1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/Support/DivisionByConstantInfo.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cctype>
34 using namespace llvm;
35 
36 /// NOTE: The TargetMachine owns TLOF.
37 TargetLowering::TargetLowering(const TargetMachine &tm)
38     : TargetLoweringBase(tm) {}
39 
40 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
41   return nullptr;
42 }
43 
44 bool TargetLowering::isPositionIndependent() const {
45   return getTargetMachine().isPositionIndependent();
46 }
47 
48 /// Check whether a given call node is in tail position within its function. If
49 /// so, it sets Chain to the input chain of the tail call.
50 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
51                                           SDValue &Chain) const {
52   const Function &F = DAG.getMachineFunction().getFunction();
53 
54   // First, check if tail calls have been disabled in this function.
55   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
56     return false;
57 
58   // Conservatively require the attributes of the call to match those of
59   // the return. Ignore following attributes because they don't affect the
60   // call sequence.
61   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
62   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
63                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
64                            Attribute::NonNull, Attribute::NoUndef})
65     CallerAttrs.removeAttribute(Attr);
66 
67   if (CallerAttrs.hasAttributes())
68     return false;
69 
70   // It's not safe to eliminate the sign / zero extension of the return value.
71   if (CallerAttrs.contains(Attribute::ZExt) ||
72       CallerAttrs.contains(Attribute::SExt))
73     return false;
74 
75   // Check if the only use is a function return node.
76   return isUsedByReturnOnly(Node, Chain);
77 }
78 
79 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
80     const uint32_t *CallerPreservedMask,
81     const SmallVectorImpl<CCValAssign> &ArgLocs,
82     const SmallVectorImpl<SDValue> &OutVals) const {
83   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
84     const CCValAssign &ArgLoc = ArgLocs[I];
85     if (!ArgLoc.isRegLoc())
86       continue;
87     MCRegister Reg = ArgLoc.getLocReg();
88     // Only look at callee saved registers.
89     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
90       continue;
91     // Check that we pass the value used for the caller.
92     // (We look for a CopyFromReg reading a virtual register that is used
93     //  for the function live-in value of register Reg)
94     SDValue Value = OutVals[I];
95     if (Value->getOpcode() == ISD::AssertZext)
96       Value = Value.getOperand(0);
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135   if (IsSRet)
136     IndirectType = Call->getParamStructRetType(ArgIdx);
137 }
138 
139 /// Generate a libcall taking the given operands as arguments and returning a
140 /// result of type RetVT.
141 std::pair<SDValue, SDValue>
142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
143                             ArrayRef<SDValue> Ops,
144                             MakeLibCallOptions CallOptions,
145                             const SDLoc &dl,
146                             SDValue InChain) const {
147   if (!InChain)
148     InChain = DAG.getEntryNode();
149 
150   TargetLowering::ArgListTy Args;
151   Args.reserve(Ops.size());
152 
153   TargetLowering::ArgListEntry Entry;
154   for (unsigned i = 0; i < Ops.size(); ++i) {
155     SDValue NewOp = Ops[i];
156     Entry.Node = NewOp;
157     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
158     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
159                                                  CallOptions.IsSExt);
160     Entry.IsZExt = !Entry.IsSExt;
161 
162     if (CallOptions.IsSoften &&
163         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
164       Entry.IsSExt = Entry.IsZExt = false;
165     }
166     Args.push_back(Entry);
167   }
168 
169   if (LC == RTLIB::UNKNOWN_LIBCALL)
170     report_fatal_error("Unsupported library call operation!");
171   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
172                                          getPointerTy(DAG.getDataLayout()));
173 
174   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
175   TargetLowering::CallLoweringInfo CLI(DAG);
176   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
177   bool zeroExtend = !signExtend;
178 
179   if (CallOptions.IsSoften &&
180       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
181     signExtend = zeroExtend = false;
182   }
183 
184   CLI.setDebugLoc(dl)
185       .setChain(InChain)
186       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
187       .setNoReturn(CallOptions.DoesNotReturn)
188       .setDiscardResult(!CallOptions.IsReturnValueUsed)
189       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
190       .setSExtResult(signExtend)
191       .setZExtResult(zeroExtend);
192   return LowerCallTo(CLI);
193 }
194 
195 bool TargetLowering::findOptimalMemOpLowering(
196     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
197     unsigned SrcAS, const AttributeList &FuncAttributes) const {
198   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
199     return false;
200 
201   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     if (Op.isFixedDstAlign())
209       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
210              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
211         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
212     assert(VT.isInteger());
213 
214     // Find the largest legal integer type.
215     MVT LVT = MVT::i64;
216     while (!isTypeLegal(LVT))
217       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
218     assert(LVT.isInteger());
219 
220     // If the type we've chosen is larger than the largest legal integer type
221     // then use that instead.
222     if (VT.bitsGT(LVT))
223       VT = LVT;
224   }
225 
226   unsigned NumMemOps = 0;
227   uint64_t Size = Op.size();
228   while (Size) {
229     unsigned VTSize = VT.getSizeInBits() / 8;
230     while (VTSize > Size) {
231       // For now, only use non-vector load / store's for the left-over pieces.
232       EVT NewVT = VT;
233       unsigned NewVTSize;
234 
235       bool Found = false;
236       if (VT.isVector() || VT.isFloatingPoint()) {
237         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
238         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
239             isSafeMemOpType(NewVT.getSimpleVT()))
240           Found = true;
241         else if (NewVT == MVT::i64 &&
242                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
243                  isSafeMemOpType(MVT::f64)) {
244           // i64 is usually not legal on 32-bit targets, but f64 may be.
245           NewVT = MVT::f64;
246           Found = true;
247         }
248       }
249 
250       if (!Found) {
251         do {
252           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
253           if (NewVT == MVT::i8)
254             break;
255         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
256       }
257       NewVTSize = NewVT.getSizeInBits() / 8;
258 
259       // If the new VT cannot cover all of the remaining bits, then consider
260       // issuing a (or a pair of) unaligned and overlapping load / store.
261       bool Fast;
262       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
263           allowsMisalignedMemoryAccesses(
264               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
265               MachineMemOperand::MONone, &Fast) &&
266           Fast)
267         VTSize = Size;
268       else {
269         VT = NewVT;
270         VTSize = NewVTSize;
271       }
272     }
273 
274     if (++NumMemOps > Limit)
275       return false;
276 
277     MemOps.push_back(VT);
278     Size -= VTSize;
279   }
280 
281   return true;
282 }
283 
284 /// Soften the operands of a comparison. This code is shared among BR_CC,
285 /// SELECT_CC, and SETCC handlers.
286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
287                                          SDValue &NewLHS, SDValue &NewRHS,
288                                          ISD::CondCode &CCCode,
289                                          const SDLoc &dl, const SDValue OldLHS,
290                                          const SDValue OldRHS) const {
291   SDValue Chain;
292   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
293                              OldRHS, Chain);
294 }
295 
296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
297                                          SDValue &NewLHS, SDValue &NewRHS,
298                                          ISD::CondCode &CCCode,
299                                          const SDLoc &dl, const SDValue OldLHS,
300                                          const SDValue OldRHS,
301                                          SDValue &Chain,
302                                          bool IsSignaling) const {
303   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
304   // not supporting it. We can update this code when libgcc provides such
305   // functions.
306 
307   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
308          && "Unsupported setcc type!");
309 
310   // Expand into one or more soft-fp libcall(s).
311   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
312   bool ShouldInvertCC = false;
313   switch (CCCode) {
314   case ISD::SETEQ:
315   case ISD::SETOEQ:
316     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
317           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
318           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
319     break;
320   case ISD::SETNE:
321   case ISD::SETUNE:
322     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
323           (VT == MVT::f64) ? RTLIB::UNE_F64 :
324           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
325     break;
326   case ISD::SETGE:
327   case ISD::SETOGE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
329           (VT == MVT::f64) ? RTLIB::OGE_F64 :
330           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
331     break;
332   case ISD::SETLT:
333   case ISD::SETOLT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
335           (VT == MVT::f64) ? RTLIB::OLT_F64 :
336           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
337     break;
338   case ISD::SETLE:
339   case ISD::SETOLE:
340     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
341           (VT == MVT::f64) ? RTLIB::OLE_F64 :
342           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
343     break;
344   case ISD::SETGT:
345   case ISD::SETOGT:
346     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347           (VT == MVT::f64) ? RTLIB::OGT_F64 :
348           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349     break;
350   case ISD::SETO:
351     ShouldInvertCC = true;
352     LLVM_FALLTHROUGH;
353   case ISD::SETUO:
354     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
355           (VT == MVT::f64) ? RTLIB::UO_F64 :
356           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
357     break;
358   case ISD::SETONE:
359     // SETONE = O && UNE
360     ShouldInvertCC = true;
361     LLVM_FALLTHROUGH;
362   case ISD::SETUEQ:
363     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
364           (VT == MVT::f64) ? RTLIB::UO_F64 :
365           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
366     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
367           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
368           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
369     break;
370   default:
371     // Invert CC for unordered comparisons
372     ShouldInvertCC = true;
373     switch (CCCode) {
374     case ISD::SETULT:
375       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
376             (VT == MVT::f64) ? RTLIB::OGE_F64 :
377             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
378       break;
379     case ISD::SETULE:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
381             (VT == MVT::f64) ? RTLIB::OGT_F64 :
382             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
383       break;
384     case ISD::SETUGT:
385       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
386             (VT == MVT::f64) ? RTLIB::OLE_F64 :
387             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
388       break;
389     case ISD::SETUGE:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
391             (VT == MVT::f64) ? RTLIB::OLT_F64 :
392             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
393       break;
394     default: llvm_unreachable("Do not know how to soften this setcc!");
395     }
396   }
397 
398   // Use the target specific return value for comparions lib calls.
399   EVT RetVT = getCmpLibcallReturnType();
400   SDValue Ops[2] = {NewLHS, NewRHS};
401   TargetLowering::MakeLibCallOptions CallOptions;
402   EVT OpsVT[2] = { OldLHS.getValueType(),
403                    OldRHS.getValueType() };
404   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
405   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
406   NewLHS = Call.first;
407   NewRHS = DAG.getConstant(0, dl, RetVT);
408 
409   CCCode = getCmpLibcallCC(LC1);
410   if (ShouldInvertCC) {
411     assert(RetVT.isInteger());
412     CCCode = getSetCCInverse(CCCode, RetVT);
413   }
414 
415   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
416     // Update Chain.
417     Chain = Call.second;
418   } else {
419     EVT SetCCVT =
420         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
421     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
422     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
423     CCCode = getCmpLibcallCC(LC2);
424     if (ShouldInvertCC)
425       CCCode = getSetCCInverse(CCCode, RetVT);
426     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
427     if (Chain)
428       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
429                           Call2.second);
430     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
431                          Tmp.getValueType(), Tmp, NewLHS);
432     NewRHS = SDValue();
433   }
434 }
435 
436 /// Return the entry encoding for a jump table in the current function. The
437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
438 unsigned TargetLowering::getJumpTableEncoding() const {
439   // In non-pic modes, just use the address of a block.
440   if (!isPositionIndependent())
441     return MachineJumpTableInfo::EK_BlockAddress;
442 
443   // In PIC mode, if the target supports a GPRel32 directive, use it.
444   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
445     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
446 
447   // Otherwise, use a label difference.
448   return MachineJumpTableInfo::EK_LabelDifference32;
449 }
450 
451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
452                                                  SelectionDAG &DAG) const {
453   // If our PIC model is GP relative, use the global offset table as the base.
454   unsigned JTEncoding = getJumpTableEncoding();
455 
456   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
457       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
458     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
459 
460   return Table;
461 }
462 
463 /// This returns the relocation base for the given PIC jumptable, the same as
464 /// getPICJumpTableRelocBase, but as an MCExpr.
465 const MCExpr *
466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
467                                              unsigned JTI,MCContext &Ctx) const{
468   // The normal PIC reloc base is the label at the start of the jump table.
469   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
470 }
471 
472 bool
473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
474   const TargetMachine &TM = getTargetMachine();
475   const GlobalValue *GV = GA->getGlobal();
476 
477   // If the address is not even local to this DSO we will have to load it from
478   // a got and then add the offset.
479   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
480     return false;
481 
482   // If the code is position independent we will have to add a base register.
483   if (isPositionIndependent())
484     return false;
485 
486   // Otherwise we can do it.
487   return true;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //  Optimization Methods
492 //===----------------------------------------------------------------------===//
493 
494 /// If the specified instruction has a constant integer operand and there are
495 /// bits set in that constant that are not demanded, then clear those bits and
496 /// return true.
497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
498                                             const APInt &DemandedBits,
499                                             const APInt &DemandedElts,
500                                             TargetLoweringOpt &TLO) const {
501   SDLoc DL(Op);
502   unsigned Opcode = Op.getOpcode();
503 
504   // Do target-specific constant optimization.
505   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
506     return TLO.New.getNode();
507 
508   // FIXME: ISD::SELECT, ISD::SELECT_CC
509   switch (Opcode) {
510   default:
511     break;
512   case ISD::XOR:
513   case ISD::AND:
514   case ISD::OR: {
515     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
516     if (!Op1C || Op1C->isOpaque())
517       return false;
518 
519     // If this is a 'not' op, don't touch it because that's a canonical form.
520     const APInt &C = Op1C->getAPIntValue();
521     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
522       return false;
523 
524     if (!C.isSubsetOf(DemandedBits)) {
525       EVT VT = Op.getValueType();
526       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
527       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
528       return TLO.CombineTo(Op, NewOp);
529     }
530 
531     break;
532   }
533   }
534 
535   return false;
536 }
537 
538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
539                                             const APInt &DemandedBits,
540                                             TargetLoweringOpt &TLO) const {
541   EVT VT = Op.getValueType();
542   APInt DemandedElts = VT.isVector()
543                            ? APInt::getAllOnes(VT.getVectorNumElements())
544                            : APInt(1, 1);
545   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
546 }
547 
548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
550 /// generalized for targets with other types of implicit widening casts.
551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
552                                       const APInt &Demanded,
553                                       TargetLoweringOpt &TLO) const {
554   assert(Op.getNumOperands() == 2 &&
555          "ShrinkDemandedOp only supports binary operators!");
556   assert(Op.getNode()->getNumValues() == 1 &&
557          "ShrinkDemandedOp only supports nodes with one result!");
558 
559   SelectionDAG &DAG = TLO.DAG;
560   SDLoc dl(Op);
561 
562   // Early return, as this function cannot handle vector types.
563   if (Op.getValueType().isVector())
564     return false;
565 
566   // Don't do this if the node has another user, which may require the
567   // full value.
568   if (!Op.getNode()->hasOneUse())
569     return false;
570 
571   // Search for the smallest integer type with free casts to and from
572   // Op's type. For expedience, just check power-of-2 integer types.
573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
574   unsigned DemandedSize = Demanded.getActiveBits();
575   unsigned SmallVTBits = DemandedSize;
576   if (!isPowerOf2_32(SmallVTBits))
577     SmallVTBits = NextPowerOf2(SmallVTBits);
578   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
579     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
580     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
581         TLI.isZExtFree(SmallVT, Op.getValueType())) {
582       // We found a type with free casts.
583       SDValue X = DAG.getNode(
584           Op.getOpcode(), dl, SmallVT,
585           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
586           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
587       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
588       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
589       return TLO.CombineTo(Op, Z);
590     }
591   }
592   return false;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           DAGCombinerInfo &DCI) const {
597   SelectionDAG &DAG = DCI.DAG;
598   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
599                         !DCI.isBeforeLegalizeOps());
600   KnownBits Known;
601 
602   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
603   if (Simplified) {
604     DCI.AddToWorklist(Op.getNode());
605     DCI.CommitTargetLoweringOpt(TLO);
606   }
607   return Simplified;
608 }
609 
610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
611                                           const APInt &DemandedElts,
612                                           DAGCombinerInfo &DCI) const {
613   SelectionDAG &DAG = DCI.DAG;
614   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
615                         !DCI.isBeforeLegalizeOps());
616   KnownBits Known;
617 
618   bool Simplified =
619       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
620   if (Simplified) {
621     DCI.AddToWorklist(Op.getNode());
622     DCI.CommitTargetLoweringOpt(TLO);
623   }
624   return Simplified;
625 }
626 
627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
628                                           KnownBits &Known,
629                                           TargetLoweringOpt &TLO,
630                                           unsigned Depth,
631                                           bool AssumeSingleUse) const {
632   EVT VT = Op.getValueType();
633 
634   // TODO: We can probably do more work on calculating the known bits and
635   // simplifying the operations for scalable vectors, but for now we just
636   // bail out.
637   if (VT.isScalableVector()) {
638     // Pretend we don't know anything for now.
639     Known = KnownBits(DemandedBits.getBitWidth());
640     return false;
641   }
642 
643   APInt DemandedElts = VT.isVector()
644                            ? APInt::getAllOnes(VT.getVectorNumElements())
645                            : APInt(1, 1);
646   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
647                               AssumeSingleUse);
648 }
649 
650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
651 // TODO: Under what circumstances can we create nodes? Constant folding?
652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
653     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
654     SelectionDAG &DAG, unsigned Depth) const {
655   // Limit search depth.
656   if (Depth >= SelectionDAG::MaxRecursionDepth)
657     return SDValue();
658 
659   // Ignore UNDEFs.
660   if (Op.isUndef())
661     return SDValue();
662 
663   // Not demanding any bits/elts from Op.
664   if (DemandedBits == 0 || DemandedElts == 0)
665     return DAG.getUNDEF(Op.getValueType());
666 
667   bool IsLE = DAG.getDataLayout().isLittleEndian();
668   unsigned NumElts = DemandedElts.getBitWidth();
669   unsigned BitWidth = DemandedBits.getBitWidth();
670   KnownBits LHSKnown, RHSKnown;
671   switch (Op.getOpcode()) {
672   case ISD::BITCAST: {
673     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
674     EVT SrcVT = Src.getValueType();
675     EVT DstVT = Op.getValueType();
676     if (SrcVT == DstVT)
677       return Src;
678 
679     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
680     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
681     if (NumSrcEltBits == NumDstEltBits)
682       if (SDValue V = SimplifyMultipleUseDemandedBits(
683               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
684         return DAG.getBitcast(DstVT, V);
685 
686     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
687       unsigned Scale = NumDstEltBits / NumSrcEltBits;
688       unsigned NumSrcElts = SrcVT.getVectorNumElements();
689       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
690       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
691       for (unsigned i = 0; i != Scale; ++i) {
692         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
693         unsigned BitOffset = EltOffset * NumSrcEltBits;
694         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
695         if (!Sub.isZero()) {
696           DemandedSrcBits |= Sub;
697           for (unsigned j = 0; j != NumElts; ++j)
698             if (DemandedElts[j])
699               DemandedSrcElts.setBit((j * Scale) + i);
700         }
701       }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     // TODO - bigendian once we have test coverage.
709     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
710       unsigned Scale = NumSrcEltBits / NumDstEltBits;
711       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
712       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714       for (unsigned i = 0; i != NumElts; ++i)
715         if (DemandedElts[i]) {
716           unsigned Offset = (i % Scale) * NumDstEltBits;
717           DemandedSrcBits.insertBits(DemandedBits, Offset);
718           DemandedSrcElts.setBit(i / Scale);
719         }
720 
721       if (SDValue V = SimplifyMultipleUseDemandedBits(
722               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
723         return DAG.getBitcast(DstVT, V);
724     }
725 
726     break;
727   }
728   case ISD::AND: {
729     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
730     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
731 
732     // If all of the demanded bits are known 1 on one side, return the other.
733     // These bits cannot contribute to the result of the 'and' in this
734     // context.
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
736       return Op.getOperand(0);
737     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
738       return Op.getOperand(1);
739     break;
740   }
741   case ISD::OR: {
742     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
743     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
744 
745     // If all of the demanded bits are known zero on one side, return the
746     // other.  These bits cannot contribute to the result of the 'or' in this
747     // context.
748     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
749       return Op.getOperand(0);
750     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
751       return Op.getOperand(1);
752     break;
753   }
754   case ISD::XOR: {
755     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
756     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
757 
758     // If all of the demanded bits are known zero on one side, return the
759     // other.
760     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
761       return Op.getOperand(0);
762     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
763       return Op.getOperand(1);
764     break;
765   }
766   case ISD::SHL: {
767     // If we are only demanding sign bits then we can use the shift source
768     // directly.
769     if (const APInt *MaxSA =
770             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
771       SDValue Op0 = Op.getOperand(0);
772       unsigned ShAmt = MaxSA->getZExtValue();
773       unsigned NumSignBits =
774           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
775       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
776       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
777         return Op0;
778     }
779     break;
780   }
781   case ISD::SETCC: {
782     SDValue Op0 = Op.getOperand(0);
783     SDValue Op1 = Op.getOperand(1);
784     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
785     // If (1) we only need the sign-bit, (2) the setcc operands are the same
786     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
787     // -1, we may be able to bypass the setcc.
788     if (DemandedBits.isSignMask() &&
789         Op0.getScalarValueSizeInBits() == BitWidth &&
790         getBooleanContents(Op0.getValueType()) ==
791             BooleanContent::ZeroOrNegativeOneBooleanContent) {
792       // If we're testing X < 0, then this compare isn't needed - just use X!
793       // FIXME: We're limiting to integer types here, but this should also work
794       // if we don't care about FP signed-zero. The use of SETLT with FP means
795       // that we don't care about NaNs.
796       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
797           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
798         return Op0;
799     }
800     break;
801   }
802   case ISD::SIGN_EXTEND_INREG: {
803     // If none of the extended bits are demanded, eliminate the sextinreg.
804     SDValue Op0 = Op.getOperand(0);
805     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
806     unsigned ExBits = ExVT.getScalarSizeInBits();
807     if (DemandedBits.getActiveBits() <= ExBits)
808       return Op0;
809     // If the input is already sign extended, just drop the extension.
810     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
811     if (NumSignBits >= (BitWidth - ExBits + 1))
812       return Op0;
813     break;
814   }
815   case ISD::ANY_EXTEND_VECTOR_INREG:
816   case ISD::SIGN_EXTEND_VECTOR_INREG:
817   case ISD::ZERO_EXTEND_VECTOR_INREG: {
818     // If we only want the lowest element and none of extended bits, then we can
819     // return the bitcasted source vector.
820     SDValue Src = Op.getOperand(0);
821     EVT SrcVT = Src.getValueType();
822     EVT DstVT = Op.getValueType();
823     if (IsLE && DemandedElts == 1 &&
824         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
825         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
826       return DAG.getBitcast(DstVT, Src);
827     }
828     break;
829   }
830   case ISD::INSERT_VECTOR_ELT: {
831     // If we don't demand the inserted element, return the base vector.
832     SDValue Vec = Op.getOperand(0);
833     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
834     EVT VecVT = Vec.getValueType();
835     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
836         !DemandedElts[CIdx->getZExtValue()])
837       return Vec;
838     break;
839   }
840   case ISD::INSERT_SUBVECTOR: {
841     SDValue Vec = Op.getOperand(0);
842     SDValue Sub = Op.getOperand(1);
843     uint64_t Idx = Op.getConstantOperandVal(2);
844     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
845     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
846     // If we don't demand the inserted subvector, return the base vector.
847     if (DemandedSubElts == 0)
848       return Vec;
849     // If this simply widens the lowest subvector, see if we can do it earlier.
850     if (Idx == 0 && Vec.isUndef()) {
851       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
852               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
853         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
854                            Op.getOperand(0), NewSub, Op.getOperand(2));
855     }
856     break;
857   }
858   case ISD::VECTOR_SHUFFLE: {
859     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
860 
861     // If all the demanded elts are from one operand and are inline,
862     // then we can use the operand directly.
863     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
864     for (unsigned i = 0; i != NumElts; ++i) {
865       int M = ShuffleMask[i];
866       if (M < 0 || !DemandedElts[i])
867         continue;
868       AllUndef = false;
869       IdentityLHS &= (M == (int)i);
870       IdentityRHS &= ((M - NumElts) == i);
871     }
872 
873     if (AllUndef)
874       return DAG.getUNDEF(Op.getValueType());
875     if (IdentityLHS)
876       return Op.getOperand(0);
877     if (IdentityRHS)
878       return Op.getOperand(1);
879     break;
880   }
881   default:
882     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
883       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
884               Op, DemandedBits, DemandedElts, DAG, Depth))
885         return V;
886     break;
887   }
888   return SDValue();
889 }
890 
891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
892     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
893     unsigned Depth) const {
894   EVT VT = Op.getValueType();
895   APInt DemandedElts = VT.isVector()
896                            ? APInt::getAllOnes(VT.getVectorNumElements())
897                            : APInt(1, 1);
898   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
899                                          Depth);
900 }
901 
902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
903     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
904     unsigned Depth) const {
905   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
906   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
907                                          Depth);
908 }
909 
910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
911 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
913                                  const TargetLowering &TLI,
914                                  const APInt &DemandedBits,
915                                  const APInt &DemandedElts,
916                                  unsigned Depth) {
917   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
918          "SRL or SRA node is required here!");
919   // Is the right shift using an immediate value of 1?
920   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
921   if (!N1C || !N1C->isOne())
922     return SDValue();
923 
924   // We are looking for an avgfloor
925   // add(ext, ext)
926   // or one of these as a avgceil
927   // add(add(ext, ext), 1)
928   // add(add(ext, 1), ext)
929   // add(ext, add(ext, 1))
930   SDValue Add = Op.getOperand(0);
931   if (Add.getOpcode() != ISD::ADD)
932     return SDValue();
933 
934   SDValue ExtOpA = Add.getOperand(0);
935   SDValue ExtOpB = Add.getOperand(1);
936   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
937     ConstantSDNode *ConstOp;
938     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
939         ConstOp->isOne()) {
940       ExtOpA = Op2;
941       ExtOpB = Op3;
942       return true;
943     }
944     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
945         ConstOp->isOne()) {
946       ExtOpA = Op1;
947       ExtOpB = Op3;
948       return true;
949     }
950     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
951         ConstOp->isOne()) {
952       ExtOpA = Op1;
953       ExtOpB = Op2;
954       return true;
955     }
956     return false;
957   };
958   bool IsCeil =
959       (ExtOpA.getOpcode() == ISD::ADD &&
960        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
961       (ExtOpB.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
963 
964   // If the shift is signed (sra):
965   //  - Needs >= 2 sign bit for both operands.
966   //  - Needs >= 2 zero bits.
967   // If the shift is unsigned (srl):
968   //  - Needs >= 1 zero bit for both operands.
969   //  - Needs 1 demanded bit zero and >= 2 sign bits.
970   unsigned ShiftOpc = Op.getOpcode();
971   bool IsSigned = false;
972   unsigned KnownBits;
973   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
974   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
975   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
976   unsigned NumZeroA =
977       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
978   unsigned NumZeroB =
979       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZero = std::min(NumZeroA, NumZeroB);
981 
982   switch (ShiftOpc) {
983   default:
984     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
985   case ISD::SRA: {
986     if (NumZero >= 2 && NumSigned < NumZero) {
987       IsSigned = false;
988       KnownBits = NumZero;
989       break;
990     }
991     if (NumSigned >= 1) {
992       IsSigned = true;
993       KnownBits = NumSigned;
994       break;
995     }
996     return SDValue();
997   }
998   case ISD::SRL: {
999     if (NumZero >= 1 && NumSigned < NumZero) {
1000       IsSigned = false;
1001       KnownBits = NumZero;
1002       break;
1003     }
1004     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1005       IsSigned = true;
1006       KnownBits = NumSigned;
1007       break;
1008     }
1009     return SDValue();
1010   }
1011   }
1012 
1013   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1014                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1015 
1016   // Find the smallest power-2 type that is legal for this vector size and
1017   // operation, given the original type size and the number of known sign/zero
1018   // bits.
1019   EVT VT = Op.getValueType();
1020   unsigned MinWidth =
1021       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1022   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1023   if (VT.isVector())
1024     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1025   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1026     return SDValue();
1027 
1028   SDLoc DL(Op);
1029   SDValue ResultAVG =
1030       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1031                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1032   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1033                      ResultAVG);
1034 }
1035 
1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1037 /// result of Op are ever used downstream. If we can use this information to
1038 /// simplify Op, create a new simplified DAG node and return true, returning the
1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1040 /// return a mask of Known bits for the expression (used to simplify the
1041 /// caller).  The Known bits may only be accurate for those bits in the
1042 /// OriginalDemandedBits and OriginalDemandedElts.
1043 bool TargetLowering::SimplifyDemandedBits(
1044     SDValue Op, const APInt &OriginalDemandedBits,
1045     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1046     unsigned Depth, bool AssumeSingleUse) const {
1047   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1048   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1049          "Mask size mismatches value type size!");
1050 
1051   // Don't know anything.
1052   Known = KnownBits(BitWidth);
1053 
1054   // TODO: We can probably do more work on calculating the known bits and
1055   // simplifying the operations for scalable vectors, but for now we just
1056   // bail out.
1057   if (Op.getValueType().isScalableVector())
1058     return false;
1059 
1060   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1061   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1062   assert((!Op.getValueType().isVector() ||
1063           NumElts == Op.getValueType().getVectorNumElements()) &&
1064          "Unexpected vector size");
1065 
1066   APInt DemandedBits = OriginalDemandedBits;
1067   APInt DemandedElts = OriginalDemandedElts;
1068   SDLoc dl(Op);
1069   auto &DL = TLO.DAG.getDataLayout();
1070 
1071   // Undef operand.
1072   if (Op.isUndef())
1073     return false;
1074 
1075   if (Op.getOpcode() == ISD::Constant) {
1076     // We know all of the bits for a constant!
1077     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1078     return false;
1079   }
1080 
1081   if (Op.getOpcode() == ISD::ConstantFP) {
1082     // We know all of the bits for a floating point constant!
1083     Known = KnownBits::makeConstant(
1084         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1085     return false;
1086   }
1087 
1088   // Other users may use these bits.
1089   EVT VT = Op.getValueType();
1090   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1091     if (Depth != 0) {
1092       // If not at the root, Just compute the Known bits to
1093       // simplify things downstream.
1094       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1095       return false;
1096     }
1097     // If this is the root being simplified, allow it to have multiple uses,
1098     // just set the DemandedBits/Elts to all bits.
1099     DemandedBits = APInt::getAllOnes(BitWidth);
1100     DemandedElts = APInt::getAllOnes(NumElts);
1101   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1102     // Not demanding any bits/elts from Op.
1103     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1104   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1105     // Limit search depth.
1106     return false;
1107   }
1108 
1109   KnownBits Known2;
1110   switch (Op.getOpcode()) {
1111   case ISD::TargetConstant:
1112     llvm_unreachable("Can't simplify this node");
1113   case ISD::SCALAR_TO_VECTOR: {
1114     if (!DemandedElts[0])
1115       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1116 
1117     KnownBits SrcKnown;
1118     SDValue Src = Op.getOperand(0);
1119     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1120     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
1121     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1122       return true;
1123 
1124     // Upper elements are undef, so only get the knownbits if we just demand
1125     // the bottom element.
1126     if (DemandedElts == 1)
1127       Known = SrcKnown.anyextOrTrunc(BitWidth);
1128     break;
1129   }
1130   case ISD::BUILD_VECTOR:
1131     // Collect the known bits that are shared by every demanded element.
1132     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1133     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1134     return false; // Don't fall through, will infinitely loop.
1135   case ISD::LOAD: {
1136     auto *LD = cast<LoadSDNode>(Op);
1137     if (getTargetConstantFromLoad(LD)) {
1138       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1139       return false; // Don't fall through, will infinitely loop.
1140     }
1141     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1142       // If this is a ZEXTLoad and we are looking at the loaded value.
1143       EVT MemVT = LD->getMemoryVT();
1144       unsigned MemBits = MemVT.getScalarSizeInBits();
1145       Known.Zero.setBitsFrom(MemBits);
1146       return false; // Don't fall through, will infinitely loop.
1147     }
1148     break;
1149   }
1150   case ISD::INSERT_VECTOR_ELT: {
1151     SDValue Vec = Op.getOperand(0);
1152     SDValue Scl = Op.getOperand(1);
1153     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1154     EVT VecVT = Vec.getValueType();
1155 
1156     // If index isn't constant, assume we need all vector elements AND the
1157     // inserted element.
1158     APInt DemandedVecElts(DemandedElts);
1159     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1160       unsigned Idx = CIdx->getZExtValue();
1161       DemandedVecElts.clearBit(Idx);
1162 
1163       // Inserted element is not required.
1164       if (!DemandedElts[Idx])
1165         return TLO.CombineTo(Op, Vec);
1166     }
1167 
1168     KnownBits KnownScl;
1169     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1170     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1171     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1172       return true;
1173 
1174     Known = KnownScl.anyextOrTrunc(BitWidth);
1175 
1176     KnownBits KnownVec;
1177     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1178                              Depth + 1))
1179       return true;
1180 
1181     if (!!DemandedVecElts)
1182       Known = KnownBits::commonBits(Known, KnownVec);
1183 
1184     return false;
1185   }
1186   case ISD::INSERT_SUBVECTOR: {
1187     // Demand any elements from the subvector and the remainder from the src its
1188     // inserted into.
1189     SDValue Src = Op.getOperand(0);
1190     SDValue Sub = Op.getOperand(1);
1191     uint64_t Idx = Op.getConstantOperandVal(2);
1192     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1193     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1194     APInt DemandedSrcElts = DemandedElts;
1195     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1196 
1197     KnownBits KnownSub, KnownSrc;
1198     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1199                              Depth + 1))
1200       return true;
1201     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1202                              Depth + 1))
1203       return true;
1204 
1205     Known.Zero.setAllBits();
1206     Known.One.setAllBits();
1207     if (!!DemandedSubElts)
1208       Known = KnownBits::commonBits(Known, KnownSub);
1209     if (!!DemandedSrcElts)
1210       Known = KnownBits::commonBits(Known, KnownSrc);
1211 
1212     // Attempt to avoid multi-use src if we don't need anything from it.
