DAG.getConstant(1, VT)); 1520 else if (Op0.getValueType().bitsLT(VT)) 1521 Op0 = DAG.getNode(ISD::AND, dl, VT, 1522 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1523 DAG.getConstant(1, VT)); 1524 1525 return DAG.getSetCC(dl, VT, Op0, 1526 DAG.getConstant(0, Op0.getValueType()), 1527 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1528 } 1529 if (Op0.getOpcode() == ISD::AssertZext && 1530 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1531 return DAG.getSetCC(dl, VT, Op0, 1532 DAG.getConstant(0, Op0.getValueType()), 1533 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1534 } 1535 } 1536 1537 APInt MinVal, MaxVal; 1538 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1539 if (ISD::isSignedIntSetCC(Cond)) { 1540 MinVal = APInt::getSignedMinValue(OperandBitSize); 1541 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1542 } else { 1543 MinVal = APInt::getMinValue(OperandBitSize); 1544 MaxVal = APInt::getMaxValue(OperandBitSize); 1545 } 1546 1547 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1548 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1549 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 1550 // X >= C0 --> X > (C0 - 1) 1551 APInt C = C1 - 1; 1552 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1553 if ((DCI.isBeforeLegalizeOps() || 1554 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1555 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1556 isLegalICmpImmediate(C.getSExtValue())))) { 1557 return DAG.getSetCC(dl, VT, N0, 1558 DAG.getConstant(C, N1.getValueType()), 1559 NewCC); 1560 } 1561 } 1562 1563 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1564 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 1565 // X <= C0 --> X < (C0 + 1) 1566 APInt C = C1 + 1; 1567 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1568 if ((DCI.isBeforeLegalizeOps() || 1569 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1570 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1571 isLegalICmpImmediate(C.getSExtValue())))) { 1572 return DAG.getSetCC(dl, VT, N0, 1573 DAG.getConstant(C, N1.getValueType()), 1574 NewCC); 1575 } 1576 } 1577 1578 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1579 return DAG.getConstant(0, VT); // X < MIN --> false 1580 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1581 return DAG.getConstant(1, VT); // X >= MIN --> true 1582 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1583 return DAG.getConstant(0, VT); // X > MAX --> false 1584 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1585 return DAG.getConstant(1, VT); // X <= MAX --> true 1586 1587 // Canonicalize setgt X, Min --> setne X, Min 1588 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1589 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1590 // Canonicalize setlt X, Max --> setne X, Max 1591 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1592 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1593 1594 // If we have setult X, 1, turn it into seteq X, 0 1595 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1596 return DAG.getSetCC(dl, VT, N0, 1597 DAG.getConstant(MinVal, N0.getValueType()), 1598 ISD::SETEQ); 1599 // If we have setugt X, Max-1, turn it into seteq X, Max 1600 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1601 return DAG.getSetCC(dl, VT, N0, 1602 DAG.getConstant(MaxVal, N0.getValueType()), 1603 ISD::SETEQ); 1604 1605 // If we have "setcc X, C0", check to see if we can shrink the immediate 1606 // by changing cc. 1607 1608 // SETUGT X, SINTMAX -> SETLT X, 0 1609 if (Cond == ISD::SETUGT && 1610 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1611 return DAG.getSetCC(dl, VT, N0, 1612 DAG.getConstant(0, N1.getValueType()), 1613 ISD::SETLT); 1614 1615 // SETULT X, SINTMIN -> SETGT X, -1 1616 if (Cond == ISD::SETULT && 1617 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1618 SDValue ConstMinusOne = 1619 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 1620 N1.getValueType()); 1621 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1622 } 1623 1624 // Fold bit comparisons when we can. 1625 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1626 (VT == N0.getValueType() || 1627 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1628 N0.getOpcode() == ISD::AND) 1629 if (ConstantSDNode *AndRHS = 1630 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1631 EVT ShiftTy = DCI.isBeforeLegalize() ? 1632 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1633 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1634 // Perform the xform if the AND RHS is a single bit. 1635 if (AndRHS->getAPIntValue().isPowerOf2()) { 1636 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1637 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1638 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 1639 } 1640 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1641 // (X & 8) == 8 --> (X & 8) >> 3 1642 // Perform the xform if C1 is a single bit. 1643 if (C1.isPowerOf2()) { 1644 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1645 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1646 DAG.getConstant(C1.logBase2(), ShiftTy))); 1647 } 1648 } 1649 } 1650 1651 if (C1.getMinSignedBits() <= 64 && 1652 !isLegalICmpImmediate(C1.getSExtValue())) { 1653 // (X & -256) == 256 -> (X >> 8) == 1 1654 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1655 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1656 if (ConstantSDNode *AndRHS = 1657 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1658 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1659 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1660 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1661 EVT ShiftTy = DCI.isBeforeLegalize() ? 1662 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1663 EVT CmpTy = N0.getValueType(); 1664 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1665 DAG.getConstant(ShiftBits, ShiftTy)); 1666 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); 1667 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1668 } 1669 } 1670 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1671 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1672 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1673 // X < 0x100000000 -> (X >> 32) < 1 1674 // X >= 0x100000000 -> (X >> 32) >= 1 1675 // X <= 0x0ffffffff -> (X >> 32) < 1 1676 // X > 0x0ffffffff -> (X >> 32) >= 1 1677 unsigned ShiftBits; 1678 APInt NewC = C1; 1679 ISD::CondCode NewCond = Cond; 1680 if (AdjOne) { 1681 ShiftBits = C1.countTrailingOnes(); 1682 NewC = NewC + 1; 1683 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1684 } else { 1685 ShiftBits = C1.countTrailingZeros(); 1686 } 1687 NewC = NewC.lshr(ShiftBits); 1688 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1689 EVT ShiftTy = DCI.isBeforeLegalize() ? 