1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlign(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 879 // Upper elements are undef, so only get the knownbits if we just demand 880 // the bottom element. 881 if (DemandedElts == 1) 882 Known = SrcKnown.anyextOrTrunc(BitWidth); 883 break; 884 } 885 case ISD::BUILD_VECTOR: 886 // Collect the known bits that are shared by every demanded element. 887 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 888 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 889 return false; // Don't fall through, will infinitely loop. 890 case ISD::LOAD: { 891 LoadSDNode *LD = cast<LoadSDNode>(Op); 892 if (getTargetConstantFromLoad(LD)) { 893 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 894 return false; // Don't fall through, will infinitely loop. 895 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 896 // If this is a ZEXTLoad and we are looking at the loaded value. 897 EVT MemVT = LD->getMemoryVT(); 898 unsigned MemBits = MemVT.getScalarSizeInBits(); 899 Known.Zero.setBitsFrom(MemBits); 900 return false; // Don't fall through, will infinitely loop. 901 } 902 break; 903 } 904 case ISD::INSERT_VECTOR_ELT: { 905 SDValue Vec = Op.getOperand(0); 906 SDValue Scl = Op.getOperand(1); 907 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 908 EVT VecVT = Vec.getValueType(); 909 910 // If index isn't constant, assume we need all vector elements AND the 911 // inserted element. 912 APInt DemandedVecElts(DemandedElts); 913 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 914 unsigned Idx = CIdx->getZExtValue(); 915 DemandedVecElts.clearBit(Idx); 916 917 // Inserted element is not required. 918 if (!DemandedElts[Idx]) 919 return TLO.CombineTo(Op, Vec); 920 } 921 922 KnownBits KnownScl; 923 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 924 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 925 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 926 return true; 927 928 Known = KnownScl.anyextOrTrunc(BitWidth); 929 930 KnownBits KnownVec; 931 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 932 Depth + 1)) 933 return true; 934 935 if (!!DemandedVecElts) { 936 Known.One &= KnownVec.One; 937 Known.Zero &= KnownVec.Zero; 938 } 939 940 return false; 941 } 942 case ISD::INSERT_SUBVECTOR: { 943 SDValue Base = Op.getOperand(0); 944 SDValue Sub = Op.getOperand(1); 945 EVT SubVT = Sub.getValueType(); 946 unsigned NumSubElts = SubVT.getVectorNumElements(); 947 948 // If index isn't constant, assume we need the original demanded base 949 // elements and ALL the inserted subvector elements. 950 APInt BaseElts = DemandedElts; 951 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 952 if (isa<ConstantSDNode>(Op.getOperand(2))) { 953 const APInt &Idx = Op.getConstantOperandAPInt(2); 954 if (Idx.ule(NumElts - NumSubElts)) { 955 unsigned SubIdx = Idx.getZExtValue(); 956 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 957 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 958 } 959 } 960 961 KnownBits KnownSub, KnownBase; 962 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 963 Depth + 1)) 964 return true; 965 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 966 Depth + 1)) 967 return true; 968 969 Known.Zero.setAllBits(); 970 Known.One.setAllBits(); 971 if (!!SubElts) { 972 Known.One &= KnownSub.One; 973 Known.Zero &= KnownSub.Zero; 974 } 975 if (!!BaseElts) { 976 Known.One &= KnownBase.One; 977 Known.Zero &= KnownBase.Zero; 978 } 979 980 // Attempt to avoid multi-use src if we don't need anything from it. 981 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 982 !BaseElts.isAllOnesValue()) { 983 SDValue NewSub = SimplifyMultipleUseDemandedBits( 984 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 985 SDValue NewBase = SimplifyMultipleUseDemandedBits( 986 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 987 if (NewSub || NewBase) { 988 NewSub = NewSub ? NewSub : Sub; 989 NewBase = NewBase ? NewBase : Base; 990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 991 Op.getOperand(2)); 992 return TLO.CombineTo(Op, NewOp); 993 } 994 } 995 break; 996 } 997 case ISD::EXTRACT_SUBVECTOR: { 998 // If index isn't constant, assume we need all the source vector elements. 999 SDValue Src = Op.getOperand(0); 1000 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1002 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 1003 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1004 // Offset the demanded elts by the subvector index. 1005 uint64_t Idx = SubIdx->getZExtValue(); 1006 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1007 } 1008 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1009 return true; 1010 1011 // Attempt to avoid multi-use src if we don't need anything from it. 1012 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1013 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1014 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1015 if (DemandedSrc) { 1016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1017 Op.getOperand(1)); 1018 return TLO.CombineTo(Op, NewOp); 1019 } 1020 } 1021 break; 1022 } 1023 case ISD::CONCAT_VECTORS: { 1024 Known.Zero.setAllBits(); 1025 Known.One.setAllBits(); 1026 EVT SubVT = Op.getOperand(0).getValueType(); 1027 unsigned NumSubVecs = Op.getNumOperands(); 1028 unsigned NumSubElts = SubVT.getVectorNumElements(); 1029 for (unsigned i = 0; i != NumSubVecs; ++i) { 1030 APInt DemandedSubElts = 1031 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1032 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1033 Known2, TLO, Depth + 1)) 1034 return true; 1035 // Known bits are shared by every demanded subvector element. 1036 if (!!DemandedSubElts) { 1037 Known.One &= Known2.One; 1038 Known.Zero &= Known2.Zero; 1039 } 1040 } 1041 break; 1042 } 1043 case ISD::VECTOR_SHUFFLE: { 1044 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1045 1046 // Collect demanded elements from shuffle operands.. 1047 APInt DemandedLHS(NumElts, 0); 1048 APInt DemandedRHS(NumElts, 0); 1049 for (unsigned i = 0; i != NumElts; ++i) { 1050 if (!DemandedElts[i]) 1051 continue; 1052 int M = ShuffleMask[i]; 1053 if (M < 0) { 1054 // For UNDEF elements, we don't know anything about the common state of 1055 // the shuffle result. 1056 DemandedLHS.clearAllBits(); 1057 DemandedRHS.clearAllBits(); 1058 break; 1059 } 1060 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1061 if (M < (int)NumElts) 1062 DemandedLHS.setBit(M); 1063 else 1064 DemandedRHS.setBit(M - NumElts); 1065 } 1066 1067 if (!!DemandedLHS || !!DemandedRHS) { 1068 SDValue Op0 = Op.getOperand(0); 1069 SDValue Op1 = Op.getOperand(1); 1070 1071 Known.Zero.setAllBits(); 1072 Known.One.setAllBits(); 1073 if (!!DemandedLHS) { 1074 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1075 Depth + 1)) 1076 return true; 1077 Known.One &= Known2.One; 1078 Known.Zero &= Known2.Zero; 1079 } 1080 if (!!DemandedRHS) { 1081 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1082 Depth + 1)) 1083 return true; 1084 Known.One &= Known2.One; 1085 Known.Zero &= Known2.Zero; 1086 } 1087 1088 // Attempt to avoid multi-use ops if we don't need anything from them. 1089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1090 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1092 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1093 if (DemandedOp0 || DemandedOp1) { 1094 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1095 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1096 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1097 return TLO.CombineTo(Op, NewOp); 1098 } 1099 } 1100 break; 1101 } 1102 case ISD::AND: { 1103 SDValue Op0 = Op.getOperand(0); 1104 SDValue Op1 = Op.getOperand(1); 1105 1106 // If the RHS is a constant, check to see if the LHS would be zero without 1107 // using the bits from the RHS. Below, we use knowledge about the RHS to 1108 // simplify the LHS, here we're using information from the LHS to simplify 1109 // the RHS. 1110 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1111 // Do not increment Depth here; that can cause an infinite loop. 1112 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1113 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1114 if ((LHSKnown.Zero & DemandedBits) == 1115 (~RHSC->getAPIntValue() & DemandedBits)) 1116 return TLO.CombineTo(Op, Op0); 1117 1118 // If any of the set bits in the RHS are known zero on the LHS, shrink 1119 // the constant. 1120 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1121 return true; 1122 1123 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1124 // constant, but if this 'and' is only clearing bits that were just set by 1125 // the xor, then this 'and' can be eliminated by shrinking the mask of 1126 // the xor. For example, for a 32-bit X: 1127 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1128 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1129 LHSKnown.One == ~RHSC->getAPIntValue()) { 1130 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1131 return TLO.CombineTo(Op, Xor); 1132 } 1133 } 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1140 Known2, TLO, Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known one on one side, return the other. 1159 // These bits cannot contribute to the result of the 'and'. 1160 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If all of the demanded bits in the inputs are known zeros, return zero. 1165 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1166 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1167 // If the RHS is a constant, see if we can simplify it. 1168 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1169 return true; 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 Known &= Known2; 1175 break; 1176 } 1177 case ISD::OR: { 1178 SDValue Op0 = Op.getOperand(0); 1179 SDValue Op1 = Op.getOperand(1); 1180 1181 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1182 Depth + 1)) 1183 return true; 1184 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1185 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1186 Known2, TLO, Depth + 1)) 1187 return true; 1188 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1189 1190 // Attempt to avoid multi-use ops if we don't need anything from them. 1191 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1192 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1193 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1194 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1195 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1196 if (DemandedOp0 || DemandedOp1) { 1197 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1198 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1199 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1200 return TLO.CombineTo(Op, NewOp); 1201 } 1202 } 1203 1204 // If all of the demanded bits are known zero on one side, return the other. 1205 // These bits cannot contribute to the result of the 'or'. 1206 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1207 return TLO.CombineTo(Op, Op0); 1208 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1209 return TLO.CombineTo(Op, Op1); 1210 // If the RHS is a constant, see if we can simplify it. 1211 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1212 return true; 1213 // If the operation can be done in a smaller type, do so. 1214 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1215 return true; 1216 1217 Known |= Known2; 1218 break; 1219 } 1220 case ISD::XOR: { 1221 SDValue Op0 = Op.getOperand(0); 1222 SDValue Op1 = Op.getOperand(1); 1223 1224 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1225 Depth + 1)) 1226 return true; 1227 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1228 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1229 Depth + 1)) 1230 return true; 1231 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1232 1233 // Attempt to avoid multi-use ops if we don't need anything from them. 1234 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1235 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1236 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1237 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1238 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1239 if (DemandedOp0 || DemandedOp1) { 1240 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1241 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1242 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1243 return TLO.CombineTo(Op, NewOp); 1244 } 1245 } 1246 1247 // If all of the demanded bits are known zero on one side, return the other. 1248 // These bits cannot contribute to the result of the 'xor'. 1249 if (DemandedBits.isSubsetOf(Known.Zero)) 1250 return TLO.CombineTo(Op, Op0); 1251 if (DemandedBits.isSubsetOf(Known2.Zero)) 1252 return TLO.CombineTo(Op, Op1); 1253 // If the operation can be done in a smaller type, do so. 1254 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1255 return true; 1256 1257 // If all of the unknown bits are known to be zero on one side or the other 1258 // (but not both) turn this into an *inclusive* or. 1259 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1260 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1261 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1262 1263 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1264 // If one side is a constant, and all of the known set bits on the other 1265 // side are also set in the constant, turn this into an AND, as we know 1266 // the bits will be cleared. 1267 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1268 // NB: it is okay if more bits are known than are requested 1269 if (C->getAPIntValue() == Known2.One) { 1270 SDValue ANDC = 1271 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1272 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1273 } 1274 1275 // If the RHS is a constant, see if we can change it. Don't alter a -1 1276 // constant because that's a 'not' op, and that is better for combining 1277 // and codegen. 1278 if (!C->isAllOnesValue()) { 1279 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1280 // We're flipping all demanded bits. Flip the undemanded bits too. 1281 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1282 return TLO.CombineTo(Op, New); 1283 } 1284 // If we can't turn this into a 'not', try to shrink the constant. 1285 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1286 return true; 1287 } 1288 } 1289 1290 Known ^= Known2; 1291 break; 1292 } 1293 case ISD::SELECT: 1294 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1295 Depth + 1)) 1296 return true; 1297 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1298 Depth + 1)) 1299 return true; 1300 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1301 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1302 1303 // If the operands are constants, see if we can simplify them. 1304 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1305 return true; 1306 1307 // Only known if known in both the LHS and RHS. 1308 Known.One &= Known2.One; 1309 Known.Zero &= Known2.Zero; 1310 break; 1311 case ISD::SELECT_CC: 1312 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1313 Depth + 1)) 1314 return true; 1315 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1316 Depth + 1)) 1317 return true; 1318 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1319 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1320 1321 // If the operands are constants, see if we can simplify them. 1322 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1323 return true; 1324 1325 // Only known if known in both the LHS and RHS. 1326 Known.One &= Known2.One; 1327 Known.Zero &= Known2.Zero; 1328 break; 1329 case ISD::SETCC: { 1330 SDValue Op0 = Op.getOperand(0); 1331 SDValue Op1 = Op.getOperand(1); 1332 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1333 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1334 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1335 // -1, we may be able to bypass the setcc. 1336 if (DemandedBits.isSignMask() && 1337 Op0.getScalarValueSizeInBits() == BitWidth && 1338 getBooleanContents(Op0.getValueType()) == 1339 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1340 // If we're testing X < 0, then this compare isn't needed - just use X! 1341 // FIXME: We're limiting to integer types here, but this should also work 1342 // if we don't care about FP signed-zero. The use of SETLT with FP means 1343 // that we don't care about NaNs. 1344 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1345 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1346 return TLO.CombineTo(Op, Op0); 1347 1348 // TODO: Should we check for other forms of sign-bit comparisons? 1349 // Examples: X <= -1, X >= 0 1350 } 1351 if (getBooleanContents(Op0.getValueType()) == 1352 TargetLowering::ZeroOrOneBooleanContent && 1353 BitWidth > 1) 1354 Known.Zero.setBitsFrom(1); 1355 break; 1356 } 1357 case ISD::SHL: { 1358 SDValue Op0 = Op.getOperand(0); 1359 SDValue Op1 = Op.getOperand(1); 1360 EVT ShiftVT = Op1.getValueType(); 1361 1362 if (const APInt *SA = 1363 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1364 unsigned ShAmt = SA->getZExtValue(); 1365 if (ShAmt == 0) 1366 return TLO.CombineTo(Op, Op0); 1367 1368 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1369 // single shift. We can do this if the bottom bits (which are shifted 1370 // out) are never demanded. 1371 // TODO - support non-uniform vector amounts. 1372 if (Op0.getOpcode() == ISD::SRL) { 1373 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1374 if (const APInt *SA2 = 1375 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1376 if (SA2->ult(BitWidth)) { 1377 unsigned C1 = SA2->getZExtValue(); 1378 unsigned Opc = ISD::SHL; 1379 int Diff = ShAmt - C1; 1380 if (Diff < 0) { 1381 Diff = -Diff; 1382 Opc = ISD::SRL; 1383 } 1384 1385 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1386 return TLO.CombineTo( 1387 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1388 } 1389 } 1390 } 1391 } 1392 1393 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1394 // are not demanded. This will likely allow the anyext to be folded away. 1395 // TODO - support non-uniform vector amounts. 1396 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1397 SDValue InnerOp = Op0.getOperand(0); 1398 EVT InnerVT = InnerOp.getValueType(); 1399 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1400 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1401 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1402 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1403 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1404 ShTy = InnerVT; 1405 SDValue NarrowShl = 1406 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1407 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1408 return TLO.CombineTo( 1409 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1410 } 1411 1412 // Repeat the SHL optimization above in cases where an extension 1413 // intervenes: (shl (anyext (shr x, c1)), c2) to 1414 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1415 // aren't demanded (as above) and that the shifted upper c1 bits of 1416 // x aren't demanded. 1417 // TODO - support non-uniform vector amounts. 1418 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1419 InnerOp.hasOneUse()) { 1420 if (const APInt *SA2 = 1421 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1422 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1423 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1424 DemandedBits.getActiveBits() <= 1425 (InnerBits - InnerShAmt + ShAmt) && 1426 DemandedBits.countTrailingZeros() >= ShAmt) { 1427 SDValue NewSA = 1428 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1429 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1430 InnerOp.getOperand(0)); 1431 return TLO.CombineTo( 1432 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1433 } 1434 } 1435 } 1436 } 1437 1438 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1439 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1440 Depth + 1)) 1441 return true; 1442 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1443 Known.Zero <<= ShAmt; 1444 Known.One <<= ShAmt; 1445 // low bits known zero. 1446 Known.Zero.setLowBits(ShAmt); 1447 1448 // Try shrinking the operation as long as the shift amount will still be 1449 // in range. 1450 if ((ShAmt < DemandedBits.getActiveBits()) && 1451 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1452 return true; 1453 } 1454 break; 1455 } 1456 case ISD::SRL: { 1457 SDValue Op0 = Op.getOperand(0); 1458 SDValue Op1 = Op.getOperand(1); 1459 EVT ShiftVT = Op1.getValueType(); 1460 1461 if (const APInt *SA = 1462 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1463 unsigned ShAmt = SA->getZExtValue(); 1464 if (ShAmt == 0) 1465 return TLO.CombineTo(Op, Op0); 1466 1467 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1468 // single shift. We can do this if the top bits (which are shifted out) 1469 // are never demanded. 1470 // TODO - support non-uniform vector amounts. 1471 if (Op0.getOpcode() == ISD::SHL) { 1472 if (const APInt *SA2 = 1473 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1474 if (!DemandedBits.intersects( 1475 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1476 if (SA2->ult(BitWidth)) { 1477 unsigned C1 = SA2->getZExtValue(); 1478 unsigned Opc = ISD::SRL; 1479 int Diff = ShAmt - C1; 1480 if (Diff < 0) { 1481 Diff = -Diff; 1482 Opc = ISD::SHL; 1483 } 1484 1485 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1486 return TLO.CombineTo( 1487 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1488 } 1489 } 1490 } 1491 } 1492 1493 APInt InDemandedMask = (DemandedBits << ShAmt); 1494 1495 // If the shift is exact, then it does demand the low bits (and knows that 1496 // they are zero). 1497 if (Op->getFlags().hasExact()) 1498 InDemandedMask.setLowBits(ShAmt); 1499 1500 // Compute the new bits that are at the top now. 1501 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1502 Depth + 1)) 1503 return true; 1504 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1505 Known.Zero.lshrInPlace(ShAmt); 1506 Known.One.lshrInPlace(ShAmt); 1507 // High bits known zero. 1508 Known.Zero.setHighBits(ShAmt); 1509 } 1510 break; 1511 } 1512 case ISD::SRA: { 1513 SDValue Op0 = Op.getOperand(0); 1514 SDValue Op1 = Op.getOperand(1); 1515 EVT ShiftVT = Op1.getValueType(); 1516 1517 // If we only want bits that already match the signbit then we don't need 1518 // to shift. 1519 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1520 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1521 NumHiDemandedBits) 1522 return TLO.CombineTo(Op, Op0); 1523 1524 // If this is an arithmetic shift right and only the low-bit is set, we can 1525 // always convert this into a logical shr, even if the shift amount is 1526 // variable. The low bit of the shift cannot be an input sign bit unless 1527 // the shift amount is >= the size of the datatype, which is undefined. 1528 if (DemandedBits.isOneValue()) 1529 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1530 1531 if (const APInt *SA = 1532 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1533 unsigned ShAmt = SA->getZExtValue(); 1534 if (ShAmt == 0) 1535 return TLO.CombineTo(Op, Op0); 1536 1537 APInt InDemandedMask = (DemandedBits << ShAmt); 1538 1539 // If the shift is exact, then it does demand the low bits (and knows that 1540 // they are zero). 1541 if (Op->getFlags().hasExact()) 1542 InDemandedMask.setLowBits(ShAmt); 1543 1544 // If any of the demanded bits are produced by the sign extension, we also 1545 // demand the input sign bit. 1546 if (DemandedBits.countLeadingZeros() < ShAmt) 1547 InDemandedMask.setSignBit(); 1548 1549 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1550 Depth + 1)) 1551 return true; 1552 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1553 Known.Zero.lshrInPlace(ShAmt); 1554 Known.One.lshrInPlace(ShAmt); 1555 1556 // If the input sign bit is known to be zero, or if none of the top bits 1557 // are demanded, turn this into an unsigned shift right. 1558 if (Known.Zero[BitWidth - ShAmt - 1] || 1559 DemandedBits.countLeadingZeros() >= ShAmt) { 1560 SDNodeFlags Flags; 1561 Flags.setExact(Op->getFlags().hasExact()); 1562 return TLO.CombineTo( 1563 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1564 } 1565 1566 int Log2 = DemandedBits.exactLogBase2(); 1567 if (Log2 >= 0) { 1568 // The bit must come from the sign. 1569 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1570 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1571 } 1572 1573 if (Known.One[BitWidth - ShAmt - 1]) 1574 // New bits are known one. 1575 Known.One.setHighBits(ShAmt); 1576 1577 // Attempt to avoid multi-use ops if we don't need anything from them. 1578 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1579 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1580 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1581 if (DemandedOp0) { 1582 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1583 return TLO.CombineTo(Op, NewOp); 1584 } 1585 } 1586 } 1587 break; 1588 } 1589 case ISD::FSHL: 1590 case ISD::FSHR: { 1591 SDValue Op0 = Op.getOperand(0); 1592 SDValue Op1 = Op.getOperand(1); 1593 SDValue Op2 = Op.getOperand(2); 1594 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1595 1596 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1597 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1598 1599 // For fshl, 0-shift returns the 1st arg. 1600 // For fshr, 0-shift returns the 2nd arg. 1601 if (Amt == 0) { 1602 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1603 Known, TLO, Depth + 1)) 1604 return true; 1605 break; 1606 } 1607 1608 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1609 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1610 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1611 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1612 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1613 Depth + 1)) 1614 return true; 1615 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1616 Depth + 1)) 1617 return true; 1618 1619 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1620 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1621 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1622 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1623 Known.One |= Known2.One; 1624 Known.Zero |= Known2.Zero; 1625 } 1626 1627 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1628 if (isPowerOf2_32(BitWidth)) { 1629 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1630 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1631 Known2, TLO, Depth + 1)) 1632 return true; 1633 } 1634 break; 1635 } 1636 case ISD::ROTL: 1637 case ISD::ROTR: { 1638 SDValue Op0 = Op.getOperand(0); 1639 SDValue Op1 = Op.getOperand(1); 1640 1641 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1642 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1643 return TLO.CombineTo(Op, Op0); 1644 1645 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1646 if (isPowerOf2_32(BitWidth)) { 1647 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1648 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1649 Depth + 1)) 1650 return true; 1651 } 1652 break; 1653 } 1654 case ISD::BITREVERSE: { 1655 SDValue Src = Op.getOperand(0); 1656 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1657 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1658 Depth + 1)) 1659 return true; 1660 Known.One = Known2.One.reverseBits(); 1661 Known.Zero = Known2.Zero.reverseBits(); 1662 break; 1663 } 1664 case ISD::BSWAP: { 1665 SDValue Src = Op.getOperand(0); 1666 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1667 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1668 Depth + 1)) 1669 return true; 1670 Known.One = Known2.One.byteSwap(); 1671 Known.Zero = Known2.Zero.byteSwap(); 1672 break; 1673 } 1674 case ISD::SIGN_EXTEND_INREG: { 1675 SDValue Op0 = Op.getOperand(0); 1676 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1677 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1678 1679 // If we only care about the highest bit, don't bother shifting right. 1680 if (DemandedBits.isSignMask()) { 1681 unsigned NumSignBits = 1682 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1683 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1684 // However if the input is already sign extended we expect the sign 1685 // extension to be dropped altogether later and do not simplify. 1686 if (!AlreadySignExtended) { 1687 // Compute the correct shift amount type, which must be getShiftAmountTy 1688 // for scalar types after legalization. 1689 EVT ShiftAmtTy = VT; 1690 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1691 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1692 1693 SDValue ShiftAmt = 1694 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1695 return TLO.CombineTo(Op, 1696 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1697 } 1698 } 1699 1700 // If none of the extended bits are demanded, eliminate the sextinreg. 1701 if (DemandedBits.getActiveBits() <= ExVTBits) 1702 return TLO.CombineTo(Op, Op0); 1703 1704 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1705 1706 // Since the sign extended bits are demanded, we know that the sign 1707 // bit is demanded. 1708 InputDemandedBits.setBit(ExVTBits - 1); 1709 1710 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1711 return true; 1712 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1713 1714 // If the sign bit of the input is known set or clear, then we know the 1715 // top bits of the result. 1716 1717 // If the input sign bit is known zero, convert this into a zero extension. 1718 if (Known.Zero[ExVTBits - 1]) 1719 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1720 1721 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1722 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1723 Known.One.setBitsFrom(ExVTBits); 1724 Known.Zero &= Mask; 1725 } else { // Input sign bit unknown 1726 Known.Zero &= Mask; 1727 Known.One &= Mask; 1728 } 1729 break; 1730 } 1731 case ISD::BUILD_PAIR: { 1732 EVT HalfVT = Op.getOperand(0).getValueType(); 1733 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1734 1735 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1736 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1737 1738 KnownBits KnownLo, KnownHi; 1739 1740 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1741 return true; 1742 1743 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1744 return true; 1745 1746 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1747 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1748 1749 Known.One = KnownLo.One.zext(BitWidth) | 1750 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1751 break; 1752 } 1753 case ISD::ZERO_EXTEND: 1754 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1755 SDValue Src = Op.getOperand(0); 1756 EVT SrcVT = Src.getValueType(); 1757 unsigned InBits = SrcVT.getScalarSizeInBits(); 1758 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1759 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1760 1761 // If none of the top bits are demanded, convert this into an any_extend. 1762 if (DemandedBits.getActiveBits() <= InBits) { 1763 // If we only need the non-extended bits of the bottom element 1764 // then we can just bitcast to the result. 