1213     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1214         !DemandedSrcElts.isAllOnes()) {
1215       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1216           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1217       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1218           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1219       if (NewSub || NewSrc) {
1220         NewSub = NewSub ? NewSub : Sub;
1221         NewSrc = NewSrc ? NewSrc : Src;
1222         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1223                                         Op.getOperand(2));
1224         return TLO.CombineTo(Op, NewOp);
1225       }
1226     }
1227     break;
1228   }
1229   case ISD::EXTRACT_SUBVECTOR: {
1230     // Offset the demanded elts by the subvector index.
1231     SDValue Src = Op.getOperand(0);
1232     if (Src.getValueType().isScalableVector())
1233       break;
1234     uint64_t Idx = Op.getConstantOperandVal(1);
1235     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1236     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1237 
1238     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1239                              Depth + 1))
1240       return true;
1241 
1242     // Attempt to avoid multi-use src if we don't need anything from it.
1243     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1244       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1245           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1246       if (DemandedSrc) {
1247         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1248                                         Op.getOperand(1));
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252     break;
1253   }
1254   case ISD::CONCAT_VECTORS: {
1255     Known.Zero.setAllBits();
1256     Known.One.setAllBits();
1257     EVT SubVT = Op.getOperand(0).getValueType();
1258     unsigned NumSubVecs = Op.getNumOperands();
1259     unsigned NumSubElts = SubVT.getVectorNumElements();
1260     for (unsigned i = 0; i != NumSubVecs; ++i) {
1261       APInt DemandedSubElts =
1262           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1263       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1264                                Known2, TLO, Depth + 1))
1265         return true;
1266       // Known bits are shared by every demanded subvector element.
1267       if (!!DemandedSubElts)
1268         Known = KnownBits::commonBits(Known, Known2);
1269     }
1270     break;
1271   }
1272   case ISD::VECTOR_SHUFFLE: {
1273     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1274 
1275     // Collect demanded elements from shuffle operands..
1276     APInt DemandedLHS(NumElts, 0);
1277     APInt DemandedRHS(NumElts, 0);
1278     for (unsigned i = 0; i != NumElts; ++i) {
1279       if (!DemandedElts[i])
1280         continue;
1281       int M = ShuffleMask[i];
1282       if (M < 0) {
1283         // For UNDEF elements, we don't know anything about the common state of
1284         // the shuffle result.
1285         DemandedLHS.clearAllBits();
1286         DemandedRHS.clearAllBits();
1287         break;
1288       }
1289       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1290       if (M < (int)NumElts)
1291         DemandedLHS.setBit(M);
1292       else
1293         DemandedRHS.setBit(M - NumElts);
1294     }
1295 
1296     if (!!DemandedLHS || !!DemandedRHS) {
1297       SDValue Op0 = Op.getOperand(0);
1298       SDValue Op1 = Op.getOperand(1);
1299 
1300       Known.Zero.setAllBits();
1301       Known.One.setAllBits();
1302       if (!!DemandedLHS) {
1303         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1304                                  Depth + 1))
1305           return true;
1306         Known = KnownBits::commonBits(Known, Known2);
1307       }
1308       if (!!DemandedRHS) {
1309         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1310                                  Depth + 1))
1311           return true;
1312         Known = KnownBits::commonBits(Known, Known2);
1313       }
1314 
1315       // Attempt to avoid multi-use ops if we don't need anything from them.
1316       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1317           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1318       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1319           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1320       if (DemandedOp0 || DemandedOp1) {
1321         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1322         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1323         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1324         return TLO.CombineTo(Op, NewOp);
1325       }
1326     }
1327     break;
1328   }
1329   case ISD::AND: {
1330     SDValue Op0 = Op.getOperand(0);
1331     SDValue Op1 = Op.getOperand(1);
1332 
1333     // If the RHS is a constant, check to see if the LHS would be zero without
1334     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1335     // simplify the LHS, here we're using information from the LHS to simplify
1336     // the RHS.
1337     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1338       // Do not increment Depth here; that can cause an infinite loop.
1339       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1340       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1341       if ((LHSKnown.Zero & DemandedBits) ==
1342           (~RHSC->getAPIntValue() & DemandedBits))
1343         return TLO.CombineTo(Op, Op0);
1344 
1345       // If any of the set bits in the RHS are known zero on the LHS, shrink
1346       // the constant.
1347       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1348                                  DemandedElts, TLO))
1349         return true;
1350 
1351       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1352       // constant, but if this 'and' is only clearing bits that were just set by
1353       // the xor, then this 'and' can be eliminated by shrinking the mask of
1354       // the xor. For example, for a 32-bit X:
1355       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1356       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1357           LHSKnown.One == ~RHSC->getAPIntValue()) {
1358         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1359         return TLO.CombineTo(Op, Xor);
1360       }
1361     }
1362 
1363     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1364                              Depth + 1))
1365       return true;
1366     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1367     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1368                              Known2, TLO, Depth + 1))
1369       return true;
1370     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1371 
1372     // Attempt to avoid multi-use ops if we don't need anything from them.
1373     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1374       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1375           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1376       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1377           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       if (DemandedOp0 || DemandedOp1) {
1379         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1380         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1381         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1382         return TLO.CombineTo(Op, NewOp);
1383       }
1384     }
1385 
1386     // If all of the demanded bits are known one on one side, return the other.
1387     // These bits cannot contribute to the result of the 'and'.
1388     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1389       return TLO.CombineTo(Op, Op0);
1390     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1391       return TLO.CombineTo(Op, Op1);
1392     // If all of the demanded bits in the inputs are known zeros, return zero.
1393     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1394       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1395     // If the RHS is a constant, see if we can simplify it.
1396     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1397                                TLO))
1398       return true;
1399     // If the operation can be done in a smaller type, do so.
1400     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1401       return true;
1402 
1403     Known &= Known2;
1404     break;
1405   }
1406   case ISD::OR: {
1407     SDValue Op0 = Op.getOperand(0);
1408     SDValue Op1 = Op.getOperand(1);
1409 
1410     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1411                              Depth + 1))
1412       return true;
1413     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1414     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1415                              Known2, TLO, Depth + 1))
1416       return true;
1417     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1418 
1419     // Attempt to avoid multi-use ops if we don't need anything from them.
1420     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1421       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1422           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1423       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1424           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       if (DemandedOp0 || DemandedOp1) {
1426         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1427         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1428         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1429         return TLO.CombineTo(Op, NewOp);
1430       }
1431     }
1432 
1433     // If all of the demanded bits are known zero on one side, return the other.
1434     // These bits cannot contribute to the result of the 'or'.
1435     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1436       return TLO.CombineTo(Op, Op0);
1437     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1438       return TLO.CombineTo(Op, Op1);
1439     // If the RHS is a constant, see if we can simplify it.
1440     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1441       return true;
1442     // If the operation can be done in a smaller type, do so.
1443     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1444       return true;
1445 
1446     Known |= Known2;
1447     break;
1448   }
1449   case ISD::XOR: {
1450     SDValue Op0 = Op.getOperand(0);
1451     SDValue Op1 = Op.getOperand(1);
1452 
1453     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1454                              Depth + 1))
1455       return true;
1456     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1457     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1458                              Depth + 1))
1459       return true;
1460     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1461 
1462     // Attempt to avoid multi-use ops if we don't need anything from them.
1463     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1464       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1465           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1466       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1467           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       if (DemandedOp0 || DemandedOp1) {
1469         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1470         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1471         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1472         return TLO.CombineTo(Op, NewOp);
1473       }
1474     }
1475 
1476     // If all of the demanded bits are known zero on one side, return the other.
1477     // These bits cannot contribute to the result of the 'xor'.
1478     if (DemandedBits.isSubsetOf(Known.Zero))
1479       return TLO.CombineTo(Op, Op0);
1480     if (DemandedBits.isSubsetOf(Known2.Zero))
1481       return TLO.CombineTo(Op, Op1);
1482     // If the operation can be done in a smaller type, do so.
1483     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1484       return true;
1485 
1486     // If all of the unknown bits are known to be zero on one side or the other
1487     // turn this into an *inclusive* or.
1488     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1489     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1490       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1491 
1492     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1493     if (C) {
1494       // If one side is a constant, and all of the set bits in the constant are
1495       // also known set on the other side, turn this into an AND, as we know
1496       // the bits will be cleared.
1497       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1498       // NB: it is okay if more bits are known than are requested
1499       if (C->getAPIntValue() == Known2.One) {
1500         SDValue ANDC =
1501             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1502         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1503       }
1504 
1505       // If the RHS is a constant, see if we can change it. Don't alter a -1
1506       // constant because that's a 'not' op, and that is better for combining
1507       // and codegen.
1508       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1509         // We're flipping all demanded bits. Flip the undemanded bits too.
1510         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1511         return TLO.CombineTo(Op, New);
1512       }
1513     }
1514 
1515     // If we can't turn this into a 'not', try to shrink the constant.
1516     if (!C || !C->isAllOnes())
1517       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1518         return true;
1519 
1520     Known ^= Known2;
1521     break;
1522   }
1523   case ISD::SELECT:
1524     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1525                              Depth + 1))
1526       return true;
1527     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1528                              Depth + 1))
1529       return true;
1530     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1531     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1532 
1533     // If the operands are constants, see if we can simplify them.
1534     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1535       return true;
1536 
1537     // Only known if known in both the LHS and RHS.
1538     Known = KnownBits::commonBits(Known, Known2);
1539     break;
1540   case ISD::SELECT_CC:
1541     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1542                              Depth + 1))
1543       return true;
1544     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1545                              Depth + 1))
1546       return true;
1547     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1548     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1549 
1550     // If the operands are constants, see if we can simplify them.
1551     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1552       return true;
1553 
1554     // Only known if known in both the LHS and RHS.
1555     Known = KnownBits::commonBits(Known, Known2);
1556     break;
1557   case ISD::SETCC: {
1558     SDValue Op0 = Op.getOperand(0);
1559     SDValue Op1 = Op.getOperand(1);
1560     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1561     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1562     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1563     // -1, we may be able to bypass the setcc.
1564     if (DemandedBits.isSignMask() &&
1565         Op0.getScalarValueSizeInBits() == BitWidth &&
1566         getBooleanContents(Op0.getValueType()) ==
1567             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1568       // If we're testing X < 0, then this compare isn't needed - just use X!
1569       // FIXME: We're limiting to integer types here, but this should also work
1570       // if we don't care about FP signed-zero. The use of SETLT with FP means
1571       // that we don't care about NaNs.
1572       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1573           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1574         return TLO.CombineTo(Op, Op0);
1575 
1576       // TODO: Should we check for other forms of sign-bit comparisons?
1577       // Examples: X <= -1, X >= 0
1578     }
1579     if (getBooleanContents(Op0.getValueType()) ==
1580             TargetLowering::ZeroOrOneBooleanContent &&
1581         BitWidth > 1)
1582       Known.Zero.setBitsFrom(1);
1583     break;
1584   }
1585   case ISD::SHL: {
1586     SDValue Op0 = Op.getOperand(0);
1587     SDValue Op1 = Op.getOperand(1);
1588     EVT ShiftVT = Op1.getValueType();
1589 
1590     if (const APInt *SA =
1591             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1592       unsigned ShAmt = SA->getZExtValue();
1593       if (ShAmt == 0)
1594         return TLO.CombineTo(Op, Op0);
1595 
1596       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1597       // single shift.  We can do this if the bottom bits (which are shifted
1598       // out) are never demanded.
1599       // TODO - support non-uniform vector amounts.
1600       if (Op0.getOpcode() == ISD::SRL) {
1601         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1602           if (const APInt *SA2 =
1603                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1604             unsigned C1 = SA2->getZExtValue();
1605             unsigned Opc = ISD::SHL;
1606             int Diff = ShAmt - C1;
1607             if (Diff < 0) {
1608               Diff = -Diff;
1609               Opc = ISD::SRL;
1610             }
1611             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1612             return TLO.CombineTo(
1613                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1614           }
1615         }
1616       }
1617 
1618       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1619       // are not demanded. This will likely allow the anyext to be folded away.
1620       // TODO - support non-uniform vector amounts.
1621       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1622         SDValue InnerOp = Op0.getOperand(0);
1623         EVT InnerVT = InnerOp.getValueType();
1624         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1625         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1626             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1627           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1628           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1629             ShTy = InnerVT;
1630           SDValue NarrowShl =
1631               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1632                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1633           return TLO.CombineTo(
1634               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1635         }
1636 
1637         // Repeat the SHL optimization above in cases where an extension
1638         // intervenes: (shl (anyext (shr x, c1)), c2) to
1639         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1640         // aren't demanded (as above) and that the shifted upper c1 bits of
1641         // x aren't demanded.
1642         // TODO - support non-uniform vector amounts.
1643         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1644             InnerOp.hasOneUse()) {
1645           if (const APInt *SA2 =
1646                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1647             unsigned InnerShAmt = SA2->getZExtValue();
1648             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1649                 DemandedBits.getActiveBits() <=
1650                     (InnerBits - InnerShAmt + ShAmt) &&
1651                 DemandedBits.countTrailingZeros() >= ShAmt) {
1652               SDValue NewSA =
1653                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1654               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1655                                                InnerOp.getOperand(0));
1656               return TLO.CombineTo(
1657                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1658             }
1659           }
1660         }
1661       }
1662 
1663       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1664       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1665                                Depth + 1))
1666         return true;
1667       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1668       Known.Zero <<= ShAmt;
1669       Known.One <<= ShAmt;
1670       // low bits known zero.
1671       Known.Zero.setLowBits(ShAmt);
1672 
1673       // Try shrinking the operation as long as the shift amount will still be
1674       // in range.
1675       if ((ShAmt < DemandedBits.getActiveBits()) &&
1676           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1677         return true;
1678     }
1679 
1680     // If we are only demanding sign bits then we can use the shift source
1681     // directly.
1682     if (const APInt *MaxSA =
1683             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1684       unsigned ShAmt = MaxSA->getZExtValue();
1685       unsigned NumSignBits =
1686           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1687       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1688       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1689         return TLO.CombineTo(Op, Op0);
1690     }
1691     break;
1692   }
1693   case ISD::SRL: {
1694     SDValue Op0 = Op.getOperand(0);
1695     SDValue Op1 = Op.getOperand(1);
1696     EVT ShiftVT = Op1.getValueType();
1697 
1698     // Try to match AVG patterns.
1699     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1700                                         DemandedElts, Depth + 1))
1701       return TLO.CombineTo(Op, AVG);
1702 
1703     if (const APInt *SA =
1704             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1705       unsigned ShAmt = SA->getZExtValue();
1706       if (ShAmt == 0)
1707         return TLO.CombineTo(Op, Op0);
1708 
1709       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1710       // single shift.  We can do this if the top bits (which are shifted out)
1711       // are never demanded.
1712       // TODO - support non-uniform vector amounts.
1713       if (Op0.getOpcode() == ISD::SHL) {
1714         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1715           if (const APInt *SA2 =
1716                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1717             unsigned C1 = SA2->getZExtValue();
1718             unsigned Opc = ISD::SRL;
1719             int Diff = ShAmt - C1;
1720             if (Diff < 0) {
1721               Diff = -Diff;
1722               Opc = ISD::SHL;
1723             }
1724             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1725             return TLO.CombineTo(
1726                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1727           }
1728         }
1729       }
1730 
1731       APInt InDemandedMask = (DemandedBits << ShAmt);
1732 
1733       // If the shift is exact, then it does demand the low bits (and knows that
1734       // they are zero).
1735       if (Op->getFlags().hasExact())
1736         InDemandedMask.setLowBits(ShAmt);
1737 
1738       // Compute the new bits that are at the top now.
1739       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1740                                Depth + 1))
1741         return true;
1742       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1743       Known.Zero.lshrInPlace(ShAmt);
1744       Known.One.lshrInPlace(ShAmt);
1745       // High bits known zero.
1746       Known.Zero.setHighBits(ShAmt);
1747     }
1748     break;
1749   }
1750   case ISD::SRA: {
1751     SDValue Op0 = Op.getOperand(0);
1752     SDValue Op1 = Op.getOperand(1);
1753     EVT ShiftVT = Op1.getValueType();
1754 
1755     // If we only want bits that already match the signbit then we don't need
1756     // to shift.
1757     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1758     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1759         NumHiDemandedBits)
1760       return TLO.CombineTo(Op, Op0);
1761 
1762     // If this is an arithmetic shift right and only the low-bit is set, we can
1763     // always convert this into a logical shr, even if the shift amount is
1764     // variable.  The low bit of the shift cannot be an input sign bit unless
1765     // the shift amount is >= the size of the datatype, which is undefined.
1766     if (DemandedBits.isOne())
1767       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1768 
1769     // Try to match AVG patterns.
1770     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1771                                         DemandedElts, Depth + 1))
1772       return TLO.CombineTo(Op, AVG);
1773 
1774     if (const APInt *SA =
1775             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1776       unsigned ShAmt = SA->getZExtValue();
1777       if (ShAmt == 0)
1778         return TLO.CombineTo(Op, Op0);
1779 
1780       APInt InDemandedMask = (DemandedBits << ShAmt);
1781 
1782       // If the shift is exact, then it does demand the low bits (and knows that
1783       // they are zero).
1784       if (Op->getFlags().hasExact())
1785         InDemandedMask.setLowBits(ShAmt);
1786 
1787       // If any of the demanded bits are produced by the sign extension, we also
1788       // demand the input sign bit.
1789       if (DemandedBits.countLeadingZeros() < ShAmt)
1790         InDemandedMask.setSignBit();
1791 
1792       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1793                                Depth + 1))
1794         return true;
1795       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796       Known.Zero.lshrInPlace(ShAmt);
1797       Known.One.lshrInPlace(ShAmt);
1798 
1799       // If the input sign bit is known to be zero, or if none of the top bits
1800       // are demanded, turn this into an unsigned shift right.
1801       if (Known.Zero[BitWidth - ShAmt - 1] ||
1802           DemandedBits.countLeadingZeros() >= ShAmt) {
1803         SDNodeFlags Flags;
1804         Flags.setExact(Op->getFlags().hasExact());
1805         return TLO.CombineTo(
1806             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1807       }
1808 
1809       int Log2 = DemandedBits.exactLogBase2();
1810       if (Log2 >= 0) {
1811         // The bit must come from the sign.
1812         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1813         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1814       }
1815 
1816       if (Known.One[BitWidth - ShAmt - 1])
1817         // New bits are known one.
1818         Known.One.setHighBits(ShAmt);
1819 
1820       // Attempt to avoid multi-use ops if we don't need anything from them.
1821       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1822         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1823             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1824         if (DemandedOp0) {
1825           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1826           return TLO.CombineTo(Op, NewOp);
1827         }
1828       }
1829     }
1830     break;
1831   }
1832   case ISD::FSHL:
1833   case ISD::FSHR: {
1834     SDValue Op0 = Op.getOperand(0);
1835     SDValue Op1 = Op.getOperand(1);
1836     SDValue Op2 = Op.getOperand(2);
1837     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1838 
1839     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1840       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1841 
1842       // For fshl, 0-shift returns the 1st arg.
1843       // For fshr, 0-shift returns the 2nd arg.
1844       if (Amt == 0) {
1845         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1846                                  Known, TLO, Depth + 1))
1847           return true;
1848         break;
1849       }
1850 
1851       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1852       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1853       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1854       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1855       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1856                                Depth + 1))
1857         return true;
1858       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1859                                Depth + 1))
1860         return true;
1861 
1862       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1863       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1864       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1865       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1866       Known.One |= Known2.One;
1867       Known.Zero |= Known2.Zero;
1868     }
1869 
1870     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1871     if (isPowerOf2_32(BitWidth)) {
1872       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1873       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1874                                Known2, TLO, Depth + 1))
1875         return true;
1876     }
1877     break;
1878   }
1879   case ISD::ROTL:
1880   case ISD::ROTR: {
1881     SDValue Op0 = Op.getOperand(0);
1882     SDValue Op1 = Op.getOperand(1);
1883     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1884 
1885     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1886     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1887       return TLO.CombineTo(Op, Op0);
1888 
1889     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1890       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1891       unsigned RevAmt = BitWidth - Amt;
1892 
1893       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1894       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1895       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1896       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1897                                Depth + 1))
1898         return true;
1899 
1900       // rot*(x, 0) --> x
1901       if (Amt == 0)
1902         return TLO.CombineTo(Op, Op0);
1903 
1904       // See if we don't demand either half of the rotated bits.
1905       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1906           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1907         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1908         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1909       }
1910       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1911           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1912         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1913         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1914       }
1915     }
1916 
1917     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1918     if (isPowerOf2_32(BitWidth)) {
1919       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1920       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1921                                Depth + 1))
1922         return true;
1923     }
1924     break;
1925   }
1926   case ISD::UMIN: {
1927     // Check if one arg is always less than (or equal) to the other arg.
1928     SDValue Op0 = Op.getOperand(0);
1929     SDValue Op1 = Op.getOperand(1);
1930     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1931     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1932     Known = KnownBits::umin(Known0, Known1);
1933     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1934       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1935     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1936       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1937     break;
1938   }
1939   case ISD::UMAX: {
1940     // Check if one arg is always greater than (or equal) to the other arg.
1941     SDValue Op0 = Op.getOperand(0);
1942     SDValue Op1 = Op.getOperand(1);
1943     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1944     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1945     Known = KnownBits::umax(Known0, Known1);
1946     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1947       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1948     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1949       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1950     break;
1951   }
1952   case ISD::BITREVERSE: {
1953     SDValue Src = Op.getOperand(0);
1954     APInt DemandedSrcBits = DemandedBits.reverseBits();
1955     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1956                              Depth + 1))
1957       return true;
1958     Known.One = Known2.One.reverseBits();
1959     Known.Zero = Known2.Zero.reverseBits();
1960     break;
1961   }
1962   case ISD::BSWAP: {
1963     SDValue Src = Op.getOperand(0);
1964 
1965     // If the only bits demanded come from one byte of the bswap result,
1966     // just shift the input byte into position to eliminate the bswap.
1967     unsigned NLZ = DemandedBits.countLeadingZeros();
1968     unsigned NTZ = DemandedBits.countTrailingZeros();
1969 
1970     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1971     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1972     // have 14 leading zeros, round to 8.
1973     NLZ = alignDown(NLZ, 8);
1974     NTZ = alignDown(NTZ, 8);
1975     // If we need exactly one byte, we can do this transformation.
1976     if (BitWidth - NLZ - NTZ == 8) {
1977       // Replace this with either a left or right shift to get the byte into
1978       // the right place.
1979       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1980       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1981         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1982         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1983         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1984         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1985         return TLO.CombineTo(Op, NewOp);
1986       }
1987     }
1988 
1989     APInt DemandedSrcBits = DemandedBits.byteSwap();
1990     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1991                              Depth + 1))
1992       return true;
1993     Known.One = Known2.One.byteSwap();
1994     Known.Zero = Known2.Zero.byteSwap();
1995     break;
1996   }
1997   case ISD::CTPOP: {
1998     // If only 1 bit is demanded, replace with PARITY as long as we're before
1999     // op legalization.
2000     // FIXME: Limit to scalars for now.
2001     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2002       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2003                                                Op.getOperand(0)));
2004 
2005     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2006     break;
2007   }
2008   case ISD::SIGN_EXTEND_INREG: {
2009     SDValue Op0 = Op.getOperand(0);
2010     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2011     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2012 
2013     // If we only care about the highest bit, don't bother shifting right.
2014     if (DemandedBits.isSignMask()) {
2015       unsigned MinSignedBits =
2016           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2017       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2018       // However if the input is already sign extended we expect the sign
2019       // extension to be dropped altogether later and do not simplify.
2020       if (!AlreadySignExtended) {
2021         // Compute the correct shift amount type, which must be getShiftAmountTy
2022         // for scalar types after legalization.
2023         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2024                                                getShiftAmountTy(VT, DL));
2025         return TLO.CombineTo(Op,
2026                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2027       }
2028     }
2029 
2030     // If none of the extended bits are demanded, eliminate the sextinreg.
2031     if (DemandedBits.getActiveBits() <= ExVTBits)
2032       return TLO.CombineTo(Op, Op0);
2033 
2034     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2035 
2036     // Since the sign extended bits are demanded, we know that the sign
2037     // bit is demanded.
2038     InputDemandedBits.setBit(ExVTBits - 1);
2039 
2040     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2041       return true;
2042     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2043 
2044     // If the sign bit of the input is known set or clear, then we know the
2045     // top bits of the result.
2046 
2047     // If the input sign bit is known zero, convert this into a zero extension.
2048     if (Known.Zero[ExVTBits - 1])
2049       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2050 
2051     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2052     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2053       Known.One.setBitsFrom(ExVTBits);
2054       Known.Zero &= Mask;
2055     } else { // Input sign bit unknown
2056       Known.Zero &= Mask;
2057       Known.One &= Mask;
2058     }
2059     break;
2060   }
2061   case ISD::BUILD_PAIR: {
2062     EVT HalfVT = Op.getOperand(0).getValueType();
2063     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2064 
2065     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2066     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2067 
2068     KnownBits KnownLo, KnownHi;
2069 
2070     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2071       return true;
2072 
2073     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2074       return true;
2075 
2076     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2077                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2078 
2079     Known.One = KnownLo.One.zext(BitWidth) |
2080                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2081     break;
2082   }
2083   case ISD::ZERO_EXTEND:
2084   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2085     SDValue Src = Op.getOperand(0);
2086     EVT SrcVT = Src.getValueType();
2087     unsigned InBits = SrcVT.getScalarSizeInBits();
2088     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2089     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2090 
2091     // If none of the top bits are demanded, convert this into an any_extend.
2092     if (DemandedBits.getActiveBits() <= InBits) {
2093       // If we only need the non-extended bits of the bottom element
2094       // then we can just bitcast to the result.
2095       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2096           VT.getSizeInBits() == SrcVT.getSizeInBits())
2097         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2098 
2099       unsigned Opc =
2100           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2101       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2102         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2103     }
2104 
2105     APInt InDemandedBits = DemandedBits.trunc(InBits);
2106     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2107     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2108                              Depth + 1))
2109       return true;
2110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2111     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2112     Known = Known.zext(BitWidth);
2113 
2114     // Attempt to avoid multi-use ops if we don't need anything from them.
2115     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2116             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2117       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2118     break;
2119   }
2120   case ISD::SIGN_EXTEND:
2121   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2122     SDValue Src = Op.getOperand(0);
2123     EVT SrcVT = Src.getValueType();
2124     unsigned InBits = SrcVT.getScalarSizeInBits();
2125     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2126     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2127 
2128     // If none of the top bits are demanded, convert this into an any_extend.
2129     if (DemandedBits.getActiveBits() <= InBits) {
2130       // If we only need the non-extended bits of the bottom element
2131       // then we can just bitcast to the result.
2132       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2133           VT.getSizeInBits() == SrcVT.getSizeInBits())
2134         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2135 
2136       unsigned Opc =
2137           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2138       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2139         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2140     }
2141 
2142     APInt InDemandedBits = DemandedBits.trunc(InBits);
2143     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2144 
2145     // Since some of the sign extended bits are demanded, we know that the sign
2146     // bit is demanded.
2147     InDemandedBits.setBit(InBits - 1);
2148 
2149     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2150                              Depth + 1))
2151       return true;
2152     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2153     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2154 
2155     // If the sign bit is known one, the top bits match.
2156     Known = Known.sext(BitWidth);
2157 
2158     // If the sign bit is known zero, convert this to a zero extend.
2159     if (Known.isNonNegative()) {
2160       unsigned Opc =
2161           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2162       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2163         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2164     }
2165 
2166     // Attempt to avoid multi-use ops if we don't need anything from them.
2167     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2168             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2169       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2170     break;
2171   }
2172   case ISD::ANY_EXTEND:
2173   case ISD::ANY_EXTEND_VECTOR_INREG: {
2174     SDValue Src = Op.getOperand(0);
2175     EVT SrcVT = Src.getValueType();
2176     unsigned InBits = SrcVT.getScalarSizeInBits();
2177     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2178     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2179 
2180     // If we only need the bottom element then we can just bitcast.
2181     // TODO: Handle ANY_EXTEND?
2182     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2183         VT.getSizeInBits() == SrcVT.getSizeInBits())
2184       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2185 
2186     APInt InDemandedBits = DemandedBits.trunc(InBits);
2187     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2188     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2189                              Depth + 1))
2190       return true;
2191     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2192     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2193     Known = Known.anyext(BitWidth);
2194 
2195     // Attempt to avoid multi-use ops if we don't need anything from them.
2196     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2197             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2198       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2199     break;
2200   }
2201   case ISD::TRUNCATE: {
2202     SDValue Src = Op.getOperand(0);
2203 
2204     // Simplify the input, using demanded bit information, and compute the known
2205     // zero/one bits live out.
2206     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2207     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2208     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2209                              Depth + 1))
2210       return true;
2211     Known = Known.trunc(BitWidth);
2212 
2213     // Attempt to avoid multi-use ops if we don't need anything from them.
2214     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2215             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2216       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2217 
2218     // If the input is only used by this truncate, see if we can shrink it based
2219     // on the known demanded bits.
2220     if (Src.getNode()->hasOneUse()) {
2221       switch (Src.getOpcode()) {
2222       default:
2223         break;
2224       case ISD::SRL:
2225         // Shrink SRL by a constant if none of the high bits shifted in are
2226         // demanded.
2227         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2228           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2229           // undesirable.
2230           break;
2231 
2232         const APInt *ShAmtC =
2233             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2234         if (!ShAmtC || ShAmtC->uge(BitWidth))
2235           break;
2236         uint64_t ShVal = ShAmtC->getZExtValue();
2237 
2238         APInt HighBits =
2239             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2240         HighBits.lshrInPlace(ShVal);
2241         HighBits = HighBits.trunc(BitWidth);
2242 
2243         if (!(HighBits & DemandedBits)) {
2244           // None of the shifted in bits are needed.  Add a truncate of the
2245           // shift input, then shift it.
2246           SDValue NewShAmt = TLO.DAG.getConstant(
2247               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2248           SDValue NewTrunc =
2249               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2250           return TLO.CombineTo(
2251               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2252         }
2253         break;
2254       }
2255     }
2256 
2257     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2258     break;
2259   }
2260   case ISD::AssertZext: {
2261     // AssertZext demands all of the high bits, plus any of the low bits
2262     // demanded by its users.
2263     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2264     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2265     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2266                              TLO, Depth + 1))
2267       return true;
2268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2269 
2270     Known.Zero |= ~InMask;
2271     break;
2272   }
2273   case ISD::EXTRACT_VECTOR_ELT: {
2274     SDValue Src = Op.getOperand(0);
2275     SDValue Idx = Op.getOperand(1);
2276     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2277     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2278 
2279     if (SrcEltCnt.isScalable())
2280       return false;
2281 
2282     // Demand the bits from every vector element without a constant index.
2283     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2284     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2285     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2286       if (CIdx->getAPIntValue().ult(NumSrcElts))
2287         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2288 
2289     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2290     // anything about the extended bits.
2291     APInt DemandedSrcBits = DemandedBits;
2292     if (BitWidth > EltBitWidth)
2293       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2294 
2295     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2296                              Depth + 1))
2297       return true;
2298 
2299     // Attempt to avoid multi-use ops if we don't need anything from them.
2300     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2301       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2302               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2303         SDValue NewOp =
2304             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2305         return TLO.CombineTo(Op, NewOp);
2306       }
2307     }
2308 
2309     Known = Known2;
2310     if (BitWidth > EltBitWidth)
2311       Known = Known.anyext(BitWidth);
2312     break;
2313   }
2314   case ISD::BITCAST: {
2315     SDValue Src = Op.getOperand(0);
2316     EVT SrcVT = Src.getValueType();
2317     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2318 
2319     // If this is an FP->Int bitcast and if the sign bit is the only
2320     // thing demanded, turn this into a FGETSIGN.
2321     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2322         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2323         SrcVT.isFloatingPoint()) {
2324       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2325       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2326       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2327           SrcVT != MVT::f128) {
2328         // Cannot eliminate/lower SHL for f128 yet.
2329         EVT Ty = OpVTLegal ? VT : MVT::i32;
2330         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2331         // place.  We expect the SHL to be eliminated by other optimizations.
2332         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2333         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2334         if (!OpVTLegal && OpVTSizeInBits > 32)
2335           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2336         unsigned ShVal = Op.getValueSizeInBits() - 1;
2337         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2338         return TLO.CombineTo(Op,
2339                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2340       }
2341     }
2342 
2343     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2344     // Demand the elt/bit if any of the original elts/bits are demanded.
2345     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2346       unsigned Scale = BitWidth / NumSrcEltBits;
2347       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2348       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2349       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2350       for (unsigned i = 0; i != Scale; ++i) {
2351         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2352         unsigned BitOffset = EltOffset * NumSrcEltBits;
2353         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2354         if (!Sub.isZero()) {
2355           DemandedSrcBits |= Sub;
2356           for (unsigned j = 0; j != NumElts; ++j)
2357             if (DemandedElts[j])
2358               DemandedSrcElts.setBit((j * Scale) + i);
2359         }
2360       }
2361 
2362       APInt KnownSrcUndef, KnownSrcZero;
2363       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2364                                      KnownSrcZero, TLO, Depth + 1))
2365         return true;
2366 
2367       KnownBits KnownSrcBits;
2368       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2369                                KnownSrcBits, TLO, Depth + 1))
2370         return true;
2371     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2372       // TODO - bigendian once we have test coverage.