1690 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1691 EVT CmpTy = N0.getValueType(); 1692 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1693 DAG.getConstant(ShiftBits, ShiftTy)); 1694 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); 1695 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1696 } 1697 } 1698 } 1699 } 1700 1701 if (isa<ConstantFPSDNode>(N0.getNode())) { 1702 // Constant fold or commute setcc. 1703 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1704 if (O.getNode()) return O; 1705 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1706 // If the RHS of an FP comparison is a constant, simplify it away in 1707 // some cases. 1708 if (CFP->getValueAPF().isNaN()) { 1709 // If an operand is known to be a nan, we can fold it. 1710 switch (ISD::getUnorderedFlavor(Cond)) { 1711 default: llvm_unreachable("Unknown flavor!"); 1712 case 0: // Known false. 1713 return DAG.getConstant(0, VT); 1714 case 1: // Known true. 1715 return DAG.getConstant(1, VT); 1716 case 2: // Undefined. 1717 return DAG.getUNDEF(VT); 1718 } 1719 } 1720 1721 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1722 // constant if knowing that the operand is non-nan is enough. We prefer to 1723 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1724 // materialize 0.0. 1725 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1726 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1727 1728 // If the condition is not legal, see if we can find an equivalent one 1729 // which is legal. 1730 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1731 // If the comparison was an awkward floating-point == or != and one of 1732 // the comparison operands is infinity or negative infinity, convert the 1733 // condition to a less-awkward <= or >=. 1734 if (CFP->getValueAPF().isInfinity()) { 1735 if (CFP->getValueAPF().isNegative()) { 1736 if (Cond == ISD::SETOEQ && 1737 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1738 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1739 if (Cond == ISD::SETUEQ && 1740 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1741 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1742 if (Cond == ISD::SETUNE && 1743 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1744 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1745 if (Cond == ISD::SETONE && 1746 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1747 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1748 } else { 1749 if (Cond == ISD::SETOEQ && 1750 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1751 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1752 if (Cond == ISD::SETUEQ && 1753 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1754 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1755 if (Cond == ISD::SETUNE && 1756 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1757 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1758 if (Cond == ISD::SETONE && 1759 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1760 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1761 } 1762 } 1763 } 1764 } 1765 1766 if (N0 == N1) { 1767 // The sext(setcc()) => setcc() optimization relies on the appropriate 1768 // constant being emitted. 1769 uint64_t EqVal = 0; 1770 switch (getBooleanContents(N0.getValueType().isVector())) { 1771 case UndefinedBooleanContent: 1772 case ZeroOrOneBooleanContent: 1773 EqVal = ISD::isTrueWhenEqual(Cond); 1774 break; 1775 case ZeroOrNegativeOneBooleanContent: 1776 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1777 break; 1778 } 1779 1780 // We can always fold X == X for integer setcc's. 1781 if (N0.getValueType().isInteger()) { 1782 return DAG.getConstant(EqVal, VT); 1783 } 1784 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1785 if (UOF == 2) // FP operators that are undefined on NaNs. 1786 return DAG.getConstant(EqVal, VT); 1787 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1788 return DAG.getConstant(EqVal, VT); 1789 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1790 // if it is not already. 1791 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1792 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1793 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1794 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1795 } 1796 1797 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1798 N0.getValueType().isInteger()) { 1799 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1800 N0.getOpcode() == ISD::XOR) { 1801 // Simplify (X+Y) == (X+Z) --> Y == Z 1802 if (N0.getOpcode() == N1.getOpcode()) { 1803 if (N0.getOperand(0) == N1.getOperand(0)) 1804 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1805 if (N0.getOperand(1) == N1.getOperand(1)) 1806 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1807 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1808 // If X op Y == Y op X, try other combinations. 1809 if (N0.getOperand(0) == N1.getOperand(1)) 1810 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1811 Cond); 1812 if (N0.getOperand(1) == N1.getOperand(0)) 1813 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1814 Cond); 1815 } 1816 } 1817 1818 // If RHS is a legal immediate value for a compare instruction, we need 1819 // to be careful about increasing register pressure needlessly. 1820 bool LegalRHSImm = false; 1821 1822 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1823 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1824 // Turn (X+C1) == C2 --> X == C2-C1 1825 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1826 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1827 DAG.getConstant(RHSC->getAPIntValue()- 1828 LHSR->getAPIntValue(), 1829 N0.getValueType()), Cond); 1830 } 1831 1832 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1833 if (N0.getOpcode() == ISD::XOR) 1834 // If we know that all of the inverted bits are zero, don't bother 1835 // performing the inversion. 