1765 if (IsVecInReg && DemandedElts == 1 && 1766 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1767 TLO.DAG.getDataLayout().isLittleEndian()) 1768 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1769 1770 unsigned Opc = 1771 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1772 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1773 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1774 } 1775 1776 APInt InDemandedBits = DemandedBits.trunc(InBits); 1777 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1778 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1779 Depth + 1)) 1780 return true; 1781 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1782 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1783 Known = Known.zext(BitWidth); 1784 break; 1785 } 1786 case ISD::SIGN_EXTEND: 1787 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1788 SDValue Src = Op.getOperand(0); 1789 EVT SrcVT = Src.getValueType(); 1790 unsigned InBits = SrcVT.getScalarSizeInBits(); 1791 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1792 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1793 1794 // If none of the top bits are demanded, convert this into an any_extend. 1795 if (DemandedBits.getActiveBits() <= InBits) { 1796 // If we only need the non-extended bits of the bottom element 1797 // then we can just bitcast to the result. 1798 if (IsVecInReg && DemandedElts == 1 && 1799 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1800 TLO.DAG.getDataLayout().isLittleEndian()) 1801 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1802 1803 unsigned Opc = 1804 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1805 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1806 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1807 } 1808 1809 APInt InDemandedBits = DemandedBits.trunc(InBits); 1810 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1811 1812 // Since some of the sign extended bits are demanded, we know that the sign 1813 // bit is demanded. 1814 InDemandedBits.setBit(InBits - 1); 1815 1816 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1817 Depth + 1)) 1818 return true; 1819 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1820 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1821 1822 // If the sign bit is known one, the top bits match. 1823 Known = Known.sext(BitWidth); 1824 1825 // If the sign bit is known zero, convert this to a zero extend. 1826 if (Known.isNonNegative()) { 1827 unsigned Opc = 1828 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1829 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1830 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1831 } 1832 break; 1833 } 1834 case ISD::ANY_EXTEND: 1835 case ISD::ANY_EXTEND_VECTOR_INREG: { 1836 SDValue Src = Op.getOperand(0); 1837 EVT SrcVT = Src.getValueType(); 1838 unsigned InBits = SrcVT.getScalarSizeInBits(); 1839 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1840 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1841 1842 // If we only need the bottom element then we can just bitcast. 1843 // TODO: Handle ANY_EXTEND? 1844 if (IsVecInReg && DemandedElts == 1 && 1845 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1846 TLO.DAG.getDataLayout().isLittleEndian()) 1847 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1848 1849 APInt InDemandedBits = DemandedBits.trunc(InBits); 1850 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1851 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1852 Depth + 1)) 1853 return true; 1854 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1855 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1856 Known = Known.anyext(BitWidth); 1857 1858 // Attempt to avoid multi-use ops if we don't need anything from them. 1859 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1860 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1861 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1862 break; 1863 } 1864 case ISD::TRUNCATE: { 1865 SDValue Src = Op.getOperand(0); 1866 1867 // Simplify the input, using demanded bit information, and compute the known 1868 // zero/one bits live out. 1869 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1870 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1871 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1872 return true; 1873 Known = Known.trunc(BitWidth); 1874 1875 // Attempt to avoid multi-use ops if we don't need anything from them. 1876 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1877 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1878 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1879 1880 // If the input is only used by this truncate, see if we can shrink it based 1881 // on the known demanded bits. 1882 if (Src.getNode()->hasOneUse()) { 1883 switch (Src.getOpcode()) { 1884 default: 1885 break; 1886 case ISD::SRL: 1887 // Shrink SRL by a constant if none of the high bits shifted in are 1888 // demanded. 1889 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1890 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1891 // undesirable. 1892 break; 1893 1894 SDValue ShAmt = Src.getOperand(1); 1895 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1896 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1897 break; 1898 uint64_t ShVal = ShAmtC->getZExtValue(); 1899 1900 APInt HighBits = 1901 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1902 HighBits.lshrInPlace(ShVal); 1903 HighBits = HighBits.trunc(BitWidth); 1904 1905 if (!(HighBits & DemandedBits)) { 1906 // None of the shifted in bits are needed. Add a truncate of the 1907 // shift input, then shift it. 1908 if (TLO.LegalTypes()) 1909 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1910 SDValue NewTrunc = 1911 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1912 return TLO.CombineTo( 1913 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1914 } 1915 break; 1916 } 1917 } 1918 1919 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1920 break; 1921 } 1922 case ISD::AssertZext: { 1923 // AssertZext demands all of the high bits, plus any of the low bits 1924 // demanded by its users. 1925 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1926 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1927 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1928 TLO, Depth + 1)) 1929 return true; 1930 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1931 1932 Known.Zero |= ~InMask; 1933 break; 1934 } 1935 case ISD::EXTRACT_VECTOR_ELT: { 1936 SDValue Src = Op.getOperand(0); 1937 SDValue Idx = Op.getOperand(1); 1938 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1939 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1940 1941 // Demand the bits from every vector element without a constant index. 1942 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1943 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1944 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1945 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1946 1947 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1948 // anything about the extended bits. 1949 APInt DemandedSrcBits = DemandedBits; 1950 if (BitWidth > EltBitWidth) 1951 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1952 1953 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1954 Depth + 1)) 1955 return true; 1956 1957 // Attempt to avoid multi-use ops if we don't need anything from them. 1958 if (!DemandedSrcBits.isAllOnesValue() || 1959 !DemandedSrcElts.isAllOnesValue()) { 1960 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1961 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1962 SDValue NewOp = 1963 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1964 return TLO.CombineTo(Op, NewOp); 1965 } 1966 } 1967 1968 Known = Known2; 1969 if (BitWidth > EltBitWidth) 1970 Known = Known.anyext(BitWidth); 1971 break; 1972 } 1973 case ISD::BITCAST: { 1974 SDValue Src = Op.getOperand(0); 1975 EVT SrcVT = Src.getValueType(); 1976 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1977 1978 // If this is an FP->Int bitcast and if the sign bit is the only 1979 // thing demanded, turn this into a FGETSIGN. 1980 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1981 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1982 SrcVT.isFloatingPoint()) { 1983 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1984 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1985 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1986 SrcVT != MVT::f128) { 1987 // Cannot eliminate/lower SHL for f128 yet. 1988 EVT Ty = OpVTLegal ? VT : MVT::i32; 1989 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1990 // place. We expect the SHL to be eliminated by other optimizations. 1991 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1992 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1993 if (!OpVTLegal && OpVTSizeInBits > 32) 1994 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1995 unsigned ShVal = Op.getValueSizeInBits() - 1; 1996 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1997 return TLO.CombineTo(Op, 1998 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1999 } 2000 } 2001 2002 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2003 // Demand the elt/bit if any of the original elts/bits are demanded. 2004 // TODO - bigendian once we have test coverage. 2005 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2006 TLO.DAG.getDataLayout().isLittleEndian()) { 2007 unsigned Scale = BitWidth / NumSrcEltBits; 2008 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2009 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2010 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2011 for (unsigned i = 0; i != Scale; ++i) { 2012 unsigned Offset = i * NumSrcEltBits; 2013 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2014 if (!Sub.isNullValue()) { 2015 DemandedSrcBits |= Sub; 2016 for (unsigned j = 0; j != NumElts; ++j) 2017 if (DemandedElts[j]) 2018 DemandedSrcElts.setBit((j * Scale) + i); 2019 } 2020 } 2021 2022 APInt KnownSrcUndef, KnownSrcZero; 2023 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2024 KnownSrcZero, TLO, Depth + 1)) 2025 return true; 2026 2027 KnownBits KnownSrcBits; 2028 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2029 KnownSrcBits, TLO, Depth + 1)) 2030 return true; 2031 } else if ((NumSrcEltBits % BitWidth) == 0 && 2032 TLO.DAG.getDataLayout().isLittleEndian()) { 2033 unsigned Scale = NumSrcEltBits / BitWidth; 2034 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2035 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2036 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2037 for (unsigned i = 0; i != NumElts; ++i) 2038 if (DemandedElts[i]) { 2039 unsigned Offset = (i % Scale) * BitWidth; 2040 DemandedSrcBits.insertBits(DemandedBits, Offset); 2041 DemandedSrcElts.setBit(i / Scale); 2042 } 2043 2044 if (SrcVT.isVector()) { 2045 APInt KnownSrcUndef, KnownSrcZero; 2046 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2047 KnownSrcZero, TLO, Depth + 1)) 2048 return true; 2049 } 2050 2051 KnownBits KnownSrcBits; 2052 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2053 KnownSrcBits, TLO, Depth + 1)) 2054 return true; 2055 } 2056 2057 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2058 // recursive call where Known may be useful to the caller. 2059 if (Depth > 0) { 2060 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2061 return false; 2062 } 2063 break; 2064 } 2065 case ISD::ADD: 2066 case ISD::MUL: 2067 case ISD::SUB: { 2068 // Add, Sub, and Mul don't demand any bits in positions beyond that 2069 // of the highest bit demanded of them. 2070 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2071 SDNodeFlags Flags = Op.getNode()->getFlags(); 2072 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2073 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2074 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2075 Depth + 1) || 2076 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2077 Depth + 1) || 2078 // See if the operation should be performed at a smaller bit width. 2079 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2080 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2081 // Disable the nsw and nuw flags. We can no longer guarantee that we 2082 // won't wrap after simplification. 2083 Flags.setNoSignedWrap(false); 2084 Flags.setNoUnsignedWrap(false); 2085 SDValue NewOp = 2086 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2087 return TLO.CombineTo(Op, NewOp); 2088 } 2089 return true; 2090 } 2091 2092 // Attempt to avoid multi-use ops if we don't need anything from them. 2093 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2094 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2095 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2096 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2097 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2098 if (DemandedOp0 || DemandedOp1) { 2099 Flags.setNoSignedWrap(false); 2100 Flags.setNoUnsignedWrap(false); 2101 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2102 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2103 SDValue NewOp = 2104 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2105 return TLO.CombineTo(Op, NewOp); 2106 } 2107 } 2108 2109 // If we have a constant operand, we may be able to turn it into -1 if we 2110 // do not demand the high bits. This can make the constant smaller to 2111 // encode, allow more general folding, or match specialized instruction 2112 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2113 // is probably not useful (and could be detrimental). 2114 ConstantSDNode *C = isConstOrConstSplat(Op1); 2115 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2116 if (C && !C->isAllOnesValue() && !C->isOne() && 2117 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2118 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2119 // Disable the nsw and nuw flags. We can no longer guarantee that we 2120 // won't wrap after simplification. 2121 Flags.setNoSignedWrap(false); 2122 Flags.setNoUnsignedWrap(false); 2123 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2124 return TLO.CombineTo(Op, NewOp); 2125 } 2126 2127 LLVM_FALLTHROUGH; 2128 } 2129 default: 2130 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2131 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2132 Known, TLO, Depth)) 2133 return true; 2134 break; 2135 } 2136 2137 // Just use computeKnownBits to compute output bits. 2138 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2139 break; 2140 } 2141 2142 // If we know the value of all of the demanded bits, return this as a 2143 // constant. 2144 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2145 // Avoid folding to a constant if any OpaqueConstant is involved. 2146 const SDNode *N = Op.getNode(); 2147 for (SDNodeIterator I = SDNodeIterator::begin(N), 2148 E = SDNodeIterator::end(N); 2149 I != E; ++I) { 2150 SDNode *Op = *I; 2151 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2152 if (C->isOpaque()) 2153 return false; 2154 } 2155 // TODO: Handle float bits as well. 2156 if (VT.isInteger()) 2157 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2158 } 2159 2160 return false; 2161 } 2162 2163 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2164 const APInt &DemandedElts, 2165 APInt &KnownUndef, 2166 APInt &KnownZero, 2167 DAGCombinerInfo &DCI) const { 2168 SelectionDAG &DAG = DCI.DAG; 2169 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2170 !DCI.isBeforeLegalizeOps()); 2171 2172 bool Simplified = 2173 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2174 if (Simplified) { 2175 DCI.AddToWorklist(Op.getNode()); 2176 DCI.CommitTargetLoweringOpt(TLO); 2177 } 2178 2179 return Simplified; 2180 } 2181 2182 /// Given a vector binary operation and known undefined elements for each input 2183 /// operand, compute whether each element of the output is undefined. 2184 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2185 const APInt &UndefOp0, 2186 const APInt &UndefOp1) { 2187 EVT VT = BO.getValueType(); 2188 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2189 "Vector binop only"); 2190 2191 EVT EltVT = VT.getVectorElementType(); 2192 unsigned NumElts = VT.getVectorNumElements(); 2193 assert(UndefOp0.getBitWidth() == NumElts && 2194 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2195 2196 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2197 const APInt &UndefVals) { 2198 if (UndefVals[Index]) 2199 return DAG.getUNDEF(EltVT); 2200 2201 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2202 // Try hard to make sure that the getNode() call is not creating temporary 2203 // nodes. Ignore opaque integers because they do not constant fold. 2204 SDValue Elt = BV->getOperand(Index); 2205 auto *C = dyn_cast<ConstantSDNode>(Elt); 2206 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2207 return Elt; 2208 } 2209 2210 return SDValue(); 2211 }; 2212 2213 APInt KnownUndef = APInt::getNullValue(NumElts); 2214 for (unsigned i = 0; i != NumElts; ++i) { 2215 // If both inputs for this element are either constant or undef and match 2216 // the element type, compute the constant/undef result for this element of 2217 // the vector. 2218 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2219 // not handle FP constants. The code within getNode() should be refactored 2220 // to avoid the danger of creating a bogus temporary node here. 2221 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2222 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2223 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2224 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2225 KnownUndef.setBit(i); 2226 } 2227 return KnownUndef; 2228 } 2229 2230 bool TargetLowering::SimplifyDemandedVectorElts( 2231 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2232 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2233 bool AssumeSingleUse) const { 2234 EVT VT = Op.getValueType(); 2235 APInt DemandedElts = OriginalDemandedElts; 2236 unsigned NumElts = DemandedElts.getBitWidth(); 2237 assert(VT.isVector() && "Expected vector op"); 2238 assert(VT.getVectorNumElements() == NumElts && 2239 "Mask size mismatches value type element count!"); 2240 2241 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2242 2243 // Undef operand. 2244 if (Op.isUndef()) { 2245 KnownUndef.setAllBits(); 2246 return false; 2247 } 2248 2249 // If Op has other users, assume that all elements are needed. 2250 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2251 DemandedElts.setAllBits(); 2252 2253 // Not demanding any elements from Op. 2254 if (DemandedElts == 0) { 2255 KnownUndef.setAllBits(); 2256 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2257 } 2258 2259 // Limit search depth. 2260 if (Depth >= SelectionDAG::MaxRecursionDepth) 2261 return false; 2262 2263 SDLoc DL(Op); 2264 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2265 2266 switch (Op.getOpcode()) { 2267 case ISD::SCALAR_TO_VECTOR: { 2268 if (!DemandedElts[0]) { 2269 KnownUndef.setAllBits(); 2270 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2271 } 2272 KnownUndef.setHighBits(NumElts - 1); 2273 break; 2274 } 2275 case ISD::BITCAST: { 2276 SDValue Src = Op.getOperand(0); 2277 EVT SrcVT = Src.getValueType(); 2278 2279 // We only handle vectors here. 2280 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2281 if (!SrcVT.isVector()) 2282 break; 2283 2284 // Fast handling of 'identity' bitcasts. 2285 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2286 if (NumSrcElts == NumElts) 2287 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2288 KnownZero, TLO, Depth + 1); 2289 2290 APInt SrcZero, SrcUndef; 2291 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2292 2293 // Bitcast from 'large element' src vector to 'small element' vector, we 2294 // must demand a source element if any DemandedElt maps to it. 2295 if ((NumElts % NumSrcElts) == 0) { 2296 unsigned Scale = NumElts / NumSrcElts; 2297 for (unsigned i = 0; i != NumElts; ++i) 2298 if (DemandedElts[i]) 2299 SrcDemandedElts.setBit(i / Scale); 2300 2301 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2302 TLO, Depth + 1)) 2303 return true; 2304 2305 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2306 // of the large element. 2307 // TODO - bigendian once we have test coverage. 2308 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2309 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2310 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2311 for (unsigned i = 0; i != NumElts; ++i) 2312 if (DemandedElts[i]) { 2313 unsigned Ofs = (i % Scale) * EltSizeInBits; 2314 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2315 } 2316 2317 KnownBits Known; 2318 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2319 TLO, Depth + 1)) 2320 return true; 2321 } 2322 2323 // If the src element is zero/undef then all the output elements will be - 2324 // only demanded elements are guaranteed to be correct. 2325 for (unsigned i = 0; i != NumSrcElts; ++i) { 2326 if (SrcDemandedElts[i]) { 2327 if (SrcZero[i]) 2328 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2329 if (SrcUndef[i]) 2330 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2331 } 2332 } 2333 } 2334 2335 // Bitcast from 'small element' src vector to 'large element' vector, we 2336 // demand all smaller source elements covered by the larger demanded element 2337 // of this vector. 2338 if ((NumSrcElts % NumElts) == 0) { 2339 unsigned Scale = NumSrcElts / NumElts; 2340 for (unsigned i = 0; i != NumElts; ++i) 2341 if (DemandedElts[i]) 2342 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2343 2344 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2345 TLO, Depth + 1)) 2346 return true; 2347 2348 // If all the src elements covering an output element are zero/undef, then 2349 // the output element will be as well, assuming it was demanded. 2350 for (unsigned i = 0; i != NumElts; ++i) { 2351 if (DemandedElts[i]) { 2352 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2353 KnownZero.setBit(i); 2354 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2355 KnownUndef.setBit(i); 2356 } 2357 } 2358 } 2359 break; 2360 } 2361 case ISD::BUILD_VECTOR: { 2362 // Check all elements and simplify any unused elements with UNDEF. 2363 if (!DemandedElts.isAllOnesValue()) { 2364 // Don't simplify BROADCASTS. 2365 if (llvm::any_of(Op->op_values(), 2366 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2367 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2368 bool Updated = false; 2369 for (unsigned i = 0; i != NumElts; ++i) { 2370 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2371 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2372 KnownUndef.setBit(i); 2373 Updated = true; 2374 } 2375 } 2376 if (Updated) 2377 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2378 } 2379 } 2380 for (unsigned i = 0; i != NumElts; ++i) { 2381 SDValue SrcOp = Op.getOperand(i); 2382 if (SrcOp.isUndef()) { 2383 KnownUndef.setBit(i); 2384 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2385 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2386 KnownZero.setBit(i); 2387 } 2388 } 2389 break; 2390 } 2391 case ISD::CONCAT_VECTORS: { 2392 EVT SubVT = Op.getOperand(0).getValueType(); 2393 unsigned NumSubVecs = Op.getNumOperands(); 2394 unsigned NumSubElts = SubVT.getVectorNumElements(); 2395 for (unsigned i = 0; i != NumSubVecs; ++i) { 2396 SDValue SubOp = Op.getOperand(i); 2397 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2398 APInt SubUndef, SubZero; 2399 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2400 Depth + 1)) 2401 return true; 2402 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2403 KnownZero.insertBits(SubZero, i * NumSubElts); 2404 } 2405 break; 2406 } 2407 case ISD::INSERT_SUBVECTOR: { 2408 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2409 break; 2410 SDValue Base = Op.getOperand(0); 2411 SDValue Sub = Op.getOperand(1); 2412 EVT SubVT = Sub.getValueType(); 2413 unsigned NumSubElts = SubVT.getVectorNumElements(); 2414 const APInt &Idx = Op.getConstantOperandAPInt(2); 2415 if (Idx.ugt(NumElts - NumSubElts)) 2416 break; 2417 unsigned SubIdx = Idx.getZExtValue(); 2418 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2419 APInt SubUndef, SubZero; 2420 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2421 Depth + 1)) 2422 return true; 2423 APInt BaseElts = DemandedElts; 2424 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2425 2426 // If none of the base operand elements are demanded, replace it with undef. 2427 if (!BaseElts && !Base.isUndef()) 2428 return TLO.CombineTo(Op, 2429 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2430 TLO.DAG.getUNDEF(VT), 2431 Op.getOperand(1), 2432 Op.getOperand(2))); 2433 2434 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2435 Depth + 1)) 2436 return true; 2437 KnownUndef.insertBits(SubUndef, SubIdx); 2438 KnownZero.insertBits(SubZero, SubIdx); 2439 break; 2440 } 2441 case ISD::EXTRACT_SUBVECTOR: { 2442 SDValue Src = Op.getOperand(0); 2443 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2444 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2445 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2446 // Offset the demanded elts by the subvector index. 2447 uint64_t Idx = SubIdx->getZExtValue(); 2448 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2449 APInt SrcUndef, SrcZero; 2450 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2451 Depth + 1)) 2452 return true; 2453 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2454 KnownZero = SrcZero.extractBits(NumElts, Idx); 2455 } 2456 break; 2457 } 2458 case ISD::INSERT_VECTOR_ELT: { 2459 SDValue Vec = Op.getOperand(0); 2460 SDValue Scl = Op.getOperand(1); 2461 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2462 2463 // For a legal, constant insertion index, if we don't need this insertion 2464 // then strip it, else remove it from the demanded elts. 2465 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2466 unsigned Idx = CIdx->getZExtValue(); 2467 if (!DemandedElts[Idx]) 2468 return TLO.CombineTo(Op, Vec); 2469 2470 APInt DemandedVecElts(DemandedElts); 2471 DemandedVecElts.clearBit(Idx); 2472 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2473 KnownZero, TLO, Depth + 1)) 2474 return true; 2475 2476 KnownUndef.clearBit(Idx); 2477 if (Scl.isUndef()) 2478 KnownUndef.setBit(Idx); 2479 2480 KnownZero.clearBit(Idx); 2481 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2482 KnownZero.setBit(Idx); 2483 break; 2484 } 2485 2486 APInt VecUndef, VecZero; 2487 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2488 Depth + 1)) 2489 return true; 2490 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2491 break; 2492 } 2493 case ISD::VSELECT: { 2494 // Try to transform the select condition based on the current demanded 2495 // elements. 2496 // TODO: If a condition element is undef, we can choose from one arm of the 2497 // select (and if one arm is undef, then we can propagate that to the 2498 // result). 2499 // TODO - add support for constant vselect masks (see IR version of this). 2500 APInt UnusedUndef, UnusedZero; 2501 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2502 UnusedZero, TLO, Depth + 1)) 2503 return true; 2504 2505 // See if we can simplify either vselect operand. 2506 APInt DemandedLHS(DemandedElts); 2507 APInt DemandedRHS(DemandedElts); 2508 APInt UndefLHS, ZeroLHS; 2509 APInt UndefRHS, ZeroRHS; 2510 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2511 ZeroLHS, TLO, Depth + 1)) 2512 return true; 2513 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2514 ZeroRHS, TLO, Depth + 1)) 2515 return true; 2516 2517 KnownUndef = UndefLHS & UndefRHS; 2518 KnownZero = ZeroLHS & ZeroRHS; 2519 break; 2520 } 2521 case ISD::VECTOR_SHUFFLE: { 2522 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2523 2524 // Collect demanded elements from shuffle operands.. 2525 APInt DemandedLHS(NumElts, 0); 2526 APInt DemandedRHS(NumElts, 0); 2527 for (unsigned i = 0; i != NumElts; ++i) { 2528 int M = ShuffleMask[i]; 2529 if (M < 0 || !DemandedElts[i]) 2530 continue; 2531 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2532 if (M < (int)NumElts) 2533 DemandedLHS.setBit(M); 2534 else 2535 DemandedRHS.setBit(M - NumElts); 2536 } 2537 2538 // See if we can simplify either shuffle operand. 2539 APInt UndefLHS, ZeroLHS; 2540 APInt UndefRHS, ZeroRHS; 2541 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2542 ZeroLHS, TLO, Depth + 1)) 2543 return true; 2544 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2545 ZeroRHS, TLO, Depth + 1)) 2546 return true; 2547 2548 // Simplify mask using undef elements from LHS/RHS. 2549 bool Updated = false; 2550 bool IdentityLHS = true, IdentityRHS = true; 2551 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2552 for (unsigned i = 0; i != NumElts; ++i) { 2553 int &M = NewMask[i]; 2554 if (M < 0) 2555 continue; 2556 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2557 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2558 Updated = true; 2559 M = -1; 2560 } 2561 IdentityLHS &= (M < 0) || (M == (int)i); 2562 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2563 } 2564 2565 // Update legal shuffle masks based on demanded elements if it won't reduce 2566 // to Identity which can cause premature removal of the shuffle mask. 2567 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2568 SDValue LegalShuffle = 2569 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2570 NewMask, TLO.DAG); 2571 if (LegalShuffle) 2572 return TLO.CombineTo(Op, LegalShuffle); 2573 } 2574 2575 // Propagate undef/zero elements from LHS/RHS. 2576 for (unsigned i = 0; i != NumElts; ++i) { 2577 int M = ShuffleMask[i]; 2578 if (M < 0) { 2579 KnownUndef.setBit(i); 2580 } else if (M < (int)NumElts) { 2581 if (UndefLHS[M]) 2582 KnownUndef.setBit(i); 2583 if (ZeroLHS[M]) 2584 KnownZero.setBit(i); 2585 } else { 2586 if (UndefRHS[M - NumElts]) 2587 KnownUndef.setBit(i); 2588 if (ZeroRHS[M - NumElts]) 2589 KnownZero.setBit(i); 2590 } 2591 } 2592 break; 2593 } 2594 case ISD::ANY_EXTEND_VECTOR_INREG: 2595 case ISD::SIGN_EXTEND_VECTOR_INREG: 2596 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2597 APInt SrcUndef, SrcZero; 2598 SDValue Src = Op.getOperand(0); 2599 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2600 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2601 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2602 Depth + 1)) 2603 return true; 2604 KnownZero = SrcZero.zextOrTrunc(NumElts); 2605 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2606 2607 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2608 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2609 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2610 // aext - if we just need the bottom element then we can bitcast. 2611 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2612 } 2613 2614 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2615 // zext(undef) upper bits are guaranteed to be zero. 2616 if (DemandedElts.isSubsetOf(KnownUndef)) 2617 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2618 KnownUndef.clearAllBits(); 2619 } 2620 break; 2621 } 2622 2623 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2624 // MAX, saturated math, etc. 2625 case ISD::OR: 2626 case ISD::XOR: 2627 case ISD::ADD: 2628 case ISD::SUB: 2629 case ISD::FADD: 2630 case ISD::FSUB: 2631 case ISD::FMUL: 2632 case ISD::FDIV: 2633 case ISD::FREM: { 2634 APInt UndefRHS, ZeroRHS; 2635 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2636 ZeroRHS, TLO, Depth + 1)) 2637 return true; 2638 APInt UndefLHS, ZeroLHS; 2639 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2640 ZeroLHS, TLO, Depth + 1)) 2641 return true; 2642 2643 KnownZero = ZeroLHS & ZeroRHS; 2644 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2645 break; 2646 } 2647 case ISD::SHL: 2648 case ISD::SRL: 2649 case ISD::SRA: 2650 case ISD::ROTL: 2651 case ISD::ROTR: { 2652 APInt UndefRHS, ZeroRHS; 2653 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2654 ZeroRHS, TLO, Depth + 1)) 2655 return true; 2656 APInt UndefLHS, ZeroLHS; 2657 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2658 ZeroLHS, TLO, Depth + 1)) 2659 return true; 2660 2661 KnownZero = ZeroLHS; 2662 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2663 break; 2664 } 2665 case ISD::MUL: 2666 case ISD::AND: { 2667 APInt SrcUndef, SrcZero; 2668 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2669 SrcZero, TLO, Depth + 1)) 2670 return true; 2671 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2672 KnownZero, TLO, Depth + 1)) 2673 return true; 2674 2675 // If either side has a zero element, then the result element is zero, even 2676 // if the other is an UNDEF. 