1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on a call instruction 106 /// and called function attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 110 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 111 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 112 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 113 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 114 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 115 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 116 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 117 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 118 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 119 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 120 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 121 Alignment = Call->getParamStackAlign(ArgIdx); 122 IndirectType = nullptr; 123 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 124 "multiple ABI attributes?"); 125 if (IsByVal) { 126 IndirectType = Call->getParamByValType(ArgIdx); 127 if (!Alignment) 128 Alignment = Call->getParamAlign(ArgIdx); 129 } 130 if (IsPreallocated) 131 IndirectType = Call->getParamPreallocatedType(ArgIdx); 132 if (IsInAlloca) 133 IndirectType = Call->getParamInAllocaType(ArgIdx); 134 } 135 136 /// Generate a libcall taking the given operands as arguments and returning a 137 /// result of type RetVT. 138 std::pair<SDValue, SDValue> 139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 140 ArrayRef<SDValue> Ops, 141 MakeLibCallOptions CallOptions, 142 const SDLoc &dl, 143 SDValue InChain) const { 144 if (!InChain) 145 InChain = DAG.getEntryNode(); 146 147 TargetLowering::ArgListTy Args; 148 Args.reserve(Ops.size()); 149 150 TargetLowering::ArgListEntry Entry; 151 for (unsigned i = 0; i < Ops.size(); ++i) { 152 SDValue NewOp = Ops[i]; 153 Entry.Node = NewOp; 154 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 155 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 156 CallOptions.IsSExt); 157 Entry.IsZExt = !Entry.IsSExt; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 161 Entry.IsSExt = Entry.IsZExt = false; 162 } 163 Args.push_back(Entry); 164 } 165 166 if (LC == RTLIB::UNKNOWN_LIBCALL) 167 report_fatal_error("Unsupported library call operation!"); 168 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 169 getPointerTy(DAG.getDataLayout())); 170 171 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 172 TargetLowering::CallLoweringInfo CLI(DAG); 173 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 174 bool zeroExtend = !signExtend; 175 176 if (CallOptions.IsSoften && 177 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 178 signExtend = zeroExtend = false; 179 } 180 181 CLI.setDebugLoc(dl) 182 .setChain(InChain) 183 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 184 .setNoReturn(CallOptions.DoesNotReturn) 185 .setDiscardResult(!CallOptions.IsReturnValueUsed) 186 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 187 .setSExtResult(signExtend) 188 .setZExtResult(zeroExtend); 189 return LowerCallTo(CLI); 190 } 191 192 bool TargetLowering::findOptimalMemOpLowering( 193 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 194 unsigned SrcAS, const AttributeList &FuncAttributes) const { 195 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 196 return false; 197 198 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 199 200 if (VT == MVT::Other) { 201 // Use the largest integer type whose alignment constraints are satisfied. 202 // We only need to check DstAlign here as SrcAlign is always greater or 203 // equal to DstAlign (or zero). 204 VT = MVT::i64; 205 if (Op.isFixedDstAlign()) 206 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 207 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 208 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 209 assert(VT.isInteger()); 210 211 // Find the largest legal integer type. 212 MVT LVT = MVT::i64; 213 while (!isTypeLegal(LVT)) 214 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 215 assert(LVT.isInteger()); 216 217 // If the type we've chosen is larger than the largest legal integer type 218 // then use that instead. 219 if (VT.bitsGT(LVT)) 220 VT = LVT; 221 } 222 223 unsigned NumMemOps = 0; 224 uint64_t Size = Op.size(); 225 while (Size) { 226 unsigned VTSize = VT.getSizeInBits() / 8; 227 while (VTSize > Size) { 228 // For now, only use non-vector load / store's for the left-over pieces. 229 EVT NewVT = VT; 230 unsigned NewVTSize; 231 232 bool Found = false; 233 if (VT.isVector() || VT.isFloatingPoint()) { 234 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 235 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 236 isSafeMemOpType(NewVT.getSimpleVT())) 237 Found = true; 238 else if (NewVT == MVT::i64 && 239 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 240 isSafeMemOpType(MVT::f64)) { 241 // i64 is usually not legal on 32-bit targets, but f64 may be. 242 NewVT = MVT::f64; 243 Found = true; 244 } 245 } 246 247 if (!Found) { 248 do { 249 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 250 if (NewVT == MVT::i8) 251 break; 252 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 253 } 254 NewVTSize = NewVT.getSizeInBits() / 8; 255 256 // If the new VT cannot cover all of the remaining bits, then consider 257 // issuing a (or a pair of) unaligned and overlapping load / store. 258 bool Fast; 259 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 260 allowsMisalignedMemoryAccesses( 261 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETO: 348 ShouldInvertCC = true; 349 LLVM_FALLTHROUGH; 350 case ISD::SETUO: 351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 352 (VT == MVT::f64) ? RTLIB::UO_F64 : 353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 354 break; 355 case ISD::SETONE: 356 // SETONE = O && UNE 357 ShouldInvertCC = true; 358 LLVM_FALLTHROUGH; 359 case ISD::SETUEQ: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 364 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 365 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 366 break; 367 default: 368 // Invert CC for unordered comparisons 369 ShouldInvertCC = true; 370 switch (CCCode) { 371 case ISD::SETULT: 372 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 373 (VT == MVT::f64) ? RTLIB::OGE_F64 : 374 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 375 break; 376 case ISD::SETULE: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 378 (VT == MVT::f64) ? RTLIB::OGT_F64 : 379 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 380 break; 381 case ISD::SETUGT: 382 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 383 (VT == MVT::f64) ? RTLIB::OLE_F64 : 384 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 385 break; 386 case ISD::SETUGE: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 388 (VT == MVT::f64) ? RTLIB::OLT_F64 : 389 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 390 break; 391 default: llvm_unreachable("Do not know how to soften this setcc!"); 392 } 393 } 394 395 // Use the target specific return value for comparions lib calls. 396 EVT RetVT = getCmpLibcallReturnType(); 397 SDValue Ops[2] = {NewLHS, NewRHS}; 398 TargetLowering::MakeLibCallOptions CallOptions; 399 EVT OpsVT[2] = { OldLHS.getValueType(), 400 OldRHS.getValueType() }; 401 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 402 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 403 NewLHS = Call.first; 404 NewRHS = DAG.getConstant(0, dl, RetVT); 405 406 CCCode = getCmpLibcallCC(LC1); 407 if (ShouldInvertCC) { 408 assert(RetVT.isInteger()); 409 CCCode = getSetCCInverse(CCCode, RetVT); 410 } 411 412 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 413 // Update Chain. 414 Chain = Call.second; 415 } else { 416 EVT SetCCVT = 417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 418 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 419 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 420 CCCode = getCmpLibcallCC(LC2); 421 if (ShouldInvertCC) 422 CCCode = getSetCCInverse(CCCode, RetVT); 423 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 424 if (Chain) 425 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 426 Call2.second); 427 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 428 Tmp.getValueType(), Tmp, NewLHS); 429 NewRHS = SDValue(); 430 } 431 } 432 433 /// Return the entry encoding for a jump table in the current function. The 434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 435 unsigned TargetLowering::getJumpTableEncoding() const { 436 // In non-pic modes, just use the address of a block. 437 if (!isPositionIndependent()) 438 return MachineJumpTableInfo::EK_BlockAddress; 439 440 // In PIC mode, if the target supports a GPRel32 directive, use it. 441 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 442 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 443 444 // Otherwise, use a label difference. 445 return MachineJumpTableInfo::EK_LabelDifference32; 446 } 447 448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 449 SelectionDAG &DAG) const { 450 // If our PIC model is GP relative, use the global offset table as the base. 451 unsigned JTEncoding = getJumpTableEncoding(); 452 453 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 454 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 455 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 456 457 return Table; 458 } 459 460 /// This returns the relocation base for the given PIC jumptable, the same as 461 /// getPICJumpTableRelocBase, but as an MCExpr. 462 const MCExpr * 463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 464 unsigned JTI,MCContext &Ctx) const{ 465 // The normal PIC reloc base is the label at the start of the jump table. 466 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 467 } 468 469 bool 470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 471 const TargetMachine &TM = getTargetMachine(); 472 const GlobalValue *GV = GA->getGlobal(); 473 474 // If the address is not even local to this DSO we will have to load it from 475 // a got and then add the offset. 476 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 477 return false; 478 479 // If the code is position independent we will have to add a base register. 480 if (isPositionIndependent()) 481 return false; 482 483 // Otherwise we can do it. 484 return true; 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Optimization Methods 489 //===----------------------------------------------------------------------===// 490 491 /// If the specified instruction has a constant integer operand and there are 492 /// bits set in that constant that are not demanded, then clear those bits and 493 /// return true. 494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 495 const APInt &DemandedBits, 496 const APInt &DemandedElts, 497 TargetLoweringOpt &TLO) const { 498 SDLoc DL(Op); 499 unsigned Opcode = Op.getOpcode(); 500 501 // Do target-specific constant optimization. 502 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 503 return TLO.New.getNode(); 504 505 // FIXME: ISD::SELECT, ISD::SELECT_CC 506 switch (Opcode) { 507 default: 508 break; 509 case ISD::XOR: 510 case ISD::AND: 511 case ISD::OR: { 512 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 513 if (!Op1C || Op1C->isOpaque()) 514 return false; 515 516 // If this is a 'not' op, don't touch it because that's a canonical form. 517 const APInt &C = Op1C->getAPIntValue(); 518 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 519 return false; 520 521 if (!C.isSubsetOf(DemandedBits)) { 522 EVT VT = Op.getValueType(); 523 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 524 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 525 return TLO.CombineTo(Op, NewOp); 526 } 527 528 break; 529 } 530 } 531 532 return false; 533 } 534 535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 536 const APInt &DemandedBits, 537 TargetLoweringOpt &TLO) const { 538 EVT VT = Op.getValueType(); 539 APInt DemandedElts = VT.isVector() 540 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 541 : APInt(1, 1); 542 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 543 } 544 545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 547 /// generalized for targets with other types of implicit widening casts. 548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 549 const APInt &Demanded, 550 TargetLoweringOpt &TLO) const { 551 assert(Op.getNumOperands() == 2 && 552 "ShrinkDemandedOp only supports binary operators!"); 553 assert(Op.getNode()->getNumValues() == 1 && 554 "ShrinkDemandedOp only supports nodes with one result!"); 555 556 SelectionDAG &DAG = TLO.DAG; 557 SDLoc dl(Op); 558 559 // Early return, as this function cannot handle vector types. 560 if (Op.getValueType().isVector()) 561 return false; 562 563 // Don't do this if the node has another user, which may require the 564 // full value. 565 if (!Op.getNode()->hasOneUse()) 566 return false; 567 568 // Search for the smallest integer type with free casts to and from 569 // Op's type. For expedience, just check power-of-2 integer types. 570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 571 unsigned DemandedSize = Demanded.getActiveBits(); 572 unsigned SmallVTBits = DemandedSize; 573 if (!isPowerOf2_32(SmallVTBits)) 574 SmallVTBits = NextPowerOf2(SmallVTBits); 575 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 576 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 577 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 578 TLI.isZExtFree(SmallVT, Op.getValueType())) { 579 // We found a type with free casts. 