1836 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1837 return 1838 DAG.getSetCC(dl, VT, N0.getOperand(0), 1839 DAG.getConstant(LHSR->getAPIntValue() ^ 1840 RHSC->getAPIntValue(), 1841 N0.getValueType()), 1842 Cond); 1843 } 1844 1845 // Turn (C1-X) == C2 --> X == C1-C2 1846 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1847 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1848 return 1849 DAG.getSetCC(dl, VT, N0.getOperand(1), 1850 DAG.getConstant(SUBC->getAPIntValue() - 1851 RHSC->getAPIntValue(), 1852 N0.getValueType()), 1853 Cond); 1854 } 1855 } 1856 1857 // Could RHSC fold directly into a compare? 1858 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1859 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1860 } 1861 1862 // Simplify (X+Z) == X --> Z == 0 1863 // Don't do this if X is an immediate that can fold into a cmp 1864 // instruction and X+Z has other uses. It could be an induction variable 1865 // chain, and the transform would increase register pressure. 1866 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1867 if (N0.getOperand(0) == N1) 1868 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1869 DAG.getConstant(0, N0.getValueType()), Cond); 1870 if (N0.getOperand(1) == N1) { 1871 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1872 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1873 DAG.getConstant(0, N0.getValueType()), Cond); 1874 if (N0.getNode()->hasOneUse()) { 1875 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1876 // (Z-X) == X --> Z == X<<1 1877 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1878 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 1879 if (!DCI.isCalledByLegalizer()) 1880 DCI.AddToWorklist(SH.getNode()); 1881 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1882 } 1883 } 1884 } 1885 } 1886 1887 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1888 N1.getOpcode() == ISD::XOR) { 1889 // Simplify X == (X+Z) --> Z == 0 1890 if (N1.getOperand(0) == N0) 1891 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1892 DAG.getConstant(0, N1.getValueType()), Cond); 1893 if (N1.getOperand(1) == N0) { 1894 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1895 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1896 DAG.getConstant(0, N1.getValueType()), Cond); 1897 if (N1.getNode()->hasOneUse()) { 1898 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1899 // X == (Z-X) --> X<<1 == Z 1900 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1901 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 1902 if (!DCI.isCalledByLegalizer()) 1903 DCI.AddToWorklist(SH.getNode()); 1904 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1905 } 1906 } 1907 } 1908 1909 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1910 // Note that where y is variable and is known to have at most 1911 // one bit set (for example, if it is z&1) we cannot do this; 1912 // the expressions are not equivalent when y==0. 1913 if (N0.getOpcode() == ISD::AND) 1914 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1915 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1916 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1917 if (DCI.isBeforeLegalizeOps() || 1918 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1919 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 1920 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1921 } 1922 } 1923 } 1924 if (N1.getOpcode() == ISD::AND) 1925 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1926 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1927 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1928 if (DCI.isBeforeLegalizeOps() || 1929 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 1930 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1931 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1932 } 1933 } 1934 } 1935 } 1936 1937 // Fold away ALL boolean setcc's. 1938 SDValue Temp; 1939 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1940 switch (Cond) { 1941 default: llvm_unreachable("Unknown integer setcc!"); 1942 case ISD::SETEQ: // X == Y -> ~(X^Y) 1943 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1944 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1945 if (!DCI.isCalledByLegalizer()) 1946 DCI.AddToWorklist(Temp.getNode()); 1947 break; 1948 case ISD::SETNE: // X != Y --> (X^Y) 1949 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1950 break; 1951 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 1952 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 1953 Temp = DAG.getNOT(dl, N0, MVT::i1); 1954 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 1955 if (!DCI.isCalledByLegalizer()) 1956 DCI.AddToWorklist(Temp.getNode()); 1957 break; 1958 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 1959 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 1960 Temp = DAG.getNOT(dl, N1, MVT::i1); 1961 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 1962 if (!DCI.isCalledByLegalizer()) 1963 DCI.AddToWorklist(Temp.getNode()); 1964 break; 1965 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 1966 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 1967 Temp = DAG.getNOT(dl, N0, MVT::i1); 1968 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 1969 if (!DCI.isCalledByLegalizer()) 1970 DCI.AddToWorklist(Temp.getNode()); 1971 break; 1972 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 1973 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 1974 Temp = DAG.getNOT(dl, N1, MVT::i1); 1975 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 1976 break; 1977 } 1978 if (VT != MVT::i1) { 1979 if (!DCI.isCalledByLegalizer()) 1980 DCI.AddToWorklist(N0.getNode()); 1981 // FIXME: If running after legalize, we probably can't do this. 1982 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 1983 } 1984 return N0; 1985 } 1986 1987 // Could not fold it. 1988 return SDValue(); 1989 } 1990 1991 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 1992 /// node is a GlobalAddress + offset. 