1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlign(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
621     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
622 
623     if (NumSrcEltBits == NumDstEltBits)
624       if (SDValue V = SimplifyMultipleUseDemandedBits(
625               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
626         return DAG.getBitcast(DstVT, V);
627 
628     // TODO - bigendian once we have test coverage.
629     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
630         DAG.getDataLayout().isLittleEndian()) {
631       unsigned Scale = NumDstEltBits / NumSrcEltBits;
632       unsigned NumSrcElts = SrcVT.getVectorNumElements();
633       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
634       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
635       for (unsigned i = 0; i != Scale; ++i) {
636         unsigned Offset = i * NumSrcEltBits;
637         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
638         if (!Sub.isNullValue()) {
639           DemandedSrcBits |= Sub;
640           for (unsigned j = 0; j != NumElts; ++j)
641             if (DemandedElts[j])
642               DemandedSrcElts.setBit((j * Scale) + i);
643         }
644       }
645 
646       if (SDValue V = SimplifyMultipleUseDemandedBits(
647               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
648         return DAG.getBitcast(DstVT, V);
649     }
650 
651     // TODO - bigendian once we have test coverage.
652     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
653         DAG.getDataLayout().isLittleEndian()) {
654       unsigned Scale = NumSrcEltBits / NumDstEltBits;
655       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
656       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
657       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
658       for (unsigned i = 0; i != NumElts; ++i)
659         if (DemandedElts[i]) {
660           unsigned Offset = (i % Scale) * NumDstEltBits;
661           DemandedSrcBits.insertBits(DemandedBits, Offset);
662           DemandedSrcElts.setBit(i / Scale);
663         }
664 
665       if (SDValue V = SimplifyMultipleUseDemandedBits(
666               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
667         return DAG.getBitcast(DstVT, V);
668     }
669 
670     break;
671   }
672   case ISD::AND: {
673     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
674     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 
676     // If all of the demanded bits are known 1 on one side, return the other.
677     // These bits cannot contribute to the result of the 'and' in this
678     // context.
679     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
680       return Op.getOperand(0);
681     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
682       return Op.getOperand(1);
683     break;
684   }
685   case ISD::OR: {
686     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
687     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 
689     // If all of the demanded bits are known zero on one side, return the
690     // other.  These bits cannot contribute to the result of the 'or' in this
691     // context.
692     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
693       return Op.getOperand(0);
694     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
695       return Op.getOperand(1);
696     break;
697   }
698   case ISD::XOR: {
699     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
700     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
701 
702     // If all of the demanded bits are known zero on one side, return the
703     // other.
704     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::SETCC: {
711     SDValue Op0 = Op.getOperand(0);
712     SDValue Op1 = Op.getOperand(1);
713     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
714     // If (1) we only need the sign-bit, (2) the setcc operands are the same
715     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
716     // -1, we may be able to bypass the setcc.
717     if (DemandedBits.isSignMask() &&
718         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
719         getBooleanContents(Op0.getValueType()) ==
720             BooleanContent::ZeroOrNegativeOneBooleanContent) {
721       // If we're testing X < 0, then this compare isn't needed - just use X!
722       // FIXME: We're limiting to integer types here, but this should also work
723       // if we don't care about FP signed-zero. The use of SETLT with FP means
724       // that we don't care about NaNs.
725       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
726           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
727         return Op0;
728     }
729     break;
730   }
731   case ISD::SIGN_EXTEND_INREG: {
732     // If none of the extended bits are demanded, eliminate the sextinreg.
733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
735       return Op.getOperand(0);
736     break;
737   }
738   case ISD::INSERT_VECTOR_ELT: {
739     // If we don't demand the inserted element, return the base vector.
740     SDValue Vec = Op.getOperand(0);
741     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
742     EVT VecVT = Vec.getValueType();
743     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
744         !DemandedElts[CIdx->getZExtValue()])
745       return Vec;
746     break;
747   }
748   case ISD::INSERT_SUBVECTOR: {
749     // If we don't demand the inserted subvector, return the base vector.
750     SDValue Vec = Op.getOperand(0);
751     SDValue Sub = Op.getOperand(1);
752     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
753     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
754     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
755     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
756       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
757         return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878 
879     // Upper elements are undef, so only get the knownbits if we just demand
880     // the bottom element.
881     if (DemandedElts == 1)
882       Known = SrcKnown.anyextOrTrunc(BitWidth);
883     break;
884   }
885   case ISD::BUILD_VECTOR:
886     // Collect the known bits that are shared by every demanded element.
887     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
888     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
889     return false; // Don't fall through, will infinitely loop.
890   case ISD::LOAD: {
891     LoadSDNode *LD = cast<LoadSDNode>(Op);
892     if (getTargetConstantFromLoad(LD)) {
893       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
894       return false; // Don't fall through, will infinitely loop.
895     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
896       // If this is a ZEXTLoad and we are looking at the loaded value.
897       EVT MemVT = LD->getMemoryVT();
898       unsigned MemBits = MemVT.getScalarSizeInBits();
899       Known.Zero.setBitsFrom(MemBits);
900       return false; // Don't fall through, will infinitely loop.
901     }
902     break;
903   }
904   case ISD::INSERT_VECTOR_ELT: {
905     SDValue Vec = Op.getOperand(0);
906     SDValue Scl = Op.getOperand(1);
907     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
908     EVT VecVT = Vec.getValueType();
909 
910     // If index isn't constant, assume we need all vector elements AND the
911     // inserted element.
912     APInt DemandedVecElts(DemandedElts);
913     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
914       unsigned Idx = CIdx->getZExtValue();
915       DemandedVecElts.clearBit(Idx);
916 
917       // Inserted element is not required.
918       if (!DemandedElts[Idx])
919         return TLO.CombineTo(Op, Vec);
920     }
921 
922     KnownBits KnownScl;
923     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
924     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
925     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
926       return true;
927 
928     Known = KnownScl.anyextOrTrunc(BitWidth);
929 
930     KnownBits KnownVec;
931     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
932                              Depth + 1))
933       return true;
934 
935     if (!!DemandedVecElts) {
936       Known.One &= KnownVec.One;
937       Known.Zero &= KnownVec.Zero;
938     }
939 
940     return false;
941   }
942   case ISD::INSERT_SUBVECTOR: {
943     SDValue Base = Op.getOperand(0);
944     SDValue Sub = Op.getOperand(1);
945     EVT SubVT = Sub.getValueType();
946     unsigned NumSubElts = SubVT.getVectorNumElements();
947 
948     // If index isn't constant, assume we need the original demanded base
949     // elements and ALL the inserted subvector elements.
950     APInt BaseElts = DemandedElts;
951     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
952     if (isa<ConstantSDNode>(Op.getOperand(2))) {
953       const APInt &Idx = Op.getConstantOperandAPInt(2);
954       if (Idx.ule(NumElts - NumSubElts)) {
955         unsigned SubIdx = Idx.getZExtValue();
956         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
957         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
958       }
959     }
960 
961     KnownBits KnownSub, KnownBase;
962     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
963                              Depth + 1))
964       return true;
965     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
966                              Depth + 1))
967       return true;
968 
969     Known.Zero.setAllBits();
970     Known.One.setAllBits();
971     if (!!SubElts) {
972         Known.One &= KnownSub.One;
973         Known.Zero &= KnownSub.Zero;
974     }
975     if (!!BaseElts) {
976         Known.One &= KnownBase.One;
977         Known.Zero &= KnownBase.Zero;
978     }
979 
980     // Attempt to avoid multi-use src if we don't need anything from it.
981     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
982         !BaseElts.isAllOnesValue()) {
983       SDValue NewSub = SimplifyMultipleUseDemandedBits(
984           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
985       SDValue NewBase = SimplifyMultipleUseDemandedBits(
986           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
987       if (NewSub || NewBase) {
988         NewSub = NewSub ? NewSub : Sub;
989         NewBase = NewBase ? NewBase : Base;
990         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
991                                         Op.getOperand(2));
992         return TLO.CombineTo(Op, NewOp);
993       }
994     }
995     break;
996   }
997   case ISD::EXTRACT_SUBVECTOR: {
998     // If index isn't constant, assume we need all the source vector elements.
999     SDValue Src = Op.getOperand(0);
1000     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1001     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1002     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
1003     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1004       // Offset the demanded elts by the subvector index.
1005       uint64_t Idx = SubIdx->getZExtValue();
1006       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1007     }
1008     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1009       return true;
1010 
1011     // Attempt to avoid multi-use src if we don't need anything from it.
1012     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1013       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1014           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1015       if (DemandedSrc) {
1016         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1017                                         Op.getOperand(1));
1018         return TLO.CombineTo(Op, NewOp);
1019       }
1020     }
1021     break;
1022   }
1023   case ISD::CONCAT_VECTORS: {
1024     Known.Zero.setAllBits();
1025     Known.One.setAllBits();
1026     EVT SubVT = Op.getOperand(0).getValueType();
1027     unsigned NumSubVecs = Op.getNumOperands();
1028     unsigned NumSubElts = SubVT.getVectorNumElements();
1029     for (unsigned i = 0; i != NumSubVecs; ++i) {
1030       APInt DemandedSubElts =
1031           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1032       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1033                                Known2, TLO, Depth + 1))
1034         return true;
1035       // Known bits are shared by every demanded subvector element.
1036       if (!!DemandedSubElts) {
1037         Known.One &= Known2.One;
1038         Known.Zero &= Known2.Zero;
1039       }
1040     }
1041     break;
1042   }
1043   case ISD::VECTOR_SHUFFLE: {
1044     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1045 
1046     // Collect demanded elements from shuffle operands..
1047     APInt DemandedLHS(NumElts, 0);
1048     APInt DemandedRHS(NumElts, 0);
1049     for (unsigned i = 0; i != NumElts; ++i) {
1050       if (!DemandedElts[i])
1051         continue;
1052       int M = ShuffleMask[i];
1053       if (M < 0) {
1054         // For UNDEF elements, we don't know anything about the common state of
1055         // the shuffle result.
1056         DemandedLHS.clearAllBits();
1057         DemandedRHS.clearAllBits();
1058         break;
1059       }
1060       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1061       if (M < (int)NumElts)
1062         DemandedLHS.setBit(M);
1063       else
1064         DemandedRHS.setBit(M - NumElts);
1065     }
1066 
1067     if (!!DemandedLHS || !!DemandedRHS) {
1068       SDValue Op0 = Op.getOperand(0);
1069       SDValue Op1 = Op.getOperand(1);
1070 
1071       Known.Zero.setAllBits();
1072       Known.One.setAllBits();
1073       if (!!DemandedLHS) {
1074         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1075                                  Depth + 1))
1076           return true;
1077         Known.One &= Known2.One;
1078         Known.Zero &= Known2.Zero;
1079       }
1080       if (!!DemandedRHS) {
1081         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1082                                  Depth + 1))
1083           return true;
1084         Known.One &= Known2.One;
1085         Known.Zero &= Known2.Zero;
1086       }
1087 
1088       // Attempt to avoid multi-use ops if we don't need anything from them.
1089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1090           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1092           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1093       if (DemandedOp0 || DemandedOp1) {
1094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1096         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1097         return TLO.CombineTo(Op, NewOp);
1098       }
1099     }
1100     break;
1101   }
1102   case ISD::AND: {
1103     SDValue Op0 = Op.getOperand(0);
1104     SDValue Op1 = Op.getOperand(1);
1105 
1106     // If the RHS is a constant, check to see if the LHS would be zero without
1107     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1108     // simplify the LHS, here we're using information from the LHS to simplify
1109     // the RHS.
1110     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1111       // Do not increment Depth here; that can cause an infinite loop.
1112       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1113       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1114       if ((LHSKnown.Zero & DemandedBits) ==
1115           (~RHSC->getAPIntValue() & DemandedBits))
1116         return TLO.CombineTo(Op, Op0);
1117 
1118       // If any of the set bits in the RHS are known zero on the LHS, shrink
1119       // the constant.
1120       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1121         return true;
1122 
1123       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1124       // constant, but if this 'and' is only clearing bits that were just set by
1125       // the xor, then this 'and' can be eliminated by shrinking the mask of
1126       // the xor. For example, for a 32-bit X:
1127       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1128       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1129           LHSKnown.One == ~RHSC->getAPIntValue()) {
1130         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1131         return TLO.CombineTo(Op, Xor);
1132       }
1133     }
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1140                              Known2, TLO, Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known one on one side, return the other.
1159     // These bits cannot contribute to the result of the 'and'.
1160     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1163       return TLO.CombineTo(Op, Op1);
1164     // If all of the demanded bits in the inputs are known zeros, return zero.
1165     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1166       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1167     // If the RHS is a constant, see if we can simplify it.
1168     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1169       return true;
1170     // If the operation can be done in a smaller type, do so.
1171     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1172       return true;
1173 
1174     Known &= Known2;
1175     break;
1176   }
1177   case ISD::OR: {
1178     SDValue Op0 = Op.getOperand(0);
1179     SDValue Op1 = Op.getOperand(1);
1180 
1181     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1182                              Depth + 1))
1183       return true;
1184     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1185     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1186                              Known2, TLO, Depth + 1))
1187       return true;
1188     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1189 
1190     // Attempt to avoid multi-use ops if we don't need anything from them.
1191     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1192       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1193           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1194       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1195           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1196       if (DemandedOp0 || DemandedOp1) {
1197         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1198         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1199         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1200         return TLO.CombineTo(Op, NewOp);
1201       }
1202     }
1203 
1204     // If all of the demanded bits are known zero on one side, return the other.
1205     // These bits cannot contribute to the result of the 'or'.
1206     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1207       return TLO.CombineTo(Op, Op0);
1208     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1209       return TLO.CombineTo(Op, Op1);
1210     // If the RHS is a constant, see if we can simplify it.
1211     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1212       return true;
1213     // If the operation can be done in a smaller type, do so.
1214     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1215       return true;
1216 
1217     Known |= Known2;
1218     break;
1219   }
1220   case ISD::XOR: {
1221     SDValue Op0 = Op.getOperand(0);
1222     SDValue Op1 = Op.getOperand(1);
1223 
1224     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1225                              Depth + 1))
1226       return true;
1227     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1228     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1229                              Depth + 1))
1230       return true;
1231     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1232 
1233     // Attempt to avoid multi-use ops if we don't need anything from them.
1234     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1235       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1236           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1237       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1238           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1239       if (DemandedOp0 || DemandedOp1) {
1240         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1241         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1242         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1243         return TLO.CombineTo(Op, NewOp);
1244       }
1245     }
1246 
1247     // If all of the demanded bits are known zero on one side, return the other.
1248     // These bits cannot contribute to the result of the 'xor'.
1249     if (DemandedBits.isSubsetOf(Known.Zero))
1250       return TLO.CombineTo(Op, Op0);
1251     if (DemandedBits.isSubsetOf(Known2.Zero))
1252       return TLO.CombineTo(Op, Op1);
1253     // If the operation can be done in a smaller type, do so.
1254     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1255       return true;
1256 
1257     // If all of the unknown bits are known to be zero on one side or the other
1258     // (but not both) turn this into an *inclusive* or.
1259     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1260     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1261       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1262 
1263     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1264       // If one side is a constant, and all of the known set bits on the other
1265       // side are also set in the constant, turn this into an AND, as we know
1266       // the bits will be cleared.
1267       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1268       // NB: it is okay if more bits are known than are requested
1269       if (C->getAPIntValue() == Known2.One) {
1270         SDValue ANDC =
1271             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1272         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1273       }
1274 
1275       // If the RHS is a constant, see if we can change it. Don't alter a -1
1276       // constant because that's a 'not' op, and that is better for combining
1277       // and codegen.
1278       if (!C->isAllOnesValue()) {
1279         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1280           // We're flipping all demanded bits. Flip the undemanded bits too.
1281           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1282           return TLO.CombineTo(Op, New);
1283         }
1284         // If we can't turn this into a 'not', try to shrink the constant.
1285         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1286           return true;
1287       }
1288     }
1289 
1290     Known ^= Known2;
1291     break;
1292   }
1293   case ISD::SELECT:
1294     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1295                              Depth + 1))
1296       return true;
1297     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1298                              Depth + 1))
1299       return true;
1300     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1301     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1302 
1303     // If the operands are constants, see if we can simplify them.
1304     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1305       return true;
1306 
1307     // Only known if known in both the LHS and RHS.
1308     Known.One &= Known2.One;
1309     Known.Zero &= Known2.Zero;
1310     break;
1311   case ISD::SELECT_CC:
1312     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1313                              Depth + 1))
1314       return true;
1315     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1316                              Depth + 1))
1317       return true;
1318     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1319     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1320 
1321     // If the operands are constants, see if we can simplify them.
1322     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1323       return true;
1324 
1325     // Only known if known in both the LHS and RHS.
1326     Known.One &= Known2.One;
1327     Known.Zero &= Known2.Zero;
1328     break;
1329   case ISD::SETCC: {
1330     SDValue Op0 = Op.getOperand(0);
1331     SDValue Op1 = Op.getOperand(1);
1332     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1333     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1334     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1335     // -1, we may be able to bypass the setcc.
1336     if (DemandedBits.isSignMask() &&
1337         Op0.getScalarValueSizeInBits() == BitWidth &&
1338         getBooleanContents(Op0.getValueType()) ==
1339             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1340       // If we're testing X < 0, then this compare isn't needed - just use X!
1341       // FIXME: We're limiting to integer types here, but this should also work
1342       // if we don't care about FP signed-zero. The use of SETLT with FP means
1343       // that we don't care about NaNs.
1344       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1345           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1346         return TLO.CombineTo(Op, Op0);
1347 
1348       // TODO: Should we check for other forms of sign-bit comparisons?
1349       // Examples: X <= -1, X >= 0
1350     }
1351     if (getBooleanContents(Op0.getValueType()) ==
1352             TargetLowering::ZeroOrOneBooleanContent &&
1353         BitWidth > 1)
1354       Known.Zero.setBitsFrom(1);
1355     break;
1356   }
1357   case ISD::SHL: {
1358     SDValue Op0 = Op.getOperand(0);
1359     SDValue Op1 = Op.getOperand(1);
1360     EVT ShiftVT = Op1.getValueType();
1361 
1362     if (const APInt *SA =
1363             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1364       unsigned ShAmt = SA->getZExtValue();
1365       if (ShAmt == 0)
1366         return TLO.CombineTo(Op, Op0);
1367 
1368       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1369       // single shift.  We can do this if the bottom bits (which are shifted
1370       // out) are never demanded.
1371       // TODO - support non-uniform vector amounts.
1372       if (Op0.getOpcode() == ISD::SRL) {
1373         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1374           if (const APInt *SA2 =
1375                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1376             if (SA2->ult(BitWidth)) {
1377               unsigned C1 = SA2->getZExtValue();
1378               unsigned Opc = ISD::SHL;
1379               int Diff = ShAmt - C1;
1380               if (Diff < 0) {
1381                 Diff = -Diff;
1382                 Opc = ISD::SRL;
1383               }
1384 
1385               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1386               return TLO.CombineTo(
1387                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1388             }
1389           }
1390         }
1391       }
1392 
1393       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1394       // are not demanded. This will likely allow the anyext to be folded away.
1395       // TODO - support non-uniform vector amounts.
1396       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1397         SDValue InnerOp = Op0.getOperand(0);
1398         EVT InnerVT = InnerOp.getValueType();
1399         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1400         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1401             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1402           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1403           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1404             ShTy = InnerVT;
1405           SDValue NarrowShl =
1406               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1407                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1408           return TLO.CombineTo(
1409               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1410         }
1411 
1412         // Repeat the SHL optimization above in cases where an extension
1413         // intervenes: (shl (anyext (shr x, c1)), c2) to
1414         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1415         // aren't demanded (as above) and that the shifted upper c1 bits of
1416         // x aren't demanded.
1417         // TODO - support non-uniform vector amounts.
1418         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1419             InnerOp.hasOneUse()) {
1420           if (const APInt *SA2 =
1421                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1422             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1423             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1424                 DemandedBits.getActiveBits() <=
1425                     (InnerBits - InnerShAmt + ShAmt) &&
1426                 DemandedBits.countTrailingZeros() >= ShAmt) {
1427               SDValue NewSA =
1428                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1429               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1430                                                InnerOp.getOperand(0));
1431               return TLO.CombineTo(
1432                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1433             }
1434           }
1435         }
1436       }
1437 
1438       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1439       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1440                                Depth + 1))
1441         return true;
1442       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1443       Known.Zero <<= ShAmt;
1444       Known.One <<= ShAmt;
1445       // low bits known zero.
1446       Known.Zero.setLowBits(ShAmt);
1447 
1448       // Try shrinking the operation as long as the shift amount will still be
1449       // in range.
1450       if ((ShAmt < DemandedBits.getActiveBits()) &&
1451           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1452         return true;
1453     }
1454     break;
1455   }
1456   case ISD::SRL: {
1457     SDValue Op0 = Op.getOperand(0);
1458     SDValue Op1 = Op.getOperand(1);
1459     EVT ShiftVT = Op1.getValueType();
1460 
1461     if (const APInt *SA =
1462             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1463       unsigned ShAmt = SA->getZExtValue();
1464       if (ShAmt == 0)
1465         return TLO.CombineTo(Op, Op0);
1466 
1467       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1468       // single shift.  We can do this if the top bits (which are shifted out)
1469       // are never demanded.
1470       // TODO - support non-uniform vector amounts.
1471       if (Op0.getOpcode() == ISD::SHL) {
1472         if (const APInt *SA2 =
1473                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1474           if (!DemandedBits.intersects(
1475                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1476             if (SA2->ult(BitWidth)) {
1477               unsigned C1 = SA2->getZExtValue();
1478               unsigned Opc = ISD::SRL;
1479               int Diff = ShAmt - C1;
1480               if (Diff < 0) {
1481                 Diff = -Diff;
1482                 Opc = ISD::SHL;
1483               }
1484 
1485               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1486               return TLO.CombineTo(
1487                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1488             }
1489           }
1490         }
1491       }
1492 
1493       APInt InDemandedMask = (DemandedBits << ShAmt);
1494 
1495       // If the shift is exact, then it does demand the low bits (and knows that
1496       // they are zero).
1497       if (Op->getFlags().hasExact())
1498         InDemandedMask.setLowBits(ShAmt);
1499 
1500       // Compute the new bits that are at the top now.
1501       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1502                                Depth + 1))
1503         return true;
1504       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1505       Known.Zero.lshrInPlace(ShAmt);
1506       Known.One.lshrInPlace(ShAmt);
1507       // High bits known zero.
1508       Known.Zero.setHighBits(ShAmt);
1509     }
1510     break;
1511   }
1512   case ISD::SRA: {
1513     SDValue Op0 = Op.getOperand(0);
1514     SDValue Op1 = Op.getOperand(1);
1515     EVT ShiftVT = Op1.getValueType();
1516 
1517     // If we only want bits that already match the signbit then we don't need
1518     // to shift.
1519     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1520     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1521         NumHiDemandedBits)
1522       return TLO.CombineTo(Op, Op0);
1523 
1524     // If this is an arithmetic shift right and only the low-bit is set, we can
1525     // always convert this into a logical shr, even if the shift amount is
1526     // variable.  The low bit of the shift cannot be an input sign bit unless
1527     // the shift amount is >= the size of the datatype, which is undefined.
1528     if (DemandedBits.isOneValue())
1529       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1530 
1531     if (const APInt *SA =
1532             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1533       unsigned ShAmt = SA->getZExtValue();
1534       if (ShAmt == 0)
1535         return TLO.CombineTo(Op, Op0);
1536 
1537       APInt InDemandedMask = (DemandedBits << ShAmt);
1538 
1539       // If the shift is exact, then it does demand the low bits (and knows that
1540       // they are zero).
1541       if (Op->getFlags().hasExact())
1542         InDemandedMask.setLowBits(ShAmt);
1543 
1544       // If any of the demanded bits are produced by the sign extension, we also
1545       // demand the input sign bit.
1546       if (DemandedBits.countLeadingZeros() < ShAmt)
1547         InDemandedMask.setSignBit();
1548 
1549       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1550                                Depth + 1))
1551         return true;
1552       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1553       Known.Zero.lshrInPlace(ShAmt);
1554       Known.One.lshrInPlace(ShAmt);
1555 
1556       // If the input sign bit is known to be zero, or if none of the top bits
1557       // are demanded, turn this into an unsigned shift right.
1558       if (Known.Zero[BitWidth - ShAmt - 1] ||
1559           DemandedBits.countLeadingZeros() >= ShAmt) {
1560         SDNodeFlags Flags;
1561         Flags.setExact(Op->getFlags().hasExact());
1562         return TLO.CombineTo(
1563             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1564       }
1565 
1566       int Log2 = DemandedBits.exactLogBase2();
1567       if (Log2 >= 0) {
1568         // The bit must come from the sign.
1569         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1570         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1571       }
1572 
1573       if (Known.One[BitWidth - ShAmt - 1])
1574         // New bits are known one.
1575         Known.One.setHighBits(ShAmt);
1576 
1577       // Attempt to avoid multi-use ops if we don't need anything from them.
1578       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1579         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1580             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1581         if (DemandedOp0) {
1582           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1583           return TLO.CombineTo(Op, NewOp);
1584         }
1585       }
1586     }
1587     break;
1588   }
1589   case ISD::FSHL:
1590   case ISD::FSHR: {
1591     SDValue Op0 = Op.getOperand(0);
1592     SDValue Op1 = Op.getOperand(1);
1593     SDValue Op2 = Op.getOperand(2);
1594     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1595 
1596     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1597       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1598 
1599       // For fshl, 0-shift returns the 1st arg.
1600       // For fshr, 0-shift returns the 2nd arg.