2373       unsigned Scale = NumSrcEltBits / BitWidth;
2374       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2375       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2376       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2377       for (unsigned i = 0; i != NumElts; ++i)
2378         if (DemandedElts[i]) {
2379           unsigned Offset = (i % Scale) * BitWidth;
2380           DemandedSrcBits.insertBits(DemandedBits, Offset);
2381           DemandedSrcElts.setBit(i / Scale);
2382         }
2383 
2384       if (SrcVT.isVector()) {
2385         APInt KnownSrcUndef, KnownSrcZero;
2386         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2387                                        KnownSrcZero, TLO, Depth + 1))
2388           return true;
2389       }
2390 
2391       KnownBits KnownSrcBits;
2392       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2393                                KnownSrcBits, TLO, Depth + 1))
2394         return true;
2395     }
2396 
2397     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2398     // recursive call where Known may be useful to the caller.
2399     if (Depth > 0) {
2400       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2401       return false;
2402     }
2403     break;
2404   }
2405   case ISD::MUL:
2406     if (DemandedBits.isPowerOf2()) {
2407       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2408       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2409       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2410       unsigned CTZ = DemandedBits.countTrailingZeros();
2411       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2412       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2413         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2414         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2415         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2416         return TLO.CombineTo(Op, Shl);
2417       }
2418     }
2419     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2420     // X * X is odd iff X is odd.
2421     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2422     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2423       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2424       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2425       return TLO.CombineTo(Op, And1);
2426     }
2427     LLVM_FALLTHROUGH;
2428   case ISD::ADD:
2429   case ISD::SUB: {
2430     // Add, Sub, and Mul don't demand any bits in positions beyond that
2431     // of the highest bit demanded of them.
2432     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2433     SDNodeFlags Flags = Op.getNode()->getFlags();
2434     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2435     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2436     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2437                              Depth + 1) ||
2438         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2439                              Depth + 1) ||
2440         // See if the operation should be performed at a smaller bit width.
2441         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2442       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2443         // Disable the nsw and nuw flags. We can no longer guarantee that we
2444         // won't wrap after simplification.
2445         Flags.setNoSignedWrap(false);
2446         Flags.setNoUnsignedWrap(false);
2447         SDValue NewOp =
2448             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2449         return TLO.CombineTo(Op, NewOp);
2450       }
2451       return true;
2452     }
2453 
2454     // Attempt to avoid multi-use ops if we don't need anything from them.
2455     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2456       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2457           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2458       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2459           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2460       if (DemandedOp0 || DemandedOp1) {
2461         Flags.setNoSignedWrap(false);
2462         Flags.setNoUnsignedWrap(false);
2463         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2464         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2465         SDValue NewOp =
2466             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2467         return TLO.CombineTo(Op, NewOp);
2468       }
2469     }
2470 
2471     // If we have a constant operand, we may be able to turn it into -1 if we
2472     // do not demand the high bits. This can make the constant smaller to
2473     // encode, allow more general folding, or match specialized instruction
2474     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2475     // is probably not useful (and could be detrimental).
2476     ConstantSDNode *C = isConstOrConstSplat(Op1);
2477     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2478     if (C && !C->isAllOnes() && !C->isOne() &&
2479         (C->getAPIntValue() | HighMask).isAllOnes()) {
2480       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2481       // Disable the nsw and nuw flags. We can no longer guarantee that we
2482       // won't wrap after simplification.
2483       Flags.setNoSignedWrap(false);
2484       Flags.setNoUnsignedWrap(false);
2485       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2486       return TLO.CombineTo(Op, NewOp);
2487     }
2488 
2489     // Match a multiply with a disguised negated-power-of-2 and convert to a
2490     // an equivalent shift-left amount.
2491     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2492     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2493       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2494         return 0;
2495 
2496       // Don't touch opaque constants. Also, ignore zero and power-of-2
2497       // multiplies. Those will get folded later.
2498       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2499       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2500           !MulC->getAPIntValue().isPowerOf2()) {
2501         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2502         if (UnmaskedC.isNegatedPowerOf2())
2503           return (-UnmaskedC).logBase2();
2504       }
2505       return 0;
2506     };
2507 
2508     auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) {
2509       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2510       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2511       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2512       SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl);
2513       return TLO.CombineTo(Op, Sub);
2514     };
2515 
2516     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2517       if (Op.getOpcode() == ISD::ADD) {
2518         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2519         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2520           return foldMul(Op0.getOperand(0), Op1, ShAmt);
2521         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2522         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2523           return foldMul(Op1.getOperand(0), Op0, ShAmt);
2524         // TODO:
2525         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2526       }
2527     }
2528 
2529     LLVM_FALLTHROUGH;
2530   }
2531   default:
2532     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2533       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2534                                             Known, TLO, Depth))
2535         return true;
2536       break;
2537     }
2538 
2539     // Just use computeKnownBits to compute output bits.
2540     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2541     break;
2542   }
2543 
2544   // If we know the value of all of the demanded bits, return this as a
2545   // constant.
2546   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2547     // Avoid folding to a constant if any OpaqueConstant is involved.
2548     const SDNode *N = Op.getNode();
2549     for (SDNode *Op :
2550          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2551       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2552         if (C->isOpaque())
2553           return false;
2554     }
2555     if (VT.isInteger())
2556       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2557     if (VT.isFloatingPoint())
2558       return TLO.CombineTo(
2559           Op,
2560           TLO.DAG.getConstantFP(
2561               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2562   }
2563 
2564   return false;
2565 }
2566 
2567 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2568                                                 const APInt &DemandedElts,
2569                                                 DAGCombinerInfo &DCI) const {
2570   SelectionDAG &DAG = DCI.DAG;
2571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2572                         !DCI.isBeforeLegalizeOps());
2573 
2574   APInt KnownUndef, KnownZero;
2575   bool Simplified =
2576       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2577   if (Simplified) {
2578     DCI.AddToWorklist(Op.getNode());
2579     DCI.CommitTargetLoweringOpt(TLO);
2580   }
2581 
2582   return Simplified;
2583 }
2584 
2585 /// Given a vector binary operation and known undefined elements for each input
2586 /// operand, compute whether each element of the output is undefined.
2587 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2588                                          const APInt &UndefOp0,
2589                                          const APInt &UndefOp1) {
2590   EVT VT = BO.getValueType();
2591   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2592          "Vector binop only");
2593 
2594   EVT EltVT = VT.getVectorElementType();
2595   unsigned NumElts = VT.getVectorNumElements();
2596   assert(UndefOp0.getBitWidth() == NumElts &&
2597          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2598 
2599   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2600                                    const APInt &UndefVals) {
2601     if (UndefVals[Index])
2602       return DAG.getUNDEF(EltVT);
2603 
2604     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2605       // Try hard to make sure that the getNode() call is not creating temporary
2606       // nodes. Ignore opaque integers because they do not constant fold.
2607       SDValue Elt = BV->getOperand(Index);
2608       auto *C = dyn_cast<ConstantSDNode>(Elt);
2609       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2610         return Elt;
2611     }
2612 
2613     return SDValue();
2614   };
2615 
2616   APInt KnownUndef = APInt::getZero(NumElts);
2617   for (unsigned i = 0; i != NumElts; ++i) {
2618     // If both inputs for this element are either constant or undef and match
2619     // the element type, compute the constant/undef result for this element of
2620     // the vector.
2621     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2622     // not handle FP constants. The code within getNode() should be refactored
2623     // to avoid the danger of creating a bogus temporary node here.
2624     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2625     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2626     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2627       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2628         KnownUndef.setBit(i);
2629   }
2630   return KnownUndef;
2631 }
2632 
2633 bool TargetLowering::SimplifyDemandedVectorElts(
2634     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2635     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2636     bool AssumeSingleUse) const {
2637   EVT VT = Op.getValueType();
2638   unsigned Opcode = Op.getOpcode();
2639   APInt DemandedElts = OriginalDemandedElts;
2640   unsigned NumElts = DemandedElts.getBitWidth();
2641   assert(VT.isVector() && "Expected vector op");
2642 
2643   KnownUndef = KnownZero = APInt::getZero(NumElts);
2644 
2645   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2646   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2647     return false;
2648 
2649   // TODO: For now we assume we know nothing about scalable vectors.
2650   if (VT.isScalableVector())
2651     return false;
2652 
2653   assert(VT.getVectorNumElements() == NumElts &&
2654          "Mask size mismatches value type element count!");
2655 
2656   // Undef operand.
2657   if (Op.isUndef()) {
2658     KnownUndef.setAllBits();
2659     return false;
2660   }
2661 
2662   // If Op has other users, assume that all elements are needed.
2663   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2664     DemandedElts.setAllBits();
2665 
2666   // Not demanding any elements from Op.
2667   if (DemandedElts == 0) {
2668     KnownUndef.setAllBits();
2669     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2670   }
2671 
2672   // Limit search depth.
2673   if (Depth >= SelectionDAG::MaxRecursionDepth)
2674     return false;
2675 
2676   SDLoc DL(Op);
2677   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2678   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2679 
2680   // Helper for demanding the specified elements and all the bits of both binary
2681   // operands.
2682   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2683     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2684                                                            TLO.DAG, Depth + 1);
2685     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2686                                                            TLO.DAG, Depth + 1);
2687     if (NewOp0 || NewOp1) {
2688       SDValue NewOp = TLO.DAG.getNode(
2689           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2690       return TLO.CombineTo(Op, NewOp);
2691     }
2692     return false;
2693   };
2694 
2695   switch (Opcode) {
2696   case ISD::SCALAR_TO_VECTOR: {
2697     if (!DemandedElts[0]) {
2698       KnownUndef.setAllBits();
2699       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2700     }
2701     SDValue ScalarSrc = Op.getOperand(0);
2702     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2703       SDValue Src = ScalarSrc.getOperand(0);
2704       SDValue Idx = ScalarSrc.getOperand(1);
2705       EVT SrcVT = Src.getValueType();
2706 
2707       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2708 
2709       if (SrcEltCnt.isScalable())
2710         return false;
2711 
2712       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2713       if (isNullConstant(Idx)) {
2714         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2715         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2716         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2717         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2718                                        TLO, Depth + 1))
2719           return true;
2720       }
2721     }
2722     KnownUndef.setHighBits(NumElts - 1);
2723     break;
2724   }
2725   case ISD::BITCAST: {
2726     SDValue Src = Op.getOperand(0);
2727     EVT SrcVT = Src.getValueType();
2728 
2729     // We only handle vectors here.
2730     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2731     if (!SrcVT.isVector())
2732       break;
2733 
2734     // Fast handling of 'identity' bitcasts.
2735     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2736     if (NumSrcElts == NumElts)
2737       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2738                                         KnownZero, TLO, Depth + 1);
2739 
2740     APInt SrcDemandedElts, SrcZero, SrcUndef;
2741 
2742     // Bitcast from 'large element' src vector to 'small element' vector, we
2743     // must demand a source element if any DemandedElt maps to it.
2744     if ((NumElts % NumSrcElts) == 0) {
2745       unsigned Scale = NumElts / NumSrcElts;
2746       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2747       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2748                                      TLO, Depth + 1))
2749         return true;
2750 
2751       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2752       // of the large element.
2753       // TODO - bigendian once we have test coverage.
2754       if (IsLE) {
2755         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2756         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2757         for (unsigned i = 0; i != NumElts; ++i)
2758           if (DemandedElts[i]) {
2759             unsigned Ofs = (i % Scale) * EltSizeInBits;
2760             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2761           }
2762 
2763         KnownBits Known;
2764         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2765                                  TLO, Depth + 1))
2766           return true;
2767 
2768         // The bitcast has split each wide element into a number of
2769         // narrow subelements. We have just computed the Known bits
2770         // for wide elements. See if element splitting results in
2771         // some subelements being zero. Only for demanded elements!
2772         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2773           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2774                    .isAllOnes())
2775             continue;
2776           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2777             unsigned Elt = Scale * SrcElt + SubElt;
2778             if (DemandedElts[Elt])
2779               KnownZero.setBit(Elt);
2780           }
2781         }
2782       }
2783 
2784       // If the src element is zero/undef then all the output elements will be -
2785       // only demanded elements are guaranteed to be correct.
2786       for (unsigned i = 0; i != NumSrcElts; ++i) {
2787         if (SrcDemandedElts[i]) {
2788           if (SrcZero[i])
2789             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2790           if (SrcUndef[i])
2791             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2792         }
2793       }
2794     }
2795 
2796     // Bitcast from 'small element' src vector to 'large element' vector, we
2797     // demand all smaller source elements covered by the larger demanded element
2798     // of this vector.
2799     if ((NumSrcElts % NumElts) == 0) {
2800       unsigned Scale = NumSrcElts / NumElts;
2801       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2802       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2803                                      TLO, Depth + 1))
2804         return true;
2805 
2806       // If all the src elements covering an output element are zero/undef, then
2807       // the output element will be as well, assuming it was demanded.
2808       for (unsigned i = 0; i != NumElts; ++i) {
2809         if (DemandedElts[i]) {
2810           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2811             KnownZero.setBit(i);
2812           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2813             KnownUndef.setBit(i);
2814         }
2815       }
2816     }
2817     break;
2818   }
2819   case ISD::BUILD_VECTOR: {
2820     // Check all elements and simplify any unused elements with UNDEF.
2821     if (!DemandedElts.isAllOnes()) {
2822       // Don't simplify BROADCASTS.
2823       if (llvm::any_of(Op->op_values(),
2824                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2825         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2826         bool Updated = false;
2827         for (unsigned i = 0; i != NumElts; ++i) {
2828           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2829             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2830             KnownUndef.setBit(i);
2831             Updated = true;
2832           }
2833         }
2834         if (Updated)
2835           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2836       }
2837     }
2838     for (unsigned i = 0; i != NumElts; ++i) {
2839       SDValue SrcOp = Op.getOperand(i);
2840       if (SrcOp.isUndef()) {
2841         KnownUndef.setBit(i);
2842       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2843                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2844         KnownZero.setBit(i);
2845       }
2846     }
2847     break;
2848   }
2849   case ISD::CONCAT_VECTORS: {
2850     EVT SubVT = Op.getOperand(0).getValueType();
2851     unsigned NumSubVecs = Op.getNumOperands();
2852     unsigned NumSubElts = SubVT.getVectorNumElements();
2853     for (unsigned i = 0; i != NumSubVecs; ++i) {
2854       SDValue SubOp = Op.getOperand(i);
2855       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2856       APInt SubUndef, SubZero;
2857       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2858                                      Depth + 1))
2859         return true;
2860       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2861       KnownZero.insertBits(SubZero, i * NumSubElts);
2862     }
2863     break;
2864   }
2865   case ISD::INSERT_SUBVECTOR: {
2866     // Demand any elements from the subvector and the remainder from the src its
2867     // inserted into.
2868     SDValue Src = Op.getOperand(0);
2869     SDValue Sub = Op.getOperand(1);
2870     uint64_t Idx = Op.getConstantOperandVal(2);
2871     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2872     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2873     APInt DemandedSrcElts = DemandedElts;
2874     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2875 
2876     APInt SubUndef, SubZero;
2877     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2878                                    Depth + 1))
2879       return true;
2880 
2881     // If none of the src operand elements are demanded, replace it with undef.
2882     if (!DemandedSrcElts && !Src.isUndef())
2883       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2884                                                TLO.DAG.getUNDEF(VT), Sub,
2885                                                Op.getOperand(2)));
2886 
2887     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2888                                    TLO, Depth + 1))
2889       return true;
2890     KnownUndef.insertBits(SubUndef, Idx);
2891     KnownZero.insertBits(SubZero, Idx);
2892 
2893     // Attempt to avoid multi-use ops if we don't need anything from them.
2894     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2895       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2896           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2897       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2898           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2899       if (NewSrc || NewSub) {
2900         NewSrc = NewSrc ? NewSrc : Src;
2901         NewSub = NewSub ? NewSub : Sub;
2902         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2903                                         NewSub, Op.getOperand(2));
2904         return TLO.CombineTo(Op, NewOp);
2905       }
2906     }
2907     break;
2908   }
2909   case ISD::EXTRACT_SUBVECTOR: {
2910     // Offset the demanded elts by the subvector index.
2911     SDValue Src = Op.getOperand(0);
2912     if (Src.getValueType().isScalableVector())
2913       break;
2914     uint64_t Idx = Op.getConstantOperandVal(1);
2915     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2916     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2917 
2918     APInt SrcUndef, SrcZero;
2919     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2920                                    Depth + 1))
2921       return true;
2922     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2923     KnownZero = SrcZero.extractBits(NumElts, Idx);
2924 
2925     // Attempt to avoid multi-use ops if we don't need anything from them.
2926     if (!DemandedElts.isAllOnes()) {
2927       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2928           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2929       if (NewSrc) {
2930         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2931                                         Op.getOperand(1));
2932         return TLO.CombineTo(Op, NewOp);
2933       }
2934     }
2935     break;
2936   }
2937   case ISD::INSERT_VECTOR_ELT: {
2938     SDValue Vec = Op.getOperand(0);
2939     SDValue Scl = Op.getOperand(1);
2940     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2941 
2942     // For a legal, constant insertion index, if we don't need this insertion
2943     // then strip it, else remove it from the demanded elts.
2944     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2945       unsigned Idx = CIdx->getZExtValue();
2946       if (!DemandedElts[Idx])
2947         return TLO.CombineTo(Op, Vec);
2948 
2949       APInt DemandedVecElts(DemandedElts);
2950       DemandedVecElts.clearBit(Idx);
2951       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2952                                      KnownZero, TLO, Depth + 1))
2953         return true;
2954 
2955       KnownUndef.setBitVal(Idx, Scl.isUndef());
2956 
2957       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2958       break;
2959     }
2960 
2961     APInt VecUndef, VecZero;
2962     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2963                                    Depth + 1))
2964       return true;
2965     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2966     break;
2967   }
2968   case ISD::VSELECT: {
2969     // Try to transform the select condition based on the current demanded
2970     // elements.
2971     // TODO: If a condition element is undef, we can choose from one arm of the
2972     //       select (and if one arm is undef, then we can propagate that to the
2973     //       result).
2974     // TODO - add support for constant vselect masks (see IR version of this).
2975     APInt UnusedUndef, UnusedZero;
2976     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2977                                    UnusedZero, TLO, Depth + 1))
2978       return true;
2979 
2980     // See if we can simplify either vselect operand.
2981     APInt DemandedLHS(DemandedElts);
2982     APInt DemandedRHS(DemandedElts);
2983     APInt UndefLHS, ZeroLHS;
2984     APInt UndefRHS, ZeroRHS;
2985     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2986                                    ZeroLHS, TLO, Depth + 1))
2987       return true;
2988     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2989                                    ZeroRHS, TLO, Depth + 1))
2990       return true;
2991 
2992     KnownUndef = UndefLHS & UndefRHS;
2993     KnownZero = ZeroLHS & ZeroRHS;
2994     break;
2995   }
2996   case ISD::VECTOR_SHUFFLE: {
2997     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2998 
2999     // Collect demanded elements from shuffle operands..
3000     APInt DemandedLHS(NumElts, 0);
3001     APInt DemandedRHS(NumElts, 0);
3002     for (unsigned i = 0; i != NumElts; ++i) {
3003       int M = ShuffleMask[i];
3004       if (M < 0 || !DemandedElts[i])
3005         continue;
3006       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3007       if (M < (int)NumElts)
3008         DemandedLHS.setBit(M);
3009       else
3010         DemandedRHS.setBit(M - NumElts);
3011     }
3012 
3013     // See if we can simplify either shuffle operand.
3014     APInt UndefLHS, ZeroLHS;
3015     APInt UndefRHS, ZeroRHS;
3016     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3017                                    ZeroLHS, TLO, Depth + 1))
3018       return true;
3019     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3020                                    ZeroRHS, TLO, Depth + 1))
3021       return true;
3022 
3023     // Simplify mask using undef elements from LHS/RHS.
3024     bool Updated = false;
3025     bool IdentityLHS = true, IdentityRHS = true;
3026     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3027     for (unsigned i = 0; i != NumElts; ++i) {
3028       int &M = NewMask[i];
3029       if (M < 0)
3030         continue;
3031       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3032           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3033         Updated = true;
3034         M = -1;
3035       }
3036       IdentityLHS &= (M < 0) || (M == (int)i);
3037       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3038     }
3039 
3040     // Update legal shuffle masks based on demanded elements if it won't reduce
3041     // to Identity which can cause premature removal of the shuffle mask.
3042     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3043       SDValue LegalShuffle =
3044           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3045                                   NewMask, TLO.DAG);
3046       if (LegalShuffle)
3047         return TLO.CombineTo(Op, LegalShuffle);
3048     }
3049 
3050     // Propagate undef/zero elements from LHS/RHS.
3051     for (unsigned i = 0; i != NumElts; ++i) {
3052       int M = ShuffleMask[i];
3053       if (M < 0) {
3054         KnownUndef.setBit(i);
3055       } else if (M < (int)NumElts) {
3056         if (UndefLHS[M])
3057           KnownUndef.setBit(i);
3058         if (ZeroLHS[M])
3059           KnownZero.setBit(i);
3060       } else {
3061         if (UndefRHS[M - NumElts])
3062           KnownUndef.setBit(i);
3063         if (ZeroRHS[M - NumElts])
3064           KnownZero.setBit(i);
3065       }
3066     }
3067     break;
3068   }
3069   case ISD::ANY_EXTEND_VECTOR_INREG:
3070   case ISD::SIGN_EXTEND_VECTOR_INREG:
3071   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3072     APInt SrcUndef, SrcZero;
3073     SDValue Src = Op.getOperand(0);
3074     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3075     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
3076     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3077                                    Depth + 1))
3078       return true;
3079     KnownZero = SrcZero.zextOrTrunc(NumElts);
3080     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3081 
3082     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3083         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3084         DemandedSrcElts == 1) {
3085       // aext - if we just need the bottom element then we can bitcast.
3086       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3087     }
3088 
3089     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3090       // zext(undef) upper bits are guaranteed to be zero.
3091       if (DemandedElts.isSubsetOf(KnownUndef))
3092         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3093       KnownUndef.clearAllBits();
3094 
3095       // zext - if we just need the bottom element then we can mask:
3096       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3097       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3098           Op->isOnlyUserOf(Src.getNode()) &&
3099           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3100         SDLoc DL(Op);
3101         EVT SrcVT = Src.getValueType();
3102         EVT SrcSVT = SrcVT.getScalarType();
3103         SmallVector<SDValue> MaskElts;
3104         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3105         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3106         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3107         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3108                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3109           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3110           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3111         }
3112       }
3113     }
3114     break;
3115   }
3116 
3117   // TODO: There are more binop opcodes that could be handled here - MIN,
3118   // MAX, saturated math, etc.
3119   case ISD::ADD: {
3120     SDValue Op0 = Op.getOperand(0);
3121     SDValue Op1 = Op.getOperand(1);
3122     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3123       APInt UndefLHS, ZeroLHS;
3124       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3125                                      Depth + 1, /*AssumeSingleUse*/ true))
3126         return true;
3127     }
3128     LLVM_FALLTHROUGH;
3129   }
3130   case ISD::OR:
3131   case ISD::XOR:
3132   case ISD::SUB:
3133   case ISD::FADD:
3134   case ISD::FSUB:
3135   case ISD::FMUL:
3136   case ISD::FDIV:
3137   case ISD::FREM: {
3138     SDValue Op0 = Op.getOperand(0);
3139     SDValue Op1 = Op.getOperand(1);
3140 
3141     APInt UndefRHS, ZeroRHS;
3142     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3143                                    Depth + 1))
3144       return true;
3145     APInt UndefLHS, ZeroLHS;
3146     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3147                                    Depth + 1))
3148       return true;
3149 
3150     KnownZero = ZeroLHS & ZeroRHS;
3151     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3152 
3153     // Attempt to avoid multi-use ops if we don't need anything from them.
3154     // TODO - use KnownUndef to relax the demandedelts?
3155     if (!DemandedElts.isAllOnes())
3156       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3157         return true;
3158     break;
3159   }
3160   case ISD::SHL:
3161   case ISD::SRL:
3162   case ISD::SRA:
3163   case ISD::ROTL:
3164   case ISD::ROTR: {
3165     SDValue Op0 = Op.getOperand(0);
3166     SDValue Op1 = Op.getOperand(1);
3167 
3168     APInt UndefRHS, ZeroRHS;
3169     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3170                                    Depth + 1))
3171       return true;
3172     APInt UndefLHS, ZeroLHS;
3173     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3174                                    Depth + 1))
3175       return true;
3176 
3177     KnownZero = ZeroLHS;
3178     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3179 
3180     // Attempt to avoid multi-use ops if we don't need anything from them.
3181     // TODO - use KnownUndef to relax the demandedelts?
3182     if (!DemandedElts.isAllOnes())
3183       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3184         return true;
3185     break;
3186   }
3187   case ISD::MUL:
3188   case ISD::AND: {
3189     SDValue Op0 = Op.getOperand(0);
3190     SDValue Op1 = Op.getOperand(1);
3191 
3192     APInt SrcUndef, SrcZero;
3193     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3194                                    Depth + 1))
3195       return true;
3196     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3197                                    TLO, Depth + 1))
3198       return true;
3199 
3200     // If either side has a zero element, then the result element is zero, even
3201     // if the other is an UNDEF.
3202     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3203     // and then handle 'and' nodes with the rest of the binop opcodes.
3204     KnownZero |= SrcZero;
3205     KnownUndef &= SrcUndef;
3206     KnownUndef &= ~KnownZero;
3207 
3208     // Attempt to avoid multi-use ops if we don't need anything from them.
3209     // TODO - use KnownUndef to relax the demandedelts?
3210     if (!DemandedElts.isAllOnes())
3211       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3212         return true;
3213     break;
3214   }
3215   case ISD::TRUNCATE:
3216   case ISD::SIGN_EXTEND:
3217   case ISD::ZERO_EXTEND:
3218     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3219                                    KnownZero, TLO, Depth + 1))
3220       return true;
3221 
3222     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3223       // zext(undef) upper bits are guaranteed to be zero.
3224       if (DemandedElts.isSubsetOf(KnownUndef))
3225         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3226       KnownUndef.clearAllBits();
3227     }
3228     break;
3229   default: {
3230     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3231       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3232                                                   KnownZero, TLO, Depth))
3233         return true;
3234     } else {
3235       KnownBits Known;
3236       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3237       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3238                                TLO, Depth, AssumeSingleUse))
3239         return true;
3240     }
3241     break;
3242   }
3243   }
3244   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3245 
3246   // Constant fold all undef cases.
3247   // TODO: Handle zero cases as well.
3248   if (DemandedElts.isSubsetOf(KnownUndef))
3249     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3250 
3251   return false;
3252 }
3253 
3254 /// Determine which of the bits specified in Mask are known to be either zero or
3255 /// one and return them in the Known.
3256 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3257                                                    KnownBits &Known,
3258                                                    const APInt &DemandedElts,
3259                                                    const SelectionDAG &DAG,
3260                                                    unsigned Depth) const {
3261   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3262           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3263           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3264           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3265          "Should use MaskedValueIsZero if you don't know whether Op"
3266          " is a target node!");
3267   Known.resetAll();
3268 }
3269 
3270 void TargetLowering::computeKnownBitsForTargetInstr(
3271     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3272     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3273     unsigned Depth) const {
3274   Known.resetAll();
3275 }
3276 
3277 void TargetLowering::computeKnownBitsForFrameIndex(
3278   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3279   // The low bits are known zero if the pointer is aligned.
3280   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3281 }
3282 
3283 Align TargetLowering::computeKnownAlignForTargetInstr(
3284   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3285   unsigned Depth) const {
3286   return Align(1);
3287 }
3288 
3289 /// This method can be implemented by targets that want to expose additional
3290 /// information about sign bits to the DAG Combiner.
3291 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3292                                                          const APInt &,
3293                                                          const SelectionDAG &,
3294                                                          unsigned Depth) const {
3295   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3296           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3297           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3298           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3299          "Should use ComputeNumSignBits if you don't know whether Op"
3300          " is a target node!");
3301   return 1;
3302 }
3303 
3304 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3305   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3306   const MachineRegisterInfo &MRI, unsigned Depth) const {
3307   return 1;
3308 }
3309 
3310 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3311     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3312     TargetLoweringOpt &TLO, unsigned Depth) const {
3313   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3314           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3315           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3316           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3317          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3318          " is a target node!");
3319   return false;
3320 }
3321 
3322 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3323     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3324     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3325   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3326           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3327           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3328           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3329          "Should use SimplifyDemandedBits if you don't know whether Op"
3330          " is a target node!");
3331   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3332   return false;
3333 }
3334 
3335 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3336     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3337     SelectionDAG &DAG, unsigned Depth) const {
3338   assert(
3339       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3340        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3341        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3342        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3343       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3344       " is a target node!");
3345   return SDValue();
3346 }
3347 
3348 SDValue
3349 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3350                                         SDValue N1, MutableArrayRef<int> Mask,
3351                                         SelectionDAG &DAG) const {
3352   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3353   if (!LegalMask) {
3354     std::swap(N0, N1);
3355     ShuffleVectorSDNode::commuteMask(Mask);
3356     LegalMask = isShuffleMaskLegal(Mask, VT);
3357   }
3358 
3359   if (!LegalMask)
3360     return SDValue();
3361 
3362   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3363 }
3364 
3365 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3366   return nullptr;
3367 }
3368 
3369 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3370     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3371     bool PoisonOnly, unsigned Depth) const {
3372   assert(
3373       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3374        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3375        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3376        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3377       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3378       " is a target node!");
3379   return false;
3380 }
3381 
3382 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3383                                                   const SelectionDAG &DAG,
3384                                                   bool SNaN,
3385                                                   unsigned Depth) const {
3386   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3387           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3388           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3389           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3390          "Should use isKnownNeverNaN if you don't know whether Op"
3391          " is a target node!");
3392   return false;
3393 }
3394 
3395 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3396                                                const APInt &DemandedElts,
3397                                                APInt &UndefElts,
3398                                                unsigned Depth) const {
3399   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3400           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3401           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3402           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3403          "Should use isSplatValue if you don't know whether Op"
3404          " is a target node!");
3405   return false;
3406 }
3407 
3408 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3409 // work with truncating build vectors and vectors with elements of less than
3410 // 8 bits.
3411 bool TargetLowering::isConstTrueVal(SDValue N) const {
3412   if (!N)
3413     return false;
3414 
3415   unsigned EltWidth;
3416   APInt CVal;
3417   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3418                                                /*AllowTruncation=*/true)) {
3419     CVal = CN->getAPIntValue();
3420     EltWidth = N.getValueType().getScalarSizeInBits();
3421   } else
3422     return false;
3423 
3424   // If this is a truncating splat, truncate the splat value.
3425   // Otherwise, we may fail to match the expected values below.
3426   if (EltWidth < CVal.getBitWidth())
3427     CVal = CVal.trunc(EltWidth);
3428 
3429   switch (getBooleanContents(N.getValueType())) {
3430   case UndefinedBooleanContent:
3431     return CVal[0];
3432   case ZeroOrOneBooleanContent:
3433     return CVal.isOne();
3434   case ZeroOrNegativeOneBooleanContent:
3435     return CVal.isAllOnes();
3436   }
3437 
3438   llvm_unreachable("Invalid boolean contents");
3439 }
3440 
3441 bool TargetLowering::isConstFalseVal(SDValue N) const {
3442   if (!N)
3443     return false;
3444 
3445   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3446   if (!CN) {
3447     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3448     if (!BV)
3449       return false;
3450 
3451     // Only interested in constant splats, we don't care about undef
3452     // elements in identifying boolean constants and getConstantSplatNode
3453     // returns NULL if all ops are undef;
3454     CN = BV->getConstantSplatNode();
3455     if (!CN)
3456       return false;
3457   }
3458 
3459   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3460     return !CN->getAPIntValue()[0];
3461 
3462   return CN->isZero();
3463 }
3464 
3465 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3466                                        bool SExt) const {
3467   if (VT == MVT::i1)
3468     return N->isOne();
3469 
3470   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3471   switch (Cnt) {
3472   case TargetLowering::ZeroOrOneBooleanContent:
3473     // An extended value of 1 is always true, unless its original type is i1,
3474     // in which case it will be sign extended to -1.
3475     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3476   case TargetLowering::UndefinedBooleanContent:
3477   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3478     return N->isAllOnes() && SExt;
3479   }
3480   llvm_unreachable("Unexpected enumeration.");
3481 }
3482 
3483 /// This helper function of SimplifySetCC tries to optimize the comparison when
3484 /// either operand of the SetCC node is a bitwise-and instruction.
3485 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3486                                          ISD::CondCode Cond, const SDLoc &DL,
3487                                          DAGCombinerInfo &DCI) const {
3488   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3489     std::swap(N0, N1);
3490 
3491   SelectionDAG &DAG = DCI.DAG;
3492   EVT OpVT = N0.getValueType();
3493   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3494       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3495     return SDValue();
3496 
3497   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3498   // iff everything but LSB is known zero:
3499   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3500       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3501        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3502     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3503     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3504     if (DAG.MaskedValueIsZero(N0, UpperBits))
3505       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3506   }
3507 
3508   // Match these patterns in any of their permutations:
3509   // (X & Y) == Y
3510   // (X & Y) != Y
3511   SDValue X, Y;
3512   if (N0.getOperand(0) == N1) {
3513     X = N0.getOperand(1);
3514     Y = N0.getOperand(0);
3515   } else if (N0.getOperand(1) == N1) {
3516     X = N0.getOperand(0);
3517     Y = N0.getOperand(1);
3518   } else {
3519     return SDValue();
3520   }
3521 
3522   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3523   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3524     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3525     // Note that where Y is variable and is known to have at most one bit set
3526     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3527     // equivalent when Y == 0.
3528     assert(OpVT.isInteger());
3529     Cond = ISD::getSetCCInverse(Cond, OpVT);
3530     if (DCI.isBeforeLegalizeOps() ||
3531         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3532       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3533   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3534     // If the target supports an 'and-not' or 'and-complement' logic operation,
3535     // try to use that to make a comparison operation more efficient.