2677 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2678 // and then handle 'and' nodes with the rest of the binop opcodes. 2679 KnownZero |= SrcZero; 2680 KnownUndef &= SrcUndef; 2681 KnownUndef &= ~KnownZero; 2682 break; 2683 } 2684 case ISD::TRUNCATE: 2685 case ISD::SIGN_EXTEND: 2686 case ISD::ZERO_EXTEND: 2687 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2688 KnownZero, TLO, Depth + 1)) 2689 return true; 2690 2691 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2692 // zext(undef) upper bits are guaranteed to be zero. 2693 if (DemandedElts.isSubsetOf(KnownUndef)) 2694 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2695 KnownUndef.clearAllBits(); 2696 } 2697 break; 2698 default: { 2699 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2700 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2701 KnownZero, TLO, Depth)) 2702 return true; 2703 } else { 2704 KnownBits Known; 2705 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2706 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2707 TLO, Depth, AssumeSingleUse)) 2708 return true; 2709 } 2710 break; 2711 } 2712 } 2713 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2714 2715 // Constant fold all undef cases. 2716 // TODO: Handle zero cases as well. 2717 if (DemandedElts.isSubsetOf(KnownUndef)) 2718 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2719 2720 return false; 2721 } 2722 2723 /// Determine which of the bits specified in Mask are known to be either zero or 2724 /// one and return them in the Known. 2725 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2726 KnownBits &Known, 2727 const APInt &DemandedElts, 2728 const SelectionDAG &DAG, 2729 unsigned Depth) const { 2730 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2731 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2732 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2733 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2734 "Should use MaskedValueIsZero if you don't know whether Op" 2735 " is a target node!"); 2736 Known.resetAll(); 2737 } 2738 2739 void TargetLowering::computeKnownBitsForTargetInstr( 2740 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2741 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2742 unsigned Depth) const { 2743 Known.resetAll(); 2744 } 2745 2746 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2747 KnownBits &Known, 2748 const APInt &DemandedElts, 2749 const SelectionDAG &DAG, 2750 unsigned Depth) const { 2751 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2752 2753 if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) { 2754 // The low bits are known zero if the pointer is aligned. 2755 Known.Zero.setLowBits(Log2(*Alignment)); 2756 } 2757 } 2758 2759 /// This method can be implemented by targets that want to expose additional 2760 /// information about sign bits to the DAG Combiner. 2761 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2762 const APInt &, 2763 const SelectionDAG &, 2764 unsigned Depth) const { 2765 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2766 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2767 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2768 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2769 "Should use ComputeNumSignBits if you don't know whether Op" 2770 " is a target node!"); 2771 return 1; 2772 } 2773 2774 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2775 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2776 const MachineRegisterInfo &MRI, unsigned Depth) const { 2777 return 1; 2778 } 2779 2780 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2781 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2782 TargetLoweringOpt &TLO, unsigned Depth) const { 2783 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2784 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2785 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2786 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2787 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2788 " is a target node!"); 2789 return false; 2790 } 2791 2792 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2793 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2794 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2795 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2796 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2797 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2798 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2799 "Should use SimplifyDemandedBits if you don't know whether Op" 2800 " is a target node!"); 2801 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2802 return false; 2803 } 2804 2805 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2806 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2807 SelectionDAG &DAG, unsigned Depth) const { 2808 assert( 2809 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2810 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2811 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2812 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2813 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2814 " is a target node!"); 2815 return SDValue(); 2816 } 2817 2818 SDValue 2819 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2820 SDValue N1, MutableArrayRef<int> Mask, 2821 SelectionDAG &DAG) const { 2822 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2823 if (!LegalMask) { 2824 std::swap(N0, N1); 2825 ShuffleVectorSDNode::commuteMask(Mask); 2826 LegalMask = isShuffleMaskLegal(Mask, VT); 2827 } 2828 2829 if (!LegalMask) 2830 return SDValue(); 2831 2832 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2833 } 2834 2835 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2836 return nullptr; 2837 } 2838 2839 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2840 const SelectionDAG &DAG, 2841 bool SNaN, 2842 unsigned Depth) const { 2843 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2844 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2845 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2846 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2847 "Should use isKnownNeverNaN if you don't know whether Op" 2848 " is a target node!"); 2849 return false; 2850 } 2851 2852 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2853 // work with truncating build vectors and vectors with elements of less than 2854 // 8 bits. 2855 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2856 if (!N) 2857 return false; 2858 2859 APInt CVal; 2860 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2861 CVal = CN->getAPIntValue(); 2862 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2863 auto *CN = BV->getConstantSplatNode(); 2864 if (!CN) 2865 return false; 2866 2867 // If this is a truncating build vector, truncate the splat value. 2868 // Otherwise, we may fail to match the expected values below. 2869 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2870 CVal = CN->getAPIntValue(); 2871 if (BVEltWidth < CVal.getBitWidth()) 2872 CVal = CVal.trunc(BVEltWidth); 2873 } else { 2874 return false; 2875 } 2876 2877 switch (getBooleanContents(N->getValueType(0))) { 2878 case UndefinedBooleanContent: 2879 return CVal[0]; 2880 case ZeroOrOneBooleanContent: 2881 return CVal.isOneValue(); 2882 case ZeroOrNegativeOneBooleanContent: 2883 return CVal.isAllOnesValue(); 2884 } 2885 2886 llvm_unreachable("Invalid boolean contents"); 2887 } 2888 2889 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2890 if (!N) 2891 return false; 2892 2893 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2894 if (!CN) { 2895 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2896 if (!BV) 2897 return false; 2898 2899 // Only interested in constant splats, we don't care about undef 2900 // elements in identifying boolean constants and getConstantSplatNode 2901 // returns NULL if all ops are undef; 2902 CN = BV->getConstantSplatNode(); 2903 if (!CN) 2904 return false; 2905 } 2906 2907 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2908 return !CN->getAPIntValue()[0]; 2909 2910 return CN->isNullValue(); 2911 } 2912 2913 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2914 bool SExt) const { 2915 if (VT == MVT::i1) 2916 return N->isOne(); 2917 2918 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2919 switch (Cnt) { 2920 case TargetLowering::ZeroOrOneBooleanContent: 2921 // An extended value of 1 is always true, unless its original type is i1, 2922 // in which case it will be sign extended to -1. 2923 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2924 case TargetLowering::UndefinedBooleanContent: 2925 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2926 return N->isAllOnesValue() && SExt; 2927 } 2928 llvm_unreachable("Unexpected enumeration."); 2929 } 2930 2931 /// This helper function of SimplifySetCC tries to optimize the comparison when 2932 /// either operand of the SetCC node is a bitwise-and instruction. 2933 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2934 ISD::CondCode Cond, const SDLoc &DL, 2935 DAGCombinerInfo &DCI) const { 2936 // Match these patterns in any of their permutations: 2937 // (X & Y) == Y 2938 // (X & Y) != Y 2939 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2940 std::swap(N0, N1); 2941 2942 EVT OpVT = N0.getValueType(); 2943 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2944 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2945 return SDValue(); 2946 2947 SDValue X, Y; 2948 if (N0.getOperand(0) == N1) { 2949 X = N0.getOperand(1); 2950 Y = N0.getOperand(0); 2951 } else if (N0.getOperand(1) == N1) { 2952 X = N0.getOperand(0); 2953 Y = N0.getOperand(1); 2954 } else { 2955 return SDValue(); 2956 } 2957 2958 SelectionDAG &DAG = DCI.DAG; 2959 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2960 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2961 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2962 // Note that where Y is variable and is known to have at most one bit set 2963 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2964 // equivalent when Y == 0. 2965 assert(OpVT.isInteger()); 2966 Cond = ISD::getSetCCInverse(Cond, OpVT); 2967 if (DCI.isBeforeLegalizeOps() || 2968 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2969 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2970 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2971 // If the target supports an 'and-not' or 'and-complement' logic operation, 2972 // try to use that to make a comparison operation more efficient. 2973 // But don't do this transform if the mask is a single bit because there are 2974 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2975 // 'rlwinm' on PPC). 2976 2977 // Bail out if the compare operand that we want to turn into a zero is 2978 // already a zero (otherwise, infinite loop). 2979 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2980 if (YConst && YConst->isNullValue()) 2981 return SDValue(); 2982 2983 // Transform this into: ~X & Y == 0. 2984 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2985 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2986 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2987 } 2988 2989 return SDValue(); 2990 } 2991 2992 /// There are multiple IR patterns that could be checking whether certain 2993 /// truncation of a signed number would be lossy or not. The pattern which is 2994 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2995 /// We are looking for the following pattern: (KeptBits is a constant) 2996 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2997 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2998 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2999 /// We will unfold it into the natural trunc+sext pattern: 3000 /// ((%x << C) a>> C) dstcond %x 3001 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3002 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3003 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3004 const SDLoc &DL) const { 3005 // We must be comparing with a constant. 3006 ConstantSDNode *C1; 3007 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3008 return SDValue(); 3009 3010 // N0 should be: add %x, (1 << (KeptBits-1)) 3011 if (N0->getOpcode() != ISD::ADD) 3012 return SDValue(); 3013 3014 // And we must be 'add'ing a constant. 3015 ConstantSDNode *C01; 3016 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3017 return SDValue(); 3018 3019 SDValue X = N0->getOperand(0); 3020 EVT XVT = X.getValueType(); 3021 3022 // Validate constants ... 3023 3024 APInt I1 = C1->getAPIntValue(); 3025 3026 ISD::CondCode NewCond; 3027 if (Cond == ISD::CondCode::SETULT) { 3028 NewCond = ISD::CondCode::SETEQ; 3029 } else if (Cond == ISD::CondCode::SETULE) { 3030 NewCond = ISD::CondCode::SETEQ; 3031 // But need to 'canonicalize' the constant. 3032 I1 += 1; 3033 } else if (Cond == ISD::CondCode::SETUGT) { 3034 NewCond = ISD::CondCode::SETNE; 3035 // But need to 'canonicalize' the constant. 3036 I1 += 1; 3037 } else if (Cond == ISD::CondCode::SETUGE) { 3038 NewCond = ISD::CondCode::SETNE; 3039 } else 3040 return SDValue(); 3041 3042 APInt I01 = C01->getAPIntValue(); 3043 3044 auto checkConstants = [&I1, &I01]() -> bool { 3045 // Both of them must be power-of-two, and the constant from setcc is bigger. 3046 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3047 }; 3048 3049 if (checkConstants()) { 3050 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3051 } else { 3052 // What if we invert constants? (and the target predicate) 3053 I1.negate(); 3054 I01.negate(); 3055 assert(XVT.isInteger()); 3056 NewCond = getSetCCInverse(NewCond, XVT); 3057 if (!checkConstants()) 3058 return SDValue(); 3059 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3060 } 3061 3062 // They are power-of-two, so which bit is set? 3063 const unsigned KeptBits = I1.logBase2(); 3064 const unsigned KeptBitsMinusOne = I01.logBase2(); 3065 3066 // Magic! 3067 if (KeptBits != (KeptBitsMinusOne + 1)) 3068 return SDValue(); 3069 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3070 3071 // We don't want to do this in every single case. 3072 SelectionDAG &DAG = DCI.DAG; 3073 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3074 XVT, KeptBits)) 3075 return SDValue(); 3076 3077 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3078 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3079 3080 // Unfold into: ((%x << C) a>> C) cond %x 3081 // Where 'cond' will be either 'eq' or 'ne'. 3082 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3083 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3084 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3085 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3086 3087 return T2; 3088 } 3089 3090 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3091 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3092 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3093 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3094 assert(isConstOrConstSplat(N1C) && 3095 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3096 "Should be a comparison with 0."); 3097 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3098 "Valid only for [in]equality comparisons."); 3099 3100 unsigned NewShiftOpcode; 3101 SDValue X, C, Y; 3102 3103 SelectionDAG &DAG = DCI.DAG; 3104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3105 3106 // Look for '(C l>>/<< Y)'. 3107 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3108 // The shift should be one-use. 3109 if (!V.hasOneUse()) 3110 return false; 3111 unsigned OldShiftOpcode = V.getOpcode(); 3112 switch (OldShiftOpcode) { 3113 case ISD::SHL: 3114 NewShiftOpcode = ISD::SRL; 3115 break; 3116 case ISD::SRL: 3117 NewShiftOpcode = ISD::SHL; 3118 break; 3119 default: 3120 return false; // must be a logical shift. 3121 } 3122 // We should be shifting a constant. 3123 // FIXME: best to use isConstantOrConstantVector(). 3124 C = V.getOperand(0); 3125 ConstantSDNode *CC = 3126 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3127 if (!CC) 3128 return false; 3129 Y = V.getOperand(1); 3130 3131 ConstantSDNode *XC = 3132 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3133 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3134 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3135 }; 3136 3137 // LHS of comparison should be an one-use 'and'. 3138 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3139 return SDValue(); 3140 3141 X = N0.getOperand(0); 3142 SDValue Mask = N0.getOperand(1); 3143 3144 // 'and' is commutative! 3145 if (!Match(Mask)) { 3146 std::swap(X, Mask); 3147 if (!Match(Mask)) 3148 return SDValue(); 3149 } 3150 3151 EVT VT = X.getValueType(); 3152 3153 // Produce: 3154 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3155 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3156 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3157 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3158 return T2; 3159 } 3160 3161 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3162 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3163 /// handle the commuted versions of these patterns. 3164 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3165 ISD::CondCode Cond, const SDLoc &DL, 3166 DAGCombinerInfo &DCI) const { 3167 unsigned BOpcode = N0.getOpcode(); 3168 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3169 "Unexpected binop"); 3170 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3171 3172 // (X + Y) == X --> Y == 0 3173 // (X - Y) == X --> Y == 0 3174 // (X ^ Y) == X --> Y == 0 3175 SelectionDAG &DAG = DCI.DAG; 3176 EVT OpVT = N0.getValueType(); 3177 SDValue X = N0.getOperand(0); 3178 SDValue Y = N0.getOperand(1); 3179 if (X == N1) 3180 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3181 3182 if (Y != N1) 3183 return SDValue(); 3184 3185 // (X + Y) == Y --> X == 0 3186 // (X ^ Y) == Y --> X == 0 3187 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3188 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3189 3190 // The shift would not be valid if the operands are boolean (i1). 3191 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3192 return SDValue(); 3193 3194 // (X - Y) == Y --> X == Y << 1 3195 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3196 !DCI.isBeforeLegalize()); 3197 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3198 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3199 if (!DCI.isCalledByLegalizer()) 3200 DCI.AddToWorklist(YShl1.getNode()); 3201 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3202 } 3203 3204 /// Try to simplify a setcc built with the specified operands and cc. If it is 3205 /// unable to simplify it, return a null SDValue. 3206 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3207 ISD::CondCode Cond, bool foldBooleans, 3208 DAGCombinerInfo &DCI, 3209 const SDLoc &dl) const { 3210 SelectionDAG &DAG = DCI.DAG; 3211 const DataLayout &Layout = DAG.getDataLayout(); 3212 EVT OpVT = N0.getValueType(); 3213 3214 // Constant fold or commute setcc. 3215 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3216 return Fold; 3217 3218 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3219 // TODO: Handle non-splat vector constants. All undef causes trouble. 3220 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3221 if (isConstOrConstSplat(N0) && 3222 (DCI.isBeforeLegalizeOps() || 3223 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3224 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3225 3226 // If we have a subtract with the same 2 non-constant operands as this setcc 3227 // -- but in reverse order -- then try to commute the operands of this setcc 3228 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3229 // instruction on some targets. 3230 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3231 (DCI.isBeforeLegalizeOps() || 3232 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3233 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3234 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3235 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3236 3237 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3238 const APInt &C1 = N1C->getAPIntValue(); 3239 3240 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3241 // equality comparison, then we're just comparing whether X itself is 3242 // zero. 3243 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3244 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3245 N0.getOperand(1).getOpcode() == ISD::Constant) { 3246 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3247 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3248 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3249 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3250 // (srl (ctlz x), 5) == 0 -> X != 0 3251 // (srl (ctlz x), 5) != 1 -> X != 0 3252 Cond = ISD::SETNE; 3253 } else { 3254 // (srl (ctlz x), 5) != 0 -> X == 0 3255 // (srl (ctlz x), 5) == 1 -> X == 0 3256 Cond = ISD::SETEQ; 3257 } 3258 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3259 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3260 Zero, Cond); 3261 } 3262 } 3263 3264 SDValue CTPOP = N0; 3265 // Look through truncs that don't change the value of a ctpop. 3266 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3267 CTPOP = N0.getOperand(0); 3268 3269 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3270 (N0 == CTPOP || 3271 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3272 EVT CTVT = CTPOP.getValueType(); 3273 SDValue CTOp = CTPOP.getOperand(0); 3274 3275 // (ctpop x) u< 2 -> (x & x-1) == 0 3276 // (ctpop x) u> 1 -> (x & x-1) != 0 3277 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3278 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3279 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3280 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3281 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3282 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3283 } 3284 3285 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3286 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3287 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3288 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3289 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3290 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3291 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3292 assert(CTVT.isInteger()); 3293 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3294 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3295 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3296 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3297 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3298 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3299 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3300 } 3301 } 3302 3303 // (zext x) == C --> x == (trunc C) 3304 // (sext x) == C --> x == (trunc C) 3305 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3306 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3307 unsigned MinBits = N0.getValueSizeInBits(); 3308 SDValue PreExt; 3309 bool Signed = false; 3310 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3311 // ZExt 3312 MinBits = N0->getOperand(0).getValueSizeInBits(); 3313 PreExt = N0->getOperand(0); 3314 } else if (N0->getOpcode() == ISD::AND) { 3315 // DAGCombine turns costly ZExts into ANDs 3316 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3317 if ((C->getAPIntValue()+1).isPowerOf2()) { 3318 MinBits = C->getAPIntValue().countTrailingOnes(); 3319 PreExt = N0->getOperand(0); 3320 } 3321 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3322 // SExt 3323 MinBits = N0->getOperand(0).getValueSizeInBits(); 3324 PreExt = N0->getOperand(0); 3325 Signed = true; 3326 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3327 // ZEXTLOAD / SEXTLOAD 3328 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3329 MinBits = LN0->getMemoryVT().getSizeInBits(); 3330 PreExt = N0; 3331 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3332 Signed = true; 3333 MinBits = LN0->getMemoryVT().getSizeInBits(); 3334 PreExt = N0; 3335 } 3336 } 3337 3338 // Figure out how many bits we need to preserve this constant. 3339 unsigned ReqdBits = Signed ? 3340 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3341 C1.getActiveBits(); 3342 3343 // Make sure we're not losing bits from the constant. 3344 if (MinBits > 0 && 3345 MinBits < C1.getBitWidth() && 3346 MinBits >= ReqdBits) { 3347 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3348 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3349 // Will get folded away. 3350 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3351 if (MinBits == 1 && C1 == 1) 3352 // Invert the condition. 3353 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3354 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3355 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3356 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3357 } 3358 3359 // If truncating the setcc operands is not desirable, we can still 3360 // simplify the expression in some cases: 3361 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3362 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3363 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3364 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3365 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3366 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3367 SDValue TopSetCC = N0->getOperand(0); 3368 unsigned N0Opc = N0->getOpcode(); 3369 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3370 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3371 TopSetCC.getOpcode() == ISD::SETCC && 3372 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3373 (isConstFalseVal(N1C) || 3374 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3375 3376 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3377 (!N1C->isNullValue() && Cond == ISD::SETNE); 3378 3379 if (!Inverse) 3380 return TopSetCC; 3381 3382 ISD::CondCode InvCond = ISD::getSetCCInverse( 3383 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3384 TopSetCC.getOperand(0).getValueType()); 3385 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3386 TopSetCC.getOperand(1), 3387 InvCond); 3388 } 3389 } 3390 } 3391 3392 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3393 // equality or unsigned, and all 1 bits of the const are in the same 3394 // partial word, see if we can shorten the load. 3395 if (DCI.isBeforeLegalize() && 3396 !ISD::isSignedIntSetCC(Cond) && 3397 N0.getOpcode() == ISD::AND && C1 == 0 && 3398 N0.getNode()->hasOneUse() && 3399 isa<LoadSDNode>(N0.getOperand(0)) && 3400 N0.getOperand(0).getNode()->hasOneUse() && 3401 isa<ConstantSDNode>(N0.getOperand(1))) { 3402 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3403 APInt bestMask; 3404 unsigned bestWidth = 0, bestOffset = 0; 3405 if (Lod->isSimple() && Lod->isUnindexed()) { 3406 unsigned origWidth = N0.getValueSizeInBits(); 3407 unsigned maskWidth = origWidth; 3408 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3409 // 8 bits, but have to be careful... 3410 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3411 origWidth = Lod->getMemoryVT().getSizeInBits(); 3412 const APInt &Mask = N0.getConstantOperandAPInt(1); 3413 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3414 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3415 for (unsigned offset=0; offset<origWidth/width; offset++) { 3416 if (Mask.isSubsetOf(newMask)) { 3417 if (Layout.isLittleEndian()) 3418 bestOffset = (uint64_t)offset * (width/8); 3419 else 3420 bestOffset = (origWidth/width - offset - 1) * (width/8); 3421 bestMask = Mask.lshr(offset * (width/8) * 8); 3422 bestWidth = width; 3423 break; 3424 } 3425 newMask <<= width; 3426 } 3427 } 3428 } 3429 if (bestWidth) { 3430 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3431 if (newVT.isRound() && 3432 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3433 SDValue Ptr = Lod->getBasePtr(); 3434 if (bestOffset != 0) 3435 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3436 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3437 SDValue NewLoad = DAG.getLoad( 3438 newVT, dl, Lod->getChain(), Ptr, 3439 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3440 return DAG.getSetCC(dl, VT, 3441 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3442 DAG.getConstant(bestMask.trunc(bestWidth), 3443 dl, newVT)), 3444 DAG.getConstant(0LL, dl, newVT), Cond); 3445 } 3446 } 3447 } 3448 3449 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3450 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3451 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3452 3453 // If the comparison constant has bits in the upper part, the 3454 // zero-extended value could never match. 3455 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3456 C1.getBitWidth() - InSize))) { 3457 switch (Cond) { 3458 case ISD::SETUGT: 3459 case ISD::SETUGE: 3460 case ISD::SETEQ: 3461 return DAG.getConstant(0, dl, VT); 3462 case ISD::SETULT: 3463 case ISD::SETULE: 3464 case ISD::SETNE: 3465 return DAG.getConstant(1, dl, VT); 3466 case ISD::SETGT: 3467 case ISD::SETGE: 3468 // True if the sign bit of C1 is set. 3469 return DAG.getConstant(C1.isNegative(), dl, VT); 3470 case ISD::SETLT: 3471 case ISD::SETLE: 3472 // True if the sign bit of C1 isn't set. 3473 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3474 default: 3475 break; 3476 } 3477 } 3478 3479 // Otherwise, we can perform the comparison with the low bits. 3480 switch (Cond) { 3481 case ISD::SETEQ: 3482 case ISD::SETNE: 3483 case ISD::SETUGT: 3484 case ISD::SETUGE: 3485 case ISD::SETULT: 3486 case ISD::SETULE: { 3487 EVT newVT = N0.getOperand(0).getValueType(); 3488 if (DCI.isBeforeLegalizeOps() || 3489 (isOperationLegal(ISD::SETCC, newVT) && 3490 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3491 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3492 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3493 3494 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3495 NewConst, Cond); 3496 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3497 } 3498 break; 3499 } 3500 default: 3501 break; // todo, be more careful with signed comparisons 3502 } 3503 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3504 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3505 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3506 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3507 EVT ExtDstTy = N0.getValueType(); 3508 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3509 3510 // If the constant doesn't fit into the number of bits for the source of 3511 // the sign extension, it is impossible for both sides to be equal. 