1601       if (Amt == 0) {
1602         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1603                                  Known, TLO, Depth + 1))
1604           return true;
1605         break;
1606       }
1607 
1608       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1609       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1610       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1611       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1612       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1613                                Depth + 1))
1614         return true;
1615       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1616                                Depth + 1))
1617         return true;
1618 
1619       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1620       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1621       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1622       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1623       Known.One |= Known2.One;
1624       Known.Zero |= Known2.Zero;
1625     }
1626 
1627     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1628     if (isPowerOf2_32(BitWidth)) {
1629       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1630       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1631                                Known2, TLO, Depth + 1))
1632         return true;
1633     }
1634     break;
1635   }
1636   case ISD::ROTL:
1637   case ISD::ROTR: {
1638     SDValue Op0 = Op.getOperand(0);
1639     SDValue Op1 = Op.getOperand(1);
1640 
1641     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1642     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1643       return TLO.CombineTo(Op, Op0);
1644 
1645     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1646     if (isPowerOf2_32(BitWidth)) {
1647       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1648       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1649                                Depth + 1))
1650         return true;
1651     }
1652     break;
1653   }
1654   case ISD::BITREVERSE: {
1655     SDValue Src = Op.getOperand(0);
1656     APInt DemandedSrcBits = DemandedBits.reverseBits();
1657     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1658                              Depth + 1))
1659       return true;
1660     Known.One = Known2.One.reverseBits();
1661     Known.Zero = Known2.Zero.reverseBits();
1662     break;
1663   }
1664   case ISD::BSWAP: {
1665     SDValue Src = Op.getOperand(0);
1666     APInt DemandedSrcBits = DemandedBits.byteSwap();
1667     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1668                              Depth + 1))
1669       return true;
1670     Known.One = Known2.One.byteSwap();
1671     Known.Zero = Known2.Zero.byteSwap();
1672     break;
1673   }
1674   case ISD::SIGN_EXTEND_INREG: {
1675     SDValue Op0 = Op.getOperand(0);
1676     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1677     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1678 
1679     // If we only care about the highest bit, don't bother shifting right.
1680     if (DemandedBits.isSignMask()) {
1681       unsigned NumSignBits =
1682           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1683       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1684       // However if the input is already sign extended we expect the sign
1685       // extension to be dropped altogether later and do not simplify.
1686       if (!AlreadySignExtended) {
1687         // Compute the correct shift amount type, which must be getShiftAmountTy
1688         // for scalar types after legalization.
1689         EVT ShiftAmtTy = VT;
1690         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1691           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1692 
1693         SDValue ShiftAmt =
1694             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1695         return TLO.CombineTo(Op,
1696                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1697       }
1698     }
1699 
1700     // If none of the extended bits are demanded, eliminate the sextinreg.
1701     if (DemandedBits.getActiveBits() <= ExVTBits)
1702       return TLO.CombineTo(Op, Op0);
1703 
1704     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1705 
1706     // Since the sign extended bits are demanded, we know that the sign
1707     // bit is demanded.
1708     InputDemandedBits.setBit(ExVTBits - 1);
1709 
1710     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1711       return true;
1712     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1713 
1714     // If the sign bit of the input is known set or clear, then we know the
1715     // top bits of the result.
1716 
1717     // If the input sign bit is known zero, convert this into a zero extension.
1718     if (Known.Zero[ExVTBits - 1])
1719       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1720 
1721     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1722     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1723       Known.One.setBitsFrom(ExVTBits);
1724       Known.Zero &= Mask;
1725     } else { // Input sign bit unknown
1726       Known.Zero &= Mask;
1727       Known.One &= Mask;
1728     }
1729     break;
1730   }
1731   case ISD::BUILD_PAIR: {
1732     EVT HalfVT = Op.getOperand(0).getValueType();
1733     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1734 
1735     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1736     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1737 
1738     KnownBits KnownLo, KnownHi;
1739 
1740     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1741       return true;
1742 
1743     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1744       return true;
1745 
1746     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1747                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1748 
1749     Known.One = KnownLo.One.zext(BitWidth) |
1750                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1751     break;
1752   }
1753   case ISD::ZERO_EXTEND:
1754   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1755     SDValue Src = Op.getOperand(0);
1756     EVT SrcVT = Src.getValueType();
1757     unsigned InBits = SrcVT.getScalarSizeInBits();
1758     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1759     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1760 
1761     // If none of the top bits are demanded, convert this into an any_extend.
1762     if (DemandedBits.getActiveBits() <= InBits) {
1763       // If we only need the non-extended bits of the bottom element
1764       // then we can just bitcast to the result.
1765       if (IsVecInReg && DemandedElts == 1 &&
1766           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1767           TLO.DAG.getDataLayout().isLittleEndian())
1768         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1769 
1770       unsigned Opc =
1771           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1772       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1773         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1774     }
1775 
1776     APInt InDemandedBits = DemandedBits.trunc(InBits);
1777     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1778     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1779                              Depth + 1))
1780       return true;
1781     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1782     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1783     Known = Known.zext(BitWidth);
1784     break;
1785   }
1786   case ISD::SIGN_EXTEND:
1787   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1788     SDValue Src = Op.getOperand(0);
1789     EVT SrcVT = Src.getValueType();
1790     unsigned InBits = SrcVT.getScalarSizeInBits();
1791     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1792     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1793 
1794     // If none of the top bits are demanded, convert this into an any_extend.
1795     if (DemandedBits.getActiveBits() <= InBits) {
1796       // If we only need the non-extended bits of the bottom element
1797       // then we can just bitcast to the result.
1798       if (IsVecInReg && DemandedElts == 1 &&
1799           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1800           TLO.DAG.getDataLayout().isLittleEndian())
1801         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1802 
1803       unsigned Opc =
1804           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1805       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1806         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1807     }
1808 
1809     APInt InDemandedBits = DemandedBits.trunc(InBits);
1810     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1811 
1812     // Since some of the sign extended bits are demanded, we know that the sign
1813     // bit is demanded.
1814     InDemandedBits.setBit(InBits - 1);
1815 
1816     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1817                              Depth + 1))
1818       return true;
1819     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1820     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1821 
1822     // If the sign bit is known one, the top bits match.
1823     Known = Known.sext(BitWidth);
1824 
1825     // If the sign bit is known zero, convert this to a zero extend.
1826     if (Known.isNonNegative()) {
1827       unsigned Opc =
1828           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1829       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1830         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1831     }
1832     break;
1833   }
1834   case ISD::ANY_EXTEND:
1835   case ISD::ANY_EXTEND_VECTOR_INREG: {
1836     SDValue Src = Op.getOperand(0);
1837     EVT SrcVT = Src.getValueType();
1838     unsigned InBits = SrcVT.getScalarSizeInBits();
1839     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1840     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1841 
1842     // If we only need the bottom element then we can just bitcast.
1843     // TODO: Handle ANY_EXTEND?
1844     if (IsVecInReg && DemandedElts == 1 &&
1845         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1846         TLO.DAG.getDataLayout().isLittleEndian())
1847       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1848 
1849     APInt InDemandedBits = DemandedBits.trunc(InBits);
1850     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1851     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1852                              Depth + 1))
1853       return true;
1854     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1855     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1856     Known = Known.anyext(BitWidth);
1857 
1858     // Attempt to avoid multi-use ops if we don't need anything from them.
1859     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1860             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1861       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1862     break;
1863   }
1864   case ISD::TRUNCATE: {
1865     SDValue Src = Op.getOperand(0);
1866 
1867     // Simplify the input, using demanded bit information, and compute the known
1868     // zero/one bits live out.
1869     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1870     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1871     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1872       return true;
1873     Known = Known.trunc(BitWidth);
1874 
1875     // Attempt to avoid multi-use ops if we don't need anything from them.
1876     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1877             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1878       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1879 
1880     // If the input is only used by this truncate, see if we can shrink it based
1881     // on the known demanded bits.
1882     if (Src.getNode()->hasOneUse()) {
1883       switch (Src.getOpcode()) {
1884       default:
1885         break;
1886       case ISD::SRL:
1887         // Shrink SRL by a constant if none of the high bits shifted in are
1888         // demanded.
1889         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1890           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1891           // undesirable.
1892           break;
1893 
1894         SDValue ShAmt = Src.getOperand(1);
1895         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1896         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1897           break;
1898         uint64_t ShVal = ShAmtC->getZExtValue();
1899 
1900         APInt HighBits =
1901             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1902         HighBits.lshrInPlace(ShVal);
1903         HighBits = HighBits.trunc(BitWidth);
1904 
1905         if (!(HighBits & DemandedBits)) {
1906           // None of the shifted in bits are needed.  Add a truncate of the
1907           // shift input, then shift it.
1908           if (TLO.LegalTypes())
1909             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1910           SDValue NewTrunc =
1911               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1912           return TLO.CombineTo(
1913               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1914         }
1915         break;
1916       }
1917     }
1918 
1919     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1920     break;
1921   }
1922   case ISD::AssertZext: {
1923     // AssertZext demands all of the high bits, plus any of the low bits
1924     // demanded by its users.
1925     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1926     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1927     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1928                              TLO, Depth + 1))
1929       return true;
1930     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1931 
1932     Known.Zero |= ~InMask;
1933     break;
1934   }
1935   case ISD::EXTRACT_VECTOR_ELT: {
1936     SDValue Src = Op.getOperand(0);
1937     SDValue Idx = Op.getOperand(1);
1938     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1939     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1940 
1941     // Demand the bits from every vector element without a constant index.
1942     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1943     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1944       if (CIdx->getAPIntValue().ult(NumSrcElts))
1945         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1946 
1947     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1948     // anything about the extended bits.
1949     APInt DemandedSrcBits = DemandedBits;
1950     if (BitWidth > EltBitWidth)
1951       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1952 
1953     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1954                              Depth + 1))
1955       return true;
1956 
1957     // Attempt to avoid multi-use ops if we don't need anything from them.
1958     if (!DemandedSrcBits.isAllOnesValue() ||
1959         !DemandedSrcElts.isAllOnesValue()) {
1960       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1961               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1962         SDValue NewOp =
1963             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1964         return TLO.CombineTo(Op, NewOp);
1965       }
1966     }
1967 
1968     Known = Known2;
1969     if (BitWidth > EltBitWidth)
1970       Known = Known.anyext(BitWidth);
1971     break;
1972   }
1973   case ISD::BITCAST: {
1974     SDValue Src = Op.getOperand(0);
1975     EVT SrcVT = Src.getValueType();
1976     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1977 
1978     // If this is an FP->Int bitcast and if the sign bit is the only
1979     // thing demanded, turn this into a FGETSIGN.
1980     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1981         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1982         SrcVT.isFloatingPoint()) {
1983       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1984       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1985       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1986           SrcVT != MVT::f128) {
1987         // Cannot eliminate/lower SHL for f128 yet.
1988         EVT Ty = OpVTLegal ? VT : MVT::i32;
1989         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1990         // place.  We expect the SHL to be eliminated by other optimizations.
1991         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1992         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1993         if (!OpVTLegal && OpVTSizeInBits > 32)
1994           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1995         unsigned ShVal = Op.getValueSizeInBits() - 1;
1996         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1997         return TLO.CombineTo(Op,
1998                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1999       }
2000     }
2001 
2002     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2003     // Demand the elt/bit if any of the original elts/bits are demanded.
2004     // TODO - bigendian once we have test coverage.
2005     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2006         TLO.DAG.getDataLayout().isLittleEndian()) {
2007       unsigned Scale = BitWidth / NumSrcEltBits;
2008       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2009       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2010       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2011       for (unsigned i = 0; i != Scale; ++i) {
2012         unsigned Offset = i * NumSrcEltBits;
2013         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2014         if (!Sub.isNullValue()) {
2015           DemandedSrcBits |= Sub;
2016           for (unsigned j = 0; j != NumElts; ++j)
2017             if (DemandedElts[j])
2018               DemandedSrcElts.setBit((j * Scale) + i);
2019         }
2020       }
2021 
2022       APInt KnownSrcUndef, KnownSrcZero;
2023       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2024                                      KnownSrcZero, TLO, Depth + 1))
2025         return true;
2026 
2027       KnownBits KnownSrcBits;
2028       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2029                                KnownSrcBits, TLO, Depth + 1))
2030         return true;
2031     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2032                TLO.DAG.getDataLayout().isLittleEndian()) {
2033       unsigned Scale = NumSrcEltBits / BitWidth;
2034       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2035       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2036       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2037       for (unsigned i = 0; i != NumElts; ++i)
2038         if (DemandedElts[i]) {
2039           unsigned Offset = (i % Scale) * BitWidth;
2040           DemandedSrcBits.insertBits(DemandedBits, Offset);
2041           DemandedSrcElts.setBit(i / Scale);
2042         }
2043 
2044       if (SrcVT.isVector()) {
2045         APInt KnownSrcUndef, KnownSrcZero;
2046         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2047                                        KnownSrcZero, TLO, Depth + 1))
2048           return true;
2049       }
2050 
2051       KnownBits KnownSrcBits;
2052       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2053                                KnownSrcBits, TLO, Depth + 1))
2054         return true;
2055     }
2056 
2057     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2058     // recursive call where Known may be useful to the caller.
2059     if (Depth > 0) {
2060       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2061       return false;
2062     }
2063     break;
2064   }
2065   case ISD::ADD:
2066   case ISD::MUL:
2067   case ISD::SUB: {
2068     // Add, Sub, and Mul don't demand any bits in positions beyond that
2069     // of the highest bit demanded of them.
2070     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2071     SDNodeFlags Flags = Op.getNode()->getFlags();
2072     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2073     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2074     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2075                              Depth + 1) ||
2076         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2077                              Depth + 1) ||
2078         // See if the operation should be performed at a smaller bit width.
2079         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2080       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2081         // Disable the nsw and nuw flags. We can no longer guarantee that we
2082         // won't wrap after simplification.
2083         Flags.setNoSignedWrap(false);
2084         Flags.setNoUnsignedWrap(false);
2085         SDValue NewOp =
2086             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2087         return TLO.CombineTo(Op, NewOp);
2088       }
2089       return true;
2090     }
2091 
2092     // Attempt to avoid multi-use ops if we don't need anything from them.
2093     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2094       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2095           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2096       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2097           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2098       if (DemandedOp0 || DemandedOp1) {
2099         Flags.setNoSignedWrap(false);
2100         Flags.setNoUnsignedWrap(false);
2101         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2102         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2103         SDValue NewOp =
2104             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2105         return TLO.CombineTo(Op, NewOp);
2106       }
2107     }
2108 
2109     // If we have a constant operand, we may be able to turn it into -1 if we
2110     // do not demand the high bits. This can make the constant smaller to
2111     // encode, allow more general folding, or match specialized instruction
2112     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2113     // is probably not useful (and could be detrimental).
2114     ConstantSDNode *C = isConstOrConstSplat(Op1);
2115     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2116     if (C && !C->isAllOnesValue() && !C->isOne() &&
2117         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2118       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2119       // Disable the nsw and nuw flags. We can no longer guarantee that we
2120       // won't wrap after simplification.
2121       Flags.setNoSignedWrap(false);
2122       Flags.setNoUnsignedWrap(false);
2123       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2124       return TLO.CombineTo(Op, NewOp);
2125     }
2126 
2127     LLVM_FALLTHROUGH;
2128   }
2129   default:
2130     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2131       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2132                                             Known, TLO, Depth))
2133         return true;
2134       break;
2135     }
2136 
2137     // Just use computeKnownBits to compute output bits.
2138     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2139     break;
2140   }
2141 
2142   // If we know the value of all of the demanded bits, return this as a
2143   // constant.
2144   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2145     // Avoid folding to a constant if any OpaqueConstant is involved.
2146     const SDNode *N = Op.getNode();
2147     for (SDNodeIterator I = SDNodeIterator::begin(N),
2148                         E = SDNodeIterator::end(N);
2149          I != E; ++I) {
2150       SDNode *Op = *I;
2151       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2152         if (C->isOpaque())
2153           return false;
2154     }
2155     // TODO: Handle float bits as well.
2156     if (VT.isInteger())
2157       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2158   }
2159 
2160   return false;
2161 }
2162 
2163 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2164                                                 const APInt &DemandedElts,
2165                                                 APInt &KnownUndef,
2166                                                 APInt &KnownZero,
2167                                                 DAGCombinerInfo &DCI) const {
2168   SelectionDAG &DAG = DCI.DAG;
2169   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2170                         !DCI.isBeforeLegalizeOps());
2171 
2172   bool Simplified =
2173       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2174   if (Simplified) {
2175     DCI.AddToWorklist(Op.getNode());
2176     DCI.CommitTargetLoweringOpt(TLO);
2177   }
2178 
2179   return Simplified;
2180 }
2181 
2182 /// Given a vector binary operation and known undefined elements for each input
2183 /// operand, compute whether each element of the output is undefined.
2184 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2185                                          const APInt &UndefOp0,
2186                                          const APInt &UndefOp1) {
2187   EVT VT = BO.getValueType();
2188   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2189          "Vector binop only");
2190 
2191   EVT EltVT = VT.getVectorElementType();
2192   unsigned NumElts = VT.getVectorNumElements();
2193   assert(UndefOp0.getBitWidth() == NumElts &&
2194          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2195 
2196   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2197                                    const APInt &UndefVals) {
2198     if (UndefVals[Index])
2199       return DAG.getUNDEF(EltVT);
2200 
2201     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2202       // Try hard to make sure that the getNode() call is not creating temporary
2203       // nodes. Ignore opaque integers because they do not constant fold.
2204       SDValue Elt = BV->getOperand(Index);
2205       auto *C = dyn_cast<ConstantSDNode>(Elt);
2206       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2207         return Elt;
2208     }
2209 
2210     return SDValue();
2211   };
2212 
2213   APInt KnownUndef = APInt::getNullValue(NumElts);
2214   for (unsigned i = 0; i != NumElts; ++i) {
2215     // If both inputs for this element are either constant or undef and match
2216     // the element type, compute the constant/undef result for this element of
2217     // the vector.
2218     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2219     // not handle FP constants. The code within getNode() should be refactored
2220     // to avoid the danger of creating a bogus temporary node here.
2221     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2222     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2223     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2224       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2225         KnownUndef.setBit(i);
2226   }
2227   return KnownUndef;
2228 }
2229 
2230 bool TargetLowering::SimplifyDemandedVectorElts(
2231     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2232     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2233     bool AssumeSingleUse) const {
2234   EVT VT = Op.getValueType();
2235   APInt DemandedElts = OriginalDemandedElts;
2236   unsigned NumElts = DemandedElts.getBitWidth();
2237   assert(VT.isVector() && "Expected vector op");
2238   assert(VT.getVectorNumElements() == NumElts &&
2239          "Mask size mismatches value type element count!");
2240 
2241   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2242 
2243   // Undef operand.
2244   if (Op.isUndef()) {
2245     KnownUndef.setAllBits();
2246     return false;
2247   }
2248 
2249   // If Op has other users, assume that all elements are needed.
2250   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2251     DemandedElts.setAllBits();
2252 
2253   // Not demanding any elements from Op.
2254   if (DemandedElts == 0) {
2255     KnownUndef.setAllBits();
2256     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2257   }
2258 
2259   // Limit search depth.
2260   if (Depth >= SelectionDAG::MaxRecursionDepth)
2261     return false;
2262 
2263   SDLoc DL(Op);
2264   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2265 
2266   switch (Op.getOpcode()) {
2267   case ISD::SCALAR_TO_VECTOR: {
2268     if (!DemandedElts[0]) {
2269       KnownUndef.setAllBits();
2270       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2271     }
2272     KnownUndef.setHighBits(NumElts - 1);
2273     break;
2274   }
2275   case ISD::BITCAST: {
2276     SDValue Src = Op.getOperand(0);
2277     EVT SrcVT = Src.getValueType();
2278 
2279     // We only handle vectors here.
2280     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2281     if (!SrcVT.isVector())
2282       break;
2283 
2284     // Fast handling of 'identity' bitcasts.
2285     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2286     if (NumSrcElts == NumElts)
2287       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2288                                         KnownZero, TLO, Depth + 1);
2289 
2290     APInt SrcZero, SrcUndef;
2291     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2292 
2293     // Bitcast from 'large element' src vector to 'small element' vector, we
2294     // must demand a source element if any DemandedElt maps to it.
2295     if ((NumElts % NumSrcElts) == 0) {
2296       unsigned Scale = NumElts / NumSrcElts;
2297       for (unsigned i = 0; i != NumElts; ++i)
2298         if (DemandedElts[i])
2299           SrcDemandedElts.setBit(i / Scale);
2300 
2301       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2302                                      TLO, Depth + 1))
2303         return true;
2304 
2305       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2306       // of the large element.
2307       // TODO - bigendian once we have test coverage.
2308       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2309         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2310         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2311         for (unsigned i = 0; i != NumElts; ++i)
2312           if (DemandedElts[i]) {
2313             unsigned Ofs = (i % Scale) * EltSizeInBits;
2314             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2315           }
2316 
2317         KnownBits Known;
2318         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2319                                  TLO, Depth + 1))
2320           return true;
2321       }
2322 
2323       // If the src element is zero/undef then all the output elements will be -
2324       // only demanded elements are guaranteed to be correct.
2325       for (unsigned i = 0; i != NumSrcElts; ++i) {
2326         if (SrcDemandedElts[i]) {
2327           if (SrcZero[i])
2328             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2329           if (SrcUndef[i])
2330             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2331         }
2332       }
2333     }
2334 
2335     // Bitcast from 'small element' src vector to 'large element' vector, we
2336     // demand all smaller source elements covered by the larger demanded element
2337     // of this vector.
2338     if ((NumSrcElts % NumElts) == 0) {
2339       unsigned Scale = NumSrcElts / NumElts;
2340       for (unsigned i = 0; i != NumElts; ++i)
2341         if (DemandedElts[i])
2342           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2343 
2344       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2345                                      TLO, Depth + 1))
2346         return true;
2347 
2348       // If all the src elements covering an output element are zero/undef, then
2349       // the output element will be as well, assuming it was demanded.
2350       for (unsigned i = 0; i != NumElts; ++i) {
2351         if (DemandedElts[i]) {
2352           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2353             KnownZero.setBit(i);
2354           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2355             KnownUndef.setBit(i);
2356         }
2357       }
2358     }
2359     break;
2360   }
2361   case ISD::BUILD_VECTOR: {
2362     // Check all elements and simplify any unused elements with UNDEF.
2363     if (!DemandedElts.isAllOnesValue()) {
2364       // Don't simplify BROADCASTS.
2365       if (llvm::any_of(Op->op_values(),
2366                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2367         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2368         bool Updated = false;
2369         for (unsigned i = 0; i != NumElts; ++i) {
2370           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2371             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2372             KnownUndef.setBit(i);
2373             Updated = true;
2374           }
2375         }
2376         if (Updated)
2377           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2378       }
2379     }
2380     for (unsigned i = 0; i != NumElts; ++i) {
2381       SDValue SrcOp = Op.getOperand(i);
2382       if (SrcOp.isUndef()) {
2383         KnownUndef.setBit(i);
2384       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2385                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2386         KnownZero.setBit(i);
2387       }
2388     }
2389     break;
2390   }
2391   case ISD::CONCAT_VECTORS: {
2392     EVT SubVT = Op.getOperand(0).getValueType();
2393     unsigned NumSubVecs = Op.getNumOperands();
2394     unsigned NumSubElts = SubVT.getVectorNumElements();
2395     for (unsigned i = 0; i != NumSubVecs; ++i) {
2396       SDValue SubOp = Op.getOperand(i);
2397       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2398       APInt SubUndef, SubZero;
2399       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2400                                      Depth + 1))
2401         return true;
2402       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2403       KnownZero.insertBits(SubZero, i * NumSubElts);
2404     }
2405     break;
2406   }
2407   case ISD::INSERT_SUBVECTOR: {
2408     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2409       break;
2410     SDValue Base = Op.getOperand(0);
2411     SDValue Sub = Op.getOperand(1);
2412     EVT SubVT = Sub.getValueType();
2413     unsigned NumSubElts = SubVT.getVectorNumElements();
2414     const APInt &Idx = Op.getConstantOperandAPInt(2);
2415     if (Idx.ugt(NumElts - NumSubElts))
2416       break;
2417     unsigned SubIdx = Idx.getZExtValue();
2418     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2419     APInt SubUndef, SubZero;
2420     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2421                                    Depth + 1))
2422       return true;
2423     APInt BaseElts = DemandedElts;
2424     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2425 
2426     // If none of the base operand elements are demanded, replace it with undef.
2427     if (!BaseElts && !Base.isUndef())
2428       return TLO.CombineTo(Op,
2429                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2430                                            TLO.DAG.getUNDEF(VT),
2431                                            Op.getOperand(1),
2432                                            Op.getOperand(2)));
2433 
2434     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2435                                    Depth + 1))
2436       return true;
2437     KnownUndef.insertBits(SubUndef, SubIdx);
2438     KnownZero.insertBits(SubZero, SubIdx);
2439     break;
2440   }
2441   case ISD::EXTRACT_SUBVECTOR: {
2442     SDValue Src = Op.getOperand(0);
2443     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2444     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2445     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2446       // Offset the demanded elts by the subvector index.
2447       uint64_t Idx = SubIdx->getZExtValue();
2448       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2449       APInt SrcUndef, SrcZero;
2450       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2451                                      Depth + 1))
2452         return true;
2453       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2454       KnownZero = SrcZero.extractBits(NumElts, Idx);
2455     }
2456     break;
2457   }
2458   case ISD::INSERT_VECTOR_ELT: {
2459     SDValue Vec = Op.getOperand(0);
2460     SDValue Scl = Op.getOperand(1);
2461     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2462 
2463     // For a legal, constant insertion index, if we don't need this insertion
2464     // then strip it, else remove it from the demanded elts.