3536     // But don't do this transform if the mask is a single bit because there are
3537     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3538     // 'rlwinm' on PPC).
3539 
3540     // Bail out if the compare operand that we want to turn into a zero is
3541     // already a zero (otherwise, infinite loop).
3542     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3543     if (YConst && YConst->isZero())
3544       return SDValue();
3545 
3546     // Transform this into: ~X & Y == 0.
3547     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3548     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3549     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3550   }
3551 
3552   return SDValue();
3553 }
3554 
3555 /// There are multiple IR patterns that could be checking whether certain
3556 /// truncation of a signed number would be lossy or not. The pattern which is
3557 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3558 /// We are looking for the following pattern: (KeptBits is a constant)
3559 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3560 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3561 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3562 /// We will unfold it into the natural trunc+sext pattern:
3563 ///   ((%x << C) a>> C) dstcond %x
3564 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3565 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3566     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3567     const SDLoc &DL) const {
3568   // We must be comparing with a constant.
3569   ConstantSDNode *C1;
3570   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3571     return SDValue();
3572 
3573   // N0 should be:  add %x, (1 << (KeptBits-1))
3574   if (N0->getOpcode() != ISD::ADD)
3575     return SDValue();
3576 
3577   // And we must be 'add'ing a constant.
3578   ConstantSDNode *C01;
3579   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3580     return SDValue();
3581 
3582   SDValue X = N0->getOperand(0);
3583   EVT XVT = X.getValueType();
3584 
3585   // Validate constants ...
3586 
3587   APInt I1 = C1->getAPIntValue();
3588 
3589   ISD::CondCode NewCond;
3590   if (Cond == ISD::CondCode::SETULT) {
3591     NewCond = ISD::CondCode::SETEQ;
3592   } else if (Cond == ISD::CondCode::SETULE) {
3593     NewCond = ISD::CondCode::SETEQ;
3594     // But need to 'canonicalize' the constant.
3595     I1 += 1;
3596   } else if (Cond == ISD::CondCode::SETUGT) {
3597     NewCond = ISD::CondCode::SETNE;
3598     // But need to 'canonicalize' the constant.
3599     I1 += 1;
3600   } else if (Cond == ISD::CondCode::SETUGE) {
3601     NewCond = ISD::CondCode::SETNE;
3602   } else
3603     return SDValue();
3604 
3605   APInt I01 = C01->getAPIntValue();
3606 
3607   auto checkConstants = [&I1, &I01]() -> bool {
3608     // Both of them must be power-of-two, and the constant from setcc is bigger.
3609     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3610   };
3611 
3612   if (checkConstants()) {
3613     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3614   } else {
3615     // What if we invert constants? (and the target predicate)
3616     I1.negate();
3617     I01.negate();
3618     assert(XVT.isInteger());
3619     NewCond = getSetCCInverse(NewCond, XVT);
3620     if (!checkConstants())
3621       return SDValue();
3622     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3623   }
3624 
3625   // They are power-of-two, so which bit is set?
3626   const unsigned KeptBits = I1.logBase2();
3627   const unsigned KeptBitsMinusOne = I01.logBase2();
3628 
3629   // Magic!
3630   if (KeptBits != (KeptBitsMinusOne + 1))
3631     return SDValue();
3632   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3633 
3634   // We don't want to do this in every single case.
3635   SelectionDAG &DAG = DCI.DAG;
3636   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3637           XVT, KeptBits))
3638     return SDValue();
3639 
3640   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3641   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3642 
3643   // Unfold into:  ((%x << C) a>> C) cond %x
3644   // Where 'cond' will be either 'eq' or 'ne'.
3645   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3646   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3647   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3648   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3649 
3650   return T2;
3651 }
3652 
3653 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3654 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3655     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3656     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3657   assert(isConstOrConstSplat(N1C) &&
3658          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3659          "Should be a comparison with 0.");
3660   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3661          "Valid only for [in]equality comparisons.");
3662 
3663   unsigned NewShiftOpcode;
3664   SDValue X, C, Y;
3665 
3666   SelectionDAG &DAG = DCI.DAG;
3667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3668 
3669   // Look for '(C l>>/<< Y)'.
3670   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3671     // The shift should be one-use.
3672     if (!V.hasOneUse())
3673       return false;
3674     unsigned OldShiftOpcode = V.getOpcode();
3675     switch (OldShiftOpcode) {
3676     case ISD::SHL:
3677       NewShiftOpcode = ISD::SRL;
3678       break;
3679     case ISD::SRL:
3680       NewShiftOpcode = ISD::SHL;
3681       break;
3682     default:
3683       return false; // must be a logical shift.
3684     }
3685     // We should be shifting a constant.
3686     // FIXME: best to use isConstantOrConstantVector().
3687     C = V.getOperand(0);
3688     ConstantSDNode *CC =
3689         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3690     if (!CC)
3691       return false;
3692     Y = V.getOperand(1);
3693 
3694     ConstantSDNode *XC =
3695         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3696     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3697         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3698   };
3699 
3700   // LHS of comparison should be an one-use 'and'.
3701   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3702     return SDValue();
3703 
3704   X = N0.getOperand(0);
3705   SDValue Mask = N0.getOperand(1);
3706 
3707   // 'and' is commutative!
3708   if (!Match(Mask)) {
3709     std::swap(X, Mask);
3710     if (!Match(Mask))
3711       return SDValue();
3712   }
3713 
3714   EVT VT = X.getValueType();
3715 
3716   // Produce:
3717   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3718   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3719   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3720   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3721   return T2;
3722 }
3723 
3724 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3725 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3726 /// handle the commuted versions of these patterns.
3727 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3728                                            ISD::CondCode Cond, const SDLoc &DL,
3729                                            DAGCombinerInfo &DCI) const {
3730   unsigned BOpcode = N0.getOpcode();
3731   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3732          "Unexpected binop");
3733   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3734 
3735   // (X + Y) == X --> Y == 0
3736   // (X - Y) == X --> Y == 0
3737   // (X ^ Y) == X --> Y == 0
3738   SelectionDAG &DAG = DCI.DAG;
3739   EVT OpVT = N0.getValueType();
3740   SDValue X = N0.getOperand(0);
3741   SDValue Y = N0.getOperand(1);
3742   if (X == N1)
3743     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3744 
3745   if (Y != N1)
3746     return SDValue();
3747 
3748   // (X + Y) == Y --> X == 0
3749   // (X ^ Y) == Y --> X == 0
3750   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3751     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3752 
3753   // The shift would not be valid if the operands are boolean (i1).
3754   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3755     return SDValue();
3756 
3757   // (X - Y) == Y --> X == Y << 1
3758   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3759                                  !DCI.isBeforeLegalize());
3760   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3761   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3762   if (!DCI.isCalledByLegalizer())
3763     DCI.AddToWorklist(YShl1.getNode());
3764   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3765 }
3766 
3767 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3768                                       SDValue N0, const APInt &C1,
3769                                       ISD::CondCode Cond, const SDLoc &dl,
3770                                       SelectionDAG &DAG) {
3771   // Look through truncs that don't change the value of a ctpop.
3772   // FIXME: Add vector support? Need to be careful with setcc result type below.
3773   SDValue CTPOP = N0;
3774   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3775       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3776     CTPOP = N0.getOperand(0);
3777 
3778   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3779     return SDValue();
3780 
3781   EVT CTVT = CTPOP.getValueType();
3782   SDValue CTOp = CTPOP.getOperand(0);
3783 
3784   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3785   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3786   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3787     return SDValue();
3788 
3789   // (ctpop x) u< 2 -> (x & x-1) == 0
3790   // (ctpop x) u> 1 -> (x & x-1) != 0
3791   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3792     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3793     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3794       return SDValue();
3795     if (C1 == 0 && (Cond == ISD::SETULT))
3796       return SDValue(); // This is handled elsewhere.
3797 
3798     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3799 
3800     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3801     SDValue Result = CTOp;
3802     for (unsigned i = 0; i < Passes; i++) {
3803       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3804       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3805     }
3806     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3807     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3808   }
3809 
3810   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3811   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3812     // For scalars, keep CTPOP if it is legal or custom.
3813     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3814       return SDValue();
3815     // This is based on X86's custom lowering for CTPOP which produces more
3816     // instructions than the expansion here.
3817 
3818     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3819     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3820     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3821     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3822     assert(CTVT.isInteger());
3823     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3824     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3825     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3826     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3827     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3828     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3829     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3830   }
3831 
3832   return SDValue();
3833 }
3834 
3835 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3836                                    ISD::CondCode Cond, const SDLoc &dl,
3837                                    SelectionDAG &DAG) {
3838   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3839     return SDValue();
3840 
3841   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3842   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3843     return SDValue();
3844 
3845   auto getRotateSource = [](SDValue X) {
3846     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3847       return X.getOperand(0);
3848     return SDValue();
3849   };
3850 
3851   // Peek through a rotated value compared against 0 or -1:
3852   // (rot X, Y) == 0/-1 --> X == 0/-1
3853   // (rot X, Y) != 0/-1 --> X != 0/-1
3854   if (SDValue R = getRotateSource(N0))
3855     return DAG.getSetCC(dl, VT, R, N1, Cond);
3856 
3857   // Peek through an 'or' of a rotated value compared against 0:
3858   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3859   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3860   //
3861   // TODO: Add the 'and' with -1 sibling.
3862   // TODO: Recurse through a series of 'or' ops to find the rotate.
3863   EVT OpVT = N0.getValueType();
3864   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3865     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3866       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3867       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3868     }
3869     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3870       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3871       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3872     }
3873   }
3874 
3875   return SDValue();
3876 }
3877 
3878 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3879                                         ISD::CondCode Cond, const SDLoc &dl,
3880                                         SelectionDAG &DAG) {
3881   // If we are testing for all-bits-clear, we might be able to do that with
3882   // less shifting since bit-order does not matter.
3883   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3884     return SDValue();
3885 
3886   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3887   if (!C1 || !C1->isZero())
3888     return SDValue();
3889 
3890   if (!N0.hasOneUse() ||
3891       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3892     return SDValue();
3893 
3894   unsigned BitWidth = N0.getScalarValueSizeInBits();
3895   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3896   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3897     return SDValue();
3898 
3899   // Canonicalize fshr as fshl to reduce pattern-matching.
3900   unsigned ShAmt = ShAmtC->getZExtValue();
3901   if (N0.getOpcode() == ISD::FSHR)
3902     ShAmt = BitWidth - ShAmt;
3903 
3904   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3905   SDValue X, Y;
3906   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3907     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3908       return false;
3909     if (Or.getOperand(0) == Other) {
3910       X = Or.getOperand(0);
3911       Y = Or.getOperand(1);
3912       return true;
3913     }
3914     if (Or.getOperand(1) == Other) {
3915       X = Or.getOperand(1);
3916       Y = Or.getOperand(0);
3917       return true;
3918     }
3919     return false;
3920   };
3921 
3922   EVT OpVT = N0.getValueType();
3923   EVT ShAmtVT = N0.getOperand(2).getValueType();
3924   SDValue F0 = N0.getOperand(0);
3925   SDValue F1 = N0.getOperand(1);
3926   if (matchOr(F0, F1)) {
3927     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
3928     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
3929     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
3930     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3931     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3932   }
3933   if (matchOr(F1, F0)) {
3934     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
3935     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
3936     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
3937     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3938     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3939   }
3940 
3941   return SDValue();
3942 }
3943 
3944 /// Try to simplify a setcc built with the specified operands and cc. If it is
3945 /// unable to simplify it, return a null SDValue.
3946 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3947                                       ISD::CondCode Cond, bool foldBooleans,
3948                                       DAGCombinerInfo &DCI,
3949                                       const SDLoc &dl) const {
3950   SelectionDAG &DAG = DCI.DAG;
3951   const DataLayout &Layout = DAG.getDataLayout();
3952   EVT OpVT = N0.getValueType();
3953 
3954   // Constant fold or commute setcc.
3955   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3956     return Fold;
3957 
3958   bool N0ConstOrSplat =
3959       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
3960   bool N1ConstOrSplat =
3961       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
3962 
3963   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3964   // TODO: Handle non-splat vector constants. All undef causes trouble.
3965   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3966   // infinite loop here when we encounter one.
3967   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3968   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
3969       (DCI.isBeforeLegalizeOps() ||
3970        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3971     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3972 
3973   // If we have a subtract with the same 2 non-constant operands as this setcc
3974   // -- but in reverse order -- then try to commute the operands of this setcc
3975   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3976   // instruction on some targets.
3977   if (!N0ConstOrSplat && !N1ConstOrSplat &&
3978       (DCI.isBeforeLegalizeOps() ||
3979        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3980       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3981       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3982     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3983 
3984   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
3985     return V;
3986 
3987   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
3988     return V;
3989 
3990   if (auto *N1C = isConstOrConstSplat(N1)) {
3991     const APInt &C1 = N1C->getAPIntValue();
3992 
3993     // Optimize some CTPOP cases.
3994     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3995       return V;
3996 
3997     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3998     // equality comparison, then we're just comparing whether X itself is
3999     // zero.
4000     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4001         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4002         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4003       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4004         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4005             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4006           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4007             // (srl (ctlz x), 5) == 0  -> X != 0
4008             // (srl (ctlz x), 5) != 1  -> X != 0
4009             Cond = ISD::SETNE;
4010           } else {
4011             // (srl (ctlz x), 5) != 0  -> X == 0
4012             // (srl (ctlz x), 5) == 1  -> X == 0
4013             Cond = ISD::SETEQ;
4014           }
4015           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4016           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4017                               Cond);
4018         }
4019       }
4020     }
4021   }
4022 
4023   // FIXME: Support vectors.
4024   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4025     const APInt &C1 = N1C->getAPIntValue();
4026 
4027     // (zext x) == C --> x == (trunc C)
4028     // (sext x) == C --> x == (trunc C)
4029     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4030         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4031       unsigned MinBits = N0.getValueSizeInBits();
4032       SDValue PreExt;
4033       bool Signed = false;
4034       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4035         // ZExt
4036         MinBits = N0->getOperand(0).getValueSizeInBits();
4037         PreExt = N0->getOperand(0);
4038       } else if (N0->getOpcode() == ISD::AND) {
4039         // DAGCombine turns costly ZExts into ANDs
4040         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4041           if ((C->getAPIntValue()+1).isPowerOf2()) {
4042             MinBits = C->getAPIntValue().countTrailingOnes();
4043             PreExt = N0->getOperand(0);
4044           }
4045       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4046         // SExt
4047         MinBits = N0->getOperand(0).getValueSizeInBits();
4048         PreExt = N0->getOperand(0);
4049         Signed = true;
4050       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4051         // ZEXTLOAD / SEXTLOAD
4052         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4053           MinBits = LN0->getMemoryVT().getSizeInBits();
4054           PreExt = N0;
4055         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4056           Signed = true;
4057           MinBits = LN0->getMemoryVT().getSizeInBits();
4058           PreExt = N0;
4059         }
4060       }
4061 
4062       // Figure out how many bits we need to preserve this constant.
4063       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4064 
4065       // Make sure we're not losing bits from the constant.
4066       if (MinBits > 0 &&
4067           MinBits < C1.getBitWidth() &&
4068           MinBits >= ReqdBits) {
4069         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4070         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4071           // Will get folded away.
4072           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4073           if (MinBits == 1 && C1 == 1)
4074             // Invert the condition.
4075             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4076                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4077           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4078           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4079         }
4080 
4081         // If truncating the setcc operands is not desirable, we can still
4082         // simplify the expression in some cases:
4083         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4084         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4085         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4086         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4087         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4088         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4089         SDValue TopSetCC = N0->getOperand(0);
4090         unsigned N0Opc = N0->getOpcode();
4091         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4092         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4093             TopSetCC.getOpcode() == ISD::SETCC &&
4094             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4095             (isConstFalseVal(N1) ||
4096              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4097 
4098           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4099                          (!N1C->isZero() && Cond == ISD::SETNE);
4100 
4101           if (!Inverse)
4102             return TopSetCC;
4103 
4104           ISD::CondCode InvCond = ISD::getSetCCInverse(
4105               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4106               TopSetCC.getOperand(0).getValueType());
4107           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4108                                       TopSetCC.getOperand(1),
4109                                       InvCond);
4110         }
4111       }
4112     }
4113 
4114     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4115     // equality or unsigned, and all 1 bits of the const are in the same
4116     // partial word, see if we can shorten the load.
4117     if (DCI.isBeforeLegalize() &&
4118         !ISD::isSignedIntSetCC(Cond) &&
4119         N0.getOpcode() == ISD::AND && C1 == 0 &&
4120         N0.getNode()->hasOneUse() &&
4121         isa<LoadSDNode>(N0.getOperand(0)) &&
4122         N0.getOperand(0).getNode()->hasOneUse() &&
4123         isa<ConstantSDNode>(N0.getOperand(1))) {
4124       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4125       APInt bestMask;
4126       unsigned bestWidth = 0, bestOffset = 0;
4127       if (Lod->isSimple() && Lod->isUnindexed()) {
4128         unsigned origWidth = N0.getValueSizeInBits();
4129         unsigned maskWidth = origWidth;
4130         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4131         // 8 bits, but have to be careful...
4132         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4133           origWidth = Lod->getMemoryVT().getSizeInBits();
4134         const APInt &Mask = N0.getConstantOperandAPInt(1);
4135         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4136           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4137           for (unsigned offset=0; offset<origWidth/width; offset++) {
4138             if (Mask.isSubsetOf(newMask)) {
4139               if (Layout.isLittleEndian())
4140                 bestOffset = (uint64_t)offset * (width/8);
4141               else
4142                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4143               bestMask = Mask.lshr(offset * (width/8) * 8);
4144               bestWidth = width;
4145               break;
4146             }
4147             newMask <<= width;
4148           }
4149         }
4150       }
4151       if (bestWidth) {
4152         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4153         if (newVT.isRound() &&
4154             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4155           SDValue Ptr = Lod->getBasePtr();
4156           if (bestOffset != 0)
4157             Ptr =
4158                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4159           SDValue NewLoad =
4160               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4161                           Lod->getPointerInfo().getWithOffset(bestOffset),
4162                           Lod->getOriginalAlign());
4163           return DAG.getSetCC(dl, VT,
4164                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4165                                       DAG.getConstant(bestMask.trunc(bestWidth),
4166                                                       dl, newVT)),
4167                               DAG.getConstant(0LL, dl, newVT), Cond);
4168         }
4169       }
4170     }
4171 
4172     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4173     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4174       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4175 
4176       // If the comparison constant has bits in the upper part, the
4177       // zero-extended value could never match.
4178       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4179                                               C1.getBitWidth() - InSize))) {
4180         switch (Cond) {
4181         case ISD::SETUGT:
4182         case ISD::SETUGE:
4183         case ISD::SETEQ:
4184           return DAG.getConstant(0, dl, VT);
4185         case ISD::SETULT:
4186         case ISD::SETULE:
4187         case ISD::SETNE:
4188           return DAG.getConstant(1, dl, VT);
4189         case ISD::SETGT:
4190         case ISD::SETGE:
4191           // True if the sign bit of C1 is set.
4192           return DAG.getConstant(C1.isNegative(), dl, VT);
4193         case ISD::SETLT:
4194         case ISD::SETLE:
4195           // True if the sign bit of C1 isn't set.
4196           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4197         default:
4198           break;
4199         }
4200       }
4201 
4202       // Otherwise, we can perform the comparison with the low bits.
4203       switch (Cond) {
4204       case ISD::SETEQ:
4205       case ISD::SETNE:
4206       case ISD::SETUGT:
4207       case ISD::SETUGE:
4208       case ISD::SETULT:
4209       case ISD::SETULE: {
4210         EVT newVT = N0.getOperand(0).getValueType();
4211         if (DCI.isBeforeLegalizeOps() ||
4212             (isOperationLegal(ISD::SETCC, newVT) &&
4213              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4214           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4215           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4216 
4217           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4218                                           NewConst, Cond);
4219           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4220         }
4221         break;
4222       }
4223       default:
4224         break; // todo, be more careful with signed comparisons
4225       }
4226     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4227                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4228                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4229                                       OpVT)) {
4230       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4231       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4232       EVT ExtDstTy = N0.getValueType();
4233       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4234 
4235       // If the constant doesn't fit into the number of bits for the source of
4236       // the sign extension, it is impossible for both sides to be equal.
4237       if (C1.getMinSignedBits() > ExtSrcTyBits)
4238         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4239 
4240       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4241              ExtDstTy != ExtSrcTy && "Unexpected types!");
4242       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4243       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4244                                    DAG.getConstant(Imm, dl, ExtDstTy));
4245       if (!DCI.isCalledByLegalizer())
4246         DCI.AddToWorklist(ZextOp.getNode());
4247       // Otherwise, make this a use of a zext.
4248       return DAG.getSetCC(dl, VT, ZextOp,
4249                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4250     } else if ((N1C->isZero() || N1C->isOne()) &&
4251                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4252       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4253       if (N0.getOpcode() == ISD::SETCC &&
4254           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4255           (N0.getValueType() == MVT::i1 ||
4256            getBooleanContents(N0.getOperand(0).getValueType()) ==
4257                        ZeroOrOneBooleanContent)) {
4258         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4259         if (TrueWhenTrue)
4260           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4261         // Invert the condition.
4262         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4263         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4264         if (DCI.isBeforeLegalizeOps() ||
4265             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4266           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4267       }
4268 
4269       if ((N0.getOpcode() == ISD::XOR ||
4270            (N0.getOpcode() == ISD::AND &&
4271             N0.getOperand(0).getOpcode() == ISD::XOR &&
4272             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4273           isOneConstant(N0.getOperand(1))) {
4274         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4275         // can only do this if the top bits are known zero.
4276         unsigned BitWidth = N0.getValueSizeInBits();
4277         if (DAG.MaskedValueIsZero(N0,
4278                                   APInt::getHighBitsSet(BitWidth,
4279                                                         BitWidth-1))) {
4280           // Okay, get the un-inverted input value.
4281           SDValue Val;
4282           if (N0.getOpcode() == ISD::XOR) {
4283             Val = N0.getOperand(0);
4284           } else {
4285             assert(N0.getOpcode() == ISD::AND &&
4286                     N0.getOperand(0).getOpcode() == ISD::XOR);
4287             // ((X^1)&1)^1 -> X & 1
4288             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4289                               N0.getOperand(0).getOperand(0),
4290                               N0.getOperand(1));
4291           }
4292 
4293           return DAG.getSetCC(dl, VT, Val, N1,
4294                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4295         }
4296       } else if (N1C->isOne()) {
4297         SDValue Op0 = N0;
4298         if (Op0.getOpcode() == ISD::TRUNCATE)
4299           Op0 = Op0.getOperand(0);
4300 
4301         if ((Op0.getOpcode() == ISD::XOR) &&
4302             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4303             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4304           SDValue XorLHS = Op0.getOperand(0);
4305           SDValue XorRHS = Op0.getOperand(1);
4306           // Ensure that the input setccs return an i1 type or 0/1 value.
4307           if (Op0.getValueType() == MVT::i1 ||
4308               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4309                       ZeroOrOneBooleanContent &&
4310                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4311                         ZeroOrOneBooleanContent)) {
4312             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4313             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4314             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4315           }
4316         }
4317         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4318           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4319           if (Op0.getValueType().bitsGT(VT))
4320             Op0 = DAG.getNode(ISD::AND, dl, VT,
4321                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4322                           DAG.getConstant(1, dl, VT));
4323           else if (Op0.getValueType().bitsLT(VT))
4324             Op0 = DAG.getNode(ISD::AND, dl, VT,
4325                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4326                         DAG.getConstant(1, dl, VT));
4327 
4328           return DAG.getSetCC(dl, VT, Op0,
4329                               DAG.getConstant(0, dl, Op0.getValueType()),
4330                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4331         }
4332         if (Op0.getOpcode() == ISD::AssertZext &&
4333             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4334           return DAG.getSetCC(dl, VT, Op0,
4335                               DAG.getConstant(0, dl, Op0.getValueType()),
4336                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4337       }
4338     }
4339 
4340     // Given:
4341     //   icmp eq/ne (urem %x, %y), 0
4342     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4343     //   icmp eq/ne %x, 0
4344     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4345         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4346       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4347       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4348       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4349         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4350     }
4351 
4352     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4353     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4354     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4355         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4356         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4357         N1C && N1C->isAllOnes()) {
4358       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4359                           DAG.getConstant(0, dl, OpVT),
4360                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4361     }
4362 
4363     if (SDValue V =
4364             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4365       return V;
4366   }
4367 
4368   // These simplifications apply to splat vectors as well.
4369   // TODO: Handle more splat vector cases.
4370   if (auto *N1C = isConstOrConstSplat(N1)) {
4371     const APInt &C1 = N1C->getAPIntValue();
4372 
4373     APInt MinVal, MaxVal;
4374     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4375     if (ISD::isSignedIntSetCC(Cond)) {
4376       MinVal = APInt::getSignedMinValue(OperandBitSize);
4377       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4378     } else {
4379       MinVal = APInt::getMinValue(OperandBitSize);
4380       MaxVal = APInt::getMaxValue(OperandBitSize);
4381     }
4382 
4383     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4384     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4385       // X >= MIN --> true
4386       if (C1 == MinVal)
4387         return DAG.getBoolConstant(true, dl, VT, OpVT);
4388 
4389       if (!VT.isVector()) { // TODO: Support this for vectors.
4390         // X >= C0 --> X > (C0 - 1)
4391         APInt C = C1 - 1;
4392         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4393         if ((DCI.isBeforeLegalizeOps() ||
4394              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4395             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4396                                   isLegalICmpImmediate(C.getSExtValue())))) {
4397           return DAG.getSetCC(dl, VT, N0,
4398                               DAG.getConstant(C, dl, N1.getValueType()),
4399                               NewCC);
4400         }
4401       }
4402     }
4403 
4404     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4405       // X <= MAX --> true
4406       if (C1 == MaxVal)
4407         return DAG.getBoolConstant(true, dl, VT, OpVT);
4408 
4409       // X <= C0 --> X < (C0 + 1)
4410       if (!VT.isVector()) { // TODO: Support this for vectors.
4411         APInt C = C1 + 1;
4412         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4413         if ((DCI.isBeforeLegalizeOps() ||
4414              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4415             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4416                                   isLegalICmpImmediate(C.getSExtValue())))) {
4417           return DAG.getSetCC(dl, VT, N0,
4418                               DAG.getConstant(C, dl, N1.getValueType()),
4419                               NewCC);
4420         }
4421       }
4422     }
4423 
4424     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4425       if (C1 == MinVal)
4426         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4427 
4428       // TODO: Support this for vectors after legalize ops.
4429       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4430         // Canonicalize setlt X, Max --> setne X, Max
4431         if (C1 == MaxVal)
4432           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4433 
4434         // If we have setult X, 1, turn it into seteq X, 0
4435         if (C1 == MinVal+1)
4436           return DAG.getSetCC(dl, VT, N0,
4437                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4438                               ISD::SETEQ);
4439       }
4440     }
4441 
4442     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4443       if (C1 == MaxVal)
4444         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4445 
4446       // TODO: Support this for vectors after legalize ops.
4447       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4448         // Canonicalize setgt X, Min --> setne X, Min
4449         if (C1 == MinVal)
4450           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4451 
4452         // If we have setugt X, Max-1, turn it into seteq X, Max
4453         if (C1 == MaxVal-1)
4454           return DAG.getSetCC(dl, VT, N0,
4455                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4456                               ISD::SETEQ);
4457       }
4458     }
4459 
4460     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4461       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4462       if (C1.isZero())
4463         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4464                 VT, N0, N1, Cond, DCI, dl))
4465           return CC;
4466 
4467       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4468       // For example, when high 32-bits of i64 X are known clear:
4469       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4470       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4471       bool CmpZero = N1C->getAPIntValue().isZero();
4472       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4473       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4474         // Match or(lo,shl(hi,bw/2)) pattern.
4475         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4476           unsigned EltBits = V.getScalarValueSizeInBits();
4477           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4478             return false;
4479           SDValue LHS = V.getOperand(0);
4480           SDValue RHS = V.getOperand(1);
4481           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4482           // Unshifted element must have zero upperbits.
4483           if (RHS.getOpcode() == ISD::SHL &&
4484               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4485               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4486               DAG.MaskedValueIsZero(LHS, HiBits)) {
4487             Lo = LHS;
4488             Hi = RHS.getOperand(0);
4489             return true;
4490           }
4491           if (LHS.getOpcode() == ISD::SHL &&
4492               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4493               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4494               DAG.MaskedValueIsZero(RHS, HiBits)) {
4495             Lo = RHS;
4496             Hi = LHS.getOperand(0);
4497             return true;
4498           }
4499           return false;
4500         };
4501 
4502         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4503           unsigned EltBits = N0.getScalarValueSizeInBits();
4504           unsigned HalfBits = EltBits / 2;
4505           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4506           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4507           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4508           SDValue NewN0 =
4509               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4510           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4511           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4512         };
4513 
4514         SDValue Lo, Hi;
4515         if (IsConcat(N0, Lo, Hi))
4516           return MergeConcat(Lo, Hi);
4517 
4518         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4519           SDValue Lo0, Lo1, Hi0, Hi1;
4520           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4521               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4522             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4523                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4524           }
4525         }
4526       }
4527     }
4528 
4529     // If we have "setcc X, C0", check to see if we can shrink the immediate
4530     // by changing cc.
4531     // TODO: Support this for vectors after legalize ops.
4532     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4533       // SETUGT X, SINTMAX  -> SETLT X, 0
4534       // SETUGE X, SINTMIN -> SETLT X, 0
4535       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4536           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4537         return DAG.getSetCC(dl, VT, N0,
4538                             DAG.getConstant(0, dl, N1.getValueType()),
4539                             ISD::SETLT);
4540 
4541       // SETULT X, SINTMIN  -> SETGT X, -1
4542       // SETULE X, SINTMAX  -> SETGT X, -1
4543       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4544           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4545         return DAG.getSetCC(dl, VT, N0,
4546                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4547                             ISD::SETGT);
4548     }
4549   }
4550 
4551   // Back to non-vector simplifications.
4552   // TODO: Can we do these for vector splats?
4553   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4554     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4555     const APInt &C1 = N1C->getAPIntValue();
4556     EVT ShValTy = N0.getValueType();
4557 
4558     // Fold bit comparisons when we can. This will result in an
4559     // incorrect value when boolean false is negative one, unless
4560     // the bitsize is 1 in which case the false value is the same
4561     // in practice regardless of the representation.
4562     if ((VT.getSizeInBits() == 1 ||
4563          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4564         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4565         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4566         N0.getOpcode() == ISD::AND) {
4567       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4568         EVT ShiftTy =
4569             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4570         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4571           // Perform the xform if the AND RHS is a single bit.
4572           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4573           if (AndRHS->getAPIntValue().isPowerOf2() &&
4574               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4575             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4576                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4577                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4578           }
4579         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4580           // (X & 8) == 8  -->  (X & 8) >> 3
4581           // Perform the xform if C1 is a single bit.
4582           unsigned ShCt = C1.logBase2();
4583           if (C1.isPowerOf2() &&
4584               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4585             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4586                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4587                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4588           }
4589         }
4590       }
4591     }
4592 
4593     if (C1.getMinSignedBits() <= 64 &&
4594         !isLegalICmpImmediate(C1.getSExtValue())) {
4595       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4596       // (X & -256) == 256 -> (X >> 8) == 1
4597       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4598           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4599         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4600           const APInt &AndRHSC = AndRHS->getAPIntValue();
4601           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4602             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4603             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4604               SDValue Shift =
4605                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4606                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4607               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4608               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4609             }
4610           }
4611         }
4612       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4613                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4614         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4615         // X <  0x100000000 -> (X >> 32) <  1
4616         // X >= 0x100000000 -> (X >> 32) >= 1
4617         // X <= 0x0ffffffff -> (X >> 32) <  1
4618         // X >  0x0ffffffff -> (X >> 32) >= 1
4619         unsigned ShiftBits;
4620         APInt NewC = C1;
4621         ISD::CondCode NewCond = Cond;
4622         if (AdjOne) {
4623           ShiftBits = C1.countTrailingOnes();
4624           NewC = NewC + 1;
4625           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4626         } else {
4627           ShiftBits = C1.countTrailingZeros();
4628         }
4629         NewC.lshrInPlace(ShiftBits);
4630         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4631             isLegalICmpImmediate(NewC.getSExtValue()) &&
4632             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4633           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4634                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4635           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4636           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4637         }
4638       }
4639     }
4640   }
4641 
4642   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4643     auto *CFP = cast<ConstantFPSDNode>(N1);
4644     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4645 
4646     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4647     // constant if knowing that the operand is non-nan is enough.  We prefer to
4648     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4649     // materialize 0.0.
4650     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4651       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4652 
4653     // setcc (fneg x), C -> setcc swap(pred) x, -C
4654     if (N0.getOpcode() == ISD::FNEG) {
4655       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4656       if (DCI.isBeforeLegalizeOps() ||
4657           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4658         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4659         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4660       }
4661     }
4662 
4663     // If the condition is not legal, see if we can find an equivalent one
4664     // which is legal.
4665     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4666       // If the comparison was an awkward floating-point == or != and one of
4667       // the comparison operands is infinity or negative infinity, convert the
4668       // condition to a less-awkward <= or >=.
4669       if (CFP->getValueAPF().isInfinity()) {
4670         bool IsNegInf = CFP->getValueAPF().isNegative();
4671         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4672         switch (Cond) {
4673         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4674         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4675         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4676         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4677         default: break;
4678         }
4679         if (NewCond != ISD::SETCC_INVALID &&
4680             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4681           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4682       }
4683     }
4684   }
4685 
4686   if (N0 == N1) {
4687     // The sext(setcc()) => setcc() optimization relies on the appropriate
4688     // constant being emitted.
