1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function *F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore noalias because it doesn't affect the call sequence. 58 AttributeSet CallerAttrs = F->getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias).hasAttributes()) 61 return false; 62 63 // It's not safe to eliminate the sign / zero extension of the return value. 64 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 65 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 66 return false; 67 68 // Check if the only use is a function return node. 69 return isUsedByReturnOnly(Node, Chain); 70 } 71 72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 73 const uint32_t *CallerPreservedMask, 74 const SmallVectorImpl<CCValAssign> &ArgLocs, 75 const SmallVectorImpl<SDValue> &OutVals) const { 76 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 77 const CCValAssign &ArgLoc = ArgLocs[I]; 78 if (!ArgLoc.isRegLoc()) 79 continue; 80 unsigned Reg = ArgLoc.getLocReg(); 81 // Only look at callee saved registers. 82 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 83 continue; 84 // Check that we pass the value used for the caller. 85 // (We look for a CopyFromReg reading a virtual register that is used 86 // for the function live-in value of register Reg) 87 SDValue Value = OutVals[I]; 88 if (Value->getOpcode() != ISD::CopyFromReg) 89 return false; 90 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 91 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 92 return false; 93 } 94 return true; 95 } 96 97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 98 /// and called function attributes. 99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 100 unsigned AttrIdx) { 101 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 102 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 103 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 104 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 105 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 106 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 107 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 108 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 109 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 110 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 111 Alignment = CS->getParamAlignment(AttrIdx); 112 } 113 114 /// Generate a libcall taking the given operands as arguments and returning a 115 /// result of type RetVT. 116 std::pair<SDValue, SDValue> 117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 118 ArrayRef<SDValue> Ops, bool isSigned, 119 const SDLoc &dl, bool doesNotReturn, 120 bool isReturnValueUsed) const { 121 TargetLowering::ArgListTy Args; 122 Args.reserve(Ops.size()); 123 124 TargetLowering::ArgListEntry Entry; 125 for (SDValue Op : Ops) { 126 Entry.Node = Op; 127 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 128 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 129 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Args.push_back(Entry); 131 } 132 133 if (LC == RTLIB::UNKNOWN_LIBCALL) 134 report_fatal_error("Unsupported library call operation!"); 135 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 136 getPointerTy(DAG.getDataLayout())); 137 138 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 139 TargetLowering::CallLoweringInfo CLI(DAG); 140 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 141 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 142 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 143 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 144 .setSExtResult(signExtend).setZExtResult(!signExtend); 145 return LowerCallTo(CLI); 146 } 147 148 /// Soften the operands of a comparison. This code is shared among BR_CC, 149 /// SELECT_CC, and SETCC handlers. 150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 151 SDValue &NewLHS, SDValue &NewRHS, 152 ISD::CondCode &CCCode, 153 const SDLoc &dl) const { 154 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 155 && "Unsupported setcc type!"); 156 157 // Expand into one or more soft-fp libcall(s). 158 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 159 bool ShouldInvertCC = false; 160 switch (CCCode) { 161 case ISD::SETEQ: 162 case ISD::SETOEQ: 163 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 164 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 165 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 166 break; 167 case ISD::SETNE: 168 case ISD::SETUNE: 169 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 170 (VT == MVT::f64) ? RTLIB::UNE_F64 : 171 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 172 break; 173 case ISD::SETGE: 174 case ISD::SETOGE: 175 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 176 (VT == MVT::f64) ? RTLIB::OGE_F64 : 177 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 178 break; 179 case ISD::SETLT: 180 case ISD::SETOLT: 181 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 182 (VT == MVT::f64) ? RTLIB::OLT_F64 : 183 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 184 break; 185 case ISD::SETLE: 186 case ISD::SETOLE: 187 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : 189 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 190 break; 191 case ISD::SETGT: 192 case ISD::SETOGT: 193 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 194 (VT == MVT::f64) ? RTLIB::OGT_F64 : 195 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 196 break; 197 case ISD::SETUO: 198 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 199 (VT == MVT::f64) ? RTLIB::UO_F64 : 200 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 201 break; 202 case ISD::SETO: 203 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 204 (VT == MVT::f64) ? RTLIB::O_F64 : 205 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 206 break; 207 case ISD::SETONE: 208 // SETONE = SETOLT | SETOGT 209 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 210 (VT == MVT::f64) ? RTLIB::OLT_F64 : 211 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 212 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 213 (VT == MVT::f64) ? RTLIB::OGT_F64 : 214 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 215 break; 216 case ISD::SETUEQ: 217 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 218 (VT == MVT::f64) ? RTLIB::UO_F64 : 219 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 221 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 222 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 223 break; 224 default: 225 // Invert CC for unordered comparisons 226 ShouldInvertCC = true; 227 switch (CCCode) { 228 case ISD::SETULT: 229 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 230 (VT == MVT::f64) ? RTLIB::OGE_F64 : 231 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 232 break; 233 case ISD::SETULE: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 235 (VT == MVT::f64) ? RTLIB::OGT_F64 : 236 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 237 break; 238 case ISD::SETUGT: 239 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 240 (VT == MVT::f64) ? RTLIB::OLE_F64 : 241 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 242 break; 243 case ISD::SETUGE: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 245 (VT == MVT::f64) ? RTLIB::OLT_F64 : 246 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 247 break; 248 default: llvm_unreachable("Do not know how to soften this setcc!"); 249 } 250 } 251 252 // Use the target specific return value for comparions lib calls. 253 EVT RetVT = getCmpLibcallReturnType(); 254 SDValue Ops[2] = {NewLHS, NewRHS}; 255 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 256 dl).first; 257 NewRHS = DAG.getConstant(0, dl, RetVT); 258 259 CCCode = getCmpLibcallCC(LC1); 260 if (ShouldInvertCC) 261 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 262 263 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 264 SDValue Tmp = DAG.getNode( 265 ISD::SETCC, dl, 266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 267 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 268 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 269 dl).first; 270 NewLHS = DAG.getNode( 271 ISD::SETCC, dl, 272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 273 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 274 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 275 NewRHS = SDValue(); 276 } 277 } 278 279 /// Return the entry encoding for a jump table in the current function. The 280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 281 unsigned TargetLowering::getJumpTableEncoding() const { 282 // In non-pic modes, just use the address of a block. 283 if (!isPositionIndependent()) 284 return MachineJumpTableInfo::EK_BlockAddress; 285 286 // In PIC mode, if the target supports a GPRel32 directive, use it. 287 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 288 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 289 290 // Otherwise, use a label difference. 291 return MachineJumpTableInfo::EK_LabelDifference32; 292 } 293 294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 295 SelectionDAG &DAG) const { 296 // If our PIC model is GP relative, use the global offset table as the base. 297 unsigned JTEncoding = getJumpTableEncoding(); 298 299 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 300 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 301 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 302 303 return Table; 304 } 305 306 /// This returns the relocation base for the given PIC jumptable, the same as 307 /// getPICJumpTableRelocBase, but as an MCExpr. 308 const MCExpr * 309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 310 unsigned JTI,MCContext &Ctx) const{ 311 // The normal PIC reloc base is the label at the start of the jump table. 312 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 313 } 314 315 bool 316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 317 const TargetMachine &TM = getTargetMachine(); 318 const GlobalValue *GV = GA->getGlobal(); 319 320 // If the address is not even local to this DSO we will have to load it from 321 // a got and then add the offset. 322 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 323 return false; 324 325 // If the code is position independent we will have to add a base register. 326 if (isPositionIndependent()) 327 return false; 328 329 // Otherwise we can do it. 330 return true; 331 } 332 333 //===----------------------------------------------------------------------===// 334 // Optimization Methods 335 //===----------------------------------------------------------------------===// 336 337 /// Check to see if the specified operand of the specified instruction is a 338 /// constant integer. If so, check to see if there are any bits set in the 339 /// constant that are not demanded. If so, shrink the constant and return true. 340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 341 const APInt &Demanded) { 342 SDLoc dl(Op); 343 344 // FIXME: ISD::SELECT, ISD::SELECT_CC 345 switch (Op.getOpcode()) { 346 default: break; 347 case ISD::XOR: 348 case ISD::AND: 349 case ISD::OR: { 350 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 351 if (!C) return false; 352 353 if (Op.getOpcode() == ISD::XOR && 354 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 355 return false; 356 357 // if we can expand it to have all bits set, do it 358 if (C->getAPIntValue().intersects(~Demanded)) { 359 EVT VT = Op.getValueType(); 360 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 361 DAG.getConstant(Demanded & 362 C->getAPIntValue(), 363 dl, VT)); 364 return CombineTo(Op, New); 365 } 366 367 break; 368 } 369 } 370 371 return false; 372 } 373 374 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 375 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 376 /// generalized for targets with other types of implicit widening casts. 377 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 378 unsigned BitWidth, 379 const APInt &Demanded, 380 const SDLoc &dl) { 381 assert(Op.getNumOperands() == 2 && 382 "ShrinkDemandedOp only supports binary operators!"); 383 assert(Op.getNode()->getNumValues() == 1 && 384 "ShrinkDemandedOp only supports nodes with one result!"); 385 386 // Early return, as this function cannot handle vector types. 387 if (Op.getValueType().isVector()) 388 return false; 389 390 // Don't do this if the node has another user, which may require the 391 // full value. 392 if (!Op.getNode()->hasOneUse()) 393 return false; 394 395 // Search for the smallest integer type with free casts to and from 396 // Op's type. For expedience, just check power-of-2 integer types. 397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 398 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 399 unsigned SmallVTBits = DemandedSize; 400 if (!isPowerOf2_32(SmallVTBits)) 401 SmallVTBits = NextPowerOf2(SmallVTBits); 402 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 403 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 404 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 405 TLI.isZExtFree(SmallVT, Op.getValueType())) { 406 // We found a type with free casts. 407 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 408 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 409 Op.getNode()->getOperand(0)), 410 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 411 Op.getNode()->getOperand(1))); 412 bool NeedZext = DemandedSize > SmallVTBits; 413 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 414 dl, Op.getValueType(), X); 415 return CombineTo(Op, Z); 416 } 417 } 418 return false; 419 } 420 421 /// Look at Op. At this point, we know that only the DemandedMask bits of the 422 /// result of Op are ever used downstream. If we can use this information to 423 /// simplify Op, create a new simplified DAG node and return true, returning the 424 /// original and new nodes in Old and New. Otherwise, analyze the expression and 425 /// return a mask of KnownOne and KnownZero bits for the expression (used to 426 /// simplify the caller). The KnownZero/One bits may only be accurate for those 427 /// bits in the DemandedMask. 428 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 429 const APInt &DemandedMask, 430 APInt &KnownZero, 431 APInt &KnownOne, 432 TargetLoweringOpt &TLO, 433 unsigned Depth) const { 434 unsigned BitWidth = DemandedMask.getBitWidth(); 435 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 436 "Mask size mismatches value type size!"); 437 APInt NewMask = DemandedMask; 438 SDLoc dl(Op); 439 auto &DL = TLO.DAG.getDataLayout(); 440 441 // Don't know anything. 442 KnownZero = KnownOne = APInt(BitWidth, 0); 443 444 // Other users may use these bits. 445 if (!Op.getNode()->hasOneUse()) { 446 if (Depth != 0) { 447 // If not at the root, Just compute the KnownZero/KnownOne bits to 448 // simplify things downstream. 449 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 450 return false; 451 } 452 // If this is the root being simplified, allow it to have multiple uses, 453 // just set the NewMask to all bits. 454 NewMask = APInt::getAllOnesValue(BitWidth); 455 } else if (DemandedMask == 0) { 456 // Not demanding any bits from Op. 457 if (!Op.isUndef()) 458 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 459 return false; 460 } else if (Depth == 6) { // Limit search depth. 461 return false; 462 } 463 464 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 465 switch (Op.getOpcode()) { 466 case ISD::Constant: 467 // We know all of the bits for a constant! 468 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 469 KnownZero = ~KnownOne; 470 return false; // Don't fall through, will infinitely loop. 471 case ISD::BUILD_VECTOR: 472 // Collect the known bits that are shared by every constant vector element. 473 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 474 for (SDValue SrcOp : Op->ops()) { 475 if (!isa<ConstantSDNode>(SrcOp)) { 476 // We can only handle all constant values - bail out with no known bits. 477 KnownZero = KnownOne = APInt(BitWidth, 0); 478 return false; 479 } 480 KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 481 KnownZero2 = ~KnownOne2; 482 483 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 484 if (KnownOne2.getBitWidth() != BitWidth) { 485 assert(KnownOne2.getBitWidth() > BitWidth && 486 KnownZero2.getBitWidth() > BitWidth && 487 "Expected BUILD_VECTOR implicit truncation"); 488 KnownOne2 = KnownOne2.trunc(BitWidth); 489 KnownZero2 = KnownZero2.trunc(BitWidth); 490 } 491 492 // Known bits are the values that are shared by every element. 