2465     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2466       unsigned Idx = CIdx->getZExtValue();
2467       if (!DemandedElts[Idx])
2468         return TLO.CombineTo(Op, Vec);
2469 
2470       APInt DemandedVecElts(DemandedElts);
2471       DemandedVecElts.clearBit(Idx);
2472       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2473                                      KnownZero, TLO, Depth + 1))
2474         return true;
2475 
2476       KnownUndef.clearBit(Idx);
2477       if (Scl.isUndef())
2478         KnownUndef.setBit(Idx);
2479 
2480       KnownZero.clearBit(Idx);
2481       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2482         KnownZero.setBit(Idx);
2483       break;
2484     }
2485 
2486     APInt VecUndef, VecZero;
2487     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2488                                    Depth + 1))
2489       return true;
2490     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2491     break;
2492   }
2493   case ISD::VSELECT: {
2494     // Try to transform the select condition based on the current demanded
2495     // elements.
2496     // TODO: If a condition element is undef, we can choose from one arm of the
2497     //       select (and if one arm is undef, then we can propagate that to the
2498     //       result).
2499     // TODO - add support for constant vselect masks (see IR version of this).
2500     APInt UnusedUndef, UnusedZero;
2501     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2502                                    UnusedZero, TLO, Depth + 1))
2503       return true;
2504 
2505     // See if we can simplify either vselect operand.
2506     APInt DemandedLHS(DemandedElts);
2507     APInt DemandedRHS(DemandedElts);
2508     APInt UndefLHS, ZeroLHS;
2509     APInt UndefRHS, ZeroRHS;
2510     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2511                                    ZeroLHS, TLO, Depth + 1))
2512       return true;
2513     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2514                                    ZeroRHS, TLO, Depth + 1))
2515       return true;
2516 
2517     KnownUndef = UndefLHS & UndefRHS;
2518     KnownZero = ZeroLHS & ZeroRHS;
2519     break;
2520   }
2521   case ISD::VECTOR_SHUFFLE: {
2522     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2523 
2524     // Collect demanded elements from shuffle operands..
2525     APInt DemandedLHS(NumElts, 0);
2526     APInt DemandedRHS(NumElts, 0);
2527     for (unsigned i = 0; i != NumElts; ++i) {
2528       int M = ShuffleMask[i];
2529       if (M < 0 || !DemandedElts[i])
2530         continue;
2531       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2532       if (M < (int)NumElts)
2533         DemandedLHS.setBit(M);
2534       else
2535         DemandedRHS.setBit(M - NumElts);
2536     }
2537 
2538     // See if we can simplify either shuffle operand.
2539     APInt UndefLHS, ZeroLHS;
2540     APInt UndefRHS, ZeroRHS;
2541     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2542                                    ZeroLHS, TLO, Depth + 1))
2543       return true;
2544     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2545                                    ZeroRHS, TLO, Depth + 1))
2546       return true;
2547 
2548     // Simplify mask using undef elements from LHS/RHS.
2549     bool Updated = false;
2550     bool IdentityLHS = true, IdentityRHS = true;
2551     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2552     for (unsigned i = 0; i != NumElts; ++i) {
2553       int &M = NewMask[i];
2554       if (M < 0)
2555         continue;
2556       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2557           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2558         Updated = true;
2559         M = -1;
2560       }
2561       IdentityLHS &= (M < 0) || (M == (int)i);
2562       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2563     }
2564 
2565     // Update legal shuffle masks based on demanded elements if it won't reduce
2566     // to Identity which can cause premature removal of the shuffle mask.
2567     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2568       SDValue LegalShuffle =
2569           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2570                                   NewMask, TLO.DAG);
2571       if (LegalShuffle)
2572         return TLO.CombineTo(Op, LegalShuffle);
2573     }
2574 
2575     // Propagate undef/zero elements from LHS/RHS.
2576     for (unsigned i = 0; i != NumElts; ++i) {
2577       int M = ShuffleMask[i];
2578       if (M < 0) {
2579         KnownUndef.setBit(i);
2580       } else if (M < (int)NumElts) {
2581         if (UndefLHS[M])
2582           KnownUndef.setBit(i);
2583         if (ZeroLHS[M])
2584           KnownZero.setBit(i);
2585       } else {
2586         if (UndefRHS[M - NumElts])
2587           KnownUndef.setBit(i);
2588         if (ZeroRHS[M - NumElts])
2589           KnownZero.setBit(i);
2590       }
2591     }
2592     break;
2593   }
2594   case ISD::ANY_EXTEND_VECTOR_INREG:
2595   case ISD::SIGN_EXTEND_VECTOR_INREG:
2596   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2597     APInt SrcUndef, SrcZero;
2598     SDValue Src = Op.getOperand(0);
2599     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2600     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2601     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2602                                    Depth + 1))
2603       return true;
2604     KnownZero = SrcZero.zextOrTrunc(NumElts);
2605     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2606 
2607     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2608         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2609         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2610       // aext - if we just need the bottom element then we can bitcast.
2611       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2612     }
2613 
2614     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2615       // zext(undef) upper bits are guaranteed to be zero.
2616       if (DemandedElts.isSubsetOf(KnownUndef))
2617         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2618       KnownUndef.clearAllBits();
2619     }
2620     break;
2621   }
2622 
2623   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2624   // MAX, saturated math, etc.
2625   case ISD::OR:
2626   case ISD::XOR:
2627   case ISD::ADD:
2628   case ISD::SUB:
2629   case ISD::FADD:
2630   case ISD::FSUB:
2631   case ISD::FMUL:
2632   case ISD::FDIV:
2633   case ISD::FREM: {
2634     APInt UndefRHS, ZeroRHS;
2635     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2636                                    ZeroRHS, TLO, Depth + 1))
2637       return true;
2638     APInt UndefLHS, ZeroLHS;
2639     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2640                                    ZeroLHS, TLO, Depth + 1))
2641       return true;
2642 
2643     KnownZero = ZeroLHS & ZeroRHS;
2644     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2645     break;
2646   }
2647   case ISD::SHL:
2648   case ISD::SRL:
2649   case ISD::SRA:
2650   case ISD::ROTL:
2651   case ISD::ROTR: {
2652     APInt UndefRHS, ZeroRHS;
2653     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2654                                    ZeroRHS, TLO, Depth + 1))
2655       return true;
2656     APInt UndefLHS, ZeroLHS;
2657     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2658                                    ZeroLHS, TLO, Depth + 1))
2659       return true;
2660 
2661     KnownZero = ZeroLHS;
2662     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2663     break;
2664   }
2665   case ISD::MUL:
2666   case ISD::AND: {
2667     APInt SrcUndef, SrcZero;
2668     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2669                                    SrcZero, TLO, Depth + 1))
2670       return true;
2671     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2672                                    KnownZero, TLO, Depth + 1))
2673       return true;
2674 
2675     // If either side has a zero element, then the result element is zero, even
2676     // if the other is an UNDEF.
2677     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2678     // and then handle 'and' nodes with the rest of the binop opcodes.
2679     KnownZero |= SrcZero;
2680     KnownUndef &= SrcUndef;
2681     KnownUndef &= ~KnownZero;
2682     break;
2683   }
2684   case ISD::TRUNCATE:
2685   case ISD::SIGN_EXTEND:
2686   case ISD::ZERO_EXTEND:
2687     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2688                                    KnownZero, TLO, Depth + 1))
2689       return true;
2690 
2691     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2692       // zext(undef) upper bits are guaranteed to be zero.
2693       if (DemandedElts.isSubsetOf(KnownUndef))
2694         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2695       KnownUndef.clearAllBits();
2696     }
2697     break;
2698   default: {
2699     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2700       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2701                                                   KnownZero, TLO, Depth))
2702         return true;
2703     } else {
2704       KnownBits Known;
2705       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2706       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2707                                TLO, Depth, AssumeSingleUse))
2708         return true;
2709     }
2710     break;
2711   }
2712   }
2713   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2714 
2715   // Constant fold all undef cases.
2716   // TODO: Handle zero cases as well.
2717   if (DemandedElts.isSubsetOf(KnownUndef))
2718     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2719 
2720   return false;
2721 }
2722 
2723 /// Determine which of the bits specified in Mask are known to be either zero or
2724 /// one and return them in the Known.
2725 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2726                                                    KnownBits &Known,
2727                                                    const APInt &DemandedElts,
2728                                                    const SelectionDAG &DAG,
2729                                                    unsigned Depth) const {
2730   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2731           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2732           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2733           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2734          "Should use MaskedValueIsZero if you don't know whether Op"
2735          " is a target node!");
2736   Known.resetAll();
2737 }
2738 
2739 void TargetLowering::computeKnownBitsForTargetInstr(
2740     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2741     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2742     unsigned Depth) const {
2743   Known.resetAll();
2744 }
2745 
2746 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2747                                                    KnownBits &Known,
2748                                                    const APInt &DemandedElts,
2749                                                    const SelectionDAG &DAG,
2750                                                    unsigned Depth) const {
2751   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2752 
2753   if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) {
2754     // The low bits are known zero if the pointer is aligned.
2755     Known.Zero.setLowBits(Log2(*Alignment));
2756   }
2757 }
2758 
2759 /// This method can be implemented by targets that want to expose additional
2760 /// information about sign bits to the DAG Combiner.
2761 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2762                                                          const APInt &,
2763                                                          const SelectionDAG &,
2764                                                          unsigned Depth) const {
2765   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2766           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2767           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2768           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2769          "Should use ComputeNumSignBits if you don't know whether Op"
2770          " is a target node!");
2771   return 1;
2772 }
2773 
2774 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2775   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2776   const MachineRegisterInfo &MRI, unsigned Depth) const {
2777   return 1;
2778 }
2779 
2780 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2781     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2782     TargetLoweringOpt &TLO, unsigned Depth) const {
2783   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2784           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2785           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2786           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2787          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2788          " is a target node!");
2789   return false;
2790 }
2791 
2792 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2793     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2794     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2795   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2796           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2797           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2798           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2799          "Should use SimplifyDemandedBits if you don't know whether Op"
2800          " is a target node!");
2801   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2802   return false;
2803 }
2804 
2805 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2806     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2807     SelectionDAG &DAG, unsigned Depth) const {
2808   assert(
2809       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2810        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2811        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2812        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2813       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2814       " is a target node!");
2815   return SDValue();
2816 }
2817 
2818 SDValue
2819 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2820                                         SDValue N1, MutableArrayRef<int> Mask,
2821                                         SelectionDAG &DAG) const {
2822   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2823   if (!LegalMask) {
2824     std::swap(N0, N1);
2825     ShuffleVectorSDNode::commuteMask(Mask);
2826     LegalMask = isShuffleMaskLegal(Mask, VT);
2827   }
2828 
2829   if (!LegalMask)
2830     return SDValue();
2831 
2832   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2833 }
2834 
2835 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2836   return nullptr;
2837 }
2838 
2839 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2840                                                   const SelectionDAG &DAG,
2841                                                   bool SNaN,
2842                                                   unsigned Depth) const {
2843   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2844           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2845           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2846           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2847          "Should use isKnownNeverNaN if you don't know whether Op"
2848          " is a target node!");
2849   return false;
2850 }
2851 
2852 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2853 // work with truncating build vectors and vectors with elements of less than
2854 // 8 bits.
2855 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2856   if (!N)
2857     return false;
2858 
2859   APInt CVal;
2860   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2861     CVal = CN->getAPIntValue();
2862   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2863     auto *CN = BV->getConstantSplatNode();
2864     if (!CN)
2865       return false;
2866 
2867     // If this is a truncating build vector, truncate the splat value.
2868     // Otherwise, we may fail to match the expected values below.
2869     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2870     CVal = CN->getAPIntValue();
2871     if (BVEltWidth < CVal.getBitWidth())
2872       CVal = CVal.trunc(BVEltWidth);
2873   } else {
2874     return false;
2875   }
2876 
2877   switch (getBooleanContents(N->getValueType(0))) {
2878   case UndefinedBooleanContent:
2879     return CVal[0];
2880   case ZeroOrOneBooleanContent:
2881     return CVal.isOneValue();
2882   case ZeroOrNegativeOneBooleanContent:
2883     return CVal.isAllOnesValue();
2884   }
2885 
2886   llvm_unreachable("Invalid boolean contents");
2887 }
2888 
2889 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2890   if (!N)
2891     return false;
2892 
2893   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2894   if (!CN) {
2895     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2896     if (!BV)
2897       return false;
2898 
2899     // Only interested in constant splats, we don't care about undef
2900     // elements in identifying boolean constants and getConstantSplatNode
2901     // returns NULL if all ops are undef;
2902     CN = BV->getConstantSplatNode();
2903     if (!CN)
2904       return false;
2905   }
2906 
2907   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2908     return !CN->getAPIntValue()[0];
2909 
2910   return CN->isNullValue();
2911 }
2912 
2913 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2914                                        bool SExt) const {
2915   if (VT == MVT::i1)
2916     return N->isOne();
2917 
2918   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2919   switch (Cnt) {
2920   case TargetLowering::ZeroOrOneBooleanContent:
2921     // An extended value of 1 is always true, unless its original type is i1,
2922     // in which case it will be sign extended to -1.
2923     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2924   case TargetLowering::UndefinedBooleanContent:
2925   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2926     return N->isAllOnesValue() && SExt;
2927   }
2928   llvm_unreachable("Unexpected enumeration.");
2929 }
2930 
2931 /// This helper function of SimplifySetCC tries to optimize the comparison when
2932 /// either operand of the SetCC node is a bitwise-and instruction.
2933 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2934                                          ISD::CondCode Cond, const SDLoc &DL,
2935                                          DAGCombinerInfo &DCI) const {
2936   // Match these patterns in any of their permutations:
2937   // (X & Y) == Y
2938   // (X & Y) != Y
2939   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2940     std::swap(N0, N1);
2941 
2942   EVT OpVT = N0.getValueType();
2943   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2944       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2945     return SDValue();
2946 
2947   SDValue X, Y;
2948   if (N0.getOperand(0) == N1) {
2949     X = N0.getOperand(1);
2950     Y = N0.getOperand(0);
2951   } else if (N0.getOperand(1) == N1) {
2952     X = N0.getOperand(0);
2953     Y = N0.getOperand(1);
2954   } else {
2955     return SDValue();
2956   }
2957 
2958   SelectionDAG &DAG = DCI.DAG;
2959   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2960   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2961     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2962     // Note that where Y is variable and is known to have at most one bit set
2963     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2964     // equivalent when Y == 0.
2965     assert(OpVT.isInteger());
2966     Cond = ISD::getSetCCInverse(Cond, OpVT);
2967     if (DCI.isBeforeLegalizeOps() ||
2968         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2969       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2970   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2971     // If the target supports an 'and-not' or 'and-complement' logic operation,
2972     // try to use that to make a comparison operation more efficient.
2973     // But don't do this transform if the mask is a single bit because there are
2974     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2975     // 'rlwinm' on PPC).
2976 
2977     // Bail out if the compare operand that we want to turn into a zero is
2978     // already a zero (otherwise, infinite loop).
2979     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2980     if (YConst && YConst->isNullValue())
2981       return SDValue();
2982 
2983     // Transform this into: ~X & Y == 0.
2984     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2985     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2986     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2987   }
2988 
2989   return SDValue();
2990 }
2991 
2992 /// There are multiple IR patterns that could be checking whether certain
2993 /// truncation of a signed number would be lossy or not. The pattern which is
2994 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2995 /// We are looking for the following pattern: (KeptBits is a constant)
2996 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2997 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2998 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2999 /// We will unfold it into the natural trunc+sext pattern:
3000 ///   ((%x << C) a>> C) dstcond %x
3001 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3002 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3003     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3004     const SDLoc &DL) const {
3005   // We must be comparing with a constant.
3006   ConstantSDNode *C1;
3007   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3008     return SDValue();
3009 
3010   // N0 should be:  add %x, (1 << (KeptBits-1))
3011   if (N0->getOpcode() != ISD::ADD)
3012     return SDValue();
3013 
3014   // And we must be 'add'ing a constant.
3015   ConstantSDNode *C01;
3016   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3017     return SDValue();
3018 
3019   SDValue X = N0->getOperand(0);
3020   EVT XVT = X.getValueType();
3021 
3022   // Validate constants ...
3023 
3024   APInt I1 = C1->getAPIntValue();
3025 
3026   ISD::CondCode NewCond;
3027   if (Cond == ISD::CondCode::SETULT) {
3028     NewCond = ISD::CondCode::SETEQ;
3029   } else if (Cond == ISD::CondCode::SETULE) {
3030     NewCond = ISD::CondCode::SETEQ;
3031     // But need to 'canonicalize' the constant.
3032     I1 += 1;
3033   } else if (Cond == ISD::CondCode::SETUGT) {
3034     NewCond = ISD::CondCode::SETNE;
3035     // But need to 'canonicalize' the constant.
3036     I1 += 1;
3037   } else if (Cond == ISD::CondCode::SETUGE) {
3038     NewCond = ISD::CondCode::SETNE;
3039   } else
3040     return SDValue();
3041 
3042   APInt I01 = C01->getAPIntValue();
3043 
3044   auto checkConstants = [&I1, &I01]() -> bool {
3045     // Both of them must be power-of-two, and the constant from setcc is bigger.
3046     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3047   };
3048 
3049   if (checkConstants()) {
3050     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3051   } else {
3052     // What if we invert constants? (and the target predicate)
3053     I1.negate();
3054     I01.negate();
3055     assert(XVT.isInteger());
3056     NewCond = getSetCCInverse(NewCond, XVT);
3057     if (!checkConstants())
3058       return SDValue();
3059     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3060   }
3061 
3062   // They are power-of-two, so which bit is set?
3063   const unsigned KeptBits = I1.logBase2();
3064   const unsigned KeptBitsMinusOne = I01.logBase2();
3065 
3066   // Magic!
3067   if (KeptBits != (KeptBitsMinusOne + 1))
3068     return SDValue();
3069   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3070 
3071   // We don't want to do this in every single case.
3072   SelectionDAG &DAG = DCI.DAG;
3073   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3074           XVT, KeptBits))
3075     return SDValue();
3076 
3077   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3078   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3079 
3080   // Unfold into:  ((%x << C) a>> C) cond %x
3081   // Where 'cond' will be either 'eq' or 'ne'.
3082   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3083   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3084   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3085   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3086 
3087   return T2;
3088 }
3089 
3090 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3091 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3092     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3093     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3094   assert(isConstOrConstSplat(N1C) &&
3095          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3096          "Should be a comparison with 0.");
3097   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3098          "Valid only for [in]equality comparisons.");
3099 
3100   unsigned NewShiftOpcode;
3101   SDValue X, C, Y;
3102 
3103   SelectionDAG &DAG = DCI.DAG;
3104   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3105 
3106   // Look for '(C l>>/<< Y)'.
3107   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3108     // The shift should be one-use.
3109     if (!V.hasOneUse())
3110       return false;
3111     unsigned OldShiftOpcode = V.getOpcode();
3112     switch (OldShiftOpcode) {
3113     case ISD::SHL:
3114       NewShiftOpcode = ISD::SRL;
3115       break;
3116     case ISD::SRL:
3117       NewShiftOpcode = ISD::SHL;
3118       break;
3119     default:
3120       return false; // must be a logical shift.
3121     }
3122     // We should be shifting a constant.
3123     // FIXME: best to use isConstantOrConstantVector().
3124     C = V.getOperand(0);
3125     ConstantSDNode *CC =
3126         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3127     if (!CC)
3128       return false;
3129     Y = V.getOperand(1);
3130 
3131     ConstantSDNode *XC =
3132         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3133     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3134         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3135   };
3136 
3137   // LHS of comparison should be an one-use 'and'.
3138   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3139     return SDValue();
3140 
3141   X = N0.getOperand(0);
3142   SDValue Mask = N0.getOperand(1);
3143 
3144   // 'and' is commutative!
3145   if (!Match(Mask)) {
3146     std::swap(X, Mask);
3147     if (!Match(Mask))
3148       return SDValue();
3149   }
3150 
3151   EVT VT = X.getValueType();
3152 
3153   // Produce:
3154   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3155   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3156   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3157   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3158   return T2;
3159 }
3160 
3161 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3162 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3163 /// handle the commuted versions of these patterns.
3164 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3165                                            ISD::CondCode Cond, const SDLoc &DL,
3166                                            DAGCombinerInfo &DCI) const {
3167   unsigned BOpcode = N0.getOpcode();
3168   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3169          "Unexpected binop");
3170   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3171 
3172   // (X + Y) == X --> Y == 0
3173   // (X - Y) == X --> Y == 0
3174   // (X ^ Y) == X --> Y == 0
3175   SelectionDAG &DAG = DCI.DAG;
3176   EVT OpVT = N0.getValueType();
3177   SDValue X = N0.getOperand(0);
3178   SDValue Y = N0.getOperand(1);
3179   if (X == N1)
3180     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3181 
3182   if (Y != N1)
3183     return SDValue();
3184 
3185   // (X + Y) == Y --> X == 0
3186   // (X ^ Y) == Y --> X == 0
3187   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3188     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3189 
3190   // The shift would not be valid if the operands are boolean (i1).
3191   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3192     return SDValue();
3193 
3194   // (X - Y) == Y --> X == Y << 1
3195   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3196                                  !DCI.isBeforeLegalize());
3197   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3198   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3199   if (!DCI.isCalledByLegalizer())
3200     DCI.AddToWorklist(YShl1.getNode());
3201   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3202 }
3203 
3204 /// Try to simplify a setcc built with the specified operands and cc. If it is
3205 /// unable to simplify it, return a null SDValue.
3206 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3207                                       ISD::CondCode Cond, bool foldBooleans,
3208                                       DAGCombinerInfo &DCI,
3209                                       const SDLoc &dl) const {
3210   SelectionDAG &DAG = DCI.DAG;
3211   const DataLayout &Layout = DAG.getDataLayout();
3212   EVT OpVT = N0.getValueType();
3213 
3214   // Constant fold or commute setcc.
3215   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3216     return Fold;
3217 
3218   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3219   // TODO: Handle non-splat vector constants. All undef causes trouble.
3220   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3221   if (isConstOrConstSplat(N0) &&
3222       (DCI.isBeforeLegalizeOps() ||
3223        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3224     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3225 
3226   // If we have a subtract with the same 2 non-constant operands as this setcc
3227   // -- but in reverse order -- then try to commute the operands of this setcc
3228   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3229   // instruction on some targets.
3230   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3231       (DCI.isBeforeLegalizeOps() ||
3232        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3233       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3234       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3235     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3236 
3237   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3238     const APInt &C1 = N1C->getAPIntValue();
3239 
3240     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3241     // equality comparison, then we're just comparing whether X itself is
3242     // zero.
3243     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3244         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3245         N0.getOperand(1).getOpcode() == ISD::Constant) {
3246       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3247       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3248           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3249         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3250           // (srl (ctlz x), 5) == 0  -> X != 0
3251           // (srl (ctlz x), 5) != 1  -> X != 0
3252           Cond = ISD::SETNE;
3253         } else {
3254           // (srl (ctlz x), 5) != 0  -> X == 0
3255           // (srl (ctlz x), 5) == 1  -> X == 0
3256           Cond = ISD::SETEQ;
3257         }
3258         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3259         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3260                             Zero, Cond);
3261       }
3262     }
3263 
3264     SDValue CTPOP = N0;
3265     // Look through truncs that don't change the value of a ctpop.
3266     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3267       CTPOP = N0.getOperand(0);
3268 
3269     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3270         (N0 == CTPOP ||
3271          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3272       EVT CTVT = CTPOP.getValueType();
3273       SDValue CTOp = CTPOP.getOperand(0);
3274 
3275       // (ctpop x) u< 2 -> (x & x-1) == 0
3276       // (ctpop x) u> 1 -> (x & x-1) != 0
3277       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3278         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3279         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3280         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3281         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3282         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3283       }
3284 
3285       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3286       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3287           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3288         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3289         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3290         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3291         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3292         assert(CTVT.isInteger());
3293         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3294         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3295         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3296         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3297         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3298         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3299         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3300       }
3301     }
3302 
3303     // (zext x) == C --> x == (trunc C)
3304     // (sext x) == C --> x == (trunc C)
3305     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3306         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3307       unsigned MinBits = N0.getValueSizeInBits();
3308       SDValue PreExt;
3309       bool Signed = false;
3310       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3311         // ZExt
3312         MinBits = N0->getOperand(0).getValueSizeInBits();
3313         PreExt = N0->getOperand(0);
3314       } else if (N0->getOpcode() == ISD::AND) {
3315         // DAGCombine turns costly ZExts into ANDs
3316         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3317           if ((C->getAPIntValue()+1).isPowerOf2()) {
3318             MinBits = C->getAPIntValue().countTrailingOnes();
3319             PreExt = N0->getOperand(0);
3320           }
3321       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3322         // SExt
3323         MinBits = N0->getOperand(0).getValueSizeInBits();
3324         PreExt = N0->getOperand(0);
3325         Signed = true;
3326       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3327         // ZEXTLOAD / SEXTLOAD
3328         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3329           MinBits = LN0->getMemoryVT().getSizeInBits();
3330           PreExt = N0;
3331         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3332           Signed = true;
3333           MinBits = LN0->getMemoryVT().getSizeInBits();
3334           PreExt = N0;
3335         }
3336       }
3337 
3338       // Figure out how many bits we need to preserve this constant.
3339       unsigned ReqdBits = Signed ?
3340         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3341         C1.getActiveBits();
3342 
3343       // Make sure we're not losing bits from the constant.
3344       if (MinBits > 0 &&
3345           MinBits < C1.getBitWidth() &&
3346           MinBits >= ReqdBits) {
3347         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3348         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3349           // Will get folded away.
3350           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3351           if (MinBits == 1 && C1 == 1)
3352             // Invert the condition.