4689     assert(!N0.getValueType().isInteger() &&
4690            "Integer types should be handled by FoldSetCC");
4691 
4692     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4693     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4694     if (UOF == 2) // FP operators that are undefined on NaNs.
4695       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4696     if (UOF == unsigned(EqTrue))
4697       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4698     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4699     // if it is not already.
4700     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4701     if (NewCond != Cond &&
4702         (DCI.isBeforeLegalizeOps() ||
4703                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4704       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4705   }
4706 
4707   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4708       N0.getValueType().isInteger()) {
4709     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4710         N0.getOpcode() == ISD::XOR) {
4711       // Simplify (X+Y) == (X+Z) -->  Y == Z
4712       if (N0.getOpcode() == N1.getOpcode()) {
4713         if (N0.getOperand(0) == N1.getOperand(0))
4714           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4715         if (N0.getOperand(1) == N1.getOperand(1))
4716           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4717         if (isCommutativeBinOp(N0.getOpcode())) {
4718           // If X op Y == Y op X, try other combinations.
4719           if (N0.getOperand(0) == N1.getOperand(1))
4720             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4721                                 Cond);
4722           if (N0.getOperand(1) == N1.getOperand(0))
4723             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4724                                 Cond);
4725         }
4726       }
4727 
4728       // If RHS is a legal immediate value for a compare instruction, we need
4729       // to be careful about increasing register pressure needlessly.
4730       bool LegalRHSImm = false;
4731 
4732       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4733         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4734           // Turn (X+C1) == C2 --> X == C2-C1
4735           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4736             return DAG.getSetCC(
4737                 dl, VT, N0.getOperand(0),
4738                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4739                                 dl, N0.getValueType()),
4740                 Cond);
4741 
4742           // Turn (X^C1) == C2 --> X == C1^C2
4743           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4744             return DAG.getSetCC(
4745                 dl, VT, N0.getOperand(0),
4746                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4747                                 dl, N0.getValueType()),
4748                 Cond);
4749         }
4750 
4751         // Turn (C1-X) == C2 --> X == C1-C2
4752         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4753           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4754             return DAG.getSetCC(
4755                 dl, VT, N0.getOperand(1),
4756                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4757                                 dl, N0.getValueType()),
4758                 Cond);
4759 
4760         // Could RHSC fold directly into a compare?
4761         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4762           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4763       }
4764 
4765       // (X+Y) == X --> Y == 0 and similar folds.
4766       // Don't do this if X is an immediate that can fold into a cmp
4767       // instruction and X+Y has other uses. It could be an induction variable
4768       // chain, and the transform would increase register pressure.
4769       if (!LegalRHSImm || N0.hasOneUse())
4770         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4771           return V;
4772     }
4773 
4774     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4775         N1.getOpcode() == ISD::XOR)
4776       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4777         return V;
4778 
4779     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4780       return V;
4781   }
4782 
4783   // Fold remainder of division by a constant.
4784   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4785       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4786     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4787 
4788     // When division is cheap or optimizing for minimum size,
4789     // fall through to DIVREM creation by skipping this fold.
4790     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4791       if (N0.getOpcode() == ISD::UREM) {
4792         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4793           return Folded;
4794       } else if (N0.getOpcode() == ISD::SREM) {
4795         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4796           return Folded;
4797       }
4798     }
4799   }
4800 
4801   // Fold away ALL boolean setcc's.
4802   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4803     SDValue Temp;
4804     switch (Cond) {
4805     default: llvm_unreachable("Unknown integer setcc!");
4806     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4807       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4808       N0 = DAG.getNOT(dl, Temp, OpVT);
4809       if (!DCI.isCalledByLegalizer())
4810         DCI.AddToWorklist(Temp.getNode());
4811       break;
4812     case ISD::SETNE:  // X != Y   -->  (X^Y)
4813       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4814       break;
4815     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4816     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4817       Temp = DAG.getNOT(dl, N0, OpVT);
4818       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4819       if (!DCI.isCalledByLegalizer())
4820         DCI.AddToWorklist(Temp.getNode());
4821       break;
4822     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4823     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4824       Temp = DAG.getNOT(dl, N1, OpVT);
4825       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4826       if (!DCI.isCalledByLegalizer())
4827         DCI.AddToWorklist(Temp.getNode());
4828       break;
4829     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4830     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4831       Temp = DAG.getNOT(dl, N0, OpVT);
4832       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4833       if (!DCI.isCalledByLegalizer())
4834         DCI.AddToWorklist(Temp.getNode());
4835       break;
4836     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4837     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4838       Temp = DAG.getNOT(dl, N1, OpVT);
4839       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4840       break;
4841     }
4842     if (VT.getScalarType() != MVT::i1) {
4843       if (!DCI.isCalledByLegalizer())
4844         DCI.AddToWorklist(N0.getNode());
4845       // FIXME: If running after legalize, we probably can't do this.
4846       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4847       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4848     }
4849     return N0;
4850   }
4851 
4852   // Could not fold it.
4853   return SDValue();
4854 }
4855 
4856 /// Returns true (and the GlobalValue and the offset) if the node is a
4857 /// GlobalAddress + offset.
4858 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4859                                     int64_t &Offset) const {
4860 
4861   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4862 
4863   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4864     GA = GASD->getGlobal();
4865     Offset += GASD->getOffset();
4866     return true;
4867   }
4868 
4869   if (N->getOpcode() == ISD::ADD) {
4870     SDValue N1 = N->getOperand(0);
4871     SDValue N2 = N->getOperand(1);
4872     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4873       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4874         Offset += V->getSExtValue();
4875         return true;
4876       }
4877     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4878       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4879         Offset += V->getSExtValue();
4880         return true;
4881       }
4882     }
4883   }
4884 
4885   return false;
4886 }
4887 
4888 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4889                                           DAGCombinerInfo &DCI) const {
4890   // Default implementation: no optimization.
4891   return SDValue();
4892 }
4893 
4894 //===----------------------------------------------------------------------===//
4895 //  Inline Assembler Implementation Methods
4896 //===----------------------------------------------------------------------===//
4897 
4898 TargetLowering::ConstraintType
4899 TargetLowering::getConstraintType(StringRef Constraint) const {
4900   unsigned S = Constraint.size();
4901 
4902   if (S == 1) {
4903     switch (Constraint[0]) {
4904     default: break;
4905     case 'r':
4906       return C_RegisterClass;
4907     case 'm': // memory
4908     case 'o': // offsetable
4909     case 'V': // not offsetable
4910       return C_Memory;
4911     case 'p': // Address.
4912       return C_Address;
4913     case 'n': // Simple Integer
4914     case 'E': // Floating Point Constant
4915     case 'F': // Floating Point Constant
4916       return C_Immediate;
4917     case 'i': // Simple Integer or Relocatable Constant
4918     case 's': // Relocatable Constant
4919     case 'X': // Allow ANY value.
4920     case 'I': // Target registers.
4921     case 'J':
4922     case 'K':
4923     case 'L':
4924     case 'M':
4925     case 'N':
4926     case 'O':
4927     case 'P':
4928     case '<':
4929     case '>':
4930       return C_Other;
4931     }
4932   }
4933 
4934   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4935     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4936       return C_Memory;
4937     return C_Register;
4938   }
4939   return C_Unknown;
4940 }
4941 
4942 /// Try to replace an X constraint, which matches anything, with another that
4943 /// has more specific requirements based on the type of the corresponding
4944 /// operand.
4945 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4946   if (ConstraintVT.isInteger())
4947     return "r";
4948   if (ConstraintVT.isFloatingPoint())
4949     return "f"; // works for many targets
4950   return nullptr;
4951 }
4952 
4953 SDValue TargetLowering::LowerAsmOutputForConstraint(
4954     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4955     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4956   return SDValue();
4957 }
4958 
4959 /// Lower the specified operand into the Ops vector.
4960 /// If it is invalid, don't add anything to Ops.
4961 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4962                                                   std::string &Constraint,
4963                                                   std::vector<SDValue> &Ops,
4964                                                   SelectionDAG &DAG) const {
4965 
4966   if (Constraint.length() > 1) return;
4967 
4968   char ConstraintLetter = Constraint[0];
4969   switch (ConstraintLetter) {
4970   default: break;
4971   case 'X':    // Allows any operand
4972   case 'i':    // Simple Integer or Relocatable Constant
4973   case 'n':    // Simple Integer
4974   case 's': {  // Relocatable Constant
4975 
4976     ConstantSDNode *C;
4977     uint64_t Offset = 0;
4978 
4979     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4980     // etc., since getelementpointer is variadic. We can't use
4981     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4982     // while in this case the GA may be furthest from the root node which is
4983     // likely an ISD::ADD.
4984     while (true) {
4985       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4986         // gcc prints these as sign extended.  Sign extend value to 64 bits
4987         // now; without this it would get ZExt'd later in
4988         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4989         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4990         BooleanContent BCont = getBooleanContents(MVT::i64);
4991         ISD::NodeType ExtOpc =
4992             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4993         int64_t ExtVal =
4994             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4995         Ops.push_back(
4996             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4997         return;
4998       }
4999       if (ConstraintLetter != 'n') {
5000         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5001           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5002                                                    GA->getValueType(0),
5003                                                    Offset + GA->getOffset()));
5004           return;
5005         }
5006         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5007           Ops.push_back(DAG.getTargetBlockAddress(
5008               BA->getBlockAddress(), BA->getValueType(0),
5009               Offset + BA->getOffset(), BA->getTargetFlags()));
5010           return;
5011         }
5012         if (isa<BasicBlockSDNode>(Op)) {
5013           Ops.push_back(Op);
5014           return;
5015         }
5016       }
5017       const unsigned OpCode = Op.getOpcode();
5018       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5019         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5020           Op = Op.getOperand(1);
5021         // Subtraction is not commutative.
5022         else if (OpCode == ISD::ADD &&
5023                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5024           Op = Op.getOperand(0);
5025         else
5026           return;
5027         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5028         continue;
5029       }
5030       return;
5031     }
5032     break;
5033   }
5034   }
5035 }
5036 
5037 std::pair<unsigned, const TargetRegisterClass *>
5038 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5039                                              StringRef Constraint,
5040                                              MVT VT) const {
5041   if (Constraint.empty() || Constraint[0] != '{')
5042     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5043   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5044 
5045   // Remove the braces from around the name.
5046   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5047 
5048   std::pair<unsigned, const TargetRegisterClass *> R =
5049       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5050 
5051   // Figure out which register class contains this reg.
5052   for (const TargetRegisterClass *RC : RI->regclasses()) {
5053     // If none of the value types for this register class are valid, we
5054     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5055     if (!isLegalRC(*RI, *RC))
5056       continue;
5057 
5058     for (const MCPhysReg &PR : *RC) {
5059       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5060         std::pair<unsigned, const TargetRegisterClass *> S =
5061             std::make_pair(PR, RC);
5062 
5063         // If this register class has the requested value type, return it,
5064         // otherwise keep searching and return the first class found
5065         // if no other is found which explicitly has the requested type.
5066         if (RI->isTypeLegalForClass(*RC, VT))
5067           return S;
5068         if (!R.second)
5069           R = S;
5070       }
5071     }
5072   }
5073 
5074   return R;
5075 }
5076 
5077 //===----------------------------------------------------------------------===//
5078 // Constraint Selection.
5079 
5080 /// Return true of this is an input operand that is a matching constraint like
5081 /// "4".
5082 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5083   assert(!ConstraintCode.empty() && "No known constraint!");
5084   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5085 }
5086 
5087 /// If this is an input matching constraint, this method returns the output
5088 /// operand it matches.
5089 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5090   assert(!ConstraintCode.empty() && "No known constraint!");
5091   return atoi(ConstraintCode.c_str());
5092 }
5093 
5094 /// Split up the constraint string from the inline assembly value into the
5095 /// specific constraints and their prefixes, and also tie in the associated
5096 /// operand values.
5097 /// If this returns an empty vector, and if the constraint string itself
5098 /// isn't empty, there was an error parsing.
5099 TargetLowering::AsmOperandInfoVector
5100 TargetLowering::ParseConstraints(const DataLayout &DL,
5101                                  const TargetRegisterInfo *TRI,
5102                                  const CallBase &Call) const {
5103   /// Information about all of the constraints.
5104   AsmOperandInfoVector ConstraintOperands;
5105   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5106   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5107 
5108   // Do a prepass over the constraints, canonicalizing them, and building up the
5109   // ConstraintOperands list.
5110   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5111   unsigned ResNo = 0; // ResNo - The result number of the next output.
5112 
5113   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5114     ConstraintOperands.emplace_back(std::move(CI));
5115     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5116 
5117     // Update multiple alternative constraint count.
5118     if (OpInfo.multipleAlternatives.size() > maCount)
5119       maCount = OpInfo.multipleAlternatives.size();
5120 
5121     OpInfo.ConstraintVT = MVT::Other;
5122 
5123     // Compute the value type for each operand.
5124     switch (OpInfo.Type) {
5125     case InlineAsm::isOutput:
5126       // Indirect outputs just consume an argument.
5127       if (OpInfo.isIndirect) {
5128         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5129         break;
5130       }
5131 
5132       // The return value of the call is this value.  As such, there is no
5133       // corresponding argument.
5134       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5135       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5136         OpInfo.ConstraintVT =
5137             getSimpleValueType(DL, STy->getElementType(ResNo));
5138       } else {
5139         assert(ResNo == 0 && "Asm only has one result!");
5140         OpInfo.ConstraintVT =
5141             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5142       }
5143       ++ResNo;
5144       break;
5145     case InlineAsm::isInput:
5146       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5147       break;
5148     case InlineAsm::isClobber:
5149       // Nothing to do.
5150       break;
5151     }
5152 
5153     if (OpInfo.CallOperandVal) {
5154       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5155       if (OpInfo.isIndirect) {
5156         OpTy = Call.getParamElementType(ArgNo);
5157         assert(OpTy && "Indirect operand must have elementtype attribute");
5158       }
5159 
5160       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5161       if (StructType *STy = dyn_cast<StructType>(OpTy))
5162         if (STy->getNumElements() == 1)
5163           OpTy = STy->getElementType(0);
5164 
5165       // If OpTy is not a single value, it may be a struct/union that we
5166       // can tile with integers.
5167       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5168         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5169         switch (BitSize) {
5170         default: break;
5171         case 1:
5172         case 8:
5173         case 16:
5174         case 32:
5175         case 64:
5176         case 128:
5177           OpInfo.ConstraintVT =
5178               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5179           break;
5180         }
5181       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5182         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5183         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5184       } else {
5185         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5186       }
5187 
5188       ArgNo++;
5189     }
5190   }
5191 
5192   // If we have multiple alternative constraints, select the best alternative.
5193   if (!ConstraintOperands.empty()) {
5194     if (maCount) {
5195       unsigned bestMAIndex = 0;
5196       int bestWeight = -1;
5197       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5198       int weight = -1;
5199       unsigned maIndex;
5200       // Compute the sums of the weights for each alternative, keeping track
5201       // of the best (highest weight) one so far.
5202       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5203         int weightSum = 0;
5204         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5205              cIndex != eIndex; ++cIndex) {
5206           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5207           if (OpInfo.Type == InlineAsm::isClobber)
5208             continue;
5209 
5210           // If this is an output operand with a matching input operand,
5211           // look up the matching input. If their types mismatch, e.g. one
5212           // is an integer, the other is floating point, or their sizes are
5213           // different, flag it as an maCantMatch.
5214           if (OpInfo.hasMatchingInput()) {
5215             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5216             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5217               if ((OpInfo.ConstraintVT.isInteger() !=
5218                    Input.ConstraintVT.isInteger()) ||
5219                   (OpInfo.ConstraintVT.getSizeInBits() !=
5220                    Input.ConstraintVT.getSizeInBits())) {
5221                 weightSum = -1; // Can't match.
5222                 break;
5223               }
5224             }
5225           }
5226           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5227           if (weight == -1) {
5228             weightSum = -1;
5229             break;
5230           }
5231           weightSum += weight;
5232         }
5233         // Update best.
5234         if (weightSum > bestWeight) {
5235           bestWeight = weightSum;
5236           bestMAIndex = maIndex;
5237         }
5238       }
5239 
5240       // Now select chosen alternative in each constraint.
5241       for (AsmOperandInfo &cInfo : ConstraintOperands)
5242         if (cInfo.Type != InlineAsm::isClobber)
5243           cInfo.selectAlternative(bestMAIndex);
5244     }
5245   }
5246 
5247   // Check and hook up tied operands, choose constraint code to use.
5248   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5249        cIndex != eIndex; ++cIndex) {
5250     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5251 
5252     // If this is an output operand with a matching input operand, look up the
5253     // matching input. If their types mismatch, e.g. one is an integer, the
5254     // other is floating point, or their sizes are different, flag it as an
5255     // error.
5256     if (OpInfo.hasMatchingInput()) {
5257       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5258 
5259       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5260         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5261             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5262                                          OpInfo.ConstraintVT);
5263         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5264             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5265                                          Input.ConstraintVT);
5266         if ((OpInfo.ConstraintVT.isInteger() !=
5267              Input.ConstraintVT.isInteger()) ||
5268             (MatchRC.second != InputRC.second)) {
5269           report_fatal_error("Unsupported asm: input constraint"
5270                              " with a matching output constraint of"
5271                              " incompatible type!");
5272         }
5273       }
5274     }
5275   }
5276 
5277   return ConstraintOperands;
5278 }
5279 
5280 /// Return an integer indicating how general CT is.
5281 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5282   switch (CT) {
5283   case TargetLowering::C_Immediate:
5284   case TargetLowering::C_Other:
5285   case TargetLowering::C_Unknown:
5286     return 0;
5287   case TargetLowering::C_Register:
5288     return 1;
5289   case TargetLowering::C_RegisterClass:
5290     return 2;
5291   case TargetLowering::C_Memory:
5292   case TargetLowering::C_Address:
5293     return 3;
5294   }
5295   llvm_unreachable("Invalid constraint type");
5296 }
5297 
5298 /// Examine constraint type and operand type and determine a weight value.
5299 /// This object must already have been set up with the operand type
5300 /// and the current alternative constraint selected.
5301 TargetLowering::ConstraintWeight
5302   TargetLowering::getMultipleConstraintMatchWeight(
5303     AsmOperandInfo &info, int maIndex) const {
5304   InlineAsm::ConstraintCodeVector *rCodes;
5305   if (maIndex >= (int)info.multipleAlternatives.size())
5306     rCodes = &info.Codes;
5307   else
5308     rCodes = &info.multipleAlternatives[maIndex].Codes;
5309   ConstraintWeight BestWeight = CW_Invalid;
5310 
5311   // Loop over the options, keeping track of the most general one.
5312   for (const std::string &rCode : *rCodes) {
5313     ConstraintWeight weight =
5314         getSingleConstraintMatchWeight(info, rCode.c_str());
5315     if (weight > BestWeight)
5316       BestWeight = weight;
5317   }
5318 
5319   return BestWeight;
5320 }
5321 
5322 /// Examine constraint type and operand type and determine a weight value.
5323 /// This object must already have been set up with the operand type
5324 /// and the current alternative constraint selected.
5325 TargetLowering::ConstraintWeight
5326   TargetLowering::getSingleConstraintMatchWeight(
5327     AsmOperandInfo &info, const char *constraint) const {
5328   ConstraintWeight weight = CW_Invalid;
5329   Value *CallOperandVal = info.CallOperandVal;
5330     // If we don't have a value, we can't do a match,
5331     // but allow it at the lowest weight.
5332   if (!CallOperandVal)
5333     return CW_Default;
5334   // Look at the constraint type.
5335   switch (*constraint) {
5336     case 'i': // immediate integer.
5337     case 'n': // immediate integer with a known value.
5338       if (isa<ConstantInt>(CallOperandVal))
5339         weight = CW_Constant;
5340       break;
5341     case 's': // non-explicit intregal immediate.
5342       if (isa<GlobalValue>(CallOperandVal))
5343         weight = CW_Constant;
5344       break;
5345     case 'E': // immediate float if host format.
5346     case 'F': // immediate float.
5347       if (isa<ConstantFP>(CallOperandVal))
5348         weight = CW_Constant;
5349       break;
5350     case '<': // memory operand with autodecrement.
5351     case '>': // memory operand with autoincrement.
5352     case 'm': // memory operand.
5353     case 'o': // offsettable memory operand
5354     case 'V': // non-offsettable memory operand
5355       weight = CW_Memory;
5356       break;
5357     case 'r': // general register.
5358     case 'g': // general register, memory operand or immediate integer.
5359               // note: Clang converts "g" to "imr".
5360       if (CallOperandVal->getType()->isIntegerTy())
5361         weight = CW_Register;
5362       break;
5363     case 'X': // any operand.
5364   default:
5365     weight = CW_Default;
5366     break;
5367   }
5368   return weight;
5369 }
5370 
5371 /// If there are multiple different constraints that we could pick for this
5372 /// operand (e.g. "imr") try to pick the 'best' one.
5373 /// This is somewhat tricky: constraints fall into four classes:
5374 ///    Other         -> immediates and magic values
5375 ///    Register      -> one specific register
5376 ///    RegisterClass -> a group of regs
5377 ///    Memory        -> memory
5378 /// Ideally, we would pick the most specific constraint possible: if we have
5379 /// something that fits into a register, we would pick it.  The problem here
5380 /// is that if we have something that could either be in a register or in
5381 /// memory that use of the register could cause selection of *other*
5382 /// operands to fail: they might only succeed if we pick memory.  Because of
5383 /// this the heuristic we use is:
5384 ///
5385 ///  1) If there is an 'other' constraint, and if the operand is valid for
5386 ///     that constraint, use it.  This makes us take advantage of 'i'
5387 ///     constraints when available.
5388 ///  2) Otherwise, pick the most general constraint present.  This prefers
5389 ///     'm' over 'r', for example.
5390 ///
5391 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5392                              const TargetLowering &TLI,
5393                              SDValue Op, SelectionDAG *DAG) {
5394   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5395   unsigned BestIdx = 0;
5396   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5397   int BestGenerality = -1;
5398 
5399   // Loop over the options, keeping track of the most general one.
5400   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5401     TargetLowering::ConstraintType CType =
5402       TLI.getConstraintType(OpInfo.Codes[i]);
5403 
5404     // Indirect 'other' or 'immediate' constraints are not allowed.
5405     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5406                                CType == TargetLowering::C_Register ||
5407                                CType == TargetLowering::C_RegisterClass))
5408       continue;
5409 
5410     // If this is an 'other' or 'immediate' constraint, see if the operand is
5411     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5412     // the operand is an integer in the range [0..31] we want to use I (saving a
5413     // load of a register), otherwise we must use 'r'.
5414     if ((CType == TargetLowering::C_Other ||
5415          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5416       assert(OpInfo.Codes[i].size() == 1 &&
5417              "Unhandled multi-letter 'other' constraint");
5418       std::vector<SDValue> ResultOps;
5419       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5420                                        ResultOps, *DAG);
5421       if (!ResultOps.empty()) {
5422         BestType = CType;
5423         BestIdx = i;
5424         break;
5425       }
5426     }
5427 
5428     // Things with matching constraints can only be registers, per gcc
5429     // documentation.  This mainly affects "g" constraints.
5430     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5431       continue;
5432 
5433     // This constraint letter is more general than the previous one, use it.
5434     int Generality = getConstraintGenerality(CType);
5435     if (Generality > BestGenerality) {
5436       BestType = CType;
5437       BestIdx = i;
5438       BestGenerality = Generality;
5439     }
5440   }
5441 
5442   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5443   OpInfo.ConstraintType = BestType;
5444 }
5445 
5446 /// Determines the constraint code and constraint type to use for the specific
5447 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5448 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5449                                             SDValue Op,
5450                                             SelectionDAG *DAG) const {
5451   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5452 
5453   // Single-letter constraints ('r') are very common.
5454   if (OpInfo.Codes.size() == 1) {
5455     OpInfo.ConstraintCode = OpInfo.Codes[0];
5456     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5457   } else {
5458     ChooseConstraint(OpInfo, *this, Op, DAG);
5459   }
5460 
5461   // 'X' matches anything.
5462   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5463     // Constants are handled elsewhere.  For Functions, the type here is the
5464     // type of the result, which is not what we want to look at; leave them
5465     // alone.
5466     Value *v = OpInfo.CallOperandVal;
5467     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5468       return;
5469     }
5470 
5471     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5472       OpInfo.ConstraintCode = "i";
5473       return;
5474     }
5475 
5476     // Otherwise, try to resolve it to something we know about by looking at
5477     // the actual operand type.
5478     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5479       OpInfo.ConstraintCode = Repl;
5480       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5481     }
5482   }
5483 }
5484 
5485 /// Given an exact SDIV by a constant, create a multiplication
5486 /// with the multiplicative inverse of the constant.
5487 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5488                               const SDLoc &dl, SelectionDAG &DAG,
5489                               SmallVectorImpl<SDNode *> &Created) {
5490   SDValue Op0 = N->getOperand(0);
5491   SDValue Op1 = N->getOperand(1);
5492   EVT VT = N->getValueType(0);
5493   EVT SVT = VT.getScalarType();
5494   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5495   EVT ShSVT = ShVT.getScalarType();
5496 
5497   bool UseSRA = false;
5498   SmallVector<SDValue, 16> Shifts, Factors;
5499 
5500   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5501     if (C->isZero())
5502       return false;
5503     APInt Divisor = C->getAPIntValue();
5504     unsigned Shift = Divisor.countTrailingZeros();
5505     if (Shift) {
5506       Divisor.ashrInPlace(Shift);
5507       UseSRA = true;
5508     }
5509     // Calculate the multiplicative inverse, using Newton's method.
5510     APInt t;
5511     APInt Factor = Divisor;
5512     while ((t = Divisor * Factor) != 1)
5513       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5514     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5515     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5516     return true;
5517   };
5518 
5519   // Collect all magic values from the build vector.
5520   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5521     return SDValue();
5522 
5523   SDValue Shift, Factor;
5524   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5525     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5526     Factor = DAG.getBuildVector(VT, dl, Factors);
5527   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5528     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5529            "Expected matchUnaryPredicate to return one element for scalable "
5530            "vectors");
5531     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5532     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5533   } else {
5534     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5535     Shift = Shifts[0];
5536     Factor = Factors[0];
5537   }
5538 
5539   SDValue Res = Op0;
5540 
5541   // Shift the value upfront if it is even, so the LSB is one.
5542   if (UseSRA) {
5543     // TODO: For UDIV use SRL instead of SRA.
5544     SDNodeFlags Flags;
5545     Flags.setExact(true);
5546     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5547     Created.push_back(Res.getNode());
5548   }
5549 
5550   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5551 }
5552 
5553 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5554                               SelectionDAG &DAG,
5555                               SmallVectorImpl<SDNode *> &Created) const {
5556   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5557   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5558   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5559     return SDValue(N, 0); // Lower SDIV as SDIV
5560   return SDValue();
5561 }
5562 
5563 SDValue
5564 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5565                               SelectionDAG &DAG,
5566                               SmallVectorImpl<SDNode *> &Created) const {
5567   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5568   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5569   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5570     return SDValue(N, 0); // Lower SREM as SREM
5571   return SDValue();
5572 }
5573 
5574 /// Given an ISD::SDIV node expressing a divide by constant,
5575 /// return a DAG expression to select that will generate the same value by
5576 /// multiplying by a magic number.
5577 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5578 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5579                                   bool IsAfterLegalization,
5580                                   SmallVectorImpl<SDNode *> &Created) const {
5581   SDLoc dl(N);
5582   EVT VT = N->getValueType(0);
5583   EVT SVT = VT.getScalarType();
5584   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5585   EVT ShSVT = ShVT.getScalarType();
5586   unsigned EltBits = VT.getScalarSizeInBits();
5587   EVT MulVT;
5588 
5589   // Check to see if we can do this.
5590   // FIXME: We should be more aggressive here.
5591   if (!isTypeLegal(VT)) {
5592     // Limit this to simple scalars for now.
5593     if (VT.isVector() || !VT.isSimple())
5594       return SDValue();
5595 
5596     // If this type will be promoted to a large enough type with a legal
5597     // multiply operation, we can go ahead and do this transform.
5598     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5599       return SDValue();
5600 
5601     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5602     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5603         !isOperationLegal(ISD::MUL, MulVT))
5604       return SDValue();
5605   }
5606 
5607   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5608   if (N->getFlags().hasExact())
5609     return BuildExactSDIV(*this, N, dl, DAG, Created);
5610 
5611   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5612 
5613   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5614     if (C->isZero())
5615       return false;
5616 
5617     const APInt &Divisor = C->getAPIntValue();
5618     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5619     int NumeratorFactor = 0;
5620     int ShiftMask = -1;
5621 
5622     if (Divisor.isOne() || Divisor.isAllOnes()) {
5623       // If d is +1/-1, we just multiply the numerator by +1/-1.
5624       NumeratorFactor = Divisor.getSExtValue();
5625       magics.Magic = 0;
5626       magics.ShiftAmount = 0;
5627       ShiftMask = 0;
5628     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5629       // If d > 0 and m < 0, add the numerator.
5630       NumeratorFactor = 1;
5631     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5632       // If d < 0 and m > 0, subtract the numerator.
5633       NumeratorFactor = -1;
5634     }
5635 
5636     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5637     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5638     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5639     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5640     return true;
5641   };
5642 
5643   SDValue N0 = N->getOperand(0);
5644   SDValue N1 = N->getOperand(1);
5645 
5646   // Collect the shifts / magic values from each element.
5647   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5648     return SDValue();
5649 
5650   SDValue MagicFactor, Factor, Shift, ShiftMask;
5651   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5652     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5653     Factor = DAG.getBuildVector(VT, dl, Factors);
5654     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5655     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5656   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5657     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5658            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5659            "Expected matchUnaryPredicate to return one element for scalable "
5660            "vectors");
5661     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5662     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5663     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5664     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5665   } else {
5666     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5667     MagicFactor = MagicFactors[0];
5668     Factor = Factors[0];
5669     Shift = Shifts[0];
5670     ShiftMask = ShiftMasks[0];
5671   }
5672 
5673   // Multiply the numerator (operand 0) by the magic value.
5674   // FIXME: We should support doing a MUL in a wider type.
5675   auto GetMULHS = [&](SDValue X, SDValue Y) {
5676     // If the type isn't legal, use a wider mul of the the type calculated
5677     // earlier.
5678     if (!isTypeLegal(VT)) {
5679       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5680       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5681       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5682       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5683                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5684       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5685     }
5686 
5687     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5688       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5689     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5690       SDValue LoHi =
5691           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5692       return SDValue(LoHi.getNode(), 1);
5693     }
5694     return SDValue();
5695   };
5696 
5697   SDValue Q = GetMULHS(N0, MagicFactor);
5698   if (!Q)
5699     return SDValue();
5700 
5701   Created.push_back(Q.getNode());
5702 
5703   // (Optionally) Add/subtract the numerator using Factor.
5704   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5705   Created.push_back(Factor.getNode());
5706   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5707   Created.push_back(Q.getNode());
5708 
5709   // Shift right algebraic by shift value.
5710   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5711   Created.push_back(Q.getNode());
5712 
5713   // Extract the sign bit, mask it and add it to the quotient.
5714   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5715   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5716   Created.push_back(T.getNode());
5717   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5718   Created.push_back(T.getNode());
5719   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5720 }
5721 
5722 /// Given an ISD::UDIV node expressing a divide by constant,
5723 /// return a DAG expression to select that will generate the same value by
5724 /// multiplying by a magic number.
5725 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5726 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5727                                   bool IsAfterLegalization,
5728                                   SmallVectorImpl<SDNode *> &Created) const {
5729   SDLoc dl(N);
5730   EVT VT = N->getValueType(0);
5731   EVT SVT = VT.getScalarType();
5732   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5733   EVT ShSVT = ShVT.getScalarType();
5734   unsigned EltBits = VT.getScalarSizeInBits();
5735   EVT MulVT;
5736 
5737   // Check to see if we can do this.
5738   // FIXME: We should be more aggressive here.
5739   if (!isTypeLegal(VT)) {
5740     // Limit this to simple scalars for now.
5741     if (VT.isVector() || !VT.isSimple())
5742       return SDValue();
5743 
5744     // If this type will be promoted to a large enough type with a legal
5745     // multiply operation, we can go ahead and do this transform.
5746     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5747       return SDValue();
5748 
5749     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5750     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5751         !isOperationLegal(ISD::MUL, MulVT))
5752       return SDValue();
5753   }
5754 
5755   bool UseNPQ = false;
5756   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5757 
5758   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5759     if (C->isZero())
5760       return false;
5761     // FIXME: We should use a narrower constant when the upper
5762     // bits are known to be zero.
5763     const APInt& Divisor = C->getAPIntValue();
5764     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5765     unsigned PreShift = 0, PostShift = 0;
5766 
5767     // If the divisor is even, we can avoid using the expensive fixup by
5768     // shifting the divided value upfront.
5769     if (magics.IsAdd != 0 && !Divisor[0]) {
5770       PreShift = Divisor.countTrailingZeros();
5771       // Get magic number for the shifted divisor.
5772       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5773       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5774     }
5775 
5776     APInt Magic = magics.Magic;
5777 
5778     unsigned SelNPQ;
5779     if (magics.IsAdd == 0 || Divisor.isOne()) {
5780       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5781              "We shouldn't generate an undefined shift!");
5782       PostShift = magics.ShiftAmount;
5783       SelNPQ = false;
5784     } else {
5785       PostShift = magics.ShiftAmount - 1;
5786       SelNPQ = true;
5787     }
5788 
5789     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5790     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5791     NPQFactors.push_back(
5792         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5793                                : APInt::getZero(EltBits),
5794                         dl, SVT));
5795     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5796     UseNPQ |= SelNPQ;
5797     return true;
5798   };
5799 
5800   SDValue N0 = N->getOperand(0);
5801   SDValue N1 = N->getOperand(1);
5802 
5803   // Collect the shifts/magic values from each element.