580 SDValue X = DAG.getNode( 581 Op.getOpcode(), dl, SmallVT, 582 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 584 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 585 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 586 return TLO.CombineTo(Op, Z); 587 } 588 } 589 return false; 590 } 591 592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 593 DAGCombinerInfo &DCI) const { 594 SelectionDAG &DAG = DCI.DAG; 595 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 596 !DCI.isBeforeLegalizeOps()); 597 KnownBits Known; 598 599 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 600 if (Simplified) { 601 DCI.AddToWorklist(Op.getNode()); 602 DCI.CommitTargetLoweringOpt(TLO); 603 } 604 return Simplified; 605 } 606 607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 608 KnownBits &Known, 609 TargetLoweringOpt &TLO, 610 unsigned Depth, 611 bool AssumeSingleUse) const { 612 EVT VT = Op.getValueType(); 613 614 // TODO: We can probably do more work on calculating the known bits and 615 // simplifying the operations for scalable vectors, but for now we just 616 // bail out. 617 if (VT.isScalableVector()) { 618 // Pretend we don't know anything for now. 619 Known = KnownBits(DemandedBits.getBitWidth()); 620 return false; 621 } 622 623 APInt DemandedElts = VT.isVector() 624 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 625 : APInt(1, 1); 626 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 627 AssumeSingleUse); 628 } 629 630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 631 // TODO: Under what circumstances can we create nodes? Constant folding? 632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 633 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 634 SelectionDAG &DAG, unsigned Depth) const { 635 // Limit search depth. 636 if (Depth >= SelectionDAG::MaxRecursionDepth) 637 return SDValue(); 638 639 // Ignore UNDEFs. 640 if (Op.isUndef()) 641 return SDValue(); 642 643 // Not demanding any bits/elts from Op. 644 if (DemandedBits == 0 || DemandedElts == 0) 645 return DAG.getUNDEF(Op.getValueType()); 646 647 unsigned NumElts = DemandedElts.getBitWidth(); 648 unsigned BitWidth = DemandedBits.getBitWidth(); 649 KnownBits LHSKnown, RHSKnown; 650 switch (Op.getOpcode()) { 651 case ISD::BITCAST: { 652 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 653 EVT SrcVT = Src.getValueType(); 654 EVT DstVT = Op.getValueType(); 655 if (SrcVT == DstVT) 656 return Src; 657 658 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 659 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 660 if (NumSrcEltBits == NumDstEltBits) 661 if (SDValue V = SimplifyMultipleUseDemandedBits( 662 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 663 return DAG.getBitcast(DstVT, V); 664 665 // TODO - bigendian once we have test coverage. 666 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 667 DAG.getDataLayout().isLittleEndian()) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned Offset = i * NumSrcEltBits; 674 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 675 if (!Sub.isNullValue()) { 676 DemandedSrcBits |= Sub; 677 for (unsigned j = 0; j != NumElts; ++j) 678 if (DemandedElts[j]) 679 DemandedSrcElts.setBit((j * Scale) + i); 680 } 681 } 682 683 if (SDValue V = SimplifyMultipleUseDemandedBits( 684 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 685 return DAG.getBitcast(DstVT, V); 686 } 687 688 // TODO - bigendian once we have test coverage. 689 if ((NumSrcEltBits % NumDstEltBits) == 0 && 690 DAG.getDataLayout().isLittleEndian()) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 805 DAG.getDataLayout().isLittleEndian() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 // If we don't demand the inserted subvector, return the base vector. 823 SDValue Vec = Op.getOperand(0); 824 SDValue Sub = Op.getOperand(1); 825 uint64_t Idx = Op.getConstantOperandVal(2); 826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 827 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 828 return Vec; 829 break; 830 } 831 case ISD::VECTOR_SHUFFLE: { 832 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 833 834 // If all the demanded elts are from one operand and are inline, 835 // then we can use the operand directly. 836 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 837 for (unsigned i = 0; i != NumElts; ++i) { 838 int M = ShuffleMask[i]; 839 if (M < 0 || !DemandedElts[i]) 840 continue; 841 AllUndef = false; 842 IdentityLHS &= (M == (int)i); 843 IdentityRHS &= ((M - NumElts) == i); 844 } 845 846 if (AllUndef) 847 return DAG.getUNDEF(Op.getValueType()); 848 if (IdentityLHS) 849 return Op.getOperand(0); 850 if (IdentityRHS) 851 return Op.getOperand(1); 852 break; 853 } 854 default: 855 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 856 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 857 Op, DemandedBits, DemandedElts, DAG, Depth)) 858 return V; 859 break; 860 } 861 return SDValue(); 862 } 863 864 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 865 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 866 unsigned Depth) const { 867 EVT VT = Op.getValueType(); 868 APInt DemandedElts = VT.isVector() 869 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 870 : APInt(1, 1); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 876 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 877 unsigned Depth) const { 878 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 884 /// result of Op are ever used downstream. If we can use this information to 885 /// simplify Op, create a new simplified DAG node and return true, returning the 886 /// original and new nodes in Old and New. Otherwise, analyze the expression and 887 /// return a mask of Known bits for the expression (used to simplify the 888 /// caller). The Known bits may only be accurate for those bits in the 889 /// OriginalDemandedBits and OriginalDemandedElts. 890 bool TargetLowering::SimplifyDemandedBits( 891 SDValue Op, const APInt &OriginalDemandedBits, 892 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 893 unsigned Depth, bool AssumeSingleUse) const { 894 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 895 assert(Op.getScalarValueSizeInBits() == BitWidth && 896 "Mask size mismatches value type size!"); 897 898 // Don't know anything. 899 Known = KnownBits(BitWidth); 900 901 // TODO: We can probably do more work on calculating the known bits and 902 // simplifying the operations for scalable vectors, but for now we just 903 // bail out. 904 if (Op.getValueType().isScalableVector()) 905 return false; 906 907 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 908 assert((!Op.getValueType().isVector() || 909 NumElts == Op.getValueType().getVectorNumElements()) && 910 "Unexpected vector size"); 911 912 APInt DemandedBits = OriginalDemandedBits; 913 APInt DemandedElts = OriginalDemandedElts; 914 SDLoc dl(Op); 915 auto &DL = TLO.DAG.getDataLayout(); 916 917 // Undef operand. 918 if (Op.isUndef()) 919 return false; 920 921 if (Op.getOpcode() == ISD::Constant) { 922 // We know all of the bits for a constant! 923 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 924 return false; 925 } 926 927 if (Op.getOpcode() == ISD::ConstantFP) { 928 // We know all of the bits for a floating point constant! 929 Known = KnownBits::makeConstant( 930 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 931 return false; 932 } 933 934 // Other users may use these bits. 935 EVT VT = Op.getValueType(); 936 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 937 if (Depth != 0) { 938 // If not at the root, Just compute the Known bits to 939 // simplify things downstream. 940 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 941 return false; 942 } 943 // If this is the root being simplified, allow it to have multiple uses, 944 // just set the DemandedBits/Elts to all bits. 945 DemandedBits = APInt::getAllOnesValue(BitWidth); 946 DemandedElts = APInt::getAllOnesValue(NumElts); 947 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 948 // Not demanding any bits/elts from Op. 949 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 950 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 951 // Limit search depth. 952 return false; 953 } 954 955 KnownBits Known2; 956 switch (Op.getOpcode()) { 957 case ISD::TargetConstant: 958 llvm_unreachable("Can't simplify this node"); 959 case ISD::SCALAR_TO_VECTOR: { 960 if (!DemandedElts[0]) 961 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 962 963 KnownBits SrcKnown; 964 SDValue Src = Op.getOperand(0); 965 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 966 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 967 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 968 return true; 969 970 // Upper elements are undef, so only get the knownbits if we just demand 971 // the bottom element. 972 if (DemandedElts == 1) 973 Known = SrcKnown.anyextOrTrunc(BitWidth); 974 break; 975 } 976 case ISD::BUILD_VECTOR: 977 // Collect the known bits that are shared by every demanded element. 978 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 979 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 980 return false; // Don't fall through, will infinitely loop. 981 case ISD::LOAD: { 982 auto *LD = cast<LoadSDNode>(Op); 983 if (getTargetConstantFromLoad(LD)) { 984 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 985 return false; // Don't fall through, will infinitely loop. 986 } 987 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 988 // If this is a ZEXTLoad and we are looking at the loaded value. 989 EVT MemVT = LD->getMemoryVT(); 990 unsigned MemBits = MemVT.getScalarSizeInBits(); 991 Known.Zero.setBitsFrom(MemBits); 992 return false; // Don't fall through, will infinitely loop. 993 } 994 break; 995 } 996 case ISD::INSERT_VECTOR_ELT: { 997 SDValue Vec = Op.getOperand(0); 998 SDValue Scl = Op.getOperand(1); 999 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1000 EVT VecVT = Vec.getValueType(); 1001 1002 // If index isn't constant, assume we need all vector elements AND the 1003 // inserted element. 1004 APInt DemandedVecElts(DemandedElts); 1005 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1006 unsigned Idx = CIdx->getZExtValue(); 1007 DemandedVecElts.clearBit(Idx); 1008 1009 // Inserted element is not required. 1010 if (!DemandedElts[Idx]) 1011 return TLO.CombineTo(Op, Vec); 1012 } 1013 1014 KnownBits KnownScl; 1015 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1016 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1017 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1018 return true; 1019 1020 Known = KnownScl.anyextOrTrunc(BitWidth); 1021 1022 KnownBits KnownVec; 1023 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1024 Depth + 1)) 1025 return true; 1026 1027 if (!!DemandedVecElts) 1028 Known = KnownBits::commonBits(Known, KnownVec); 1029 1030 return false; 1031 } 1032 case ISD::INSERT_SUBVECTOR: { 1033 // Demand any elements from the subvector and the remainder from the src its 1034 // inserted into. 1035 SDValue Src = Op.getOperand(0); 1036 SDValue Sub = Op.getOperand(1); 1037 uint64_t Idx = Op.getConstantOperandVal(2); 1038 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1039 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1040 APInt DemandedSrcElts = DemandedElts; 1041 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1042 1043 KnownBits KnownSub, KnownSrc; 1044 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1045 Depth + 1)) 1046 return true; 1047 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1048 Depth + 1)) 1049 return true; 1050 1051 Known.Zero.setAllBits(); 1052 Known.One.setAllBits(); 1053 if (!!DemandedSubElts) 1054 Known = KnownBits::commonBits(Known, KnownSub); 1055 if (!!DemandedSrcElts) 1056 Known = KnownBits::commonBits(Known, KnownSrc); 1057 1058 // Attempt to avoid multi-use src if we don't need anything from it. 1059 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1060 !DemandedSrcElts.isAllOnesValue()) { 1061 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1062 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1063 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1064 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1065 if (NewSub || NewSrc) { 1066 NewSub = NewSub ? NewSub : Sub; 1067 NewSrc = NewSrc ? NewSrc : Src; 1068 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1069 Op.getOperand(2)); 1070 return TLO.CombineTo(Op, NewOp); 1071 } 1072 } 1073 break; 1074 } 1075 case ISD::EXTRACT_SUBVECTOR: { 1076 // Offset the demanded elts by the subvector index. 1077 SDValue Src = Op.getOperand(0); 1078 if (Src.getValueType().isScalableVector()) 1079 break; 1080 uint64_t Idx = Op.getConstantOperandVal(1); 1081 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1082 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1083 1084 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1085 Depth + 1)) 1086 return true; 1087 1088 // Attempt to avoid multi-use src if we don't need anything from it. 1089 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1090 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1091 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1092 if (DemandedSrc) { 1093 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1094 Op.getOperand(1)); 1095 return TLO.CombineTo(Op, NewOp); 1096 } 1097 } 1098 break; 1099 } 1100 case ISD::CONCAT_VECTORS: { 1101 Known.Zero.setAllBits(); 1102 Known.One.setAllBits(); 1103 EVT SubVT = Op.getOperand(0).getValueType(); 1104 unsigned NumSubVecs = Op.getNumOperands(); 1105 unsigned NumSubElts = SubVT.getVectorNumElements(); 1106 for (unsigned i = 0; i != NumSubVecs; ++i) { 1107 APInt DemandedSubElts = 1108 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1109 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1110 Known2, TLO, Depth + 1)) 1111 return true; 1112 // Known bits are shared by every demanded subvector element. 1113 if (!!DemandedSubElts) 1114 Known = KnownBits::commonBits(Known, Known2); 1115 } 1116 break; 1117 } 1118 case ISD::VECTOR_SHUFFLE: { 1119 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1120 1121 // Collect demanded elements from shuffle operands.. 