493 // TODO: support per-element known bits. 494 KnownOne &= KnownOne2; 495 KnownZero &= KnownZero2; 496 } 497 return false; // Don't fall through, will infinitely loop. 498 case ISD::AND: 499 // If the RHS is a constant, check to see if the LHS would be zero without 500 // using the bits from the RHS. Below, we use knowledge about the RHS to 501 // simplify the LHS, here we're using information from the LHS to simplify 502 // the RHS. 503 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 504 APInt LHSZero, LHSOne; 505 // Do not increment Depth here; that can cause an infinite loop. 506 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 507 // If the LHS already has zeros where RHSC does, this and is dead. 508 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 509 return TLO.CombineTo(Op, Op.getOperand(0)); 510 // If any of the set bits in the RHS are known zero on the LHS, shrink 511 // the constant. 512 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 513 return true; 514 } 515 516 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 517 KnownOne, TLO, Depth+1)) 518 return true; 519 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 520 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 521 KnownZero2, KnownOne2, TLO, Depth+1)) 522 return true; 523 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 524 525 // If all of the demanded bits are known one on one side, return the other. 526 // These bits cannot contribute to the result of the 'and'. 527 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 528 return TLO.CombineTo(Op, Op.getOperand(0)); 529 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 530 return TLO.CombineTo(Op, Op.getOperand(1)); 531 // If all of the demanded bits in the inputs are known zeros, return zero. 532 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 533 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 534 // If the RHS is a constant, see if we can simplify it. 535 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 536 return true; 537 // If the operation can be done in a smaller type, do so. 538 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 539 return true; 540 541 // Output known-1 bits are only known if set in both the LHS & RHS. 542 KnownOne &= KnownOne2; 543 // Output known-0 are known to be clear if zero in either the LHS | RHS. 544 KnownZero |= KnownZero2; 545 break; 546 case ISD::OR: 547 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 548 KnownOne, TLO, Depth+1)) 549 return true; 550 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 551 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 552 KnownZero2, KnownOne2, TLO, Depth+1)) 553 return true; 554 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 555 556 // If all of the demanded bits are known zero on one side, return the other. 557 // These bits cannot contribute to the result of the 'or'. 558 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 559 return TLO.CombineTo(Op, Op.getOperand(0)); 560 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 561 return TLO.CombineTo(Op, Op.getOperand(1)); 562 // If all of the potentially set bits on one side are known to be set on 563 // the other side, just use the 'other' side. 564 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 565 return TLO.CombineTo(Op, Op.getOperand(0)); 566 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 567 return TLO.CombineTo(Op, Op.getOperand(1)); 568 // If the RHS is a constant, see if we can simplify it. 569 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 570 return true; 571 // If the operation can be done in a smaller type, do so. 572 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 573 return true; 574 575 // Output known-0 bits are only known if clear in both the LHS & RHS. 576 KnownZero &= KnownZero2; 577 // Output known-1 are known to be set if set in either the LHS | RHS. 578 KnownOne |= KnownOne2; 579 break; 580 case ISD::XOR: 581 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 582 KnownOne, TLO, Depth+1)) 583 return true; 584 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 585 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 586 KnownOne2, TLO, Depth+1)) 587 return true; 588 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 589 590 // If all of the demanded bits are known zero on one side, return the other. 591 // These bits cannot contribute to the result of the 'xor'. 592 if ((KnownZero & NewMask) == NewMask) 593 return TLO.CombineTo(Op, Op.getOperand(0)); 594 if ((KnownZero2 & NewMask) == NewMask) 595 return TLO.CombineTo(Op, Op.getOperand(1)); 596 // If the operation can be done in a smaller type, do so. 597 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 598 return true; 599 600 // If all of the unknown bits are known to be zero on one side or the other 601 // (but not both) turn this into an *inclusive* or. 602 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 603 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 604 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 605 Op.getOperand(0), 606 Op.getOperand(1))); 607 608 // Output known-0 bits are known if clear or set in both the LHS & RHS. 609 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 610 // Output known-1 are known to be set if set in only one of the LHS, RHS. 611 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 612 613 // If all of the demanded bits on one side are known, and all of the set 614 // bits on that side are also known to be set on the other side, turn this 615 // into an AND, as we know the bits will be cleared. 616 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 617 // NB: it is okay if more bits are known than are requested 618 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 619 if (KnownOne == KnownOne2) { // set bits are the same on both sides 620 EVT VT = Op.getValueType(); 621 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 622 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 623 Op.getOperand(0), ANDC)); 624 } 625 } 626 627 // If the RHS is a constant, see if we can simplify it. 628 // for XOR, we prefer to force bits to 1 if they will make a -1. 629 // if we can't force bits, try to shrink constant 630 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 631 APInt Expanded = C->getAPIntValue() | (~NewMask); 632 // if we can expand it to have all bits set, do it 633 if (Expanded.isAllOnesValue()) { 634 if (Expanded != C->getAPIntValue()) { 635 EVT VT = Op.getValueType(); 636 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 637 TLO.DAG.getConstant(Expanded, dl, VT)); 638 return TLO.CombineTo(Op, New); 639 } 640 // if it already has all the bits set, nothing to change 641 // but don't shrink either! 642 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 643 return true; 644 } 645 } 646 647 KnownZero = KnownZeroOut; 648 KnownOne = KnownOneOut; 649 break; 650 case ISD::SELECT: 651 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 652 KnownOne, TLO, Depth+1)) 653 return true; 654 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 655 KnownOne2, TLO, Depth+1)) 656 return true; 657 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 658 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 659 660 // If the operands are constants, see if we can simplify them. 661 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 662 return true; 663 664 // Only known if known in both the LHS and RHS. 665 KnownOne &= KnownOne2; 666 KnownZero &= KnownZero2; 667 break; 668 case ISD::SELECT_CC: 669 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 670 KnownOne, TLO, Depth+1)) 671 return true; 672 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 673 KnownOne2, TLO, Depth+1)) 674 return true; 675 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 676 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 677 678 // If the operands are constants, see if we can simplify them. 679 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 680 return true; 681 682 // Only known if known in both the LHS and RHS. 683 KnownOne &= KnownOne2; 684 KnownZero &= KnownZero2; 685 break; 686 case ISD::SHL: 687 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 688 unsigned ShAmt = SA->getZExtValue(); 689 SDValue InOp = Op.getOperand(0); 690 691 // If the shift count is an invalid immediate, don't do anything. 692 if (ShAmt >= BitWidth) 693 break; 694 695 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 696 // single shift. We can do this if the bottom bits (which are shifted 697 // out) are never demanded. 698 if (InOp.getOpcode() == ISD::SRL && 699 isa<ConstantSDNode>(InOp.getOperand(1))) { 700 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 701 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 702 unsigned Opc = ISD::SHL; 703 int Diff = ShAmt-C1; 704 if (Diff < 0) { 705 Diff = -Diff; 706 Opc = ISD::SRL; 707 } 708 709 SDValue NewSA = 710 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 711 EVT VT = Op.getValueType(); 712 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 713 InOp.getOperand(0), NewSA)); 714 } 715 } 716 717 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 718 KnownZero, KnownOne, TLO, Depth+1)) 719 return true; 720 721 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 722 // are not demanded. This will likely allow the anyext to be folded away. 723 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 724 SDValue InnerOp = InOp.getNode()->getOperand(0); 725 EVT InnerVT = InnerOp.getValueType(); 726 unsigned InnerBits = InnerVT.getSizeInBits(); 727 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 728 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 729 EVT ShTy = getShiftAmountTy(InnerVT, DL); 730 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 731 ShTy = InnerVT; 732 SDValue NarrowShl = 733 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 734 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 735 return 736 TLO.CombineTo(Op, 737 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 738 NarrowShl)); 739 } 740 // Repeat the SHL optimization above in cases where an extension 741 // intervenes: (shl (anyext (shr x, c1)), c2) to 742 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 743 // aren't demanded (as above) and that the shifted upper c1 bits of 744 // x aren't demanded. 745 if (InOp.hasOneUse() && 746 InnerOp.getOpcode() == ISD::SRL && 747 InnerOp.hasOneUse() && 748 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 749 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 750 ->getZExtValue(); 751 if (InnerShAmt < ShAmt && 752 InnerShAmt < InnerBits && 753 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 754 NewMask.trunc(ShAmt) == 0) { 755 SDValue NewSA = 756 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 757 Op.getOperand(1).getValueType()); 758 EVT VT = Op.getValueType(); 759 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 760 InnerOp.getOperand(0)); 761 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 762 NewExt, NewSA)); 763 } 764 } 765 } 766 767 KnownZero <<= SA->getZExtValue(); 768 KnownOne <<= SA->getZExtValue(); 769 // low bits known zero. 770 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 771 } 772 break; 773 case ISD::SRL: 774 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 775 EVT VT = Op.getValueType(); 776 unsigned ShAmt = SA->getZExtValue(); 777 unsigned VTSize = VT.getSizeInBits(); 778 SDValue InOp = Op.getOperand(0); 779 780 // If the shift count is an invalid immediate, don't do anything. 781 if (ShAmt >= BitWidth) 782 break; 783 784 APInt InDemandedMask = (NewMask << ShAmt); 785 786 // If the shift is exact, then it does demand the low bits (and knows that 787 // they are zero). 788 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 789 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 790 791 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 792 // single shift. We can do this if the top bits (which are shifted out) 793 // are never demanded. 794 if (InOp.getOpcode() == ISD::SHL && 795 isa<ConstantSDNode>(InOp.getOperand(1))) { 796 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 797 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 798 unsigned Opc = ISD::SRL; 799 int Diff = ShAmt-C1; 800 if (Diff < 0) { 801 Diff = -Diff; 802 Opc = ISD::SHL; 803 } 804 805 SDValue NewSA = 806 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 807 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 808 InOp.getOperand(0), NewSA)); 809 } 810 } 811 812 // Compute the new bits that are at the top now. 813 if (SimplifyDemandedBits(InOp, InDemandedMask, 814 KnownZero, KnownOne, TLO, Depth+1)) 815 return true; 816 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 817 KnownZero = KnownZero.lshr(ShAmt); 818 KnownOne = KnownOne.lshr(ShAmt); 819 820 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 821 KnownZero |= HighBits; // High bits known zero. 822 } 823 break; 824 case ISD::SRA: 825 // If this is an arithmetic shift right and only the low-bit is set, we can 826 // always convert this into a logical shr, even if the shift amount is 827 // variable. The low bit of the shift cannot be an input sign bit unless 828 // the shift amount is >= the size of the datatype, which is undefined. 829 if (NewMask == 1) 830 return TLO.CombineTo(Op, 831 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 832 Op.getOperand(0), Op.getOperand(1))); 833 834 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 835 EVT VT = Op.getValueType(); 836 unsigned ShAmt = SA->getZExtValue(); 837 838 // If the shift count is an invalid immediate, don't do anything. 839 if (ShAmt >= BitWidth) 840 break; 841 842 APInt InDemandedMask = (NewMask << ShAmt); 843 844 // If the shift is exact, then it does demand the low bits (and knows that 845 // they are zero). 846 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 847 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 848 849 // If any of the demanded bits are produced by the sign extension, we also 850 // demand the input sign bit. 851 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 852 if (HighBits.intersects(NewMask)) 853 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 854 855 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 856 KnownZero, KnownOne, TLO, Depth+1)) 857 return true; 858 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 859 KnownZero = KnownZero.lshr(ShAmt); 860 KnownOne = KnownOne.lshr(ShAmt); 861 862 // Handle the sign bit, adjusted to where it is now in the mask. 863 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 864 865 // If the input sign bit is known to be zero, or if none of the top bits 866 // are demanded, turn this into an unsigned shift right. 867 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 868 SDNodeFlags Flags; 869 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 870 return TLO.CombineTo(Op, 871 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 872 Op.getOperand(1), &Flags)); 873 } 874 875 int Log2 = NewMask.exactLogBase2(); 876 if (Log2 >= 0) { 877 // The bit must come from the sign. 878 SDValue NewSA = 879 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 880 Op.getOperand(1).getValueType()); 881 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 882 Op.getOperand(0), NewSA)); 883 } 884 885 if (KnownOne.intersects(SignBit)) 886 // New bits are known one. 887 KnownOne |= HighBits; 888 } 889 break; 890 case ISD::SIGN_EXTEND_INREG: { 891 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 892 893 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 894 // If we only care about the highest bit, don't bother shifting right. 895 if (MsbMask == NewMask) { 896 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 897 SDValue InOp = Op.getOperand(0); 898 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 899 bool AlreadySignExtended = 900 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 901 // However if the input is already sign extended we expect the sign 902 // extension to be dropped altogether later and do not simplify. 903 if (!AlreadySignExtended) { 904 // Compute the correct shift amount type, which must be getShiftAmountTy 905 // for scalar types after legalization. 906 EVT ShiftAmtTy = Op.getValueType(); 907 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 908 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 909 910 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 911 ShiftAmtTy); 912 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 913 Op.getValueType(), InOp, 914 ShiftAmt)); 915 } 916 } 917 918 // Sign extension. Compute the demanded bits in the result that are not 919 // present in the input. 920 APInt NewBits = 921 APInt::getHighBitsSet(BitWidth, 922 BitWidth - ExVT.getScalarType().getSizeInBits()); 923 924 // If none of the extended bits are demanded, eliminate the sextinreg. 