5804   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5805     return SDValue();
5806 
5807   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5808   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5809     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5810     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5811     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5812     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5813   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5814     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5815            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5816            "Expected matchUnaryPredicate to return one for scalable vectors");
5817     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5818     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5819     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5820     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5821   } else {
5822     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5823     PreShift = PreShifts[0];
5824     MagicFactor = MagicFactors[0];
5825     PostShift = PostShifts[0];
5826   }
5827 
5828   SDValue Q = N0;
5829   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5830   Created.push_back(Q.getNode());
5831 
5832   // FIXME: We should support doing a MUL in a wider type.
5833   auto GetMULHU = [&](SDValue X, SDValue Y) {
5834     // If the type isn't legal, use a wider mul of the the type calculated
5835     // earlier.
5836     if (!isTypeLegal(VT)) {
5837       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5838       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5839       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5840       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5841                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5842       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5843     }
5844 
5845     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5846       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5847     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5848       SDValue LoHi =
5849           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5850       return SDValue(LoHi.getNode(), 1);
5851     }
5852     return SDValue(); // No mulhu or equivalent
5853   };
5854 
5855   // Multiply the numerator (operand 0) by the magic value.
5856   Q = GetMULHU(Q, MagicFactor);
5857   if (!Q)
5858     return SDValue();
5859 
5860   Created.push_back(Q.getNode());
5861 
5862   if (UseNPQ) {
5863     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5864     Created.push_back(NPQ.getNode());
5865 
5866     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5867     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5868     if (VT.isVector())
5869       NPQ = GetMULHU(NPQ, NPQFactor);
5870     else
5871       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5872 
5873     Created.push_back(NPQ.getNode());
5874 
5875     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5876     Created.push_back(Q.getNode());
5877   }
5878 
5879   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5880   Created.push_back(Q.getNode());
5881 
5882   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5883 
5884   SDValue One = DAG.getConstant(1, dl, VT);
5885   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5886   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5887 }
5888 
5889 /// If all values in Values that *don't* match the predicate are same 'splat'
5890 /// value, then replace all values with that splat value.
5891 /// Else, if AlternativeReplacement was provided, then replace all values that
5892 /// do match predicate with AlternativeReplacement value.
5893 static void
5894 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5895                           std::function<bool(SDValue)> Predicate,
5896                           SDValue AlternativeReplacement = SDValue()) {
5897   SDValue Replacement;
5898   // Is there a value for which the Predicate does *NOT* match? What is it?
5899   auto SplatValue = llvm::find_if_not(Values, Predicate);
5900   if (SplatValue != Values.end()) {
5901     // Does Values consist only of SplatValue's and values matching Predicate?
5902     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5903           return Value == *SplatValue || Predicate(Value);
5904         })) // Then we shall replace values matching predicate with SplatValue.
5905       Replacement = *SplatValue;
5906   }
5907   if (!Replacement) {
5908     // Oops, we did not find the "baseline" splat value.
5909     if (!AlternativeReplacement)
5910       return; // Nothing to do.
5911     // Let's replace with provided value then.
5912     Replacement = AlternativeReplacement;
5913   }
5914   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5915 }
5916 
5917 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5918 /// where the divisor is constant and the comparison target is zero,
5919 /// return a DAG expression that will generate the same comparison result
5920 /// using only multiplications, additions and shifts/rotations.
5921 /// Ref: "Hacker's Delight" 10-17.
5922 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5923                                         SDValue CompTargetNode,
5924                                         ISD::CondCode Cond,
5925                                         DAGCombinerInfo &DCI,
5926                                         const SDLoc &DL) const {
5927   SmallVector<SDNode *, 5> Built;
5928   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5929                                          DCI, DL, Built)) {
5930     for (SDNode *N : Built)
5931       DCI.AddToWorklist(N);
5932     return Folded;
5933   }
5934 
5935   return SDValue();
5936 }
5937 
5938 SDValue
5939 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5940                                   SDValue CompTargetNode, ISD::CondCode Cond,
5941                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5942                                   SmallVectorImpl<SDNode *> &Created) const {
5943   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5944   // - D must be constant, with D = D0 * 2^K where D0 is odd
5945   // - P is the multiplicative inverse of D0 modulo 2^W
5946   // - Q = floor(((2^W) - 1) / D)
5947   // where W is the width of the common type of N and D.
5948   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5949          "Only applicable for (in)equality comparisons.");
5950 
5951   SelectionDAG &DAG = DCI.DAG;
5952 
5953   EVT VT = REMNode.getValueType();
5954   EVT SVT = VT.getScalarType();
5955   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5956   EVT ShSVT = ShVT.getScalarType();
5957 
5958   // If MUL is unavailable, we cannot proceed in any case.
5959   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5960     return SDValue();
5961 
5962   bool ComparingWithAllZeros = true;
5963   bool AllComparisonsWithNonZerosAreTautological = true;
5964   bool HadTautologicalLanes = false;
5965   bool AllLanesAreTautological = true;
5966   bool HadEvenDivisor = false;
5967   bool AllDivisorsArePowerOfTwo = true;
5968   bool HadTautologicalInvertedLanes = false;
5969   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5970 
5971   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5972     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5973     if (CDiv->isZero())
5974       return false;
5975 
5976     const APInt &D = CDiv->getAPIntValue();
5977     const APInt &Cmp = CCmp->getAPIntValue();
5978 
5979     ComparingWithAllZeros &= Cmp.isZero();
5980 
5981     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5982     // if C2 is not less than C1, the comparison is always false.
5983     // But we will only be able to produce the comparison that will give the
5984     // opposive tautological answer. So this lane would need to be fixed up.
5985     bool TautologicalInvertedLane = D.ule(Cmp);
5986     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5987 
5988     // If all lanes are tautological (either all divisors are ones, or divisor
5989     // is not greater than the constant we are comparing with),
5990     // we will prefer to avoid the fold.
5991     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5992     HadTautologicalLanes |= TautologicalLane;
5993     AllLanesAreTautological &= TautologicalLane;
5994 
5995     // If we are comparing with non-zero, we need'll need  to subtract said
5996     // comparison value from the LHS. But there is no point in doing that if
5997     // every lane where we are comparing with non-zero is tautological..
5998     if (!Cmp.isZero())
5999       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6000 
6001     // Decompose D into D0 * 2^K
6002     unsigned K = D.countTrailingZeros();
6003     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6004     APInt D0 = D.lshr(K);
6005 
6006     // D is even if it has trailing zeros.
6007     HadEvenDivisor |= (K != 0);
6008     // D is a power-of-two if D0 is one.
6009     // If all divisors are power-of-two, we will prefer to avoid the fold.
6010     AllDivisorsArePowerOfTwo &= D0.isOne();
6011 
6012     // P = inv(D0, 2^W)
6013     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6014     unsigned W = D.getBitWidth();
6015     APInt P = D0.zext(W + 1)
6016                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6017                   .trunc(W);
6018     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6019     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6020 
6021     // Q = floor((2^W - 1) u/ D)
6022     // R = ((2^W - 1) u% D)
6023     APInt Q, R;
6024     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6025 
6026     // If we are comparing with zero, then that comparison constant is okay,
6027     // else it may need to be one less than that.
6028     if (Cmp.ugt(R))
6029       Q -= 1;
6030 
6031     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6032            "We are expecting that K is always less than all-ones for ShSVT");
6033 
6034     // If the lane is tautological the result can be constant-folded.
6035     if (TautologicalLane) {
6036       // Set P and K amount to a bogus values so we can try to splat them.
6037       P = 0;
6038       K = -1;
6039       // And ensure that comparison constant is tautological,
6040       // it will always compare true/false.
6041       Q = -1;
6042     }
6043 
6044     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6045     KAmts.push_back(
6046         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6047     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6048     return true;
6049   };
6050 
6051   SDValue N = REMNode.getOperand(0);
6052   SDValue D = REMNode.getOperand(1);
6053 
6054   // Collect the values from each element.
6055   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6056     return SDValue();
6057 
6058   // If all lanes are tautological, the result can be constant-folded.
6059   if (AllLanesAreTautological)
6060     return SDValue();
6061 
6062   // If this is a urem by a powers-of-two, avoid the fold since it can be
6063   // best implemented as a bit test.
6064   if (AllDivisorsArePowerOfTwo)
6065     return SDValue();
6066 
6067   SDValue PVal, KVal, QVal;
6068   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6069     if (HadTautologicalLanes) {
6070       // Try to turn PAmts into a splat, since we don't care about the values
6071       // that are currently '0'. If we can't, just keep '0'`s.
6072       turnVectorIntoSplatVector(PAmts, isNullConstant);
6073       // Try to turn KAmts into a splat, since we don't care about the values
6074       // that are currently '-1'. If we can't, change them to '0'`s.
6075       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6076                                 DAG.getConstant(0, DL, ShSVT));
6077     }
6078 
6079     PVal = DAG.getBuildVector(VT, DL, PAmts);
6080     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6081     QVal = DAG.getBuildVector(VT, DL, QAmts);
6082   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6083     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6084            "Expected matchBinaryPredicate to return one element for "
6085            "SPLAT_VECTORs");
6086     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6087     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6088     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6089   } else {
6090     PVal = PAmts[0];
6091     KVal = KAmts[0];
6092     QVal = QAmts[0];
6093   }
6094 
6095   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6096     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6097       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6098     assert(CompTargetNode.getValueType() == N.getValueType() &&
6099            "Expecting that the types on LHS and RHS of comparisons match.");
6100     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6101   }
6102 
6103   // (mul N, P)
6104   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6105   Created.push_back(Op0.getNode());
6106 
6107   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6108   // divisors as a performance improvement, since rotating by 0 is a no-op.
6109   if (HadEvenDivisor) {
6110     // We need ROTR to do this.
6111     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6112       return SDValue();
6113     // UREM: (rotr (mul N, P), K)
6114     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6115     Created.push_back(Op0.getNode());
6116   }
6117 
6118   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6119   SDValue NewCC =
6120       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6121                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6122   if (!HadTautologicalInvertedLanes)
6123     return NewCC;
6124 
6125   // If any lanes previously compared always-false, the NewCC will give
6126   // always-true result for them, so we need to fixup those lanes.
6127   // Or the other way around for inequality predicate.
6128   assert(VT.isVector() && "Can/should only get here for vectors.");
6129   Created.push_back(NewCC.getNode());
6130 
6131   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6132   // if C2 is not less than C1, the comparison is always false.
6133   // But we have produced the comparison that will give the
6134   // opposive tautological answer. So these lanes would need to be fixed up.
6135   SDValue TautologicalInvertedChannels =
6136       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6137   Created.push_back(TautologicalInvertedChannels.getNode());
6138 
6139   // NOTE: we avoid letting illegal types through even if we're before legalize
6140   // ops – legalization has a hard time producing good code for this.
6141   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6142     // If we have a vector select, let's replace the comparison results in the
6143     // affected lanes with the correct tautological result.
6144     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6145                                               DL, SETCCVT, SETCCVT);
6146     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6147                        Replacement, NewCC);
6148   }
6149 
6150   // Else, we can just invert the comparison result in the appropriate lanes.
6151   //
6152   // NOTE: see the note above VSELECT above.
6153   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6154     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6155                        TautologicalInvertedChannels);
6156 
6157   return SDValue(); // Don't know how to lower.
6158 }
6159 
6160 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6161 /// where the divisor is constant and the comparison target is zero,
6162 /// return a DAG expression that will generate the same comparison result
6163 /// using only multiplications, additions and shifts/rotations.
6164 /// Ref: "Hacker's Delight" 10-17.
6165 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6166                                         SDValue CompTargetNode,
6167                                         ISD::CondCode Cond,
6168                                         DAGCombinerInfo &DCI,
6169                                         const SDLoc &DL) const {
6170   SmallVector<SDNode *, 7> Built;
6171   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6172                                          DCI, DL, Built)) {
6173     assert(Built.size() <= 7 && "Max size prediction failed.");
6174     for (SDNode *N : Built)
6175       DCI.AddToWorklist(N);
6176     return Folded;
6177   }
6178 
6179   return SDValue();
6180 }
6181 
6182 SDValue
6183 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6184                                   SDValue CompTargetNode, ISD::CondCode Cond,
6185                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6186                                   SmallVectorImpl<SDNode *> &Created) const {
6187   // Fold:
6188   //   (seteq/ne (srem N, D), 0)
6189   // To:
6190   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6191   //
6192   // - D must be constant, with D = D0 * 2^K where D0 is odd
6193   // - P is the multiplicative inverse of D0 modulo 2^W
6194   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6195   // - Q = floor((2 * A) / (2^K))
6196   // where W is the width of the common type of N and D.
6197   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6198          "Only applicable for (in)equality comparisons.");
6199 
6200   SelectionDAG &DAG = DCI.DAG;
6201 
6202   EVT VT = REMNode.getValueType();
6203   EVT SVT = VT.getScalarType();
6204   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6205   EVT ShSVT = ShVT.getScalarType();
6206 
6207   // If we are after ops legalization, and MUL is unavailable, we can not
6208   // proceed.
6209   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6210     return SDValue();
6211 
6212   // TODO: Could support comparing with non-zero too.
6213   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6214   if (!CompTarget || !CompTarget->isZero())
6215     return SDValue();
6216 
6217   bool HadIntMinDivisor = false;
6218   bool HadOneDivisor = false;
6219   bool AllDivisorsAreOnes = true;
6220   bool HadEvenDivisor = false;
6221   bool NeedToApplyOffset = false;
6222   bool AllDivisorsArePowerOfTwo = true;
6223   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6224 
6225   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6226     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6227     if (C->isZero())
6228       return false;
6229 
6230     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6231 
6232     // WARNING: this fold is only valid for positive divisors!
6233     APInt D = C->getAPIntValue();
6234     if (D.isNegative())
6235       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6236 
6237     HadIntMinDivisor |= D.isMinSignedValue();
6238 
6239     // If all divisors are ones, we will prefer to avoid the fold.
6240     HadOneDivisor |= D.isOne();
6241     AllDivisorsAreOnes &= D.isOne();
6242 
6243     // Decompose D into D0 * 2^K
6244     unsigned K = D.countTrailingZeros();
6245     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6246     APInt D0 = D.lshr(K);
6247 
6248     if (!D.isMinSignedValue()) {
6249       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6250       // we don't care about this lane in this fold, we'll special-handle it.
6251       HadEvenDivisor |= (K != 0);
6252     }
6253 
6254     // D is a power-of-two if D0 is one. This includes INT_MIN.
6255     // If all divisors are power-of-two, we will prefer to avoid the fold.
6256     AllDivisorsArePowerOfTwo &= D0.isOne();
6257 
6258     // P = inv(D0, 2^W)
6259     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6260     unsigned W = D.getBitWidth();
6261     APInt P = D0.zext(W + 1)
6262                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6263                   .trunc(W);
6264     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6265     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6266 
6267     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6268     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6269     A.clearLowBits(K);
6270 
6271     if (!D.isMinSignedValue()) {
6272       // If divisor INT_MIN, then we don't care about this lane in this fold,
6273       // we'll special-handle it.
6274       NeedToApplyOffset |= A != 0;
6275     }
6276 
6277     // Q = floor((2 * A) / (2^K))
6278     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6279 
6280     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6281            "We are expecting that A is always less than all-ones for SVT");
6282     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6283            "We are expecting that K is always less than all-ones for ShSVT");
6284 
6285     // If the divisor is 1 the result can be constant-folded. Likewise, we
6286     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6287     if (D.isOne()) {
6288       // Set P, A and K to a bogus values so we can try to splat them.
6289       P = 0;
6290       A = -1;
6291       K = -1;
6292 
6293       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6294       Q = -1;
6295     }
6296 
6297     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6298     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6299     KAmts.push_back(
6300         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6301     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6302     return true;
6303   };
6304 
6305   SDValue N = REMNode.getOperand(0);
6306   SDValue D = REMNode.getOperand(1);
6307 
6308   // Collect the values from each element.
6309   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6310     return SDValue();
6311 
6312   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6313   if (AllDivisorsAreOnes)
6314     return SDValue();
6315 
6316   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6317   // since it can be best implemented as a bit test.
6318   if (AllDivisorsArePowerOfTwo)
6319     return SDValue();
6320 
6321   SDValue PVal, AVal, KVal, QVal;
6322   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6323     if (HadOneDivisor) {
6324       // Try to turn PAmts into a splat, since we don't care about the values
6325       // that are currently '0'. If we can't, just keep '0'`s.
6326       turnVectorIntoSplatVector(PAmts, isNullConstant);
6327       // Try to turn AAmts into a splat, since we don't care about the
6328       // values that are currently '-1'. If we can't, change them to '0'`s.
6329       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6330                                 DAG.getConstant(0, DL, SVT));
6331       // Try to turn KAmts into a splat, since we don't care about the values
6332       // that are currently '-1'. If we can't, change them to '0'`s.
6333       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6334                                 DAG.getConstant(0, DL, ShSVT));
6335     }
6336 
6337     PVal = DAG.getBuildVector(VT, DL, PAmts);
6338     AVal = DAG.getBuildVector(VT, DL, AAmts);
6339     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6340     QVal = DAG.getBuildVector(VT, DL, QAmts);
6341   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6342     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6343            QAmts.size() == 1 &&
6344            "Expected matchUnaryPredicate to return one element for scalable "
6345            "vectors");
6346     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6347     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6348     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6349     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6350   } else {
6351     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6352     PVal = PAmts[0];
6353     AVal = AAmts[0];
6354     KVal = KAmts[0];
6355     QVal = QAmts[0];
6356   }
6357 
6358   // (mul N, P)
6359   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6360   Created.push_back(Op0.getNode());
6361 
6362   if (NeedToApplyOffset) {
6363     // We need ADD to do this.
6364     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6365       return SDValue();
6366 
6367     // (add (mul N, P), A)
6368     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6369     Created.push_back(Op0.getNode());
6370   }
6371 
6372   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6373   // divisors as a performance improvement, since rotating by 0 is a no-op.
6374   if (HadEvenDivisor) {
6375     // We need ROTR to do this.
6376     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6377       return SDValue();
6378     // SREM: (rotr (add (mul N, P), A), K)
6379     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6380     Created.push_back(Op0.getNode());
6381   }
6382 
6383   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6384   SDValue Fold =
6385       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6386                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6387 
6388   // If we didn't have lanes with INT_MIN divisor, then we're done.
6389   if (!HadIntMinDivisor)
6390     return Fold;
6391 
6392   // That fold is only valid for positive divisors. Which effectively means,
6393   // it is invalid for INT_MIN divisors. So if we have such a lane,
6394   // we must fix-up results for said lanes.
6395   assert(VT.isVector() && "Can/should only get here for vectors.");
6396 
6397   // NOTE: we avoid letting illegal types through even if we're before legalize
6398   // ops – legalization has a hard time producing good code for the code that
6399   // follows.
6400   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6401       !isOperationLegalOrCustom(ISD::AND, VT) ||
6402       !isOperationLegalOrCustom(Cond, VT) ||
6403       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6404     return SDValue();
6405 
6406   Created.push_back(Fold.getNode());
6407 
6408   SDValue IntMin = DAG.getConstant(
6409       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6410   SDValue IntMax = DAG.getConstant(
6411       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6412   SDValue Zero =
6413       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6414 
6415   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6416   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6417   Created.push_back(DivisorIsIntMin.getNode());
6418 
6419   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6420   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6421   Created.push_back(Masked.getNode());
6422   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6423   Created.push_back(MaskedIsZero.getNode());
6424 
6425   // To produce final result we need to blend 2 vectors: 'SetCC' and
6426   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6427   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6428   // constant-folded, select can get lowered to a shuffle with constant mask.
6429   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6430                                 MaskedIsZero, Fold);
6431 
6432   return Blended;
6433 }
6434 
6435 bool TargetLowering::
6436 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6437   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6438     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6439                                 "be a constant integer");
6440     return true;
6441   }
6442 
6443   return false;
6444 }
6445 
6446 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6447                                          const DenormalMode &Mode) const {
6448   SDLoc DL(Op);
6449   EVT VT = Op.getValueType();
6450   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6451   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6452   // Testing it with denormal inputs to avoid wrong estimate.
6453   if (Mode.Input == DenormalMode::IEEE) {
6454     // This is specifically a check for the handling of denormal inputs,
6455     // not the result.
6456 
6457     // Test = fabs(X) < SmallestNormal
6458     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6459     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6460     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6461     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6462     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6463   }
6464   // Test = X == 0.0
6465   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6466 }
6467 
6468 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6469                                              bool LegalOps, bool OptForSize,
6470                                              NegatibleCost &Cost,
6471                                              unsigned Depth) const {
6472   // fneg is removable even if it has multiple uses.
6473   if (Op.getOpcode() == ISD::FNEG) {
6474     Cost = NegatibleCost::Cheaper;
6475     return Op.getOperand(0);
6476   }
6477 
6478   // Don't recurse exponentially.
6479   if (Depth > SelectionDAG::MaxRecursionDepth)
6480     return SDValue();
6481 
6482   // Pre-increment recursion depth for use in recursive calls.
6483   ++Depth;
6484   const SDNodeFlags Flags = Op->getFlags();
6485   const TargetOptions &Options = DAG.getTarget().Options;
6486   EVT VT = Op.getValueType();
6487   unsigned Opcode = Op.getOpcode();
6488 
6489   // Don't allow anything with multiple uses unless we know it is free.
6490   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6491     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6492                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6493     if (!IsFreeExtend)
6494       return SDValue();
6495   }
6496 
6497   auto RemoveDeadNode = [&](SDValue N) {
6498     if (N && N.getNode()->use_empty())
6499       DAG.RemoveDeadNode(N.getNode());
6500   };
6501 
6502   SDLoc DL(Op);
6503 
6504   // Because getNegatedExpression can delete nodes we need a handle to keep
6505   // temporary nodes alive in case the recursion manages to create an identical
6506   // node.
6507   std::list<HandleSDNode> Handles;
6508 
6509   switch (Opcode) {
6510   case ISD::ConstantFP: {
6511     // Don't invert constant FP values after legalization unless the target says
6512     // the negated constant is legal.
6513     bool IsOpLegal =
6514         isOperationLegal(ISD::ConstantFP, VT) ||
6515         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6516                      OptForSize);
6517 
6518     if (LegalOps && !IsOpLegal)
6519       break;
6520 
6521     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6522     V.changeSign();
6523     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6524 
6525     // If we already have the use of the negated floating constant, it is free
6526     // to negate it even it has multiple uses.
6527     if (!Op.hasOneUse() && CFP.use_empty())
6528       break;
6529     Cost = NegatibleCost::Neutral;
6530     return CFP;
6531   }
6532   case ISD::BUILD_VECTOR: {
6533     // Only permit BUILD_VECTOR of constants.
6534     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6535           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6536         }))
6537       break;
6538 
6539     bool IsOpLegal =
6540         (isOperationLegal(ISD::ConstantFP, VT) &&
6541          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6542         llvm::all_of(Op->op_values(), [&](SDValue N) {
6543           return N.isUndef() ||
6544                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6545                               OptForSize);
6546         });
6547 
6548     if (LegalOps && !IsOpLegal)
6549       break;
6550 
6551     SmallVector<SDValue, 4> Ops;
6552     for (SDValue C : Op->op_values()) {
6553       if (C.isUndef()) {
6554         Ops.push_back(C);
6555         continue;
6556       }
6557       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6558       V.changeSign();
6559       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6560     }
6561     Cost = NegatibleCost::Neutral;
6562     return DAG.getBuildVector(VT, DL, Ops);
6563   }
6564   case ISD::FADD: {
6565     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6566       break;
6567 
6568     // After operation legalization, it might not be legal to create new FSUBs.
6569     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6570       break;
6571     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6572 
6573     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6574     NegatibleCost CostX = NegatibleCost::Expensive;
6575     SDValue NegX =
6576         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6577     // Prevent this node from being deleted by the next call.
6578     if (NegX)
6579       Handles.emplace_back(NegX);
6580 
6581     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6582     NegatibleCost CostY = NegatibleCost::Expensive;
6583     SDValue NegY =
6584         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6585 
6586     // We're done with the handles.
6587     Handles.clear();
6588 
6589     // Negate the X if its cost is less or equal than Y.
6590     if (NegX && (CostX <= CostY)) {
6591       Cost = CostX;
6592       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6593       if (NegY != N)
6594         RemoveDeadNode(NegY);
6595       return N;
6596     }
6597 
6598     // Negate the Y if it is not expensive.
6599     if (NegY) {
6600       Cost = CostY;
6601       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6602       if (NegX != N)
6603         RemoveDeadNode(NegX);
6604       return N;
6605     }
6606     break;
6607   }
6608   case ISD::FSUB: {
6609     // We can't turn -(A-B) into B-A when we honor signed zeros.
6610     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6611       break;
6612 
6613     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6614     // fold (fneg (fsub 0, Y)) -> Y
6615     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6616       if (C->isZero()) {
6617         Cost = NegatibleCost::Cheaper;
6618         return Y;
6619       }
6620 
6621     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6622     Cost = NegatibleCost::Neutral;
6623     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6624   }
6625   case ISD::FMUL:
6626   case ISD::FDIV: {
6627     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6628 
6629     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6630     NegatibleCost CostX = NegatibleCost::Expensive;
6631     SDValue NegX =
6632         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6633     // Prevent this node from being deleted by the next call.
6634     if (NegX)
6635       Handles.emplace_back(NegX);
6636 
6637     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6638     NegatibleCost CostY = NegatibleCost::Expensive;
6639     SDValue NegY =
6640         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6641 
6642     // We're done with the handles.
6643     Handles.clear();
6644 
6645     // Negate the X if its cost is less or equal than Y.
6646     if (NegX && (CostX <= CostY)) {
6647       Cost = CostX;
6648       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6649       if (NegY != N)
6650         RemoveDeadNode(NegY);
6651       return N;
6652     }
6653 
6654     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6655     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6656       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6657         break;
6658 
6659     // Negate the Y if it is not expensive.
6660     if (NegY) {
6661       Cost = CostY;
6662       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6663       if (NegX != N)
6664         RemoveDeadNode(NegX);
6665       return N;
6666     }
6667     break;
6668   }
6669   case ISD::FMA:
6670   case ISD::FMAD: {
6671     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6672       break;
6673 
6674     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6675     NegatibleCost CostZ = NegatibleCost::Expensive;
6676     SDValue NegZ =
6677         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6678     // Give up if fail to negate the Z.
6679     if (!NegZ)
6680       break;
6681 
6682     // Prevent this node from being deleted by the next two calls.
6683     Handles.emplace_back(NegZ);
6684 
6685     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6686     NegatibleCost CostX = NegatibleCost::Expensive;
6687     SDValue NegX =
6688         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6689     // Prevent this node from being deleted by the next call.
6690     if (NegX)
6691       Handles.emplace_back(NegX);
6692 
6693     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6694     NegatibleCost CostY = NegatibleCost::Expensive;
6695     SDValue NegY =
6696         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6697 
6698     // We're done with the handles.
6699     Handles.clear();
6700 
6701     // Negate the X if its cost is less or equal than Y.
6702     if (NegX && (CostX <= CostY)) {
6703       Cost = std::min(CostX, CostZ);
6704       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6705       if (NegY != N)
6706         RemoveDeadNode(NegY);
6707       return N;
6708     }
6709 
6710     // Negate the Y if it is not expensive.
6711     if (NegY) {
6712       Cost = std::min(CostY, CostZ);
6713       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6714       if (NegX != N)
6715         RemoveDeadNode(NegX);
6716       return N;
6717     }
6718     break;
6719   }
6720 
6721   case ISD::FP_EXTEND:
6722   case ISD::FSIN:
6723     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6724                                             OptForSize, Cost, Depth))
6725       return DAG.getNode(Opcode, DL, VT, NegV);
6726     break;
6727   case ISD::FP_ROUND:
6728     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6729                                             OptForSize, Cost, Depth))
6730       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6731     break;
6732   }
6733 
6734   return SDValue();
6735 }
6736 
6737 //===----------------------------------------------------------------------===//
6738 // Legalization Utilities
6739 //===----------------------------------------------------------------------===//
6740 
6741 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6742                                     SDValue LHS, SDValue RHS,
6743                                     SmallVectorImpl<SDValue> &Result,
6744                                     EVT HiLoVT, SelectionDAG &DAG,
6745                                     MulExpansionKind Kind, SDValue LL,
6746                                     SDValue LH, SDValue RL, SDValue RH) const {
6747   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6748          Opcode == ISD::SMUL_LOHI);
6749 
6750   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6751                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6752   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6753                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6754   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6755                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6756   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6757                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6758 
6759   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6760     return false;
6761 
6762   unsigned OuterBitSize = VT.getScalarSizeInBits();
6763   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6764 
6765   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6766   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6767          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6768 
6769   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6770   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6771                           bool Signed) -> bool {
6772     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6773       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6774       Hi = SDValue(Lo.getNode(), 1);
6775       return true;
6776     }
6777     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6778       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6779       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6780       return true;
6781     }
6782     return false;
6783   };
6784 
6785   SDValue Lo, Hi;
6786 
6787   if (!LL.getNode() && !RL.getNode() &&
6788       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6789     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6790     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6791   }
6792 
6793   if (!LL.getNode())
6794     return false;
6795 
6796   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6797   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6798       DAG.MaskedValueIsZero(RHS, HighMask)) {
6799     // The inputs are both zero-extended.
6800     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6801       Result.push_back(Lo);
6802       Result.push_back(Hi);
6803       if (Opcode != ISD::MUL) {
6804         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6805         Result.push_back(Zero);
6806         Result.push_back(Zero);
6807       }
6808       return true;
6809     }
6810   }
6811 
6812   if (!VT.isVector() && Opcode == ISD::MUL &&
6813       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6814       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6815     // The input values are both sign-extended.
6816     // TODO non-MUL case?
6817     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6818       Result.push_back(Lo);
6819       Result.push_back(Hi);
6820       return true;
6821     }
6822   }
6823 
6824   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6825   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6826   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6827 
6828   if (!LH.getNode() && !RH.getNode() &&
6829       isOperationLegalOrCustom(ISD::SRL, VT) &&
6830       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6831     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6832     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6833     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6834     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6835   }
6836 
6837   if (!LH.getNode())
6838     return false;
6839 
6840   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6841     return false;
6842 
6843   Result.push_back(Lo);
6844 
6845   if (Opcode == ISD::MUL) {
6846     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6847     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6848     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6849     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6850     Result.push_back(Hi);
6851     return true;
6852   }
6853 
6854   // Compute the full width result.
6855   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6856     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6857     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6858     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6859     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6860   };
6861 
6862   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6863   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6864     return false;
6865 
6866   // This is effectively the add part of a multiply-add of half-sized operands,
6867   // so it cannot overflow.
6868   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6869 
6870   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6871     return false;
6872 
6873   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6874   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6875 
6876   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6877                   isOperationLegalOrCustom(ISD::ADDE, VT));
6878   if (UseGlue)
6879     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6880                        Merge(Lo, Hi));
6881   else
6882     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6883                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6884 
6885   SDValue Carry = Next.getValue(1);
6886   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6887   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6888 
6889   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6890     return false;
6891 
6892   if (UseGlue)
6893     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6894                      Carry);
6895   else
6896     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6897                      Zero, Carry);
6898 
6899   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6900 
6901   if (Opcode == ISD::SMUL_LOHI) {
6902     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6903                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6904     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6905 
6906     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6907                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6908     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6909   }
6910 
6911   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6912   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6913   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6914   return true;
6915 }
6916 
6917 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6918                                SelectionDAG &DAG, MulExpansionKind Kind,
6919                                SDValue LL, SDValue LH, SDValue RL,
6920                                SDValue RH) const {
6921   SmallVector<SDValue, 2> Result;
6922   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6923                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6924                            DAG, Kind, LL, LH, RL, RH);
6925   if (Ok) {
6926     assert(Result.size() == 2);
6927     Lo = Result[0];
6928     Hi = Result[1];
6929   }
6930   return Ok;
6931 }
6932 
6933 // Check that (every element of) Z is undef or not an exact multiple of BW.
6934 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6935   return ISD::matchUnaryPredicate(
6936       Z,
6937       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6938       true);
6939 }
6940 
6941 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6942                                           SelectionDAG &DAG) const {
6943   EVT VT = Node->getValueType(0);
6944 
6945   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6946                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6947                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6948                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6949     return SDValue();
6950 
6951   SDValue X = Node->getOperand(0);
6952   SDValue Y = Node->getOperand(1);
6953   SDValue Z = Node->getOperand(2);
6954 
6955   unsigned BW = VT.getScalarSizeInBits();
6956   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6957   SDLoc DL(SDValue(Node, 0));
6958 
6959   EVT ShVT = Z.getValueType();
6960 
6961   // If a funnel shift in the other direction is more supported, use it.
6962   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6963   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6964       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6965     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6966       // fshl X, Y, Z -> fshr X, Y, -Z
6967       // fshr X, Y, Z -> fshl X, Y, -Z
6968       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6969       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6970     } else {
6971       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6972       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6973       SDValue One = DAG.getConstant(1, DL, ShVT);
6974       if (IsFSHL) {
6975         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6976         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6977       } else {
6978         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6979         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6980       }
6981       Z = DAG.getNOT(DL, Z, ShVT);
6982     }
6983     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6984   }
6985 
6986   SDValue ShX, ShY;
6987   SDValue ShAmt, InvShAmt;
6988   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6989     // fshl: X << C | Y >> (BW - C)
6990     // fshr: X << (BW - C) | Y >> C
6991     // where C = Z % BW is not zero
6992     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6993     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6994     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6995     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6996     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6997   } else {
6998     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6999     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7000     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7001     if (isPowerOf2_32(BW)) {
7002       // Z % BW -> Z & (BW - 1)
7003       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7004       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7005       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7006     } else {
7007       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7008       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7009       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7010     }
7011 
7012     SDValue One = DAG.getConstant(1, DL, ShVT);
7013     if (IsFSHL) {
7014       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7015       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7016       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7017     } else {
7018       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7019       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7020       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7021     }
7022   }
7023   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7024 }
7025 
7026 // TODO: Merge with expandFunnelShift.