1122 APInt DemandedLHS(NumElts, 0); 1123 APInt DemandedRHS(NumElts, 0); 1124 for (unsigned i = 0; i != NumElts; ++i) { 1125 if (!DemandedElts[i]) 1126 continue; 1127 int M = ShuffleMask[i]; 1128 if (M < 0) { 1129 // For UNDEF elements, we don't know anything about the common state of 1130 // the shuffle result. 1131 DemandedLHS.clearAllBits(); 1132 DemandedRHS.clearAllBits(); 1133 break; 1134 } 1135 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1136 if (M < (int)NumElts) 1137 DemandedLHS.setBit(M); 1138 else 1139 DemandedRHS.setBit(M - NumElts); 1140 } 1141 1142 if (!!DemandedLHS || !!DemandedRHS) { 1143 SDValue Op0 = Op.getOperand(0); 1144 SDValue Op1 = Op.getOperand(1); 1145 1146 Known.Zero.setAllBits(); 1147 Known.One.setAllBits(); 1148 if (!!DemandedLHS) { 1149 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known = KnownBits::commonBits(Known, Known2); 1153 } 1154 if (!!DemandedRHS) { 1155 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1156 Depth + 1)) 1157 return true; 1158 Known = KnownBits::commonBits(Known, Known2); 1159 } 1160 1161 // Attempt to avoid multi-use ops if we don't need anything from them. 1162 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1163 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1164 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1165 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1166 if (DemandedOp0 || DemandedOp1) { 1167 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1168 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1169 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1170 return TLO.CombineTo(Op, NewOp); 1171 } 1172 } 1173 break; 1174 } 1175 case ISD::AND: { 1176 SDValue Op0 = Op.getOperand(0); 1177 SDValue Op1 = Op.getOperand(1); 1178 1179 // If the RHS is a constant, check to see if the LHS would be zero without 1180 // using the bits from the RHS. Below, we use knowledge about the RHS to 1181 // simplify the LHS, here we're using information from the LHS to simplify 1182 // the RHS. 1183 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1184 // Do not increment Depth here; that can cause an infinite loop. 1185 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1186 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1187 if ((LHSKnown.Zero & DemandedBits) == 1188 (~RHSC->getAPIntValue() & DemandedBits)) 1189 return TLO.CombineTo(Op, Op0); 1190 1191 // If any of the set bits in the RHS are known zero on the LHS, shrink 1192 // the constant. 1193 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1194 DemandedElts, TLO)) 1195 return true; 1196 1197 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1198 // constant, but if this 'and' is only clearing bits that were just set by 1199 // the xor, then this 'and' can be eliminated by shrinking the mask of 1200 // the xor. For example, for a 32-bit X: 1201 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1202 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1203 LHSKnown.One == ~RHSC->getAPIntValue()) { 1204 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1205 return TLO.CombineTo(Op, Xor); 1206 } 1207 } 1208 1209 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1210 Depth + 1)) 1211 return true; 1212 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1213 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1214 Known2, TLO, Depth + 1)) 1215 return true; 1216 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1217 1218 // Attempt to avoid multi-use ops if we don't need anything from them. 1219 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1220 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1221 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1222 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1223 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1224 if (DemandedOp0 || DemandedOp1) { 1225 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1226 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1227 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1228 return TLO.CombineTo(Op, NewOp); 1229 } 1230 } 1231 1232 // If all of the demanded bits are known one on one side, return the other. 1233 // These bits cannot contribute to the result of the 'and'. 1234 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1235 return TLO.CombineTo(Op, Op0); 1236 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1237 return TLO.CombineTo(Op, Op1); 1238 // If all of the demanded bits in the inputs are known zeros, return zero. 1239 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1240 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1241 // If the RHS is a constant, see if we can simplify it. 1242 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1243 TLO)) 1244 return true; 1245 // If the operation can be done in a smaller type, do so. 1246 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1247 return true; 1248 1249 Known &= Known2; 1250 break; 1251 } 1252 case ISD::OR: { 1253 SDValue Op0 = Op.getOperand(0); 1254 SDValue Op1 = Op.getOperand(1); 1255 1256 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1257 Depth + 1)) 1258 return true; 1259 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1260 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1261 Known2, TLO, Depth + 1)) 1262 return true; 1263 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1264 1265 // Attempt to avoid multi-use ops if we don't need anything from them. 1266 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1267 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1268 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1269 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1270 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1271 if (DemandedOp0 || DemandedOp1) { 1272 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1273 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1274 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1275 return TLO.CombineTo(Op, NewOp); 1276 } 1277 } 1278 1279 // If all of the demanded bits are known zero on one side, return the other. 1280 // These bits cannot contribute to the result of the 'or'. 1281 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1282 return TLO.CombineTo(Op, Op0); 1283 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1284 return TLO.CombineTo(Op, Op1); 1285 // If the RHS is a constant, see if we can simplify it. 1286 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1287 return true; 1288 // If the operation can be done in a smaller type, do so. 1289 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1290 return true; 1291 1292 Known |= Known2; 1293 break; 1294 } 1295 case ISD::XOR: { 1296 SDValue Op0 = Op.getOperand(0); 1297 SDValue Op1 = Op.getOperand(1); 1298 1299 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1300 Depth + 1)) 1301 return true; 1302 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1303 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1304 Depth + 1)) 1305 return true; 1306 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1307 1308 // Attempt to avoid multi-use ops if we don't need anything from them. 1309 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1310 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1311 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1312 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1313 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1314 if (DemandedOp0 || DemandedOp1) { 1315 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1316 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1317 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1318 return TLO.CombineTo(Op, NewOp); 1319 } 1320 } 1321 1322 // If all of the demanded bits are known zero on one side, return the other. 1323 // These bits cannot contribute to the result of the 'xor'. 1324 if (DemandedBits.isSubsetOf(Known.Zero)) 1325 return TLO.CombineTo(Op, Op0); 1326 if (DemandedBits.isSubsetOf(Known2.Zero)) 1327 return TLO.CombineTo(Op, Op1); 1328 // If the operation can be done in a smaller type, do so. 1329 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1330 return true; 1331 1332 // If all of the unknown bits are known to be zero on one side or the other 1333 // turn this into an *inclusive* or. 1334 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1335 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1336 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1337 1338 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1339 if (C) { 1340 // If one side is a constant, and all of the set bits in the constant are 1341 // also known set on the other side, turn this into an AND, as we know 1342 // the bits will be cleared. 1343 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1344 // NB: it is okay if more bits are known than are requested 1345 if (C->getAPIntValue() == Known2.One) { 1346 SDValue ANDC = 1347 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1348 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1349 } 1350 1351 // If the RHS is a constant, see if we can change it. Don't alter a -1 1352 // constant because that's a 'not' op, and that is better for combining 1353 // and codegen. 1354 if (!C->isAllOnesValue() && 1355 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1356 // We're flipping all demanded bits. Flip the undemanded bits too. 1357 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1358 return TLO.CombineTo(Op, New); 1359 } 1360 } 1361 1362 // If we can't turn this into a 'not', try to shrink the constant. 1363 if (!C || !C->isAllOnesValue()) 1364 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1365 return true; 1366 1367 Known ^= Known2; 1368 break; 1369 } 1370 case ISD::SELECT: 1371 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1372 Depth + 1)) 1373 return true; 1374 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1375 Depth + 1)) 1376 return true; 1377 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1378 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1379 1380 // If the operands are constants, see if we can simplify them. 1381 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1382 return true; 1383 1384 // Only known if known in both the LHS and RHS. 1385 Known = KnownBits::commonBits(Known, Known2); 1386 break; 1387 case ISD::SELECT_CC: 1388 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1389 Depth + 1)) 1390 return true; 1391 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1392 Depth + 1)) 1393 return true; 1394 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1395 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1396 1397 // If the operands are constants, see if we can simplify them. 1398 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1399 return true; 1400 1401 // Only known if known in both the LHS and RHS. 1402 Known = KnownBits::commonBits(Known, Known2); 1403 break; 1404 case ISD::SETCC: { 1405 SDValue Op0 = Op.getOperand(0); 1406 SDValue Op1 = Op.getOperand(1); 1407 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1408 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1409 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1410 // -1, we may be able to bypass the setcc. 1411 if (DemandedBits.isSignMask() && 1412 Op0.getScalarValueSizeInBits() == BitWidth && 1413 getBooleanContents(Op0.getValueType()) == 1414 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1415 // If we're testing X < 0, then this compare isn't needed - just use X! 1416 // FIXME: We're limiting to integer types here, but this should also work 1417 // if we don't care about FP signed-zero. The use of SETLT with FP means 1418 // that we don't care about NaNs. 1419 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1420 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1421 return TLO.CombineTo(Op, Op0); 1422 1423 // TODO: Should we check for other forms of sign-bit comparisons? 1424 // Examples: X <= -1, X >= 0 1425 } 1426 if (getBooleanContents(Op0.getValueType()) == 1427 TargetLowering::ZeroOrOneBooleanContent && 1428 BitWidth > 1) 1429 Known.Zero.setBitsFrom(1); 1430 break; 1431 } 1432 case ISD::SHL: { 1433 SDValue Op0 = Op.getOperand(0); 1434 SDValue Op1 = Op.getOperand(1); 1435 EVT ShiftVT = Op1.getValueType(); 1436 1437 if (const APInt *SA = 1438 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1439 unsigned ShAmt = SA->getZExtValue(); 1440 if (ShAmt == 0) 1441 return TLO.CombineTo(Op, Op0); 1442 1443 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1444 // single shift. We can do this if the bottom bits (which are shifted 1445 // out) are never demanded. 1446 // TODO - support non-uniform vector amounts. 1447 if (Op0.getOpcode() == ISD::SRL) { 1448 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1449 if (const APInt *SA2 = 1450 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1451 unsigned C1 = SA2->getZExtValue(); 1452 unsigned Opc = ISD::SHL; 1453 int Diff = ShAmt - C1; 1454 if (Diff < 0) { 1455 Diff = -Diff; 1456 Opc = ISD::SRL; 1457 } 1458 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1459 return TLO.CombineTo( 1460 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1461 } 1462 } 1463 } 1464 1465 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1466 // are not demanded. This will likely allow the anyext to be folded away. 1467 // TODO - support non-uniform vector amounts. 