3512 if (C1.getMinSignedBits() > ExtSrcTyBits) 3513 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3514 3515 SDValue ZextOp; 3516 EVT Op0Ty = N0.getOperand(0).getValueType(); 3517 if (Op0Ty == ExtSrcTy) { 3518 ZextOp = N0.getOperand(0); 3519 } else { 3520 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3521 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3522 DAG.getConstant(Imm, dl, Op0Ty)); 3523 } 3524 if (!DCI.isCalledByLegalizer()) 3525 DCI.AddToWorklist(ZextOp.getNode()); 3526 // Otherwise, make this a use of a zext. 3527 return DAG.getSetCC(dl, VT, ZextOp, 3528 DAG.getConstant(C1 & APInt::getLowBitsSet( 3529 ExtDstTyBits, 3530 ExtSrcTyBits), 3531 dl, ExtDstTy), 3532 Cond); 3533 } else if ((N1C->isNullValue() || N1C->isOne()) && 3534 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3535 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3536 if (N0.getOpcode() == ISD::SETCC && 3537 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3538 (N0.getValueType() == MVT::i1 || 3539 getBooleanContents(N0.getOperand(0).getValueType()) == 3540 ZeroOrOneBooleanContent)) { 3541 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3542 if (TrueWhenTrue) 3543 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3544 // Invert the condition. 3545 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3546 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3547 if (DCI.isBeforeLegalizeOps() || 3548 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3549 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3550 } 3551 3552 if ((N0.getOpcode() == ISD::XOR || 3553 (N0.getOpcode() == ISD::AND && 3554 N0.getOperand(0).getOpcode() == ISD::XOR && 3555 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3556 isa<ConstantSDNode>(N0.getOperand(1)) && 3557 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3558 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3559 // can only do this if the top bits are known zero. 3560 unsigned BitWidth = N0.getValueSizeInBits(); 3561 if (DAG.MaskedValueIsZero(N0, 3562 APInt::getHighBitsSet(BitWidth, 3563 BitWidth-1))) { 3564 // Okay, get the un-inverted input value. 3565 SDValue Val; 3566 if (N0.getOpcode() == ISD::XOR) { 3567 Val = N0.getOperand(0); 3568 } else { 3569 assert(N0.getOpcode() == ISD::AND && 3570 N0.getOperand(0).getOpcode() == ISD::XOR); 3571 // ((X^1)&1)^1 -> X & 1 3572 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3573 N0.getOperand(0).getOperand(0), 3574 N0.getOperand(1)); 3575 } 3576 3577 return DAG.getSetCC(dl, VT, Val, N1, 3578 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3579 } 3580 } else if (N1C->isOne()) { 3581 SDValue Op0 = N0; 3582 if (Op0.getOpcode() == ISD::TRUNCATE) 3583 Op0 = Op0.getOperand(0); 3584 3585 if ((Op0.getOpcode() == ISD::XOR) && 3586 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3587 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3588 SDValue XorLHS = Op0.getOperand(0); 3589 SDValue XorRHS = Op0.getOperand(1); 3590 // Ensure that the input setccs return an i1 type or 0/1 value. 3591 if (Op0.getValueType() == MVT::i1 || 3592 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3593 ZeroOrOneBooleanContent && 3594 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3595 ZeroOrOneBooleanContent)) { 3596 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3597 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3598 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3599 } 3600 } 3601 if (Op0.getOpcode() == ISD::AND && 3602 isa<ConstantSDNode>(Op0.getOperand(1)) && 3603 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3604 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3605 if (Op0.getValueType().bitsGT(VT)) 3606 Op0 = DAG.getNode(ISD::AND, dl, VT, 3607 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3608 DAG.getConstant(1, dl, VT)); 3609 else if (Op0.getValueType().bitsLT(VT)) 3610 Op0 = DAG.getNode(ISD::AND, dl, VT, 3611 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3612 DAG.getConstant(1, dl, VT)); 3613 3614 return DAG.getSetCC(dl, VT, Op0, 3615 DAG.getConstant(0, dl, Op0.getValueType()), 3616 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3617 } 3618 if (Op0.getOpcode() == ISD::AssertZext && 3619 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3620 return DAG.getSetCC(dl, VT, Op0, 3621 DAG.getConstant(0, dl, Op0.getValueType()), 3622 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3623 } 3624 } 3625 3626 // Given: 3627 // icmp eq/ne (urem %x, %y), 0 3628 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3629 // icmp eq/ne %x, 0 3630 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3631 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3632 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3633 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3634 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3635 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3636 } 3637 3638 if (SDValue V = 3639 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3640 return V; 3641 } 3642 3643 // These simplifications apply to splat vectors as well. 3644 // TODO: Handle more splat vector cases. 3645 if (auto *N1C = isConstOrConstSplat(N1)) { 3646 const APInt &C1 = N1C->getAPIntValue(); 3647 3648 APInt MinVal, MaxVal; 3649 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3650 if (ISD::isSignedIntSetCC(Cond)) { 3651 MinVal = APInt::getSignedMinValue(OperandBitSize); 3652 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3653 } else { 3654 MinVal = APInt::getMinValue(OperandBitSize); 3655 MaxVal = APInt::getMaxValue(OperandBitSize); 3656 } 3657 3658 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3659 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3660 // X >= MIN --> true 3661 if (C1 == MinVal) 3662 return DAG.getBoolConstant(true, dl, VT, OpVT); 3663 3664 if (!VT.isVector()) { // TODO: Support this for vectors. 3665 // X >= C0 --> X > (C0 - 1) 3666 APInt C = C1 - 1; 3667 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3668 if ((DCI.isBeforeLegalizeOps() || 3669 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3670 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3671 isLegalICmpImmediate(C.getSExtValue())))) { 3672 return DAG.getSetCC(dl, VT, N0, 3673 DAG.getConstant(C, dl, N1.getValueType()), 3674 NewCC); 3675 } 3676 } 3677 } 3678 3679 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3680 // X <= MAX --> true 3681 if (C1 == MaxVal) 3682 return DAG.getBoolConstant(true, dl, VT, OpVT); 3683 3684 // X <= C0 --> X < (C0 + 1) 3685 if (!VT.isVector()) { // TODO: Support this for vectors. 3686 APInt C = C1 + 1; 3687 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3688 if ((DCI.isBeforeLegalizeOps() || 3689 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3690 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3691 isLegalICmpImmediate(C.getSExtValue())))) { 3692 return DAG.getSetCC(dl, VT, N0, 3693 DAG.getConstant(C, dl, N1.getValueType()), 3694 NewCC); 3695 } 3696 } 3697 } 3698 3699 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3700 if (C1 == MinVal) 3701 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3702 3703 // TODO: Support this for vectors after legalize ops. 3704 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3705 // Canonicalize setlt X, Max --> setne X, Max 3706 if (C1 == MaxVal) 3707 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3708 3709 // If we have setult X, 1, turn it into seteq X, 0 3710 if (C1 == MinVal+1) 3711 return DAG.getSetCC(dl, VT, N0, 3712 DAG.getConstant(MinVal, dl, N0.getValueType()), 3713 ISD::SETEQ); 3714 } 3715 } 3716 3717 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3718 if (C1 == MaxVal) 3719 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3720 3721 // TODO: Support this for vectors after legalize ops. 3722 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3723 // Canonicalize setgt X, Min --> setne X, Min 3724 if (C1 == MinVal) 3725 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3726 3727 // If we have setugt X, Max-1, turn it into seteq X, Max 3728 if (C1 == MaxVal-1) 3729 return DAG.getSetCC(dl, VT, N0, 3730 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3731 ISD::SETEQ); 3732 } 3733 } 3734 3735 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3736 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3737 if (C1.isNullValue()) 3738 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3739 VT, N0, N1, Cond, DCI, dl)) 3740 return CC; 3741 } 3742 3743 // If we have "setcc X, C0", check to see if we can shrink the immediate 3744 // by changing cc. 3745 // TODO: Support this for vectors after legalize ops. 3746 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3747 // SETUGT X, SINTMAX -> SETLT X, 0 3748 if (Cond == ISD::SETUGT && 3749 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3750 return DAG.getSetCC(dl, VT, N0, 3751 DAG.getConstant(0, dl, N1.getValueType()), 3752 ISD::SETLT); 3753 3754 // SETULT X, SINTMIN -> SETGT X, -1 3755 if (Cond == ISD::SETULT && 3756 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3757 SDValue ConstMinusOne = 3758 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3759 N1.getValueType()); 3760 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3761 } 3762 } 3763 } 3764 3765 // Back to non-vector simplifications. 3766 // TODO: Can we do these for vector splats? 3767 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3769 const APInt &C1 = N1C->getAPIntValue(); 3770 EVT ShValTy = N0.getValueType(); 3771 3772 // Fold bit comparisons when we can. 3773 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3774 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3775 N0.getOpcode() == ISD::AND) { 3776 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3777 EVT ShiftTy = 3778 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3779 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3780 // Perform the xform if the AND RHS is a single bit. 3781 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3782 if (AndRHS->getAPIntValue().isPowerOf2() && 3783 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3784 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3785 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3786 DAG.getConstant(ShCt, dl, ShiftTy))); 3787 } 3788 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3789 // (X & 8) == 8 --> (X & 8) >> 3 3790 // Perform the xform if C1 is a single bit. 3791 unsigned ShCt = C1.logBase2(); 3792 if (C1.isPowerOf2() && 3793 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3794 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3795 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3796 DAG.getConstant(ShCt, dl, ShiftTy))); 3797 } 3798 } 3799 } 3800 } 3801 3802 if (C1.getMinSignedBits() <= 64 && 3803 !isLegalICmpImmediate(C1.getSExtValue())) { 3804 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3805 // (X & -256) == 256 -> (X >> 8) == 1 3806 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3807 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3808 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3809 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3810 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3811 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3812 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3813 SDValue Shift = 3814 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3815 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3816 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3817 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3818 } 3819 } 3820 } 3821 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3822 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3823 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3824 // X < 0x100000000 -> (X >> 32) < 1 3825 // X >= 0x100000000 -> (X >> 32) >= 1 3826 // X <= 0x0ffffffff -> (X >> 32) < 1 3827 // X > 0x0ffffffff -> (X >> 32) >= 1 3828 unsigned ShiftBits; 3829 APInt NewC = C1; 3830 ISD::CondCode NewCond = Cond; 3831 if (AdjOne) { 3832 ShiftBits = C1.countTrailingOnes(); 3833 NewC = NewC + 1; 3834 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3835 } else { 3836 ShiftBits = C1.countTrailingZeros(); 3837 } 3838 NewC.lshrInPlace(ShiftBits); 3839 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3840 isLegalICmpImmediate(NewC.getSExtValue()) && 3841 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3842 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3843 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3844 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3845 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3846 } 3847 } 3848 } 3849 } 3850 3851 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3852 auto *CFP = cast<ConstantFPSDNode>(N1); 3853 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3854 3855 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3856 // constant if knowing that the operand is non-nan is enough. We prefer to 3857 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3858 // materialize 0.0. 3859 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3860 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3861 3862 // setcc (fneg x), C -> setcc swap(pred) x, -C 3863 if (N0.getOpcode() == ISD::FNEG) { 3864 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3865 if (DCI.isBeforeLegalizeOps() || 3866 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3867 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3868 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3869 } 3870 } 3871 3872 // If the condition is not legal, see if we can find an equivalent one 3873 // which is legal. 3874 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3875 // If the comparison was an awkward floating-point == or != and one of 3876 // the comparison operands is infinity or negative infinity, convert the 3877 // condition to a less-awkward <= or >=. 3878 if (CFP->getValueAPF().isInfinity()) { 3879 bool IsNegInf = CFP->getValueAPF().isNegative(); 3880 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3881 switch (Cond) { 3882 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3883 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3884 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3885 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3886 default: break; 3887 } 3888 if (NewCond != ISD::SETCC_INVALID && 3889 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3890 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3891 } 3892 } 3893 } 3894 3895 if (N0 == N1) { 3896 // The sext(setcc()) => setcc() optimization relies on the appropriate 3897 // constant being emitted. 3898 assert(!N0.getValueType().isInteger() && 3899 "Integer types should be handled by FoldSetCC"); 3900 3901 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3902 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3903 if (UOF == 2) // FP operators that are undefined on NaNs. 3904 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3905 if (UOF == unsigned(EqTrue)) 3906 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3907 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3908 // if it is not already. 3909 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3910 if (NewCond != Cond && 3911 (DCI.isBeforeLegalizeOps() || 3912 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3913 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3914 } 3915 3916 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3917 N0.getValueType().isInteger()) { 3918 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3919 N0.getOpcode() == ISD::XOR) { 3920 // Simplify (X+Y) == (X+Z) --> Y == Z 3921 if (N0.getOpcode() == N1.getOpcode()) { 3922 if (N0.getOperand(0) == N1.getOperand(0)) 3923 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3924 if (N0.getOperand(1) == N1.getOperand(1)) 3925 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3926 if (isCommutativeBinOp(N0.getOpcode())) { 3927 // If X op Y == Y op X, try other combinations. 3928 if (N0.getOperand(0) == N1.getOperand(1)) 3929 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3930 Cond); 3931 if (N0.getOperand(1) == N1.getOperand(0)) 3932 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3933 Cond); 3934 } 3935 } 3936 3937 // If RHS is a legal immediate value for a compare instruction, we need 3938 // to be careful about increasing register pressure needlessly. 3939 bool LegalRHSImm = false; 3940 3941 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3942 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3943 // Turn (X+C1) == C2 --> X == C2-C1 3944 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3945 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3946 DAG.getConstant(RHSC->getAPIntValue()- 3947 LHSR->getAPIntValue(), 3948 dl, N0.getValueType()), Cond); 3949 } 3950 3951 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3952 if (N0.getOpcode() == ISD::XOR) 3953 // If we know that all of the inverted bits are zero, don't bother 3954 // performing the inversion. 3955 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3956 return 3957 DAG.getSetCC(dl, VT, N0.getOperand(0), 3958 DAG.getConstant(LHSR->getAPIntValue() ^ 3959 RHSC->getAPIntValue(), 3960 dl, N0.getValueType()), 3961 Cond); 3962 } 3963 3964 // Turn (C1-X) == C2 --> X == C1-C2 3965 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3966 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3967 return 3968 DAG.getSetCC(dl, VT, N0.getOperand(1), 3969 DAG.getConstant(SUBC->getAPIntValue() - 3970 RHSC->getAPIntValue(), 3971 dl, N0.getValueType()), 3972 Cond); 3973 } 3974 } 3975 3976 // Could RHSC fold directly into a compare? 3977 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3978 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3979 } 3980 3981 // (X+Y) == X --> Y == 0 and similar folds. 3982 // Don't do this if X is an immediate that can fold into a cmp 3983 // instruction and X+Y has other uses. It could be an induction variable 3984 // chain, and the transform would increase register pressure. 3985 if (!LegalRHSImm || N0.hasOneUse()) 3986 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3987 return V; 3988 } 3989 3990 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3991 N1.getOpcode() == ISD::XOR) 3992 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3993 return V; 3994 3995 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3996 return V; 3997 } 3998 3999 // Fold remainder of division by a constant. 4000 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4001 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4002 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4003 4004 // When division is cheap or optimizing for minimum size, 4005 // fall through to DIVREM creation by skipping this fold. 4006 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4007 if (N0.getOpcode() == ISD::UREM) { 4008 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4009 return Folded; 4010 } else if (N0.getOpcode() == ISD::SREM) { 4011 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4012 return Folded; 4013 } 4014 } 4015 } 4016 4017 // Fold away ALL boolean setcc's. 4018 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4019 SDValue Temp; 4020 switch (Cond) { 4021 default: llvm_unreachable("Unknown integer setcc!"); 4022 case ISD::SETEQ: // X == Y -> ~(X^Y) 4023 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4024 N0 = DAG.getNOT(dl, Temp, OpVT); 4025 if (!DCI.isCalledByLegalizer()) 4026 DCI.AddToWorklist(Temp.getNode()); 4027 break; 4028 case ISD::SETNE: // X != Y --> (X^Y) 4029 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4030 break; 4031 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4032 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4033 Temp = DAG.getNOT(dl, N0, OpVT); 4034 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4035 if (!DCI.isCalledByLegalizer()) 4036 DCI.AddToWorklist(Temp.getNode()); 4037 break; 4038 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4039 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4040 Temp = DAG.getNOT(dl, N1, OpVT); 4041 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4042 if (!DCI.isCalledByLegalizer()) 4043 DCI.AddToWorklist(Temp.getNode()); 4044 break; 4045 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4046 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4047 Temp = DAG.getNOT(dl, N0, OpVT); 4048 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4049 if (!DCI.isCalledByLegalizer()) 4050 DCI.AddToWorklist(Temp.getNode()); 4051 break; 4052 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4053 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4054 Temp = DAG.getNOT(dl, N1, OpVT); 4055 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4056 break; 4057 } 4058 if (VT.getScalarType() != MVT::i1) { 4059 if (!DCI.isCalledByLegalizer()) 4060 DCI.AddToWorklist(N0.getNode()); 4061 // FIXME: If running after legalize, we probably can't do this. 4062 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4063 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4064 } 4065 return N0; 4066 } 4067 4068 // Could not fold it. 4069 return SDValue(); 4070 } 4071 4072 /// Returns true (and the GlobalValue and the offset) if the node is a 4073 /// GlobalAddress + offset. 4074 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4075 int64_t &Offset) const { 4076 4077 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4078 4079 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4080 GA = GASD->getGlobal(); 4081 Offset += GASD->getOffset(); 4082 return true; 4083 } 4084 4085 if (N->getOpcode() == ISD::ADD) { 4086 SDValue N1 = N->getOperand(0); 4087 SDValue N2 = N->getOperand(1); 4088 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4089 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4090 Offset += V->getSExtValue(); 4091 return true; 4092 } 4093 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4094 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4095 Offset += V->getSExtValue(); 4096 return true; 4097 } 4098 } 4099 } 4100 4101 return false; 4102 } 4103 4104 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4105 DAGCombinerInfo &DCI) const { 4106 // Default implementation: no optimization. 4107 return SDValue(); 4108 } 4109 4110 //===----------------------------------------------------------------------===// 4111 // Inline Assembler Implementation Methods 4112 //===----------------------------------------------------------------------===// 4113 4114 TargetLowering::ConstraintType 4115 TargetLowering::getConstraintType(StringRef Constraint) const { 4116 unsigned S = Constraint.size(); 4117 4118 if (S == 1) { 4119 switch (Constraint[0]) { 4120 default: break; 4121 case 'r': 4122 return C_RegisterClass; 4123 case 'm': // memory 4124 case 'o': // offsetable 4125 case 'V': // not offsetable 4126 return C_Memory; 4127 case 'n': // Simple Integer 4128 case 'E': // Floating Point Constant 4129 case 'F': // Floating Point Constant 4130 return C_Immediate; 4131 case 'i': // Simple Integer or Relocatable Constant 4132 case 's': // Relocatable Constant 4133 case 'p': // Address. 4134 case 'X': // Allow ANY value. 4135 case 'I': // Target registers. 4136 case 'J': 4137 case 'K': 4138 case 'L': 4139 case 'M': 4140 case 'N': 4141 case 'O': 4142 case 'P': 4143 case '<': 4144 case '>': 4145 return C_Other; 4146 } 4147 } 4148 4149 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4150 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4151 return C_Memory; 4152 return C_Register; 4153 } 4154 return C_Unknown; 4155 } 4156 4157 /// Try to replace an X constraint, which matches anything, with another that 4158 /// has more specific requirements based on the type of the corresponding 4159 /// operand. 4160 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4161 if (ConstraintVT.isInteger()) 4162 return "r"; 4163 if (ConstraintVT.isFloatingPoint()) 4164 return "f"; // works for many targets 4165 return nullptr; 4166 } 4167 4168 SDValue TargetLowering::LowerAsmOutputForConstraint( 4169 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4170 SelectionDAG &DAG) const { 4171 return SDValue(); 4172 } 4173 4174 /// Lower the specified operand into the Ops vector. 4175 /// If it is invalid, don't add anything to Ops. 4176 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4177 std::string &Constraint, 4178 std::vector<SDValue> &Ops, 4179 SelectionDAG &DAG) const { 4180 4181 if (Constraint.length() > 1) return; 4182 4183 char ConstraintLetter = Constraint[0]; 4184 switch (ConstraintLetter) { 4185 default: break; 4186 case 'X': // Allows any operand; labels (basic block) use this. 4187 if (Op.getOpcode() == ISD::BasicBlock || 4188 Op.getOpcode() == ISD::TargetBlockAddress) { 4189 Ops.push_back(Op); 4190 return; 4191 } 4192 LLVM_FALLTHROUGH; 4193 case 'i': // Simple Integer or Relocatable Constant 4194 case 'n': // Simple Integer 4195 case 's': { // Relocatable Constant 4196 4197 GlobalAddressSDNode *GA; 4198 ConstantSDNode *C; 4199 BlockAddressSDNode *BA; 4200 uint64_t Offset = 0; 4201 4202 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4203 // etc., since getelementpointer is variadic. We can't use 4204 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4205 // while in this case the GA may be furthest from the root node which is 4206 // likely an ISD::ADD. 4207 while (1) { 4208 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4209 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4210 GA->getValueType(0), 4211 Offset + GA->getOffset())); 4212 return; 4213 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4214 ConstraintLetter != 's') { 4215 // gcc prints these as sign extended. Sign extend value to 64 bits 4216 // now; without this it would get ZExt'd later in 4217 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4218 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4219 BooleanContent BCont = getBooleanContents(MVT::i64); 4220 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4221 : ISD::SIGN_EXTEND; 4222 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4223 : C->getSExtValue(); 4224 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4225 SDLoc(C), MVT::i64)); 4226 return; 4227 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4228 ConstraintLetter != 'n') { 4229 Ops.push_back(DAG.getTargetBlockAddress( 4230 BA->getBlockAddress(), BA->getValueType(0), 4231 Offset + BA->getOffset(), BA->getTargetFlags())); 4232 return; 4233 } else { 4234 const unsigned OpCode = Op.getOpcode(); 4235 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4236 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4237 Op = Op.getOperand(1); 4238 // Subtraction is not commutative. 4239 else if (OpCode == ISD::ADD && 4240 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4241 Op = Op.getOperand(0); 4242 else 4243 return; 4244 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4245 continue; 4246 } 4247 } 4248 return; 4249 } 4250 break; 4251 } 4252 } 4253 } 4254 4255 std::pair<unsigned, const TargetRegisterClass *> 4256 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4257 StringRef Constraint, 4258 MVT VT) const { 4259 if (Constraint.empty() || Constraint[0] != '{') 4260 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4261 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4262 4263 // Remove the braces from around the name. 4264 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4265 4266 std::pair<unsigned, const TargetRegisterClass *> R = 4267 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4268 4269 // Figure out which register class contains this reg. 4270 for (const TargetRegisterClass *RC : RI->regclasses()) { 4271 // If none of the value types for this register class are valid, we 4272 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4273 if (!isLegalRC(*RI, *RC)) 4274 continue; 4275 4276 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4277 I != E; ++I) { 4278 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4279 std::pair<unsigned, const TargetRegisterClass *> S = 4280 std::make_pair(*I, RC); 4281 4282 // If this register class has the requested value type, return it, 4283 // otherwise keep searching and return the first class found 4284 // if no other is found which explicitly has the requested type. 4285 if (RI->isTypeLegalForClass(*RC, VT)) 4286 return S; 4287 if (!R.second) 4288 R = S; 4289 } 4290 } 4291 } 4292 4293 return R; 4294 } 4295 4296 //===----------------------------------------------------------------------===// 4297 // Constraint Selection. 4298 4299 /// Return true of this is an input operand that is a matching constraint like 4300 /// "4". 4301 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4302 assert(!ConstraintCode.empty() && "No known constraint!"); 4303 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4304 } 4305 4306 /// If this is an input matching constraint, this method returns the output 4307 /// operand it matches. 4308 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4309 assert(!ConstraintCode.empty() && "No known constraint!"); 4310 return atoi(ConstraintCode.c_str()); 4311 } 4312 4313 /// Split up the constraint string from the inline assembly value into the 4314 /// specific constraints and their prefixes, and also tie in the associated 4315 /// operand values. 4316 /// If this returns an empty vector, and if the constraint string itself 4317 /// isn't empty, there was an error parsing. 4318 TargetLowering::AsmOperandInfoVector 4319 TargetLowering::ParseConstraints(const DataLayout &DL, 4320 const TargetRegisterInfo *TRI, 4321 const CallBase &Call) const { 4322 /// Information about all of the constraints. 4323 AsmOperandInfoVector ConstraintOperands; 4324 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue()); 4325 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4326 4327 // Do a prepass over the constraints, canonicalizing them, and building up the 4328 // ConstraintOperands list. 4329 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4330 unsigned ResNo = 0; // ResNo - The result number of the next output. 4331 4332 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4333 ConstraintOperands.emplace_back(std::move(CI)); 4334 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4335 4336 // Update multiple alternative constraint count. 4337 if (OpInfo.multipleAlternatives.size() > maCount) 4338 maCount = OpInfo.multipleAlternatives.size(); 4339 4340 OpInfo.ConstraintVT = MVT::Other; 4341 4342 // Compute the value type for each operand. 4343 switch (OpInfo.Type) { 4344 case InlineAsm::isOutput: 4345 // Indirect outputs just consume an argument. 4346 if (OpInfo.isIndirect) { 4347 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4348 break; 4349 } 4350 4351 // The return value of the call is this value. As such, there is no 4352 // corresponding argument. 4353 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4354 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4355 OpInfo.ConstraintVT = 4356 getSimpleValueType(DL, STy->getElementType(ResNo)); 4357 } else { 4358 assert(ResNo == 0 && "Asm only has one result!"); 4359 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4360 } 4361 ++ResNo; 4362 break; 4363 case InlineAsm::isInput: 4364 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4365 break; 4366 case InlineAsm::isClobber: 4367 // Nothing to do. 4368 break; 4369 } 4370 4371 if (OpInfo.CallOperandVal) { 4372 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4373 if (OpInfo.isIndirect) { 4374 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4375 if (!PtrTy) 4376 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4377 OpTy = PtrTy->getElementType(); 4378 } 4379 4380 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4381 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4382 if (STy->getNumElements() == 1) 4383 OpTy = STy->getElementType(0); 4384 4385 // If OpTy is not a single value, it may be a struct/union that we 4386 // can tile with integers. 