3353             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3354                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3355           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3356           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3357         }
3358 
3359         // If truncating the setcc operands is not desirable, we can still
3360         // simplify the expression in some cases:
3361         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3362         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3363         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3364         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3365         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3366         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3367         SDValue TopSetCC = N0->getOperand(0);
3368         unsigned N0Opc = N0->getOpcode();
3369         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3370         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3371             TopSetCC.getOpcode() == ISD::SETCC &&
3372             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3373             (isConstFalseVal(N1C) ||
3374              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3375 
3376           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3377                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3378 
3379           if (!Inverse)
3380             return TopSetCC;
3381 
3382           ISD::CondCode InvCond = ISD::getSetCCInverse(
3383               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3384               TopSetCC.getOperand(0).getValueType());
3385           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3386                                       TopSetCC.getOperand(1),
3387                                       InvCond);
3388         }
3389       }
3390     }
3391 
3392     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3393     // equality or unsigned, and all 1 bits of the const are in the same
3394     // partial word, see if we can shorten the load.
3395     if (DCI.isBeforeLegalize() &&
3396         !ISD::isSignedIntSetCC(Cond) &&
3397         N0.getOpcode() == ISD::AND && C1 == 0 &&
3398         N0.getNode()->hasOneUse() &&
3399         isa<LoadSDNode>(N0.getOperand(0)) &&
3400         N0.getOperand(0).getNode()->hasOneUse() &&
3401         isa<ConstantSDNode>(N0.getOperand(1))) {
3402       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3403       APInt bestMask;
3404       unsigned bestWidth = 0, bestOffset = 0;
3405       if (Lod->isSimple() && Lod->isUnindexed()) {
3406         unsigned origWidth = N0.getValueSizeInBits();
3407         unsigned maskWidth = origWidth;
3408         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3409         // 8 bits, but have to be careful...
3410         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3411           origWidth = Lod->getMemoryVT().getSizeInBits();
3412         const APInt &Mask = N0.getConstantOperandAPInt(1);
3413         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3414           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3415           for (unsigned offset=0; offset<origWidth/width; offset++) {
3416             if (Mask.isSubsetOf(newMask)) {
3417               if (Layout.isLittleEndian())
3418                 bestOffset = (uint64_t)offset * (width/8);
3419               else
3420                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3421               bestMask = Mask.lshr(offset * (width/8) * 8);
3422               bestWidth = width;
3423               break;
3424             }
3425             newMask <<= width;
3426           }
3427         }
3428       }
3429       if (bestWidth) {
3430         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3431         if (newVT.isRound() &&
3432             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3433           SDValue Ptr = Lod->getBasePtr();
3434           if (bestOffset != 0)
3435             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3436           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3437           SDValue NewLoad = DAG.getLoad(
3438               newVT, dl, Lod->getChain(), Ptr,
3439               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3440           return DAG.getSetCC(dl, VT,
3441                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3442                                       DAG.getConstant(bestMask.trunc(bestWidth),
3443                                                       dl, newVT)),
3444                               DAG.getConstant(0LL, dl, newVT), Cond);
3445         }
3446       }
3447     }
3448 
3449     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3450     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3451       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3452 
3453       // If the comparison constant has bits in the upper part, the
3454       // zero-extended value could never match.
3455       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3456                                               C1.getBitWidth() - InSize))) {
3457         switch (Cond) {
3458         case ISD::SETUGT:
3459         case ISD::SETUGE:
3460         case ISD::SETEQ:
3461           return DAG.getConstant(0, dl, VT);
3462         case ISD::SETULT:
3463         case ISD::SETULE:
3464         case ISD::SETNE:
3465           return DAG.getConstant(1, dl, VT);
3466         case ISD::SETGT:
3467         case ISD::SETGE:
3468           // True if the sign bit of C1 is set.
3469           return DAG.getConstant(C1.isNegative(), dl, VT);
3470         case ISD::SETLT:
3471         case ISD::SETLE:
3472           // True if the sign bit of C1 isn't set.
3473           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3474         default:
3475           break;
3476         }
3477       }
3478 
3479       // Otherwise, we can perform the comparison with the low bits.
3480       switch (Cond) {
3481       case ISD::SETEQ:
3482       case ISD::SETNE:
3483       case ISD::SETUGT:
3484       case ISD::SETUGE:
3485       case ISD::SETULT:
3486       case ISD::SETULE: {
3487         EVT newVT = N0.getOperand(0).getValueType();
3488         if (DCI.isBeforeLegalizeOps() ||
3489             (isOperationLegal(ISD::SETCC, newVT) &&
3490              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3491           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3492           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3493 
3494           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3495                                           NewConst, Cond);
3496           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3497         }
3498         break;
3499       }
3500       default:
3501         break; // todo, be more careful with signed comparisons
3502       }
3503     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3504                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3505       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3506       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3507       EVT ExtDstTy = N0.getValueType();
3508       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3509 
3510       // If the constant doesn't fit into the number of bits for the source of
3511       // the sign extension, it is impossible for both sides to be equal.
3512       if (C1.getMinSignedBits() > ExtSrcTyBits)
3513         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3514 
3515       SDValue ZextOp;
3516       EVT Op0Ty = N0.getOperand(0).getValueType();
3517       if (Op0Ty == ExtSrcTy) {
3518         ZextOp = N0.getOperand(0);
3519       } else {
3520         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3521         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3522                              DAG.getConstant(Imm, dl, Op0Ty));
3523       }
3524       if (!DCI.isCalledByLegalizer())
3525         DCI.AddToWorklist(ZextOp.getNode());
3526       // Otherwise, make this a use of a zext.
3527       return DAG.getSetCC(dl, VT, ZextOp,
3528                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3529                                                               ExtDstTyBits,
3530                                                               ExtSrcTyBits),
3531                                           dl, ExtDstTy),
3532                           Cond);
3533     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3534                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3535       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3536       if (N0.getOpcode() == ISD::SETCC &&
3537           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3538           (N0.getValueType() == MVT::i1 ||
3539            getBooleanContents(N0.getOperand(0).getValueType()) ==
3540                        ZeroOrOneBooleanContent)) {
3541         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3542         if (TrueWhenTrue)
3543           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3544         // Invert the condition.
3545         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3546         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3547         if (DCI.isBeforeLegalizeOps() ||
3548             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3549           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3550       }
3551 
3552       if ((N0.getOpcode() == ISD::XOR ||
3553            (N0.getOpcode() == ISD::AND &&
3554             N0.getOperand(0).getOpcode() == ISD::XOR &&
3555             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3556           isa<ConstantSDNode>(N0.getOperand(1)) &&
3557           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3558         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3559         // can only do this if the top bits are known zero.
3560         unsigned BitWidth = N0.getValueSizeInBits();
3561         if (DAG.MaskedValueIsZero(N0,
3562                                   APInt::getHighBitsSet(BitWidth,
3563                                                         BitWidth-1))) {
3564           // Okay, get the un-inverted input value.
3565           SDValue Val;
3566           if (N0.getOpcode() == ISD::XOR) {
3567             Val = N0.getOperand(0);
3568           } else {
3569             assert(N0.getOpcode() == ISD::AND &&
3570                     N0.getOperand(0).getOpcode() == ISD::XOR);
3571             // ((X^1)&1)^1 -> X & 1
3572             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3573                               N0.getOperand(0).getOperand(0),
3574                               N0.getOperand(1));
3575           }
3576 
3577           return DAG.getSetCC(dl, VT, Val, N1,
3578                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3579         }
3580       } else if (N1C->isOne()) {
3581         SDValue Op0 = N0;
3582         if (Op0.getOpcode() == ISD::TRUNCATE)
3583           Op0 = Op0.getOperand(0);
3584 
3585         if ((Op0.getOpcode() == ISD::XOR) &&
3586             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3587             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3588           SDValue XorLHS = Op0.getOperand(0);
3589           SDValue XorRHS = Op0.getOperand(1);
3590           // Ensure that the input setccs return an i1 type or 0/1 value.
3591           if (Op0.getValueType() == MVT::i1 ||
3592               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3593                       ZeroOrOneBooleanContent &&
3594                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3595                         ZeroOrOneBooleanContent)) {
3596             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3597             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3598             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3599           }
3600         }
3601         if (Op0.getOpcode() == ISD::AND &&
3602             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3603             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3604           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3605           if (Op0.getValueType().bitsGT(VT))
3606             Op0 = DAG.getNode(ISD::AND, dl, VT,
3607                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3608                           DAG.getConstant(1, dl, VT));
3609           else if (Op0.getValueType().bitsLT(VT))
3610             Op0 = DAG.getNode(ISD::AND, dl, VT,
3611                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3612                         DAG.getConstant(1, dl, VT));
3613 
3614           return DAG.getSetCC(dl, VT, Op0,
3615                               DAG.getConstant(0, dl, Op0.getValueType()),
3616                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3617         }
3618         if (Op0.getOpcode() == ISD::AssertZext &&
3619             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3620           return DAG.getSetCC(dl, VT, Op0,
3621                               DAG.getConstant(0, dl, Op0.getValueType()),
3622                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3623       }
3624     }
3625 
3626     // Given:
3627     //   icmp eq/ne (urem %x, %y), 0
3628     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3629     //   icmp eq/ne %x, 0
3630     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3631         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3632       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3633       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3634       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3635         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3636     }
3637 
3638     if (SDValue V =
3639             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3640       return V;
3641   }
3642 
3643   // These simplifications apply to splat vectors as well.
3644   // TODO: Handle more splat vector cases.
3645   if (auto *N1C = isConstOrConstSplat(N1)) {
3646     const APInt &C1 = N1C->getAPIntValue();
3647 
3648     APInt MinVal, MaxVal;
3649     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3650     if (ISD::isSignedIntSetCC(Cond)) {
3651       MinVal = APInt::getSignedMinValue(OperandBitSize);
3652       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3653     } else {
3654       MinVal = APInt::getMinValue(OperandBitSize);
3655       MaxVal = APInt::getMaxValue(OperandBitSize);
3656     }
3657 
3658     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3659     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3660       // X >= MIN --> true
3661       if (C1 == MinVal)
3662         return DAG.getBoolConstant(true, dl, VT, OpVT);
3663 
3664       if (!VT.isVector()) { // TODO: Support this for vectors.
3665         // X >= C0 --> X > (C0 - 1)
3666         APInt C = C1 - 1;
3667         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3668         if ((DCI.isBeforeLegalizeOps() ||
3669              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3670             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3671                                   isLegalICmpImmediate(C.getSExtValue())))) {
3672           return DAG.getSetCC(dl, VT, N0,
3673                               DAG.getConstant(C, dl, N1.getValueType()),
3674                               NewCC);
3675         }
3676       }
3677     }
3678 
3679     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3680       // X <= MAX --> true
3681       if (C1 == MaxVal)
3682         return DAG.getBoolConstant(true, dl, VT, OpVT);
3683 
3684       // X <= C0 --> X < (C0 + 1)
3685       if (!VT.isVector()) { // TODO: Support this for vectors.
3686         APInt C = C1 + 1;
3687         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3688         if ((DCI.isBeforeLegalizeOps() ||
3689              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3690             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3691                                   isLegalICmpImmediate(C.getSExtValue())))) {
3692           return DAG.getSetCC(dl, VT, N0,
3693                               DAG.getConstant(C, dl, N1.getValueType()),
3694                               NewCC);
3695         }
3696       }
3697     }
3698 
3699     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3700       if (C1 == MinVal)
3701         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3702 
3703       // TODO: Support this for vectors after legalize ops.
3704       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3705         // Canonicalize setlt X, Max --> setne X, Max
3706         if (C1 == MaxVal)
3707           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3708 
3709         // If we have setult X, 1, turn it into seteq X, 0
3710         if (C1 == MinVal+1)
3711           return DAG.getSetCC(dl, VT, N0,
3712                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3713                               ISD::SETEQ);
3714       }
3715     }
3716 
3717     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3718       if (C1 == MaxVal)
3719         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3720 
3721       // TODO: Support this for vectors after legalize ops.
3722       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3723         // Canonicalize setgt X, Min --> setne X, Min
3724         if (C1 == MinVal)
3725           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3726 
3727         // If we have setugt X, Max-1, turn it into seteq X, Max
3728         if (C1 == MaxVal-1)
3729           return DAG.getSetCC(dl, VT, N0,
3730                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3731                               ISD::SETEQ);
3732       }
3733     }
3734 
3735     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3736       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3737       if (C1.isNullValue())
3738         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3739                 VT, N0, N1, Cond, DCI, dl))
3740           return CC;
3741     }
3742 
3743     // If we have "setcc X, C0", check to see if we can shrink the immediate
3744     // by changing cc.
3745     // TODO: Support this for vectors after legalize ops.
3746     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3747       // SETUGT X, SINTMAX  -> SETLT X, 0
3748       if (Cond == ISD::SETUGT &&
3749           C1 == APInt::getSignedMaxValue(OperandBitSize))
3750         return DAG.getSetCC(dl, VT, N0,
3751                             DAG.getConstant(0, dl, N1.getValueType()),
3752                             ISD::SETLT);
3753 
3754       // SETULT X, SINTMIN  -> SETGT X, -1
3755       if (Cond == ISD::SETULT &&
3756           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3757         SDValue ConstMinusOne =
3758             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3759                             N1.getValueType());
3760         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3761       }
3762     }
3763   }
3764 
3765   // Back to non-vector simplifications.
3766   // TODO: Can we do these for vector splats?
3767   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3768     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3769     const APInt &C1 = N1C->getAPIntValue();
3770     EVT ShValTy = N0.getValueType();
3771 
3772     // Fold bit comparisons when we can.
3773     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3774         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3775         N0.getOpcode() == ISD::AND) {
3776       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3777         EVT ShiftTy =
3778             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3779         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3780           // Perform the xform if the AND RHS is a single bit.
3781           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3782           if (AndRHS->getAPIntValue().isPowerOf2() &&
3783               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3784             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3785                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3786                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3787           }
3788         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3789           // (X & 8) == 8  -->  (X & 8) >> 3
3790           // Perform the xform if C1 is a single bit.
3791           unsigned ShCt = C1.logBase2();
3792           if (C1.isPowerOf2() &&
3793               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3794             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3795                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3796                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3797           }
3798         }
3799       }
3800     }
3801 
3802     if (C1.getMinSignedBits() <= 64 &&
3803         !isLegalICmpImmediate(C1.getSExtValue())) {
3804       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3805       // (X & -256) == 256 -> (X >> 8) == 1
3806       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3807           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3808         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3809           const APInt &AndRHSC = AndRHS->getAPIntValue();
3810           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3811             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3812             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3813               SDValue Shift =
3814                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3815                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3816               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3817               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3818             }
3819           }
3820         }
3821       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3822                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3823         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3824         // X <  0x100000000 -> (X >> 32) <  1
3825         // X >= 0x100000000 -> (X >> 32) >= 1
3826         // X <= 0x0ffffffff -> (X >> 32) <  1
3827         // X >  0x0ffffffff -> (X >> 32) >= 1
3828         unsigned ShiftBits;
3829         APInt NewC = C1;
3830         ISD::CondCode NewCond = Cond;
3831         if (AdjOne) {
3832           ShiftBits = C1.countTrailingOnes();
3833           NewC = NewC + 1;
3834           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3835         } else {
3836           ShiftBits = C1.countTrailingZeros();
3837         }
3838         NewC.lshrInPlace(ShiftBits);
3839         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3840             isLegalICmpImmediate(NewC.getSExtValue()) &&
3841             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3842           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3843                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3844           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3845           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3846         }
3847       }
3848     }
3849   }
3850 
3851   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3852     auto *CFP = cast<ConstantFPSDNode>(N1);
3853     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3854 
3855     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3856     // constant if knowing that the operand is non-nan is enough.  We prefer to
3857     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3858     // materialize 0.0.
3859     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3860       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3861 
3862     // setcc (fneg x), C -> setcc swap(pred) x, -C
3863     if (N0.getOpcode() == ISD::FNEG) {
3864       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3865       if (DCI.isBeforeLegalizeOps() ||
3866           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3867         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3868         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3869       }
3870     }
3871 
3872     // If the condition is not legal, see if we can find an equivalent one
3873     // which is legal.
3874     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3875       // If the comparison was an awkward floating-point == or != and one of
3876       // the comparison operands is infinity or negative infinity, convert the
3877       // condition to a less-awkward <= or >=.
3878       if (CFP->getValueAPF().isInfinity()) {
3879         bool IsNegInf = CFP->getValueAPF().isNegative();
3880         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3881         switch (Cond) {
3882         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3883         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3884         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3885         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3886         default: break;
3887         }
3888         if (NewCond != ISD::SETCC_INVALID &&
3889             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3890           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3891       }
3892     }
3893   }
3894 
3895   if (N0 == N1) {
3896     // The sext(setcc()) => setcc() optimization relies on the appropriate
3897     // constant being emitted.
3898     assert(!N0.getValueType().isInteger() &&
3899            "Integer types should be handled by FoldSetCC");
3900 
3901     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3902     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3903     if (UOF == 2) // FP operators that are undefined on NaNs.
3904       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3905     if (UOF == unsigned(EqTrue))
3906       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3907     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3908     // if it is not already.
3909     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3910     if (NewCond != Cond &&
3911         (DCI.isBeforeLegalizeOps() ||
3912                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3913       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3914   }
3915 
3916   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3917       N0.getValueType().isInteger()) {
3918     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3919         N0.getOpcode() == ISD::XOR) {
3920       // Simplify (X+Y) == (X+Z) -->  Y == Z
3921       if (N0.getOpcode() == N1.getOpcode()) {
3922         if (N0.getOperand(0) == N1.getOperand(0))
3923           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3924         if (N0.getOperand(1) == N1.getOperand(1))
3925           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3926         if (isCommutativeBinOp(N0.getOpcode())) {
3927           // If X op Y == Y op X, try other combinations.
3928           if (N0.getOperand(0) == N1.getOperand(1))
3929             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3930                                 Cond);
3931           if (N0.getOperand(1) == N1.getOperand(0))
3932             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3933                                 Cond);
3934         }
3935       }
3936 
3937       // If RHS is a legal immediate value for a compare instruction, we need
3938       // to be careful about increasing register pressure needlessly.
3939       bool LegalRHSImm = false;
3940 
3941       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3942         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3943           // Turn (X+C1) == C2 --> X == C2-C1
3944           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3945             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3946                                 DAG.getConstant(RHSC->getAPIntValue()-
3947                                                 LHSR->getAPIntValue(),
3948                                 dl, N0.getValueType()), Cond);
3949           }
3950 
3951           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3952           if (N0.getOpcode() == ISD::XOR)
3953             // If we know that all of the inverted bits are zero, don't bother
3954             // performing the inversion.
3955             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3956               return
3957                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3958                              DAG.getConstant(LHSR->getAPIntValue() ^
3959                                                RHSC->getAPIntValue(),
3960                                              dl, N0.getValueType()),
3961                              Cond);
3962         }
3963 
3964         // Turn (C1-X) == C2 --> X == C1-C2
3965         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3966           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3967             return
3968               DAG.getSetCC(dl, VT, N0.getOperand(1),
3969                            DAG.getConstant(SUBC->getAPIntValue() -
3970                                              RHSC->getAPIntValue(),
3971                                            dl, N0.getValueType()),
3972                            Cond);
3973           }
3974         }
3975 
3976         // Could RHSC fold directly into a compare?
3977         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3978           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3979       }
3980 
3981       // (X+Y) == X --> Y == 0 and similar folds.
3982       // Don't do this if X is an immediate that can fold into a cmp
3983       // instruction and X+Y has other uses. It could be an induction variable
3984       // chain, and the transform would increase register pressure.
3985       if (!LegalRHSImm || N0.hasOneUse())
3986         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3987           return V;
3988     }
3989 
3990     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3991         N1.getOpcode() == ISD::XOR)
3992       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3993         return V;
3994 
3995     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3996       return V;
3997   }
3998 
3999   // Fold remainder of division by a constant.
4000   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4001       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4002     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4003 
4004     // When division is cheap or optimizing for minimum size,
4005     // fall through to DIVREM creation by skipping this fold.
4006     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4007       if (N0.getOpcode() == ISD::UREM) {
4008         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4009           return Folded;
4010       } else if (N0.getOpcode() == ISD::SREM) {
4011         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4012           return Folded;
4013       }
4014     }
4015   }
4016 
4017   // Fold away ALL boolean setcc's.
4018   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4019     SDValue Temp;
4020     switch (Cond) {
4021     default: llvm_unreachable("Unknown integer setcc!");
4022     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4023       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4024       N0 = DAG.getNOT(dl, Temp, OpVT);
4025       if (!DCI.isCalledByLegalizer())
4026         DCI.AddToWorklist(Temp.getNode());
4027       break;
4028     case ISD::SETNE:  // X != Y   -->  (X^Y)
4029       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4030       break;
4031     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4032     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4033       Temp = DAG.getNOT(dl, N0, OpVT);
4034       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4035       if (!DCI.isCalledByLegalizer())
4036         DCI.AddToWorklist(Temp.getNode());
4037       break;
4038     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4039     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4040       Temp = DAG.getNOT(dl, N1, OpVT);
4041       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4042       if (!DCI.isCalledByLegalizer())
4043         DCI.AddToWorklist(Temp.getNode());
4044       break;
4045     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4046     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4047       Temp = DAG.getNOT(dl, N0, OpVT);
4048       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4049       if (!DCI.isCalledByLegalizer())
4050         DCI.AddToWorklist(Temp.getNode());
4051       break;
4052     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4053     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4054       Temp = DAG.getNOT(dl, N1, OpVT);
4055       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4056       break;
4057     }
4058     if (VT.getScalarType() != MVT::i1) {
4059       if (!DCI.isCalledByLegalizer())
4060         DCI.AddToWorklist(N0.getNode());
4061       // FIXME: If running after legalize, we probably can't do this.
4062       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4063       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4064     }
4065     return N0;
4066   }
4067 
4068   // Could not fold it.
4069   return SDValue();
4070 }
4071 
4072 /// Returns true (and the GlobalValue and the offset) if the node is a
4073 /// GlobalAddress + offset.
4074 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4075                                     int64_t &Offset) const {
4076 
4077   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4078 
4079   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4080     GA = GASD->getGlobal();
4081     Offset += GASD->getOffset();
4082     return true;
4083   }
4084 
4085   if (N->getOpcode() == ISD::ADD) {
4086     SDValue N1 = N->getOperand(0);
4087     SDValue N2 = N->getOperand(1);
4088     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4089       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4090         Offset += V->getSExtValue();
4091         return true;
4092       }
4093     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4094       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4095         Offset += V->getSExtValue();
4096         return true;
4097       }
4098     }
4099   }
4100 
4101   return false;
4102 }
4103 
4104 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4105                                           DAGCombinerInfo &DCI) const {
4106   // Default implementation: no optimization.
4107   return SDValue();
4108 }
4109 
4110 //===----------------------------------------------------------------------===//
4111 //  Inline Assembler Implementation Methods
4112 //===----------------------------------------------------------------------===//
4113 
4114 TargetLowering::ConstraintType
4115 TargetLowering::getConstraintType(StringRef Constraint) const {
4116   unsigned S = Constraint.size();
4117 
4118   if (S == 1) {
4119     switch (Constraint[0]) {
4120     default: break;
4121     case 'r':
4122       return C_RegisterClass;
4123     case 'm': // memory
4124     case 'o': // offsetable
4125     case 'V': // not offsetable
4126       return C_Memory;
4127     case 'n': // Simple Integer
4128     case 'E': // Floating Point Constant
4129     case 'F': // Floating Point Constant
4130       return C_Immediate;
4131     case 'i': // Simple Integer or Relocatable Constant
4132     case 's': // Relocatable Constant
4133     case 'p': // Address.
4134     case 'X': // Allow ANY value.
4135     case 'I': // Target registers.
4136     case 'J':
4137     case 'K':
4138     case 'L':
4139     case 'M':
4140     case 'N':
4141     case 'O':
4142     case 'P':
4143     case '<':
4144     case '>':
4145       return C_Other;
4146     }
4147   }
4148 
4149   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4150     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4151       return C_Memory;
4152     return C_Register;
4153   }
4154   return C_Unknown;
4155 }
4156 
4157 /// Try to replace an X constraint, which matches anything, with another that
4158 /// has more specific requirements based on the type of the corresponding
4159 /// operand.
4160 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4161   if (ConstraintVT.isInteger())
4162     return "r";
4163   if (ConstraintVT.isFloatingPoint())
4164     return "f"; // works for many targets
4165   return nullptr;
4166 }
4167 
4168 SDValue TargetLowering::LowerAsmOutputForConstraint(
4169     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4170     SelectionDAG &DAG) const {
4171   return SDValue();
4172 }
4173 
4174 /// Lower the specified operand into the Ops vector.
4175 /// If it is invalid, don't add anything to Ops.
4176 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4177                                                   std::string &Constraint,
4178                                                   std::vector<SDValue> &Ops,
4179                                                   SelectionDAG &DAG) const {
4180 
4181   if (Constraint.length() > 1) return;
4182 
4183   char ConstraintLetter = Constraint[0];
4184   switch (ConstraintLetter) {
4185   default: break;
4186   case 'X':     // Allows any operand; labels (basic block) use this.
4187     if (Op.getOpcode() == ISD::BasicBlock ||
4188         Op.getOpcode() == ISD::TargetBlockAddress) {
4189       Ops.push_back(Op);
4190       return;
4191     }
4192     LLVM_FALLTHROUGH;
4193   case 'i':    // Simple Integer or Relocatable Constant
4194   case 'n':    // Simple Integer
4195   case 's': {  // Relocatable Constant
4196 
4197     GlobalAddressSDNode *GA;
4198     ConstantSDNode *C;
4199     BlockAddressSDNode *BA;
4200     uint64_t Offset = 0;
4201 
4202     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4203     // etc., since getelementpointer is variadic. We can't use
4204     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4205     // while in this case the GA may be furthest from the root node which is
4206     // likely an ISD::ADD.