1468 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1469 SDValue InnerOp = Op0.getOperand(0); 1470 EVT InnerVT = InnerOp.getValueType(); 1471 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1472 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1473 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1474 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1475 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1476 ShTy = InnerVT; 1477 SDValue NarrowShl = 1478 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1479 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1480 return TLO.CombineTo( 1481 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1482 } 1483 1484 // Repeat the SHL optimization above in cases where an extension 1485 // intervenes: (shl (anyext (shr x, c1)), c2) to 1486 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1487 // aren't demanded (as above) and that the shifted upper c1 bits of 1488 // x aren't demanded. 1489 // TODO - support non-uniform vector amounts. 1490 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1491 InnerOp.hasOneUse()) { 1492 if (const APInt *SA2 = 1493 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1494 unsigned InnerShAmt = SA2->getZExtValue(); 1495 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1496 DemandedBits.getActiveBits() <= 1497 (InnerBits - InnerShAmt + ShAmt) && 1498 DemandedBits.countTrailingZeros() >= ShAmt) { 1499 SDValue NewSA = 1500 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1501 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1502 InnerOp.getOperand(0)); 1503 return TLO.CombineTo( 1504 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1505 } 1506 } 1507 } 1508 } 1509 1510 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1511 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1512 Depth + 1)) 1513 return true; 1514 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1515 Known.Zero <<= ShAmt; 1516 Known.One <<= ShAmt; 1517 // low bits known zero. 1518 Known.Zero.setLowBits(ShAmt); 1519 1520 // Try shrinking the operation as long as the shift amount will still be 1521 // in range. 1522 if ((ShAmt < DemandedBits.getActiveBits()) && 1523 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1524 return true; 1525 } 1526 1527 // If we are only demanding sign bits then we can use the shift source 1528 // directly. 1529 if (const APInt *MaxSA = 1530 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1531 unsigned ShAmt = MaxSA->getZExtValue(); 1532 unsigned NumSignBits = 1533 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1534 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1535 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1536 return TLO.CombineTo(Op, Op0); 1537 } 1538 break; 1539 } 1540 case ISD::SRL: { 1541 SDValue Op0 = Op.getOperand(0); 1542 SDValue Op1 = Op.getOperand(1); 1543 EVT ShiftVT = Op1.getValueType(); 1544 1545 if (const APInt *SA = 1546 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1547 unsigned ShAmt = SA->getZExtValue(); 1548 if (ShAmt == 0) 1549 return TLO.CombineTo(Op, Op0); 1550 1551 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1552 // single shift. We can do this if the top bits (which are shifted out) 1553 // are never demanded. 1554 // TODO - support non-uniform vector amounts. 1555 if (Op0.getOpcode() == ISD::SHL) { 1556 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1557 if (const APInt *SA2 = 1558 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1559 unsigned C1 = SA2->getZExtValue(); 1560 unsigned Opc = ISD::SRL; 1561 int Diff = ShAmt - C1; 1562 if (Diff < 0) { 1563 Diff = -Diff; 1564 Opc = ISD::SHL; 1565 } 1566 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1567 return TLO.CombineTo( 1568 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1569 } 1570 } 1571 } 1572 1573 APInt InDemandedMask = (DemandedBits << ShAmt); 1574 1575 // If the shift is exact, then it does demand the low bits (and knows that 1576 // they are zero). 1577 if (Op->getFlags().hasExact()) 1578 InDemandedMask.setLowBits(ShAmt); 1579 1580 // Compute the new bits that are at the top now. 1581 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1582 Depth + 1)) 1583 return true; 1584 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1585 Known.Zero.lshrInPlace(ShAmt); 1586 Known.One.lshrInPlace(ShAmt); 1587 // High bits known zero. 1588 Known.Zero.setHighBits(ShAmt); 1589 } 1590 break; 1591 } 1592 case ISD::SRA: { 1593 SDValue Op0 = Op.getOperand(0); 1594 SDValue Op1 = Op.getOperand(1); 1595 EVT ShiftVT = Op1.getValueType(); 1596 1597 // If we only want bits that already match the signbit then we don't need 1598 // to shift. 1599 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1600 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1601 NumHiDemandedBits) 1602 return TLO.CombineTo(Op, Op0); 1603 1604 // If this is an arithmetic shift right and only the low-bit is set, we can 1605 // always convert this into a logical shr, even if the shift amount is 1606 // variable. The low bit of the shift cannot be an input sign bit unless 1607 // the shift amount is >= the size of the datatype, which is undefined. 1608 if (DemandedBits.isOneValue()) 1609 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1610 1611 if (const APInt *SA = 1612 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1613 unsigned ShAmt = SA->getZExtValue(); 1614 if (ShAmt == 0) 1615 return TLO.CombineTo(Op, Op0); 1616 1617 APInt InDemandedMask = (DemandedBits << ShAmt); 1618 1619 // If the shift is exact, then it does demand the low bits (and knows that 1620 // they are zero). 1621 if (Op->getFlags().hasExact()) 1622 InDemandedMask.setLowBits(ShAmt); 1623 1624 // If any of the demanded bits are produced by the sign extension, we also 1625 // demand the input sign bit. 1626 if (DemandedBits.countLeadingZeros() < ShAmt) 1627 InDemandedMask.setSignBit(); 1628 1629 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1630 Depth + 1)) 1631 return true; 1632 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1633 Known.Zero.lshrInPlace(ShAmt); 1634 Known.One.lshrInPlace(ShAmt); 1635 1636 // If the input sign bit is known to be zero, or if none of the top bits 1637 // are demanded, turn this into an unsigned shift right. 1638 if (Known.Zero[BitWidth - ShAmt - 1] || 1639 DemandedBits.countLeadingZeros() >= ShAmt) { 1640 SDNodeFlags Flags; 1641 Flags.setExact(Op->getFlags().hasExact()); 1642 return TLO.CombineTo( 1643 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1644 } 1645 1646 int Log2 = DemandedBits.exactLogBase2(); 1647 if (Log2 >= 0) { 1648 // The bit must come from the sign. 1649 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1650 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1651 } 1652 1653 if (Known.One[BitWidth - ShAmt - 1]) 1654 // New bits are known one. 1655 Known.One.setHighBits(ShAmt); 1656 1657 // Attempt to avoid multi-use ops if we don't need anything from them. 1658 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1659 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1660 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1661 if (DemandedOp0) { 1662 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1663 return TLO.CombineTo(Op, NewOp); 1664 } 1665 } 1666 } 1667 break; 1668 } 1669 case ISD::FSHL: 1670 case ISD::FSHR: { 1671 SDValue Op0 = Op.getOperand(0); 1672 SDValue Op1 = Op.getOperand(1); 1673 SDValue Op2 = Op.getOperand(2); 1674 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1675 1676 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1677 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1678 1679 // For fshl, 0-shift returns the 1st arg. 1680 // For fshr, 0-shift returns the 2nd arg. 1681 if (Amt == 0) { 1682 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1683 Known, TLO, Depth + 1)) 1684 return true; 1685 break; 1686 } 1687 1688 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1689 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1690 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1691 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1692 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1693 Depth + 1)) 1694 return true; 1695 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1696 Depth + 1)) 1697 return true; 1698 1699 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1700 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1701 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1702 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1703 Known.One |= Known2.One; 1704 Known.Zero |= Known2.Zero; 1705 } 1706 1707 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1708 if (isPowerOf2_32(BitWidth)) { 1709 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1710 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1711 Known2, TLO, Depth + 1)) 1712 return true; 1713 } 1714 break; 1715 } 1716 case ISD::ROTL: 1717 case ISD::ROTR: { 1718 SDValue Op0 = Op.getOperand(0); 1719 SDValue Op1 = Op.getOperand(1); 1720 1721 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1722 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1723 return TLO.CombineTo(Op, Op0); 1724 1725 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1726 if (isPowerOf2_32(BitWidth)) { 1727 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1728 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1729 Depth + 1)) 1730 return true; 1731 } 1732 break; 1733 } 1734 case ISD::UMIN: { 1735 // Check if one arg is always less than (or equal) to the other arg. 1736 SDValue Op0 = Op.getOperand(0); 1737 SDValue Op1 = Op.getOperand(1); 1738 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1739 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1740 Known = KnownBits::umin(Known0, Known1); 1741 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1742 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1743 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1744 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1745 break; 1746 } 1747 case ISD::UMAX: { 1748 // Check if one arg is always greater than (or equal) to the other arg. 1749 SDValue Op0 = Op.getOperand(0); 1750 SDValue Op1 = Op.getOperand(1); 1751 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1752 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1753 Known = KnownBits::umax(Known0, Known1); 1754 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1755 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1756 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1757 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1758 break; 1759 } 1760 case ISD::BITREVERSE: { 1761 SDValue Src = Op.getOperand(0); 1762 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1763 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1764 Depth + 1)) 1765 return true; 1766 Known.One = Known2.One.reverseBits(); 1767 Known.Zero = Known2.Zero.reverseBits(); 1768 break; 1769 } 1770 case ISD::BSWAP: { 1771 SDValue Src = Op.getOperand(0); 1772 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1773 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1774 Depth + 1)) 1775 return true; 1776 Known.One = Known2.One.byteSwap(); 1777 Known.Zero = Known2.Zero.byteSwap(); 1778 break; 1779 } 1780 case ISD::CTPOP: { 1781 // If only 1 bit is demanded, replace with PARITY as long as we're before 1782 // op legalization. 1783 // FIXME: Limit to scalars for now. 1784 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1785 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1786 Op.getOperand(0))); 1787 1788 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1789 break; 1790 } 1791 case ISD::SIGN_EXTEND_INREG: { 1792 SDValue Op0 = Op.getOperand(0); 1793 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1794 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1795 1796 // If we only care about the highest bit, don't bother shifting right. 1797 if (DemandedBits.isSignMask()) { 1798 unsigned NumSignBits = 1799 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1800 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1801 // However if the input is already sign extended we expect the sign 1802 // extension to be dropped altogether later and do not simplify. 1803 if (!AlreadySignExtended) { 1804 // Compute the correct shift amount type, which must be getShiftAmountTy 1805 // for scalar types after legalization. 1806 EVT ShiftAmtTy = VT; 1807 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1808 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1809 1810 SDValue ShiftAmt = 1811 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1812 return TLO.CombineTo(Op, 1813 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1814 } 1815 } 1816 1817 // If none of the extended bits are demanded, eliminate the sextinreg. 1818 if (DemandedBits.getActiveBits() <= ExVTBits) 1819 return TLO.CombineTo(Op, Op0); 1820 1821 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1822 1823 // Since the sign extended bits are demanded, we know that the sign 1824 // bit is demanded. 1825 InputDemandedBits.setBit(ExVTBits - 1); 1826 1827 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1828 return true; 1829 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1830 1831 // If the sign bit of the input is known set or clear, then we know the 1832 // top bits of the result. 1833 1834 // If the input sign bit is known zero, convert this into a zero extension. 