4387 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4388 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4389 switch (BitSize) { 4390 default: break; 4391 case 1: 4392 case 8: 4393 case 16: 4394 case 32: 4395 case 64: 4396 case 128: 4397 OpInfo.ConstraintVT = 4398 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4399 break; 4400 } 4401 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4402 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4403 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4404 } else { 4405 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4406 } 4407 } 4408 } 4409 4410 // If we have multiple alternative constraints, select the best alternative. 4411 if (!ConstraintOperands.empty()) { 4412 if (maCount) { 4413 unsigned bestMAIndex = 0; 4414 int bestWeight = -1; 4415 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4416 int weight = -1; 4417 unsigned maIndex; 4418 // Compute the sums of the weights for each alternative, keeping track 4419 // of the best (highest weight) one so far. 4420 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4421 int weightSum = 0; 4422 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4423 cIndex != eIndex; ++cIndex) { 4424 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4425 if (OpInfo.Type == InlineAsm::isClobber) 4426 continue; 4427 4428 // If this is an output operand with a matching input operand, 4429 // look up the matching input. If their types mismatch, e.g. one 4430 // is an integer, the other is floating point, or their sizes are 4431 // different, flag it as an maCantMatch. 4432 if (OpInfo.hasMatchingInput()) { 4433 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4434 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4435 if ((OpInfo.ConstraintVT.isInteger() != 4436 Input.ConstraintVT.isInteger()) || 4437 (OpInfo.ConstraintVT.getSizeInBits() != 4438 Input.ConstraintVT.getSizeInBits())) { 4439 weightSum = -1; // Can't match. 4440 break; 4441 } 4442 } 4443 } 4444 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4445 if (weight == -1) { 4446 weightSum = -1; 4447 break; 4448 } 4449 weightSum += weight; 4450 } 4451 // Update best. 4452 if (weightSum > bestWeight) { 4453 bestWeight = weightSum; 4454 bestMAIndex = maIndex; 4455 } 4456 } 4457 4458 // Now select chosen alternative in each constraint. 4459 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4460 cIndex != eIndex; ++cIndex) { 4461 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4462 if (cInfo.Type == InlineAsm::isClobber) 4463 continue; 4464 cInfo.selectAlternative(bestMAIndex); 4465 } 4466 } 4467 } 4468 4469 // Check and hook up tied operands, choose constraint code to use. 4470 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4471 cIndex != eIndex; ++cIndex) { 4472 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4473 4474 // If this is an output operand with a matching input operand, look up the 4475 // matching input. If their types mismatch, e.g. one is an integer, the 4476 // other is floating point, or their sizes are different, flag it as an 4477 // error. 4478 if (OpInfo.hasMatchingInput()) { 4479 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4480 4481 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4482 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4483 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4484 OpInfo.ConstraintVT); 4485 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4486 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4487 Input.ConstraintVT); 4488 if ((OpInfo.ConstraintVT.isInteger() != 4489 Input.ConstraintVT.isInteger()) || 4490 (MatchRC.second != InputRC.second)) { 4491 report_fatal_error("Unsupported asm: input constraint" 4492 " with a matching output constraint of" 4493 " incompatible type!"); 4494 } 4495 } 4496 } 4497 } 4498 4499 return ConstraintOperands; 4500 } 4501 4502 /// Return an integer indicating how general CT is. 4503 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4504 switch (CT) { 4505 case TargetLowering::C_Immediate: 4506 case TargetLowering::C_Other: 4507 case TargetLowering::C_Unknown: 4508 return 0; 4509 case TargetLowering::C_Register: 4510 return 1; 4511 case TargetLowering::C_RegisterClass: 4512 return 2; 4513 case TargetLowering::C_Memory: 4514 return 3; 4515 } 4516 llvm_unreachable("Invalid constraint type"); 4517 } 4518 4519 /// Examine constraint type and operand type and determine a weight value. 4520 /// This object must already have been set up with the operand type 4521 /// and the current alternative constraint selected. 4522 TargetLowering::ConstraintWeight 4523 TargetLowering::getMultipleConstraintMatchWeight( 4524 AsmOperandInfo &info, int maIndex) const { 4525 InlineAsm::ConstraintCodeVector *rCodes; 4526 if (maIndex >= (int)info.multipleAlternatives.size()) 4527 rCodes = &info.Codes; 4528 else 4529 rCodes = &info.multipleAlternatives[maIndex].Codes; 4530 ConstraintWeight BestWeight = CW_Invalid; 4531 4532 // Loop over the options, keeping track of the most general one. 4533 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4534 ConstraintWeight weight = 4535 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4536 if (weight > BestWeight) 4537 BestWeight = weight; 4538 } 4539 4540 return BestWeight; 4541 } 4542 4543 /// Examine constraint type and operand type and determine a weight value. 4544 /// This object must already have been set up with the operand type 4545 /// and the current alternative constraint selected. 4546 TargetLowering::ConstraintWeight 4547 TargetLowering::getSingleConstraintMatchWeight( 4548 AsmOperandInfo &info, const char *constraint) const { 4549 ConstraintWeight weight = CW_Invalid; 4550 Value *CallOperandVal = info.CallOperandVal; 4551 // If we don't have a value, we can't do a match, 4552 // but allow it at the lowest weight. 4553 if (!CallOperandVal) 4554 return CW_Default; 4555 // Look at the constraint type. 4556 switch (*constraint) { 4557 case 'i': // immediate integer. 4558 case 'n': // immediate integer with a known value. 4559 if (isa<ConstantInt>(CallOperandVal)) 4560 weight = CW_Constant; 4561 break; 4562 case 's': // non-explicit intregal immediate. 4563 if (isa<GlobalValue>(CallOperandVal)) 4564 weight = CW_Constant; 4565 break; 4566 case 'E': // immediate float if host format. 4567 case 'F': // immediate float. 4568 if (isa<ConstantFP>(CallOperandVal)) 4569 weight = CW_Constant; 4570 break; 4571 case '<': // memory operand with autodecrement. 4572 case '>': // memory operand with autoincrement. 4573 case 'm': // memory operand. 4574 case 'o': // offsettable memory operand 4575 case 'V': // non-offsettable memory operand 4576 weight = CW_Memory; 4577 break; 4578 case 'r': // general register. 4579 case 'g': // general register, memory operand or immediate integer. 4580 // note: Clang converts "g" to "imr". 4581 if (CallOperandVal->getType()->isIntegerTy()) 4582 weight = CW_Register; 4583 break; 4584 case 'X': // any operand. 4585 default: 4586 weight = CW_Default; 4587 break; 4588 } 4589 return weight; 4590 } 4591 4592 /// If there are multiple different constraints that we could pick for this 4593 /// operand (e.g. "imr") try to pick the 'best' one. 4594 /// This is somewhat tricky: constraints fall into four classes: 4595 /// Other -> immediates and magic values 4596 /// Register -> one specific register 4597 /// RegisterClass -> a group of regs 4598 /// Memory -> memory 4599 /// Ideally, we would pick the most specific constraint possible: if we have 4600 /// something that fits into a register, we would pick it. The problem here 4601 /// is that if we have something that could either be in a register or in 4602 /// memory that use of the register could cause selection of *other* 4603 /// operands to fail: they might only succeed if we pick memory. Because of 4604 /// this the heuristic we use is: 4605 /// 4606 /// 1) If there is an 'other' constraint, and if the operand is valid for 4607 /// that constraint, use it. This makes us take advantage of 'i' 4608 /// constraints when available. 4609 /// 2) Otherwise, pick the most general constraint present. This prefers 4610 /// 'm' over 'r', for example. 4611 /// 4612 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4613 const TargetLowering &TLI, 4614 SDValue Op, SelectionDAG *DAG) { 4615 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4616 unsigned BestIdx = 0; 4617 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4618 int BestGenerality = -1; 4619 4620 // Loop over the options, keeping track of the most general one. 4621 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4622 TargetLowering::ConstraintType CType = 4623 TLI.getConstraintType(OpInfo.Codes[i]); 4624 4625 // Indirect 'other' or 'immediate' constraints are not allowed. 4626 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4627 CType == TargetLowering::C_Register || 4628 CType == TargetLowering::C_RegisterClass)) 4629 continue; 4630 4631 // If this is an 'other' or 'immediate' constraint, see if the operand is 4632 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4633 // the operand is an integer in the range [0..31] we want to use I (saving a 4634 // load of a register), otherwise we must use 'r'. 4635 if ((CType == TargetLowering::C_Other || 4636 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4637 assert(OpInfo.Codes[i].size() == 1 && 4638 "Unhandled multi-letter 'other' constraint"); 4639 std::vector<SDValue> ResultOps; 4640 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4641 ResultOps, *DAG); 4642 if (!ResultOps.empty()) { 4643 BestType = CType; 4644 BestIdx = i; 4645 break; 4646 } 4647 } 4648 4649 // Things with matching constraints can only be registers, per gcc 4650 // documentation. This mainly affects "g" constraints. 4651 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4652 continue; 4653 4654 // This constraint letter is more general than the previous one, use it. 4655 int Generality = getConstraintGenerality(CType); 4656 if (Generality > BestGenerality) { 4657 BestType = CType; 4658 BestIdx = i; 4659 BestGenerality = Generality; 4660 } 4661 } 4662 4663 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4664 OpInfo.ConstraintType = BestType; 4665 } 4666 4667 /// Determines the constraint code and constraint type to use for the specific 4668 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4669 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4670 SDValue Op, 4671 SelectionDAG *DAG) const { 4672 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4673 4674 // Single-letter constraints ('r') are very common. 4675 if (OpInfo.Codes.size() == 1) { 4676 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4677 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4678 } else { 4679 ChooseConstraint(OpInfo, *this, Op, DAG); 4680 } 4681 4682 // 'X' matches anything. 4683 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4684 // Labels and constants are handled elsewhere ('X' is the only thing 4685 // that matches labels). For Functions, the type here is the type of 4686 // the result, which is not what we want to look at; leave them alone. 4687 Value *v = OpInfo.CallOperandVal; 4688 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4689 OpInfo.CallOperandVal = v; 4690 return; 4691 } 4692 4693 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4694 return; 4695 4696 // Otherwise, try to resolve it to something we know about by looking at 4697 // the actual operand type. 4698 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4699 OpInfo.ConstraintCode = Repl; 4700 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4701 } 4702 } 4703 } 4704 4705 /// Given an exact SDIV by a constant, create a multiplication 4706 /// with the multiplicative inverse of the constant. 4707 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4708 const SDLoc &dl, SelectionDAG &DAG, 4709 SmallVectorImpl<SDNode *> &Created) { 4710 SDValue Op0 = N->getOperand(0); 4711 SDValue Op1 = N->getOperand(1); 4712 EVT VT = N->getValueType(0); 4713 EVT SVT = VT.getScalarType(); 4714 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4715 EVT ShSVT = ShVT.getScalarType(); 4716 4717 bool UseSRA = false; 4718 SmallVector<SDValue, 16> Shifts, Factors; 4719 4720 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4721 if (C->isNullValue()) 4722 return false; 4723 APInt Divisor = C->getAPIntValue(); 4724 unsigned Shift = Divisor.countTrailingZeros(); 4725 if (Shift) { 4726 Divisor.ashrInPlace(Shift); 4727 UseSRA = true; 4728 } 4729 // Calculate the multiplicative inverse, using Newton's method. 4730 APInt t; 4731 APInt Factor = Divisor; 4732 while ((t = Divisor * Factor) != 1) 4733 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4734 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4735 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4736 return true; 4737 }; 4738 4739 // Collect all magic values from the build vector. 4740 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4741 return SDValue(); 4742 4743 SDValue Shift, Factor; 4744 if (VT.isVector()) { 4745 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4746 Factor = DAG.getBuildVector(VT, dl, Factors); 4747 } else { 4748 Shift = Shifts[0]; 4749 Factor = Factors[0]; 4750 } 4751 4752 SDValue Res = Op0; 4753 4754 // Shift the value upfront if it is even, so the LSB is one. 4755 if (UseSRA) { 4756 // TODO: For UDIV use SRL instead of SRA. 4757 SDNodeFlags Flags; 4758 Flags.setExact(true); 4759 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4760 Created.push_back(Res.getNode()); 4761 } 4762 4763 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4764 } 4765 4766 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4767 SelectionDAG &DAG, 4768 SmallVectorImpl<SDNode *> &Created) const { 4769 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4771 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4772 return SDValue(N, 0); // Lower SDIV as SDIV 4773 return SDValue(); 4774 } 4775 4776 /// Given an ISD::SDIV node expressing a divide by constant, 4777 /// return a DAG expression to select that will generate the same value by 4778 /// multiplying by a magic number. 4779 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4780 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4781 bool IsAfterLegalization, 4782 SmallVectorImpl<SDNode *> &Created) const { 4783 SDLoc dl(N); 4784 EVT VT = N->getValueType(0); 4785 EVT SVT = VT.getScalarType(); 4786 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4787 EVT ShSVT = ShVT.getScalarType(); 4788 unsigned EltBits = VT.getScalarSizeInBits(); 4789 4790 // Check to see if we can do this. 4791 // FIXME: We should be more aggressive here. 4792 if (!isTypeLegal(VT)) 4793 return SDValue(); 4794 4795 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4796 if (N->getFlags().hasExact()) 4797 return BuildExactSDIV(*this, N, dl, DAG, Created); 4798 4799 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4800 4801 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4802 if (C->isNullValue()) 4803 return false; 4804 4805 const APInt &Divisor = C->getAPIntValue(); 4806 APInt::ms magics = Divisor.magic(); 4807 int NumeratorFactor = 0; 4808 int ShiftMask = -1; 4809 4810 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4811 // If d is +1/-1, we just multiply the numerator by +1/-1. 4812 NumeratorFactor = Divisor.getSExtValue(); 4813 magics.m = 0; 4814 magics.s = 0; 4815 ShiftMask = 0; 4816 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4817 // If d > 0 and m < 0, add the numerator. 4818 NumeratorFactor = 1; 4819 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4820 // If d < 0 and m > 0, subtract the numerator. 4821 NumeratorFactor = -1; 4822 } 4823 4824 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4825 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4826 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4827 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4828 return true; 4829 }; 4830 4831 SDValue N0 = N->getOperand(0); 4832 SDValue N1 = N->getOperand(1); 4833 4834 // Collect the shifts / magic values from each element. 4835 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4836 return SDValue(); 4837 4838 SDValue MagicFactor, Factor, Shift, ShiftMask; 4839 if (VT.isVector()) { 4840 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4841 Factor = DAG.getBuildVector(VT, dl, Factors); 4842 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4843 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4844 } else { 4845 MagicFactor = MagicFactors[0]; 4846 Factor = Factors[0]; 4847 Shift = Shifts[0]; 4848 ShiftMask = ShiftMasks[0]; 4849 } 4850 4851 // Multiply the numerator (operand 0) by the magic value. 4852 // FIXME: We should support doing a MUL in a wider type. 4853 SDValue Q; 4854 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4855 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4856 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4857 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4858 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4859 SDValue LoHi = 4860 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4861 Q = SDValue(LoHi.getNode(), 1); 4862 } else 4863 return SDValue(); // No mulhs or equivalent. 4864 Created.push_back(Q.getNode()); 4865 4866 // (Optionally) Add/subtract the numerator using Factor. 4867 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4868 Created.push_back(Factor.getNode()); 4869 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4870 Created.push_back(Q.getNode()); 4871 4872 // Shift right algebraic by shift value. 4873 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4874 Created.push_back(Q.getNode()); 4875 4876 // Extract the sign bit, mask it and add it to the quotient. 4877 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4878 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4879 Created.push_back(T.getNode()); 4880 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4881 Created.push_back(T.getNode()); 4882 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4883 } 4884 4885 /// Given an ISD::UDIV node expressing a divide by constant, 4886 /// return a DAG expression to select that will generate the same value by 4887 /// multiplying by a magic number. 4888 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4889 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4890 bool IsAfterLegalization, 4891 SmallVectorImpl<SDNode *> &Created) const { 4892 SDLoc dl(N); 4893 EVT VT = N->getValueType(0); 4894 EVT SVT = VT.getScalarType(); 4895 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4896 EVT ShSVT = ShVT.getScalarType(); 4897 unsigned EltBits = VT.getScalarSizeInBits(); 4898 4899 // Check to see if we can do this. 4900 // FIXME: We should be more aggressive here. 4901 if (!isTypeLegal(VT)) 4902 return SDValue(); 4903 4904 bool UseNPQ = false; 4905 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4906 4907 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4908 if (C->isNullValue()) 4909 return false; 4910 // FIXME: We should use a narrower constant when the upper 4911 // bits are known to be zero. 4912 APInt Divisor = C->getAPIntValue(); 4913 APInt::mu magics = Divisor.magicu(); 4914 unsigned PreShift = 0, PostShift = 0; 4915 4916 // If the divisor is even, we can avoid using the expensive fixup by 4917 // shifting the divided value upfront. 4918 if (magics.a != 0 && !Divisor[0]) { 4919 PreShift = Divisor.countTrailingZeros(); 4920 // Get magic number for the shifted divisor. 4921 magics = Divisor.lshr(PreShift).magicu(PreShift); 4922 assert(magics.a == 0 && "Should use cheap fixup now"); 4923 } 4924 4925 APInt Magic = magics.m; 4926 4927 unsigned SelNPQ; 4928 if (magics.a == 0 || Divisor.isOneValue()) { 4929 assert(magics.s < Divisor.getBitWidth() && 4930 "We shouldn't generate an undefined shift!"); 4931 PostShift = magics.s; 4932 SelNPQ = false; 4933 } else { 4934 PostShift = magics.s - 1; 4935 SelNPQ = true; 4936 } 4937 4938 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4939 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4940 NPQFactors.push_back( 4941 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4942 : APInt::getNullValue(EltBits), 4943 dl, SVT)); 4944 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4945 UseNPQ |= SelNPQ; 4946 return true; 4947 }; 4948 4949 SDValue N0 = N->getOperand(0); 4950 SDValue N1 = N->getOperand(1); 4951 4952 // Collect the shifts/magic values from each element. 4953 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4954 return SDValue(); 4955 4956 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4957 if (VT.isVector()) { 4958 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4959 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4960 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4961 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4962 } else { 4963 PreShift = PreShifts[0]; 4964 MagicFactor = MagicFactors[0]; 4965 PostShift = PostShifts[0]; 4966 } 4967 4968 SDValue Q = N0; 4969 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4970 Created.push_back(Q.getNode()); 4971 4972 // FIXME: We should support doing a MUL in a wider type. 4973 auto GetMULHU = [&](SDValue X, SDValue Y) { 4974 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4975 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4976 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4977 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4978 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4979 SDValue LoHi = 4980 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4981 return SDValue(LoHi.getNode(), 1); 4982 } 4983 return SDValue(); // No mulhu or equivalent 4984 }; 4985 4986 // Multiply the numerator (operand 0) by the magic value. 4987 Q = GetMULHU(Q, MagicFactor); 4988 if (!Q) 4989 return SDValue(); 4990 4991 Created.push_back(Q.getNode()); 4992 4993 if (UseNPQ) { 4994 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4995 Created.push_back(NPQ.getNode()); 4996 4997 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4998 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4999 if (VT.isVector()) 5000 NPQ = GetMULHU(NPQ, NPQFactor); 5001 else 5002 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5003 5004 Created.push_back(NPQ.getNode()); 5005 5006 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5007 Created.push_back(Q.getNode()); 5008 } 5009 5010 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5011 Created.push_back(Q.getNode()); 5012 5013 SDValue One = DAG.getConstant(1, dl, VT); 5014 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5015 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5016 } 5017 5018 /// If all values in Values that *don't* match the predicate are same 'splat' 5019 /// value, then replace all values with that splat value. 5020 /// Else, if AlternativeReplacement was provided, then replace all values that 5021 /// do match predicate with AlternativeReplacement value. 5022 static void 5023 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5024 std::function<bool(SDValue)> Predicate, 5025 SDValue AlternativeReplacement = SDValue()) { 5026 SDValue Replacement; 5027 // Is there a value for which the Predicate does *NOT* match? What is it? 5028 auto SplatValue = llvm::find_if_not(Values, Predicate); 5029 if (SplatValue != Values.end()) { 5030 // Does Values consist only of SplatValue's and values matching Predicate? 5031 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5032 return Value == *SplatValue || Predicate(Value); 5033 })) // Then we shall replace values matching predicate with SplatValue. 5034 Replacement = *SplatValue; 5035 } 5036 if (!Replacement) { 5037 // Oops, we did not find the "baseline" splat value. 5038 if (!AlternativeReplacement) 5039 return; // Nothing to do. 5040 // Let's replace with provided value then. 5041 Replacement = AlternativeReplacement; 5042 } 5043 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5044 } 5045 5046 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5047 /// where the divisor is constant and the comparison target is zero, 5048 /// return a DAG expression that will generate the same comparison result 5049 /// using only multiplications, additions and shifts/rotations. 5050 /// Ref: "Hacker's Delight" 10-17. 5051 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5052 SDValue CompTargetNode, 5053 ISD::CondCode Cond, 5054 DAGCombinerInfo &DCI, 5055 const SDLoc &DL) const { 5056 SmallVector<SDNode *, 5> Built; 5057 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5058 DCI, DL, Built)) { 5059 for (SDNode *N : Built) 5060 DCI.AddToWorklist(N); 5061 return Folded; 5062 } 5063 5064 return SDValue(); 5065 } 5066 5067 SDValue 5068 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5069 SDValue CompTargetNode, ISD::CondCode Cond, 5070 DAGCombinerInfo &DCI, const SDLoc &DL, 5071 SmallVectorImpl<SDNode *> &Created) const { 5072 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5073 // - D must be constant, with D = D0 * 2^K where D0 is odd 5074 // - P is the multiplicative inverse of D0 modulo 2^W 5075 // - Q = floor(((2^W) - 1) / D) 5076 // where W is the width of the common type of N and D. 5077 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5078 "Only applicable for (in)equality comparisons."); 5079 5080 SelectionDAG &DAG = DCI.DAG; 5081 5082 EVT VT = REMNode.getValueType(); 5083 EVT SVT = VT.getScalarType(); 5084 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5085 EVT ShSVT = ShVT.getScalarType(); 5086 5087 // If MUL is unavailable, we cannot proceed in any case. 5088 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5089 return SDValue(); 5090 5091 bool ComparingWithAllZeros = true; 5092 bool AllComparisonsWithNonZerosAreTautological = true; 5093 bool HadTautologicalLanes = false; 5094 bool AllLanesAreTautological = true; 5095 bool HadEvenDivisor = false; 5096 bool AllDivisorsArePowerOfTwo = true; 5097 bool HadTautologicalInvertedLanes = false; 5098 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5099 5100 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5101 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5102 if (CDiv->isNullValue()) 5103 return false; 5104 5105 const APInt &D = CDiv->getAPIntValue(); 5106 const APInt &Cmp = CCmp->getAPIntValue(); 5107 5108 ComparingWithAllZeros &= Cmp.isNullValue(); 5109 5110 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5111 // if C2 is not less than C1, the comparison is always false. 5112 // But we will only be able to produce the comparison that will give the 5113 // opposive tautological answer. So this lane would need to be fixed up. 5114 bool TautologicalInvertedLane = D.ule(Cmp); 5115 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5116 5117 // If all lanes are tautological (either all divisors are ones, or divisor 5118 // is not greater than the constant we are comparing with), 5119 // we will prefer to avoid the fold. 5120 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5121 HadTautologicalLanes |= TautologicalLane; 5122 AllLanesAreTautological &= TautologicalLane; 5123 5124 // If we are comparing with non-zero, we need'll need to subtract said 5125 // comparison value from the LHS. But there is no point in doing that if 5126 // every lane where we are comparing with non-zero is tautological.. 5127 if (!Cmp.isNullValue()) 5128 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5129 5130 // Decompose D into D0 * 2^K 5131 unsigned K = D.countTrailingZeros(); 5132 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5133 APInt D0 = D.lshr(K); 5134 5135 // D is even if it has trailing zeros. 5136 HadEvenDivisor |= (K != 0); 5137 // D is a power-of-two if D0 is one. 5138 // If all divisors are power-of-two, we will prefer to avoid the fold. 5139 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5140 5141 // P = inv(D0, 2^W) 5142 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5143 unsigned W = D.getBitWidth(); 5144 APInt P = D0.zext(W + 1) 5145 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5146 .trunc(W); 5147 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5148 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5149 5150 // Q = floor((2^W - 1) u/ D) 5151 // R = ((2^W - 1) u% D) 5152 APInt Q, R; 5153 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5154 5155 // If we are comparing with zero, then that comparison constant is okay, 5156 // else it may need to be one less than that. 5157 if (Cmp.ugt(R)) 5158 Q -= 1; 5159 5160 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5161 "We are expecting that K is always less than all-ones for ShSVT"); 5162 5163 // If the lane is tautological the result can be constant-folded. 5164 if (TautologicalLane) { 5165 // Set P and K amount to a bogus values so we can try to splat them. 5166 P = 0; 5167 K = -1; 5168 // And ensure that comparison constant is tautological, 5169 // it will always compare true/false. 5170 Q = -1; 5171 } 5172 5173 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5174 KAmts.push_back( 5175 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5176 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5177 return true; 5178 }; 5179 5180 SDValue N = REMNode.getOperand(0); 5181 SDValue D = REMNode.getOperand(1); 5182 5183 // Collect the values from each element. 5184 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5185 return SDValue(); 5186 5187 // If all lanes are tautological, the result can be constant-folded. 5188 if (AllLanesAreTautological) 5189 return SDValue(); 5190 5191 // If this is a urem by a powers-of-two, avoid the fold since it can be 5192 // best implemented as a bit test. 5193 if (AllDivisorsArePowerOfTwo) 5194 return SDValue(); 5195 5196 SDValue PVal, KVal, QVal; 5197 if (VT.isVector()) { 5198 if (HadTautologicalLanes) { 5199 // Try to turn PAmts into a splat, since we don't care about the values 5200 // that are currently '0'. If we can't, just keep '0'`s. 5201 turnVectorIntoSplatVector(PAmts, isNullConstant); 5202 // Try to turn KAmts into a splat, since we don't care about the values 5203 // that are currently '-1'. If we can't, change them to '0'`s. 5204 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5205 DAG.getConstant(0, DL, ShSVT)); 5206 } 5207 5208 PVal = DAG.getBuildVector(VT, DL, PAmts); 5209 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5210 QVal = DAG.getBuildVector(VT, DL, QAmts); 5211 } else { 5212 PVal = PAmts[0]; 5213 KVal = KAmts[0]; 5214 QVal = QAmts[0]; 5215 } 5216 5217 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5218 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5219 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5220 assert(CompTargetNode.getValueType() == N.getValueType() && 5221 "Expecting that the types on LHS and RHS of comparisons match."); 5222 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5223 } 5224 5225 // (mul N, P) 5226 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5227 Created.push_back(Op0.getNode()); 5228 5229 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5230 // divisors as a performance improvement, since rotating by 0 is a no-op. 5231 if (HadEvenDivisor) { 5232 // We need ROTR to do this. 5233 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5234 return SDValue(); 5235 SDNodeFlags Flags; 5236 Flags.setExact(true); 5237 // UREM: (rotr (mul N, P), K) 5238 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5239 Created.push_back(Op0.getNode()); 5240 } 5241 5242 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5243 SDValue NewCC = 5244 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5245 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5246 if (!HadTautologicalInvertedLanes) 5247 return NewCC; 5248 5249 // If any lanes previously compared always-false, the NewCC will give 5250 // always-true result for them, so we need to fixup those lanes. 