1993 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 1994 int64_t &Offset) const { 1995 if (isa<GlobalAddressSDNode>(N)) { 1996 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 1997 GA = GASD->getGlobal(); 1998 Offset += GASD->getOffset(); 1999 return true; 2000 } 2001 2002 if (N->getOpcode() == ISD::ADD) { 2003 SDValue N1 = N->getOperand(0); 2004 SDValue N2 = N->getOperand(1); 2005 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2006 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2007 if (V) { 2008 Offset += V->getSExtValue(); 2009 return true; 2010 } 2011 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2012 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2013 if (V) { 2014 Offset += V->getSExtValue(); 2015 return true; 2016 } 2017 } 2018 } 2019 2020 return false; 2021 } 2022 2023 2024 SDValue TargetLowering:: 2025 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2026 // Default implementation: no optimization. 2027 return SDValue(); 2028 } 2029 2030 //===----------------------------------------------------------------------===// 2031 // Inline Assembler Implementation Methods 2032 //===----------------------------------------------------------------------===// 2033 2034 2035 TargetLowering::ConstraintType 2036 TargetLowering::getConstraintType(const std::string &Constraint) const { 2037 unsigned S = Constraint.size(); 2038 2039 if (S == 1) { 2040 switch (Constraint[0]) { 2041 default: break; 2042 case 'r': return C_RegisterClass; 2043 case 'm': // memory 2044 case 'o': // offsetable 2045 case 'V': // not offsetable 2046 return C_Memory; 2047 case 'i': // Simple Integer or Relocatable Constant 2048 case 'n': // Simple Integer 2049 case 'E': // Floating Point Constant 2050 case 'F': // Floating Point Constant 2051 case 's': // Relocatable Constant 2052 case 'p': // Address. 2053 case 'X': // Allow ANY value. 2054 case 'I': // Target registers. 2055 case 'J': 2056 case 'K': 2057 case 'L': 2058 case 'M': 2059 case 'N': 2060 case 'O': 2061 case 'P': 2062 case '<': 2063 case '>': 2064 return C_Other; 2065 } 2066 } 2067 2068 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2069 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 2070 return C_Memory; 2071 return C_Register; 2072 } 2073 return C_Unknown; 2074 } 2075 2076 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2077 /// with another that has more specific requirements based on the type of the 2078 /// corresponding operand. 2079 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2080 if (ConstraintVT.isInteger()) 2081 return "r"; 2082 if (ConstraintVT.isFloatingPoint()) 2083 return "f"; // works for many targets 2084 return nullptr; 2085 } 2086 2087 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2088 /// vector. If it is invalid, don't add anything to Ops. 2089 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2090 std::string &Constraint, 2091 std::vector<SDValue> &Ops, 2092 SelectionDAG &DAG) const { 2093 2094 if (Constraint.length() > 1) return; 2095 2096 char ConstraintLetter = Constraint[0]; 2097 switch (ConstraintLetter) { 2098 default: break; 2099 case 'X': // Allows any operand; labels (basic block) use this. 2100 if (Op.getOpcode() == ISD::BasicBlock) { 2101 Ops.push_back(Op); 2102 return; 2103 } 2104 // fall through 2105 case 'i': // Simple Integer or Relocatable Constant 2106 case 'n': // Simple Integer 2107 case 's': { // Relocatable Constant 2108 // These operands are interested in values of the form (GV+C), where C may 2109 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2110 // is possible and fine if either GV or C are missing. 2111 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2112 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2113 2114 // If we have "(add GV, C)", pull out GV/C 2115 if (Op.getOpcode() == ISD::ADD) { 2116 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2117 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2118 if (!C || !GA) { 2119 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2120 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2121 } 2122 if (!C || !GA) 2123 C = nullptr, GA = nullptr; 2124 } 2125 2126 // If we find a valid operand, map to the TargetXXX version so that the 2127 // value itself doesn't get selected. 2128 if (GA) { // Either &GV or &GV+C 2129 if (ConstraintLetter != 'n') { 2130 int64_t Offs = GA->getOffset(); 2131 if (C) Offs += C->getZExtValue(); 2132 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2133 C ? SDLoc(C) : SDLoc(), 2134 Op.getValueType(), Offs)); 2135 return; 2136 } 2137 } 2138 if (C) { // just C, no GV. 2139 // Simple constants are not allowed for 's'. 2140 if (ConstraintLetter != 's') { 2141 // gcc prints these as sign extended. Sign extend value to 64 bits 2142 // now; without this it would get ZExt'd later in 2143 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2144 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2145 MVT::i64)); 2146 return; 2147 } 2148 } 2149 break; 2150 } 2151 } 2152 } 2153 2154 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 2155 getRegForInlineAsmConstraint(const std::string &Constraint, 2156 MVT VT) const { 2157 if (Constraint.empty() || Constraint[0] != '{') 2158 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2159 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2160 2161 // Remove the braces from around the name. 2162 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2163 2164 std::pair<unsigned, const TargetRegisterClass*> R = 2165 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2166 2167 // Figure out which register class contains this reg. 2168 const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo(); 2169 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2170 E = RI->regclass_end(); RCI != E; ++RCI) { 2171 const TargetRegisterClass *RC = *RCI; 2172 2173 // If none of the value types for this register class are valid, we 2174 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2175 if (!isLegalRC(RC)) 2176 continue; 2177 2178 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2179 I != E; ++I) { 2180 if (RegName.equals_lower(RI->getName(*I))) { 2181 std::pair<unsigned, const TargetRegisterClass*> S = 2182 std::make_pair(*I, RC); 2183 2184 // If this register class has the requested value type, return it, 2185 // otherwise keep searching and return the first class found 2186 // if no other is found which explicitly has the requested type. 2187 if (RC->hasType(VT)) 2188 return S; 2189 else if (!R.second) 2190 R = S; 2191 } 2192 } 2193 } 2194 2195 return R; 2196 } 2197 2198 //===----------------------------------------------------------------------===// 2199 // Constraint Selection. 