1835 if (Known.Zero[ExVTBits - 1]) 1836 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1837 1838 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1839 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1840 Known.One.setBitsFrom(ExVTBits); 1841 Known.Zero &= Mask; 1842 } else { // Input sign bit unknown 1843 Known.Zero &= Mask; 1844 Known.One &= Mask; 1845 } 1846 break; 1847 } 1848 case ISD::BUILD_PAIR: { 1849 EVT HalfVT = Op.getOperand(0).getValueType(); 1850 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1851 1852 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1853 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1854 1855 KnownBits KnownLo, KnownHi; 1856 1857 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1858 return true; 1859 1860 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1861 return true; 1862 1863 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1864 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1865 1866 Known.One = KnownLo.One.zext(BitWidth) | 1867 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1868 break; 1869 } 1870 case ISD::ZERO_EXTEND: 1871 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1872 SDValue Src = Op.getOperand(0); 1873 EVT SrcVT = Src.getValueType(); 1874 unsigned InBits = SrcVT.getScalarSizeInBits(); 1875 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1876 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1877 1878 // If none of the top bits are demanded, convert this into an any_extend. 1879 if (DemandedBits.getActiveBits() <= InBits) { 1880 // If we only need the non-extended bits of the bottom element 1881 // then we can just bitcast to the result. 1882 if (IsVecInReg && DemandedElts == 1 && 1883 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1884 TLO.DAG.getDataLayout().isLittleEndian()) 1885 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1886 1887 unsigned Opc = 1888 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1889 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1890 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1891 } 1892 1893 APInt InDemandedBits = DemandedBits.trunc(InBits); 1894 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1895 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1896 Depth + 1)) 1897 return true; 1898 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1899 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1900 Known = Known.zext(BitWidth); 1901 1902 // Attempt to avoid multi-use ops if we don't need anything from them. 1903 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1904 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1905 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1906 break; 1907 } 1908 case ISD::SIGN_EXTEND: 1909 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1910 SDValue Src = Op.getOperand(0); 1911 EVT SrcVT = Src.getValueType(); 1912 unsigned InBits = SrcVT.getScalarSizeInBits(); 1913 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1914 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1915 1916 // If none of the top bits are demanded, convert this into an any_extend. 1917 if (DemandedBits.getActiveBits() <= InBits) { 1918 // If we only need the non-extended bits of the bottom element 1919 // then we can just bitcast to the result. 1920 if (IsVecInReg && DemandedElts == 1 && 1921 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1922 TLO.DAG.getDataLayout().isLittleEndian()) 1923 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1924 1925 unsigned Opc = 1926 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1927 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1928 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1929 } 1930 1931 APInt InDemandedBits = DemandedBits.trunc(InBits); 1932 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1933 1934 // Since some of the sign extended bits are demanded, we know that the sign 1935 // bit is demanded. 1936 InDemandedBits.setBit(InBits - 1); 1937 1938 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1939 Depth + 1)) 1940 return true; 1941 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1942 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1943 1944 // If the sign bit is known one, the top bits match. 1945 Known = Known.sext(BitWidth); 1946 1947 // If the sign bit is known zero, convert this to a zero extend. 1948 if (Known.isNonNegative()) { 1949 unsigned Opc = 1950 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1951 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1952 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1953 } 1954 1955 // Attempt to avoid multi-use ops if we don't need anything from them. 1956 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1957 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1958 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1959 break; 1960 } 1961 case ISD::ANY_EXTEND: 1962 case ISD::ANY_EXTEND_VECTOR_INREG: { 1963 SDValue Src = Op.getOperand(0); 1964 EVT SrcVT = Src.getValueType(); 1965 unsigned InBits = SrcVT.getScalarSizeInBits(); 1966 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1967 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1968 1969 // If we only need the bottom element then we can just bitcast. 1970 // TODO: Handle ANY_EXTEND? 1971 if (IsVecInReg && DemandedElts == 1 && 1972 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1973 TLO.DAG.getDataLayout().isLittleEndian()) 1974 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1975 1976 APInt InDemandedBits = DemandedBits.trunc(InBits); 1977 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1978 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1979 Depth + 1)) 1980 return true; 1981 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1982 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1983 Known = Known.anyext(BitWidth); 1984 1985 // Attempt to avoid multi-use ops if we don't need anything from them. 1986 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1987 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1988 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1989 break; 1990 } 1991 case ISD::TRUNCATE: { 1992 SDValue Src = Op.getOperand(0); 1993 1994 // Simplify the input, using demanded bit information, and compute the known 1995 // zero/one bits live out. 1996 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1997 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1998 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 1999 Depth + 1)) 2000 return true; 2001 Known = Known.trunc(BitWidth); 2002 2003 // Attempt to avoid multi-use ops if we don't need anything from them. 2004 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2005 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2006 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2007 2008 // If the input is only used by this truncate, see if we can shrink it based 2009 // on the known demanded bits. 2010 if (Src.getNode()->hasOneUse()) { 2011 switch (Src.getOpcode()) { 2012 default: 2013 break; 2014 case ISD::SRL: 2015 // Shrink SRL by a constant if none of the high bits shifted in are 2016 // demanded. 2017 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2018 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2019 // undesirable. 2020 break; 2021 2022 const APInt *ShAmtC = 2023 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2024 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2025 break; 2026 uint64_t ShVal = ShAmtC->getZExtValue(); 2027 2028 APInt HighBits = 2029 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2030 HighBits.lshrInPlace(ShVal); 2031 HighBits = HighBits.trunc(BitWidth); 2032 2033 if (!(HighBits & DemandedBits)) { 2034 // None of the shifted in bits are needed. Add a truncate of the 2035 // shift input, then shift it. 2036 SDValue NewShAmt = TLO.DAG.getConstant( 2037 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2038 SDValue NewTrunc = 2039 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2040 return TLO.CombineTo( 2041 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2042 } 2043 break; 2044 } 2045 } 2046 2047 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2048 break; 2049 } 2050 case ISD::AssertZext: { 2051 // AssertZext demands all of the high bits, plus any of the low bits 2052 // demanded by its users. 2053 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2054 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2055 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2056 TLO, Depth + 1)) 2057 return true; 2058 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2059 2060 Known.Zero |= ~InMask; 2061 break; 2062 } 2063 case ISD::EXTRACT_VECTOR_ELT: { 2064 SDValue Src = Op.getOperand(0); 2065 SDValue Idx = Op.getOperand(1); 2066 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2067 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2068 2069 if (SrcEltCnt.isScalable()) 2070 return false; 2071 2072 // Demand the bits from every vector element without a constant index. 2073 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2074 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2075 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2076 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2077 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2078 2079 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2080 // anything about the extended bits. 2081 APInt DemandedSrcBits = DemandedBits; 2082 if (BitWidth > EltBitWidth) 2083 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2084 2085 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2086 Depth + 1)) 2087 return true; 2088 2089 // Attempt to avoid multi-use ops if we don't need anything from them. 2090 if (!DemandedSrcBits.isAllOnesValue() || 2091 !DemandedSrcElts.isAllOnesValue()) { 2092 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2093 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2094 SDValue NewOp = 2095 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2096 return TLO.CombineTo(Op, NewOp); 2097 } 2098 } 2099 2100 Known = Known2; 2101 if (BitWidth > EltBitWidth) 2102 Known = Known.anyext(BitWidth); 2103 break; 2104 } 2105 case ISD::BITCAST: { 2106 SDValue Src = Op.getOperand(0); 2107 EVT SrcVT = Src.getValueType(); 2108 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2109 2110 // If this is an FP->Int bitcast and if the sign bit is the only 2111 // thing demanded, turn this into a FGETSIGN. 2112 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2113 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2114 SrcVT.isFloatingPoint()) { 2115 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2116 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2117 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2118 SrcVT != MVT::f128) { 2119 // Cannot eliminate/lower SHL for f128 yet. 2120 EVT Ty = OpVTLegal ? VT : MVT::i32; 2121 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2122 // place. We expect the SHL to be eliminated by other optimizations. 2123 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2124 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2125 if (!OpVTLegal && OpVTSizeInBits > 32) 2126 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2127 unsigned ShVal = Op.getValueSizeInBits() - 1; 2128 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2129 return TLO.CombineTo(Op, 2130 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2131 } 2132 } 2133 2134 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2135 // Demand the elt/bit if any of the original elts/bits are demanded. 2136 // TODO - bigendian once we have test coverage. 2137 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2138 TLO.DAG.getDataLayout().isLittleEndian()) { 2139 unsigned Scale = BitWidth / NumSrcEltBits; 2140 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2141 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2142 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2143 for (unsigned i = 0; i != Scale; ++i) { 2144 unsigned Offset = i * NumSrcEltBits; 2145 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2146 if (!Sub.isNullValue()) { 2147 DemandedSrcBits |= Sub; 2148 for (unsigned j = 0; j != NumElts; ++j) 2149 if (DemandedElts[j]) 2150 DemandedSrcElts.setBit((j * Scale) + i); 2151 } 2152 } 2153 2154 APInt KnownSrcUndef, KnownSrcZero; 2155 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2156 KnownSrcZero, TLO, Depth + 1)) 2157 return true; 2158 2159 KnownBits KnownSrcBits; 2160 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2161 KnownSrcBits, TLO, Depth + 1)) 2162 return true; 2163 } else if ((NumSrcEltBits % BitWidth) == 0 && 2164 TLO.DAG.getDataLayout().isLittleEndian()) { 2165 unsigned Scale = NumSrcEltBits / BitWidth; 2166 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2167 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2168 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2169 for (unsigned i = 0; i != NumElts; ++i) 2170 if (DemandedElts[i]) { 2171 unsigned Offset = (i % Scale) * BitWidth; 2172 DemandedSrcBits.insertBits(DemandedBits, Offset); 2173 DemandedSrcElts.setBit(i / Scale); 2174 } 2175 2176 if (SrcVT.isVector()) { 2177 APInt KnownSrcUndef, KnownSrcZero; 2178 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2179 KnownSrcZero, TLO, Depth + 1)) 2180 return true; 2181 } 2182 2183 KnownBits KnownSrcBits; 2184 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2185 KnownSrcBits, TLO, Depth + 1)) 2186 return true; 2187 } 2188 2189 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2190 // recursive call where Known may be useful to the caller. 2191 if (Depth > 0) { 2192 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2193 return false; 2194 } 2195 break; 2196 } 2197 case ISD::ADD: 2198 case ISD::MUL: 2199 case ISD::SUB: { 2200 // Add, Sub, and Mul don't demand any bits in positions beyond that 2201 // of the highest bit demanded of them. 2202 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2203 SDNodeFlags Flags = Op.getNode()->getFlags(); 2204 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2205 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2206 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2207 Depth + 1) || 2208 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2209 Depth + 1) || 2210 // See if the operation should be performed at a smaller bit width. 