925 if ((NewBits & NewMask) == 0) 926 return TLO.CombineTo(Op, Op.getOperand(0)); 927 928 APInt InSignBit = 929 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 930 APInt InputDemandedBits = 931 APInt::getLowBitsSet(BitWidth, 932 ExVT.getScalarType().getSizeInBits()) & 933 NewMask; 934 935 // Since the sign extended bits are demanded, we know that the sign 936 // bit is demanded. 937 InputDemandedBits |= InSignBit; 938 939 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 940 KnownZero, KnownOne, TLO, Depth+1)) 941 return true; 942 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 943 944 // If the sign bit of the input is known set or clear, then we know the 945 // top bits of the result. 946 947 // If the input sign bit is known zero, convert this into a zero extension. 948 if (KnownZero.intersects(InSignBit)) 949 return TLO.CombineTo(Op, 950 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 951 952 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 953 KnownOne |= NewBits; 954 KnownZero &= ~NewBits; 955 } else { // Input sign bit unknown 956 KnownZero &= ~NewBits; 957 KnownOne &= ~NewBits; 958 } 959 break; 960 } 961 case ISD::BUILD_PAIR: { 962 EVT HalfVT = Op.getOperand(0).getValueType(); 963 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 964 965 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 966 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 967 968 APInt KnownZeroLo, KnownOneLo; 969 APInt KnownZeroHi, KnownOneHi; 970 971 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 972 KnownOneLo, TLO, Depth + 1)) 973 return true; 974 975 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 976 KnownOneHi, TLO, Depth + 1)) 977 return true; 978 979 KnownZero = KnownZeroLo.zext(BitWidth) | 980 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 981 982 KnownOne = KnownOneLo.zext(BitWidth) | 983 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 984 break; 985 } 986 case ISD::ZERO_EXTEND: { 987 unsigned OperandBitWidth = 988 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 989 APInt InMask = NewMask.trunc(OperandBitWidth); 990 991 // If none of the top bits are demanded, convert this into an any_extend. 992 APInt NewBits = 993 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 994 if (!NewBits.intersects(NewMask)) 995 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 996 Op.getValueType(), 997 Op.getOperand(0))); 998 999 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1000 KnownZero, KnownOne, TLO, Depth+1)) 1001 return true; 1002 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1003 KnownZero = KnownZero.zext(BitWidth); 1004 KnownOne = KnownOne.zext(BitWidth); 1005 KnownZero |= NewBits; 1006 break; 1007 } 1008 case ISD::SIGN_EXTEND: { 1009 EVT InVT = Op.getOperand(0).getValueType(); 1010 unsigned InBits = InVT.getScalarType().getSizeInBits(); 1011 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1012 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 1013 APInt NewBits = ~InMask & NewMask; 1014 1015 // If none of the top bits are demanded, convert this into an any_extend. 1016 if (NewBits == 0) 1017 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1018 Op.getValueType(), 1019 Op.getOperand(0))); 1020 1021 // Since some of the sign extended bits are demanded, we know that the sign 1022 // bit is demanded. 1023 APInt InDemandedBits = InMask & NewMask; 1024 InDemandedBits |= InSignBit; 1025 InDemandedBits = InDemandedBits.trunc(InBits); 1026 1027 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1028 KnownOne, TLO, Depth+1)) 1029 return true; 1030 KnownZero = KnownZero.zext(BitWidth); 1031 KnownOne = KnownOne.zext(BitWidth); 1032 1033 // If the sign bit is known zero, convert this to a zero extend. 1034 if (KnownZero.intersects(InSignBit)) 1035 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1036 Op.getValueType(), 1037 Op.getOperand(0))); 1038 1039 // If the sign bit is known one, the top bits match. 1040 if (KnownOne.intersects(InSignBit)) { 1041 KnownOne |= NewBits; 1042 assert((KnownZero & NewBits) == 0); 1043 } else { // Otherwise, top bits aren't known. 1044 assert((KnownOne & NewBits) == 0); 1045 assert((KnownZero & NewBits) == 0); 1046 } 1047 break; 1048 } 1049 case ISD::ANY_EXTEND: { 1050 unsigned OperandBitWidth = 1051 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1052 APInt InMask = NewMask.trunc(OperandBitWidth); 1053 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1054 KnownZero, KnownOne, TLO, Depth+1)) 1055 return true; 1056 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1057 KnownZero = KnownZero.zext(BitWidth); 1058 KnownOne = KnownOne.zext(BitWidth); 1059 break; 1060 } 1061 case ISD::TRUNCATE: { 1062 // Simplify the input, using demanded bit information, and compute the known 1063 // zero/one bits live out. 1064 unsigned OperandBitWidth = 1065 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1066 APInt TruncMask = NewMask.zext(OperandBitWidth); 1067 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1068 KnownZero, KnownOne, TLO, Depth+1)) 1069 return true; 1070 KnownZero = KnownZero.trunc(BitWidth); 1071 KnownOne = KnownOne.trunc(BitWidth); 1072 1073 // If the input is only used by this truncate, see if we can shrink it based 1074 // on the known demanded bits. 1075 if (Op.getOperand(0).getNode()->hasOneUse()) { 1076 SDValue In = Op.getOperand(0); 1077 switch (In.getOpcode()) { 1078 default: break; 1079 case ISD::SRL: 1080 // Shrink SRL by a constant if none of the high bits shifted in are 1081 // demanded. 1082 if (TLO.LegalTypes() && 1083 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1084 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1085 // undesirable. 1086 break; 1087 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1088 if (!ShAmt) 1089 break; 1090 SDValue Shift = In.getOperand(1); 1091 if (TLO.LegalTypes()) { 1092 uint64_t ShVal = ShAmt->getZExtValue(); 1093 Shift = TLO.DAG.getConstant(ShVal, dl, 1094 getShiftAmountTy(Op.getValueType(), DL)); 1095 } 1096 1097 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1098 OperandBitWidth - BitWidth); 1099 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1100 1101 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1102 // None of the shifted in bits are needed. Add a truncate of the 1103 // shift input, then shift it. 1104 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1105 Op.getValueType(), 1106 In.getOperand(0)); 1107 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1108 Op.getValueType(), 1109 NewTrunc, 1110 Shift)); 1111 } 1112 break; 1113 } 1114 } 1115 1116 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1117 break; 1118 } 1119 case ISD::AssertZext: { 1120 // AssertZext demands all of the high bits, plus any of the low bits 1121 // demanded by its users. 1122 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1123 APInt InMask = APInt::getLowBitsSet(BitWidth, 1124 VT.getSizeInBits()); 1125 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1126 KnownZero, KnownOne, TLO, Depth+1)) 1127 return true; 1128 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1129 1130 KnownZero |= ~InMask & NewMask; 1131 break; 1132 } 1133 case ISD::BITCAST: 1134 // If this is an FP->Int bitcast and if the sign bit is the only 1135 // thing demanded, turn this into a FGETSIGN. 1136 if (!TLO.LegalOperations() && 1137 !Op.getValueType().isVector() && 1138 !Op.getOperand(0).getValueType().isVector() && 1139 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1140 Op.getOperand(0).getValueType().isFloatingPoint()) { 1141 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1142 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1143 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1144 Op.getOperand(0).getValueType() != MVT::f128) { 1145 // Cannot eliminate/lower SHL for f128 yet. 1146 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1147 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1148 // place. We expect the SHL to be eliminated by other optimizations. 1149 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1150 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1151 if (!OpVTLegal && OpVTSizeInBits > 32) 1152 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1153 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1154 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1155 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1156 Op.getValueType(), 1157 Sign, ShAmt)); 1158 } 1159 } 1160 break; 1161 case ISD::ADD: 1162 case ISD::MUL: 1163 case ISD::SUB: { 1164 // Add, Sub, and Mul don't demand any bits in positions beyond that 1165 // of the highest bit demanded of them. 1166 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1167 BitWidth - NewMask.countLeadingZeros()); 1168 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1169 KnownOne2, TLO, Depth+1)) 1170 return true; 1171 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1172 KnownOne2, TLO, Depth+1)) 1173 return true; 1174 // See if the operation should be performed at a smaller bit width. 1175 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1176 return true; 1177 LLVM_FALLTHROUGH; 1178 } 1179 default: 1180 // Just use computeKnownBits to compute output bits. 1181 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1182 break; 1183 } 1184 1185 // If we know the value of all of the demanded bits, return this as a 1186 // constant. 1187 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1188 // Avoid folding to a constant if any OpaqueConstant is involved. 1189 const SDNode *N = Op.getNode(); 1190 for (SDNodeIterator I = SDNodeIterator::begin(N), 1191 E = SDNodeIterator::end(N); I != E; ++I) { 1192 SDNode *Op = *I; 1193 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1194 if (C->isOpaque()) 1195 return false; 1196 } 1197 return TLO.CombineTo(Op, 1198 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1199 } 1200 1201 return false; 1202 } 1203 1204 /// Determine which of the bits specified in Mask are known to be either zero or 1205 /// one and return them in the KnownZero/KnownOne bitsets. 1206 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1207 APInt &KnownZero, 1208 APInt &KnownOne, 1209 const SelectionDAG &DAG, 1210 unsigned Depth) const { 1211 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1212 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1213 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1214 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1215 "Should use MaskedValueIsZero if you don't know whether Op" 1216 " is a target node!"); 1217 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1218 } 1219 1220 /// This method can be implemented by targets that want to expose additional 1221 /// information about sign bits to the DAG Combiner. 1222 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1223 const SelectionDAG &, 1224 unsigned Depth) const { 1225 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1226 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1227 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1228 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1229 "Should use ComputeNumSignBits if you don't know whether Op" 1230 " is a target node!"); 1231 return 1; 1232 } 1233 1234 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1235 if (!N) 1236 return false; 1237 1238 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1239 if (!CN) { 1240 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1241 if (!BV) 1242 return false; 1243 1244 BitVector UndefElements; 1245 CN = BV->getConstantSplatNode(&UndefElements); 1246 // Only interested in constant splats, and we don't try to handle undef 1247 // elements in identifying boolean constants. 1248 if (!CN || UndefElements.none()) 1249 return false; 1250 } 1251 1252 switch (getBooleanContents(N->getValueType(0))) { 1253 case UndefinedBooleanContent: 1254 return CN->getAPIntValue()[0]; 1255 case ZeroOrOneBooleanContent: 1256 return CN->isOne(); 1257 case ZeroOrNegativeOneBooleanContent: 1258 return CN->isAllOnesValue(); 1259 } 1260 1261 llvm_unreachable("Invalid boolean contents"); 1262 } 1263 1264 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1265 const SDLoc &DL) const { 1266 unsigned ElementWidth = VT.getScalarSizeInBits(); 1267 APInt TrueInt = 1268 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1269 ? APInt(ElementWidth, 1) 1270 : APInt::getAllOnesValue(ElementWidth); 1271 return DAG.getConstant(TrueInt, DL, VT); 1272 } 1273 1274 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1275 if (!N) 1276 return false; 1277 1278 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1279 if (!CN) { 1280 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1281 if (!BV) 1282 return false; 1283 1284 BitVector UndefElements; 1285 CN = BV->getConstantSplatNode(&UndefElements); 1286 // Only interested in constant splats, and we don't try to handle undef 1287 // elements in identifying boolean constants. 1288 if (!CN || UndefElements.none()) 1289 return false; 1290 } 1291 1292 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1293 return !CN->getAPIntValue()[0]; 1294 1295 return CN->isNullValue(); 1296 } 1297 1298 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1299 bool SExt) const { 1300 if (VT == MVT::i1) 1301 return N->isOne(); 1302 1303 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1304 switch (Cnt) { 1305 case TargetLowering::ZeroOrOneBooleanContent: 1306 // An extended value of 1 is always true, unless its original type is i1, 1307 // in which case it will be sign extended to -1. 1308 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1309 case TargetLowering::UndefinedBooleanContent: 1310 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1311 return N->isAllOnesValue() && SExt; 1312 } 1313 llvm_unreachable("Unexpected enumeration."); 1314 } 1315 1316 /// This helper function of SimplifySetCC tries to optimize the comparison when 1317 /// either operand of the SetCC node is a bitwise-and instruction. 1318 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1319 ISD::CondCode Cond, 1320 DAGCombinerInfo &DCI, 1321 const SDLoc &DL) const { 1322 // Match these patterns in any of their permutations: 1323 // (X & Y) == Y 1324 // (X & Y) != Y 1325 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1326 std::swap(N0, N1); 1327 1328 EVT OpVT = N0.getValueType(); 1329 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1330 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1331 return SDValue(); 1332 1333 SDValue X, Y; 1334 if (N0.getOperand(0) == N1) { 1335 X = N0.getOperand(1); 1336 Y = N0.getOperand(0); 1337 } else if (N0.getOperand(1) == N1) { 1338 X = N0.getOperand(0); 1339 Y = N0.getOperand(1); 1340 } else { 1341 return SDValue(); 1342 } 1343 1344 SelectionDAG &DAG = DCI.DAG; 1345 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1346 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1347 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1348 // Note that where Y is variable and is known to have at most one bit set 1349 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1350 // equivalent when Y == 0. 1351 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1352 if (DCI.isBeforeLegalizeOps() || 1353 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1354 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1355 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1356 // If the target supports an 'and-not' or 'and-complement' logic operation, 1357 // try to use that to make a comparison operation more efficient. 1358 // But don't do this transform if the mask is a single bit because there are 1359 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1360 // 'rlwinm' on PPC). 1361 1362 // Bail out if the compare operand that we want to turn into a zero is 1363 // already a zero (otherwise, infinite loop). 1364 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1365 if (YConst && YConst->isNullValue()) 1366 return SDValue(); 1367 1368 // Transform this into: ~X & Y == 0. 1369 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1370 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1371 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1372 } 1373 1374 return SDValue(); 1375 } 1376 1377 /// Try to simplify a setcc built with the specified operands and cc. If it is 1378 /// unable to simplify it, return a null SDValue. 1379 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1380 ISD::CondCode Cond, bool foldBooleans, 1381 DAGCombinerInfo &DCI, 1382 const SDLoc &dl) const { 1383 SelectionDAG &DAG = DCI.DAG; 1384 1385 // These setcc operations always fold. 1386 switch (Cond) { 1387 default: break; 1388 case ISD::SETFALSE: 1389 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1390 case ISD::SETTRUE: 1391 case ISD::SETTRUE2: { 1392 TargetLowering::BooleanContent Cnt = 1393 getBooleanContents(N0->getValueType(0)); 1394 return DAG.getConstant( 1395 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1396 VT); 1397 } 1398 } 1399 1400 // Ensure that the constant occurs on the RHS, and fold constant 1401 // comparisons. 