4207     while (1) {
4208       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4209         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4210                                                  GA->getValueType(0),
4211                                                  Offset + GA->getOffset()));
4212         return;
4213       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4214                  ConstraintLetter != 's') {
4215         // gcc prints these as sign extended.  Sign extend value to 64 bits
4216         // now; without this it would get ZExt'd later in
4217         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4218         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4219         BooleanContent BCont = getBooleanContents(MVT::i64);
4220         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4221                                       : ISD::SIGN_EXTEND;
4222         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4223                                                     : C->getSExtValue();
4224         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4225                                             SDLoc(C), MVT::i64));
4226         return;
4227       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4228                  ConstraintLetter != 'n') {
4229         Ops.push_back(DAG.getTargetBlockAddress(
4230             BA->getBlockAddress(), BA->getValueType(0),
4231             Offset + BA->getOffset(), BA->getTargetFlags()));
4232         return;
4233       } else {
4234         const unsigned OpCode = Op.getOpcode();
4235         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4236           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4237             Op = Op.getOperand(1);
4238           // Subtraction is not commutative.
4239           else if (OpCode == ISD::ADD &&
4240                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4241             Op = Op.getOperand(0);
4242           else
4243             return;
4244           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4245           continue;
4246         }
4247       }
4248       return;
4249     }
4250     break;
4251   }
4252   }
4253 }
4254 
4255 std::pair<unsigned, const TargetRegisterClass *>
4256 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4257                                              StringRef Constraint,
4258                                              MVT VT) const {
4259   if (Constraint.empty() || Constraint[0] != '{')
4260     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4261   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4262 
4263   // Remove the braces from around the name.
4264   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4265 
4266   std::pair<unsigned, const TargetRegisterClass *> R =
4267       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4268 
4269   // Figure out which register class contains this reg.
4270   for (const TargetRegisterClass *RC : RI->regclasses()) {
4271     // If none of the value types for this register class are valid, we
4272     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4273     if (!isLegalRC(*RI, *RC))
4274       continue;
4275 
4276     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4277          I != E; ++I) {
4278       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4279         std::pair<unsigned, const TargetRegisterClass *> S =
4280             std::make_pair(*I, RC);
4281 
4282         // If this register class has the requested value type, return it,
4283         // otherwise keep searching and return the first class found
4284         // if no other is found which explicitly has the requested type.
4285         if (RI->isTypeLegalForClass(*RC, VT))
4286           return S;
4287         if (!R.second)
4288           R = S;
4289       }
4290     }
4291   }
4292 
4293   return R;
4294 }
4295 
4296 //===----------------------------------------------------------------------===//
4297 // Constraint Selection.
4298 
4299 /// Return true of this is an input operand that is a matching constraint like
4300 /// "4".
4301 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4302   assert(!ConstraintCode.empty() && "No known constraint!");
4303   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4304 }
4305 
4306 /// If this is an input matching constraint, this method returns the output
4307 /// operand it matches.
4308 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4309   assert(!ConstraintCode.empty() && "No known constraint!");
4310   return atoi(ConstraintCode.c_str());
4311 }
4312 
4313 /// Split up the constraint string from the inline assembly value into the
4314 /// specific constraints and their prefixes, and also tie in the associated
4315 /// operand values.
4316 /// If this returns an empty vector, and if the constraint string itself
4317 /// isn't empty, there was an error parsing.
4318 TargetLowering::AsmOperandInfoVector
4319 TargetLowering::ParseConstraints(const DataLayout &DL,
4320                                  const TargetRegisterInfo *TRI,
4321                                  const CallBase &Call) const {
4322   /// Information about all of the constraints.
4323   AsmOperandInfoVector ConstraintOperands;
4324   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue());
4325   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4326 
4327   // Do a prepass over the constraints, canonicalizing them, and building up the
4328   // ConstraintOperands list.
4329   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4330   unsigned ResNo = 0; // ResNo - The result number of the next output.
4331 
4332   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4333     ConstraintOperands.emplace_back(std::move(CI));
4334     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4335 
4336     // Update multiple alternative constraint count.
4337     if (OpInfo.multipleAlternatives.size() > maCount)
4338       maCount = OpInfo.multipleAlternatives.size();
4339 
4340     OpInfo.ConstraintVT = MVT::Other;
4341 
4342     // Compute the value type for each operand.
4343     switch (OpInfo.Type) {
4344     case InlineAsm::isOutput:
4345       // Indirect outputs just consume an argument.
4346       if (OpInfo.isIndirect) {
4347         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4348         break;
4349       }
4350 
4351       // The return value of the call is this value.  As such, there is no
4352       // corresponding argument.
4353       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4354       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4355         OpInfo.ConstraintVT =
4356             getSimpleValueType(DL, STy->getElementType(ResNo));
4357       } else {
4358         assert(ResNo == 0 && "Asm only has one result!");
4359         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4360       }
4361       ++ResNo;
4362       break;
4363     case InlineAsm::isInput:
4364       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4365       break;
4366     case InlineAsm::isClobber:
4367       // Nothing to do.
4368       break;
4369     }
4370 
4371     if (OpInfo.CallOperandVal) {
4372       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4373       if (OpInfo.isIndirect) {
4374         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4375         if (!PtrTy)
4376           report_fatal_error("Indirect operand for inline asm not a pointer!");
4377         OpTy = PtrTy->getElementType();
4378       }
4379 
4380       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4381       if (StructType *STy = dyn_cast<StructType>(OpTy))
4382         if (STy->getNumElements() == 1)
4383           OpTy = STy->getElementType(0);
4384 
4385       // If OpTy is not a single value, it may be a struct/union that we
4386       // can tile with integers.
4387       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4388         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4389         switch (BitSize) {
4390         default: break;
4391         case 1:
4392         case 8:
4393         case 16:
4394         case 32:
4395         case 64:
4396         case 128:
4397           OpInfo.ConstraintVT =
4398               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4399           break;
4400         }
4401       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4402         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4403         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4404       } else {
4405         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4406       }
4407     }
4408   }
4409 
4410   // If we have multiple alternative constraints, select the best alternative.
4411   if (!ConstraintOperands.empty()) {
4412     if (maCount) {
4413       unsigned bestMAIndex = 0;
4414       int bestWeight = -1;
4415       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4416       int weight = -1;
4417       unsigned maIndex;
4418       // Compute the sums of the weights for each alternative, keeping track
4419       // of the best (highest weight) one so far.
4420       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4421         int weightSum = 0;
4422         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4423              cIndex != eIndex; ++cIndex) {
4424           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4425           if (OpInfo.Type == InlineAsm::isClobber)
4426             continue;
4427 
4428           // If this is an output operand with a matching input operand,
4429           // look up the matching input. If their types mismatch, e.g. one
4430           // is an integer, the other is floating point, or their sizes are
4431           // different, flag it as an maCantMatch.
4432           if (OpInfo.hasMatchingInput()) {
4433             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4434             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4435               if ((OpInfo.ConstraintVT.isInteger() !=
4436                    Input.ConstraintVT.isInteger()) ||
4437                   (OpInfo.ConstraintVT.getSizeInBits() !=
4438                    Input.ConstraintVT.getSizeInBits())) {
4439                 weightSum = -1; // Can't match.
4440                 break;
4441               }
4442             }
4443           }
4444           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4445           if (weight == -1) {
4446             weightSum = -1;
4447             break;
4448           }
4449           weightSum += weight;
4450         }
4451         // Update best.
4452         if (weightSum > bestWeight) {
4453           bestWeight = weightSum;
4454           bestMAIndex = maIndex;
4455         }
4456       }
4457 
4458       // Now select chosen alternative in each constraint.
4459       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4460            cIndex != eIndex; ++cIndex) {
4461         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4462         if (cInfo.Type == InlineAsm::isClobber)
4463           continue;
4464         cInfo.selectAlternative(bestMAIndex);
4465       }
4466     }
4467   }
4468 
4469   // Check and hook up tied operands, choose constraint code to use.
4470   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4471        cIndex != eIndex; ++cIndex) {
4472     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4473 
4474     // If this is an output operand with a matching input operand, look up the
4475     // matching input. If their types mismatch, e.g. one is an integer, the
4476     // other is floating point, or their sizes are different, flag it as an
4477     // error.
4478     if (OpInfo.hasMatchingInput()) {
4479       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4480 
4481       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4482         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4483             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4484                                          OpInfo.ConstraintVT);
4485         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4486             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4487                                          Input.ConstraintVT);
4488         if ((OpInfo.ConstraintVT.isInteger() !=
4489              Input.ConstraintVT.isInteger()) ||
4490             (MatchRC.second != InputRC.second)) {
4491           report_fatal_error("Unsupported asm: input constraint"
4492                              " with a matching output constraint of"
4493                              " incompatible type!");
4494         }
4495       }
4496     }
4497   }
4498 
4499   return ConstraintOperands;
4500 }
4501 
4502 /// Return an integer indicating how general CT is.
4503 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4504   switch (CT) {
4505   case TargetLowering::C_Immediate:
4506   case TargetLowering::C_Other:
4507   case TargetLowering::C_Unknown:
4508     return 0;
4509   case TargetLowering::C_Register:
4510     return 1;
4511   case TargetLowering::C_RegisterClass:
4512     return 2;
4513   case TargetLowering::C_Memory:
4514     return 3;
4515   }
4516   llvm_unreachable("Invalid constraint type");
4517 }
4518 
4519 /// Examine constraint type and operand type and determine a weight value.
4520 /// This object must already have been set up with the operand type
4521 /// and the current alternative constraint selected.
4522 TargetLowering::ConstraintWeight
4523   TargetLowering::getMultipleConstraintMatchWeight(
4524     AsmOperandInfo &info, int maIndex) const {
4525   InlineAsm::ConstraintCodeVector *rCodes;
4526   if (maIndex >= (int)info.multipleAlternatives.size())
4527     rCodes = &info.Codes;
4528   else
4529     rCodes = &info.multipleAlternatives[maIndex].Codes;
4530   ConstraintWeight BestWeight = CW_Invalid;
4531 
4532   // Loop over the options, keeping track of the most general one.
4533   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4534     ConstraintWeight weight =
4535       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4536     if (weight > BestWeight)
4537       BestWeight = weight;
4538   }
4539 
4540   return BestWeight;
4541 }
4542 
4543 /// Examine constraint type and operand type and determine a weight value.
4544 /// This object must already have been set up with the operand type
4545 /// and the current alternative constraint selected.
4546 TargetLowering::ConstraintWeight
4547   TargetLowering::getSingleConstraintMatchWeight(
4548     AsmOperandInfo &info, const char *constraint) const {
4549   ConstraintWeight weight = CW_Invalid;
4550   Value *CallOperandVal = info.CallOperandVal;
4551     // If we don't have a value, we can't do a match,
4552     // but allow it at the lowest weight.
4553   if (!CallOperandVal)
4554     return CW_Default;
4555   // Look at the constraint type.
4556   switch (*constraint) {
4557     case 'i': // immediate integer.
4558     case 'n': // immediate integer with a known value.
4559       if (isa<ConstantInt>(CallOperandVal))
4560         weight = CW_Constant;
4561       break;
4562     case 's': // non-explicit intregal immediate.
4563       if (isa<GlobalValue>(CallOperandVal))
4564         weight = CW_Constant;
4565       break;
4566     case 'E': // immediate float if host format.
4567     case 'F': // immediate float.
4568       if (isa<ConstantFP>(CallOperandVal))
4569         weight = CW_Constant;
4570       break;
4571     case '<': // memory operand with autodecrement.
4572     case '>': // memory operand with autoincrement.
4573     case 'm': // memory operand.
4574     case 'o': // offsettable memory operand
4575     case 'V': // non-offsettable memory operand
4576       weight = CW_Memory;
4577       break;
4578     case 'r': // general register.
4579     case 'g': // general register, memory operand or immediate integer.
4580               // note: Clang converts "g" to "imr".
4581       if (CallOperandVal->getType()->isIntegerTy())
4582         weight = CW_Register;
4583       break;
4584     case 'X': // any operand.
4585   default:
4586     weight = CW_Default;
4587     break;
4588   }
4589   return weight;
4590 }
4591 
4592 /// If there are multiple different constraints that we could pick for this
4593 /// operand (e.g. "imr") try to pick the 'best' one.
4594 /// This is somewhat tricky: constraints fall into four classes:
4595 ///    Other         -> immediates and magic values
4596 ///    Register      -> one specific register
4597 ///    RegisterClass -> a group of regs
4598 ///    Memory        -> memory
4599 /// Ideally, we would pick the most specific constraint possible: if we have
4600 /// something that fits into a register, we would pick it.  The problem here
4601 /// is that if we have something that could either be in a register or in
4602 /// memory that use of the register could cause selection of *other*
4603 /// operands to fail: they might only succeed if we pick memory.  Because of
4604 /// this the heuristic we use is:
4605 ///
4606 ///  1) If there is an 'other' constraint, and if the operand is valid for
4607 ///     that constraint, use it.  This makes us take advantage of 'i'
4608 ///     constraints when available.
4609 ///  2) Otherwise, pick the most general constraint present.  This prefers
4610 ///     'm' over 'r', for example.
4611 ///
4612 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4613                              const TargetLowering &TLI,
4614                              SDValue Op, SelectionDAG *DAG) {
4615   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4616   unsigned BestIdx = 0;
4617   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4618   int BestGenerality = -1;
4619 
4620   // Loop over the options, keeping track of the most general one.
4621   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4622     TargetLowering::ConstraintType CType =
4623       TLI.getConstraintType(OpInfo.Codes[i]);
4624 
4625     // Indirect 'other' or 'immediate' constraints are not allowed.
4626     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4627                                CType == TargetLowering::C_Register ||
4628                                CType == TargetLowering::C_RegisterClass))
4629       continue;
4630 
4631     // If this is an 'other' or 'immediate' constraint, see if the operand is
4632     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4633     // the operand is an integer in the range [0..31] we want to use I (saving a
4634     // load of a register), otherwise we must use 'r'.
4635     if ((CType == TargetLowering::C_Other ||
4636          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4637       assert(OpInfo.Codes[i].size() == 1 &&
4638              "Unhandled multi-letter 'other' constraint");
4639       std::vector<SDValue> ResultOps;
4640       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4641                                        ResultOps, *DAG);
4642       if (!ResultOps.empty()) {
4643         BestType = CType;
4644         BestIdx = i;
4645         break;
4646       }
4647     }
4648 
4649     // Things with matching constraints can only be registers, per gcc
4650     // documentation.  This mainly affects "g" constraints.
4651     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4652       continue;
4653 
4654     // This constraint letter is more general than the previous one, use it.
4655     int Generality = getConstraintGenerality(CType);
4656     if (Generality > BestGenerality) {
4657       BestType = CType;
4658       BestIdx = i;
4659       BestGenerality = Generality;
4660     }
4661   }
4662 
4663   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4664   OpInfo.ConstraintType = BestType;
4665 }
4666 
4667 /// Determines the constraint code and constraint type to use for the specific
4668 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4669 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4670                                             SDValue Op,
4671                                             SelectionDAG *DAG) const {
4672   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4673 
4674   // Single-letter constraints ('r') are very common.
4675   if (OpInfo.Codes.size() == 1) {
4676     OpInfo.ConstraintCode = OpInfo.Codes[0];
4677     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4678   } else {
4679     ChooseConstraint(OpInfo, *this, Op, DAG);
4680   }
4681 
4682   // 'X' matches anything.
4683   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4684     // Labels and constants are handled elsewhere ('X' is the only thing
4685     // that matches labels).  For Functions, the type here is the type of
4686     // the result, which is not what we want to look at; leave them alone.
4687     Value *v = OpInfo.CallOperandVal;
4688     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4689       OpInfo.CallOperandVal = v;
4690       return;
4691     }
4692 
4693     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4694       return;
4695 
4696     // Otherwise, try to resolve it to something we know about by looking at
4697     // the actual operand type.
4698     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4699       OpInfo.ConstraintCode = Repl;
4700       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4701     }
4702   }
4703 }
4704 
4705 /// Given an exact SDIV by a constant, create a multiplication
4706 /// with the multiplicative inverse of the constant.
4707 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4708                               const SDLoc &dl, SelectionDAG &DAG,
4709                               SmallVectorImpl<SDNode *> &Created) {
4710   SDValue Op0 = N->getOperand(0);
4711   SDValue Op1 = N->getOperand(1);
4712   EVT VT = N->getValueType(0);
4713   EVT SVT = VT.getScalarType();
4714   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4715   EVT ShSVT = ShVT.getScalarType();
4716 
4717   bool UseSRA = false;
4718   SmallVector<SDValue, 16> Shifts, Factors;
4719 
4720   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4721     if (C->isNullValue())
4722       return false;
4723     APInt Divisor = C->getAPIntValue();
4724     unsigned Shift = Divisor.countTrailingZeros();
4725     if (Shift) {
4726       Divisor.ashrInPlace(Shift);
4727       UseSRA = true;
4728     }
4729     // Calculate the multiplicative inverse, using Newton's method.
4730     APInt t;
4731     APInt Factor = Divisor;
4732     while ((t = Divisor * Factor) != 1)
4733       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4734     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4735     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4736     return true;
4737   };
4738 
4739   // Collect all magic values from the build vector.
4740   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4741     return SDValue();
4742 
4743   SDValue Shift, Factor;
4744   if (VT.isVector()) {
4745     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4746     Factor = DAG.getBuildVector(VT, dl, Factors);
4747   } else {
4748     Shift = Shifts[0];
4749     Factor = Factors[0];
4750   }
4751 
4752   SDValue Res = Op0;
4753 
4754   // Shift the value upfront if it is even, so the LSB is one.
4755   if (UseSRA) {
4756     // TODO: For UDIV use SRL instead of SRA.
4757     SDNodeFlags Flags;
4758     Flags.setExact(true);
4759     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4760     Created.push_back(Res.getNode());
4761   }
4762 
4763   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4764 }
4765 
4766 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4767                               SelectionDAG &DAG,
4768                               SmallVectorImpl<SDNode *> &Created) const {
4769   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4771   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4772     return SDValue(N, 0); // Lower SDIV as SDIV
4773   return SDValue();
4774 }
4775 
4776 /// Given an ISD::SDIV node expressing a divide by constant,
4777 /// return a DAG expression to select that will generate the same value by
4778 /// multiplying by a magic number.
4779 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4780 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4781                                   bool IsAfterLegalization,
4782                                   SmallVectorImpl<SDNode *> &Created) const {
4783   SDLoc dl(N);
4784   EVT VT = N->getValueType(0);
4785   EVT SVT = VT.getScalarType();
4786   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4787   EVT ShSVT = ShVT.getScalarType();
4788   unsigned EltBits = VT.getScalarSizeInBits();
4789 
4790   // Check to see if we can do this.
4791   // FIXME: We should be more aggressive here.
4792   if (!isTypeLegal(VT))
4793     return SDValue();
4794 
4795   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4796   if (N->getFlags().hasExact())
4797     return BuildExactSDIV(*this, N, dl, DAG, Created);
4798 
4799   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4800 
4801   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4802     if (C->isNullValue())
4803       return false;
4804 
4805     const APInt &Divisor = C->getAPIntValue();
4806     APInt::ms magics = Divisor.magic();
4807     int NumeratorFactor = 0;
4808     int ShiftMask = -1;
4809 
4810     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4811       // If d is +1/-1, we just multiply the numerator by +1/-1.
4812       NumeratorFactor = Divisor.getSExtValue();
4813       magics.m = 0;
4814       magics.s = 0;
4815       ShiftMask = 0;
4816     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4817       // If d > 0 and m < 0, add the numerator.
4818       NumeratorFactor = 1;
4819     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4820       // If d < 0 and m > 0, subtract the numerator.
4821       NumeratorFactor = -1;
4822     }
4823 
4824     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4825     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4826     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4827     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4828     return true;
4829   };
4830 
4831   SDValue N0 = N->getOperand(0);
4832   SDValue N1 = N->getOperand(1);
4833 
4834   // Collect the shifts / magic values from each element.
4835   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4836     return SDValue();
4837 
4838   SDValue MagicFactor, Factor, Shift, ShiftMask;
4839   if (VT.isVector()) {
4840     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4841     Factor = DAG.getBuildVector(VT, dl, Factors);
4842     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4843     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4844   } else {
4845     MagicFactor = MagicFactors[0];
4846     Factor = Factors[0];
4847     Shift = Shifts[0];
4848     ShiftMask = ShiftMasks[0];
4849   }
4850 
4851   // Multiply the numerator (operand 0) by the magic value.
4852   // FIXME: We should support doing a MUL in a wider type.
4853   SDValue Q;
4854   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4855                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4856     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4857   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4858                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4859     SDValue LoHi =
4860         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4861     Q = SDValue(LoHi.getNode(), 1);
4862   } else
4863     return SDValue(); // No mulhs or equivalent.
4864   Created.push_back(Q.getNode());
4865 
4866   // (Optionally) Add/subtract the numerator using Factor.
4867   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4868   Created.push_back(Factor.getNode());
4869   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4870   Created.push_back(Q.getNode());
4871 
4872   // Shift right algebraic by shift value.
4873   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4874   Created.push_back(Q.getNode());
4875 
4876   // Extract the sign bit, mask it and add it to the quotient.
4877   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4878   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4879   Created.push_back(T.getNode());
4880   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4881   Created.push_back(T.getNode());
4882   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4883 }
4884 
4885 /// Given an ISD::UDIV node expressing a divide by constant,
4886 /// return a DAG expression to select that will generate the same value by
4887 /// multiplying by a magic number.
4888 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4889 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4890                                   bool IsAfterLegalization,
4891                                   SmallVectorImpl<SDNode *> &Created) const {
4892   SDLoc dl(N);
4893   EVT VT = N->getValueType(0);
4894   EVT SVT = VT.getScalarType();
4895   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4896   EVT ShSVT = ShVT.getScalarType();
4897   unsigned EltBits = VT.getScalarSizeInBits();
4898 
4899   // Check to see if we can do this.
4900   // FIXME: We should be more aggressive here.
4901   if (!isTypeLegal(VT))
4902     return SDValue();
4903 
4904   bool UseNPQ = false;
4905   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4906 
4907   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4908     if (C->isNullValue())
4909       return false;
4910     // FIXME: We should use a narrower constant when the upper
4911     // bits are known to be zero.
4912     APInt Divisor = C->getAPIntValue();
4913     APInt::mu magics = Divisor.magicu();
4914     unsigned PreShift = 0, PostShift = 0;
4915 
4916     // If the divisor is even, we can avoid using the expensive fixup by
4917     // shifting the divided value upfront.
4918     if (magics.a != 0 && !Divisor[0]) {
4919       PreShift = Divisor.countTrailingZeros();
4920       // Get magic number for the shifted divisor.
4921       magics = Divisor.lshr(PreShift).magicu(PreShift);
4922       assert(magics.a == 0 && "Should use cheap fixup now");
4923     }
4924 
4925     APInt Magic = magics.m;
4926 
4927     unsigned SelNPQ;
4928     if (magics.a == 0 || Divisor.isOneValue()) {
4929       assert(magics.s < Divisor.getBitWidth() &&
4930              "We shouldn't generate an undefined shift!");
4931       PostShift = magics.s;
4932       SelNPQ = false;
4933     } else {
4934       PostShift = magics.s - 1;
4935       SelNPQ = true;
4936     }
4937 
4938     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4939     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4940     NPQFactors.push_back(
4941         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4942                                : APInt::getNullValue(EltBits),
4943                         dl, SVT));
4944     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4945     UseNPQ |= SelNPQ;
4946     return true;
4947   };
4948 
4949   SDValue N0 = N->getOperand(0);
4950   SDValue N1 = N->getOperand(1);
4951 
4952   // Collect the shifts/magic values from each element.
4953   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4954     return SDValue();
4955 
4956   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4957   if (VT.isVector()) {
4958     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4959     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4960     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4961     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4962   } else {
4963     PreShift = PreShifts[0];
4964     MagicFactor = MagicFactors[0];
4965     PostShift = PostShifts[0];
4966   }
4967 
4968   SDValue Q = N0;
4969   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4970   Created.push_back(Q.getNode());
4971 
4972   // FIXME: We should support doing a MUL in a wider type.
4973   auto GetMULHU = [&](SDValue X, SDValue Y) {
4974     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4975                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4976       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4977     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4978                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4979       SDValue LoHi =
4980           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4981       return SDValue(LoHi.getNode(), 1);
4982     }
4983     return SDValue(); // No mulhu or equivalent
4984   };
4985 
4986   // Multiply the numerator (operand 0) by the magic value.
4987   Q = GetMULHU(Q, MagicFactor);
4988   if (!Q)
4989     return SDValue();
4990 
4991   Created.push_back(Q.getNode());
4992 
4993   if (UseNPQ) {
4994     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4995     Created.push_back(NPQ.getNode());
4996 
4997     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4998     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4999     if (VT.isVector())
5000       NPQ = GetMULHU(NPQ, NPQFactor);
5001     else
5002       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5003 
5004     Created.push_back(NPQ.getNode());
5005 
5006     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5007     Created.push_back(Q.getNode());
5008   }
5009 
5010   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5011   Created.push_back(Q.getNode());
5012 
5013   SDValue One = DAG.getConstant(1, dl, VT);
5014   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5015   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5016 }
5017 
5018 /// If all values in Values that *don't* match the predicate are same 'splat'
5019 /// value, then replace all values with that splat value.
5020 /// Else, if AlternativeReplacement was provided, then replace all values that
5021 /// do match predicate with AlternativeReplacement value.