2200 2201 /// isMatchingInputConstraint - Return true of this is an input operand that is 2202 /// a matching constraint like "4". 2203 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2204 assert(!ConstraintCode.empty() && "No known constraint!"); 2205 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2206 } 2207 2208 /// getMatchedOperand - If this is an input matching constraint, this method 2209 /// returns the output operand it matches. 2210 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2211 assert(!ConstraintCode.empty() && "No known constraint!"); 2212 return atoi(ConstraintCode.c_str()); 2213 } 2214 2215 2216 /// ParseConstraints - Split up the constraint string from the inline 2217 /// assembly value into the specific constraints and their prefixes, 2218 /// and also tie in the associated operand values. 2219 /// If this returns an empty vector, and if the constraint string itself 2220 /// isn't empty, there was an error parsing. 2221 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2222 ImmutableCallSite CS) const { 2223 /// ConstraintOperands - Information about all of the constraints. 2224 AsmOperandInfoVector ConstraintOperands; 2225 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2226 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2227 2228 // Do a prepass over the constraints, canonicalizing them, and building up the 2229 // ConstraintOperands list. 2230 InlineAsm::ConstraintInfoVector 2231 ConstraintInfos = IA->ParseConstraints(); 2232 2233 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2234 unsigned ResNo = 0; // ResNo - The result number of the next output. 2235 2236 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2237 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2238 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2239 2240 // Update multiple alternative constraint count. 2241 if (OpInfo.multipleAlternatives.size() > maCount) 2242 maCount = OpInfo.multipleAlternatives.size(); 2243 2244 OpInfo.ConstraintVT = MVT::Other; 2245 2246 // Compute the value type for each operand. 2247 switch (OpInfo.Type) { 2248 case InlineAsm::isOutput: 2249 // Indirect outputs just consume an argument. 2250 if (OpInfo.isIndirect) { 2251 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2252 break; 2253 } 2254 2255 // The return value of the call is this value. As such, there is no 2256 // corresponding argument. 2257 assert(!CS.getType()->isVoidTy() && 2258 "Bad inline asm!"); 2259 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2260 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2261 } else { 2262 assert(ResNo == 0 && "Asm only has one result!"); 2263 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2264 } 2265 ++ResNo; 2266 break; 2267 case InlineAsm::isInput: 2268 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2269 break; 2270 case InlineAsm::isClobber: 2271 // Nothing to do. 2272 break; 2273 } 2274 2275 if (OpInfo.CallOperandVal) { 2276 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2277 if (OpInfo.isIndirect) { 2278 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2279 if (!PtrTy) 2280 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2281 OpTy = PtrTy->getElementType(); 2282 } 2283 2284 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2285 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2286 if (STy->getNumElements() == 1) 2287 OpTy = STy->getElementType(0); 2288 2289 // If OpTy is not a single value, it may be a struct/union that we 2290 // can tile with integers. 2291 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2292 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2293 switch (BitSize) { 2294 default: break; 2295 case 1: 2296 case 8: 2297 case 16: 2298 case 32: 2299 case 64: 2300 case 128: 2301 OpInfo.ConstraintVT = 2302 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2303 break; 2304 } 2305 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2306 unsigned PtrSize 2307 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2308 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2309 } else { 2310 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2311 } 2312 } 2313 } 2314 2315 // If we have multiple alternative constraints, select the best alternative. 2316 if (ConstraintInfos.size()) { 2317 if (maCount) { 2318 unsigned bestMAIndex = 0; 2319 int bestWeight = -1; 2320 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2321 int weight = -1; 2322 unsigned maIndex; 2323 // Compute the sums of the weights for each alternative, keeping track 2324 // of the best (highest weight) one so far. 2325 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2326 int weightSum = 0; 2327 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2328 cIndex != eIndex; ++cIndex) { 2329 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2330 if (OpInfo.Type == InlineAsm::isClobber) 2331 continue; 2332 2333 // If this is an output operand with a matching input operand, 2334 // look up the matching input. If their types mismatch, e.g. one 2335 // is an integer, the other is floating point, or their sizes are 2336 // different, flag it as an maCantMatch. 2337 if (OpInfo.hasMatchingInput()) { 2338 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2339 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2340 if ((OpInfo.ConstraintVT.isInteger() != 2341 Input.ConstraintVT.isInteger()) || 2342 (OpInfo.ConstraintVT.getSizeInBits() != 2343 Input.ConstraintVT.getSizeInBits())) { 2344 weightSum = -1; // Can't match. 2345 break; 2346 } 2347 } 2348 } 2349 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2350 if (weight == -1) { 2351 weightSum = -1; 2352 break; 2353 } 2354 weightSum += weight; 2355 } 2356 // Update best. 2357 if (weightSum > bestWeight) { 2358 bestWeight = weightSum; 2359 bestMAIndex = maIndex; 2360 } 2361 } 2362 2363 // Now select chosen alternative in each constraint. 2364 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2365 cIndex != eIndex; ++cIndex) { 2366 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2367 if (cInfo.Type == InlineAsm::isClobber) 2368 continue; 2369 cInfo.selectAlternative(bestMAIndex); 2370 } 2371 } 2372 } 2373 2374 // Check and hook up tied operands, choose constraint code to use. 2375 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2376 cIndex != eIndex; ++cIndex) { 2377 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2378 2379 // If this is an output operand with a matching input operand, look up the 2380 // matching input. If their types mismatch, e.g. one is an integer, the 2381 // other is floating point, or their sizes are different, flag it as an 2382 // error. 