5251 // Or the other way around for inequality predicate. 5252 assert(VT.isVector() && "Can/should only get here for vectors."); 5253 Created.push_back(NewCC.getNode()); 5254 5255 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5256 // if C2 is not less than C1, the comparison is always false. 5257 // But we have produced the comparison that will give the 5258 // opposive tautological answer. So these lanes would need to be fixed up. 5259 SDValue TautologicalInvertedChannels = 5260 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5261 Created.push_back(TautologicalInvertedChannels.getNode()); 5262 5263 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5264 // If we have a vector select, let's replace the comparison results in the 5265 // affected lanes with the correct tautological result. 5266 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5267 DL, SETCCVT, SETCCVT); 5268 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5269 Replacement, NewCC); 5270 } 5271 5272 // Else, we can just invert the comparison result in the appropriate lanes. 5273 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5274 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5275 TautologicalInvertedChannels); 5276 5277 return SDValue(); // Don't know how to lower. 5278 } 5279 5280 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5281 /// where the divisor is constant and the comparison target is zero, 5282 /// return a DAG expression that will generate the same comparison result 5283 /// using only multiplications, additions and shifts/rotations. 5284 /// Ref: "Hacker's Delight" 10-17. 5285 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5286 SDValue CompTargetNode, 5287 ISD::CondCode Cond, 5288 DAGCombinerInfo &DCI, 5289 const SDLoc &DL) const { 5290 SmallVector<SDNode *, 7> Built; 5291 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5292 DCI, DL, Built)) { 5293 assert(Built.size() <= 7 && "Max size prediction failed."); 5294 for (SDNode *N : Built) 5295 DCI.AddToWorklist(N); 5296 return Folded; 5297 } 5298 5299 return SDValue(); 5300 } 5301 5302 SDValue 5303 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5304 SDValue CompTargetNode, ISD::CondCode Cond, 5305 DAGCombinerInfo &DCI, const SDLoc &DL, 5306 SmallVectorImpl<SDNode *> &Created) const { 5307 // Fold: 5308 // (seteq/ne (srem N, D), 0) 5309 // To: 5310 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5311 // 5312 // - D must be constant, with D = D0 * 2^K where D0 is odd 5313 // - P is the multiplicative inverse of D0 modulo 2^W 5314 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5315 // - Q = floor((2 * A) / (2^K)) 5316 // where W is the width of the common type of N and D. 5317 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5318 "Only applicable for (in)equality comparisons."); 5319 5320 SelectionDAG &DAG = DCI.DAG; 5321 5322 EVT VT = REMNode.getValueType(); 5323 EVT SVT = VT.getScalarType(); 5324 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5325 EVT ShSVT = ShVT.getScalarType(); 5326 5327 // If MUL is unavailable, we cannot proceed in any case. 5328 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5329 return SDValue(); 5330 5331 // TODO: Could support comparing with non-zero too. 5332 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5333 if (!CompTarget || !CompTarget->isNullValue()) 5334 return SDValue(); 5335 5336 bool HadIntMinDivisor = false; 5337 bool HadOneDivisor = false; 5338 bool AllDivisorsAreOnes = true; 5339 bool HadEvenDivisor = false; 5340 bool NeedToApplyOffset = false; 5341 bool AllDivisorsArePowerOfTwo = true; 5342 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5343 5344 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5345 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5346 if (C->isNullValue()) 5347 return false; 5348 5349 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5350 5351 // WARNING: this fold is only valid for positive divisors! 5352 APInt D = C->getAPIntValue(); 5353 if (D.isNegative()) 5354 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5355 5356 HadIntMinDivisor |= D.isMinSignedValue(); 5357 5358 // If all divisors are ones, we will prefer to avoid the fold. 5359 HadOneDivisor |= D.isOneValue(); 5360 AllDivisorsAreOnes &= D.isOneValue(); 5361 5362 // Decompose D into D0 * 2^K 5363 unsigned K = D.countTrailingZeros(); 5364 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5365 APInt D0 = D.lshr(K); 5366 5367 if (!D.isMinSignedValue()) { 5368 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5369 // we don't care about this lane in this fold, we'll special-handle it. 5370 HadEvenDivisor |= (K != 0); 5371 } 5372 5373 // D is a power-of-two if D0 is one. This includes INT_MIN. 5374 // If all divisors are power-of-two, we will prefer to avoid the fold. 5375 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5376 5377 // P = inv(D0, 2^W) 5378 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5379 unsigned W = D.getBitWidth(); 5380 APInt P = D0.zext(W + 1) 5381 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5382 .trunc(W); 5383 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5384 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5385 5386 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5387 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5388 A.clearLowBits(K); 5389 5390 if (!D.isMinSignedValue()) { 5391 // If divisor INT_MIN, then we don't care about this lane in this fold, 5392 // we'll special-handle it. 5393 NeedToApplyOffset |= A != 0; 5394 } 5395 5396 // Q = floor((2 * A) / (2^K)) 5397 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5398 5399 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5400 "We are expecting that A is always less than all-ones for SVT"); 5401 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5402 "We are expecting that K is always less than all-ones for ShSVT"); 5403 5404 // If the divisor is 1 the result can be constant-folded. Likewise, we 5405 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5406 if (D.isOneValue()) { 5407 // Set P, A and K to a bogus values so we can try to splat them. 5408 P = 0; 5409 A = -1; 5410 K = -1; 5411 5412 // x ?% 1 == 0 <--> true <--> x u<= -1 5413 Q = -1; 5414 } 5415 5416 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5417 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5418 KAmts.push_back( 5419 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5420 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5421 return true; 5422 }; 5423 5424 SDValue N = REMNode.getOperand(0); 5425 SDValue D = REMNode.getOperand(1); 5426 5427 // Collect the values from each element. 5428 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5429 return SDValue(); 5430 5431 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5432 if (AllDivisorsAreOnes) 5433 return SDValue(); 5434 5435 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5436 // since it can be best implemented as a bit test. 5437 if (AllDivisorsArePowerOfTwo) 5438 return SDValue(); 5439 5440 SDValue PVal, AVal, KVal, QVal; 5441 if (VT.isVector()) { 5442 if (HadOneDivisor) { 5443 // Try to turn PAmts into a splat, since we don't care about the values 5444 // that are currently '0'. If we can't, just keep '0'`s. 5445 turnVectorIntoSplatVector(PAmts, isNullConstant); 5446 // Try to turn AAmts into a splat, since we don't care about the 5447 // values that are currently '-1'. If we can't, change them to '0'`s. 5448 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5449 DAG.getConstant(0, DL, SVT)); 5450 // Try to turn KAmts into a splat, since we don't care about the values 5451 // that are currently '-1'. If we can't, change them to '0'`s. 5452 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5453 DAG.getConstant(0, DL, ShSVT)); 5454 } 5455 5456 PVal = DAG.getBuildVector(VT, DL, PAmts); 5457 AVal = DAG.getBuildVector(VT, DL, AAmts); 5458 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5459 QVal = DAG.getBuildVector(VT, DL, QAmts); 5460 } else { 5461 PVal = PAmts[0]; 5462 AVal = AAmts[0]; 5463 KVal = KAmts[0]; 5464 QVal = QAmts[0]; 5465 } 5466 5467 // (mul N, P) 5468 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5469 Created.push_back(Op0.getNode()); 5470 5471 if (NeedToApplyOffset) { 5472 // We need ADD to do this. 5473 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5474 return SDValue(); 5475 5476 // (add (mul N, P), A) 5477 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5478 Created.push_back(Op0.getNode()); 5479 } 5480 5481 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5482 // divisors as a performance improvement, since rotating by 0 is a no-op. 5483 if (HadEvenDivisor) { 5484 // We need ROTR to do this. 5485 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5486 return SDValue(); 5487 SDNodeFlags Flags; 5488 Flags.setExact(true); 5489 // SREM: (rotr (add (mul N, P), A), K) 5490 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5491 Created.push_back(Op0.getNode()); 5492 } 5493 5494 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5495 SDValue Fold = 5496 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5497 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5498 5499 // If we didn't have lanes with INT_MIN divisor, then we're done. 5500 if (!HadIntMinDivisor) 5501 return Fold; 5502 5503 // That fold is only valid for positive divisors. Which effectively means, 5504 // it is invalid for INT_MIN divisors. So if we have such a lane, 5505 // we must fix-up results for said lanes. 5506 assert(VT.isVector() && "Can/should only get here for vectors."); 5507 5508 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5509 !isOperationLegalOrCustom(ISD::AND, VT) || 5510 !isOperationLegalOrCustom(Cond, VT) || 5511 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5512 return SDValue(); 5513 5514 Created.push_back(Fold.getNode()); 5515 5516 SDValue IntMin = DAG.getConstant( 5517 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5518 SDValue IntMax = DAG.getConstant( 5519 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5520 SDValue Zero = 5521 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5522 5523 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5524 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5525 Created.push_back(DivisorIsIntMin.getNode()); 5526 5527 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5528 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5529 Created.push_back(Masked.getNode()); 5530 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5531 Created.push_back(MaskedIsZero.getNode()); 5532 5533 // To produce final result we need to blend 2 vectors: 'SetCC' and 5534 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5535 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5536 // constant-folded, select can get lowered to a shuffle with constant mask. 5537 SDValue Blended = 5538 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5539 5540 return Blended; 5541 } 5542 5543 bool TargetLowering:: 5544 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5545 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5546 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5547 "be a constant integer"); 5548 return true; 5549 } 5550 5551 return false; 5552 } 5553 5554 TargetLowering::NegatibleCost 5555 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5556 bool LegalOperations, bool ForCodeSize, 5557 unsigned Depth) const { 5558 // fneg is removable even if it has multiple uses. 5559 if (Op.getOpcode() == ISD::FNEG) 5560 return NegatibleCost::Cheaper; 5561 5562 // Don't allow anything with multiple uses unless we know it is free. 5563 EVT VT = Op.getValueType(); 5564 const SDNodeFlags Flags = Op->getFlags(); 5565 const TargetOptions &Options = DAG.getTarget().Options; 5566 if (!Op.hasOneUse()) { 5567 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5568 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5569 5570 // If we already have the use of the negated floating constant, it is free 5571 // to negate it even it has multiple uses. 5572 bool IsFreeConstant = 5573 Op.getOpcode() == ISD::ConstantFP && 5574 !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize) 5575 .use_empty(); 5576 5577 if (!IsFreeExtend && !IsFreeConstant) 5578 return NegatibleCost::Expensive; 5579 } 5580 5581 // Don't recurse exponentially. 5582 if (Depth > SelectionDAG::MaxRecursionDepth) 5583 return NegatibleCost::Expensive; 5584 5585 switch (Op.getOpcode()) { 5586 case ISD::ConstantFP: { 5587 if (!LegalOperations) 5588 return NegatibleCost::Neutral; 5589 5590 // Don't invert constant FP values after legalization unless the target says 5591 // the negated constant is legal. 5592 if (isOperationLegal(ISD::ConstantFP, VT) || 5593 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5594 ForCodeSize)) 5595 return NegatibleCost::Neutral; 5596 break; 5597 } 5598 case ISD::BUILD_VECTOR: { 5599 // Only permit BUILD_VECTOR of constants. 5600 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5601 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5602 })) 5603 return NegatibleCost::Expensive; 5604 if (!LegalOperations) 5605 return NegatibleCost::Neutral; 5606 if (isOperationLegal(ISD::ConstantFP, VT) && 5607 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5608 return NegatibleCost::Neutral; 5609 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5610 return N.isUndef() || 5611 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5612 ForCodeSize); 5613 })) 5614 return NegatibleCost::Neutral; 5615 break; 5616 } 5617 case ISD::FADD: { 5618 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5619 return NegatibleCost::Expensive; 5620 5621 // After operation legalization, it might not be legal to create new FSUBs. 5622 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5623 return NegatibleCost::Expensive; 5624 5625 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5626 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5627 ForCodeSize, Depth + 1); 5628 if (V0 != NegatibleCost::Expensive) 5629 return V0; 5630 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5631 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5632 Depth + 1); 5633 } 5634 case ISD::FSUB: 5635 // We can't turn -(A-B) into B-A when we honor signed zeros. 5636 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5637 return NegatibleCost::Expensive; 5638 5639 // fold (fneg (fsub A, B)) -> (fsub B, A) 5640 return NegatibleCost::Neutral; 5641 case ISD::FMUL: 5642 case ISD::FDIV: { 5643 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5644 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5645 ForCodeSize, Depth + 1); 5646 if (V0 != NegatibleCost::Expensive) 5647 return V0; 5648 5649 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5650 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5651 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5652 return NegatibleCost::Expensive; 5653 5654 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5655 Depth + 1); 5656 } 5657 case ISD::FMA: 5658 case ISD::FMAD: { 5659 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5660 return NegatibleCost::Expensive; 5661 5662 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5663 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5664 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5665 ForCodeSize, Depth + 1); 5666 if (NegatibleCost::Expensive == V2) 5667 return NegatibleCost::Expensive; 5668 5669 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5670 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5671 ForCodeSize, Depth + 1); 5672 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5673 ForCodeSize, Depth + 1); 5674 NegatibleCost V01 = std::max(V0, V1); 5675 if (V01 == NegatibleCost::Expensive) 5676 return NegatibleCost::Expensive; 5677 return std::max(V01, V2); 5678 } 5679 5680 case ISD::FP_EXTEND: 5681 case ISD::FP_ROUND: 5682 case ISD::FSIN: 5683 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5684 Depth + 1); 5685 } 5686 5687 return NegatibleCost::Expensive; 5688 } 5689 5690 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5691 bool LegalOps, bool OptForSize, 5692 unsigned Depth) const { 5693 // fneg is removable even if it has multiple uses. 5694 if (Op.getOpcode() == ISD::FNEG) 5695 return Op.getOperand(0); 5696 5697 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5698 "getNegatedExpression doesn't match getNegatibleCost"); 5699 5700 // Pre-increment recursion depth for use in recursive calls. 5701 ++Depth; 5702 const SDNodeFlags Flags = Op->getFlags(); 5703 EVT VT = Op.getValueType(); 5704 unsigned Opcode = Op.getOpcode(); 5705 SDLoc DL(Op); 5706 5707 switch (Opcode) { 5708 case ISD::ConstantFP: { 5709 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5710 V.changeSign(); 5711 return DAG.getConstantFP(V, DL, VT); 5712 } 5713 case ISD::BUILD_VECTOR: { 5714 SmallVector<SDValue, 4> Ops; 5715 for (SDValue C : Op->op_values()) { 5716 if (C.isUndef()) { 5717 Ops.push_back(C); 5718 continue; 5719 } 5720 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5721 V.changeSign(); 5722 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5723 } 5724 return DAG.getBuildVector(VT, DL, Ops); 5725 } 5726 case ISD::FADD: { 5727 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5728 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5729 Flags.hasNoSignedZeros()) && 5730 "Expected NSZ fp-flag"); 5731 5732 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5733 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5734 if (CostX != NegatibleCost::Expensive) 5735 return DAG.getNode( 5736 ISD::FSUB, DL, VT, 5737 getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags); 5738 5739 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5740 return DAG.getNode( 5741 ISD::FSUB, DL, VT, 5742 getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), X, Flags); 5743 } 5744 case ISD::FSUB: { 5745 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5746 // fold (fneg (fsub 0, Y)) -> Y 5747 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5748 if (C->isZero()) 5749 return Y; 5750 5751 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5752 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5753 } 5754 case ISD::FMUL: 5755 case ISD::FDIV: { 5756 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5757 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5758 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5759 if (CostX != NegatibleCost::Expensive) 5760 return DAG.getNode( 5761 Opcode, DL, VT, 5762 getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags); 5763 5764 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5765 return DAG.getNode( 5766 Opcode, DL, VT, X, 5767 getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), Flags); 5768 } 5769 case ISD::FMA: 5770 case ISD::FMAD: { 5771 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5772 Flags.hasNoSignedZeros()) && 5773 "Expected NSZ fp-flag"); 5774 5775 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5776 SDValue NegZ = getNegatedExpression(Z, DAG, LegalOps, OptForSize, Depth); 5777 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5778 NegatibleCost CostY = getNegatibleCost(Y, DAG, LegalOps, OptForSize, Depth); 5779 if (CostX > CostY) { 5780 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5781 SDValue NegX = getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth); 5782 return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5783 } 5784 5785 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5786 SDValue NegY = getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth); 5787 return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5788 } 5789 5790 case ISD::FP_EXTEND: 5791 case ISD::FSIN: 5792 return DAG.getNode(Opcode, DL, VT, 5793 getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5794 OptForSize, Depth)); 5795 case ISD::FP_ROUND: 5796 return DAG.getNode(ISD::FP_ROUND, DL, VT, 5797 getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5798 OptForSize, Depth), 5799 Op.getOperand(1)); 5800 } 5801 5802 llvm_unreachable("Unknown code"); 5803 } 5804 5805 //===----------------------------------------------------------------------===// 5806 // Legalization Utilities 5807 //===----------------------------------------------------------------------===// 5808 5809 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5810 SDValue LHS, SDValue RHS, 5811 SmallVectorImpl<SDValue> &Result, 5812 EVT HiLoVT, SelectionDAG &DAG, 5813 MulExpansionKind Kind, SDValue LL, 5814 SDValue LH, SDValue RL, SDValue RH) const { 5815 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5816 Opcode == ISD::SMUL_LOHI); 5817 5818 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5819 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5820 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5821 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5822 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5823 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5824 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5825 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5826 5827 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5828 return false; 5829 5830 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5831 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5832 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5833 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5834 5835 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5836 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5837 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5838 5839 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5840 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5841 bool Signed) -> bool { 5842 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5843 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5844 Hi = SDValue(Lo.getNode(), 1); 5845 return true; 5846 } 5847 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5848 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5849 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5850 return true; 5851 } 5852 return false; 5853 }; 5854 5855 SDValue Lo, Hi; 5856 5857 if (!LL.getNode() && !RL.getNode() && 5858 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5859 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5860 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5861 } 5862 5863 if (!LL.getNode()) 5864 return false; 5865 5866 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5867 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5868 DAG.MaskedValueIsZero(RHS, HighMask)) { 5869 // The inputs are both zero-extended. 5870 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5871 Result.push_back(Lo); 5872 Result.push_back(Hi); 5873 if (Opcode != ISD::MUL) { 5874 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5875 Result.push_back(Zero); 5876 Result.push_back(Zero); 5877 } 5878 return true; 5879 } 5880 } 5881 5882 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5883 RHSSB > InnerBitSize) { 5884 // The input values are both sign-extended. 5885 // TODO non-MUL case? 5886 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5887 Result.push_back(Lo); 5888 Result.push_back(Hi); 5889 return true; 5890 } 5891 } 5892 5893 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5894 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5895 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5896 // FIXME getShiftAmountTy does not always return a sensible result when VT 5897 // is an illegal type, and so the type may be too small to fit the shift 5898 // amount. Override it with i32. The shift will have to be legalized. 5899 ShiftAmountTy = MVT::i32; 5900 } 5901 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5902 5903 if (!LH.getNode() && !RH.getNode() && 5904 isOperationLegalOrCustom(ISD::SRL, VT) && 5905 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5906 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5907 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5908 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5909 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5910 } 5911 5912 if (!LH.getNode()) 5913 return false; 5914 5915 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5916 return false; 5917 5918 Result.push_back(Lo); 5919 5920 if (Opcode == ISD::MUL) { 5921 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5922 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5923 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5924 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5925 Result.push_back(Hi); 5926 return true; 5927 } 5928 5929 // Compute the full width result. 5930 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5931 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5932 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5933 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5934 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5935 }; 5936 5937 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5938 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5939 return false; 5940 5941 // This is effectively the add part of a multiply-add of half-sized operands, 5942 // so it cannot overflow. 5943 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5944 5945 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5946 return false; 5947 5948 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5949 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5950 5951 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5952 isOperationLegalOrCustom(ISD::ADDE, VT)); 5953 if (UseGlue) 5954 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5955 Merge(Lo, Hi)); 5956 else 5957 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5958 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5959 5960 SDValue Carry = Next.getValue(1); 5961 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5962 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5963 5964 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5965 return false; 5966 5967 if (UseGlue) 5968 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5969 Carry); 5970 else 5971 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5972 Zero, Carry); 5973 5974 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5975 5976 if (Opcode == ISD::SMUL_LOHI) { 5977 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5978 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5979 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5980 5981 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5982 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5983 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5984 } 5985 5986 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5987 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5988 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5989 return true; 5990 } 5991 5992 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5993 SelectionDAG &DAG, MulExpansionKind Kind, 5994 SDValue LL, SDValue LH, SDValue RL, 5995 SDValue RH) const { 5996 SmallVector<SDValue, 2> Result; 5997 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5998 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5999 DAG, Kind, LL, LH, RL, RH); 6000 if (Ok) { 6001 assert(Result.size() == 2); 6002 Lo = Result[0]; 6003 Hi = Result[1]; 6004 } 6005 return Ok; 6006 } 6007 6008 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6009 SelectionDAG &DAG) const { 6010 EVT VT = Node->getValueType(0); 6011 6012 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6013 !isOperationLegalOrCustom(ISD::SRL, VT) || 6014 !isOperationLegalOrCustom(ISD::SUB, VT) || 6015 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6016 return false; 6017 6018 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6019 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6020 SDValue X = Node->getOperand(0); 6021 SDValue Y = Node->getOperand(1); 6022 SDValue Z = Node->getOperand(2); 6023 6024 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6025 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6026 SDLoc DL(SDValue(Node, 0)); 6027 6028 EVT ShVT = Z.getValueType(); 6029 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6030 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6031 6032 SDValue ShAmt; 6033 if (isPowerOf2_32(EltSizeInBits)) { 6034 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6035 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6036 } else { 6037 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6038 } 6039 6040 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6041 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6042 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6043 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6044 6045 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6046 // and that is undefined. We must compare and select to avoid UB. 6047 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6048 6049 // For fshl, 0-shift returns the 1st arg (X). 6050 // For fshr, 0-shift returns the 2nd arg (Y). 6051 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6052 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6053 return true; 6054 } 6055 6056 // TODO: Merge with expandFunnelShift. 6057 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6058 SelectionDAG &DAG) const { 6059 EVT VT = Node->getValueType(0); 6060 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6061 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6062 SDValue Op0 = Node->getOperand(0); 6063 SDValue Op1 = Node->getOperand(1); 6064 SDLoc DL(SDValue(Node, 0)); 6065 6066 EVT ShVT = Op1.getValueType(); 6067 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6068 6069 // If a rotate in the other direction is legal, use it. 6070 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6071 if (isOperationLegal(RevRot, VT)) { 6072 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6073 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6074 return true; 6075 } 6076 6077 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6078 !isOperationLegalOrCustom(ISD::SRL, VT) || 6079 !isOperationLegalOrCustom(ISD::SUB, VT) || 6080 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6081 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6082 return false; 6083 6084 // Otherwise, 6085 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6086 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6087 // 6088 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6089 "Expecting the type bitwidth to be a power of 2"); 6090 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6091 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6092 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6093 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6094 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6095 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6096 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6097 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6098 return true; 6099 } 6100 6101 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6102 SelectionDAG &DAG) const { 6103 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6104 SDValue Src = Node->getOperand(OpNo); 6105 EVT SrcVT = Src.getValueType(); 6106 EVT DstVT = Node->getValueType(0); 6107 SDLoc dl(SDValue(Node, 0)); 6108 6109 // FIXME: Only f32 to i64 conversions are supported. 