1402 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1403 if (isa<ConstantSDNode>(N0.getNode()) && 1404 (DCI.isBeforeLegalizeOps() || 1405 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1406 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1407 1408 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1409 const APInt &C1 = N1C->getAPIntValue(); 1410 1411 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1412 // equality comparison, then we're just comparing whether X itself is 1413 // zero. 1414 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1415 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1416 N0.getOperand(1).getOpcode() == ISD::Constant) { 1417 const APInt &ShAmt 1418 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1419 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1420 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1421 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1422 // (srl (ctlz x), 5) == 0 -> X != 0 1423 // (srl (ctlz x), 5) != 1 -> X != 0 1424 Cond = ISD::SETNE; 1425 } else { 1426 // (srl (ctlz x), 5) != 0 -> X == 0 1427 // (srl (ctlz x), 5) == 1 -> X == 0 1428 Cond = ISD::SETEQ; 1429 } 1430 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1431 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1432 Zero, Cond); 1433 } 1434 } 1435 1436 SDValue CTPOP = N0; 1437 // Look through truncs that don't change the value of a ctpop. 1438 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1439 CTPOP = N0.getOperand(0); 1440 1441 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1442 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1443 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1444 EVT CTVT = CTPOP.getValueType(); 1445 SDValue CTOp = CTPOP.getOperand(0); 1446 1447 // (ctpop x) u< 2 -> (x & x-1) == 0 1448 // (ctpop x) u> 1 -> (x & x-1) != 0 1449 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1450 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1451 DAG.getConstant(1, dl, CTVT)); 1452 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1453 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1454 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1455 } 1456 1457 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1458 } 1459 1460 // (zext x) == C --> x == (trunc C) 1461 // (sext x) == C --> x == (trunc C) 1462 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1463 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1464 unsigned MinBits = N0.getValueSizeInBits(); 1465 SDValue PreExt; 1466 bool Signed = false; 1467 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1468 // ZExt 1469 MinBits = N0->getOperand(0).getValueSizeInBits(); 1470 PreExt = N0->getOperand(0); 1471 } else if (N0->getOpcode() == ISD::AND) { 1472 // DAGCombine turns costly ZExts into ANDs 1473 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1474 if ((C->getAPIntValue()+1).isPowerOf2()) { 1475 MinBits = C->getAPIntValue().countTrailingOnes(); 1476 PreExt = N0->getOperand(0); 1477 } 1478 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1479 // SExt 1480 MinBits = N0->getOperand(0).getValueSizeInBits(); 1481 PreExt = N0->getOperand(0); 1482 Signed = true; 1483 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1484 // ZEXTLOAD / SEXTLOAD 1485 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1486 MinBits = LN0->getMemoryVT().getSizeInBits(); 1487 PreExt = N0; 1488 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1489 Signed = true; 1490 MinBits = LN0->getMemoryVT().getSizeInBits(); 1491 PreExt = N0; 1492 } 1493 } 1494 1495 // Figure out how many bits we need to preserve this constant. 1496 unsigned ReqdBits = Signed ? 1497 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1498 C1.getActiveBits(); 1499 1500 // Make sure we're not losing bits from the constant. 1501 if (MinBits > 0 && 1502 MinBits < C1.getBitWidth() && 1503 MinBits >= ReqdBits) { 1504 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1505 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1506 // Will get folded away. 1507 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1508 if (MinBits == 1 && C1 == 1) 1509 // Invert the condition. 1510 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1511 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1512 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1513 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1514 } 1515 1516 // If truncating the setcc operands is not desirable, we can still 1517 // simplify the expression in some cases: 1518 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1519 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1520 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1521 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1522 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1523 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1524 SDValue TopSetCC = N0->getOperand(0); 1525 unsigned N0Opc = N0->getOpcode(); 1526 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1527 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1528 TopSetCC.getOpcode() == ISD::SETCC && 1529 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1530 (isConstFalseVal(N1C) || 1531 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1532 1533 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1534 (!N1C->isNullValue() && Cond == ISD::SETNE); 1535 1536 if (!Inverse) 1537 return TopSetCC; 1538 1539 ISD::CondCode InvCond = ISD::getSetCCInverse( 1540 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1541 TopSetCC.getOperand(0).getValueType().isInteger()); 1542 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1543 TopSetCC.getOperand(1), 1544 InvCond); 1545 1546 } 1547 } 1548 } 1549 1550 // If the LHS is '(and load, const)', the RHS is 0, 1551 // the test is for equality or unsigned, and all 1 bits of the const are 1552 // in the same partial word, see if we can shorten the load. 1553 if (DCI.isBeforeLegalize() && 1554 !ISD::isSignedIntSetCC(Cond) && 1555 N0.getOpcode() == ISD::AND && C1 == 0 && 1556 N0.getNode()->hasOneUse() && 1557 isa<LoadSDNode>(N0.getOperand(0)) && 1558 N0.getOperand(0).getNode()->hasOneUse() && 1559 isa<ConstantSDNode>(N0.getOperand(1))) { 1560 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1561 APInt bestMask; 1562 unsigned bestWidth = 0, bestOffset = 0; 1563 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1564 unsigned origWidth = N0.getValueType().getSizeInBits(); 1565 unsigned maskWidth = origWidth; 1566 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1567 // 8 bits, but have to be careful... 1568 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1569 origWidth = Lod->getMemoryVT().getSizeInBits(); 1570 const APInt &Mask = 1571 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1572 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1573 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1574 for (unsigned offset=0; offset<origWidth/width; offset++) { 1575 if ((newMask & Mask) == Mask) { 1576 if (!DAG.getDataLayout().isLittleEndian()) 1577 bestOffset = (origWidth/width - offset - 1) * (width/8); 1578 else 1579 bestOffset = (uint64_t)offset * (width/8); 1580 bestMask = Mask.lshr(offset * (width/8) * 8); 1581 bestWidth = width; 1582 break; 1583 } 1584 newMask = newMask << width; 1585 } 1586 } 1587 } 1588 if (bestWidth) { 1589 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1590 if (newVT.isRound()) { 1591 EVT PtrType = Lod->getOperand(1).getValueType(); 1592 SDValue Ptr = Lod->getBasePtr(); 1593 if (bestOffset != 0) 1594 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1595 DAG.getConstant(bestOffset, dl, PtrType)); 1596 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1597 SDValue NewLoad = DAG.getLoad( 1598 newVT, dl, Lod->getChain(), Ptr, 1599 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1600 return DAG.getSetCC(dl, VT, 1601 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1602 DAG.getConstant(bestMask.trunc(bestWidth), 1603 dl, newVT)), 1604 DAG.getConstant(0LL, dl, newVT), Cond); 1605 } 1606 } 1607 } 1608 1609 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1610 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1611 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1612 1613 // If the comparison constant has bits in the upper part, the 1614 // zero-extended value could never match. 1615 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1616 C1.getBitWidth() - InSize))) { 1617 switch (Cond) { 1618 case ISD::SETUGT: 1619 case ISD::SETUGE: 1620 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1621 case ISD::SETULT: 1622 case ISD::SETULE: 1623 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1624 case ISD::SETGT: 1625 case ISD::SETGE: 1626 // True if the sign bit of C1 is set. 1627 return DAG.getConstant(C1.isNegative(), dl, VT); 1628 case ISD::SETLT: 1629 case ISD::SETLE: 1630 // True if the sign bit of C1 isn't set. 1631 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1632 default: 1633 break; 1634 } 1635 } 1636 1637 // Otherwise, we can perform the comparison with the low bits. 1638 switch (Cond) { 1639 case ISD::SETEQ: 1640 case ISD::SETNE: 1641 case ISD::SETUGT: 1642 case ISD::SETUGE: 1643 case ISD::SETULT: 1644 case ISD::SETULE: { 1645 EVT newVT = N0.getOperand(0).getValueType(); 1646 if (DCI.isBeforeLegalizeOps() || 1647 (isOperationLegal(ISD::SETCC, newVT) && 1648 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1649 EVT NewSetCCVT = 1650 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1651 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1652 1653 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1654 NewConst, Cond); 1655 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1656 } 1657 break; 1658 } 1659 default: 1660 break; // todo, be more careful with signed comparisons 1661 } 1662 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1663 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1664 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1665 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1666 EVT ExtDstTy = N0.getValueType(); 1667 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1668 1669 // If the constant doesn't fit into the number of bits for the source of 1670 // the sign extension, it is impossible for both sides to be equal. 1671 if (C1.getMinSignedBits() > ExtSrcTyBits) 1672 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1673 1674 SDValue ZextOp; 1675 EVT Op0Ty = N0.getOperand(0).getValueType(); 1676 if (Op0Ty == ExtSrcTy) { 1677 ZextOp = N0.getOperand(0); 1678 } else { 1679 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1680 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1681 DAG.getConstant(Imm, dl, Op0Ty)); 1682 } 1683 if (!DCI.isCalledByLegalizer()) 1684 DCI.AddToWorklist(ZextOp.getNode()); 1685 // Otherwise, make this a use of a zext. 1686 return DAG.getSetCC(dl, VT, ZextOp, 1687 DAG.getConstant(C1 & APInt::getLowBitsSet( 1688 ExtDstTyBits, 1689 ExtSrcTyBits), 1690 dl, ExtDstTy), 1691 Cond); 1692 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1693 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1694 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1695 if (N0.getOpcode() == ISD::SETCC && 1696 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1697 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1698 if (TrueWhenTrue) 1699 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1700 // Invert the condition. 1701 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1702 CC = ISD::getSetCCInverse(CC, 1703 N0.getOperand(0).getValueType().isInteger()); 1704 if (DCI.isBeforeLegalizeOps() || 1705 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1706 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1707 } 1708 1709 if ((N0.getOpcode() == ISD::XOR || 1710 (N0.getOpcode() == ISD::AND && 1711 N0.getOperand(0).getOpcode() == ISD::XOR && 1712 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1713 isa<ConstantSDNode>(N0.getOperand(1)) && 1714 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1715 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1716 // can only do this if the top bits are known zero. 1717 unsigned BitWidth = N0.getValueSizeInBits(); 1718 if (DAG.MaskedValueIsZero(N0, 1719 APInt::getHighBitsSet(BitWidth, 1720 BitWidth-1))) { 1721 // Okay, get the un-inverted input value. 1722 SDValue Val; 1723 if (N0.getOpcode() == ISD::XOR) 1724 Val = N0.getOperand(0); 1725 else { 1726 assert(N0.getOpcode() == ISD::AND && 1727 N0.getOperand(0).getOpcode() == ISD::XOR); 1728 // ((X^1)&1)^1 -> X & 1 1729 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1730 N0.getOperand(0).getOperand(0), 1731 N0.getOperand(1)); 1732 } 1733 1734 return DAG.getSetCC(dl, VT, Val, N1, 1735 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1736 } 1737 } else if (N1C->getAPIntValue() == 1 && 1738 (VT == MVT::i1 || 1739 getBooleanContents(N0->getValueType(0)) == 1740 ZeroOrOneBooleanContent)) { 1741 SDValue Op0 = N0; 1742 if (Op0.getOpcode() == ISD::TRUNCATE) 1743 Op0 = Op0.getOperand(0); 1744 1745 if ((Op0.getOpcode() == ISD::XOR) && 1746 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1747 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1748 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1749 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1750 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1751 Cond); 1752 } 1753 if (Op0.getOpcode() == ISD::AND && 1754 isa<ConstantSDNode>(Op0.getOperand(1)) && 1755 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1756 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1757 if (Op0.getValueType().bitsGT(VT)) 1758 Op0 = DAG.getNode(ISD::AND, dl, VT, 1759 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1760 DAG.getConstant(1, dl, VT)); 1761 else if (Op0.getValueType().bitsLT(VT)) 1762 Op0 = DAG.getNode(ISD::AND, dl, VT, 1763 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1764 DAG.getConstant(1, dl, VT)); 1765 1766 return DAG.getSetCC(dl, VT, Op0, 1767 DAG.getConstant(0, dl, Op0.getValueType()), 1768 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1769 } 1770 if (Op0.getOpcode() == ISD::AssertZext && 1771 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1772 return DAG.getSetCC(dl, VT, Op0, 1773 DAG.getConstant(0, dl, Op0.getValueType()), 1774 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1775 } 1776 } 1777 1778 APInt MinVal, MaxVal; 1779 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1780 if (ISD::isSignedIntSetCC(Cond)) { 1781 MinVal = APInt::getSignedMinValue(OperandBitSize); 1782 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1783 } else { 1784 MinVal = APInt::getMinValue(OperandBitSize); 1785 MaxVal = APInt::getMaxValue(OperandBitSize); 1786 } 1787 1788 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1789 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1790 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1791 // X >= C0 --> X > (C0 - 1) 1792 APInt C = C1 - 1; 1793 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1794 if ((DCI.isBeforeLegalizeOps() || 1795 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1796 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1797 isLegalICmpImmediate(C.getSExtValue())))) { 1798 return DAG.getSetCC(dl, VT, N0, 1799 DAG.getConstant(C, dl, N1.getValueType()), 1800 NewCC); 1801 } 1802 } 1803 1804 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1805 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1806 // X <= C0 --> X < (C0 + 1) 1807 APInt C = C1 + 1; 1808 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1809 if ((DCI.isBeforeLegalizeOps() || 1810 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1811 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1812 isLegalICmpImmediate(C.getSExtValue())))) { 1813 return DAG.getSetCC(dl, VT, N0, 1814 DAG.getConstant(C, dl, N1.getValueType()), 1815 NewCC); 1816 } 1817 } 1818 1819 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1820 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1821 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1822 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1823 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1824 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1825 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1826 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1827 1828 // Canonicalize setgt X, Min --> setne X, Min 1829 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1830 