2383 if (OpInfo.hasMatchingInput()) { 2384 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2385 2386 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2387 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2388 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 2389 OpInfo.ConstraintVT); 2390 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2391 getRegForInlineAsmConstraint(Input.ConstraintCode, 2392 Input.ConstraintVT); 2393 if ((OpInfo.ConstraintVT.isInteger() != 2394 Input.ConstraintVT.isInteger()) || 2395 (MatchRC.second != InputRC.second)) { 2396 report_fatal_error("Unsupported asm: input constraint" 2397 " with a matching output constraint of" 2398 " incompatible type!"); 2399 } 2400 } 2401 2402 } 2403 } 2404 2405 return ConstraintOperands; 2406 } 2407 2408 2409 /// getConstraintGenerality - Return an integer indicating how general CT 2410 /// is. 2411 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2412 switch (CT) { 2413 case TargetLowering::C_Other: 2414 case TargetLowering::C_Unknown: 2415 return 0; 2416 case TargetLowering::C_Register: 2417 return 1; 2418 case TargetLowering::C_RegisterClass: 2419 return 2; 2420 case TargetLowering::C_Memory: 2421 return 3; 2422 } 2423 llvm_unreachable("Invalid constraint type"); 2424 } 2425 2426 /// Examine constraint type and operand type and determine a weight value. 2427 /// This object must already have been set up with the operand type 2428 /// and the current alternative constraint selected. 2429 TargetLowering::ConstraintWeight 2430 TargetLowering::getMultipleConstraintMatchWeight( 2431 AsmOperandInfo &info, int maIndex) const { 2432 InlineAsm::ConstraintCodeVector *rCodes; 2433 if (maIndex >= (int)info.multipleAlternatives.size()) 2434 rCodes = &info.Codes; 2435 else 2436 rCodes = &info.multipleAlternatives[maIndex].Codes; 2437 ConstraintWeight BestWeight = CW_Invalid; 2438 2439 // Loop over the options, keeping track of the most general one. 2440 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2441 ConstraintWeight weight = 2442 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2443 if (weight > BestWeight) 2444 BestWeight = weight; 2445 } 2446 2447 return BestWeight; 2448 } 2449 2450 /// Examine constraint type and operand type and determine a weight value. 2451 /// This object must already have been set up with the operand type 2452 /// and the current alternative constraint selected. 2453 TargetLowering::ConstraintWeight 2454 TargetLowering::getSingleConstraintMatchWeight( 2455 AsmOperandInfo &info, const char *constraint) const { 2456 ConstraintWeight weight = CW_Invalid; 2457 Value *CallOperandVal = info.CallOperandVal; 2458 // If we don't have a value, we can't do a match, 2459 // but allow it at the lowest weight. 2460 if (!CallOperandVal) 2461 return CW_Default; 2462 // Look at the constraint type. 2463 switch (*constraint) { 2464 case 'i': // immediate integer. 2465 case 'n': // immediate integer with a known value. 2466 if (isa<ConstantInt>(CallOperandVal)) 2467 weight = CW_Constant; 2468 break; 2469 case 's': // non-explicit intregal immediate. 2470 if (isa<GlobalValue>(CallOperandVal)) 2471 weight = CW_Constant; 2472 break; 2473 case 'E': // immediate float if host format. 2474 case 'F': // immediate float. 2475 if (isa<ConstantFP>(CallOperandVal)) 2476 weight = CW_Constant; 2477 break; 2478 case '<': // memory operand with autodecrement. 2479 case '>': // memory operand with autoincrement. 2480 case 'm': // memory operand. 2481 case 'o': // offsettable memory operand 2482 case 'V': // non-offsettable memory operand 2483 weight = CW_Memory; 2484 break; 2485 case 'r': // general register. 2486 case 'g': // general register, memory operand or immediate integer. 2487 // note: Clang converts "g" to "imr". 2488 if (CallOperandVal->getType()->isIntegerTy()) 2489 weight = CW_Register; 2490 break; 2491 case 'X': // any operand. 2492 default: 2493 weight = CW_Default; 2494 break; 2495 } 2496 return weight; 2497 } 2498 2499 /// ChooseConstraint - If there are multiple different constraints that we 2500 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2501 /// This is somewhat tricky: constraints fall into four classes: 2502 /// Other -> immediates and magic values 2503 /// Register -> one specific register 2504 /// RegisterClass -> a group of regs 2505 /// Memory -> memory 2506 /// Ideally, we would pick the most specific constraint possible: if we have 2507 /// something that fits into a register, we would pick it. The problem here 2508 /// is that if we have something that could either be in a register or in 2509 /// memory that use of the register could cause selection of *other* 2510 /// operands to fail: they might only succeed if we pick memory. Because of 2511 /// this the heuristic we use is: 2512 /// 2513 /// 1) If there is an 'other' constraint, and if the operand is valid for 2514 /// that constraint, use it. This makes us take advantage of 'i' 2515 /// constraints when available. 2516 /// 2) Otherwise, pick the most general constraint present. This prefers 2517 /// 'm' over 'r', for example. 2518 /// 2519 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2520 const TargetLowering &TLI, 2521 SDValue Op, SelectionDAG *DAG) { 2522 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2523 unsigned BestIdx = 0; 2524 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2525 int BestGenerality = -1; 2526 2527 // Loop over the options, keeping track of the most general one. 2528 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2529 TargetLowering::ConstraintType CType = 2530 TLI.getConstraintType(OpInfo.Codes[i]); 2531 2532 // If this is an 'other' constraint, see if the operand is valid for it. 2533 // For example, on X86 we might have an 'rI' constraint. If the operand 2534 // is an integer in the range [0..31] we want to use I (saving a load 2535 // of a register), otherwise we must use 'r'. 