5022 static void
5023 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5024                           std::function<bool(SDValue)> Predicate,
5025                           SDValue AlternativeReplacement = SDValue()) {
5026   SDValue Replacement;
5027   // Is there a value for which the Predicate does *NOT* match? What is it?
5028   auto SplatValue = llvm::find_if_not(Values, Predicate);
5029   if (SplatValue != Values.end()) {
5030     // Does Values consist only of SplatValue's and values matching Predicate?
5031     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5032           return Value == *SplatValue || Predicate(Value);
5033         })) // Then we shall replace values matching predicate with SplatValue.
5034       Replacement = *SplatValue;
5035   }
5036   if (!Replacement) {
5037     // Oops, we did not find the "baseline" splat value.
5038     if (!AlternativeReplacement)
5039       return; // Nothing to do.
5040     // Let's replace with provided value then.
5041     Replacement = AlternativeReplacement;
5042   }
5043   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5044 }
5045 
5046 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5047 /// where the divisor is constant and the comparison target is zero,
5048 /// return a DAG expression that will generate the same comparison result
5049 /// using only multiplications, additions and shifts/rotations.
5050 /// Ref: "Hacker's Delight" 10-17.
5051 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5052                                         SDValue CompTargetNode,
5053                                         ISD::CondCode Cond,
5054                                         DAGCombinerInfo &DCI,
5055                                         const SDLoc &DL) const {
5056   SmallVector<SDNode *, 5> Built;
5057   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5058                                          DCI, DL, Built)) {
5059     for (SDNode *N : Built)
5060       DCI.AddToWorklist(N);
5061     return Folded;
5062   }
5063 
5064   return SDValue();
5065 }
5066 
5067 SDValue
5068 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5069                                   SDValue CompTargetNode, ISD::CondCode Cond,
5070                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5071                                   SmallVectorImpl<SDNode *> &Created) const {
5072   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5073   // - D must be constant, with D = D0 * 2^K where D0 is odd
5074   // - P is the multiplicative inverse of D0 modulo 2^W
5075   // - Q = floor(((2^W) - 1) / D)
5076   // where W is the width of the common type of N and D.
5077   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5078          "Only applicable for (in)equality comparisons.");
5079 
5080   SelectionDAG &DAG = DCI.DAG;
5081 
5082   EVT VT = REMNode.getValueType();
5083   EVT SVT = VT.getScalarType();
5084   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5085   EVT ShSVT = ShVT.getScalarType();
5086 
5087   // If MUL is unavailable, we cannot proceed in any case.
5088   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5089     return SDValue();
5090 
5091   bool ComparingWithAllZeros = true;
5092   bool AllComparisonsWithNonZerosAreTautological = true;
5093   bool HadTautologicalLanes = false;
5094   bool AllLanesAreTautological = true;
5095   bool HadEvenDivisor = false;
5096   bool AllDivisorsArePowerOfTwo = true;
5097   bool HadTautologicalInvertedLanes = false;
5098   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5099 
5100   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5101     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5102     if (CDiv->isNullValue())
5103       return false;
5104 
5105     const APInt &D = CDiv->getAPIntValue();
5106     const APInt &Cmp = CCmp->getAPIntValue();
5107 
5108     ComparingWithAllZeros &= Cmp.isNullValue();
5109 
5110     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5111     // if C2 is not less than C1, the comparison is always false.
5112     // But we will only be able to produce the comparison that will give the
5113     // opposive tautological answer. So this lane would need to be fixed up.
5114     bool TautologicalInvertedLane = D.ule(Cmp);
5115     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5116 
5117     // If all lanes are tautological (either all divisors are ones, or divisor
5118     // is not greater than the constant we are comparing with),
5119     // we will prefer to avoid the fold.
5120     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5121     HadTautologicalLanes |= TautologicalLane;
5122     AllLanesAreTautological &= TautologicalLane;
5123 
5124     // If we are comparing with non-zero, we need'll need  to subtract said
5125     // comparison value from the LHS. But there is no point in doing that if
5126     // every lane where we are comparing with non-zero is tautological..
5127     if (!Cmp.isNullValue())
5128       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5129 
5130     // Decompose D into D0 * 2^K
5131     unsigned K = D.countTrailingZeros();
5132     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5133     APInt D0 = D.lshr(K);
5134 
5135     // D is even if it has trailing zeros.
5136     HadEvenDivisor |= (K != 0);
5137     // D is a power-of-two if D0 is one.
5138     // If all divisors are power-of-two, we will prefer to avoid the fold.
5139     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5140 
5141     // P = inv(D0, 2^W)
5142     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5143     unsigned W = D.getBitWidth();
5144     APInt P = D0.zext(W + 1)
5145                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5146                   .trunc(W);
5147     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5148     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5149 
5150     // Q = floor((2^W - 1) u/ D)
5151     // R = ((2^W - 1) u% D)
5152     APInt Q, R;
5153     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5154 
5155     // If we are comparing with zero, then that comparison constant is okay,
5156     // else it may need to be one less than that.
5157     if (Cmp.ugt(R))
5158       Q -= 1;
5159 
5160     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5161            "We are expecting that K is always less than all-ones for ShSVT");
5162 
5163     // If the lane is tautological the result can be constant-folded.
5164     if (TautologicalLane) {
5165       // Set P and K amount to a bogus values so we can try to splat them.
5166       P = 0;
5167       K = -1;
5168       // And ensure that comparison constant is tautological,
5169       // it will always compare true/false.
5170       Q = -1;
5171     }
5172 
5173     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5174     KAmts.push_back(
5175         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5176     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5177     return true;
5178   };
5179 
5180   SDValue N = REMNode.getOperand(0);
5181   SDValue D = REMNode.getOperand(1);
5182 
5183   // Collect the values from each element.
5184   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5185     return SDValue();
5186 
5187   // If all lanes are tautological, the result can be constant-folded.
5188   if (AllLanesAreTautological)
5189     return SDValue();
5190 
5191   // If this is a urem by a powers-of-two, avoid the fold since it can be
5192   // best implemented as a bit test.
5193   if (AllDivisorsArePowerOfTwo)
5194     return SDValue();
5195 
5196   SDValue PVal, KVal, QVal;
5197   if (VT.isVector()) {
5198     if (HadTautologicalLanes) {
5199       // Try to turn PAmts into a splat, since we don't care about the values
5200       // that are currently '0'. If we can't, just keep '0'`s.
5201       turnVectorIntoSplatVector(PAmts, isNullConstant);
5202       // Try to turn KAmts into a splat, since we don't care about the values
5203       // that are currently '-1'. If we can't, change them to '0'`s.
5204       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5205                                 DAG.getConstant(0, DL, ShSVT));
5206     }
5207 
5208     PVal = DAG.getBuildVector(VT, DL, PAmts);
5209     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5210     QVal = DAG.getBuildVector(VT, DL, QAmts);
5211   } else {
5212     PVal = PAmts[0];
5213     KVal = KAmts[0];
5214     QVal = QAmts[0];
5215   }
5216 
5217   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5218     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5219       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5220     assert(CompTargetNode.getValueType() == N.getValueType() &&
5221            "Expecting that the types on LHS and RHS of comparisons match.");
5222     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5223   }
5224 
5225   // (mul N, P)
5226   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5227   Created.push_back(Op0.getNode());
5228 
5229   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5230   // divisors as a performance improvement, since rotating by 0 is a no-op.
5231   if (HadEvenDivisor) {
5232     // We need ROTR to do this.
5233     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5234       return SDValue();
5235     SDNodeFlags Flags;
5236     Flags.setExact(true);
5237     // UREM: (rotr (mul N, P), K)
5238     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5239     Created.push_back(Op0.getNode());
5240   }
5241 
5242   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5243   SDValue NewCC =
5244       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5245                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5246   if (!HadTautologicalInvertedLanes)
5247     return NewCC;
5248 
5249   // If any lanes previously compared always-false, the NewCC will give
5250   // always-true result for them, so we need to fixup those lanes.
5251   // Or the other way around for inequality predicate.
5252   assert(VT.isVector() && "Can/should only get here for vectors.");
5253   Created.push_back(NewCC.getNode());
5254 
5255   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5256   // if C2 is not less than C1, the comparison is always false.
5257   // But we have produced the comparison that will give the
5258   // opposive tautological answer. So these lanes would need to be fixed up.
5259   SDValue TautologicalInvertedChannels =
5260       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5261   Created.push_back(TautologicalInvertedChannels.getNode());
5262 
5263   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5264     // If we have a vector select, let's replace the comparison results in the
5265     // affected lanes with the correct tautological result.
5266     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5267                                               DL, SETCCVT, SETCCVT);
5268     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5269                        Replacement, NewCC);
5270   }
5271 
5272   // Else, we can just invert the comparison result in the appropriate lanes.
5273   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5274     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5275                        TautologicalInvertedChannels);
5276 
5277   return SDValue(); // Don't know how to lower.
5278 }
5279 
5280 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5281 /// where the divisor is constant and the comparison target is zero,
5282 /// return a DAG expression that will generate the same comparison result
5283 /// using only multiplications, additions and shifts/rotations.
5284 /// Ref: "Hacker's Delight" 10-17.
5285 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5286                                         SDValue CompTargetNode,
5287                                         ISD::CondCode Cond,
5288                                         DAGCombinerInfo &DCI,
5289                                         const SDLoc &DL) const {
5290   SmallVector<SDNode *, 7> Built;
5291   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5292                                          DCI, DL, Built)) {
5293     assert(Built.size() <= 7 && "Max size prediction failed.");
5294     for (SDNode *N : Built)
5295       DCI.AddToWorklist(N);
5296     return Folded;
5297   }
5298 
5299   return SDValue();
5300 }
5301 
5302 SDValue
5303 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5304                                   SDValue CompTargetNode, ISD::CondCode Cond,
5305                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5306                                   SmallVectorImpl<SDNode *> &Created) const {
5307   // Fold:
5308   //   (seteq/ne (srem N, D), 0)
5309   // To:
5310   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5311   //
5312   // - D must be constant, with D = D0 * 2^K where D0 is odd
5313   // - P is the multiplicative inverse of D0 modulo 2^W
5314   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5315   // - Q = floor((2 * A) / (2^K))
5316   // where W is the width of the common type of N and D.
5317   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5318          "Only applicable for (in)equality comparisons.");
5319 
5320   SelectionDAG &DAG = DCI.DAG;
5321 
5322   EVT VT = REMNode.getValueType();
5323   EVT SVT = VT.getScalarType();
5324   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5325   EVT ShSVT = ShVT.getScalarType();
5326 
5327   // If MUL is unavailable, we cannot proceed in any case.
5328   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5329     return SDValue();
5330 
5331   // TODO: Could support comparing with non-zero too.
5332   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5333   if (!CompTarget || !CompTarget->isNullValue())
5334     return SDValue();
5335 
5336   bool HadIntMinDivisor = false;
5337   bool HadOneDivisor = false;
5338   bool AllDivisorsAreOnes = true;
5339   bool HadEvenDivisor = false;
5340   bool NeedToApplyOffset = false;
5341   bool AllDivisorsArePowerOfTwo = true;
5342   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5343 
5344   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5345     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5346     if (C->isNullValue())
5347       return false;
5348 
5349     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5350 
5351     // WARNING: this fold is only valid for positive divisors!
5352     APInt D = C->getAPIntValue();
5353     if (D.isNegative())
5354       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5355 
5356     HadIntMinDivisor |= D.isMinSignedValue();
5357 
5358     // If all divisors are ones, we will prefer to avoid the fold.
5359     HadOneDivisor |= D.isOneValue();
5360     AllDivisorsAreOnes &= D.isOneValue();
5361 
5362     // Decompose D into D0 * 2^K
5363     unsigned K = D.countTrailingZeros();
5364     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5365     APInt D0 = D.lshr(K);
5366 
5367     if (!D.isMinSignedValue()) {
5368       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5369       // we don't care about this lane in this fold, we'll special-handle it.
5370       HadEvenDivisor |= (K != 0);
5371     }
5372 
5373     // D is a power-of-two if D0 is one. This includes INT_MIN.
5374     // If all divisors are power-of-two, we will prefer to avoid the fold.
5375     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5376 
5377     // P = inv(D0, 2^W)
5378     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5379     unsigned W = D.getBitWidth();
5380     APInt P = D0.zext(W + 1)
5381                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5382                   .trunc(W);
5383     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5384     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5385 
5386     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5387     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5388     A.clearLowBits(K);
5389 
5390     if (!D.isMinSignedValue()) {
5391       // If divisor INT_MIN, then we don't care about this lane in this fold,
5392       // we'll special-handle it.
5393       NeedToApplyOffset |= A != 0;
5394     }
5395 
5396     // Q = floor((2 * A) / (2^K))
5397     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5398 
5399     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5400            "We are expecting that A is always less than all-ones for SVT");
5401     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5402            "We are expecting that K is always less than all-ones for ShSVT");
5403 
5404     // If the divisor is 1 the result can be constant-folded. Likewise, we
5405     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5406     if (D.isOneValue()) {
5407       // Set P, A and K to a bogus values so we can try to splat them.
5408       P = 0;
5409       A = -1;
5410       K = -1;
5411 
5412       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5413       Q = -1;
5414     }
5415 
5416     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5417     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5418     KAmts.push_back(
5419         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5420     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5421     return true;
5422   };
5423 
5424   SDValue N = REMNode.getOperand(0);
5425   SDValue D = REMNode.getOperand(1);
5426 
5427   // Collect the values from each element.
5428   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5429     return SDValue();
5430 
5431   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5432   if (AllDivisorsAreOnes)
5433     return SDValue();
5434 
5435   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5436   // since it can be best implemented as a bit test.
5437   if (AllDivisorsArePowerOfTwo)
5438     return SDValue();
5439 
5440   SDValue PVal, AVal, KVal, QVal;
5441   if (VT.isVector()) {
5442     if (HadOneDivisor) {
5443       // Try to turn PAmts into a splat, since we don't care about the values
5444       // that are currently '0'. If we can't, just keep '0'`s.
5445       turnVectorIntoSplatVector(PAmts, isNullConstant);
5446       // Try to turn AAmts into a splat, since we don't care about the
5447       // values that are currently '-1'. If we can't, change them to '0'`s.
5448       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5449                                 DAG.getConstant(0, DL, SVT));
5450       // Try to turn KAmts into a splat, since we don't care about the values
5451       // that are currently '-1'. If we can't, change them to '0'`s.
5452       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5453                                 DAG.getConstant(0, DL, ShSVT));
5454     }
5455 
5456     PVal = DAG.getBuildVector(VT, DL, PAmts);
5457     AVal = DAG.getBuildVector(VT, DL, AAmts);
5458     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5459     QVal = DAG.getBuildVector(VT, DL, QAmts);
5460   } else {
5461     PVal = PAmts[0];
5462     AVal = AAmts[0];
5463     KVal = KAmts[0];
5464     QVal = QAmts[0];
5465   }
5466 
5467   // (mul N, P)
5468   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5469   Created.push_back(Op0.getNode());
5470 
5471   if (NeedToApplyOffset) {
5472     // We need ADD to do this.
5473     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5474       return SDValue();
5475 
5476     // (add (mul N, P), A)
5477     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5478     Created.push_back(Op0.getNode());
5479   }
5480 
5481   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5482   // divisors as a performance improvement, since rotating by 0 is a no-op.
5483   if (HadEvenDivisor) {
5484     // We need ROTR to do this.
5485     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5486       return SDValue();
5487     SDNodeFlags Flags;
5488     Flags.setExact(true);
5489     // SREM: (rotr (add (mul N, P), A), K)
5490     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5491     Created.push_back(Op0.getNode());
5492   }
5493 
5494   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5495   SDValue Fold =
5496       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5497                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5498 
5499   // If we didn't have lanes with INT_MIN divisor, then we're done.
5500   if (!HadIntMinDivisor)
5501     return Fold;
5502 
5503   // That fold is only valid for positive divisors. Which effectively means,
5504   // it is invalid for INT_MIN divisors. So if we have such a lane,
5505   // we must fix-up results for said lanes.
5506   assert(VT.isVector() && "Can/should only get here for vectors.");
5507 
5508   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5509       !isOperationLegalOrCustom(ISD::AND, VT) ||
5510       !isOperationLegalOrCustom(Cond, VT) ||
5511       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5512     return SDValue();
5513 
5514   Created.push_back(Fold.getNode());
5515 
5516   SDValue IntMin = DAG.getConstant(
5517       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5518   SDValue IntMax = DAG.getConstant(
5519       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5520   SDValue Zero =
5521       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5522 
5523   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5524   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5525   Created.push_back(DivisorIsIntMin.getNode());
5526 
5527   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5528   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5529   Created.push_back(Masked.getNode());
5530   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5531   Created.push_back(MaskedIsZero.getNode());
5532 
5533   // To produce final result we need to blend 2 vectors: 'SetCC' and
5534   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5535   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5536   // constant-folded, select can get lowered to a shuffle with constant mask.
5537   SDValue Blended =
5538       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5539 
5540   return Blended;
5541 }
5542 
5543 bool TargetLowering::
5544 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5545   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5546     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5547                                 "be a constant integer");
5548     return true;
5549   }
5550 
5551   return false;
5552 }
5553 
5554 TargetLowering::NegatibleCost
5555 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
5556                                  bool LegalOperations, bool ForCodeSize,
5557                                  unsigned Depth) const {
5558   // fneg is removable even if it has multiple uses.
5559   if (Op.getOpcode() == ISD::FNEG)
5560     return NegatibleCost::Cheaper;
5561 
5562   // Don't allow anything with multiple uses unless we know it is free.
5563   EVT VT = Op.getValueType();
5564   const SDNodeFlags Flags = Op->getFlags();
5565   const TargetOptions &Options = DAG.getTarget().Options;
5566   if (!Op.hasOneUse()) {
5567     bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND &&
5568                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5569 
5570     // If we already have the use of the negated floating constant, it is free
5571     // to negate it even it has multiple uses.
5572     bool IsFreeConstant =
5573         Op.getOpcode() == ISD::ConstantFP &&
5574         !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize)
5575              .use_empty();
5576 
5577     if (!IsFreeExtend && !IsFreeConstant)
5578       return NegatibleCost::Expensive;
5579   }
5580 
5581   // Don't recurse exponentially.
5582   if (Depth > SelectionDAG::MaxRecursionDepth)
5583     return NegatibleCost::Expensive;
5584 
5585   switch (Op.getOpcode()) {
5586   case ISD::ConstantFP: {
5587     if (!LegalOperations)
5588       return NegatibleCost::Neutral;
5589 
5590     // Don't invert constant FP values after legalization unless the target says
5591     // the negated constant is legal.
5592     if (isOperationLegal(ISD::ConstantFP, VT) ||
5593         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5594                      ForCodeSize))
5595       return NegatibleCost::Neutral;
5596     break;
5597   }
5598   case ISD::BUILD_VECTOR: {
5599     // Only permit BUILD_VECTOR of constants.
5600     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5601           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5602         }))
5603       return NegatibleCost::Expensive;
5604     if (!LegalOperations)
5605       return NegatibleCost::Neutral;
5606     if (isOperationLegal(ISD::ConstantFP, VT) &&
5607         isOperationLegal(ISD::BUILD_VECTOR, VT))
5608       return NegatibleCost::Neutral;
5609     if (llvm::all_of(Op->op_values(), [&](SDValue N) {
5610           return N.isUndef() ||
5611                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5612                               ForCodeSize);
5613         }))
5614       return NegatibleCost::Neutral;
5615     break;
5616   }
5617   case ISD::FADD: {
5618     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5619       return NegatibleCost::Expensive;
5620 
5621     // After operation legalization, it might not be legal to create new FSUBs.
5622     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5623       return NegatibleCost::Expensive;
5624 
5625     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5626     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5627                                         ForCodeSize, Depth + 1);
5628     if (V0 != NegatibleCost::Expensive)
5629       return V0;
5630     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5631     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5632                             Depth + 1);
5633   }
5634   case ISD::FSUB:
5635     // We can't turn -(A-B) into B-A when we honor signed zeros.
5636     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5637       return NegatibleCost::Expensive;
5638 
5639     // fold (fneg (fsub A, B)) -> (fsub B, A)
5640     return NegatibleCost::Neutral;
5641   case ISD::FMUL:
5642   case ISD::FDIV: {
5643     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5644     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5645                                         ForCodeSize, Depth + 1);
5646     if (V0 != NegatibleCost::Expensive)
5647       return V0;
5648 
5649     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5650     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5651       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5652         return NegatibleCost::Expensive;
5653 
5654     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5655                             Depth + 1);
5656   }
5657   case ISD::FMA:
5658   case ISD::FMAD: {
5659     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5660       return NegatibleCost::Expensive;
5661 
5662     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5663     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5664     NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations,
5665                                         ForCodeSize, Depth + 1);
5666     if (NegatibleCost::Expensive == V2)
5667       return NegatibleCost::Expensive;
5668 
5669     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5670     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5671                                         ForCodeSize, Depth + 1);
5672     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5673                                         ForCodeSize, Depth + 1);
5674     NegatibleCost V01 = std::max(V0, V1);
5675     if (V01 == NegatibleCost::Expensive)
5676       return NegatibleCost::Expensive;
5677     return std::max(V01, V2);
5678   }
5679 
5680   case ISD::FP_EXTEND:
5681   case ISD::FP_ROUND:
5682   case ISD::FSIN:
5683     return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5684                             Depth + 1);
5685   }
5686 
5687   return NegatibleCost::Expensive;
5688 }
5689 
5690 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5691                                              bool LegalOps, bool OptForSize,
5692                                              unsigned Depth) const {
5693   // fneg is removable even if it has multiple uses.
5694   if (Op.getOpcode() == ISD::FNEG)
5695     return Op.getOperand(0);
5696 
5697   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5698          "getNegatedExpression doesn't match getNegatibleCost");
5699 
5700   // Pre-increment recursion depth for use in recursive calls.
5701   ++Depth;
5702   const SDNodeFlags Flags = Op->getFlags();
5703   EVT VT = Op.getValueType();
5704   unsigned Opcode = Op.getOpcode();
5705   SDLoc DL(Op);
5706 
5707   switch (Opcode) {
5708   case ISD::ConstantFP: {
5709     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5710     V.changeSign();
5711     return DAG.getConstantFP(V, DL, VT);
5712   }
5713   case ISD::BUILD_VECTOR: {
5714     SmallVector<SDValue, 4> Ops;
5715     for (SDValue C : Op->op_values()) {
5716       if (C.isUndef()) {
5717         Ops.push_back(C);
5718         continue;
5719       }
5720       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5721       V.changeSign();
5722       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5723     }
5724     return DAG.getBuildVector(VT, DL, Ops);
5725   }
5726   case ISD::FADD: {
5727     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5728     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5729             Flags.hasNoSignedZeros()) &&
5730            "Expected NSZ fp-flag");
5731 
5732     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5733     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5734     if (CostX != NegatibleCost::Expensive)
5735       return DAG.getNode(
5736           ISD::FSUB, DL, VT,
5737           getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags);
5738 
5739     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5740     return DAG.getNode(
5741         ISD::FSUB, DL, VT,
5742         getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), X, Flags);
5743   }
5744   case ISD::FSUB: {
5745     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5746     // fold (fneg (fsub 0, Y)) -> Y
5747     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5748       if (C->isZero())
5749         return Y;
5750 
5751     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5752     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5753   }
5754   case ISD::FMUL:
5755   case ISD::FDIV: {
5756     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5757     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5758     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5759     if (CostX != NegatibleCost::Expensive)
5760       return DAG.getNode(
5761           Opcode, DL, VT,
5762           getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags);
5763 
5764     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5765     return DAG.getNode(
5766         Opcode, DL, VT, X,
5767         getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), Flags);
5768   }
5769   case ISD::FMA:
5770   case ISD::FMAD: {
5771     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5772             Flags.hasNoSignedZeros()) &&
5773            "Expected NSZ fp-flag");
5774 
5775     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5776     SDValue NegZ = getNegatedExpression(Z, DAG, LegalOps, OptForSize, Depth);
5777     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5778     NegatibleCost CostY = getNegatibleCost(Y, DAG, LegalOps, OptForSize, Depth);
5779     if (CostX > CostY) {
5780       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5781       SDValue NegX = getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth);
5782       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5783     }
5784 
5785     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5786     SDValue NegY = getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth);
5787     return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5788   }
5789 
5790   case ISD::FP_EXTEND:
5791   case ISD::FSIN:
5792     return DAG.getNode(Opcode, DL, VT,
5793                        getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5794                                             OptForSize, Depth));
5795   case ISD::FP_ROUND:
5796     return DAG.getNode(ISD::FP_ROUND, DL, VT,
5797                        getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5798                                             OptForSize, Depth),
5799                        Op.getOperand(1));
5800   }
5801 
5802   llvm_unreachable("Unknown code");
5803 }
5804 
5805 //===----------------------------------------------------------------------===//
5806 // Legalization Utilities
5807 //===----------------------------------------------------------------------===//
5808 
5809 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5810                                     SDValue LHS, SDValue RHS,
5811                                     SmallVectorImpl<SDValue> &Result,
5812                                     EVT HiLoVT, SelectionDAG &DAG,
5813                                     MulExpansionKind Kind, SDValue LL,
5814                                     SDValue LH, SDValue RL, SDValue RH) const {
5815   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5816          Opcode == ISD::SMUL_LOHI);
5817 
5818   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5819                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5820   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5821                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5822   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5823                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5824   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5825                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5826 
5827   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5828     return false;
5829 
5830   unsigned OuterBitSize = VT.getScalarSizeInBits();
5831   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5832   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5833   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5834 
5835   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5836   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5837          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5838 
5839   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5840   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5841                           bool Signed) -> bool {
5842     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5843       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5844       Hi = SDValue(Lo.getNode(), 1);
5845       return true;
5846     }
5847     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5848       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5849       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5850       return true;
5851     }
5852     return false;
5853   };
5854 
5855   SDValue Lo, Hi;
5856 
5857   if (!LL.getNode() && !RL.getNode() &&
5858       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5859     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5860     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5861   }
5862 
5863   if (!LL.getNode())
5864     return false;
5865 
5866   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5867   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5868       DAG.MaskedValueIsZero(RHS, HighMask)) {
5869     // The inputs are both zero-extended.