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1831 // Canonicalize setlt X, Max --> setne X, Max 1832 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1833 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1834 1835 // If we have setult X, 1, turn it into seteq X, 0 1836 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1837 return DAG.getSetCC(dl, VT, N0, 1838 DAG.getConstant(MinVal, dl, N0.getValueType()), 1839 ISD::SETEQ); 1840 // If we have setugt X, Max-1, turn it into seteq X, Max 1841 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1842 return DAG.getSetCC(dl, VT, N0, 1843 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1844 ISD::SETEQ); 1845 1846 // If we have "setcc X, C0", check to see if we can shrink the immediate 1847 // by changing cc. 1848 1849 // SETUGT X, SINTMAX -> SETLT X, 0 1850 if (Cond == ISD::SETUGT && 1851 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1852 return DAG.getSetCC(dl, VT, N0, 1853 DAG.getConstant(0, dl, N1.getValueType()), 1854 ISD::SETLT); 1855 1856 // SETULT X, SINTMIN -> SETGT X, -1 1857 if (Cond == ISD::SETULT && 1858 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1859 SDValue ConstMinusOne = 1860 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1861 N1.getValueType()); 1862 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1863 } 1864 1865 // Fold bit comparisons when we can. 1866 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1867 (VT == N0.getValueType() || 1868 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1869 N0.getOpcode() == ISD::AND) { 1870 auto &DL = DAG.getDataLayout(); 1871 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1872 EVT ShiftTy = DCI.isBeforeLegalize() 1873 ? getPointerTy(DL) 1874 : getShiftAmountTy(N0.getValueType(), DL); 1875 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1876 // Perform the xform if the AND RHS is a single bit. 1877 if (AndRHS->getAPIntValue().isPowerOf2()) { 1878 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1879 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1880 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1881 ShiftTy))); 1882 } 1883 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1884 // (X & 8) == 8 --> (X & 8) >> 3 1885 // Perform the xform if C1 is a single bit. 1886 if (C1.isPowerOf2()) { 1887 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1888 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1889 DAG.getConstant(C1.logBase2(), dl, 1890 ShiftTy))); 1891 } 1892 } 1893 } 1894 } 1895 1896 if (C1.getMinSignedBits() <= 64 && 1897 !isLegalICmpImmediate(C1.getSExtValue())) { 1898 // (X & -256) == 256 -> (X >> 8) == 1 1899 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1900 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1901 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1902 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1903 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1904 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1905 auto &DL = DAG.getDataLayout(); 1906 EVT ShiftTy = DCI.isBeforeLegalize() 1907 ? getPointerTy(DL) 1908 : getShiftAmountTy(N0.getValueType(), DL); 1909 EVT CmpTy = N0.getValueType(); 1910 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1911 DAG.getConstant(ShiftBits, dl, 1912 ShiftTy)); 1913 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1914 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1915 } 1916 } 1917 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1918 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1919 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1920 // X < 0x100000000 -> (X >> 32) < 1 1921 // X >= 0x100000000 -> (X >> 32) >= 1 1922 // X <= 0x0ffffffff -> (X >> 32) < 1 1923 // X > 0x0ffffffff -> (X >> 32) >= 1 1924 unsigned ShiftBits; 1925 APInt NewC = C1; 1926 ISD::CondCode NewCond = Cond; 1927 if (AdjOne) { 1928 ShiftBits = C1.countTrailingOnes(); 1929 NewC = NewC + 1; 1930 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1931 } else { 1932 ShiftBits = C1.countTrailingZeros(); 1933 } 1934 NewC = NewC.lshr(ShiftBits); 1935 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1936 isLegalICmpImmediate(NewC.getSExtValue())) { 1937 auto &DL = DAG.getDataLayout(); 1938 EVT ShiftTy = DCI.isBeforeLegalize() 1939 ? getPointerTy(DL) 1940 : getShiftAmountTy(N0.getValueType(), DL); 1941 EVT CmpTy = N0.getValueType(); 1942 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1943 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1944 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1945 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1946 } 1947 } 1948 } 1949 } 1950 1951 if (isa<ConstantFPSDNode>(N0.getNode())) { 1952 // Constant fold or commute setcc. 1953 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1954 if (O.getNode()) return O; 1955 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1956 // If the RHS of an FP comparison is a constant, simplify it away in 1957 // some cases. 1958 if (CFP->getValueAPF().isNaN()) { 1959 // If an operand is known to be a nan, we can fold it. 1960 switch (ISD::getUnorderedFlavor(Cond)) { 1961 default: llvm_unreachable("Unknown flavor!"); 1962 case 0: // Known false. 1963 return DAG.getConstant(0, dl, VT); 1964 case 1: // Known true. 1965 return DAG.getConstant(1, dl, VT); 1966 case 2: // Undefined. 1967 return DAG.getUNDEF(VT); 1968 } 1969 } 1970 1971 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1972 // constant if knowing that the operand is non-nan is enough. We prefer to 1973 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1974 // materialize 0.0. 1975 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1976 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1977 1978 // If the condition is not legal, see if we can find an equivalent one 1979 // which is legal. 1980 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1981 // If the comparison was an awkward floating-point == or != and one of 1982 // the comparison operands is infinity or negative infinity, convert the 1983 // condition to a less-awkward <= or >=. 1984 if (CFP->getValueAPF().isInfinity()) { 1985 if (CFP->getValueAPF().isNegative()) { 1986 if (Cond == ISD::SETOEQ && 1987 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1988 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1989 if (Cond == ISD::SETUEQ && 1990 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1991 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1992 if (Cond == ISD::SETUNE && 1993 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1994 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1995 if (Cond == ISD::SETONE && 1996 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1997 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1998 } else { 1999 if (Cond == ISD::SETOEQ && 2000 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2001 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2002 if (Cond == ISD::SETUEQ && 2003 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2004 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2005 if (Cond == ISD::SETUNE && 2006 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2007 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2008 if (Cond == ISD::SETONE && 2009 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2010 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2011 } 2012 } 2013 } 2014 } 2015 2016 if (N0 == N1) { 2017 // The sext(setcc()) => setcc() optimization relies on the appropriate 2018 // constant being emitted. 2019 uint64_t EqVal = 0; 2020 switch (getBooleanContents(N0.getValueType())) { 2021 case UndefinedBooleanContent: 2022 case ZeroOrOneBooleanContent: 2023 EqVal = ISD::isTrueWhenEqual(Cond); 2024 break; 2025 case ZeroOrNegativeOneBooleanContent: 2026 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2027 break; 2028 } 2029 2030 // We can always fold X == X for integer setcc's. 2031 if (N0.getValueType().isInteger()) { 2032 return DAG.getConstant(EqVal, dl, VT); 2033 } 2034 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2035 if (UOF == 2) // FP operators that are undefined on NaNs. 2036 return DAG.getConstant(EqVal, dl, VT); 2037 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2038 return DAG.getConstant(EqVal, dl, VT); 2039 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2040 // if it is not already. 2041 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2042 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2043 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2044 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2045 } 2046 2047 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2048 N0.getValueType().isInteger()) { 2049 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2050 N0.getOpcode() == ISD::XOR) { 2051 // Simplify (X+Y) == (X+Z) --> Y == Z 2052 if (N0.getOpcode() == N1.getOpcode()) { 2053 if (N0.getOperand(0) == N1.getOperand(0)) 2054 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2055 if (N0.getOperand(1) == N1.getOperand(1)) 2056 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2057 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2058 // If X op Y == Y op X, try other combinations. 2059 if (N0.getOperand(0) == N1.getOperand(1)) 2060 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2061 Cond); 2062 if (N0.getOperand(1) == N1.getOperand(0)) 2063 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2064 Cond); 2065 } 2066 } 2067 2068 // If RHS is a legal immediate value for a compare instruction, we need 2069 // to be careful about increasing register pressure needlessly. 2070 bool LegalRHSImm = false; 2071 2072 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2073 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2074 // Turn (X+C1) == C2 --> X == C2-C1 2075 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2076 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2077 DAG.getConstant(RHSC->getAPIntValue()- 2078 LHSR->getAPIntValue(), 2079 dl, N0.getValueType()), Cond); 2080 } 2081 2082 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2083 if (N0.getOpcode() == ISD::XOR) 2084 // If we know that all of the inverted bits are zero, don't bother 2085 // performing the inversion. 2086 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2087 return 2088 DAG.getSetCC(dl, VT, N0.getOperand(0), 2089 DAG.getConstant(LHSR->getAPIntValue() ^ 2090 RHSC->getAPIntValue(), 2091 dl, N0.getValueType()), 2092 Cond); 2093 } 2094 2095 // Turn (C1-X) == C2 --> X == C1-C2 2096 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2097 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2098 return 2099 DAG.getSetCC(dl, VT, N0.getOperand(1), 2100 DAG.getConstant(SUBC->getAPIntValue() - 2101 RHSC->getAPIntValue(), 2102 dl, N0.getValueType()), 2103 Cond); 2104 } 2105 } 2106 2107 // Could RHSC fold directly into a compare? 2108 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2109 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2110 } 2111 2112 // Simplify (X+Z) == X --> Z == 0 2113 // Don't do this if X is an immediate that can fold into a cmp 2114 // instruction and X+Z has other uses. It could be an induction variable 2115 // chain, and the transform would increase register pressure. 2116 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2117 if (N0.getOperand(0) == N1) 2118 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2119 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2120 if (N0.getOperand(1) == N1) { 2121 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2122 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2123 DAG.getConstant(0, dl, N0.getValueType()), 2124 Cond); 2125 if (N0.getNode()->hasOneUse()) { 2126 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2127 auto &DL = DAG.getDataLayout(); 2128 // (Z-X) == X --> Z == X<<1 2129 SDValue SH = DAG.getNode( 2130 ISD::SHL, dl, N1.getValueType(), N1, 2131 DAG.getConstant(1, dl, 2132 getShiftAmountTy(N1.getValueType(), DL))); 2133 if (!DCI.isCalledByLegalizer()) 2134 DCI.AddToWorklist(SH.getNode()); 2135 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2136 } 2137 } 2138 } 2139 } 2140 2141 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2142 N1.getOpcode() == ISD::XOR) { 2143 // Simplify X == (X+Z) --> Z == 0 2144 if (N1.getOperand(0) == N0) 2145 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2146 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2147 if (N1.getOperand(1) == N0) { 2148 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2149 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2150 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2151 if (N1.getNode()->hasOneUse()) { 2152 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2153 auto &DL = DAG.getDataLayout(); 2154 // X == (Z-X) --> X<<1 == Z 2155 SDValue SH = DAG.getNode( 2156 ISD::SHL, dl, N1.getValueType(), N0, 2157 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2158 if (!DCI.isCalledByLegalizer()) 2159 DCI.AddToWorklist(SH.getNode()); 2160 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2161 } 2162 } 2163 } 2164 2165 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2166 return V; 2167 } 2168 2169 // Fold away ALL boolean setcc's. 2170 SDValue Temp; 2171 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2172 switch (Cond) { 2173 default: llvm_unreachable("Unknown integer setcc!"); 2174 case ISD::SETEQ: // X == Y -> ~(X^Y) 2175 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2176 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2177 if (!DCI.isCalledByLegalizer()) 2178 DCI.AddToWorklist(Temp.getNode()); 2179 break; 2180 case ISD::SETNE: // X != Y --> (X^Y) 2181 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2182 break; 2183 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2184 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2185 Temp = DAG.getNOT(dl, N0, MVT::i1); 2186 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2187 if (!DCI.isCalledByLegalizer()) 2188 DCI.AddToWorklist(Temp.getNode()); 2189 break; 2190 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2191 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2192 Temp = DAG.getNOT(dl, N1, MVT::i1); 2193 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2194 if (!DCI.isCalledByLegalizer()) 2195 DCI.AddToWorklist(Temp.getNode()); 2196 break; 2197 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2198 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2199 Temp = DAG.getNOT(dl, N0, MVT::i1); 2200 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2201 if (!DCI.isCalledByLegalizer()) 2202 DCI.AddToWorklist(Temp.getNode()); 2203 break; 2204 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2205 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2206 Temp = DAG.getNOT(dl, N1, MVT::i1); 2207 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2208 break; 2209 } 2210 if (VT != MVT::i1) { 2211 if (!DCI.isCalledByLegalizer()) 2212 DCI.AddToWorklist(N0.getNode()); 2213 // FIXME: If running after legalize, we probably can't do this. 2214 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2215 } 2216 return N0; 2217 } 2218 2219 // Could not fold it. 2220 return SDValue(); 2221 } 2222 2223 /// Returns true (and the GlobalValue and the offset) if the node is a 2224 /// GlobalAddress + offset. 2225 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2226 int64_t &Offset) const { 2227 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2228 GA = GASD->getGlobal(); 2229 Offset += GASD->getOffset(); 2230 return true; 2231 } 2232 2233 if (N->getOpcode() == ISD::ADD) { 2234 SDValue N1 = N->getOperand(0); 2235 SDValue N2 = N->getOperand(1); 2236 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2237 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2238 Offset += V->getSExtValue(); 2239 return true; 2240 } 2241 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2242 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2243 Offset += V->getSExtValue(); 2244 return true; 2245 } 2246 } 2247 } 2248 2249 return false; 2250 } 2251 2252 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2253 DAGCombinerInfo &DCI) const { 2254 // Default implementation: no optimization. 2255 return SDValue(); 2256 } 2257 2258 //===----------------------------------------------------------------------===// 2259 // Inline Assembler Implementation Methods 2260 //===----------------------------------------------------------------------===// 2261 2262 TargetLowering::ConstraintType 2263 TargetLowering::getConstraintType(StringRef Constraint) const { 2264 unsigned S = Constraint.size(); 2265 2266 if (S == 1) { 2267 switch (Constraint[0]) { 2268 default: break; 2269 case 'r': return C_RegisterClass; 2270 case 'm': // memory 2271 case 'o': // offsetable 2272 case 'V': // not offsetable 2273 return C_Memory; 2274 case 'i': // Simple Integer or Relocatable Constant 2275 case 'n': // Simple Integer 2276 case 'E': // Floating Point Constant 2277 case 'F': // Floating Point Constant 2278 case 's': // Relocatable Constant 2279 case 'p': // Address. 