2536 if (CType == TargetLowering::C_Other && Op.getNode()) { 2537 assert(OpInfo.Codes[i].size() == 1 && 2538 "Unhandled multi-letter 'other' constraint"); 2539 std::vector<SDValue> ResultOps; 2540 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2541 ResultOps, *DAG); 2542 if (!ResultOps.empty()) { 2543 BestType = CType; 2544 BestIdx = i; 2545 break; 2546 } 2547 } 2548 2549 // Things with matching constraints can only be registers, per gcc 2550 // documentation. This mainly affects "g" constraints. 2551 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2552 continue; 2553 2554 // This constraint letter is more general than the previous one, use it. 2555 int Generality = getConstraintGenerality(CType); 2556 if (Generality > BestGenerality) { 2557 BestType = CType; 2558 BestIdx = i; 2559 BestGenerality = Generality; 2560 } 2561 } 2562 2563 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2564 OpInfo.ConstraintType = BestType; 2565 } 2566 2567 /// ComputeConstraintToUse - Determines the constraint code and constraint 2568 /// type to use for the specific AsmOperandInfo, setting 2569 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2570 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2571 SDValue Op, 2572 SelectionDAG *DAG) const { 2573 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2574 2575 // Single-letter constraints ('r') are very common. 2576 if (OpInfo.Codes.size() == 1) { 2577 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2578 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2579 } else { 2580 ChooseConstraint(OpInfo, *this, Op, DAG); 2581 } 2582 2583 // 'X' matches anything. 2584 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2585 // Labels and constants are handled elsewhere ('X' is the only thing 2586 // that matches labels). For Functions, the type here is the type of 2587 // the result, which is not what we want to look at; leave them alone. 2588 Value *v = OpInfo.CallOperandVal; 2589 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2590 OpInfo.CallOperandVal = v; 2591 return; 2592 } 2593 2594 // Otherwise, try to resolve it to something we know about by looking at 2595 // the actual operand type. 2596 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2597 OpInfo.ConstraintCode = Repl; 2598 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2599 } 2600 } 2601 } 2602 2603 /// \brief Given an exact SDIV by a constant, create a multiplication 2604 /// with the multiplicative inverse of the constant. 2605 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2606 SelectionDAG &DAG) const { 2607 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2608 APInt d = C->getAPIntValue(); 2609 assert(d != 0 && "Division by zero!"); 2610 2611 // Shift the value upfront if it is even, so the LSB is one. 2612 unsigned ShAmt = d.countTrailingZeros(); 2613 if (ShAmt) { 2614 // TODO: For UDIV use SRL instead of SRA. 2615 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 2616 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt); 2617 d = d.ashr(ShAmt); 2618 } 2619 2620 // Calculate the multiplicative inverse, using Newton's method. 2621 APInt t, xn = d; 2622 while ((t = d*xn) != 1) 2623 xn *= APInt(d.getBitWidth(), 2) - t; 2624 2625 Op2 = DAG.getConstant(xn, Op1.getValueType()); 2626 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2627 } 2628 2629 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2630 /// return a DAG expression to select that will generate the same value by 2631 /// multiplying by a magic number. See: 2632 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2633 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2634 SelectionDAG &DAG, bool IsAfterLegalization, 2635 std::vector<SDNode *> *Created) const { 2636 EVT VT = N->getValueType(0); 2637 SDLoc dl(N); 2638 2639 // Check to see if we can do this. 2640 // FIXME: We should be more aggressive here. 2641 if (!isTypeLegal(VT)) 2642 return SDValue(); 2643 2644 APInt::ms magics = Divisor.magic(); 2645 2646 // Multiply the numerator (operand 0) by the magic value 2647 // FIXME: We should support doing a MUL in a wider type 2648 SDValue Q; 2649 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2650 isOperationLegalOrCustom(ISD::MULHS, VT)) 2651 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2652 DAG.getConstant(magics.m, VT)); 2653 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2654 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2655 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2656 N->getOperand(0), 2657 DAG.getConstant(magics.m, VT)).getNode(), 1); 2658 else 2659 return SDValue(); // No mulhs or equvialent 2660 // If d > 0 and m < 0, add the numerator 2661 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2662 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2663 if (Created) 2664 Created->push_back(Q.getNode()); 2665 } 2666 // If d < 0 and m > 0, subtract the numerator. 2667 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2668 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2669 if (Created) 2670 Created->push_back(Q.getNode()); 2671 } 2672 // Shift right algebraic if shift value is nonzero 2673 if (magics.s > 0) { 2674 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2675 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2676 if (Created) 2677 Created->push_back(Q.getNode()); 2678 } 2679 // Extract the sign bit and add it to the quotient 2680 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, 2681 DAG.getConstant(VT.getScalarSizeInBits() - 1, 2682 getShiftAmountTy(Q.getValueType()))); 2683 if (Created) 2684 Created->push_back(T.getNode()); 2685 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2686 } 2687 2688 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2689 /// return a DAG expression to select that will generate the same value by 2690 /// multiplying by a magic number. See: 2691 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2692 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2693 SelectionDAG &DAG, bool IsAfterLegalization, 2694 std::vector<SDNode *> *Created) const { 2695 EVT VT = N->getValueType(0); 2696 SDLoc dl(N); 2697 2698 // Check to see if we can do this. 2699 // FIXME: We should be more aggressive here. 2700 if (!isTypeLegal(VT)) 2701 return SDValue(); 2702 2703 // FIXME: We should use a narrower constant when the upper 2704 // bits are known to be zero. 2705 APInt::mu magics = Divisor.magicu(); 2706 2707 SDValue Q = N->getOperand(0); 2708 2709 // If the divisor is even, we can avoid using the expensive fixup by shifting 2710 // the divided value upfront. 