2211 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2212 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2213 // Disable the nsw and nuw flags. We can no longer guarantee that we 2214 // won't wrap after simplification. 2215 Flags.setNoSignedWrap(false); 2216 Flags.setNoUnsignedWrap(false); 2217 SDValue NewOp = 2218 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2219 return TLO.CombineTo(Op, NewOp); 2220 } 2221 return true; 2222 } 2223 2224 // Attempt to avoid multi-use ops if we don't need anything from them. 2225 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2226 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2227 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2228 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2229 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2230 if (DemandedOp0 || DemandedOp1) { 2231 Flags.setNoSignedWrap(false); 2232 Flags.setNoUnsignedWrap(false); 2233 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2234 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2235 SDValue NewOp = 2236 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2237 return TLO.CombineTo(Op, NewOp); 2238 } 2239 } 2240 2241 // If we have a constant operand, we may be able to turn it into -1 if we 2242 // do not demand the high bits. This can make the constant smaller to 2243 // encode, allow more general folding, or match specialized instruction 2244 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2245 // is probably not useful (and could be detrimental). 2246 ConstantSDNode *C = isConstOrConstSplat(Op1); 2247 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2248 if (C && !C->isAllOnesValue() && !C->isOne() && 2249 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2250 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2251 // Disable the nsw and nuw flags. We can no longer guarantee that we 2252 // won't wrap after simplification. 2253 Flags.setNoSignedWrap(false); 2254 Flags.setNoUnsignedWrap(false); 2255 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2256 return TLO.CombineTo(Op, NewOp); 2257 } 2258 2259 LLVM_FALLTHROUGH; 2260 } 2261 default: 2262 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2263 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2264 Known, TLO, Depth)) 2265 return true; 2266 break; 2267 } 2268 2269 // Just use computeKnownBits to compute output bits. 2270 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2271 break; 2272 } 2273 2274 // If we know the value of all of the demanded bits, return this as a 2275 // constant. 2276 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2277 // Avoid folding to a constant if any OpaqueConstant is involved. 2278 const SDNode *N = Op.getNode(); 2279 for (SDNode *Op : 2280 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2281 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2282 if (C->isOpaque()) 2283 return false; 2284 } 2285 if (VT.isInteger()) 2286 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2287 if (VT.isFloatingPoint()) 2288 return TLO.CombineTo( 2289 Op, 2290 TLO.DAG.getConstantFP( 2291 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2292 } 2293 2294 return false; 2295 } 2296 2297 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2298 const APInt &DemandedElts, 2299 APInt &KnownUndef, 2300 APInt &KnownZero, 2301 DAGCombinerInfo &DCI) const { 2302 SelectionDAG &DAG = DCI.DAG; 2303 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2304 !DCI.isBeforeLegalizeOps()); 2305 2306 bool Simplified = 2307 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2308 if (Simplified) { 2309 DCI.AddToWorklist(Op.getNode()); 2310 DCI.CommitTargetLoweringOpt(TLO); 2311 } 2312 2313 return Simplified; 2314 } 2315 2316 /// Given a vector binary operation and known undefined elements for each input 2317 /// operand, compute whether each element of the output is undefined. 2318 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2319 const APInt &UndefOp0, 2320 const APInt &UndefOp1) { 2321 EVT VT = BO.getValueType(); 2322 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2323 "Vector binop only"); 2324 2325 EVT EltVT = VT.getVectorElementType(); 2326 unsigned NumElts = VT.getVectorNumElements(); 2327 assert(UndefOp0.getBitWidth() == NumElts && 2328 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2329 2330 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2331 const APInt &UndefVals) { 2332 if (UndefVals[Index]) 2333 return DAG.getUNDEF(EltVT); 2334 2335 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2336 // Try hard to make sure that the getNode() call is not creating temporary 2337 // nodes. Ignore opaque integers because they do not constant fold. 2338 SDValue Elt = BV->getOperand(Index); 2339 auto *C = dyn_cast<ConstantSDNode>(Elt); 2340 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2341 return Elt; 2342 } 2343 2344 return SDValue(); 2345 }; 2346 2347 APInt KnownUndef = APInt::getNullValue(NumElts); 2348 for (unsigned i = 0; i != NumElts; ++i) { 2349 // If both inputs for this element are either constant or undef and match 2350 // the element type, compute the constant/undef result for this element of 2351 // the vector. 2352 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2353 // not handle FP constants. The code within getNode() should be refactored 2354 // to avoid the danger of creating a bogus temporary node here. 2355 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2356 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2357 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2358 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2359 KnownUndef.setBit(i); 2360 } 2361 return KnownUndef; 2362 } 2363 2364 bool TargetLowering::SimplifyDemandedVectorElts( 2365 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2366 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2367 bool AssumeSingleUse) const { 2368 EVT VT = Op.getValueType(); 2369 unsigned Opcode = Op.getOpcode(); 2370 APInt DemandedElts = OriginalDemandedElts; 2371 unsigned NumElts = DemandedElts.getBitWidth(); 2372 assert(VT.isVector() && "Expected vector op"); 2373 2374 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2375 2376 // TODO: For now we assume we know nothing about scalable vectors. 2377 if (VT.isScalableVector()) 2378 return false; 2379 2380 assert(VT.getVectorNumElements() == NumElts && 2381 "Mask size mismatches value type element count!"); 2382 2383 // Undef operand. 2384 if (Op.isUndef()) { 2385 KnownUndef.setAllBits(); 2386 return false; 2387 } 2388 2389 // If Op has other users, assume that all elements are needed. 2390 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2391 DemandedElts.setAllBits(); 2392 2393 // Not demanding any elements from Op. 2394 if (DemandedElts == 0) { 2395 KnownUndef.setAllBits(); 2396 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2397 } 2398 2399 // Limit search depth. 2400 if (Depth >= SelectionDAG::MaxRecursionDepth) 2401 return false; 2402 2403 SDLoc DL(Op); 2404 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2405 2406 // Helper for demanding the specified elements and all the bits of both binary 2407 // operands. 2408 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2409 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2410 TLO.DAG, Depth + 1); 2411 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2412 TLO.DAG, Depth + 1); 2413 if (NewOp0 || NewOp1) { 2414 SDValue NewOp = TLO.DAG.getNode( 2415 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2416 return TLO.CombineTo(Op, NewOp); 2417 } 2418 return false; 2419 }; 2420 2421 switch (Opcode) { 2422 case ISD::SCALAR_TO_VECTOR: { 2423 if (!DemandedElts[0]) { 2424 KnownUndef.setAllBits(); 2425 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2426 } 2427 SDValue ScalarSrc = Op.getOperand(0); 2428 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2429 SDValue Src = ScalarSrc.getOperand(0); 2430 SDValue Idx = ScalarSrc.getOperand(1); 2431 EVT SrcVT = Src.getValueType(); 2432 2433 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2434 2435 if (SrcEltCnt.isScalable()) 2436 return false; 2437 2438 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2439 if (isNullConstant(Idx)) { 2440 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2441 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2442 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2443 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2444 TLO, Depth + 1)) 2445 return true; 2446 } 2447 } 2448 KnownUndef.setHighBits(NumElts - 1); 2449 break; 2450 } 2451 case ISD::BITCAST: { 2452 SDValue Src = Op.getOperand(0); 2453 EVT SrcVT = Src.getValueType(); 2454 2455 // We only handle vectors here. 2456 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2457 if (!SrcVT.isVector()) 2458 break; 2459 2460 // Fast handling of 'identity' bitcasts. 2461 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2462 if (NumSrcElts == NumElts) 2463 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2464 KnownZero, TLO, Depth + 1); 2465 2466 APInt SrcZero, SrcUndef; 2467 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2468 2469 // Bitcast from 'large element' src vector to 'small element' vector, we 2470 // must demand a source element if any DemandedElt maps to it. 2471 if ((NumElts % NumSrcElts) == 0) { 2472 unsigned Scale = NumElts / NumSrcElts; 2473 for (unsigned i = 0; i != NumElts; ++i) 2474 if (DemandedElts[i]) 2475 SrcDemandedElts.setBit(i / Scale); 2476 2477 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2478 TLO, Depth + 1)) 2479 return true; 2480 2481 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2482 // of the large element. 2483 // TODO - bigendian once we have test coverage. 2484 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2485 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2486 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2487 for (unsigned i = 0; i != NumElts; ++i) 2488 if (DemandedElts[i]) { 2489 unsigned Ofs = (i % Scale) * EltSizeInBits; 2490 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2491 } 2492 2493 KnownBits Known; 2494 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2495 TLO, Depth + 1)) 2496 return true; 2497 } 2498 2499 // If the src element is zero/undef then all the output elements will be - 2500 // only demanded elements are guaranteed to be correct. 2501 for (unsigned i = 0; i != NumSrcElts; ++i) { 2502 if (SrcDemandedElts[i]) { 2503 if (SrcZero[i]) 2504 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2505 if (SrcUndef[i]) 2506 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2507 } 2508 } 2509 } 2510 2511 // Bitcast from 'small element' src vector to 'large element' vector, we 2512 // demand all smaller source elements covered by the larger demanded element 2513 // of this vector. 2514 if ((NumSrcElts % NumElts) == 0) { 2515 unsigned Scale = NumSrcElts / NumElts; 2516 for (unsigned i = 0; i != NumElts; ++i) 2517 if (DemandedElts[i]) 2518 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2519 2520 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2521 TLO, Depth + 1)) 2522 return true; 2523 2524 // If all the src elements covering an output element are zero/undef, then 2525 // the output element will be as well, assuming it was demanded. 2526 for (unsigned i = 0; i != NumElts; ++i) { 2527 if (DemandedElts[i]) { 2528 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2529 KnownZero.setBit(i); 2530 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2531 KnownUndef.setBit(i); 2532 } 2533 } 2534 } 2535 break; 2536 } 2537 case ISD::BUILD_VECTOR: { 2538 // Check all elements and simplify any unused elements with UNDEF. 2539 if (!DemandedElts.isAllOnesValue()) { 2540 // Don't simplify BROADCASTS. 2541 if (llvm::any_of(Op->op_values(), 2542 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2543 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2544 bool Updated = false; 2545 for (unsigned i = 0; i != NumElts; ++i) { 2546 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2547 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2548 KnownUndef.setBit(i); 2549 Updated = true; 2550 } 2551 } 2552 if (Updated) 2553 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2554 } 2555 } 2556 for (unsigned i = 0; i != NumElts; ++i) { 2557 SDValue SrcOp = Op.getOperand(i); 2558 if (SrcOp.isUndef()) { 2559 KnownUndef.setBit(i); 2560 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2561 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2562 KnownZero.setBit(i); 2563 } 2564 } 2565 break; 2566 } 2567 case ISD::CONCAT_VECTORS: { 2568 EVT SubVT = Op.getOperand(0).getValueType(); 2569 unsigned NumSubVecs = Op.getNumOperands(); 2570 unsigned NumSubElts = SubVT.getVectorNumElements(); 2571 for (unsigned i = 0; i != NumSubVecs; ++i) { 2572 SDValue SubOp = Op.getOperand(i); 2573 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2574 APInt SubUndef, SubZero; 2575 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2576 Depth + 1)) 2577 return true; 2578 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2579 KnownZero.insertBits(SubZero, i * NumSubElts); 2580 } 2581 break; 2582 } 2583 case ISD::INSERT_SUBVECTOR: { 2584 // Demand any elements from the subvector and the remainder from the src its 2585 // inserted into. 2586 SDValue Src = Op.getOperand(0); 2587 SDValue Sub = Op.getOperand(1); 2588 uint64_t Idx = Op.getConstantOperandVal(2); 2589 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2590 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2591 APInt DemandedSrcElts = DemandedElts; 2592 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2593 2594 APInt SubUndef, SubZero; 2595 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2596 Depth + 1)) 2597 return true; 2598 2599 // If none of the src operand elements are demanded, replace it with undef. 