5870     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5871       Result.push_back(Lo);
5872       Result.push_back(Hi);
5873       if (Opcode != ISD::MUL) {
5874         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5875         Result.push_back(Zero);
5876         Result.push_back(Zero);
5877       }
5878       return true;
5879     }
5880   }
5881 
5882   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5883       RHSSB > InnerBitSize) {
5884     // The input values are both sign-extended.
5885     // TODO non-MUL case?
5886     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5887       Result.push_back(Lo);
5888       Result.push_back(Hi);
5889       return true;
5890     }
5891   }
5892 
5893   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5894   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5895   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5896     // FIXME getShiftAmountTy does not always return a sensible result when VT
5897     // is an illegal type, and so the type may be too small to fit the shift
5898     // amount. Override it with i32. The shift will have to be legalized.
5899     ShiftAmountTy = MVT::i32;
5900   }
5901   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5902 
5903   if (!LH.getNode() && !RH.getNode() &&
5904       isOperationLegalOrCustom(ISD::SRL, VT) &&
5905       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5906     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5907     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5908     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5909     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5910   }
5911 
5912   if (!LH.getNode())
5913     return false;
5914 
5915   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5916     return false;
5917 
5918   Result.push_back(Lo);
5919 
5920   if (Opcode == ISD::MUL) {
5921     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5922     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5923     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5924     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5925     Result.push_back(Hi);
5926     return true;
5927   }
5928 
5929   // Compute the full width result.
5930   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5931     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5932     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5933     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5934     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5935   };
5936 
5937   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5938   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5939     return false;
5940 
5941   // This is effectively the add part of a multiply-add of half-sized operands,
5942   // so it cannot overflow.
5943   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5944 
5945   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5946     return false;
5947 
5948   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5949   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5950 
5951   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5952                   isOperationLegalOrCustom(ISD::ADDE, VT));
5953   if (UseGlue)
5954     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5955                        Merge(Lo, Hi));
5956   else
5957     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5958                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5959 
5960   SDValue Carry = Next.getValue(1);
5961   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5962   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5963 
5964   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5965     return false;
5966 
5967   if (UseGlue)
5968     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5969                      Carry);
5970   else
5971     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5972                      Zero, Carry);
5973 
5974   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5975 
5976   if (Opcode == ISD::SMUL_LOHI) {
5977     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5978                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5979     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5980 
5981     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5982                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5983     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5984   }
5985 
5986   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5987   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5988   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5989   return true;
5990 }
5991 
5992 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5993                                SelectionDAG &DAG, MulExpansionKind Kind,
5994                                SDValue LL, SDValue LH, SDValue RL,
5995                                SDValue RH) const {
5996   SmallVector<SDValue, 2> Result;
5997   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5998                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5999                            DAG, Kind, LL, LH, RL, RH);
6000   if (Ok) {
6001     assert(Result.size() == 2);
6002     Lo = Result[0];
6003     Hi = Result[1];
6004   }
6005   return Ok;
6006 }
6007 
6008 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6009                                        SelectionDAG &DAG) const {
6010   EVT VT = Node->getValueType(0);
6011 
6012   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6013                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6014                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6015                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6016     return false;
6017 
6018   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6019   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6020   SDValue X = Node->getOperand(0);
6021   SDValue Y = Node->getOperand(1);
6022   SDValue Z = Node->getOperand(2);
6023 
6024   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6025   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6026   SDLoc DL(SDValue(Node, 0));
6027 
6028   EVT ShVT = Z.getValueType();
6029   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6030   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6031 
6032   SDValue ShAmt;
6033   if (isPowerOf2_32(EltSizeInBits)) {
6034     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6035     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6036   } else {
6037     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6038   }
6039 
6040   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6041   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6042   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6043   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6044 
6045   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6046   // and that is undefined. We must compare and select to avoid UB.
6047   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6048 
6049   // For fshl, 0-shift returns the 1st arg (X).
6050   // For fshr, 0-shift returns the 2nd arg (Y).
6051   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6052   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6053   return true;
6054 }
6055 
6056 // TODO: Merge with expandFunnelShift.
6057 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6058                                SelectionDAG &DAG) const {
6059   EVT VT = Node->getValueType(0);
6060   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6061   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6062   SDValue Op0 = Node->getOperand(0);
6063   SDValue Op1 = Node->getOperand(1);
6064   SDLoc DL(SDValue(Node, 0));
6065 
6066   EVT ShVT = Op1.getValueType();
6067   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6068 
6069   // If a rotate in the other direction is legal, use it.
6070   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6071   if (isOperationLegal(RevRot, VT)) {
6072     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6073     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6074     return true;
6075   }
6076 
6077   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6078                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6079                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6080                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6081                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6082     return false;
6083 
6084   // Otherwise,
6085   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6086   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6087   //
6088   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6089          "Expecting the type bitwidth to be a power of 2");
6090   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6091   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6092   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6093   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6094   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6095   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6096   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6097                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6098   return true;
6099 }
6100 
6101 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6102                                       SelectionDAG &DAG) const {
6103   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6104   SDValue Src = Node->getOperand(OpNo);
6105   EVT SrcVT = Src.getValueType();
6106   EVT DstVT = Node->getValueType(0);
6107   SDLoc dl(SDValue(Node, 0));
6108 
6109   // FIXME: Only f32 to i64 conversions are supported.
6110   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6111     return false;
6112 
6113   if (Node->isStrictFPOpcode())
6114     // When a NaN is converted to an integer a trap is allowed. We can't
6115     // use this expansion here because it would eliminate that trap. Other
6116     // traps are also allowed and cannot be eliminated. See
6117     // IEEE 754-2008 sec 5.8.
6118     return false;
6119 
6120   // Expand f32 -> i64 conversion
6121   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6122   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6123   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6124   EVT IntVT = SrcVT.changeTypeToInteger();
6125   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6126 
6127   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6128   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6129   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6130   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6131   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6132   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6133 
6134   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6135 
6136   SDValue ExponentBits = DAG.getNode(
6137       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6138       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6139   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6140 
6141   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6142                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6143                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6144   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6145 
6146   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6147                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6148                           DAG.getConstant(0x00800000, dl, IntVT));
6149 
6150   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6151 
6152   R = DAG.getSelectCC(
6153       dl, Exponent, ExponentLoBit,
6154       DAG.getNode(ISD::SHL, dl, DstVT, R,
6155                   DAG.getZExtOrTrunc(
6156                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6157                       dl, IntShVT)),
6158       DAG.getNode(ISD::SRL, dl, DstVT, R,
6159                   DAG.getZExtOrTrunc(
6160                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6161                       dl, IntShVT)),
6162       ISD::SETGT);
6163 
6164   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6165                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6166 
6167   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6168                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6169   return true;
6170 }
6171 
6172 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6173                                       SDValue &Chain,
6174                                       SelectionDAG &DAG) const {
6175   SDLoc dl(SDValue(Node, 0));
6176   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6177   SDValue Src = Node->getOperand(OpNo);
6178 
6179   EVT SrcVT = Src.getValueType();
6180   EVT DstVT = Node->getValueType(0);
6181   EVT SetCCVT =
6182       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6183   EVT DstSetCCVT =
6184       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6185 
6186   // Only expand vector types if we have the appropriate vector bit operations.
6187   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6188                                                    ISD::FP_TO_SINT;
6189   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6190                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6191     return false;
6192 
6193   // If the maximum float value is smaller then the signed integer range,
6194   // the destination signmask can't be represented by the float, so we can
6195   // just use FP_TO_SINT directly.
6196   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6197   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6198   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6199   if (APFloat::opOverflow &
6200       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6201     if (Node->isStrictFPOpcode()) {
6202       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6203                            { Node->getOperand(0), Src });
6204       Chain = Result.getValue(1);
6205     } else
6206       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6207     return true;
6208   }
6209 
6210   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6211   SDValue Sel;
6212 
6213   if (Node->isStrictFPOpcode()) {
6214     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6215                        Node->getOperand(0), /*IsSignaling*/ true);
6216     Chain = Sel.getValue(1);
6217   } else {
6218     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6219   }
6220 
6221   bool Strict = Node->isStrictFPOpcode() ||
6222                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6223 
6224   if (Strict) {
6225     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6226     // signmask then offset (the result of which should be fully representable).
6227     // Sel = Src < 0x8000000000000000
6228     // FltOfs = select Sel, 0, 0x8000000000000000
6229     // IntOfs = select Sel, 0, 0x8000000000000000
6230     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6231 
6232     // TODO: Should any fast-math-flags be set for the FSUB?
6233     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6234                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6235     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6236     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6237                                    DAG.getConstant(0, dl, DstVT),
6238                                    DAG.getConstant(SignMask, dl, DstVT));
6239     SDValue SInt;
6240     if (Node->isStrictFPOpcode()) {
6241       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6242                                 { Chain, Src, FltOfs });
6243       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6244                          { Val.getValue(1), Val });
6245       Chain = SInt.getValue(1);
6246     } else {
6247       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6248       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6249     }
6250     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6251   } else {
6252     // Expand based on maximum range of FP_TO_SINT:
6253     // True = fp_to_sint(Src)
6254     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6255     // Result = select (Src < 0x8000000000000000), True, False
6256 
6257     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6258     // TODO: Should any fast-math-flags be set for the FSUB?
6259     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6260                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6261     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6262                         DAG.getConstant(SignMask, dl, DstVT));
6263     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6264     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6265   }
6266   return true;
6267 }
6268 
6269 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6270                                       SDValue &Chain,
6271                                       SelectionDAG &DAG) const {
6272   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6273   SDValue Src = Node->getOperand(OpNo);
6274   EVT SrcVT = Src.getValueType();
6275   EVT DstVT = Node->getValueType(0);
6276 
6277   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6278     return false;
6279 
6280   // Only expand vector types if we have the appropriate vector bit operations.
6281   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6282                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6283                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6284                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6285                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6286     return false;
6287 
6288   SDLoc dl(SDValue(Node, 0));
6289   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6290 
6291   // Implementation of unsigned i64 to f64 following the algorithm in
6292   // __floatundidf in compiler_rt. This implementation has the advantage
6293   // of performing rounding correctly, both in the default rounding mode
6294   // and in all alternate rounding modes.
6295   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6296   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6297       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6298   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6299   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6300   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6301 
6302   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6303   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6304   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6305   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6306   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6307   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6308   if (Node->isStrictFPOpcode()) {
6309     SDValue HiSub =
6310         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6311                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6312     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6313                          {HiSub.getValue(1), LoFlt, HiSub});
6314     Chain = Result.getValue(1);
6315   } else {
6316     SDValue HiSub =
6317         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6318     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6319   }
6320   return true;
6321 }
6322 
6323 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6324                                               SelectionDAG &DAG) const {
6325   SDLoc dl(Node);
6326   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6327     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6328   EVT VT = Node->getValueType(0);
6329   if (isOperationLegalOrCustom(NewOp, VT)) {
6330     SDValue Quiet0 = Node->getOperand(0);
6331     SDValue Quiet1 = Node->getOperand(1);
6332 
6333     if (!Node->getFlags().hasNoNaNs()) {
6334       // Insert canonicalizes if it's possible we need to quiet to get correct
6335       // sNaN behavior.
6336       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6337         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6338                              Node->getFlags());
6339       }
6340       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6341         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6342                              Node->getFlags());
6343       }
6344     }
6345 
6346     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6347   }
6348 
6349   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6350   // instead if there are no NaNs.
6351   if (Node->getFlags().hasNoNaNs()) {
6352     unsigned IEEE2018Op =
6353         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6354     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6355       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6356                          Node->getOperand(1), Node->getFlags());
6357     }
6358   }
6359 
6360   // If none of the above worked, but there are no NaNs, then expand to
6361   // a compare/select sequence.  This is required for correctness since
6362   // InstCombine might have canonicalized a fcmp+select sequence to a
6363   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6364   // expansion to libcall, we might introduce a link-time dependency
6365   // on libm into a file that originally did not have one.
6366   if (Node->getFlags().hasNoNaNs()) {
6367     ISD::CondCode Pred =
6368         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6369     SDValue Op1 = Node->getOperand(0);
6370     SDValue Op2 = Node->getOperand(1);
6371     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6372     // Copy FMF flags, but always set the no-signed-zeros flag
6373     // as this is implied by the FMINNUM/FMAXNUM semantics.
6374     SDNodeFlags Flags = Node->getFlags();
6375     Flags.setNoSignedZeros(true);
6376     SelCC->setFlags(Flags);
6377     return SelCC;
6378   }
6379 
6380   return SDValue();
6381 }
6382 
6383 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6384                                  SelectionDAG &DAG) const {
6385   SDLoc dl(Node);
6386   EVT VT = Node->getValueType(0);
6387   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6388   SDValue Op = Node->getOperand(0);
6389   unsigned Len = VT.getScalarSizeInBits();
6390   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6391 
6392   // TODO: Add support for irregular type lengths.
6393   if (!(Len <= 128 && Len % 8 == 0))
6394     return false;
6395 
6396   // Only expand vector types if we have the appropriate vector bit operations.
6397   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6398                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6399                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6400                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6401                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6402     return false;
6403 
6404   // This is the "best" algorithm from
6405   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6406   SDValue Mask55 =
6407       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6408   SDValue Mask33 =
6409       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6410   SDValue Mask0F =
6411       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6412   SDValue Mask01 =
6413       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6414 
6415   // v = v - ((v >> 1) & 0x55555555...)
6416   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6417                    DAG.getNode(ISD::AND, dl, VT,
6418                                DAG.getNode(ISD::SRL, dl, VT, Op,
6419                                            DAG.getConstant(1, dl, ShVT)),
6420                                Mask55));
6421   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6422   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6423                    DAG.getNode(ISD::AND, dl, VT,
6424                                DAG.getNode(ISD::SRL, dl, VT, Op,
6425                                            DAG.getConstant(2, dl, ShVT)),
6426                                Mask33));
6427   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6428   Op = DAG.getNode(ISD::AND, dl, VT,
6429                    DAG.getNode(ISD::ADD, dl, VT, Op,
6430                                DAG.getNode(ISD::SRL, dl, VT, Op,
6431                                            DAG.getConstant(4, dl, ShVT))),
6432                    Mask0F);
6433   // v = (v * 0x01010101...) >> (Len - 8)
6434   if (Len > 8)
6435     Op =
6436         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6437                     DAG.getConstant(Len - 8, dl, ShVT));
6438 
6439   Result = Op;
6440   return true;
6441 }
6442 
6443 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6444                                 SelectionDAG &DAG) const {
6445   SDLoc dl(Node);
6446   EVT VT = Node->getValueType(0);
6447   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6448   SDValue Op = Node->getOperand(0);
6449   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6450 
6451   // If the non-ZERO_UNDEF version is supported we can use that instead.
6452   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6453       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6454     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6455     return true;
6456   }
6457 
6458   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6459   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6460     EVT SetCCVT =
6461         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6462     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6463     SDValue Zero = DAG.getConstant(0, dl, VT);
6464     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6465     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6466                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6467     return true;
6468   }
6469 
6470   // Only expand vector types if we have the appropriate vector bit operations.
6471   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6472                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6473                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6474                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6475     return false;
6476 
6477   // for now, we do this:
6478   // x = x | (x >> 1);
6479   // x = x | (x >> 2);
6480   // ...
6481   // x = x | (x >>16);
6482   // x = x | (x >>32); // for 64-bit input
6483   // return popcount(~x);
6484   //
6485   // Ref: "Hacker's Delight" by Henry Warren
6486   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6487     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6488     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6489                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6490   }
6491   Op = DAG.getNOT(dl, Op, VT);
6492   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6493   return true;
6494 }
6495 
6496 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6497                                 SelectionDAG &DAG) const {
6498   SDLoc dl(Node);
6499   EVT VT = Node->getValueType(0);
6500   SDValue Op = Node->getOperand(0);
6501   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6502 
6503   // If the non-ZERO_UNDEF version is supported we can use that instead.
6504   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6505       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6506     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6507     return true;
6508   }
6509 
6510   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6511   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6512     EVT SetCCVT =
6513         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6514     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6515     SDValue Zero = DAG.getConstant(0, dl, VT);
6516     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6517     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6518                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6519     return true;
6520   }
6521 
6522   // Only expand vector types if we have the appropriate vector bit operations.
6523   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6524                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6525                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6526                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6527                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6528                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6529     return false;
6530 
6531   // for now, we use: { return popcount(~x & (x - 1)); }
6532   // unless the target has ctlz but not ctpop, in which case we use:
6533   // { return 32 - nlz(~x & (x-1)); }
6534   // Ref: "Hacker's Delight" by Henry Warren
6535   SDValue Tmp = DAG.getNode(
6536       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6537       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6538 
6539   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6540   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6541     Result =
6542         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6543                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6544     return true;
6545   }
6546 
6547   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6548   return true;
6549 }
6550 
6551 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6552                                SelectionDAG &DAG) const {
6553   SDLoc dl(N);
6554   EVT VT = N->getValueType(0);
6555   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6556   SDValue Op = N->getOperand(0);
6557 
6558   // Only expand vector types if we have the appropriate vector operations.
6559   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6560                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6561                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6562     return false;
6563 
6564   SDValue Shift =
6565       DAG.getNode(ISD::SRA, dl, VT, Op,
6566                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6567   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6568   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6569   return true;
6570 }
6571 
6572 std::pair<SDValue, SDValue>
6573 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6574                                     SelectionDAG &DAG) const {
6575   SDLoc SL(LD);
6576   SDValue Chain = LD->getChain();
6577   SDValue BasePTR = LD->getBasePtr();
6578   EVT SrcVT = LD->getMemoryVT();
6579   EVT DstVT = LD->getValueType(0);
6580   ISD::LoadExtType ExtType = LD->getExtensionType();
6581 
6582   unsigned NumElem = SrcVT.getVectorNumElements();
6583 
6584   EVT SrcEltVT = SrcVT.getScalarType();
6585   EVT DstEltVT = DstVT.getScalarType();
6586 
6587   // A vector must always be stored in memory as-is, i.e. without any padding
6588   // between the elements, since various code depend on it, e.g. in the
6589   // handling of a bitcast of a vector type to int, which may be done with a
6590   // vector store followed by an integer load. A vector that does not have
6591   // elements that are byte-sized must therefore be stored as an integer
6592   // built out of the extracted vector elements.
6593   if (!SrcEltVT.isByteSized()) {
6594     unsigned NumBits = SrcVT.getSizeInBits();
6595     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6596 
6597     SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(),
6598                                LD->getAlignment(),
6599                                LD->getMemOperand()->getFlags(),
6600                                LD->getAAInfo());
6601 
6602     SmallVector<SDValue, 8> Vals;
6603     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6604       unsigned ShiftIntoIdx =
6605           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6606       SDValue ShiftAmount =
6607           DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT);
6608       SDValue ShiftedElt =
6609           DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount);
6610       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt);
6611       if (ExtType != ISD::NON_EXTLOAD) {
6612         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6613         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6614       }
6615       Vals.push_back(Scalar);
6616     }
6617 
6618     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6619     return std::make_pair(Value, Load.getValue(1));
6620   }
6621 
6622   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6623   assert(SrcEltVT.isByteSized());
6624 
6625   SmallVector<SDValue, 8> Vals;
6626   SmallVector<SDValue, 8> LoadChains;
6627 
6628   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6629     SDValue ScalarLoad =
6630         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6631                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6632                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6633                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6634 
6635     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6636 
6637     Vals.push_back(ScalarLoad.getValue(0));
6638     LoadChains.push_back(ScalarLoad.getValue(1));
6639   }
6640 
6641   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6642   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6643 
6644   return std::make_pair(Value, NewChain);
6645 }
6646 
6647 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6648                                              SelectionDAG &DAG) const {
6649   SDLoc SL(ST);
6650 
6651   SDValue Chain = ST->getChain();
6652   SDValue BasePtr = ST->getBasePtr();
6653   SDValue Value = ST->getValue();
6654   EVT StVT = ST->getMemoryVT();
6655 
6656   // The type of the data we want to save
6657   EVT RegVT = Value.getValueType();
6658   EVT RegSclVT = RegVT.getScalarType();
6659 
6660   // The type of data as saved in memory.
6661   EVT MemSclVT = StVT.getScalarType();
6662 
6663   unsigned NumElem = StVT.getVectorNumElements();
6664 
6665   // A vector must always be stored in memory as-is, i.e. without any padding
6666   // between the elements, since various code depend on it, e.g. in the
6667   // handling of a bitcast of a vector type to int, which may be done with a
6668   // vector store followed by an integer load. A vector that does not have
6669   // elements that are byte-sized must therefore be stored as an integer
6670   // built out of the extracted vector elements.
6671   if (!MemSclVT.isByteSized()) {
6672     unsigned NumBits = StVT.getSizeInBits();
6673     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6674 
6675     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6676 
6677     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6678       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6679                                 DAG.getVectorIdxConstant(Idx, SL));
6680       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6681       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6682       unsigned ShiftIntoIdx =
6683           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6684       SDValue ShiftAmount =
6685           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6686       SDValue ShiftedElt =
6687           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6688       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6689     }
6690 
6691     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6692                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6693                         ST->getAAInfo());
6694   }
6695 
6696   // Store Stride in bytes
6697   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6698   assert(Stride && "Zero stride!");
6699   // Extract each of the elements from the original vector and save them into
6700   // memory individually.
6701   SmallVector<SDValue, 8> Stores;
6702   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6703     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6704                               DAG.getVectorIdxConstant(Idx, SL));
6705 
6706     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6707 
6708     // This scalar TruncStore may be illegal, but we legalize it later.
6709     SDValue Store = DAG.getTruncStore(
6710         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6711         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6712         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6713 
6714     Stores.push_back(Store);
6715   }
6716 
6717   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6718 }
6719 
6720 std::pair<SDValue, SDValue>
6721 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6722   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6723          "unaligned indexed loads not implemented!");
6724   SDValue Chain = LD->getChain();
6725   SDValue Ptr = LD->getBasePtr();
6726   EVT VT = LD->getValueType(0);
6727   EVT LoadedVT = LD->getMemoryVT();
6728   SDLoc dl(LD);
6729   auto &MF = DAG.getMachineFunction();
6730 
6731   if (VT.isFloatingPoint() || VT.isVector()) {
6732     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6733     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6734       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6735           LoadedVT.isVector()) {
6736         // Scalarize the load and let the individual components be handled.
6737         return scalarizeVectorLoad(LD, DAG);
6738       }
6739 
6740       // Expand to a (misaligned) integer load of the same size,
6741       // then bitconvert to floating point or vector.
6742       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6743                                     LD->getMemOperand());
6744       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6745       if (LoadedVT != VT)
6746         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6747                              ISD::ANY_EXTEND, dl, VT, Result);
6748 
6749       return std::make_pair(Result, newLoad.getValue(1));
6750     }
6751 
6752     // Copy the value to a (aligned) stack slot using (unaligned) integer
6753     // loads and stores, then do a (aligned) load from the stack slot.
6754     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6755     unsigned LoadedBytes = LoadedVT.getStoreSize();
6756     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6757     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6758 
6759     // Make sure the stack slot is also aligned for the register type.
6760     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6761     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6762     SmallVector<SDValue, 8> Stores;
6763     SDValue StackPtr = StackBase;
6764     unsigned Offset = 0;
6765 
6766     EVT PtrVT = Ptr.getValueType();
6767     EVT StackPtrVT = StackPtr.getValueType();
6768 
6769     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6770     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6771 
6772     // Do all but one copies using the full register width.
6773     for (unsigned i = 1; i < NumRegs; i++) {
6774       // Load one integer register's worth from the original location.
6775       SDValue Load = DAG.getLoad(
6776           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6777           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6778           LD->getAAInfo());
6779       // Follow the load with a store to the stack slot.  Remember the store.
6780       Stores.push_back(DAG.getStore(
6781           Load.getValue(1), dl, Load, StackPtr,
6782           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6783       // Increment the pointers.
6784       Offset += RegBytes;
6785 
6786       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6787       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6788     }
6789 
6790     // The last copy may be partial.  Do an extending load.
6791     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6792                                   8 * (LoadedBytes - Offset));
6793     SDValue Load =
6794         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6795                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6796                        MinAlign(LD->getAlignment(), Offset),
6797                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6798     // Follow the load with a store to the stack slot.  Remember the store.
6799     // On big-endian machines this requires a truncating store to ensure
6800     // that the bits end up in the right place.
6801     Stores.push_back(DAG.getTruncStore(
6802         Load.getValue(1), dl, Load, StackPtr,
6803         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6804 
6805     // The order of the stores doesn't matter - say it with a TokenFactor.
6806     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6807 
6808     // Finally, perform the original load only redirected to the stack slot.
6809     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6810                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6811                           LoadedVT);
6812 
6813     // Callers expect a MERGE_VALUES node.
6814     return std::make_pair(Load, TF);
6815   }
6816 
6817   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6818          "Unaligned load of unsupported type.");
6819 
6820   // Compute the new VT that is half the size of the old one.  This is an
6821   // integer MVT.