2280 case 'X': // Allow ANY value. 2281 case 'I': // Target registers. 2282 case 'J': 2283 case 'K': 2284 case 'L': 2285 case 'M': 2286 case 'N': 2287 case 'O': 2288 case 'P': 2289 case '<': 2290 case '>': 2291 return C_Other; 2292 } 2293 } 2294 2295 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2296 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2297 return C_Memory; 2298 return C_Register; 2299 } 2300 return C_Unknown; 2301 } 2302 2303 /// Try to replace an X constraint, which matches anything, with another that 2304 /// has more specific requirements based on the type of the corresponding 2305 /// operand. 2306 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2307 if (ConstraintVT.isInteger()) 2308 return "r"; 2309 if (ConstraintVT.isFloatingPoint()) 2310 return "f"; // works for many targets 2311 return nullptr; 2312 } 2313 2314 /// Lower the specified operand into the Ops vector. 2315 /// If it is invalid, don't add anything to Ops. 2316 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2317 std::string &Constraint, 2318 std::vector<SDValue> &Ops, 2319 SelectionDAG &DAG) const { 2320 2321 if (Constraint.length() > 1) return; 2322 2323 char ConstraintLetter = Constraint[0]; 2324 switch (ConstraintLetter) { 2325 default: break; 2326 case 'X': // Allows any operand; labels (basic block) use this. 2327 if (Op.getOpcode() == ISD::BasicBlock) { 2328 Ops.push_back(Op); 2329 return; 2330 } 2331 LLVM_FALLTHROUGH; 2332 case 'i': // Simple Integer or Relocatable Constant 2333 case 'n': // Simple Integer 2334 case 's': { // Relocatable Constant 2335 // These operands are interested in values of the form (GV+C), where C may 2336 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2337 // is possible and fine if either GV or C are missing. 2338 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2339 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2340 2341 // If we have "(add GV, C)", pull out GV/C 2342 if (Op.getOpcode() == ISD::ADD) { 2343 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2344 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2345 if (!C || !GA) { 2346 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2347 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2348 } 2349 if (!C || !GA) { 2350 C = nullptr; 2351 GA = nullptr; 2352 } 2353 } 2354 2355 // If we find a valid operand, map to the TargetXXX version so that the 2356 // value itself doesn't get selected. 2357 if (GA) { // Either &GV or &GV+C 2358 if (ConstraintLetter != 'n') { 2359 int64_t Offs = GA->getOffset(); 2360 if (C) Offs += C->getZExtValue(); 2361 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2362 C ? SDLoc(C) : SDLoc(), 2363 Op.getValueType(), Offs)); 2364 } 2365 return; 2366 } 2367 if (C) { // just C, no GV. 2368 // Simple constants are not allowed for 's'. 2369 if (ConstraintLetter != 's') { 2370 // gcc prints these as sign extended. Sign extend value to 64 bits 2371 // now; without this it would get ZExt'd later in 2372 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2373 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2374 SDLoc(C), MVT::i64)); 2375 } 2376 return; 2377 } 2378 break; 2379 } 2380 } 2381 } 2382 2383 std::pair<unsigned, const TargetRegisterClass *> 2384 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2385 StringRef Constraint, 2386 MVT VT) const { 2387 if (Constraint.empty() || Constraint[0] != '{') 2388 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2389 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2390 2391 // Remove the braces from around the name. 2392 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2393 2394 std::pair<unsigned, const TargetRegisterClass*> R = 2395 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2396 2397 // Figure out which register class contains this reg. 2398 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2399 E = RI->regclass_end(); RCI != E; ++RCI) { 2400 const TargetRegisterClass *RC = *RCI; 2401 2402 // If none of the value types for this register class are valid, we 2403 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2404 if (!isLegalRC(RC)) 2405 continue; 2406 2407 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2408 I != E; ++I) { 2409 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2410 std::pair<unsigned, const TargetRegisterClass*> S = 2411 std::make_pair(*I, RC); 2412 2413 // If this register class has the requested value type, return it, 2414 // otherwise keep searching and return the first class found 2415 // if no other is found which explicitly has the requested type. 2416 if (RC->hasType(VT)) 2417 return S; 2418 else if (!R.second) 2419 R = S; 2420 } 2421 } 2422 } 2423 2424 return R; 2425 } 2426 2427 //===----------------------------------------------------------------------===// 2428 // Constraint Selection. 2429 2430 /// Return true of this is an input operand that is a matching constraint like 2431 /// "4". 2432 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2433 assert(!ConstraintCode.empty() && "No known constraint!"); 2434 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2435 } 2436 2437 /// If this is an input matching constraint, this method returns the output 2438 /// operand it matches. 2439 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2440 assert(!ConstraintCode.empty() && "No known constraint!"); 2441 return atoi(ConstraintCode.c_str()); 2442 } 2443 2444 /// Split up the constraint string from the inline assembly value into the 2445 /// specific constraints and their prefixes, and also tie in the associated 2446 /// operand values. 2447 /// If this returns an empty vector, and if the constraint string itself 2448 /// isn't empty, there was an error parsing. 2449 TargetLowering::AsmOperandInfoVector 2450 TargetLowering::ParseConstraints(const DataLayout &DL, 2451 const TargetRegisterInfo *TRI, 2452 ImmutableCallSite CS) const { 2453 /// Information about all of the constraints. 2454 AsmOperandInfoVector ConstraintOperands; 2455 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2456 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2457 2458 // Do a prepass over the constraints, canonicalizing them, and building up the 2459 // ConstraintOperands list. 2460 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2461 unsigned ResNo = 0; // ResNo - The result number of the next output. 2462 2463 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2464 ConstraintOperands.emplace_back(std::move(CI)); 2465 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2466 2467 // Update multiple alternative constraint count. 2468 if (OpInfo.multipleAlternatives.size() > maCount) 2469 maCount = OpInfo.multipleAlternatives.size(); 2470 2471 OpInfo.ConstraintVT = MVT::Other; 2472 2473 // Compute the value type for each operand. 2474 switch (OpInfo.Type) { 2475 case InlineAsm::isOutput: 2476 // Indirect outputs just consume an argument. 2477 if (OpInfo.isIndirect) { 2478 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2479 break; 2480 } 2481 2482 // The return value of the call is this value. As such, there is no 2483 // corresponding argument. 2484 assert(!CS.getType()->isVoidTy() && 2485 "Bad inline asm!"); 2486 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2487 OpInfo.ConstraintVT = 2488 getSimpleValueType(DL, STy->getElementType(ResNo)); 2489 } else { 2490 assert(ResNo == 0 && "Asm only has one result!"); 2491 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2492 } 2493 ++ResNo; 2494 break; 2495 case InlineAsm::isInput: 2496 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2497 break; 2498 case InlineAsm::isClobber: 2499 // Nothing to do. 2500 break; 2501 } 2502 2503 if (OpInfo.CallOperandVal) { 2504 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2505 if (OpInfo.isIndirect) { 2506 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2507 if (!PtrTy) 2508 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2509 OpTy = PtrTy->getElementType(); 2510 } 2511 2512 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2513 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2514 if (STy->getNumElements() == 1) 2515 OpTy = STy->getElementType(0); 2516 2517 // If OpTy is not a single value, it may be a struct/union that we 2518 // can tile with integers. 2519 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2520 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2521 switch (BitSize) { 2522 default: break; 2523 case 1: 2524 case 8: 2525 case 16: 2526 case 32: 2527 case 64: 2528 case 128: 2529 OpInfo.ConstraintVT = 2530 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2531 break; 2532 } 2533 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2534 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2535 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2536 } else { 2537 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2538 } 2539 } 2540 } 2541 2542 // If we have multiple alternative constraints, select the best alternative. 2543 if (!ConstraintOperands.empty()) { 2544 if (maCount) { 2545 unsigned bestMAIndex = 0; 2546 int bestWeight = -1; 2547 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2548 int weight = -1; 2549 unsigned maIndex; 2550 // Compute the sums of the weights for each alternative, keeping track 2551 // of the best (highest weight) one so far. 2552 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2553 int weightSum = 0; 2554 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2555 cIndex != eIndex; ++cIndex) { 2556 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2557 if (OpInfo.Type == InlineAsm::isClobber) 2558 continue; 2559 2560 // If this is an output operand with a matching input operand, 2561 // look up the matching input. If their types mismatch, e.g. one 2562 // is an integer, the other is floating point, or their sizes are 2563 // different, flag it as an maCantMatch. 2564 if (OpInfo.hasMatchingInput()) { 2565 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2566 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2567 if ((OpInfo.ConstraintVT.isInteger() != 2568 Input.ConstraintVT.isInteger()) || 2569 (OpInfo.ConstraintVT.getSizeInBits() != 2570 Input.ConstraintVT.getSizeInBits())) { 2571 weightSum = -1; // Can't match. 2572 break; 2573 } 2574 } 2575 } 2576 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2577 if (weight == -1) { 2578 weightSum = -1; 2579 break; 2580 } 2581 weightSum += weight; 2582 } 2583 // Update best. 2584 if (weightSum > bestWeight) { 2585 bestWeight = weightSum; 2586 bestMAIndex = maIndex; 2587 } 2588 } 2589 2590 // Now select chosen alternative in each constraint. 2591 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2592 cIndex != eIndex; ++cIndex) { 2593 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2594 if (cInfo.Type == InlineAsm::isClobber) 2595 continue; 2596 cInfo.selectAlternative(bestMAIndex); 2597 } 2598 } 2599 } 2600 2601 // Check and hook up tied operands, choose constraint code to use. 2602 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2603 cIndex != eIndex; ++cIndex) { 2604 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2605 2606 // If this is an output operand with a matching input operand, look up the 2607 // matching input. If their types mismatch, e.g. one is an integer, the 2608 // other is floating point, or their sizes are different, flag it as an 2609 // error. 2610 if (OpInfo.hasMatchingInput()) { 2611 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2612 2613 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2614 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2615 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2616 OpInfo.ConstraintVT); 2617 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2618 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2619 Input.ConstraintVT); 2620 if ((OpInfo.ConstraintVT.isInteger() != 2621 Input.ConstraintVT.isInteger()) || 2622 (MatchRC.second != InputRC.second)) { 2623 report_fatal_error("Unsupported asm: input constraint" 2624 " with a matching output constraint of" 2625 " incompatible type!"); 2626 } 2627 } 2628 } 2629 } 2630 2631 return ConstraintOperands; 2632 } 2633 2634 /// Return an integer indicating how general CT is. 2635 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2636 switch (CT) { 2637 case TargetLowering::C_Other: 2638 case TargetLowering::C_Unknown: 2639 return 0; 2640 case TargetLowering::C_Register: 2641 return 1; 2642 case TargetLowering::C_RegisterClass: 2643 return 2; 2644 case TargetLowering::C_Memory: 2645 return 3; 2646 } 2647 llvm_unreachable("Invalid constraint type"); 2648 } 2649 2650 /// Examine constraint type and operand type and determine a weight value. 2651 /// This object must already have been set up with the operand type 2652 /// and the current alternative constraint selected. 2653 TargetLowering::ConstraintWeight 2654 TargetLowering::getMultipleConstraintMatchWeight( 2655 AsmOperandInfo &info, int maIndex) const { 2656 InlineAsm::ConstraintCodeVector *rCodes; 2657 if (maIndex >= (int)info.multipleAlternatives.size()) 2658 rCodes = &info.Codes; 2659 else 2660 rCodes = &info.multipleAlternatives[maIndex].Codes; 2661 ConstraintWeight BestWeight = CW_Invalid; 2662 2663 // Loop over the options, keeping track of the most general one. 2664 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2665 ConstraintWeight weight = 2666 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2667 if (weight > BestWeight) 2668 BestWeight = weight; 2669 } 2670 2671 return BestWeight; 2672 } 2673 2674 /// Examine constraint type and operand type and determine a weight value. 2675 /// This object must already have been set up with the operand type 2676 /// and the current alternative constraint selected. 2677 TargetLowering::ConstraintWeight 2678 TargetLowering::getSingleConstraintMatchWeight( 2679 AsmOperandInfo &info, const char *constraint) const { 2680 ConstraintWeight weight = CW_Invalid; 2681 Value *CallOperandVal = info.CallOperandVal; 2682 // If we don't have a value, we can't do a match, 2683 // but allow it at the lowest weight. 2684 if (!CallOperandVal) 2685 return CW_Default; 2686 // Look at the constraint type. 2687 switch (*constraint) { 2688 case 'i': // immediate integer. 2689 case 'n': // immediate integer with a known value. 2690 if (isa<ConstantInt>(CallOperandVal)) 2691 weight = CW_Constant; 2692 break; 2693 case 's': // non-explicit intregal immediate. 2694 if (isa<GlobalValue>(CallOperandVal)) 2695 weight = CW_Constant; 2696 break; 2697 case 'E': // immediate float if host format. 2698 case 'F': // immediate float. 2699 if (isa<ConstantFP>(CallOperandVal)) 2700 weight = CW_Constant; 2701 break; 2702 case '<': // memory operand with autodecrement. 2703 case '>': // memory operand with autoincrement. 2704 case 'm': // memory operand. 2705 case 'o': // offsettable memory operand 2706 case 'V': // non-offsettable memory operand 2707 weight = CW_Memory; 2708 break; 2709 case 'r': // general register. 2710 case 'g': // general register, memory operand or immediate integer. 2711 // note: Clang converts "g" to "imr". 2712 if (CallOperandVal->getType()->isIntegerTy()) 2713 weight = CW_Register; 2714 break; 2715 case 'X': // any operand. 2716 default: 2717 weight = CW_Default; 2718 break; 2719 } 2720 return weight; 2721 } 2722 2723 /// If there are multiple different constraints that we could pick for this 2724 /// operand (e.g. "imr") try to pick the 'best' one. 2725 /// This is somewhat tricky: constraints fall into four classes: 2726 /// Other -> immediates and magic values 2727 /// Register -> one specific register 2728 /// RegisterClass -> a group of regs 2729 /// Memory -> memory 2730 /// Ideally, we would pick the most specific constraint possible: if we have 2731 /// something that fits into a register, we would pick it. The problem here 2732 /// is that if we have something that could either be in a register or in 2733 /// memory that use of the register could cause selection of *other* 2734 /// operands to fail: they might only succeed if we pick memory. Because of 2735 /// this the heuristic we use is: 2736 /// 2737 /// 1) If there is an 'other' constraint, and if the operand is valid for 2738 /// that constraint, use it. This makes us take advantage of 'i' 2739 /// constraints when available. 2740 /// 2) Otherwise, pick the most general constraint present. This prefers 2741 /// 'm' over 'r', for example. 