2600 if (!DemandedSrcElts && !Src.isUndef()) 2601 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2602 TLO.DAG.getUNDEF(VT), Sub, 2603 Op.getOperand(2))); 2604 2605 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2606 TLO, Depth + 1)) 2607 return true; 2608 KnownUndef.insertBits(SubUndef, Idx); 2609 KnownZero.insertBits(SubZero, Idx); 2610 2611 // Attempt to avoid multi-use ops if we don't need anything from them. 2612 if (!DemandedSrcElts.isAllOnesValue() || 2613 !DemandedSubElts.isAllOnesValue()) { 2614 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2615 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2616 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2617 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2618 if (NewSrc || NewSub) { 2619 NewSrc = NewSrc ? NewSrc : Src; 2620 NewSub = NewSub ? NewSub : Sub; 2621 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2622 NewSub, Op.getOperand(2)); 2623 return TLO.CombineTo(Op, NewOp); 2624 } 2625 } 2626 break; 2627 } 2628 case ISD::EXTRACT_SUBVECTOR: { 2629 // Offset the demanded elts by the subvector index. 2630 SDValue Src = Op.getOperand(0); 2631 if (Src.getValueType().isScalableVector()) 2632 break; 2633 uint64_t Idx = Op.getConstantOperandVal(1); 2634 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2635 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2636 2637 APInt SrcUndef, SrcZero; 2638 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2639 Depth + 1)) 2640 return true; 2641 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2642 KnownZero = SrcZero.extractBits(NumElts, Idx); 2643 2644 // Attempt to avoid multi-use ops if we don't need anything from them. 2645 if (!DemandedElts.isAllOnesValue()) { 2646 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2647 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2648 if (NewSrc) { 2649 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2650 Op.getOperand(1)); 2651 return TLO.CombineTo(Op, NewOp); 2652 } 2653 } 2654 break; 2655 } 2656 case ISD::INSERT_VECTOR_ELT: { 2657 SDValue Vec = Op.getOperand(0); 2658 SDValue Scl = Op.getOperand(1); 2659 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2660 2661 // For a legal, constant insertion index, if we don't need this insertion 2662 // then strip it, else remove it from the demanded elts. 2663 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2664 unsigned Idx = CIdx->getZExtValue(); 2665 if (!DemandedElts[Idx]) 2666 return TLO.CombineTo(Op, Vec); 2667 2668 APInt DemandedVecElts(DemandedElts); 2669 DemandedVecElts.clearBit(Idx); 2670 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2671 KnownZero, TLO, Depth + 1)) 2672 return true; 2673 2674 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2675 2676 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2677 break; 2678 } 2679 2680 APInt VecUndef, VecZero; 2681 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2682 Depth + 1)) 2683 return true; 2684 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2685 break; 2686 } 2687 case ISD::VSELECT: { 2688 // Try to transform the select condition based on the current demanded 2689 // elements. 2690 // TODO: If a condition element is undef, we can choose from one arm of the 2691 // select (and if one arm is undef, then we can propagate that to the 2692 // result). 2693 // TODO - add support for constant vselect masks (see IR version of this). 2694 APInt UnusedUndef, UnusedZero; 2695 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2696 UnusedZero, TLO, Depth + 1)) 2697 return true; 2698 2699 // See if we can simplify either vselect operand. 2700 APInt DemandedLHS(DemandedElts); 2701 APInt DemandedRHS(DemandedElts); 2702 APInt UndefLHS, ZeroLHS; 2703 APInt UndefRHS, ZeroRHS; 2704 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2705 ZeroLHS, TLO, Depth + 1)) 2706 return true; 2707 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2708 ZeroRHS, TLO, Depth + 1)) 2709 return true; 2710 2711 KnownUndef = UndefLHS & UndefRHS; 2712 KnownZero = ZeroLHS & ZeroRHS; 2713 break; 2714 } 2715 case ISD::VECTOR_SHUFFLE: { 2716 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2717 2718 // Collect demanded elements from shuffle operands.. 2719 APInt DemandedLHS(NumElts, 0); 2720 APInt DemandedRHS(NumElts, 0); 2721 for (unsigned i = 0; i != NumElts; ++i) { 2722 int M = ShuffleMask[i]; 2723 if (M < 0 || !DemandedElts[i]) 2724 continue; 2725 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2726 if (M < (int)NumElts) 2727 DemandedLHS.setBit(M); 2728 else 2729 DemandedRHS.setBit(M - NumElts); 2730 } 2731 2732 // See if we can simplify either shuffle operand. 2733 APInt UndefLHS, ZeroLHS; 2734 APInt UndefRHS, ZeroRHS; 2735 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2736 ZeroLHS, TLO, Depth + 1)) 2737 return true; 2738 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2739 ZeroRHS, TLO, Depth + 1)) 2740 return true; 2741 2742 // Simplify mask using undef elements from LHS/RHS. 2743 bool Updated = false; 2744 bool IdentityLHS = true, IdentityRHS = true; 2745 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2746 for (unsigned i = 0; i != NumElts; ++i) { 2747 int &M = NewMask[i]; 2748 if (M < 0) 2749 continue; 2750 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2751 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2752 Updated = true; 2753 M = -1; 2754 } 2755 IdentityLHS &= (M < 0) || (M == (int)i); 2756 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2757 } 2758 2759 // Update legal shuffle masks based on demanded elements if it won't reduce 2760 // to Identity which can cause premature removal of the shuffle mask. 2761 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2762 SDValue LegalShuffle = 2763 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2764 NewMask, TLO.DAG); 2765 if (LegalShuffle) 2766 return TLO.CombineTo(Op, LegalShuffle); 2767 } 2768 2769 // Propagate undef/zero elements from LHS/RHS. 2770 for (unsigned i = 0; i != NumElts; ++i) { 2771 int M = ShuffleMask[i]; 2772 if (M < 0) { 2773 KnownUndef.setBit(i); 2774 } else if (M < (int)NumElts) { 2775 if (UndefLHS[M]) 2776 KnownUndef.setBit(i); 2777 if (ZeroLHS[M]) 2778 KnownZero.setBit(i); 2779 } else { 2780 if (UndefRHS[M - NumElts]) 2781 KnownUndef.setBit(i); 2782 if (ZeroRHS[M - NumElts]) 2783 KnownZero.setBit(i); 2784 } 2785 } 2786 break; 2787 } 2788 case ISD::ANY_EXTEND_VECTOR_INREG: 2789 case ISD::SIGN_EXTEND_VECTOR_INREG: 2790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2791 APInt SrcUndef, SrcZero; 2792 SDValue Src = Op.getOperand(0); 2793 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2794 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2795 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2796 Depth + 1)) 2797 return true; 2798 KnownZero = SrcZero.zextOrTrunc(NumElts); 2799 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2800 2801 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2802 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2803 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2804 // aext - if we just need the bottom element then we can bitcast. 2805 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2806 } 2807 2808 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2809 // zext(undef) upper bits are guaranteed to be zero. 2810 if (DemandedElts.isSubsetOf(KnownUndef)) 2811 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2812 KnownUndef.clearAllBits(); 2813 } 2814 break; 2815 } 2816 2817 // TODO: There are more binop opcodes that could be handled here - MIN, 2818 // MAX, saturated math, etc. 2819 case ISD::OR: 2820 case ISD::XOR: 2821 case ISD::ADD: 2822 case ISD::SUB: 2823 case ISD::FADD: 2824 case ISD::FSUB: 2825 case ISD::FMUL: 2826 case ISD::FDIV: 2827 case ISD::FREM: { 2828 SDValue Op0 = Op.getOperand(0); 2829 SDValue Op1 = Op.getOperand(1); 2830 2831 APInt UndefRHS, ZeroRHS; 2832 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2833 Depth + 1)) 2834 return true; 2835 APInt UndefLHS, ZeroLHS; 2836 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2837 Depth + 1)) 2838 return true; 2839 2840 KnownZero = ZeroLHS & ZeroRHS; 2841 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2842 2843 // Attempt to avoid multi-use ops if we don't need anything from them. 2844 // TODO - use KnownUndef to relax the demandedelts? 2845 if (!DemandedElts.isAllOnesValue()) 2846 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2847 return true; 2848 break; 2849 } 2850 case ISD::SHL: 2851 case ISD::SRL: 2852 case ISD::SRA: 2853 case ISD::ROTL: 2854 case ISD::ROTR: { 2855 SDValue Op0 = Op.getOperand(0); 2856 SDValue Op1 = Op.getOperand(1); 2857 2858 APInt UndefRHS, ZeroRHS; 2859 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2860 Depth + 1)) 2861 return true; 2862 APInt UndefLHS, ZeroLHS; 2863 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2864 Depth + 1)) 2865 return true; 2866 2867 KnownZero = ZeroLHS; 2868 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2869 2870 // Attempt to avoid multi-use ops if we don't need anything from them. 2871 // TODO - use KnownUndef to relax the demandedelts? 2872 if (!DemandedElts.isAllOnesValue()) 2873 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2874 return true; 2875 break; 2876 } 2877 case ISD::MUL: 2878 case ISD::AND: { 2879 SDValue Op0 = Op.getOperand(0); 2880 SDValue Op1 = Op.getOperand(1); 2881 2882 APInt SrcUndef, SrcZero; 2883 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2884 Depth + 1)) 2885 return true; 2886 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2887 TLO, Depth + 1)) 2888 return true; 2889 2890 // If either side has a zero element, then the result element is zero, even 2891 // if the other is an UNDEF. 2892 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2893 // and then handle 'and' nodes with the rest of the binop opcodes. 2894 KnownZero |= SrcZero; 2895 KnownUndef &= SrcUndef; 2896 KnownUndef &= ~KnownZero; 2897 2898 // Attempt to avoid multi-use ops if we don't need anything from them. 2899 // TODO - use KnownUndef to relax the demandedelts? 2900 if (!DemandedElts.isAllOnesValue()) 2901 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2902 return true; 2903 break; 2904 } 2905 case ISD::TRUNCATE: 2906 case ISD::SIGN_EXTEND: 2907 case ISD::ZERO_EXTEND: 2908 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2909 KnownZero, TLO, Depth + 1)) 2910 return true; 2911 2912 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2913 // zext(undef) upper bits are guaranteed to be zero. 2914 if (DemandedElts.isSubsetOf(KnownUndef)) 2915 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2916 KnownUndef.clearAllBits(); 2917 } 2918 break; 2919 default: { 2920 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2921 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2922 KnownZero, TLO, Depth)) 2923 return true; 2924 } else { 2925 KnownBits Known; 2926 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2927 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2928 TLO, Depth, AssumeSingleUse)) 2929 return true; 2930 } 2931 break; 2932 } 2933 } 2934 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2935 2936 // Constant fold all undef cases. 2937 // TODO: Handle zero cases as well. 2938 if (DemandedElts.isSubsetOf(KnownUndef)) 2939 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2940 2941 return false; 2942 } 2943 2944 /// Determine which of the bits specified in Mask are known to be either zero or 2945 /// one and return them in the Known. 2946 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2947 KnownBits &Known, 2948 const APInt &DemandedElts, 2949 const SelectionDAG &DAG, 2950 unsigned Depth) const { 2951 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2952 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2953 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2954 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2955 "Should use MaskedValueIsZero if you don't know whether Op" 2956 " is a target node!"); 2957 Known.resetAll(); 2958 } 2959 2960 void TargetLowering::computeKnownBitsForTargetInstr( 2961 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2962 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2963 unsigned Depth) const { 2964 Known.resetAll(); 2965 } 2966 2967 void TargetLowering::computeKnownBitsForFrameIndex( 2968 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2969 // The low bits are known zero if the pointer is aligned. 2970 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2971 } 2972 2973 Align TargetLowering::computeKnownAlignForTargetInstr( 2974 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2975 unsigned Depth) const { 2976 return Align(1); 2977 } 2978 2979 /// This method can be implemented by targets that want to expose additional 2980 /// information about sign bits to the DAG Combiner. 