6822   unsigned NumBits = LoadedVT.getSizeInBits();
6823   EVT NewLoadedVT;
6824   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6825   NumBits >>= 1;
6826 
6827   unsigned Alignment = LD->getAlignment();
6828   unsigned IncrementSize = NumBits / 8;
6829   ISD::LoadExtType HiExtType = LD->getExtensionType();
6830 
6831   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6832   if (HiExtType == ISD::NON_EXTLOAD)
6833     HiExtType = ISD::ZEXTLOAD;
6834 
6835   // Load the value in two parts
6836   SDValue Lo, Hi;
6837   if (DAG.getDataLayout().isLittleEndian()) {
6838     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6839                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6840                         LD->getAAInfo());
6841 
6842     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6843     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6844                         LD->getPointerInfo().getWithOffset(IncrementSize),
6845                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6846                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6847   } else {
6848     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6849                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6850                         LD->getAAInfo());
6851 
6852     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6853     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6854                         LD->getPointerInfo().getWithOffset(IncrementSize),
6855                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6856                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6857   }
6858 
6859   // aggregate the two parts
6860   SDValue ShiftAmount =
6861       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6862                                                     DAG.getDataLayout()));
6863   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6864   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6865 
6866   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6867                              Hi.getValue(1));
6868 
6869   return std::make_pair(Result, TF);
6870 }
6871 
6872 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6873                                              SelectionDAG &DAG) const {
6874   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6875          "unaligned indexed stores not implemented!");
6876   SDValue Chain = ST->getChain();
6877   SDValue Ptr = ST->getBasePtr();
6878   SDValue Val = ST->getValue();
6879   EVT VT = Val.getValueType();
6880   int Alignment = ST->getAlignment();
6881   auto &MF = DAG.getMachineFunction();
6882   EVT StoreMemVT = ST->getMemoryVT();
6883 
6884   SDLoc dl(ST);
6885   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6886     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6887     if (isTypeLegal(intVT)) {
6888       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6889           StoreMemVT.isVector()) {
6890         // Scalarize the store and let the individual components be handled.
6891         SDValue Result = scalarizeVectorStore(ST, DAG);
6892         return Result;
6893       }
6894       // Expand to a bitconvert of the value to the integer type of the
6895       // same size, then a (misaligned) int store.
6896       // FIXME: Does not handle truncating floating point stores!
6897       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6898       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6899                             Alignment, ST->getMemOperand()->getFlags());
6900       return Result;
6901     }
6902     // Do a (aligned) store to a stack slot, then copy from the stack slot
6903     // to the final destination using (unaligned) integer loads and stores.
6904     MVT RegVT = getRegisterType(
6905         *DAG.getContext(),
6906         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6907     EVT PtrVT = Ptr.getValueType();
6908     unsigned StoredBytes = StoreMemVT.getStoreSize();
6909     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6910     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6911 
6912     // Make sure the stack slot is also aligned for the register type.
6913     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6914     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6915 
6916     // Perform the original store, only redirected to the stack slot.
6917     SDValue Store = DAG.getTruncStore(
6918         Chain, dl, Val, StackPtr,
6919         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6920 
6921     EVT StackPtrVT = StackPtr.getValueType();
6922 
6923     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6924     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6925     SmallVector<SDValue, 8> Stores;
6926     unsigned Offset = 0;
6927 
6928     // Do all but one copies using the full register width.
6929     for (unsigned i = 1; i < NumRegs; i++) {
6930       // Load one integer register's worth from the stack slot.
6931       SDValue Load = DAG.getLoad(
6932           RegVT, dl, Store, StackPtr,
6933           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6934       // Store it to the final location.  Remember the store.
6935       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6936                                     ST->getPointerInfo().getWithOffset(Offset),
6937                                     MinAlign(ST->getAlignment(), Offset),
6938                                     ST->getMemOperand()->getFlags()));
6939       // Increment the pointers.
6940       Offset += RegBytes;
6941       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6942       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6943     }
6944 
6945     // The last store may be partial.  Do a truncating store.  On big-endian
6946     // machines this requires an extending load from the stack slot to ensure
6947     // that the bits are in the right place.
6948     EVT LoadMemVT =
6949         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6950 
6951     // Load from the stack slot.
6952     SDValue Load = DAG.getExtLoad(
6953         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6954         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6955 
6956     Stores.push_back(
6957         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6958                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6959                           MinAlign(ST->getAlignment(), Offset),
6960                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6961     // The order of the stores doesn't matter - say it with a TokenFactor.
6962     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6963     return Result;
6964   }
6965 
6966   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6967          "Unaligned store of unknown type.");
6968   // Get the half-size VT
6969   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6970   int NumBits = NewStoredVT.getSizeInBits();
6971   int IncrementSize = NumBits / 8;
6972 
6973   // Divide the stored value in two parts.
6974   SDValue ShiftAmount = DAG.getConstant(
6975       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6976   SDValue Lo = Val;
6977   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6978 
6979   // Store the two parts
6980   SDValue Store1, Store2;
6981   Store1 = DAG.getTruncStore(Chain, dl,
6982                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6983                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6984                              ST->getMemOperand()->getFlags());
6985 
6986   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6987   Alignment = MinAlign(Alignment, IncrementSize);
6988   Store2 = DAG.getTruncStore(
6989       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6990       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6991       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6992 
6993   SDValue Result =
6994       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6995   return Result;
6996 }
6997 
6998 SDValue
6999 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7000                                        const SDLoc &DL, EVT DataVT,
7001                                        SelectionDAG &DAG,
7002                                        bool IsCompressedMemory) const {
7003   SDValue Increment;
7004   EVT AddrVT = Addr.getValueType();
7005   EVT MaskVT = Mask.getValueType();
7006   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7007          "Incompatible types of Data and Mask");
7008   if (IsCompressedMemory) {
7009     // Incrementing the pointer according to number of '1's in the mask.
7010     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7011     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7012     if (MaskIntVT.getSizeInBits() < 32) {
7013       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7014       MaskIntVT = MVT::i32;
7015     }
7016 
7017     // Count '1's with POPCNT.
7018     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7019     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7020     // Scale is an element size in bytes.
7021     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7022                                     AddrVT);
7023     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7024   } else
7025     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7026 
7027   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7028 }
7029 
7030 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7031                                        SDValue Idx,
7032                                        EVT VecVT,
7033                                        const SDLoc &dl) {
7034   if (isa<ConstantSDNode>(Idx))
7035     return Idx;
7036 
7037   EVT IdxVT = Idx.getValueType();
7038   unsigned NElts = VecVT.getVectorNumElements();
7039   if (isPowerOf2_32(NElts)) {
7040     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7041                                      Log2_32(NElts));
7042     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7043                        DAG.getConstant(Imm, dl, IdxVT));
7044   }
7045 
7046   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7047                      DAG.getConstant(NElts - 1, dl, IdxVT));
7048 }
7049 
7050 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7051                                                 SDValue VecPtr, EVT VecVT,
7052                                                 SDValue Index) const {
7053   SDLoc dl(Index);
7054   // Make sure the index type is big enough to compute in.
7055   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7056 
7057   EVT EltVT = VecVT.getVectorElementType();
7058 
7059   // Calculate the element offset and add it to the pointer.
7060   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7061   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7062          "Converting bits to bytes lost precision");
7063 
7064   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7065 
7066   EVT IdxVT = Index.getValueType();
7067 
7068   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7069                       DAG.getConstant(EltSize, dl, IdxVT));
7070   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7071 }
7072 
7073 //===----------------------------------------------------------------------===//
7074 // Implementation of Emulated TLS Model
7075 //===----------------------------------------------------------------------===//
7076 
7077 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7078                                                 SelectionDAG &DAG) const {
7079   // Access to address of TLS varialbe xyz is lowered to a function call:
7080   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7081   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7082   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7083   SDLoc dl(GA);
7084 
7085   ArgListTy Args;
7086   ArgListEntry Entry;
7087   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7088   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7089   StringRef EmuTlsVarName(NameString);
7090   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7091   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7092   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7093   Entry.Ty = VoidPtrType;
7094   Args.push_back(Entry);
7095 
7096   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7097 
7098   TargetLowering::CallLoweringInfo CLI(DAG);
7099   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7100   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7101   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7102 
7103   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7104   // At last for X86 targets, maybe good for other targets too?
7105   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7106   MFI.setAdjustsStack(true); // Is this only for X86 target?
7107   MFI.setHasCalls(true);
7108 
7109   assert((GA->getOffset() == 0) &&
7110          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7111   return CallResult.first;
7112 }
7113 
7114 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7115                                                 SelectionDAG &DAG) const {
7116   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7117   if (!isCtlzFast())
7118     return SDValue();
7119   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7120   SDLoc dl(Op);
7121   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7122     if (C->isNullValue() && CC == ISD::SETEQ) {
7123       EVT VT = Op.getOperand(0).getValueType();
7124       SDValue Zext = Op.getOperand(0);
7125       if (VT.bitsLT(MVT::i32)) {
7126         VT = MVT::i32;
7127         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7128       }
7129       unsigned Log2b = Log2_32(VT.getSizeInBits());
7130       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7131       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7132                                 DAG.getConstant(Log2b, dl, MVT::i32));
7133       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7134     }
7135   }
7136   return SDValue();
7137 }
7138 
7139 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7140   unsigned Opcode = Node->getOpcode();
7141   SDValue LHS = Node->getOperand(0);
7142   SDValue RHS = Node->getOperand(1);
7143   EVT VT = LHS.getValueType();
7144   SDLoc dl(Node);
7145 
7146   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7147   assert(VT.isInteger() && "Expected operands to be integers");
7148 
7149   // usub.sat(a, b) -> umax(a, b) - b
7150   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7151     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7152     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7153   }
7154 
7155   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7156     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7157     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7158     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7159   }
7160 
7161   unsigned OverflowOp;
7162   switch (Opcode) {
7163   case ISD::SADDSAT:
7164     OverflowOp = ISD::SADDO;
7165     break;
7166   case ISD::UADDSAT:
7167     OverflowOp = ISD::UADDO;
7168     break;
7169   case ISD::SSUBSAT:
7170     OverflowOp = ISD::SSUBO;
7171     break;
7172   case ISD::USUBSAT:
7173     OverflowOp = ISD::USUBO;
7174     break;
7175   default:
7176     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7177                      "addition or subtraction node.");
7178   }
7179 
7180   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7181   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7182   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7183                                LHS, RHS);
7184   SDValue SumDiff = Result.getValue(0);
7185   SDValue Overflow = Result.getValue(1);
7186   SDValue Zero = DAG.getConstant(0, dl, VT);
7187   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7188 
7189   if (Opcode == ISD::UADDSAT) {
7190     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7191       // (LHS + RHS) | OverflowMask
7192       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7193       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7194     }
7195     // Overflow ? 0xffff.... : (LHS + RHS)
7196     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7197   } else if (Opcode == ISD::USUBSAT) {
7198     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7199       // (LHS - RHS) & ~OverflowMask
7200       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7201       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7202       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7203     }
7204     // Overflow ? 0 : (LHS - RHS)
7205     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7206   } else {
7207     // SatMax -> Overflow && SumDiff < 0
7208     // SatMin -> Overflow && SumDiff >= 0
7209     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7210     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7211     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7212     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7213     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7214     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7215     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7216   }
7217 }
7218 
7219 SDValue
7220 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7221   assert((Node->getOpcode() == ISD::SMULFIX ||
7222           Node->getOpcode() == ISD::UMULFIX ||
7223           Node->getOpcode() == ISD::SMULFIXSAT ||
7224           Node->getOpcode() == ISD::UMULFIXSAT) &&
7225          "Expected a fixed point multiplication opcode");
7226 
7227   SDLoc dl(Node);
7228   SDValue LHS = Node->getOperand(0);
7229   SDValue RHS = Node->getOperand(1);
7230   EVT VT = LHS.getValueType();
7231   unsigned Scale = Node->getConstantOperandVal(2);
7232   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7233                      Node->getOpcode() == ISD::UMULFIXSAT);
7234   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7235                  Node->getOpcode() == ISD::SMULFIXSAT);
7236   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7237   unsigned VTSize = VT.getScalarSizeInBits();
7238 
7239   if (!Scale) {
7240     // [us]mul.fix(a, b, 0) -> mul(a, b)
7241     if (!Saturating) {
7242       if (isOperationLegalOrCustom(ISD::MUL, VT))
7243         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7244     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7245       SDValue Result =
7246           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7247       SDValue Product = Result.getValue(0);
7248       SDValue Overflow = Result.getValue(1);
7249       SDValue Zero = DAG.getConstant(0, dl, VT);
7250 
7251       APInt MinVal = APInt::getSignedMinValue(VTSize);
7252       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7253       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7254       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7255       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7256       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7257       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7258     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7259       SDValue Result =
7260           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7261       SDValue Product = Result.getValue(0);
7262       SDValue Overflow = Result.getValue(1);
7263 
7264       APInt MaxVal = APInt::getMaxValue(VTSize);
7265       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7266       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7267     }
7268   }
7269 
7270   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7271          "Expected scale to be less than the number of bits if signed or at "
7272          "most the number of bits if unsigned.");
7273   assert(LHS.getValueType() == RHS.getValueType() &&
7274          "Expected both operands to be the same type");
7275 
7276   // Get the upper and lower bits of the result.
7277   SDValue Lo, Hi;
7278   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7279   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7280   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7281     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7282     Lo = Result.getValue(0);
7283     Hi = Result.getValue(1);
7284   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7285     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7286     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7287   } else if (VT.isVector()) {
7288     return SDValue();
7289   } else {
7290     report_fatal_error("Unable to expand fixed point multiplication.");
7291   }
7292 
7293   if (Scale == VTSize)
7294     // Result is just the top half since we'd be shifting by the width of the
7295     // operand. Overflow impossible so this works for both UMULFIX and
7296     // UMULFIXSAT.
7297     return Hi;
7298 
7299   // The result will need to be shifted right by the scale since both operands
7300   // are scaled. The result is given to us in 2 halves, so we only want part of
7301   // both in the result.
7302   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7303   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7304                                DAG.getConstant(Scale, dl, ShiftTy));
7305   if (!Saturating)
7306     return Result;
7307 
7308   if (!Signed) {
7309     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7310     // widened multiplication) aren't all zeroes.
7311 
7312     // Saturate to max if ((Hi >> Scale) != 0),
7313     // which is the same as if (Hi > ((1 << Scale) - 1))
7314     APInt MaxVal = APInt::getMaxValue(VTSize);
7315     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7316                                       dl, VT);
7317     Result = DAG.getSelectCC(dl, Hi, LowMask,
7318                              DAG.getConstant(MaxVal, dl, VT), Result,
7319                              ISD::SETUGT);
7320 
7321     return Result;
7322   }
7323 
7324   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7325   // widened multiplication) aren't all ones or all zeroes.
7326 
7327   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7328   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7329 
7330   if (Scale == 0) {
7331     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7332                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7333     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7334     // Saturated to SatMin if wide product is negative, and SatMax if wide
7335     // product is positive ...
7336     SDValue Zero = DAG.getConstant(0, dl, VT);
7337     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7338                                                ISD::SETLT);
7339     // ... but only if we overflowed.
7340     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7341   }
7342 
7343   //  We handled Scale==0 above so all the bits to examine is in Hi.
7344 
7345   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7346   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7347   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7348                                     dl, VT);
7349   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7350   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7351   // which is the same as if (HI < (-1 << (Scale - 1))
7352   SDValue HighMask =
7353       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7354                       dl, VT);
7355   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7356   return Result;
7357 }
7358 
7359 SDValue
7360 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7361                                     SDValue LHS, SDValue RHS,
7362                                     unsigned Scale, SelectionDAG &DAG) const {
7363   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7364           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7365          "Expected a fixed point division opcode");
7366 
7367   EVT VT = LHS.getValueType();
7368   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7369   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7370   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7371 
7372   // If there is enough room in the type to upscale the LHS or downscale the
7373   // RHS before the division, we can perform it in this type without having to
7374   // resize. For signed operations, the LHS headroom is the number of
7375   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7376   // The headroom for the RHS is the number of trailing zeroes.
7377   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7378                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7379   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7380 
7381   // For signed saturating operations, we need to be able to detect true integer
7382   // division overflow; that is, when you have MIN / -EPS. However, this
7383   // is undefined behavior and if we emit divisions that could take such
7384   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7385   // example).
7386   // Avoid this by requiring an extra bit so that we never get this case.
7387   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7388   // signed saturating division, we need to emit a whopping 32-bit division.
7389   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7390     return SDValue();
7391 
7392   unsigned LHSShift = std::min(LHSLead, Scale);
7393   unsigned RHSShift = Scale - LHSShift;
7394 
7395   // At this point, we know that if we shift the LHS up by LHSShift and the
7396   // RHS down by RHSShift, we can emit a regular division with a final scaling
7397   // factor of Scale.
7398 
7399   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7400   if (LHSShift)
7401     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7402                       DAG.getConstant(LHSShift, dl, ShiftTy));
7403   if (RHSShift)
7404     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7405                       DAG.getConstant(RHSShift, dl, ShiftTy));
7406 
7407   SDValue Quot;
7408   if (Signed) {
7409     // For signed operations, if the resulting quotient is negative and the
7410     // remainder is nonzero, subtract 1 from the quotient to round towards
7411     // negative infinity.
7412     SDValue Rem;
7413     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7414     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7415     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7416     if (isTypeLegal(VT) &&
7417         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7418       Quot = DAG.getNode(ISD::SDIVREM, dl,
7419                          DAG.getVTList(VT, VT),
7420                          LHS, RHS);
7421       Rem = Quot.getValue(1);
7422       Quot = Quot.getValue(0);
7423     } else {
7424       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7425                          LHS, RHS);
7426       Rem = DAG.getNode(ISD::SREM, dl, VT,
7427                         LHS, RHS);
7428     }
7429     SDValue Zero = DAG.getConstant(0, dl, VT);
7430     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7431     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7432     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7433     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7434     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7435                                DAG.getConstant(1, dl, VT));
7436     Quot = DAG.getSelect(dl, VT,
7437                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7438                          Sub1, Quot);
7439   } else
7440     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7441                        LHS, RHS);
7442 
7443   return Quot;
7444 }
7445 
7446 void TargetLowering::expandUADDSUBO(
7447     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7448   SDLoc dl(Node);
7449   SDValue LHS = Node->getOperand(0);
7450   SDValue RHS = Node->getOperand(1);
7451   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7452 
7453   // If ADD/SUBCARRY is legal, use that instead.
7454   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7455   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7456     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7457     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7458                                     { LHS, RHS, CarryIn });
7459     Result = SDValue(NodeCarry.getNode(), 0);
7460     Overflow = SDValue(NodeCarry.getNode(), 1);
7461     return;
7462   }
7463 
7464   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7465                             LHS.getValueType(), LHS, RHS);
7466 
7467   EVT ResultType = Node->getValueType(1);
7468   EVT SetCCType = getSetCCResultType(
7469       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7470   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7471   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7472   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7473 }
7474 
7475 void TargetLowering::expandSADDSUBO(
7476     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7477   SDLoc dl(Node);
7478   SDValue LHS = Node->getOperand(0);
7479   SDValue RHS = Node->getOperand(1);
7480   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7481 
7482   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7483                             LHS.getValueType(), LHS, RHS);
7484 
7485   EVT ResultType = Node->getValueType(1);
7486   EVT OType = getSetCCResultType(
7487       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7488 
7489   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7490   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7491   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7492     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7493     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7494     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7495     return;
7496   }
7497 
7498   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7499 
7500   // For an addition, the result should be less than one of the operands (LHS)
7501   // if and only if the other operand (RHS) is negative, otherwise there will
7502   // be overflow.
7503   // For a subtraction, the result should be less than one of the operands
7504   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7505   // otherwise there will be overflow.
7506   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7507   SDValue ConditionRHS =
7508       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7509 
7510   Overflow = DAG.getBoolExtOrTrunc(
7511       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7512       ResultType, ResultType);
7513 }
7514 
7515 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7516                                 SDValue &Overflow, SelectionDAG &DAG) const {
7517   SDLoc dl(Node);
7518   EVT VT = Node->getValueType(0);
7519   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7520   SDValue LHS = Node->getOperand(0);
7521   SDValue RHS = Node->getOperand(1);
7522   bool isSigned = Node->getOpcode() == ISD::SMULO;
7523 
7524   // For power-of-two multiplications we can use a simpler shift expansion.
7525   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7526     const APInt &C = RHSC->getAPIntValue();
7527     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7528     if (C.isPowerOf2()) {
7529       // smulo(x, signed_min) is same as umulo(x, signed_min).
7530       bool UseArithShift = isSigned && !C.isMinSignedValue();
7531       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7532       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7533       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7534       Overflow = DAG.getSetCC(dl, SetCCVT,
7535           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7536                       dl, VT, Result, ShiftAmt),
7537           LHS, ISD::SETNE);
7538       return true;
7539     }
7540   }
7541 
7542   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7543   if (VT.isVector())
7544     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7545                               VT.getVectorNumElements());
7546 
7547   SDValue BottomHalf;
7548   SDValue TopHalf;
7549   static const unsigned Ops[2][3] =
7550       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7551         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7552   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7553     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7554     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7555   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7556     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7557                              RHS);
7558     TopHalf = BottomHalf.getValue(1);
7559   } else if (isTypeLegal(WideVT)) {
7560     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7561     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7562     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7563     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7564     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7565         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7566     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7567                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7568   } else {
7569     if (VT.isVector())
7570       return false;
7571 
7572     // We can fall back to a libcall with an illegal type for the MUL if we
7573     // have a libcall big enough.
7574     // Also, we can fall back to a division in some cases, but that's a big
7575     // performance hit in the general case.
7576     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7577     if (WideVT == MVT::i16)
7578       LC = RTLIB::MUL_I16;
7579     else if (WideVT == MVT::i32)
7580       LC = RTLIB::MUL_I32;
7581     else if (WideVT == MVT::i64)
7582       LC = RTLIB::MUL_I64;
7583     else if (WideVT == MVT::i128)
7584       LC = RTLIB::MUL_I128;
7585     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7586 
7587     SDValue HiLHS;
7588     SDValue HiRHS;
7589     if (isSigned) {
7590       // The high part is obtained by SRA'ing all but one of the bits of low
7591       // part.
7592       unsigned LoSize = VT.getSizeInBits();
7593       HiLHS =
7594           DAG.getNode(ISD::SRA, dl, VT, LHS,
7595                       DAG.getConstant(LoSize - 1, dl,
7596                                       getPointerTy(DAG.getDataLayout())));
7597       HiRHS =
7598           DAG.getNode(ISD::SRA, dl, VT, RHS,
7599                       DAG.getConstant(LoSize - 1, dl,
7600                                       getPointerTy(DAG.getDataLayout())));
7601     } else {
7602         HiLHS = DAG.getConstant(0, dl, VT);
7603         HiRHS = DAG.getConstant(0, dl, VT);
7604     }
7605 
7606     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7607     // pre-lowered to the correct types. This all depends upon WideVT not
7608     // being a legal type for the architecture and thus has to be split to
7609     // two arguments.
7610     SDValue Ret;
7611     TargetLowering::MakeLibCallOptions CallOptions;
7612     CallOptions.setSExt(isSigned);
7613     CallOptions.setIsPostTypeLegalization(true);
7614     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7615       // Halves of WideVT are packed into registers in different order
7616       // depending on platform endianness. This is usually handled by
7617       // the C calling convention, but we can't defer to it in
7618       // the legalizer.
7619       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7620       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7621     } else {
7622       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7623       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7624     }
7625     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7626            "Ret value is a collection of constituent nodes holding result.");
7627     if (DAG.getDataLayout().isLittleEndian()) {
7628       // Same as above.
7629       BottomHalf = Ret.getOperand(0);
7630       TopHalf = Ret.getOperand(1);
7631     } else {
7632       BottomHalf = Ret.getOperand(1);
7633       TopHalf = Ret.getOperand(0);
7634     }
7635   }
7636 
7637   Result = BottomHalf;
7638   if (isSigned) {
7639     SDValue ShiftAmt = DAG.getConstant(
7640         VT.getScalarSizeInBits() - 1, dl,
7641         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7642     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7643     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7644   } else {
7645     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7646                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7647   }
7648 
7649   // Truncate the result if SetCC returns a larger type than needed.
7650   EVT RType = Node->getValueType(1);
7651   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7652     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7653 
7654   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7655          "Unexpected result type for S/UMULO legalization");
7656   return true;
7657 }
7658 
7659 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7660   SDLoc dl(Node);
7661   bool NoNaN = Node->getFlags().hasNoNaNs();
7662   unsigned BaseOpcode = 0;
7663   switch (Node->getOpcode()) {
7664   default: llvm_unreachable("Expected VECREDUCE opcode");
7665   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7666   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7667   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7668   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7669   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7670   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7671   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7672   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7673   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7674   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7675   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7676   case ISD::VECREDUCE_FMAX:
7677     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7678     break;
7679   case ISD::VECREDUCE_FMIN:
7680     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7681     break;
7682   }
7683 
7684   SDValue Op = Node->getOperand(0);
7685   EVT VT = Op.getValueType();
7686 
7687   // Try to use a shuffle reduction for power of two vectors.
7688   if (VT.isPow2VectorType()) {
7689     while (VT.getVectorNumElements() > 1) {
7690       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7691       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7692         break;
7693 
7694       SDValue Lo, Hi;
7695       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7696       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7697       VT = HalfVT;
7698     }
7699   }
7700 
7701   EVT EltVT = VT.getVectorElementType();
7702   unsigned NumElts = VT.getVectorNumElements();
7703 
7704   SmallVector<SDValue, 8> Ops;
7705   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7706 
7707   SDValue Res = Ops[0];
7708   for (unsigned i = 1; i < NumElts; i++)
7709     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7710 
7711   // Result type may be wider than element type.
7712   if (EltVT != Node->getValueType(0))
7713     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7714   return Res;
7715 }
7716