2711 if (magics.a != 0 && !Divisor[0]) { 2712 unsigned Shift = Divisor.countTrailingZeros(); 2713 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2714 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 2715 if (Created) 2716 Created->push_back(Q.getNode()); 2717 2718 // Get magic number for the shifted divisor. 2719 magics = Divisor.lshr(Shift).magicu(Shift); 2720 assert(magics.a == 0 && "Should use cheap fixup now"); 2721 } 2722 2723 // Multiply the numerator (operand 0) by the magic value 2724 // FIXME: We should support doing a MUL in a wider type 2725 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2726 isOperationLegalOrCustom(ISD::MULHU, VT)) 2727 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 2728 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2729 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2730 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2731 DAG.getConstant(magics.m, VT)).getNode(), 1); 2732 else 2733 return SDValue(); // No mulhu or equvialent 2734 if (Created) 2735 Created->push_back(Q.getNode()); 2736 2737 if (magics.a == 0) { 2738 assert(magics.s < Divisor.getBitWidth() && 2739 "We shouldn't generate an undefined shift!"); 2740 return DAG.getNode(ISD::SRL, dl, VT, Q, 2741 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2742 } else { 2743 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2744 if (Created) 2745 Created->push_back(NPQ.getNode()); 2746 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2747 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 2748 if (Created) 2749 Created->push_back(NPQ.getNode()); 2750 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2751 if (Created) 2752 Created->push_back(NPQ.getNode()); 2753 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2754 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 2755 } 2756 } 2757 2758 bool TargetLowering:: 2759 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2760 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2761 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2762 "be a constant integer"); 2763 return true; 2764 } 2765 2766 return false; 2767 } 2768 2769 //===----------------------------------------------------------------------===// 2770 // Legalization Utilities 2771 //===----------------------------------------------------------------------===// 2772 2773 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2774 SelectionDAG &DAG, SDValue LL, SDValue LH, 2775 SDValue RL, SDValue RH) const { 2776 EVT VT = N->getValueType(0); 2777 SDLoc dl(N); 2778 2779 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2780 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2781 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2782 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2783 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2784 unsigned OuterBitSize = VT.getSizeInBits(); 2785 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2786 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2787 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2788 2789 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2790 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2791 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2792 2793 if (!LL.getNode() && !RL.getNode() && 2794 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2795 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2796 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2797 } 2798 2799 if (!LL.getNode()) 2800 return false; 2801 2802 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2803 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2804 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2805 // The inputs are both zero-extended. 2806 if (HasUMUL_LOHI) { 2807 // We can emit a umul_lohi. 2808 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, 2809 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2810 Hi = SDValue(Lo.getNode(), 1); 2811 return true; 2812 } 2813 if (HasMULHU) { 2814 // We can emit a mulhu+mul. 2815 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2816 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2817 return true; 2818 } 2819 } 2820 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2821 // The input values are both sign-extended. 2822 if (HasSMUL_LOHI) { 2823 // We can emit a smul_lohi. 2824 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, 2825 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2826 Hi = SDValue(Lo.getNode(), 1); 2827 return true; 2828 } 2829 if (HasMULHS) { 2830 // We can emit a mulhs+mul. 2831 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2832 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2833 return true; 2834 } 2835 } 2836 2837 if (!LH.getNode() && !RH.getNode() && 2838 isOperationLegalOrCustom(ISD::SRL, VT) && 2839 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2840 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2841 SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT)); 2842 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2843 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2844 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2845 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2846 } 2847 2848 if (!LH.getNode()) 2849 return false; 2850 2851 if (HasUMUL_LOHI) { 2852 // Lo,Hi = umul LHS, RHS. 2853 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2854 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2855 Lo = UMulLOHI; 2856 Hi = UMulLOHI.getValue(1); 2857 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2858 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2859 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2860 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2861 return true; 2862 } 2863 if (HasMULHU) { 2864 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2865 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2866 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2867 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2868 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2869 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2870 return true; 2871 } 2872 } 2873 return false; 2874 } 2875