7027 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7028                                   SelectionDAG &DAG) const {
7029   EVT VT = Node->getValueType(0);
7030   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7031   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7032   SDValue Op0 = Node->getOperand(0);
7033   SDValue Op1 = Node->getOperand(1);
7034   SDLoc DL(SDValue(Node, 0));
7035 
7036   EVT ShVT = Op1.getValueType();
7037   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7038 
7039   // If a rotate in the other direction is more supported, use it.
7040   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7041   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7042       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7043     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7044     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7045   }
7046 
7047   if (!AllowVectorOps && VT.isVector() &&
7048       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7049        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7050        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7051        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7052        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7053     return SDValue();
7054 
7055   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7056   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7057   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7058   SDValue ShVal;
7059   SDValue HsVal;
7060   if (isPowerOf2_32(EltSizeInBits)) {
7061     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7062     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7063     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7064     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7065     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7066     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7067     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7068   } else {
7069     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7070     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7071     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7072     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7073     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7074     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7075     SDValue One = DAG.getConstant(1, DL, ShVT);
7076     HsVal =
7077         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7078   }
7079   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7080 }
7081 
7082 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7083                                       SelectionDAG &DAG) const {
7084   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7085   EVT VT = Node->getValueType(0);
7086   unsigned VTBits = VT.getScalarSizeInBits();
7087   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7088 
7089   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7090   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7091   SDValue ShOpLo = Node->getOperand(0);
7092   SDValue ShOpHi = Node->getOperand(1);
7093   SDValue ShAmt = Node->getOperand(2);
7094   EVT ShAmtVT = ShAmt.getValueType();
7095   EVT ShAmtCCVT =
7096       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7097   SDLoc dl(Node);
7098 
7099   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7100   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7101   // away during isel.
7102   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7103                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7104   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7105                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7106                        : DAG.getConstant(0, dl, VT);
7107 
7108   SDValue Tmp2, Tmp3;
7109   if (IsSHL) {
7110     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7111     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7112   } else {
7113     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7114     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7115   }
7116 
7117   // If the shift amount is larger or equal than the width of a part we don't
7118   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7119   // values for large shift amounts.
7120   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7121                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7122   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7123                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7124 
7125   if (IsSHL) {
7126     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7127     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7128   } else {
7129     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7130     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7131   }
7132 }
7133 
7134 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7135                                       SelectionDAG &DAG) const {
7136   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7137   SDValue Src = Node->getOperand(OpNo);
7138   EVT SrcVT = Src.getValueType();
7139   EVT DstVT = Node->getValueType(0);
7140   SDLoc dl(SDValue(Node, 0));
7141 
7142   // FIXME: Only f32 to i64 conversions are supported.
7143   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7144     return false;
7145 
7146   if (Node->isStrictFPOpcode())
7147     // When a NaN is converted to an integer a trap is allowed. We can't
7148     // use this expansion here because it would eliminate that trap. Other
7149     // traps are also allowed and cannot be eliminated. See
7150     // IEEE 754-2008 sec 5.8.
7151     return false;
7152 
7153   // Expand f32 -> i64 conversion
7154   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7155   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7156   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7157   EVT IntVT = SrcVT.changeTypeToInteger();
7158   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7159 
7160   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7161   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7162   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7163   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7164   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7165   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7166 
7167   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7168 
7169   SDValue ExponentBits = DAG.getNode(
7170       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7171       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7172   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7173 
7174   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7175                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7176                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7177   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7178 
7179   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7180                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7181                           DAG.getConstant(0x00800000, dl, IntVT));
7182 
7183   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7184 
7185   R = DAG.getSelectCC(
7186       dl, Exponent, ExponentLoBit,
7187       DAG.getNode(ISD::SHL, dl, DstVT, R,
7188                   DAG.getZExtOrTrunc(
7189                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7190                       dl, IntShVT)),
7191       DAG.getNode(ISD::SRL, dl, DstVT, R,
7192                   DAG.getZExtOrTrunc(
7193                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7194                       dl, IntShVT)),
7195       ISD::SETGT);
7196 
7197   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7198                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7199 
7200   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7201                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7202   return true;
7203 }
7204 
7205 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7206                                       SDValue &Chain,
7207                                       SelectionDAG &DAG) const {
7208   SDLoc dl(SDValue(Node, 0));
7209   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7210   SDValue Src = Node->getOperand(OpNo);
7211 
7212   EVT SrcVT = Src.getValueType();
7213   EVT DstVT = Node->getValueType(0);
7214   EVT SetCCVT =
7215       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7216   EVT DstSetCCVT =
7217       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7218 
7219   // Only expand vector types if we have the appropriate vector bit operations.
7220   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7221                                                    ISD::FP_TO_SINT;
7222   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7223                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7224     return false;
7225 
7226   // If the maximum float value is smaller then the signed integer range,
7227   // the destination signmask can't be represented by the float, so we can
7228   // just use FP_TO_SINT directly.
7229   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7230   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7231   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7232   if (APFloat::opOverflow &
7233       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7234     if (Node->isStrictFPOpcode()) {
7235       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7236                            { Node->getOperand(0), Src });
7237       Chain = Result.getValue(1);
7238     } else
7239       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7240     return true;
7241   }
7242 
7243   // Don't expand it if there isn't cheap fsub instruction.
7244   if (!isOperationLegalOrCustom(
7245           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7246     return false;
7247 
7248   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7249   SDValue Sel;
7250 
7251   if (Node->isStrictFPOpcode()) {
7252     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7253                        Node->getOperand(0), /*IsSignaling*/ true);
7254     Chain = Sel.getValue(1);
7255   } else {
7256     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7257   }
7258 
7259   bool Strict = Node->isStrictFPOpcode() ||
7260                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7261 
7262   if (Strict) {
7263     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7264     // signmask then offset (the result of which should be fully representable).
7265     // Sel = Src < 0x8000000000000000
7266     // FltOfs = select Sel, 0, 0x8000000000000000
7267     // IntOfs = select Sel, 0, 0x8000000000000000
7268     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7269 
7270     // TODO: Should any fast-math-flags be set for the FSUB?
7271     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7272                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7273     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7274     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7275                                    DAG.getConstant(0, dl, DstVT),
7276                                    DAG.getConstant(SignMask, dl, DstVT));
7277     SDValue SInt;
7278     if (Node->isStrictFPOpcode()) {
7279       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7280                                 { Chain, Src, FltOfs });
7281       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7282                          { Val.getValue(1), Val });
7283       Chain = SInt.getValue(1);
7284     } else {
7285       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7286       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7287     }
7288     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7289   } else {
7290     // Expand based on maximum range of FP_TO_SINT:
7291     // True = fp_to_sint(Src)
7292     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7293     // Result = select (Src < 0x8000000000000000), True, False
7294 
7295     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7296     // TODO: Should any fast-math-flags be set for the FSUB?
7297     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7298                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7299     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7300                         DAG.getConstant(SignMask, dl, DstVT));
7301     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7302     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7303   }
7304   return true;
7305 }
7306 
7307 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7308                                       SDValue &Chain,
7309                                       SelectionDAG &DAG) const {
7310   // This transform is not correct for converting 0 when rounding mode is set
7311   // to round toward negative infinity which will produce -0.0. So disable under
7312   // strictfp.
7313   if (Node->isStrictFPOpcode())
7314     return false;
7315 
7316   SDValue Src = Node->getOperand(0);
7317   EVT SrcVT = Src.getValueType();
7318   EVT DstVT = Node->getValueType(0);
7319 
7320   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7321     return false;
7322 
7323   // Only expand vector types if we have the appropriate vector bit operations.
7324   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7325                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7326                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7327                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7328                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7329     return false;
7330 
7331   SDLoc dl(SDValue(Node, 0));
7332   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7333 
7334   // Implementation of unsigned i64 to f64 following the algorithm in
7335   // __floatundidf in compiler_rt.  This implementation performs rounding
7336   // correctly in all rounding modes with the exception of converting 0
7337   // when rounding toward negative infinity. In that case the fsub will produce
7338   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7339   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7340   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7341       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7342   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7343   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7344   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7345 
7346   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7347   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7348   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7349   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7350   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7351   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7352   SDValue HiSub =
7353       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7354   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7355   return true;
7356 }
7357 
7358 SDValue
7359 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7360                                                SelectionDAG &DAG) const {
7361   unsigned Opcode = Node->getOpcode();
7362   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7363           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7364          "Wrong opcode");
7365 
7366   if (Node->getFlags().hasNoNaNs()) {
7367     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7368     SDValue Op1 = Node->getOperand(0);
7369     SDValue Op2 = Node->getOperand(1);
7370     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7371     // Copy FMF flags, but always set the no-signed-zeros flag
7372     // as this is implied by the FMINNUM/FMAXNUM semantics.
7373     SDNodeFlags Flags = Node->getFlags();
7374     Flags.setNoSignedZeros(true);
7375     SelCC->setFlags(Flags);
7376     return SelCC;
7377   }
7378 
7379   return SDValue();
7380 }
7381 
7382 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7383                                               SelectionDAG &DAG) const {
7384   SDLoc dl(Node);
7385   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7386     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7387   EVT VT = Node->getValueType(0);
7388 
7389   if (VT.isScalableVector())
7390     report_fatal_error(
7391         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7392 
7393   if (isOperationLegalOrCustom(NewOp, VT)) {
7394     SDValue Quiet0 = Node->getOperand(0);
7395     SDValue Quiet1 = Node->getOperand(1);
7396 
7397     if (!Node->getFlags().hasNoNaNs()) {
7398       // Insert canonicalizes if it's possible we need to quiet to get correct
7399       // sNaN behavior.
7400       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7401         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7402                              Node->getFlags());
7403       }
7404       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7405         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7406                              Node->getFlags());
7407       }
7408     }
7409 
7410     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7411   }
7412 
7413   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7414   // instead if there are no NaNs.
7415   if (Node->getFlags().hasNoNaNs()) {
7416     unsigned IEEE2018Op =
7417         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7418     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7419       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7420                          Node->getOperand(1), Node->getFlags());
7421     }
7422   }
7423 
7424   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7425     return SelCC;
7426 
7427   return SDValue();
7428 }
7429 
7430 // Only expand vector types if we have the appropriate vector bit operations.
7431 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7432   assert(VT.isVector() && "Expected vector type");
7433   unsigned Len = VT.getScalarSizeInBits();
7434   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7435          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7436          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7437          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7438          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7439 }
7440 
7441 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7442   SDLoc dl(Node);
7443   EVT VT = Node->getValueType(0);
7444   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7445   SDValue Op = Node->getOperand(0);
7446   unsigned Len = VT.getScalarSizeInBits();
7447   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7448 
7449   // TODO: Add support for irregular type lengths.
7450   if (!(Len <= 128 && Len % 8 == 0))
7451     return SDValue();
7452 
7453   // Only expand vector types if we have the appropriate vector bit operations.
7454   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7455     return SDValue();
7456 
7457   // This is the "best" algorithm from
7458   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7459   SDValue Mask55 =
7460       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7461   SDValue Mask33 =
7462       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7463   SDValue Mask0F =
7464       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7465   SDValue Mask01 =
7466       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7467 
7468   // v = v - ((v >> 1) & 0x55555555...)
7469   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7470                    DAG.getNode(ISD::AND, dl, VT,
7471                                DAG.getNode(ISD::SRL, dl, VT, Op,
7472                                            DAG.getConstant(1, dl, ShVT)),
7473                                Mask55));
7474   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7475   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7476                    DAG.getNode(ISD::AND, dl, VT,
7477                                DAG.getNode(ISD::SRL, dl, VT, Op,
7478                                            DAG.getConstant(2, dl, ShVT)),
7479                                Mask33));
7480   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7481   Op = DAG.getNode(ISD::AND, dl, VT,
7482                    DAG.getNode(ISD::ADD, dl, VT, Op,
7483                                DAG.getNode(ISD::SRL, dl, VT, Op,
7484                                            DAG.getConstant(4, dl, ShVT))),
7485                    Mask0F);
7486   // v = (v * 0x01010101...) >> (Len - 8)
7487   if (Len > 8)
7488     Op =
7489         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7490                     DAG.getConstant(Len - 8, dl, ShVT));
7491 
7492   return Op;
7493 }
7494 
7495 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7496   SDLoc dl(Node);
7497   EVT VT = Node->getValueType(0);
7498   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7499   SDValue Op = Node->getOperand(0);
7500   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7501 
7502   // If the non-ZERO_UNDEF version is supported we can use that instead.
7503   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7504       isOperationLegalOrCustom(ISD::CTLZ, VT))
7505     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7506 
7507   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7508   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7509     EVT SetCCVT =
7510         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7511     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7512     SDValue Zero = DAG.getConstant(0, dl, VT);
7513     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7514     return DAG.getSelect(dl, VT, SrcIsZero,
7515                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7516   }
7517 
7518   // Only expand vector types if we have the appropriate vector bit operations.
7519   // This includes the operations needed to expand CTPOP if it isn't supported.
7520   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7521                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7522                          !canExpandVectorCTPOP(*this, VT)) ||
7523                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7524                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7525     return SDValue();
7526 
7527   // for now, we do this:
7528   // x = x | (x >> 1);
7529   // x = x | (x >> 2);
7530   // ...
7531   // x = x | (x >>16);
7532   // x = x | (x >>32); // for 64-bit input
7533   // return popcount(~x);
7534   //
7535   // Ref: "Hacker's Delight" by Henry Warren
7536   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7537     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7538     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7539                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7540   }
7541   Op = DAG.getNOT(dl, Op, VT);
7542   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7543 }
7544 
7545 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7546   SDLoc dl(Node);
7547   EVT VT = Node->getValueType(0);
7548   SDValue Op = Node->getOperand(0);
7549   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7550 
7551   // If the non-ZERO_UNDEF version is supported we can use that instead.
7552   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7553       isOperationLegalOrCustom(ISD::CTTZ, VT))
7554     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7555 
7556   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7557   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7558     EVT SetCCVT =
7559         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7560     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7561     SDValue Zero = DAG.getConstant(0, dl, VT);
7562     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7563     return DAG.getSelect(dl, VT, SrcIsZero,
7564                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7565   }
7566 
7567   // Only expand vector types if we have the appropriate vector bit operations.
7568   // This includes the operations needed to expand CTPOP if it isn't supported.
7569   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7570                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7571                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7572                          !canExpandVectorCTPOP(*this, VT)) ||
7573                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7574                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7575                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7576     return SDValue();
7577 
7578   // for now, we use: { return popcount(~x & (x - 1)); }
7579   // unless the target has ctlz but not ctpop, in which case we use:
7580   // { return 32 - nlz(~x & (x-1)); }
7581   // Ref: "Hacker's Delight" by Henry Warren
7582   SDValue Tmp = DAG.getNode(
7583       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7584       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7585 
7586   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7587   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7588     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7589                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7590   }
7591 
7592   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7593 }
7594 
7595 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7596                                   bool IsNegative) const {
7597   SDLoc dl(N);
7598   EVT VT = N->getValueType(0);
7599   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7600   SDValue Op = N->getOperand(0);
7601 
7602   // abs(x) -> smax(x,sub(0,x))
7603   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7604       isOperationLegal(ISD::SMAX, VT)) {
7605     SDValue Zero = DAG.getConstant(0, dl, VT);
7606     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7607                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7608   }
7609 
7610   // abs(x) -> umin(x,sub(0,x))
7611   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7612       isOperationLegal(ISD::UMIN, VT)) {
7613     SDValue Zero = DAG.getConstant(0, dl, VT);
7614     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7615                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7616   }
7617 
7618   // 0 - abs(x) -> smin(x, sub(0,x))
7619   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7620       isOperationLegal(ISD::SMIN, VT)) {
7621     SDValue Zero = DAG.getConstant(0, dl, VT);
7622     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7623                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7624   }
7625 
7626   // Only expand vector types if we have the appropriate vector operations.
7627   if (VT.isVector() &&
7628       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7629        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7630        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7631        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7632     return SDValue();
7633 
7634   SDValue Shift =
7635       DAG.getNode(ISD::SRA, dl, VT, Op,
7636                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7637   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7638 
7639   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7640   if (!IsNegative)
7641     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7642 
7643   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7644   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7645 }
7646 
7647 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7648   SDLoc dl(N);
7649   EVT VT = N->getValueType(0);
7650   SDValue Op = N->getOperand(0);
7651 
7652   if (!VT.isSimple())
7653     return SDValue();
7654 
7655   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7656   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7657   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7658   default:
7659     return SDValue();
7660   case MVT::i16:
7661     // Use a rotate by 8. This can be further expanded if necessary.
7662     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7663   case MVT::i32:
7664     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7665     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7666     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7667     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7668     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7669                        DAG.getConstant(0xFF0000, dl, VT));
7670     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7671     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7672     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7673     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7674   case MVT::i64:
7675     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7676     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7677     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7678     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7679     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7680     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7681     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7682     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7683     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7684                        DAG.getConstant(255ULL<<48, dl, VT));
7685     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7686                        DAG.getConstant(255ULL<<40, dl, VT));
7687     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7688                        DAG.getConstant(255ULL<<32, dl, VT));
7689     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7690                        DAG.getConstant(255ULL<<24, dl, VT));
7691     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7692                        DAG.getConstant(255ULL<<16, dl, VT));
7693     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7694                        DAG.getConstant(255ULL<<8 , dl, VT));
7695     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7696     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7697     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7698     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7699     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7700     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7701     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7702   }
7703 }
7704 
7705 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7706   SDLoc dl(N);
7707   EVT VT = N->getValueType(0);
7708   SDValue Op = N->getOperand(0);
7709   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7710   unsigned Sz = VT.getScalarSizeInBits();
7711 
7712   SDValue Tmp, Tmp2, Tmp3;
7713 
7714   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7715   // and finally the i1 pairs.
7716   // TODO: We can easily support i4/i2 legal types if any target ever does.
7717   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7718     // Create the masks - repeating the pattern every byte.
7719     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7720     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7721     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7722 
7723     // BSWAP if the type is wider than a single byte.
7724     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7725 
7726     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7727     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7728     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7729     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7730     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7731     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7732 
7733     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7734     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7735     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7736     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7737     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7738     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7739 
7740     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7741     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7742     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7743     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7744     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7745     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7746     return Tmp;
7747   }
7748 
7749   Tmp = DAG.getConstant(0, dl, VT);
7750   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7751     if (I < J)
7752       Tmp2 =
7753           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7754     else
7755       Tmp2 =
7756           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7757 
7758     APInt Shift(Sz, 1);
7759     Shift <<= J;
7760     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7761     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7762   }
7763 
7764   return Tmp;
7765 }
7766 
7767 std::pair<SDValue, SDValue>
7768 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7769                                     SelectionDAG &DAG) const {
7770   SDLoc SL(LD);
7771   SDValue Chain = LD->getChain();
7772   SDValue BasePTR = LD->getBasePtr();
7773   EVT SrcVT = LD->getMemoryVT();
7774   EVT DstVT = LD->getValueType(0);
7775   ISD::LoadExtType ExtType = LD->getExtensionType();
7776 
7777   if (SrcVT.isScalableVector())
7778     report_fatal_error("Cannot scalarize scalable vector loads");
7779 
7780   unsigned NumElem = SrcVT.getVectorNumElements();
7781 
7782   EVT SrcEltVT = SrcVT.getScalarType();
7783   EVT DstEltVT = DstVT.getScalarType();
7784 
7785   // A vector must always be stored in memory as-is, i.e. without any padding
7786   // between the elements, since various code depend on it, e.g. in the
7787   // handling of a bitcast of a vector type to int, which may be done with a
7788   // vector store followed by an integer load. A vector that does not have
7789   // elements that are byte-sized must therefore be stored as an integer
7790   // built out of the extracted vector elements.
7791   if (!SrcEltVT.isByteSized()) {
7792     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7793     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7794 
7795     unsigned NumSrcBits = SrcVT.getSizeInBits();
7796     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7797 
7798     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7799     SDValue SrcEltBitMask = DAG.getConstant(
7800         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7801 
7802     // Load the whole vector and avoid masking off the top bits as it makes
7803     // the codegen worse.
7804     SDValue Load =
7805         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7806                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7807                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7808 
7809     SmallVector<SDValue, 8> Vals;
7810     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7811       unsigned ShiftIntoIdx =
7812           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7813       SDValue ShiftAmount =
7814           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7815                                      LoadVT, SL, /*LegalTypes=*/false);
7816       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7817       SDValue Elt =
7818           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7819       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7820 
7821       if (ExtType != ISD::NON_EXTLOAD) {
7822         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7823         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7824       }
7825 
7826       Vals.push_back(Scalar);
7827     }
7828 
7829     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7830     return std::make_pair(Value, Load.getValue(1));
7831   }
7832 
7833   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7834   assert(SrcEltVT.isByteSized());
7835 
7836   SmallVector<SDValue, 8> Vals;
7837   SmallVector<SDValue, 8> LoadChains;
7838 
7839   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7840     SDValue ScalarLoad =
7841         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7842                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7843                        SrcEltVT, LD->getOriginalAlign(),
7844                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7845 
7846     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7847 
7848     Vals.push_back(ScalarLoad.getValue(0));
7849     LoadChains.push_back(ScalarLoad.getValue(1));
7850   }
7851 
7852   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7853   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7854 
7855   return std::make_pair(Value, NewChain);
7856 }
7857 
7858 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7859                                              SelectionDAG &DAG) const {
7860   SDLoc SL(ST);
7861 
7862   SDValue Chain = ST->getChain();
7863   SDValue BasePtr = ST->getBasePtr();
7864   SDValue Value = ST->getValue();
7865   EVT StVT = ST->getMemoryVT();
7866 
7867   if (StVT.isScalableVector())
7868     report_fatal_error("Cannot scalarize scalable vector stores");
7869 
7870   // The type of the data we want to save
7871   EVT RegVT = Value.getValueType();
7872   EVT RegSclVT = RegVT.getScalarType();
7873 
7874   // The type of data as saved in memory.
7875   EVT MemSclVT = StVT.getScalarType();
7876 
7877   unsigned NumElem = StVT.getVectorNumElements();
7878 
7879   // A vector must always be stored in memory as-is, i.e. without any padding
7880   // between the elements, since various code depend on it, e.g. in the
7881   // handling of a bitcast of a vector type to int, which may be done with a
7882   // vector store followed by an integer load. A vector that does not have
7883   // elements that are byte-sized must therefore be stored as an integer
7884   // built out of the extracted vector elements.
7885   if (!MemSclVT.isByteSized()) {
7886     unsigned NumBits = StVT.getSizeInBits();
7887     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7888 
7889     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7890 
7891     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7892       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7893                                 DAG.getVectorIdxConstant(Idx, SL));
7894       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7895       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7896       unsigned ShiftIntoIdx =
7897           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7898       SDValue ShiftAmount =
7899           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7900       SDValue ShiftedElt =
7901           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7902       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7903     }
7904 
7905     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7906                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7907                         ST->getAAInfo());
7908   }
7909 
7910   // Store Stride in bytes
7911   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7912   assert(Stride && "Zero stride!");
7913   // Extract each of the elements from the original vector and save them into
7914   // memory individually.
7915   SmallVector<SDValue, 8> Stores;
7916   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7917     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7918                               DAG.getVectorIdxConstant(Idx, SL));
7919 
7920     SDValue Ptr =
7921         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7922 
7923     // This scalar TruncStore may be illegal, but we legalize it later.
7924     SDValue Store = DAG.getTruncStore(
7925         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7926         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7927         ST->getAAInfo());
7928 
7929     Stores.push_back(Store);
7930   }
7931 
7932   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7933 }
7934 
7935 std::pair<SDValue, SDValue>
7936 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7937   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7938          "unaligned indexed loads not implemented!");
7939   SDValue Chain = LD->getChain();
7940   SDValue Ptr = LD->getBasePtr();
7941   EVT VT = LD->getValueType(0);
7942   EVT LoadedVT = LD->getMemoryVT();
7943   SDLoc dl(LD);
7944   auto &MF = DAG.getMachineFunction();
7945 
7946   if (VT.isFloatingPoint() || VT.isVector()) {
7947     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7948     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7949       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7950           LoadedVT.isVector()) {
7951         // Scalarize the load and let the individual components be handled.
7952         return scalarizeVectorLoad(LD, DAG);
7953       }
7954 
7955       // Expand to a (misaligned) integer load of the same size,
7956       // then bitconvert to floating point or vector.
7957       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7958                                     LD->getMemOperand());
7959       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7960       if (LoadedVT != VT)
7961         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7962                              ISD::ANY_EXTEND, dl, VT, Result);
7963 
7964       return std::make_pair(Result, newLoad.getValue(1));
7965     }
7966 
7967     // Copy the value to a (aligned) stack slot using (unaligned) integer
7968     // loads and stores, then do a (aligned) load from the stack slot.
7969     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7970     unsigned LoadedBytes = LoadedVT.getStoreSize();
7971     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7972     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7973 
7974     // Make sure the stack slot is also aligned for the register type.
7975     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7976     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7977     SmallVector<SDValue, 8> Stores;
7978     SDValue StackPtr = StackBase;
7979     unsigned Offset = 0;
7980 
7981     EVT PtrVT = Ptr.getValueType();
7982     EVT StackPtrVT = StackPtr.getValueType();
7983 
7984     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7985     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7986 
7987     // Do all but one copies using the full register width.
7988     for (unsigned i = 1; i < NumRegs; i++) {
7989       // Load one integer register's worth from the original location.
7990       SDValue Load = DAG.getLoad(
7991           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7992           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7993           LD->getAAInfo());
7994       // Follow the load with a store to the stack slot.  Remember the store.
7995       Stores.push_back(DAG.getStore(
7996           Load.getValue(1), dl, Load, StackPtr,
7997           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7998       // Increment the pointers.
7999       Offset += RegBytes;
8000 
8001       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8002       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8003     }
8004 
8005     // The last copy may be partial.  Do an extending load.
8006     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8007                                   8 * (LoadedBytes - Offset));
8008     SDValue Load =
8009         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8010                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8011                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8012                        LD->getAAInfo());
8013     // Follow the load with a store to the stack slot.  Remember the store.
8014     // On big-endian machines this requires a truncating store to ensure
8015     // that the bits end up in the right place.
8016     Stores.push_back(DAG.getTruncStore(
8017         Load.getValue(1), dl, Load, StackPtr,
8018         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8019 
8020     // The order of the stores doesn't matter - say it with a TokenFactor.
8021     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8022 
8023     // Finally, perform the original load only redirected to the stack slot.
8024     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8025                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8026                           LoadedVT);
8027 
8028     // Callers expect a MERGE_VALUES node.
8029     return std::make_pair(Load, TF);
8030   }
8031 
8032   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8033          "Unaligned load of unsupported type.");
8034 
8035   // Compute the new VT that is half the size of the old one.  This is an
8036   // integer MVT.
8037   unsigned NumBits = LoadedVT.getSizeInBits();
8038   EVT NewLoadedVT;
8039   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8040   NumBits >>= 1;
8041 
8042   Align Alignment = LD->getOriginalAlign();
8043   unsigned IncrementSize = NumBits / 8;
8044   ISD::LoadExtType HiExtType = LD->getExtensionType();
8045 
8046   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8047   if (HiExtType == ISD::NON_EXTLOAD)
8048     HiExtType = ISD::ZEXTLOAD;
8049 
8050   // Load the value in two parts
8051   SDValue Lo, Hi;
8052   if (DAG.getDataLayout().isLittleEndian()) {
8053     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8054                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8055                         LD->getAAInfo());
8056 
8057     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8058     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8059                         LD->getPointerInfo().getWithOffset(IncrementSize),
8060                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8061                         LD->getAAInfo());
8062   } else {
8063     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8064                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8065                         LD->getAAInfo());
8066 
8067     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8068     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8069                         LD->getPointerInfo().getWithOffset(IncrementSize),
8070                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8071                         LD->getAAInfo());
8072   }
8073 
8074   // aggregate the two parts
8075   SDValue ShiftAmount =
8076       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8077                                                     DAG.getDataLayout()));
8078   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8079   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8080 
8081   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8082                              Hi.getValue(1));
8083 
8084   return std::make_pair(Result, TF);
8085 }
8086 
8087 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8088                                              SelectionDAG &DAG) const {
8089   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8090          "unaligned indexed stores not implemented!");
8091   SDValue Chain = ST->getChain();
8092   SDValue Ptr = ST->getBasePtr();
8093   SDValue Val = ST->getValue();
8094   EVT VT = Val.getValueType();
8095   Align Alignment = ST->getOriginalAlign();
8096   auto &MF = DAG.getMachineFunction();
8097   EVT StoreMemVT = ST->getMemoryVT();
8098 
8099   SDLoc dl(ST);
8100   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8101     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8102     if (isTypeLegal(intVT)) {
8103       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8104           StoreMemVT.isVector()) {
8105         // Scalarize the store and let the individual components be handled.
8106         SDValue Result = scalarizeVectorStore(ST, DAG);
8107         return Result;
8108       }
8109       // Expand to a bitconvert of the value to the integer type of the
8110       // same size, then a (misaligned) int store.
8111       // FIXME: Does not handle truncating floating point stores!
8112       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8113       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8114                             Alignment, ST->getMemOperand()->getFlags());
8115       return Result;
8116     }
8117     // Do a (aligned) store to a stack slot, then copy from the stack slot
8118     // to the final destination using (unaligned) integer loads and stores.
8119     MVT RegVT = getRegisterType(
8120         *DAG.getContext(),
8121         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8122     EVT PtrVT = Ptr.getValueType();
8123     unsigned StoredBytes = StoreMemVT.getStoreSize();
8124     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8125     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8126 
8127     // Make sure the stack slot is also aligned for the register type.
8128     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8129     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8130 
8131     // Perform the original store, only redirected to the stack slot.
8132     SDValue Store = DAG.getTruncStore(
8133         Chain, dl, Val, StackPtr,
8134         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8135 
8136     EVT StackPtrVT = StackPtr.getValueType();
8137 
8138     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8139     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8140     SmallVector<SDValue, 8> Stores;
8141     unsigned Offset = 0;
8142 
8143     // Do all but one copies using the full register width.
8144     for (unsigned i = 1; i < NumRegs; i++) {
8145       // Load one integer register's worth from the stack slot.
8146       SDValue Load = DAG.getLoad(
8147           RegVT, dl, Store, StackPtr,
8148           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8149       // Store it to the final location.  Remember the store.
8150       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8151                                     ST->getPointerInfo().getWithOffset(Offset),
8152                                     ST->getOriginalAlign(),
8153                                     ST->getMemOperand()->getFlags()));
8154       // Increment the pointers.
8155       Offset += RegBytes;
8156       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8157       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8158     }
8159 
8160     // The last store may be partial.  Do a truncating store.  On big-endian
8161     // machines this requires an extending load from the stack slot to ensure
8162     // that the bits are in the right place.
8163     EVT LoadMemVT =
8164         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8165 
8166     // Load from the stack slot.
8167     SDValue Load = DAG.getExtLoad(
8168         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8169         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8170 
8171     Stores.push_back(
8172         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8173                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8174                           ST->getOriginalAlign(),
8175                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8176     // The order of the stores doesn't matter - say it with a TokenFactor.
8177     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8178     return Result;
8179   }
8180 
8181   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8182          "Unaligned store of unknown type.");
8183   // Get the half-size VT
8184   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8185   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8186   unsigned IncrementSize = NumBits / 8;
8187 
8188   // Divide the stored value in two parts.
8189   SDValue ShiftAmount = DAG.getConstant(
8190       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8191   SDValue Lo = Val;
8192   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8193 
8194   // Store the two parts
8195   SDValue Store1, Store2;
8196   Store1 = DAG.getTruncStore(Chain, dl,
8197                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8198                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8199                              ST->getMemOperand()->getFlags());
8200 
8201   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8202   Store2 = DAG.getTruncStore(
8203       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8204       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8205       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8206 
8207   SDValue Result =
8208       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8209   return Result;
8210 }
8211 
8212 SDValue
8213 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8214                                        const SDLoc &DL, EVT DataVT,
8215                                        SelectionDAG &DAG,
8216                                        bool IsCompressedMemory) const {
8217   SDValue Increment;
8218   EVT AddrVT = Addr.getValueType();
8219   EVT MaskVT = Mask.getValueType();
8220   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8221          "Incompatible types of Data and Mask");
8222   if (IsCompressedMemory) {
8223     if (DataVT.isScalableVector())
8224       report_fatal_error(
8225           "Cannot currently handle compressed memory with scalable vectors");
8226     // Incrementing the pointer according to number of '1's in the mask.
8227     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8228     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8229     if (MaskIntVT.getSizeInBits() < 32) {
8230       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8231       MaskIntVT = MVT::i32;
8232     }
8233 
8234     // Count '1's with POPCNT.
8235     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8236     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8237     // Scale is an element size in bytes.
8238     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8239                                     AddrVT);
8240     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8241   } else if (DataVT.isScalableVector()) {
8242     Increment = DAG.getVScale(DL, AddrVT,
8243                               APInt(AddrVT.getFixedSizeInBits(),
8244                                     DataVT.getStoreSize().getKnownMinSize()));
8245   } else
8246     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8247 
8248   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8249 }
8250 
8251 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8252                                        EVT VecVT, const SDLoc &dl,
8253                                        ElementCount SubEC) {
8254   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8255          "Cannot index a scalable vector within a fixed-width vector");
8256 
8257   unsigned NElts = VecVT.getVectorMinNumElements();
8258   unsigned NumSubElts = SubEC.getKnownMinValue();
8259   EVT IdxVT = Idx.getValueType();
8260 
8261   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8262     // If this is a constant index and we know the value plus the number of the
8263     // elements in the subvector minus one is less than the minimum number of
8264     // elements then it's safe to return Idx.