2742 /// 2743 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2744 const TargetLowering &TLI, 2745 SDValue Op, SelectionDAG *DAG) { 2746 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2747 unsigned BestIdx = 0; 2748 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2749 int BestGenerality = -1; 2750 2751 // Loop over the options, keeping track of the most general one. 2752 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2753 TargetLowering::ConstraintType CType = 2754 TLI.getConstraintType(OpInfo.Codes[i]); 2755 2756 // If this is an 'other' constraint, see if the operand is valid for it. 2757 // For example, on X86 we might have an 'rI' constraint. If the operand 2758 // is an integer in the range [0..31] we want to use I (saving a load 2759 // of a register), otherwise we must use 'r'. 2760 if (CType == TargetLowering::C_Other && Op.getNode()) { 2761 assert(OpInfo.Codes[i].size() == 1 && 2762 "Unhandled multi-letter 'other' constraint"); 2763 std::vector<SDValue> ResultOps; 2764 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2765 ResultOps, *DAG); 2766 if (!ResultOps.empty()) { 2767 BestType = CType; 2768 BestIdx = i; 2769 break; 2770 } 2771 } 2772 2773 // Things with matching constraints can only be registers, per gcc 2774 // documentation. This mainly affects "g" constraints. 2775 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2776 continue; 2777 2778 // This constraint letter is more general than the previous one, use it. 2779 int Generality = getConstraintGenerality(CType); 2780 if (Generality > BestGenerality) { 2781 BestType = CType; 2782 BestIdx = i; 2783 BestGenerality = Generality; 2784 } 2785 } 2786 2787 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2788 OpInfo.ConstraintType = BestType; 2789 } 2790 2791 /// Determines the constraint code and constraint type to use for the specific 2792 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2793 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2794 SDValue Op, 2795 SelectionDAG *DAG) const { 2796 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2797 2798 // Single-letter constraints ('r') are very common. 2799 if (OpInfo.Codes.size() == 1) { 2800 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2801 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2802 } else { 2803 ChooseConstraint(OpInfo, *this, Op, DAG); 2804 } 2805 2806 // 'X' matches anything. 2807 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2808 // Labels and constants are handled elsewhere ('X' is the only thing 2809 // that matches labels). For Functions, the type here is the type of 2810 // the result, which is not what we want to look at; leave them alone. 2811 Value *v = OpInfo.CallOperandVal; 2812 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2813 OpInfo.CallOperandVal = v; 2814 return; 2815 } 2816 2817 // Otherwise, try to resolve it to something we know about by looking at 2818 // the actual operand type. 2819 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2820 OpInfo.ConstraintCode = Repl; 2821 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2822 } 2823 } 2824 } 2825 2826 /// \brief Given an exact SDIV by a constant, create a multiplication 2827 /// with the multiplicative inverse of the constant. 2828 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2829 const SDLoc &dl, SelectionDAG &DAG, 2830 std::vector<SDNode *> &Created) { 2831 assert(d != 0 && "Division by zero!"); 2832 2833 // Shift the value upfront if it is even, so the LSB is one. 2834 unsigned ShAmt = d.countTrailingZeros(); 2835 if (ShAmt) { 2836 // TODO: For UDIV use SRL instead of SRA. 2837 SDValue Amt = 2838 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2839 DAG.getDataLayout())); 2840 SDNodeFlags Flags; 2841 Flags.setExact(true); 2842 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2843 Created.push_back(Op1.getNode()); 2844 d = d.ashr(ShAmt); 2845 } 2846 2847 // Calculate the multiplicative inverse, using Newton's method. 2848 APInt t, xn = d; 2849 while ((t = d*xn) != 1) 2850 xn *= APInt(d.getBitWidth(), 2) - t; 2851 2852 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2853 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2854 Created.push_back(Mul.getNode()); 2855 return Mul; 2856 } 2857 2858 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2859 SelectionDAG &DAG, 2860 std::vector<SDNode *> *Created) const { 2861 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2863 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2864 return SDValue(N,0); // Lower SDIV as SDIV 2865 return SDValue(); 2866 } 2867 2868 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2869 /// return a DAG expression to select that will generate the same value by 2870 /// multiplying by a magic number. 2871 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2872 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2873 SelectionDAG &DAG, bool IsAfterLegalization, 2874 std::vector<SDNode *> *Created) const { 2875 assert(Created && "No vector to hold sdiv ops."); 2876 2877 EVT VT = N->getValueType(0); 2878 SDLoc dl(N); 2879 2880 // Check to see if we can do this. 2881 // FIXME: We should be more aggressive here. 2882 if (!isTypeLegal(VT)) 2883 return SDValue(); 2884 2885 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2886 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2887 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2888 2889 APInt::ms magics = Divisor.magic(); 2890 2891 // Multiply the numerator (operand 0) by the magic value 2892 // FIXME: We should support doing a MUL in a wider type 2893 SDValue Q; 2894 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2895 isOperationLegalOrCustom(ISD::MULHS, VT)) 2896 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2897 DAG.getConstant(magics.m, dl, VT)); 2898 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2899 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2900 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2901 N->getOperand(0), 2902 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2903 else 2904 return SDValue(); // No mulhs or equvialent 2905 // If d > 0 and m < 0, add the numerator 2906 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2907 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2908 Created->push_back(Q.getNode()); 2909 } 2910 // If d < 0 and m > 0, subtract the numerator. 2911 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2912 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2913 Created->push_back(Q.getNode()); 2914 } 2915 auto &DL = DAG.getDataLayout(); 2916 // Shift right algebraic if shift value is nonzero 2917 if (magics.s > 0) { 2918 Q = DAG.getNode( 2919 ISD::SRA, dl, VT, Q, 2920 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2921 Created->push_back(Q.getNode()); 2922 } 2923 // Extract the sign bit and add it to the quotient 2924 SDValue T = 2925 DAG.getNode(ISD::SRL, dl, VT, Q, 2926 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2927 getShiftAmountTy(Q.getValueType(), DL))); 2928 Created->push_back(T.getNode()); 2929 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2930 } 2931 2932 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2933 /// return a DAG expression to select that will generate the same value by 2934 /// multiplying by a magic number. 2935 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2936 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2937 SelectionDAG &DAG, bool IsAfterLegalization, 2938 std::vector<SDNode *> *Created) const { 2939 assert(Created && "No vector to hold udiv ops."); 2940 2941 EVT VT = N->getValueType(0); 2942 SDLoc dl(N); 2943 auto &DL = DAG.getDataLayout(); 2944 2945 // Check to see if we can do this. 2946 // FIXME: We should be more aggressive here. 2947 if (!isTypeLegal(VT)) 2948 return SDValue(); 2949 2950 // FIXME: We should use a narrower constant when the upper 2951 // bits are known to be zero. 2952 APInt::mu magics = Divisor.magicu(); 2953 2954 SDValue Q = N->getOperand(0); 2955 2956 // If the divisor is even, we can avoid using the expensive fixup by shifting 2957 // the divided value upfront. 2958 if (magics.a != 0 && !Divisor[0]) { 2959 unsigned Shift = Divisor.countTrailingZeros(); 2960 Q = DAG.getNode( 2961 ISD::SRL, dl, VT, Q, 2962 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 2963 Created->push_back(Q.getNode()); 2964 2965 // Get magic number for the shifted divisor. 2966 magics = Divisor.lshr(Shift).magicu(Shift); 2967 assert(magics.a == 0 && "Should use cheap fixup now"); 2968 } 2969 2970 // Multiply the numerator (operand 0) by the magic value 2971 // FIXME: We should support doing a MUL in a wider type 2972 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2973 isOperationLegalOrCustom(ISD::MULHU, VT)) 2974 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2975 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2976 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2977 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2978 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2979 else 2980 return SDValue(); // No mulhu or equvialent 2981 2982 Created->push_back(Q.getNode()); 2983 2984 if (magics.a == 0) { 2985 assert(magics.s < Divisor.getBitWidth() && 2986 "We shouldn't generate an undefined shift!"); 2987 return DAG.getNode( 2988 ISD::SRL, dl, VT, Q, 2989 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2990 } else { 2991 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2992 Created->push_back(NPQ.getNode()); 2993 NPQ = DAG.getNode( 2994 ISD::SRL, dl, VT, NPQ, 2995 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 2996 Created->push_back(NPQ.getNode()); 2997 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2998 Created->push_back(NPQ.getNode()); 2999 return DAG.getNode( 3000 ISD::SRL, dl, VT, NPQ, 3001 DAG.getConstant(magics.s - 1, dl, 3002 getShiftAmountTy(NPQ.getValueType(), DL))); 3003 } 3004 } 3005 3006 bool TargetLowering:: 3007 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3008 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3009 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3010 "be a constant integer"); 3011 return true; 3012 } 3013 3014 return false; 3015 } 3016 3017 //===----------------------------------------------------------------------===// 3018 // Legalization Utilities 3019 //===----------------------------------------------------------------------===// 3020 3021 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3022 SelectionDAG &DAG, SDValue LL, SDValue LH, 3023 SDValue RL, SDValue RH) const { 3024 EVT VT = N->getValueType(0); 3025 SDLoc dl(N); 3026 3027 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3028 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3029 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3030 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3031 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 3032 unsigned OuterBitSize = VT.getSizeInBits(); 3033 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 3034 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 3035 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 3036 3037 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3038 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3039 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3040 3041 if (!LL.getNode() && !RL.getNode() && 3042 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3043 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 3044 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 3045 } 3046 3047 if (!LL.getNode()) 3048 return false; 3049 3050 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3051 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 3052 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 3053 // The inputs are both zero-extended. 3054 if (HasUMUL_LOHI) { 3055 // We can emit a umul_lohi. 3056 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3057 RL); 3058 Hi = SDValue(Lo.getNode(), 1); 3059 return true; 3060 } 3061 if (HasMULHU) { 3062 // We can emit a mulhu+mul. 3063 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3064 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3065 return true; 3066 } 3067 } 3068 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 3069 // The input values are both sign-extended. 3070 if (HasSMUL_LOHI) { 3071 // We can emit a smul_lohi. 3072 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3073 RL); 3074 Hi = SDValue(Lo.getNode(), 1); 3075 return true; 3076 } 3077 if (HasMULHS) { 3078 // We can emit a mulhs+mul. 3079 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3080 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3081 return true; 3082 } 3083 } 3084 3085 if (!LH.getNode() && !RH.getNode() && 3086 isOperationLegalOrCustom(ISD::SRL, VT) && 3087 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3088 auto &DL = DAG.getDataLayout(); 3089 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3090 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3091 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3092 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3093 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3094 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3095 } 3096 3097 if (!LH.getNode()) 3098 return false; 3099 3100 if (HasUMUL_LOHI) { 3101 // Lo,Hi = umul LHS, RHS. 3102 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3103 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3104 Lo = UMulLOHI; 3105 Hi = UMulLOHI.getValue(1); 3106 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3107 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3108 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3109 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3110 return true; 3111 } 3112 if (HasMULHU) { 3113 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3114 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3115 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3116 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3117 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3118 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3119 return true; 3120 } 3121 } 3122 return false; 3123 } 3124 3125 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3126 SelectionDAG &DAG) const { 3127 EVT VT = Node->getOperand(0).getValueType(); 3128 EVT NVT = Node->getValueType(0); 3129 SDLoc dl(SDValue(Node, 0)); 3130 3131 // FIXME: Only f32 to i64 conversions are supported. 3132 if (VT != MVT::f32 || NVT != MVT::i64) 3133 return false; 3134 3135 // Expand f32 -> i64 conversion 3136 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3137 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3138 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3139 VT.getSizeInBits()); 3140 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3141 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3142 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3143 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3144 IntVT); 3145 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3146 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3147 3148 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3149 3150 auto &DL = DAG.getDataLayout(); 3151 SDValue ExponentBits = DAG.getNode( 3152 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3153 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3154 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3155 3156 SDValue Sign = DAG.getNode( 3157 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3158 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3159 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3160 3161 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3162 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3163 DAG.getConstant(0x00800000, dl, IntVT)); 3164 3165 R = DAG.getZExtOrTrunc(R, dl, NVT); 3166 3167 R = DAG.getSelectCC( 3168 dl, Exponent, ExponentLoBit, 3169 DAG.getNode(ISD::SHL, dl, NVT, R, 3170 DAG.getZExtOrTrunc( 3171 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3172 dl, getShiftAmountTy(IntVT, DL))), 3173 DAG.getNode(ISD::SRL, dl, NVT, R, 3174 DAG.getZExtOrTrunc( 3175 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3176 dl, getShiftAmountTy(IntVT, DL))), 3177 ISD::SETGT); 3178 3179 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3180 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3181 Sign); 3182 3183 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3184 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3185 return true; 3186 } 3187 3188 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3189 SelectionDAG &DAG) const { 3190 SDLoc SL(LD); 3191 SDValue Chain = LD->getChain(); 3192 SDValue BasePTR = LD->getBasePtr(); 3193 EVT SrcVT = LD->getMemoryVT(); 3194 ISD::LoadExtType ExtType = LD->getExtensionType(); 3195 3196 unsigned NumElem = SrcVT.getVectorNumElements(); 3197 3198 EVT SrcEltVT = SrcVT.getScalarType(); 3199 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3200 3201 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3202 assert(SrcEltVT.isByteSized()); 3203 3204 EVT PtrVT = BasePTR.getValueType(); 3205 3206 SmallVector<SDValue, 8> Vals; 3207 SmallVector<SDValue, 8> LoadChains; 3208 3209 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3210 SDValue ScalarLoad = 3211 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3212 LD->getPointerInfo().getWithOffset(Idx * Stride), 3213 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3214 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3215 3216 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3217 DAG.getConstant(Stride, SL, PtrVT)); 3218 3219 Vals.push_back(ScalarLoad.getValue(0)); 3220 LoadChains.push_back(ScalarLoad.getValue(1)); 3221 } 3222 3223 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3224 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3225 3226 return DAG.getMergeValues({ Value, NewChain }, SL); 3227 } 3228 3229 // FIXME: This relies on each element having a byte size, otherwise the stride 3230 // is 0 and just overwrites the same location. ExpandStore currently expects 3231 // this broken behavior. 