6110 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6111 return false; 6112 6113 if (Node->isStrictFPOpcode()) 6114 // When a NaN is converted to an integer a trap is allowed. We can't 6115 // use this expansion here because it would eliminate that trap. Other 6116 // traps are also allowed and cannot be eliminated. See 6117 // IEEE 754-2008 sec 5.8. 6118 return false; 6119 6120 // Expand f32 -> i64 conversion 6121 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6122 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6123 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6124 EVT IntVT = SrcVT.changeTypeToInteger(); 6125 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6126 6127 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6128 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6129 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6130 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6131 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6132 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6133 6134 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6135 6136 SDValue ExponentBits = DAG.getNode( 6137 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6138 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6139 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6140 6141 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6142 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6143 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6144 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6145 6146 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6147 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6148 DAG.getConstant(0x00800000, dl, IntVT)); 6149 6150 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6151 6152 R = DAG.getSelectCC( 6153 dl, Exponent, ExponentLoBit, 6154 DAG.getNode(ISD::SHL, dl, DstVT, R, 6155 DAG.getZExtOrTrunc( 6156 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6157 dl, IntShVT)), 6158 DAG.getNode(ISD::SRL, dl, DstVT, R, 6159 DAG.getZExtOrTrunc( 6160 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6161 dl, IntShVT)), 6162 ISD::SETGT); 6163 6164 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6165 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6166 6167 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6168 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6169 return true; 6170 } 6171 6172 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6173 SDValue &Chain, 6174 SelectionDAG &DAG) const { 6175 SDLoc dl(SDValue(Node, 0)); 6176 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6177 SDValue Src = Node->getOperand(OpNo); 6178 6179 EVT SrcVT = Src.getValueType(); 6180 EVT DstVT = Node->getValueType(0); 6181 EVT SetCCVT = 6182 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6183 EVT DstSetCCVT = 6184 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6185 6186 // Only expand vector types if we have the appropriate vector bit operations. 6187 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6188 ISD::FP_TO_SINT; 6189 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6190 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6191 return false; 6192 6193 // If the maximum float value is smaller then the signed integer range, 6194 // the destination signmask can't be represented by the float, so we can 6195 // just use FP_TO_SINT directly. 6196 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6197 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6198 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6199 if (APFloat::opOverflow & 6200 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6201 if (Node->isStrictFPOpcode()) { 6202 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6203 { Node->getOperand(0), Src }); 6204 Chain = Result.getValue(1); 6205 } else 6206 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6207 return true; 6208 } 6209 6210 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6211 SDValue Sel; 6212 6213 if (Node->isStrictFPOpcode()) { 6214 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6215 Node->getOperand(0), /*IsSignaling*/ true); 6216 Chain = Sel.getValue(1); 6217 } else { 6218 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6219 } 6220 6221 bool Strict = Node->isStrictFPOpcode() || 6222 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6223 6224 if (Strict) { 6225 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6226 // signmask then offset (the result of which should be fully representable). 6227 // Sel = Src < 0x8000000000000000 6228 // FltOfs = select Sel, 0, 0x8000000000000000 6229 // IntOfs = select Sel, 0, 0x8000000000000000 6230 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6231 6232 // TODO: Should any fast-math-flags be set for the FSUB? 6233 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6234 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6235 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6236 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6237 DAG.getConstant(0, dl, DstVT), 6238 DAG.getConstant(SignMask, dl, DstVT)); 6239 SDValue SInt; 6240 if (Node->isStrictFPOpcode()) { 6241 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6242 { Chain, Src, FltOfs }); 6243 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6244 { Val.getValue(1), Val }); 6245 Chain = SInt.getValue(1); 6246 } else { 6247 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6248 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6249 } 6250 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6251 } else { 6252 // Expand based on maximum range of FP_TO_SINT: 6253 // True = fp_to_sint(Src) 6254 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6255 // Result = select (Src < 0x8000000000000000), True, False 6256 6257 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6258 // TODO: Should any fast-math-flags be set for the FSUB? 6259 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6260 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6261 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6262 DAG.getConstant(SignMask, dl, DstVT)); 6263 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6264 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6265 } 6266 return true; 6267 } 6268 6269 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6270 SDValue &Chain, 6271 SelectionDAG &DAG) const { 6272 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6273 SDValue Src = Node->getOperand(OpNo); 6274 EVT SrcVT = Src.getValueType(); 6275 EVT DstVT = Node->getValueType(0); 6276 6277 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6278 return false; 6279 6280 // Only expand vector types if we have the appropriate vector bit operations. 6281 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6282 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6283 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6284 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6285 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6286 return false; 6287 6288 SDLoc dl(SDValue(Node, 0)); 6289 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6290 6291 // Implementation of unsigned i64 to f64 following the algorithm in 6292 // __floatundidf in compiler_rt. This implementation has the advantage 6293 // of performing rounding correctly, both in the default rounding mode 6294 // and in all alternate rounding modes. 6295 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6296 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6297 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6298 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6299 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6300 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6301 6302 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6303 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6304 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6305 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6306 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6307 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6308 if (Node->isStrictFPOpcode()) { 6309 SDValue HiSub = 6310 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6311 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6312 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6313 {HiSub.getValue(1), LoFlt, HiSub}); 6314 Chain = Result.getValue(1); 6315 } else { 6316 SDValue HiSub = 6317 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6318 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6319 } 6320 return true; 6321 } 6322 6323 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6324 SelectionDAG &DAG) const { 6325 SDLoc dl(Node); 6326 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6327 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6328 EVT VT = Node->getValueType(0); 6329 if (isOperationLegalOrCustom(NewOp, VT)) { 6330 SDValue Quiet0 = Node->getOperand(0); 6331 SDValue Quiet1 = Node->getOperand(1); 6332 6333 if (!Node->getFlags().hasNoNaNs()) { 6334 // Insert canonicalizes if it's possible we need to quiet to get correct 6335 // sNaN behavior. 6336 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6337 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6338 Node->getFlags()); 6339 } 6340 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6341 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6342 Node->getFlags()); 6343 } 6344 } 6345 6346 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6347 } 6348 6349 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6350 // instead if there are no NaNs. 6351 if (Node->getFlags().hasNoNaNs()) { 6352 unsigned IEEE2018Op = 6353 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6354 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6355 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6356 Node->getOperand(1), Node->getFlags()); 6357 } 6358 } 6359 6360 // If none of the above worked, but there are no NaNs, then expand to 6361 // a compare/select sequence. This is required for correctness since 6362 // InstCombine might have canonicalized a fcmp+select sequence to a 6363 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6364 // expansion to libcall, we might introduce a link-time dependency 6365 // on libm into a file that originally did not have one. 6366 if (Node->getFlags().hasNoNaNs()) { 6367 ISD::CondCode Pred = 6368 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6369 SDValue Op1 = Node->getOperand(0); 6370 SDValue Op2 = Node->getOperand(1); 6371 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6372 // Copy FMF flags, but always set the no-signed-zeros flag 6373 // as this is implied by the FMINNUM/FMAXNUM semantics. 6374 SDNodeFlags Flags = Node->getFlags(); 6375 Flags.setNoSignedZeros(true); 6376 SelCC->setFlags(Flags); 6377 return SelCC; 6378 } 6379 6380 return SDValue(); 6381 } 6382 6383 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6384 SelectionDAG &DAG) const { 6385 SDLoc dl(Node); 6386 EVT VT = Node->getValueType(0); 6387 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6388 SDValue Op = Node->getOperand(0); 6389 unsigned Len = VT.getScalarSizeInBits(); 6390 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6391 6392 // TODO: Add support for irregular type lengths. 6393 if (!(Len <= 128 && Len % 8 == 0)) 6394 return false; 6395 6396 // Only expand vector types if we have the appropriate vector bit operations. 6397 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6398 !isOperationLegalOrCustom(ISD::SUB, VT) || 6399 !isOperationLegalOrCustom(ISD::SRL, VT) || 6400 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6401 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6402 return false; 6403 6404 // This is the "best" algorithm from 6405 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6406 SDValue Mask55 = 6407 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6408 SDValue Mask33 = 6409 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6410 SDValue Mask0F = 6411 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6412 SDValue Mask01 = 6413 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6414 6415 // v = v - ((v >> 1) & 0x55555555...) 6416 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6417 DAG.getNode(ISD::AND, dl, VT, 6418 DAG.getNode(ISD::SRL, dl, VT, Op, 6419 DAG.getConstant(1, dl, ShVT)), 6420 Mask55)); 6421 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6422 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6423 DAG.getNode(ISD::AND, dl, VT, 6424 DAG.getNode(ISD::SRL, dl, VT, Op, 6425 DAG.getConstant(2, dl, ShVT)), 6426 Mask33)); 6427 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6428 Op = DAG.getNode(ISD::AND, dl, VT, 6429 DAG.getNode(ISD::ADD, dl, VT, Op, 6430 DAG.getNode(ISD::SRL, dl, VT, Op, 6431 DAG.getConstant(4, dl, ShVT))), 6432 Mask0F); 6433 // v = (v * 0x01010101...) >> (Len - 8) 6434 if (Len > 8) 6435 Op = 6436 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6437 DAG.getConstant(Len - 8, dl, ShVT)); 6438 6439 Result = Op; 6440 return true; 6441 } 6442 6443 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6444 SelectionDAG &DAG) const { 6445 SDLoc dl(Node); 6446 EVT VT = Node->getValueType(0); 6447 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6448 SDValue Op = Node->getOperand(0); 6449 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6450 6451 // If the non-ZERO_UNDEF version is supported we can use that instead. 6452 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6453 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6454 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6455 return true; 6456 } 6457 6458 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6459 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6460 EVT SetCCVT = 6461 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6462 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6463 SDValue Zero = DAG.getConstant(0, dl, VT); 6464 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6465 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6466 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6467 return true; 6468 } 6469 6470 // Only expand vector types if we have the appropriate vector bit operations. 6471 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6472 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6473 !isOperationLegalOrCustom(ISD::SRL, VT) || 6474 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6475 return false; 6476 6477 // for now, we do this: 6478 // x = x | (x >> 1); 6479 // x = x | (x >> 2); 6480 // ... 6481 // x = x | (x >>16); 6482 // x = x | (x >>32); // for 64-bit input 6483 // return popcount(~x); 6484 // 6485 // Ref: "Hacker's Delight" by Henry Warren 6486 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6487 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6488 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6489 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6490 } 6491 Op = DAG.getNOT(dl, Op, VT); 6492 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6493 return true; 6494 } 6495 6496 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6497 SelectionDAG &DAG) const { 6498 SDLoc dl(Node); 6499 EVT VT = Node->getValueType(0); 6500 SDValue Op = Node->getOperand(0); 6501 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6502 6503 // If the non-ZERO_UNDEF version is supported we can use that instead. 6504 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6505 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6506 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6507 return true; 6508 } 6509 6510 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6511 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6512 EVT SetCCVT = 6513 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6514 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6515 SDValue Zero = DAG.getConstant(0, dl, VT); 6516 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6517 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6518 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6519 return true; 6520 } 6521 6522 // Only expand vector types if we have the appropriate vector bit operations. 6523 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6524 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6525 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6526 !isOperationLegalOrCustom(ISD::SUB, VT) || 6527 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6528 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6529 return false; 6530 6531 // for now, we use: { return popcount(~x & (x - 1)); } 6532 // unless the target has ctlz but not ctpop, in which case we use: 6533 // { return 32 - nlz(~x & (x-1)); } 6534 // Ref: "Hacker's Delight" by Henry Warren 6535 SDValue Tmp = DAG.getNode( 6536 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6537 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6538 6539 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6540 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6541 Result = 6542 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6543 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6544 return true; 6545 } 6546 6547 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6548 return true; 6549 } 6550 6551 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6552 SelectionDAG &DAG) const { 6553 SDLoc dl(N); 6554 EVT VT = N->getValueType(0); 6555 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6556 SDValue Op = N->getOperand(0); 6557 6558 // Only expand vector types if we have the appropriate vector operations. 6559 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6560 !isOperationLegalOrCustom(ISD::ADD, VT) || 6561 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6562 return false; 6563 6564 SDValue Shift = 6565 DAG.getNode(ISD::SRA, dl, VT, Op, 6566 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6567 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6568 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6569 return true; 6570 } 6571 6572 std::pair<SDValue, SDValue> 6573 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6574 SelectionDAG &DAG) const { 6575 SDLoc SL(LD); 6576 SDValue Chain = LD->getChain(); 6577 SDValue BasePTR = LD->getBasePtr(); 6578 EVT SrcVT = LD->getMemoryVT(); 6579 EVT DstVT = LD->getValueType(0); 6580 ISD::LoadExtType ExtType = LD->getExtensionType(); 6581 6582 unsigned NumElem = SrcVT.getVectorNumElements(); 6583 6584 EVT SrcEltVT = SrcVT.getScalarType(); 6585 EVT DstEltVT = DstVT.getScalarType(); 6586 6587 // A vector must always be stored in memory as-is, i.e. without any padding 6588 // between the elements, since various code depend on it, e.g. in the 6589 // handling of a bitcast of a vector type to int, which may be done with a 6590 // vector store followed by an integer load. A vector that does not have 6591 // elements that are byte-sized must therefore be stored as an integer 6592 // built out of the extracted vector elements. 6593 if (!SrcEltVT.isByteSized()) { 6594 unsigned NumBits = SrcVT.getSizeInBits(); 6595 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6596 6597 SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(), 6598 LD->getAlignment(), 6599 LD->getMemOperand()->getFlags(), 6600 LD->getAAInfo()); 6601 6602 SmallVector<SDValue, 8> Vals; 6603 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6604 unsigned ShiftIntoIdx = 6605 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6606 SDValue ShiftAmount = 6607 DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT); 6608 SDValue ShiftedElt = 6609 DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount); 6610 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt); 6611 if (ExtType != ISD::NON_EXTLOAD) { 6612 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6613 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6614 } 6615 Vals.push_back(Scalar); 6616 } 6617 6618 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6619 return std::make_pair(Value, Load.getValue(1)); 6620 } 6621 6622 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6623 assert(SrcEltVT.isByteSized()); 6624 6625 SmallVector<SDValue, 8> Vals; 6626 SmallVector<SDValue, 8> LoadChains; 6627 6628 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6629 SDValue ScalarLoad = 6630 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6631 LD->getPointerInfo().getWithOffset(Idx * Stride), 6632 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6633 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6634 6635 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6636 6637 Vals.push_back(ScalarLoad.getValue(0)); 6638 LoadChains.push_back(ScalarLoad.getValue(1)); 6639 } 6640 6641 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6642 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6643 6644 return std::make_pair(Value, NewChain); 6645 } 6646 6647 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6648 SelectionDAG &DAG) const { 6649 SDLoc SL(ST); 6650 6651 SDValue Chain = ST->getChain(); 6652 SDValue BasePtr = ST->getBasePtr(); 6653 SDValue Value = ST->getValue(); 6654 EVT StVT = ST->getMemoryVT(); 6655 6656 // The type of the data we want to save 6657 EVT RegVT = Value.getValueType(); 6658 EVT RegSclVT = RegVT.getScalarType(); 6659 6660 // The type of data as saved in memory. 6661 EVT MemSclVT = StVT.getScalarType(); 6662 6663 unsigned NumElem = StVT.getVectorNumElements(); 6664 6665 // A vector must always be stored in memory as-is, i.e. without any padding 6666 // between the elements, since various code depend on it, e.g. in the 6667 // handling of a bitcast of a vector type to int, which may be done with a 6668 // vector store followed by an integer load. A vector that does not have 6669 // elements that are byte-sized must therefore be stored as an integer 6670 // built out of the extracted vector elements. 6671 if (!MemSclVT.isByteSized()) { 6672 unsigned NumBits = StVT.getSizeInBits(); 6673 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6674 6675 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6676 6677 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6678 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6679 DAG.getVectorIdxConstant(Idx, SL)); 6680 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6681 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6682 unsigned ShiftIntoIdx = 6683 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6684 SDValue ShiftAmount = 6685 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6686 SDValue ShiftedElt = 6687 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6688 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6689 } 6690 6691 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6692 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6693 ST->getAAInfo()); 6694 } 6695 6696 // Store Stride in bytes 6697 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6698 assert(Stride && "Zero stride!"); 6699 // Extract each of the elements from the original vector and save them into 6700 // memory individually. 6701 SmallVector<SDValue, 8> Stores; 6702 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6703 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6704 DAG.getVectorIdxConstant(Idx, SL)); 6705 6706 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6707 6708 // This scalar TruncStore may be illegal, but we legalize it later. 6709 SDValue Store = DAG.getTruncStore( 6710 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6711 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6712 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6713 6714 Stores.push_back(Store); 6715 } 6716 6717 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6718 } 6719 6720 std::pair<SDValue, SDValue> 6721 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6722 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6723 "unaligned indexed loads not implemented!"); 6724 SDValue Chain = LD->getChain(); 6725 SDValue Ptr = LD->getBasePtr(); 6726 EVT VT = LD->getValueType(0); 6727 EVT LoadedVT = LD->getMemoryVT(); 6728 SDLoc dl(LD); 6729 auto &MF = DAG.getMachineFunction(); 6730 6731 if (VT.isFloatingPoint() || VT.isVector()) { 6732 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6733 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6734 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6735 LoadedVT.isVector()) { 6736 // Scalarize the load and let the individual components be handled. 6737 return scalarizeVectorLoad(LD, DAG); 6738 } 6739 6740 // Expand to a (misaligned) integer load of the same size, 6741 // then bitconvert to floating point or vector. 6742 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6743 LD->getMemOperand()); 6744 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6745 if (LoadedVT != VT) 6746 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6747 ISD::ANY_EXTEND, dl, VT, Result); 6748 6749 return std::make_pair(Result, newLoad.getValue(1)); 6750 } 6751 6752 // Copy the value to a (aligned) stack slot using (unaligned) integer 6753 // loads and stores, then do a (aligned) load from the stack slot. 6754 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6755 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6756 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6757 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6758 6759 // Make sure the stack slot is also aligned for the register type. 6760 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6761 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6762 SmallVector<SDValue, 8> Stores; 6763 SDValue StackPtr = StackBase; 6764 unsigned Offset = 0; 6765 6766 EVT PtrVT = Ptr.getValueType(); 6767 EVT StackPtrVT = StackPtr.getValueType(); 6768 6769 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6770 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6771 6772 // Do all but one copies using the full register width. 6773 for (unsigned i = 1; i < NumRegs; i++) { 6774 // Load one integer register's worth from the original location. 6775 SDValue Load = DAG.getLoad( 6776 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6777 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6778 LD->getAAInfo()); 6779 // Follow the load with a store to the stack slot. Remember the store. 6780 Stores.push_back(DAG.getStore( 6781 Load.getValue(1), dl, Load, StackPtr, 6782 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6783 // Increment the pointers. 6784 Offset += RegBytes; 6785 6786 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6787 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6788 } 6789 6790 // The last copy may be partial. Do an extending load. 6791 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6792 8 * (LoadedBytes - Offset)); 6793 SDValue Load = 6794 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6795 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6796 MinAlign(LD->getAlignment(), Offset), 6797 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6798 // Follow the load with a store to the stack slot. Remember the store. 6799 // On big-endian machines this requires a truncating store to ensure 6800 // that the bits end up in the right place. 6801 Stores.push_back(DAG.getTruncStore( 6802 Load.getValue(1), dl, Load, StackPtr, 6803 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6804 6805 // The order of the stores doesn't matter - say it with a TokenFactor. 6806 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6807 6808 // Finally, perform the original load only redirected to the stack slot. 6809 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6810 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6811 LoadedVT); 6812 6813 // Callers expect a MERGE_VALUES node. 6814 return std::make_pair(Load, TF); 6815 } 6816 6817 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6818 "Unaligned load of unsupported type."); 6819 6820 // Compute the new VT that is half the size of the old one. This is an 6821 // integer MVT. 6822 unsigned NumBits = LoadedVT.getSizeInBits(); 6823 EVT NewLoadedVT; 6824 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6825 NumBits >>= 1; 6826 6827 unsigned Alignment = LD->getAlignment(); 6828 unsigned IncrementSize = NumBits / 8; 6829 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6830 6831 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6832 if (HiExtType == ISD::NON_EXTLOAD) 6833 HiExtType = ISD::ZEXTLOAD; 6834 6835 // Load the value in two parts 6836 SDValue Lo, Hi; 6837 if (DAG.getDataLayout().isLittleEndian()) { 6838 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6839 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6840 LD->getAAInfo()); 6841 6842 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6843 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6844 LD->getPointerInfo().getWithOffset(IncrementSize), 6845 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6846 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6847 } else { 6848 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6849 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6850 LD->getAAInfo()); 6851 6852 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6853 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6854 LD->getPointerInfo().getWithOffset(IncrementSize), 6855 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6856 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6857 } 6858 6859 // aggregate the two parts 6860 SDValue ShiftAmount = 6861 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6862 DAG.getDataLayout())); 6863 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6864 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6865 6866 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6867 Hi.getValue(1)); 6868 6869 return std::make_pair(Result, TF); 6870 } 6871 6872 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6873 SelectionDAG &DAG) const { 6874 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6875 "unaligned indexed stores not implemented!"); 6876 SDValue Chain = ST->getChain(); 6877 SDValue Ptr = ST->getBasePtr(); 6878 SDValue Val = ST->getValue(); 6879 EVT VT = Val.getValueType(); 6880 int Alignment = ST->getAlignment(); 6881 auto &MF = DAG.getMachineFunction(); 6882 EVT StoreMemVT = ST->getMemoryVT(); 6883 6884 SDLoc dl(ST); 6885 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6886 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6887 if (isTypeLegal(intVT)) { 6888 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6889 StoreMemVT.isVector()) { 6890 // Scalarize the store and let the individual components be handled. 6891 SDValue Result = scalarizeVectorStore(ST, DAG); 6892 return Result; 6893 } 6894 // Expand to a bitconvert of the value to the integer type of the 6895 // same size, then a (misaligned) int store. 6896 // FIXME: Does not handle truncating floating point stores! 6897 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6898 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6899 Alignment, ST->getMemOperand()->getFlags()); 6900 return Result; 6901 } 6902 // Do a (aligned) store to a stack slot, then copy from the stack slot 6903 // to the final destination using (unaligned) integer loads and stores. 