8265     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8266       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8267         return Idx;
8268     SDValue VS =
8269         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8270     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8271     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8272                               DAG.getConstant(NumSubElts, dl, IdxVT));
8273     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8274   }
8275   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8276     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8277     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8278                        DAG.getConstant(Imm, dl, IdxVT));
8279   }
8280   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8281   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8282                      DAG.getConstant(MaxIndex, dl, IdxVT));
8283 }
8284 
8285 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8286                                                 SDValue VecPtr, EVT VecVT,
8287                                                 SDValue Index) const {
8288   return getVectorSubVecPointer(
8289       DAG, VecPtr, VecVT,
8290       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8291       Index);
8292 }
8293 
8294 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8295                                                SDValue VecPtr, EVT VecVT,
8296                                                EVT SubVecVT,
8297                                                SDValue Index) const {
8298   SDLoc dl(Index);
8299   // Make sure the index type is big enough to compute in.
8300   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8301 
8302   EVT EltVT = VecVT.getVectorElementType();
8303 
8304   // Calculate the element offset and add it to the pointer.
8305   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8306   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8307          "Converting bits to bytes lost precision");
8308   assert(SubVecVT.getVectorElementType() == EltVT &&
8309          "Sub-vector must be a vector with matching element type");
8310   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8311                                   SubVecVT.getVectorElementCount());
8312 
8313   EVT IdxVT = Index.getValueType();
8314   if (SubVecVT.isScalableVector())
8315     Index =
8316         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8317                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8318 
8319   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8320                       DAG.getConstant(EltSize, dl, IdxVT));
8321   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8322 }
8323 
8324 //===----------------------------------------------------------------------===//
8325 // Implementation of Emulated TLS Model
8326 //===----------------------------------------------------------------------===//
8327 
8328 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8329                                                 SelectionDAG &DAG) const {
8330   // Access to address of TLS varialbe xyz is lowered to a function call:
8331   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8332   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8333   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8334   SDLoc dl(GA);
8335 
8336   ArgListTy Args;
8337   ArgListEntry Entry;
8338   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8339   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8340   StringRef EmuTlsVarName(NameString);
8341   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8342   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8343   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8344   Entry.Ty = VoidPtrType;
8345   Args.push_back(Entry);
8346 
8347   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8348 
8349   TargetLowering::CallLoweringInfo CLI(DAG);
8350   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8351   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8352   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8353 
8354   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8355   // At last for X86 targets, maybe good for other targets too?
8356   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8357   MFI.setAdjustsStack(true); // Is this only for X86 target?
8358   MFI.setHasCalls(true);
8359 
8360   assert((GA->getOffset() == 0) &&
8361          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8362   return CallResult.first;
8363 }
8364 
8365 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8366                                                 SelectionDAG &DAG) const {
8367   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8368   if (!isCtlzFast())
8369     return SDValue();
8370   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8371   SDLoc dl(Op);
8372   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8373     if (C->isZero() && CC == ISD::SETEQ) {
8374       EVT VT = Op.getOperand(0).getValueType();
8375       SDValue Zext = Op.getOperand(0);
8376       if (VT.bitsLT(MVT::i32)) {
8377         VT = MVT::i32;
8378         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8379       }
8380       unsigned Log2b = Log2_32(VT.getSizeInBits());
8381       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8382       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8383                                 DAG.getConstant(Log2b, dl, MVT::i32));
8384       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8385     }
8386   }
8387   return SDValue();
8388 }
8389 
8390 // Convert redundant addressing modes (e.g. scaling is redundant
8391 // when accessing bytes).
8392 ISD::MemIndexType
8393 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8394                                       SDValue Offsets) const {
8395   bool IsScaledIndex =
8396       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8397   bool IsSignedIndex =
8398       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8399 
8400   // Scaling is unimportant for bytes, canonicalize to unscaled.
8401   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8402     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8403 
8404   return IndexType;
8405 }
8406 
8407 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8408   SDValue Op0 = Node->getOperand(0);
8409   SDValue Op1 = Node->getOperand(1);
8410   EVT VT = Op0.getValueType();
8411   unsigned Opcode = Node->getOpcode();
8412   SDLoc DL(Node);
8413 
8414   // umin(x,y) -> sub(x,usubsat(x,y))
8415   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8416       isOperationLegal(ISD::USUBSAT, VT)) {
8417     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8418                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8419   }
8420 
8421   // umax(x,y) -> add(x,usubsat(y,x))
8422   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8423       isOperationLegal(ISD::USUBSAT, VT)) {
8424     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8425                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8426   }
8427 
8428   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8429   ISD::CondCode CC;
8430   switch (Opcode) {
8431   default: llvm_unreachable("How did we get here?");
8432   case ISD::SMAX: CC = ISD::SETGT; break;
8433   case ISD::SMIN: CC = ISD::SETLT; break;
8434   case ISD::UMAX: CC = ISD::SETUGT; break;
8435   case ISD::UMIN: CC = ISD::SETULT; break;
8436   }
8437 
8438   // FIXME: Should really try to split the vector in case it's legal on a
8439   // subvector.
8440   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8441     return DAG.UnrollVectorOp(Node);
8442 
8443   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8444   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8445   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8446 }
8447 
8448 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8449   unsigned Opcode = Node->getOpcode();
8450   SDValue LHS = Node->getOperand(0);
8451   SDValue RHS = Node->getOperand(1);
8452   EVT VT = LHS.getValueType();
8453   SDLoc dl(Node);
8454 
8455   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8456   assert(VT.isInteger() && "Expected operands to be integers");
8457 
8458   // usub.sat(a, b) -> umax(a, b) - b
8459   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8460     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8461     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8462   }
8463 
8464   // uadd.sat(a, b) -> umin(a, ~b) + b
8465   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8466     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8467     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8468     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8469   }
8470 
8471   unsigned OverflowOp;
8472   switch (Opcode) {
8473   case ISD::SADDSAT:
8474     OverflowOp = ISD::SADDO;
8475     break;
8476   case ISD::UADDSAT:
8477     OverflowOp = ISD::UADDO;
8478     break;
8479   case ISD::SSUBSAT:
8480     OverflowOp = ISD::SSUBO;
8481     break;
8482   case ISD::USUBSAT:
8483     OverflowOp = ISD::USUBO;
8484     break;
8485   default:
8486     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8487                      "addition or subtraction node.");
8488   }
8489 
8490   // FIXME: Should really try to split the vector in case it's legal on a
8491   // subvector.
8492   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8493     return DAG.UnrollVectorOp(Node);
8494 
8495   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8496   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8497   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8498   SDValue SumDiff = Result.getValue(0);
8499   SDValue Overflow = Result.getValue(1);
8500   SDValue Zero = DAG.getConstant(0, dl, VT);
8501   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8502 
8503   if (Opcode == ISD::UADDSAT) {
8504     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8505       // (LHS + RHS) | OverflowMask
8506       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8507       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8508     }
8509     // Overflow ? 0xffff.... : (LHS + RHS)
8510     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8511   }
8512 
8513   if (Opcode == ISD::USUBSAT) {
8514     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8515       // (LHS - RHS) & ~OverflowMask
8516       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8517       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8518       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8519     }
8520     // Overflow ? 0 : (LHS - RHS)
8521     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8522   }
8523 
8524   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8525   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8526   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8527   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8528                               DAG.getConstant(BitWidth - 1, dl, VT));
8529   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8530   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8531 }
8532 
8533 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8534   unsigned Opcode = Node->getOpcode();
8535   bool IsSigned = Opcode == ISD::SSHLSAT;
8536   SDValue LHS = Node->getOperand(0);
8537   SDValue RHS = Node->getOperand(1);
8538   EVT VT = LHS.getValueType();
8539   SDLoc dl(Node);
8540 
8541   assert((Node->getOpcode() == ISD::SSHLSAT ||
8542           Node->getOpcode() == ISD::USHLSAT) &&
8543           "Expected a SHLSAT opcode");
8544   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8545   assert(VT.isInteger() && "Expected operands to be integers");
8546 
8547   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8548 
8549   unsigned BW = VT.getScalarSizeInBits();
8550   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8551   SDValue Orig =
8552       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8553 
8554   SDValue SatVal;
8555   if (IsSigned) {
8556     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8557     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8558     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8559                              SatMin, SatMax, ISD::SETLT);
8560   } else {
8561     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8562   }
8563   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8564 
8565   return Result;
8566 }
8567 
8568 SDValue
8569 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8570   assert((Node->getOpcode() == ISD::SMULFIX ||
8571           Node->getOpcode() == ISD::UMULFIX ||
8572           Node->getOpcode() == ISD::SMULFIXSAT ||
8573           Node->getOpcode() == ISD::UMULFIXSAT) &&
8574          "Expected a fixed point multiplication opcode");
8575 
8576   SDLoc dl(Node);
8577   SDValue LHS = Node->getOperand(0);
8578   SDValue RHS = Node->getOperand(1);
8579   EVT VT = LHS.getValueType();
8580   unsigned Scale = Node->getConstantOperandVal(2);
8581   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8582                      Node->getOpcode() == ISD::UMULFIXSAT);
8583   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8584                  Node->getOpcode() == ISD::SMULFIXSAT);
8585   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8586   unsigned VTSize = VT.getScalarSizeInBits();
8587 
8588   if (!Scale) {
8589     // [us]mul.fix(a, b, 0) -> mul(a, b)
8590     if (!Saturating) {
8591       if (isOperationLegalOrCustom(ISD::MUL, VT))
8592         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8593     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8594       SDValue Result =
8595           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8596       SDValue Product = Result.getValue(0);
8597       SDValue Overflow = Result.getValue(1);
8598       SDValue Zero = DAG.getConstant(0, dl, VT);
8599 
8600       APInt MinVal = APInt::getSignedMinValue(VTSize);
8601       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8602       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8603       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8604       // Xor the inputs, if resulting sign bit is 0 the product will be
8605       // positive, else negative.
8606       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8607       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8608       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8609       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8610     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8611       SDValue Result =
8612           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8613       SDValue Product = Result.getValue(0);
8614       SDValue Overflow = Result.getValue(1);
8615 
8616       APInt MaxVal = APInt::getMaxValue(VTSize);
8617       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8618       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8619     }
8620   }
8621 
8622   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8623          "Expected scale to be less than the number of bits if signed or at "
8624          "most the number of bits if unsigned.");
8625   assert(LHS.getValueType() == RHS.getValueType() &&
8626          "Expected both operands to be the same type");
8627 
8628   // Get the upper and lower bits of the result.
8629   SDValue Lo, Hi;
8630   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8631   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8632   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8633     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8634     Lo = Result.getValue(0);
8635     Hi = Result.getValue(1);
8636   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8637     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8638     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8639   } else if (VT.isVector()) {
8640     return SDValue();
8641   } else {
8642     report_fatal_error("Unable to expand fixed point multiplication.");
8643   }
8644 
8645   if (Scale == VTSize)
8646     // Result is just the top half since we'd be shifting by the width of the
8647     // operand. Overflow impossible so this works for both UMULFIX and
8648     // UMULFIXSAT.
8649     return Hi;
8650 
8651   // The result will need to be shifted right by the scale since both operands
8652   // are scaled. The result is given to us in 2 halves, so we only want part of
8653   // both in the result.
8654   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8655   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8656                                DAG.getConstant(Scale, dl, ShiftTy));
8657   if (!Saturating)
8658     return Result;
8659 
8660   if (!Signed) {
8661     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8662     // widened multiplication) aren't all zeroes.
8663 
8664     // Saturate to max if ((Hi >> Scale) != 0),
8665     // which is the same as if (Hi > ((1 << Scale) - 1))
8666     APInt MaxVal = APInt::getMaxValue(VTSize);
8667     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8668                                       dl, VT);
8669     Result = DAG.getSelectCC(dl, Hi, LowMask,
8670                              DAG.getConstant(MaxVal, dl, VT), Result,
8671                              ISD::SETUGT);
8672 
8673     return Result;
8674   }
8675 
8676   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8677   // widened multiplication) aren't all ones or all zeroes.
8678 
8679   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8680   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8681 
8682   if (Scale == 0) {
8683     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8684                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8685     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8686     // Saturated to SatMin if wide product is negative, and SatMax if wide
8687     // product is positive ...
8688     SDValue Zero = DAG.getConstant(0, dl, VT);
8689     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8690                                                ISD::SETLT);
8691     // ... but only if we overflowed.
8692     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8693   }
8694 
8695   //  We handled Scale==0 above so all the bits to examine is in Hi.
8696 
8697   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8698   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8699   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8700                                     dl, VT);
8701   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8702   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8703   // which is the same as if (HI < (-1 << (Scale - 1))
8704   SDValue HighMask =
8705       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8706                       dl, VT);
8707   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8708   return Result;
8709 }
8710 
8711 SDValue
8712 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8713                                     SDValue LHS, SDValue RHS,
8714                                     unsigned Scale, SelectionDAG &DAG) const {
8715   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8716           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8717          "Expected a fixed point division opcode");
8718 
8719   EVT VT = LHS.getValueType();
8720   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8721   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8722   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8723 
8724   // If there is enough room in the type to upscale the LHS or downscale the
8725   // RHS before the division, we can perform it in this type without having to
8726   // resize. For signed operations, the LHS headroom is the number of
8727   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8728   // The headroom for the RHS is the number of trailing zeroes.
8729   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8730                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8731   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8732 
8733   // For signed saturating operations, we need to be able to detect true integer
8734   // division overflow; that is, when you have MIN / -EPS. However, this
8735   // is undefined behavior and if we emit divisions that could take such
8736   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8737   // example).
8738   // Avoid this by requiring an extra bit so that we never get this case.
8739   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8740   // signed saturating division, we need to emit a whopping 32-bit division.
8741   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8742     return SDValue();
8743 
8744   unsigned LHSShift = std::min(LHSLead, Scale);
8745   unsigned RHSShift = Scale - LHSShift;
8746 
8747   // At this point, we know that if we shift the LHS up by LHSShift and the
8748   // RHS down by RHSShift, we can emit a regular division with a final scaling
8749   // factor of Scale.
8750 
8751   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8752   if (LHSShift)
8753     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8754                       DAG.getConstant(LHSShift, dl, ShiftTy));
8755   if (RHSShift)
8756     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8757                       DAG.getConstant(RHSShift, dl, ShiftTy));
8758 
8759   SDValue Quot;
8760   if (Signed) {
8761     // For signed operations, if the resulting quotient is negative and the
8762     // remainder is nonzero, subtract 1 from the quotient to round towards
8763     // negative infinity.
8764     SDValue Rem;
8765     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8766     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8767     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8768     if (isTypeLegal(VT) &&
8769         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8770       Quot = DAG.getNode(ISD::SDIVREM, dl,
8771                          DAG.getVTList(VT, VT),
8772                          LHS, RHS);
8773       Rem = Quot.getValue(1);
8774       Quot = Quot.getValue(0);
8775     } else {
8776       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8777                          LHS, RHS);
8778       Rem = DAG.getNode(ISD::SREM, dl, VT,
8779                         LHS, RHS);
8780     }
8781     SDValue Zero = DAG.getConstant(0, dl, VT);
8782     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8783     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8784     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8785     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8786     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8787                                DAG.getConstant(1, dl, VT));
8788     Quot = DAG.getSelect(dl, VT,
8789                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8790                          Sub1, Quot);
8791   } else
8792     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8793                        LHS, RHS);
8794 
8795   return Quot;
8796 }
8797 
8798 void TargetLowering::expandUADDSUBO(
8799     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8800   SDLoc dl(Node);
8801   SDValue LHS = Node->getOperand(0);
8802   SDValue RHS = Node->getOperand(1);
8803   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8804 
8805   // If ADD/SUBCARRY is legal, use that instead.
8806   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8807   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8808     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8809     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8810                                     { LHS, RHS, CarryIn });
8811     Result = SDValue(NodeCarry.getNode(), 0);
8812     Overflow = SDValue(NodeCarry.getNode(), 1);
8813     return;
8814   }
8815 
8816   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8817                             LHS.getValueType(), LHS, RHS);
8818 
8819   EVT ResultType = Node->getValueType(1);
8820   EVT SetCCType = getSetCCResultType(
8821       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8822   SDValue SetCC;
8823   if (IsAdd && isOneConstant(RHS)) {
8824     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
8825     // the live range of X. We assume comparing with 0 is cheap.
8826     // TODO: This generalizes to (X + C) < C.
8827     SetCC =
8828         DAG.getSetCC(dl, SetCCType, Result,
8829                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
8830   } else {
8831     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8832     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8833   }
8834   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8835 }
8836 
8837 void TargetLowering::expandSADDSUBO(
8838     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8839   SDLoc dl(Node);
8840   SDValue LHS = Node->getOperand(0);
8841   SDValue RHS = Node->getOperand(1);
8842   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8843 
8844   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8845                             LHS.getValueType(), LHS, RHS);
8846 
8847   EVT ResultType = Node->getValueType(1);
8848   EVT OType = getSetCCResultType(
8849       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8850 
8851   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8852   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8853   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8854     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8855     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8856     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8857     return;
8858   }
8859 
8860   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8861 
8862   // For an addition, the result should be less than one of the operands (LHS)
8863   // if and only if the other operand (RHS) is negative, otherwise there will
8864   // be overflow.
8865   // For a subtraction, the result should be less than one of the operands
8866   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8867   // otherwise there will be overflow.
8868   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8869   SDValue ConditionRHS =
8870       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8871 
8872   Overflow = DAG.getBoolExtOrTrunc(
8873       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8874       ResultType, ResultType);
8875 }
8876 
8877 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8878                                 SDValue &Overflow, SelectionDAG &DAG) const {
8879   SDLoc dl(Node);
8880   EVT VT = Node->getValueType(0);
8881   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8882   SDValue LHS = Node->getOperand(0);
8883   SDValue RHS = Node->getOperand(1);
8884   bool isSigned = Node->getOpcode() == ISD::SMULO;
8885 
8886   // For power-of-two multiplications we can use a simpler shift expansion.
8887   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8888     const APInt &C = RHSC->getAPIntValue();
8889     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8890     if (C.isPowerOf2()) {
8891       // smulo(x, signed_min) is same as umulo(x, signed_min).
8892       bool UseArithShift = isSigned && !C.isMinSignedValue();
8893       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8894       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8895       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8896       Overflow = DAG.getSetCC(dl, SetCCVT,
8897           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8898                       dl, VT, Result, ShiftAmt),
8899           LHS, ISD::SETNE);
8900       return true;
8901     }
8902   }
8903 
8904   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8905   if (VT.isVector())
8906     WideVT =
8907         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8908 
8909   SDValue BottomHalf;
8910   SDValue TopHalf;
8911   static const unsigned Ops[2][3] =
8912       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8913         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8914   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8915     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8916     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8917   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8918     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8919                              RHS);
8920     TopHalf = BottomHalf.getValue(1);
8921   } else if (isTypeLegal(WideVT)) {
8922     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8923     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8924     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8925     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8926     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8927         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8928     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8929                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8930   } else {
8931     if (VT.isVector())
8932       return false;
8933 
8934     // We can fall back to a libcall with an illegal type for the MUL if we
8935     // have a libcall big enough.
8936     // Also, we can fall back to a division in some cases, but that's a big
8937     // performance hit in the general case.
8938     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8939     if (WideVT == MVT::i16)
8940       LC = RTLIB::MUL_I16;
8941     else if (WideVT == MVT::i32)
8942       LC = RTLIB::MUL_I32;
8943     else if (WideVT == MVT::i64)
8944       LC = RTLIB::MUL_I64;
8945     else if (WideVT == MVT::i128)
8946       LC = RTLIB::MUL_I128;
8947     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8948 
8949     SDValue HiLHS;
8950     SDValue HiRHS;
8951     if (isSigned) {
8952       // The high part is obtained by SRA'ing all but one of the bits of low
8953       // part.
8954       unsigned LoSize = VT.getFixedSizeInBits();
8955       HiLHS =
8956           DAG.getNode(ISD::SRA, dl, VT, LHS,
8957                       DAG.getConstant(LoSize - 1, dl,
8958                                       getPointerTy(DAG.getDataLayout())));
8959       HiRHS =
8960           DAG.getNode(ISD::SRA, dl, VT, RHS,
8961                       DAG.getConstant(LoSize - 1, dl,
8962                                       getPointerTy(DAG.getDataLayout())));
8963     } else {
8964         HiLHS = DAG.getConstant(0, dl, VT);
8965         HiRHS = DAG.getConstant(0, dl, VT);
8966     }
8967 
8968     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8969     // pre-lowered to the correct types. This all depends upon WideVT not
8970     // being a legal type for the architecture and thus has to be split to
8971     // two arguments.
8972     SDValue Ret;
8973     TargetLowering::MakeLibCallOptions CallOptions;
8974     CallOptions.setSExt(isSigned);
8975     CallOptions.setIsPostTypeLegalization(true);
8976     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8977       // Halves of WideVT are packed into registers in different order
8978       // depending on platform endianness. This is usually handled by
8979       // the C calling convention, but we can't defer to it in
8980       // the legalizer.
8981       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8982       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8983     } else {
8984       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8985       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8986     }
8987     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8988            "Ret value is a collection of constituent nodes holding result.");
8989     if (DAG.getDataLayout().isLittleEndian()) {
8990       // Same as above.
8991       BottomHalf = Ret.getOperand(0);
8992       TopHalf = Ret.getOperand(1);
8993     } else {
8994       BottomHalf = Ret.getOperand(1);
8995       TopHalf = Ret.getOperand(0);
8996     }
8997   }
8998 
8999   Result = BottomHalf;
9000   if (isSigned) {
9001     SDValue ShiftAmt = DAG.getConstant(
9002         VT.getScalarSizeInBits() - 1, dl,
9003         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9004     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9005     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9006   } else {
9007     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9008                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9009   }
9010 
9011   // Truncate the result if SetCC returns a larger type than needed.
9012   EVT RType = Node->getValueType(1);
9013   if (RType.bitsLT(Overflow.getValueType()))
9014     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9015 
9016   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9017          "Unexpected result type for S/UMULO legalization");
9018   return true;
9019 }
9020 
9021 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9022   SDLoc dl(Node);
9023   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9024   SDValue Op = Node->getOperand(0);
9025   EVT VT = Op.getValueType();
9026 
9027   if (VT.isScalableVector())
9028     report_fatal_error(
9029         "Expanding reductions for scalable vectors is undefined.");
9030 
9031   // Try to use a shuffle reduction for power of two vectors.
9032   if (VT.isPow2VectorType()) {
9033     while (VT.getVectorNumElements() > 1) {
9034       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9035       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9036         break;
9037 
9038       SDValue Lo, Hi;
9039       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9040       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9041       VT = HalfVT;
9042     }
9043   }
9044 
9045   EVT EltVT = VT.getVectorElementType();
9046   unsigned NumElts = VT.getVectorNumElements();
9047 
9048   SmallVector<SDValue, 8> Ops;
9049   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9050 
9051   SDValue Res = Ops[0];
9052   for (unsigned i = 1; i < NumElts; i++)
9053     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9054 
9055   // Result type may be wider than element type.
9056   if (EltVT != Node->getValueType(0))
9057     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9058   return Res;
9059 }
9060 
9061 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9062   SDLoc dl(Node);
9063   SDValue AccOp = Node->getOperand(0);
9064   SDValue VecOp = Node->getOperand(1);
9065   SDNodeFlags Flags = Node->getFlags();
9066 
9067   EVT VT = VecOp.getValueType();
9068   EVT EltVT = VT.getVectorElementType();
9069 
9070   if (VT.isScalableVector())
9071     report_fatal_error(
9072         "Expanding reductions for scalable vectors is undefined.");
9073 
9074   unsigned NumElts = VT.getVectorNumElements();
9075 
9076   SmallVector<SDValue, 8> Ops;
9077   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9078 
9079   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9080 
9081   SDValue Res = AccOp;
9082   for (unsigned i = 0; i < NumElts; i++)
9083     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9084 
9085   return Res;
9086 }
9087 
9088 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9089                                SelectionDAG &DAG) const {
9090   EVT VT = Node->getValueType(0);
9091   SDLoc dl(Node);
9092   bool isSigned = Node->getOpcode() == ISD::SREM;
9093   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9094   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9095   SDValue Dividend = Node->getOperand(0);
9096   SDValue Divisor = Node->getOperand(1);
9097   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9098     SDVTList VTs = DAG.getVTList(VT, VT);
9099     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9100     return true;
9101   }
9102   if (isOperationLegalOrCustom(DivOpc, VT)) {
9103     // X % Y -> X-X/Y*Y
9104     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9105     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9106     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9107     return true;
9108   }
9109   return false;
9110 }
9111 
9112 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9113                                             SelectionDAG &DAG) const {
9114   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9115   SDLoc dl(SDValue(Node, 0));
9116   SDValue Src = Node->getOperand(0);
9117 
9118   // DstVT is the result type, while SatVT is the size to which we saturate
9119   EVT SrcVT = Src.getValueType();
9120   EVT DstVT = Node->getValueType(0);
9121 
9122   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9123   unsigned SatWidth = SatVT.getScalarSizeInBits();
9124   unsigned DstWidth = DstVT.getScalarSizeInBits();
9125   assert(SatWidth <= DstWidth &&
9126          "Expected saturation width smaller than result width");
9127 
9128   // Determine minimum and maximum integer values and their corresponding
9129   // floating-point values.
9130   APInt MinInt, MaxInt;
9131   if (IsSigned) {
9132     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
9133     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
9134   } else {
9135     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
9136     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
9137   }
9138 
9139   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9140   // libcall emission cannot handle this. Large result types will fail.
9141   if (SrcVT == MVT::f16) {
9142     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9143     SrcVT = Src.getValueType();
9144   }
9145 
9146   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9147   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9148 
9149   APFloat::opStatus MinStatus =
9150       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9151   APFloat::opStatus MaxStatus =
9152       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9153   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9154                              !(MaxStatus & APFloat::opStatus::opInexact);
9155 
9156   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9157   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9158 
9159   // If the integer bounds are exactly representable as floats and min/max are
9160   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9161   // of comparisons and selects.
9162   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9163                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9164   if (AreExactFloatBounds && MinMaxLegal) {
9165     SDValue Clamped = Src;
9166 
9167     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9168     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9169     // Clamp by MaxFloat from above. NaN cannot occur.
9170     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9171     // Convert clamped value to integer.
9172     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9173                                   dl, DstVT, Clamped);
9174 
9175     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9176     // which will cast to zero.
9177     if (!IsSigned)
9178       return FpToInt;
9179 
9180     // Otherwise, select 0 if Src is NaN.
9181     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9182     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9183                            ISD::CondCode::SETUO);
9184   }
9185 
9186   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9187   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9188 
9189   // Result of direct conversion. The assumption here is that the operation is
9190   // non-trapping and it's fine to apply it to an out-of-range value if we
9191   // select it away later.
9192   SDValue FpToInt =
9193       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9194 
9195   SDValue Select = FpToInt;
9196 
9197   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9198   // MinInt if Src is NaN.
9199   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9200                            ISD::CondCode::SETULT);
9201   // If Src OGT MaxFloat, select MaxInt.
9202   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9203                            ISD::CondCode::SETOGT);
9204 
9205   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9206   // is already zero.
9207   if (!IsSigned)
9208     return Select;
9209 
9210   // Otherwise, select 0 if Src is NaN.
9211   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9212   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9213 }
9214 
9215 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9216                                            SelectionDAG &DAG) const {
9217   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9218   assert(Node->getValueType(0).isScalableVector() &&
9219          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9220 
9221   EVT VT = Node->getValueType(0);
9222   SDValue V1 = Node->getOperand(0);
9223   SDValue V2 = Node->getOperand(1);
9224   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9225   SDLoc DL(Node);
9226 
9227   // Expand through memory thusly:
9228   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9229   //  Store V1, Ptr
9230   //  Store V2, Ptr + sizeof(V1)
9231   //  If (Imm < 0)
9232   //    TrailingElts = -Imm
9233   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9234   //  else
9235   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9236   //  Res = Load Ptr
9237 
9238   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9239 
9240   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9241                                VT.getVectorElementCount() * 2);
9242   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9243   EVT PtrVT = StackPtr.getValueType();
9244   auto &MF = DAG.getMachineFunction();
9245   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9246   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9247 
9248   // Store the lo part of CONCAT_VECTORS(V1, V2)
9249   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9250   // Store the hi part of CONCAT_VECTORS(V1, V2)
9251   SDValue OffsetToV2 = DAG.getVScale(
9252       DL, PtrVT,
9253       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9254   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9255   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9256 
9257   if (Imm >= 0) {
9258     // Load back the required element. getVectorElementPointer takes care of
9259     // clamping the index if it's out-of-bounds.
9260     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9261     // Load the spliced result
9262     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9263                        MachinePointerInfo::getUnknownStack(MF));
9264   }
9265 
9266   uint64_t TrailingElts = -Imm;
9267 
9268   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9269   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9270   SDValue TrailingBytes =
9271       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9272 
9273   if (TrailingElts > VT.getVectorMinNumElements()) {
9274     SDValue VLBytes = DAG.getVScale(
9275         DL, PtrVT,
9276         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9277     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9278   }
9279 
9280   // Calculate the start address of the spliced result.
9281   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9282 
9283   // Load the spliced result
9284   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9285                      MachinePointerInfo::getUnknownStack(MF));
9286 }
9287 
9288 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9289                                            SDValue &LHS, SDValue &RHS,
9290                                            SDValue &CC, SDValue Mask,
9291                                            SDValue EVL, bool &NeedInvert,
9292                                            const SDLoc &dl, SDValue &Chain,
9293                                            bool IsSignaling) const {
9294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9295   MVT OpVT = LHS.getSimpleValueType();
9296   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9297   NeedInvert = false;
9298   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9299   bool IsNonVP = !EVL;
9300   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9301   default:
9302     llvm_unreachable("Unknown condition code action!");
9303   case TargetLowering::Legal:
9304     // Nothing to do.
9305     break;
9306   case TargetLowering::Expand: {
9307     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9308     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9309       std::swap(LHS, RHS);
9310       CC = DAG.getCondCode(InvCC);
9311       return true;
9312     }
9313     // Swapping operands didn't work. Try inverting the condition.
9314     bool NeedSwap = false;
9315     InvCC = getSetCCInverse(CCCode, OpVT);
9316     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9317       // If inverting the condition is not enough, try swapping operands
9318       // on top of it.
9319       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9320       NeedSwap = true;
9321     }
9322     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9323       CC = DAG.getCondCode(InvCC);
9324       NeedInvert = true;
9325       if (NeedSwap)
9326         std::swap(LHS, RHS);
9327       return true;
9328     }
9329 
9330     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9331     unsigned Opc = 0;
9332     switch (CCCode) {
9333     default:
9334       llvm_unreachable("Don't know how to expand this condition!");
9335     case ISD::SETUO:
9336       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9337         CC1 = ISD::SETUNE;
9338         CC2 = ISD::SETUNE;
9339         Opc = ISD::OR;
9340         break;
9341       }
9342       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9343              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9344       NeedInvert = true;
9345       LLVM_FALLTHROUGH;
9346     case ISD::SETO:
9347       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9348              "If SETO is expanded, SETOEQ must be legal!");
9349       CC1 = ISD::SETOEQ;
9350       CC2 = ISD::SETOEQ;
9351       Opc = ISD::AND;
9352       break;
9353     case ISD::SETONE:
9354     case ISD::SETUEQ:
9355       // If the SETUO or SETO CC isn't legal, we might be able to use
9356       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9357       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9358       // the operands.
9359       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9360       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9361           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9362            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9363         CC1 = ISD::SETOGT;
9364         CC2 = ISD::SETOLT;
9365         Opc = ISD::OR;
9366         NeedInvert = ((unsigned)CCCode & 0x8U);
9367         break;
9368       }
9369       LLVM_FALLTHROUGH;
9370     case ISD::SETOEQ:
9371     case ISD::SETOGT:
9372     case ISD::SETOGE:
9373     case ISD::SETOLT:
9374     case ISD::SETOLE:
9375     case ISD::SETUNE:
9376     case ISD::SETUGT:
9377     case ISD::SETUGE:
9378     case ISD::SETULT:
9379     case ISD::SETULE:
9380       // If we are floating point, assign and break, otherwise fall through.
9381       if (!OpVT.isInteger()) {
9382         // We can use the 4th bit to tell if we are the unordered
9383         // or ordered version of the opcode.
9384         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9385         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9386         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9387         break;
9388       }
9389       // Fallthrough if we are unsigned integer.
9390       LLVM_FALLTHROUGH;
9391     case ISD::SETLE:
9392     case ISD::SETGT:
9393     case ISD::SETGE:
9394     case ISD::SETLT:
9395     case ISD::SETNE:
9396     case ISD::SETEQ:
9397       // If all combinations of inverting the condition and swapping operands
9398       // didn't work then we have no means to expand the condition.
9399       llvm_unreachable("Don't know how to expand this condition!");
9400     }
9401 
9402     SDValue SetCC1, SetCC2;
9403     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9404       // If we aren't the ordered or unorder operation,
9405       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9406       if (IsNonVP) {
9407         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9408         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9409       } else {
9410         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9411         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9412       }
9413     } else {
9414       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9415       if (IsNonVP) {
9416         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9417         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9418       } else {
9419         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9420         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9421       }
9422     }
9423     if (Chain)
9424       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9425                           SetCC2.getValue(1));
9426     if (IsNonVP)
9427       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9428     else {
9429       // Transform the binary opcode to the VP equivalent.
9430       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9431       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9432       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9433     }
9434     RHS = SDValue();
9435     CC = SDValue();
9436     return true;
9437   }
9438   }
9439   return false;
9440 }
9441