3232 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3233 SelectionDAG &DAG) const { 3234 SDLoc SL(ST); 3235 3236 SDValue Chain = ST->getChain(); 3237 SDValue BasePtr = ST->getBasePtr(); 3238 SDValue Value = ST->getValue(); 3239 EVT StVT = ST->getMemoryVT(); 3240 3241 // The type of the data we want to save 3242 EVT RegVT = Value.getValueType(); 3243 EVT RegSclVT = RegVT.getScalarType(); 3244 3245 // The type of data as saved in memory. 3246 EVT MemSclVT = StVT.getScalarType(); 3247 3248 EVT PtrVT = BasePtr.getValueType(); 3249 3250 // Store Stride in bytes 3251 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3252 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3253 unsigned NumElem = StVT.getVectorNumElements(); 3254 3255 // Extract each of the elements from the original vector and save them into 3256 // memory individually. 3257 SmallVector<SDValue, 8> Stores; 3258 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3259 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3260 DAG.getConstant(Idx, SL, IdxVT)); 3261 3262 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3263 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3264 3265 // This scalar TruncStore may be illegal, but we legalize it later. 3266 SDValue Store = DAG.getTruncStore( 3267 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3268 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3269 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3270 3271 Stores.push_back(Store); 3272 } 3273 3274 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3275 } 3276 3277 std::pair<SDValue, SDValue> 3278 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3279 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3280 "unaligned indexed loads not implemented!"); 3281 SDValue Chain = LD->getChain(); 3282 SDValue Ptr = LD->getBasePtr(); 3283 EVT VT = LD->getValueType(0); 3284 EVT LoadedVT = LD->getMemoryVT(); 3285 SDLoc dl(LD); 3286 if (VT.isFloatingPoint() || VT.isVector()) { 3287 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3288 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3289 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3290 // Scalarize the load and let the individual components be handled. 3291 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3292 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3293 } 3294 3295 // Expand to a (misaligned) integer load of the same size, 3296 // then bitconvert to floating point or vector. 3297 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3298 LD->getMemOperand()); 3299 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3300 if (LoadedVT != VT) 3301 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3302 ISD::ANY_EXTEND, dl, VT, Result); 3303 3304 return std::make_pair(Result, newLoad.getValue(1)); 3305 } 3306 3307 // Copy the value to a (aligned) stack slot using (unaligned) integer 3308 // loads and stores, then do a (aligned) load from the stack slot. 3309 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3310 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3311 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3312 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3313 3314 // Make sure the stack slot is also aligned for the register type. 3315 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3316 3317 SmallVector<SDValue, 8> Stores; 3318 SDValue StackPtr = StackBase; 3319 unsigned Offset = 0; 3320 3321 EVT PtrVT = Ptr.getValueType(); 3322 EVT StackPtrVT = StackPtr.getValueType(); 3323 3324 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3325 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3326 3327 // Do all but one copies using the full register width. 3328 for (unsigned i = 1; i < NumRegs; i++) { 3329 // Load one integer register's worth from the original location. 3330 SDValue Load = DAG.getLoad( 3331 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3332 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3333 LD->getAAInfo()); 3334 // Follow the load with a store to the stack slot. Remember the store. 3335 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3336 MachinePointerInfo())); 3337 // Increment the pointers. 3338 Offset += RegBytes; 3339 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3340 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3341 StackPtrIncrement); 3342 } 3343 3344 // The last copy may be partial. Do an extending load. 3345 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3346 8 * (LoadedBytes - Offset)); 3347 SDValue Load = 3348 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3349 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3350 MinAlign(LD->getAlignment(), Offset), 3351 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3352 // Follow the load with a store to the stack slot. Remember the store. 3353 // On big-endian machines this requires a truncating store to ensure 3354 // that the bits end up in the right place. 3355 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3356 MachinePointerInfo(), MemVT)); 3357 3358 // The order of the stores doesn't matter - say it with a TokenFactor. 3359 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3360 3361 // Finally, perform the original load only redirected to the stack slot. 3362 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3363 MachinePointerInfo(), LoadedVT); 3364 3365 // Callers expect a MERGE_VALUES node. 3366 return std::make_pair(Load, TF); 3367 } 3368 3369 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3370 "Unaligned load of unsupported type."); 3371 3372 // Compute the new VT that is half the size of the old one. This is an 3373 // integer MVT. 3374 unsigned NumBits = LoadedVT.getSizeInBits(); 3375 EVT NewLoadedVT; 3376 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3377 NumBits >>= 1; 3378 3379 unsigned Alignment = LD->getAlignment(); 3380 unsigned IncrementSize = NumBits / 8; 3381 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3382 3383 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3384 if (HiExtType == ISD::NON_EXTLOAD) 3385 HiExtType = ISD::ZEXTLOAD; 3386 3387 // Load the value in two parts 3388 SDValue Lo, Hi; 3389 if (DAG.getDataLayout().isLittleEndian()) { 3390 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3391 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3392 LD->getAAInfo()); 3393 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3394 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3395 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3396 LD->getPointerInfo().getWithOffset(IncrementSize), 3397 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3398 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3399 } else { 3400 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3401 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3402 LD->getAAInfo()); 3403 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3404 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3405 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3406 LD->getPointerInfo().getWithOffset(IncrementSize), 3407 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3408 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3409 } 3410 3411 // aggregate the two parts 3412 SDValue ShiftAmount = 3413 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3414 DAG.getDataLayout())); 3415 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3416 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3417 3418 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3419 Hi.getValue(1)); 3420 3421 return std::make_pair(Result, TF); 3422 } 3423 3424 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3425 SelectionDAG &DAG) const { 3426 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3427 "unaligned indexed stores not implemented!"); 3428 SDValue Chain = ST->getChain(); 3429 SDValue Ptr = ST->getBasePtr(); 3430 SDValue Val = ST->getValue(); 3431 EVT VT = Val.getValueType(); 3432 int Alignment = ST->getAlignment(); 3433 3434 SDLoc dl(ST); 3435 if (ST->getMemoryVT().isFloatingPoint() || 3436 ST->getMemoryVT().isVector()) { 3437 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3438 if (isTypeLegal(intVT)) { 3439 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3440 // Scalarize the store and let the individual components be handled. 3441 SDValue Result = scalarizeVectorStore(ST, DAG); 3442 3443 return Result; 3444 } 3445 // Expand to a bitconvert of the value to the integer type of the 3446 // same size, then a (misaligned) int store. 3447 // FIXME: Does not handle truncating floating point stores! 3448 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3449 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3450 Alignment, ST->getMemOperand()->getFlags()); 3451 return Result; 3452 } 3453 // Do a (aligned) store to a stack slot, then copy from the stack slot 3454 // to the final destination using (unaligned) integer loads and stores. 3455 EVT StoredVT = ST->getMemoryVT(); 3456 MVT RegVT = 3457 getRegisterType(*DAG.getContext(), 3458 EVT::getIntegerVT(*DAG.getContext(), 3459 StoredVT.getSizeInBits())); 3460 EVT PtrVT = Ptr.getValueType(); 3461 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3462 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3463 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3464 3465 // Make sure the stack slot is also aligned for the register type. 3466 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3467 3468 // Perform the original store, only redirected to the stack slot. 3469 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3470 MachinePointerInfo(), StoredVT); 3471 3472 EVT StackPtrVT = StackPtr.getValueType(); 3473 3474 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3475 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3476 SmallVector<SDValue, 8> Stores; 3477 unsigned Offset = 0; 3478 3479 // Do all but one copies using the full register width. 3480 for (unsigned i = 1; i < NumRegs; i++) { 3481 // Load one integer register's worth from the stack slot. 3482 SDValue Load = 3483 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3484 // Store it to the final location. Remember the store. 3485 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3486 ST->getPointerInfo().getWithOffset(Offset), 3487 MinAlign(ST->getAlignment(), Offset), 3488 ST->getMemOperand()->getFlags())); 3489 // Increment the pointers. 3490 Offset += RegBytes; 3491 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3492 StackPtr, StackPtrIncrement); 3493 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3494 } 3495 3496 // The last store may be partial. Do a truncating store. On big-endian 3497 // machines this requires an extending load from the stack slot to ensure 3498 // that the bits are in the right place. 3499 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3500 8 * (StoredBytes - Offset)); 3501 3502 // Load from the stack slot. 3503 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3504 MachinePointerInfo(), MemVT); 3505 3506 Stores.push_back( 3507 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3508 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3509 MinAlign(ST->getAlignment(), Offset), 3510 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3511 // The order of the stores doesn't matter - say it with a TokenFactor. 3512 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3513 return Result; 3514 } 3515 3516 assert(ST->getMemoryVT().isInteger() && 3517 !ST->getMemoryVT().isVector() && 3518 "Unaligned store of unknown type."); 3519 // Get the half-size VT 3520 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3521 int NumBits = NewStoredVT.getSizeInBits(); 3522 int IncrementSize = NumBits / 8; 3523 3524 // Divide the stored value in two parts. 3525 SDValue ShiftAmount = 3526 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3527 DAG.getDataLayout())); 3528 SDValue Lo = Val; 3529 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3530 3531 // Store the two parts 3532 SDValue Store1, Store2; 3533 Store1 = DAG.getTruncStore(Chain, dl, 3534 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3535 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3536 ST->getMemOperand()->getFlags()); 3537 3538 EVT PtrVT = Ptr.getValueType(); 3539 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3540 DAG.getConstant(IncrementSize, dl, PtrVT)); 3541 Alignment = MinAlign(Alignment, IncrementSize); 3542 Store2 = DAG.getTruncStore( 3543 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3544 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3545 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3546 3547 SDValue Result = 3548 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3549 return Result; 3550 } 3551 3552 //===----------------------------------------------------------------------===// 3553 // Implementation of Emulated TLS Model 3554 //===----------------------------------------------------------------------===// 3555 3556 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3557 SelectionDAG &DAG) const { 3558 // Access to address of TLS varialbe xyz is lowered to a function call: 3559 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3560 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3561 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3562 SDLoc dl(GA); 3563 3564 ArgListTy Args; 3565 ArgListEntry Entry; 3566 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3567 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3568 StringRef EmuTlsVarName(NameString); 3569 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3570 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3571 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3572 Entry.Ty = VoidPtrType; 3573 Args.push_back(Entry); 3574 3575 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3576 3577 TargetLowering::CallLoweringInfo CLI(DAG); 3578 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3579 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3580 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3581 3582 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3583 // At last for X86 targets, maybe good for other targets too? 3584 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3585 MFI.setAdjustsStack(true); // Is this only for X86 target? 3586 MFI.setHasCalls(true); 3587 3588 assert((GA->getOffset() == 0) && 3589 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3590 return CallResult.first; 3591 } 3592 3593 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3594 SelectionDAG &DAG) const { 3595 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3596 if (!isCtlzFast()) 3597 return SDValue(); 3598 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3599 SDLoc dl(Op); 3600 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3601 if (C->isNullValue() && CC == ISD::SETEQ) { 3602 EVT VT = Op.getOperand(0).getValueType(); 3603 SDValue Zext = Op.getOperand(0); 3604 if (VT.bitsLT(MVT::i32)) { 3605 VT = MVT::i32; 3606 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3607 } 3608 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3609 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3610 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3611 DAG.getConstant(Log2b, dl, MVT::i32)); 3612 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3613 } 3614 } 3615 return SDValue(); 3616 } 3617