6904 MVT RegVT = getRegisterType( 6905 *DAG.getContext(), 6906 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6907 EVT PtrVT = Ptr.getValueType(); 6908 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6909 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6910 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6911 6912 // Make sure the stack slot is also aligned for the register type. 6913 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6914 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6915 6916 // Perform the original store, only redirected to the stack slot. 6917 SDValue Store = DAG.getTruncStore( 6918 Chain, dl, Val, StackPtr, 6919 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6920 6921 EVT StackPtrVT = StackPtr.getValueType(); 6922 6923 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6924 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6925 SmallVector<SDValue, 8> Stores; 6926 unsigned Offset = 0; 6927 6928 // Do all but one copies using the full register width. 6929 for (unsigned i = 1; i < NumRegs; i++) { 6930 // Load one integer register's worth from the stack slot. 6931 SDValue Load = DAG.getLoad( 6932 RegVT, dl, Store, StackPtr, 6933 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6934 // Store it to the final location. Remember the store. 6935 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6936 ST->getPointerInfo().getWithOffset(Offset), 6937 MinAlign(ST->getAlignment(), Offset), 6938 ST->getMemOperand()->getFlags())); 6939 // Increment the pointers. 6940 Offset += RegBytes; 6941 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6942 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6943 } 6944 6945 // The last store may be partial. Do a truncating store. On big-endian 6946 // machines this requires an extending load from the stack slot to ensure 6947 // that the bits are in the right place. 6948 EVT LoadMemVT = 6949 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6950 6951 // Load from the stack slot. 6952 SDValue Load = DAG.getExtLoad( 6953 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6954 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6955 6956 Stores.push_back( 6957 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6958 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6959 MinAlign(ST->getAlignment(), Offset), 6960 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6961 // The order of the stores doesn't matter - say it with a TokenFactor. 6962 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6963 return Result; 6964 } 6965 6966 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6967 "Unaligned store of unknown type."); 6968 // Get the half-size VT 6969 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6970 int NumBits = NewStoredVT.getSizeInBits(); 6971 int IncrementSize = NumBits / 8; 6972 6973 // Divide the stored value in two parts. 6974 SDValue ShiftAmount = DAG.getConstant( 6975 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6976 SDValue Lo = Val; 6977 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6978 6979 // Store the two parts 6980 SDValue Store1, Store2; 6981 Store1 = DAG.getTruncStore(Chain, dl, 6982 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6983 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6984 ST->getMemOperand()->getFlags()); 6985 6986 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6987 Alignment = MinAlign(Alignment, IncrementSize); 6988 Store2 = DAG.getTruncStore( 6989 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6990 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6991 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6992 6993 SDValue Result = 6994 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6995 return Result; 6996 } 6997 6998 SDValue 6999 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7000 const SDLoc &DL, EVT DataVT, 7001 SelectionDAG &DAG, 7002 bool IsCompressedMemory) const { 7003 SDValue Increment; 7004 EVT AddrVT = Addr.getValueType(); 7005 EVT MaskVT = Mask.getValueType(); 7006 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7007 "Incompatible types of Data and Mask"); 7008 if (IsCompressedMemory) { 7009 // Incrementing the pointer according to number of '1's in the mask. 7010 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7011 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7012 if (MaskIntVT.getSizeInBits() < 32) { 7013 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7014 MaskIntVT = MVT::i32; 7015 } 7016 7017 // Count '1's with POPCNT. 7018 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7019 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7020 // Scale is an element size in bytes. 7021 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7022 AddrVT); 7023 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7024 } else 7025 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7026 7027 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7028 } 7029 7030 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7031 SDValue Idx, 7032 EVT VecVT, 7033 const SDLoc &dl) { 7034 if (isa<ConstantSDNode>(Idx)) 7035 return Idx; 7036 7037 EVT IdxVT = Idx.getValueType(); 7038 unsigned NElts = VecVT.getVectorNumElements(); 7039 if (isPowerOf2_32(NElts)) { 7040 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7041 Log2_32(NElts)); 7042 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7043 DAG.getConstant(Imm, dl, IdxVT)); 7044 } 7045 7046 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7047 DAG.getConstant(NElts - 1, dl, IdxVT)); 7048 } 7049 7050 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7051 SDValue VecPtr, EVT VecVT, 7052 SDValue Index) const { 7053 SDLoc dl(Index); 7054 // Make sure the index type is big enough to compute in. 7055 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7056 7057 EVT EltVT = VecVT.getVectorElementType(); 7058 7059 // Calculate the element offset and add it to the pointer. 7060 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7061 assert(EltSize * 8 == EltVT.getSizeInBits() && 7062 "Converting bits to bytes lost precision"); 7063 7064 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7065 7066 EVT IdxVT = Index.getValueType(); 7067 7068 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7069 DAG.getConstant(EltSize, dl, IdxVT)); 7070 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7071 } 7072 7073 //===----------------------------------------------------------------------===// 7074 // Implementation of Emulated TLS Model 7075 //===----------------------------------------------------------------------===// 7076 7077 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7078 SelectionDAG &DAG) const { 7079 // Access to address of TLS varialbe xyz is lowered to a function call: 7080 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7081 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7082 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7083 SDLoc dl(GA); 7084 7085 ArgListTy Args; 7086 ArgListEntry Entry; 7087 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7088 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7089 StringRef EmuTlsVarName(NameString); 7090 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7091 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7092 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7093 Entry.Ty = VoidPtrType; 7094 Args.push_back(Entry); 7095 7096 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7097 7098 TargetLowering::CallLoweringInfo CLI(DAG); 7099 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7100 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7101 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7102 7103 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7104 // At last for X86 targets, maybe good for other targets too? 7105 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7106 MFI.setAdjustsStack(true); // Is this only for X86 target? 7107 MFI.setHasCalls(true); 7108 7109 assert((GA->getOffset() == 0) && 7110 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7111 return CallResult.first; 7112 } 7113 7114 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7115 SelectionDAG &DAG) const { 7116 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7117 if (!isCtlzFast()) 7118 return SDValue(); 7119 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7120 SDLoc dl(Op); 7121 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7122 if (C->isNullValue() && CC == ISD::SETEQ) { 7123 EVT VT = Op.getOperand(0).getValueType(); 7124 SDValue Zext = Op.getOperand(0); 7125 if (VT.bitsLT(MVT::i32)) { 7126 VT = MVT::i32; 7127 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7128 } 7129 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7130 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7131 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7132 DAG.getConstant(Log2b, dl, MVT::i32)); 7133 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7134 } 7135 } 7136 return SDValue(); 7137 } 7138 7139 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7140 unsigned Opcode = Node->getOpcode(); 7141 SDValue LHS = Node->getOperand(0); 7142 SDValue RHS = Node->getOperand(1); 7143 EVT VT = LHS.getValueType(); 7144 SDLoc dl(Node); 7145 7146 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7147 assert(VT.isInteger() && "Expected operands to be integers"); 7148 7149 // usub.sat(a, b) -> umax(a, b) - b 7150 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7151 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7152 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7153 } 7154 7155 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7156 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7157 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7158 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7159 } 7160 7161 unsigned OverflowOp; 7162 switch (Opcode) { 7163 case ISD::SADDSAT: 7164 OverflowOp = ISD::SADDO; 7165 break; 7166 case ISD::UADDSAT: 7167 OverflowOp = ISD::UADDO; 7168 break; 7169 case ISD::SSUBSAT: 7170 OverflowOp = ISD::SSUBO; 7171 break; 7172 case ISD::USUBSAT: 7173 OverflowOp = ISD::USUBO; 7174 break; 7175 default: 7176 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7177 "addition or subtraction node."); 7178 } 7179 7180 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7181 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7182 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7183 LHS, RHS); 7184 SDValue SumDiff = Result.getValue(0); 7185 SDValue Overflow = Result.getValue(1); 7186 SDValue Zero = DAG.getConstant(0, dl, VT); 7187 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7188 7189 if (Opcode == ISD::UADDSAT) { 7190 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7191 // (LHS + RHS) | OverflowMask 7192 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7193 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7194 } 7195 // Overflow ? 0xffff.... : (LHS + RHS) 7196 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7197 } else if (Opcode == ISD::USUBSAT) { 7198 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7199 // (LHS - RHS) & ~OverflowMask 7200 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7201 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7202 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7203 } 7204 // Overflow ? 0 : (LHS - RHS) 7205 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7206 } else { 7207 // SatMax -> Overflow && SumDiff < 0 7208 // SatMin -> Overflow && SumDiff >= 0 7209 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7210 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7211 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7212 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7213 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7214 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7215 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7216 } 7217 } 7218 7219 SDValue 7220 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7221 assert((Node->getOpcode() == ISD::SMULFIX || 7222 Node->getOpcode() == ISD::UMULFIX || 7223 Node->getOpcode() == ISD::SMULFIXSAT || 7224 Node->getOpcode() == ISD::UMULFIXSAT) && 7225 "Expected a fixed point multiplication opcode"); 7226 7227 SDLoc dl(Node); 7228 SDValue LHS = Node->getOperand(0); 7229 SDValue RHS = Node->getOperand(1); 7230 EVT VT = LHS.getValueType(); 7231 unsigned Scale = Node->getConstantOperandVal(2); 7232 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7233 Node->getOpcode() == ISD::UMULFIXSAT); 7234 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7235 Node->getOpcode() == ISD::SMULFIXSAT); 7236 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7237 unsigned VTSize = VT.getScalarSizeInBits(); 7238 7239 if (!Scale) { 7240 // [us]mul.fix(a, b, 0) -> mul(a, b) 7241 if (!Saturating) { 7242 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7243 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7244 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7245 SDValue Result = 7246 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7247 SDValue Product = Result.getValue(0); 7248 SDValue Overflow = Result.getValue(1); 7249 SDValue Zero = DAG.getConstant(0, dl, VT); 7250 7251 APInt MinVal = APInt::getSignedMinValue(VTSize); 7252 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7253 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7254 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7255 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7256 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7257 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7258 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7259 SDValue Result = 7260 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7261 SDValue Product = Result.getValue(0); 7262 SDValue Overflow = Result.getValue(1); 7263 7264 APInt MaxVal = APInt::getMaxValue(VTSize); 7265 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7266 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7267 } 7268 } 7269 7270 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7271 "Expected scale to be less than the number of bits if signed or at " 7272 "most the number of bits if unsigned."); 7273 assert(LHS.getValueType() == RHS.getValueType() && 7274 "Expected both operands to be the same type"); 7275 7276 // Get the upper and lower bits of the result. 7277 SDValue Lo, Hi; 7278 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7279 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7280 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7281 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7282 Lo = Result.getValue(0); 7283 Hi = Result.getValue(1); 7284 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7285 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7286 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7287 } else if (VT.isVector()) { 7288 return SDValue(); 7289 } else { 7290 report_fatal_error("Unable to expand fixed point multiplication."); 7291 } 7292 7293 if (Scale == VTSize) 7294 // Result is just the top half since we'd be shifting by the width of the 7295 // operand. Overflow impossible so this works for both UMULFIX and 7296 // UMULFIXSAT. 7297 return Hi; 7298 7299 // The result will need to be shifted right by the scale since both operands 7300 // are scaled. The result is given to us in 2 halves, so we only want part of 7301 // both in the result. 7302 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7303 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7304 DAG.getConstant(Scale, dl, ShiftTy)); 7305 if (!Saturating) 7306 return Result; 7307 7308 if (!Signed) { 7309 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7310 // widened multiplication) aren't all zeroes. 7311 7312 // Saturate to max if ((Hi >> Scale) != 0), 7313 // which is the same as if (Hi > ((1 << Scale) - 1)) 7314 APInt MaxVal = APInt::getMaxValue(VTSize); 7315 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7316 dl, VT); 7317 Result = DAG.getSelectCC(dl, Hi, LowMask, 7318 DAG.getConstant(MaxVal, dl, VT), Result, 7319 ISD::SETUGT); 7320 7321 return Result; 7322 } 7323 7324 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7325 // widened multiplication) aren't all ones or all zeroes. 7326 7327 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7328 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7329 7330 if (Scale == 0) { 7331 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7332 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7333 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7334 // Saturated to SatMin if wide product is negative, and SatMax if wide 7335 // product is positive ... 7336 SDValue Zero = DAG.getConstant(0, dl, VT); 7337 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7338 ISD::SETLT); 7339 // ... but only if we overflowed. 7340 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7341 } 7342 7343 // We handled Scale==0 above so all the bits to examine is in Hi. 7344 7345 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7346 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7347 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7348 dl, VT); 7349 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7350 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7351 // which is the same as if (HI < (-1 << (Scale - 1)) 7352 SDValue HighMask = 7353 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7354 dl, VT); 7355 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7356 return Result; 7357 } 7358 7359 SDValue 7360 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7361 SDValue LHS, SDValue RHS, 7362 unsigned Scale, SelectionDAG &DAG) const { 7363 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7364 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7365 "Expected a fixed point division opcode"); 7366 7367 EVT VT = LHS.getValueType(); 7368 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7369 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7370 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7371 7372 // If there is enough room in the type to upscale the LHS or downscale the 7373 // RHS before the division, we can perform it in this type without having to 7374 // resize. For signed operations, the LHS headroom is the number of 7375 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7376 // The headroom for the RHS is the number of trailing zeroes. 7377 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7378 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7379 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7380 7381 // For signed saturating operations, we need to be able to detect true integer 7382 // division overflow; that is, when you have MIN / -EPS. However, this 7383 // is undefined behavior and if we emit divisions that could take such 7384 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7385 // example). 7386 // Avoid this by requiring an extra bit so that we never get this case. 7387 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7388 // signed saturating division, we need to emit a whopping 32-bit division. 7389 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7390 return SDValue(); 7391 7392 unsigned LHSShift = std::min(LHSLead, Scale); 7393 unsigned RHSShift = Scale - LHSShift; 7394 7395 // At this point, we know that if we shift the LHS up by LHSShift and the 7396 // RHS down by RHSShift, we can emit a regular division with a final scaling 7397 // factor of Scale. 7398 7399 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7400 if (LHSShift) 7401 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7402 DAG.getConstant(LHSShift, dl, ShiftTy)); 7403 if (RHSShift) 7404 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7405 DAG.getConstant(RHSShift, dl, ShiftTy)); 7406 7407 SDValue Quot; 7408 if (Signed) { 7409 // For signed operations, if the resulting quotient is negative and the 7410 // remainder is nonzero, subtract 1 from the quotient to round towards 7411 // negative infinity. 7412 SDValue Rem; 7413 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7414 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7415 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7416 if (isTypeLegal(VT) && 7417 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7418 Quot = DAG.getNode(ISD::SDIVREM, dl, 7419 DAG.getVTList(VT, VT), 7420 LHS, RHS); 7421 Rem = Quot.getValue(1); 7422 Quot = Quot.getValue(0); 7423 } else { 7424 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7425 LHS, RHS); 7426 Rem = DAG.getNode(ISD::SREM, dl, VT, 7427 LHS, RHS); 7428 } 7429 SDValue Zero = DAG.getConstant(0, dl, VT); 7430 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7431 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7432 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7433 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7434 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7435 DAG.getConstant(1, dl, VT)); 7436 Quot = DAG.getSelect(dl, VT, 7437 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7438 Sub1, Quot); 7439 } else 7440 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7441 LHS, RHS); 7442 7443 return Quot; 7444 } 7445 7446 void TargetLowering::expandUADDSUBO( 7447 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7448 SDLoc dl(Node); 7449 SDValue LHS = Node->getOperand(0); 7450 SDValue RHS = Node->getOperand(1); 7451 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7452 7453 // If ADD/SUBCARRY is legal, use that instead. 7454 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7455 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7456 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7457 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7458 { LHS, RHS, CarryIn }); 7459 Result = SDValue(NodeCarry.getNode(), 0); 7460 Overflow = SDValue(NodeCarry.getNode(), 1); 7461 return; 7462 } 7463 7464 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7465 LHS.getValueType(), LHS, RHS); 7466 7467 EVT ResultType = Node->getValueType(1); 7468 EVT SetCCType = getSetCCResultType( 7469 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7470 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7471 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7472 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7473 } 7474 7475 void TargetLowering::expandSADDSUBO( 7476 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7477 SDLoc dl(Node); 7478 SDValue LHS = Node->getOperand(0); 7479 SDValue RHS = Node->getOperand(1); 7480 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7481 7482 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7483 LHS.getValueType(), LHS, RHS); 7484 7485 EVT ResultType = Node->getValueType(1); 7486 EVT OType = getSetCCResultType( 7487 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7488 7489 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7490 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7491 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7492 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7493 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7494 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7495 return; 7496 } 7497 7498 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7499 7500 // For an addition, the result should be less than one of the operands (LHS) 7501 // if and only if the other operand (RHS) is negative, otherwise there will 7502 // be overflow. 7503 // For a subtraction, the result should be less than one of the operands 7504 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7505 // otherwise there will be overflow. 7506 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7507 SDValue ConditionRHS = 7508 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7509 7510 Overflow = DAG.getBoolExtOrTrunc( 7511 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7512 ResultType, ResultType); 7513 } 7514 7515 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7516 SDValue &Overflow, SelectionDAG &DAG) const { 7517 SDLoc dl(Node); 7518 EVT VT = Node->getValueType(0); 7519 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7520 SDValue LHS = Node->getOperand(0); 7521 SDValue RHS = Node->getOperand(1); 7522 bool isSigned = Node->getOpcode() == ISD::SMULO; 7523 7524 // For power-of-two multiplications we can use a simpler shift expansion. 7525 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7526 const APInt &C = RHSC->getAPIntValue(); 7527 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7528 if (C.isPowerOf2()) { 7529 // smulo(x, signed_min) is same as umulo(x, signed_min). 7530 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7531 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7532 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7533 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7534 Overflow = DAG.getSetCC(dl, SetCCVT, 7535 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7536 dl, VT, Result, ShiftAmt), 7537 LHS, ISD::SETNE); 7538 return true; 7539 } 7540 } 7541 7542 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7543 if (VT.isVector()) 7544 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7545 VT.getVectorNumElements()); 7546 7547 SDValue BottomHalf; 7548 SDValue TopHalf; 7549 static const unsigned Ops[2][3] = 7550 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7551 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7552 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7553 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7554 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7555 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7556 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7557 RHS); 7558 TopHalf = BottomHalf.getValue(1); 7559 } else if (isTypeLegal(WideVT)) { 7560 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7561 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7562 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7563 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7564 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7565 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7566 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7567 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7568 } else { 7569 if (VT.isVector()) 7570 return false; 7571 7572 // We can fall back to a libcall with an illegal type for the MUL if we 7573 // have a libcall big enough. 7574 // Also, we can fall back to a division in some cases, but that's a big 7575 // performance hit in the general case. 7576 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7577 if (WideVT == MVT::i16) 7578 LC = RTLIB::MUL_I16; 7579 else if (WideVT == MVT::i32) 7580 LC = RTLIB::MUL_I32; 7581 else if (WideVT == MVT::i64) 7582 LC = RTLIB::MUL_I64; 7583 else if (WideVT == MVT::i128) 7584 LC = RTLIB::MUL_I128; 7585 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7586 7587 SDValue HiLHS; 7588 SDValue HiRHS; 7589 if (isSigned) { 7590 // The high part is obtained by SRA'ing all but one of the bits of low 7591 // part. 7592 unsigned LoSize = VT.getSizeInBits(); 7593 HiLHS = 7594 DAG.getNode(ISD::SRA, dl, VT, LHS, 7595 DAG.getConstant(LoSize - 1, dl, 7596 getPointerTy(DAG.getDataLayout()))); 7597 HiRHS = 7598 DAG.getNode(ISD::SRA, dl, VT, RHS, 7599 DAG.getConstant(LoSize - 1, dl, 7600 getPointerTy(DAG.getDataLayout()))); 7601 } else { 7602 HiLHS = DAG.getConstant(0, dl, VT); 7603 HiRHS = DAG.getConstant(0, dl, VT); 7604 } 7605 7606 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7607 // pre-lowered to the correct types. This all depends upon WideVT not 7608 // being a legal type for the architecture and thus has to be split to 7609 // two arguments. 7610 SDValue Ret; 7611 TargetLowering::MakeLibCallOptions CallOptions; 7612 CallOptions.setSExt(isSigned); 7613 CallOptions.setIsPostTypeLegalization(true); 7614 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7615 // Halves of WideVT are packed into registers in different order 7616 // depending on platform endianness. This is usually handled by 7617 // the C calling convention, but we can't defer to it in 7618 // the legalizer. 7619 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7620 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7621 } else { 7622 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7623 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7624 } 7625 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7626 "Ret value is a collection of constituent nodes holding result."); 7627 if (DAG.getDataLayout().isLittleEndian()) { 7628 // Same as above. 7629 BottomHalf = Ret.getOperand(0); 7630 TopHalf = Ret.getOperand(1); 7631 } else { 7632 BottomHalf = Ret.getOperand(1); 7633 TopHalf = Ret.getOperand(0); 7634 } 7635 } 7636 7637 Result = BottomHalf; 7638 if (isSigned) { 7639 SDValue ShiftAmt = DAG.getConstant( 7640 VT.getScalarSizeInBits() - 1, dl, 7641 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7642 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7643 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7644 } else { 7645 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7646 DAG.getConstant(0, dl, VT), ISD::SETNE); 7647 } 7648 7649 // Truncate the result if SetCC returns a larger type than needed. 7650 EVT RType = Node->getValueType(1); 7651 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7652 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7653 7654 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7655 "Unexpected result type for S/UMULO legalization"); 7656 return true; 7657 } 7658 7659 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7660 SDLoc dl(Node); 7661 bool NoNaN = Node->getFlags().hasNoNaNs(); 7662 unsigned BaseOpcode = 0; 7663 switch (Node->getOpcode()) { 7664 default: llvm_unreachable("Expected VECREDUCE opcode"); 7665 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7666 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7667 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7668 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7669 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7670 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7671 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7672 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7673 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7674 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7675 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7676 case ISD::VECREDUCE_FMAX: 7677 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7678 break; 7679 case ISD::VECREDUCE_FMIN: 7680 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7681 break; 7682 } 7683 7684 SDValue Op = Node->getOperand(0); 7685 EVT VT = Op.getValueType(); 7686 7687 // Try to use a shuffle reduction for power of two vectors. 7688 if (VT.isPow2VectorType()) { 7689 while (VT.getVectorNumElements() > 1) { 7690 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7691 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7692 break; 7693 7694 SDValue Lo, Hi; 7695 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7696 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7697 VT = HalfVT; 7698 } 7699 } 7700 7701 EVT EltVT = VT.getVectorElementType(); 7702 unsigned NumElts = VT.getVectorNumElements(); 7703 7704 SmallVector<SDValue, 8> Ops; 7705 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7706 7707 SDValue Res = Ops[0]; 7708 for (unsigned i = 1; i < NumElts; i++) 7709 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7710 7711 // Result type may be wider than element type. 7712 if (EltVT != Node->getValueType(0)) 7713 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7714 return Res; 7715 } 7716