2981 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2982 const APInt &, 2983 const SelectionDAG &, 2984 unsigned Depth) const { 2985 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2986 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2987 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2988 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2989 "Should use ComputeNumSignBits if you don't know whether Op" 2990 " is a target node!"); 2991 return 1; 2992 } 2993 2994 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2995 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2996 const MachineRegisterInfo &MRI, unsigned Depth) const { 2997 return 1; 2998 } 2999 3000 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3001 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3002 TargetLoweringOpt &TLO, unsigned Depth) const { 3003 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3004 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3005 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3006 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3007 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3008 " is a target node!"); 3009 return false; 3010 } 3011 3012 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3013 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3014 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3015 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3016 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3017 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3018 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3019 "Should use SimplifyDemandedBits if you don't know whether Op" 3020 " is a target node!"); 3021 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3022 return false; 3023 } 3024 3025 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3026 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3027 SelectionDAG &DAG, unsigned Depth) const { 3028 assert( 3029 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3030 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3031 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3032 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3033 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3034 " is a target node!"); 3035 return SDValue(); 3036 } 3037 3038 SDValue 3039 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3040 SDValue N1, MutableArrayRef<int> Mask, 3041 SelectionDAG &DAG) const { 3042 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3043 if (!LegalMask) { 3044 std::swap(N0, N1); 3045 ShuffleVectorSDNode::commuteMask(Mask); 3046 LegalMask = isShuffleMaskLegal(Mask, VT); 3047 } 3048 3049 if (!LegalMask) 3050 return SDValue(); 3051 3052 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3053 } 3054 3055 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3056 return nullptr; 3057 } 3058 3059 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3060 const SelectionDAG &DAG, 3061 bool SNaN, 3062 unsigned Depth) const { 3063 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3064 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3065 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3066 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3067 "Should use isKnownNeverNaN if you don't know whether Op" 3068 " is a target node!"); 3069 return false; 3070 } 3071 3072 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3073 // work with truncating build vectors and vectors with elements of less than 3074 // 8 bits. 3075 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3076 if (!N) 3077 return false; 3078 3079 APInt CVal; 3080 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3081 CVal = CN->getAPIntValue(); 3082 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3083 auto *CN = BV->getConstantSplatNode(); 3084 if (!CN) 3085 return false; 3086 3087 // If this is a truncating build vector, truncate the splat value. 3088 // Otherwise, we may fail to match the expected values below. 3089 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3090 CVal = CN->getAPIntValue(); 3091 if (BVEltWidth < CVal.getBitWidth()) 3092 CVal = CVal.trunc(BVEltWidth); 3093 } else { 3094 return false; 3095 } 3096 3097 switch (getBooleanContents(N->getValueType(0))) { 3098 case UndefinedBooleanContent: 3099 return CVal[0]; 3100 case ZeroOrOneBooleanContent: 3101 return CVal.isOneValue(); 3102 case ZeroOrNegativeOneBooleanContent: 3103 return CVal.isAllOnesValue(); 3104 } 3105 3106 llvm_unreachable("Invalid boolean contents"); 3107 } 3108 3109 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3110 if (!N) 3111 return false; 3112 3113 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3114 if (!CN) { 3115 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3116 if (!BV) 3117 return false; 3118 3119 // Only interested in constant splats, we don't care about undef 3120 // elements in identifying boolean constants and getConstantSplatNode 3121 // returns NULL if all ops are undef; 3122 CN = BV->getConstantSplatNode(); 3123 if (!CN) 3124 return false; 3125 } 3126 3127 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3128 return !CN->getAPIntValue()[0]; 3129 3130 return CN->isNullValue(); 3131 } 3132 3133 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3134 bool SExt) const { 3135 if (VT == MVT::i1) 3136 return N->isOne(); 3137 3138 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3139 switch (Cnt) { 3140 case TargetLowering::ZeroOrOneBooleanContent: 3141 // An extended value of 1 is always true, unless its original type is i1, 3142 // in which case it will be sign extended to -1. 3143 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3144 case TargetLowering::UndefinedBooleanContent: 3145 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3146 return N->isAllOnesValue() && SExt; 3147 } 3148 llvm_unreachable("Unexpected enumeration."); 3149 } 3150 3151 /// This helper function of SimplifySetCC tries to optimize the comparison when 3152 /// either operand of the SetCC node is a bitwise-and instruction. 3153 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3154 ISD::CondCode Cond, const SDLoc &DL, 3155 DAGCombinerInfo &DCI) const { 3156 // Match these patterns in any of their permutations: 3157 // (X & Y) == Y 3158 // (X & Y) != Y 3159 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3160 std::swap(N0, N1); 3161 3162 EVT OpVT = N0.getValueType(); 3163 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3164 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3165 return SDValue(); 3166 3167 SDValue X, Y; 3168 if (N0.getOperand(0) == N1) { 3169 X = N0.getOperand(1); 3170 Y = N0.getOperand(0); 3171 } else if (N0.getOperand(1) == N1) { 3172 X = N0.getOperand(0); 3173 Y = N0.getOperand(1); 3174 } else { 3175 return SDValue(); 3176 } 3177 3178 SelectionDAG &DAG = DCI.DAG; 3179 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3180 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3181 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3182 // Note that where Y is variable and is known to have at most one bit set 3183 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3184 // equivalent when Y == 0. 3185 assert(OpVT.isInteger()); 3186 Cond = ISD::getSetCCInverse(Cond, OpVT); 3187 if (DCI.isBeforeLegalizeOps() || 3188 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3189 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3190 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3191 // If the target supports an 'and-not' or 'and-complement' logic operation, 3192 // try to use that to make a comparison operation more efficient. 3193 // But don't do this transform if the mask is a single bit because there are 3194 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3195 // 'rlwinm' on PPC). 3196 3197 // Bail out if the compare operand that we want to turn into a zero is 3198 // already a zero (otherwise, infinite loop). 3199 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3200 if (YConst && YConst->isNullValue()) 3201 return SDValue(); 3202 3203 // Transform this into: ~X & Y == 0. 3204 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3205 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3206 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3207 } 3208 3209 return SDValue(); 3210 } 3211 3212 /// There are multiple IR patterns that could be checking whether certain 3213 /// truncation of a signed number would be lossy or not. The pattern which is 3214 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3215 /// We are looking for the following pattern: (KeptBits is a constant) 3216 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3217 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3218 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3219 /// We will unfold it into the natural trunc+sext pattern: 3220 /// ((%x << C) a>> C) dstcond %x 3221 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3222 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3223 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3224 const SDLoc &DL) const { 3225 // We must be comparing with a constant. 3226 ConstantSDNode *C1; 3227 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3228 return SDValue(); 3229 3230 // N0 should be: add %x, (1 << (KeptBits-1)) 3231 if (N0->getOpcode() != ISD::ADD) 3232 return SDValue(); 3233 3234 // And we must be 'add'ing a constant. 3235 ConstantSDNode *C01; 3236 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3237 return SDValue(); 3238 3239 SDValue X = N0->getOperand(0); 3240 EVT XVT = X.getValueType(); 3241 3242 // Validate constants ... 3243 3244 APInt I1 = C1->getAPIntValue(); 3245 3246 ISD::CondCode NewCond; 3247 if (Cond == ISD::CondCode::SETULT) { 3248 NewCond = ISD::CondCode::SETEQ; 3249 } else if (Cond == ISD::CondCode::SETULE) { 3250 NewCond = ISD::CondCode::SETEQ; 3251 // But need to 'canonicalize' the constant. 3252 I1 += 1; 3253 } else if (Cond == ISD::CondCode::SETUGT) { 3254 NewCond = ISD::CondCode::SETNE; 3255 // But need to 'canonicalize' the constant. 3256 I1 += 1; 3257 } else if (Cond == ISD::CondCode::SETUGE) { 3258 NewCond = ISD::CondCode::SETNE; 3259 } else 3260 return SDValue(); 3261 3262 APInt I01 = C01->getAPIntValue(); 3263 3264 auto checkConstants = [&I1, &I01]() -> bool { 3265 // Both of them must be power-of-two, and the constant from setcc is bigger. 3266 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3267 }; 3268 3269 if (checkConstants()) { 3270 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3271 } else { 3272 // What if we invert constants? (and the target predicate) 3273 I1.negate(); 3274 I01.negate(); 3275 assert(XVT.isInteger()); 3276 NewCond = getSetCCInverse(NewCond, XVT); 3277 if (!checkConstants()) 3278 return SDValue(); 3279 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3280 } 3281 3282 // They are power-of-two, so which bit is set? 3283 const unsigned KeptBits = I1.logBase2(); 3284 const unsigned KeptBitsMinusOne = I01.logBase2(); 3285 3286 // Magic! 3287 if (KeptBits != (KeptBitsMinusOne + 1)) 3288 return SDValue(); 3289 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3290 3291 // We don't want to do this in every single case. 3292 SelectionDAG &DAG = DCI.DAG; 3293 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3294 XVT, KeptBits)) 3295 return SDValue(); 3296 3297 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3298 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3299 3300 // Unfold into: ((%x << C) a>> C) cond %x 3301 // Where 'cond' will be either 'eq' or 'ne'. 3302 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3303 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3304 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3305 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3306 3307 return T2; 3308 } 3309 3310 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3311 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3312 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3313 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3314 assert(isConstOrConstSplat(N1C) && 3315 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3316 "Should be a comparison with 0."); 3317 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3318 "Valid only for [in]equality comparisons."); 3319 3320 unsigned NewShiftOpcode; 3321 SDValue X, C, Y; 3322 3323 SelectionDAG &DAG = DCI.DAG; 3324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3325 3326 // Look for '(C l>>/<< Y)'. 3327 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3328 // The shift should be one-use. 3329 if (!V.hasOneUse()) 3330 return false; 3331 unsigned OldShiftOpcode = V.getOpcode(); 3332 switch (OldShiftOpcode) { 3333 case ISD::SHL: 3334 NewShiftOpcode = ISD::SRL; 3335 break; 3336 case ISD::SRL: 3337 NewShiftOpcode = ISD::SHL; 3338 break; 3339 default: 3340 return false; // must be a logical shift. 3341 } 3342 // We should be shifting a constant. 3343 // FIXME: best to use isConstantOrConstantVector(). 3344 C = V.getOperand(0); 3345 ConstantSDNode *CC = 3346 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3347 if (!CC) 3348 return false; 3349 Y = V.getOperand(1); 3350 3351 ConstantSDNode *XC = 3352 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3353 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3354 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3355 }; 3356 3357 // LHS of comparison should be an one-use 'and'. 3358 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3359 return SDValue(); 3360 3361 X = N0.getOperand(0); 3362 SDValue Mask = N0.getOperand(1); 3363 3364 // 'and' is commutative! 3365 if (!Match(Mask)) { 3366 std::swap(X, Mask); 3367 if (!Match(Mask)) 3368 return SDValue(); 3369 } 3370 3371 EVT VT = X.getValueType(); 3372 3373 // Produce: 3374 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3375 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3376 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3377 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3378 return T2; 3379 } 3380 3381 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3382 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3383 /// handle the commuted versions of these patterns. 3384 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3385 ISD::CondCode Cond, const SDLoc &DL, 3386 DAGCombinerInfo &DCI) const { 3387 unsigned BOpcode = N0.getOpcode(); 3388 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3389 "Unexpected binop"); 3390 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3391 3392 // (X + Y) == X --> Y == 0 3393 // (X - Y) == X --> Y == 0 3394 // (X ^ Y) == X --> Y == 0 3395 SelectionDAG &DAG = DCI.DAG; 3396 EVT OpVT = N0.getValueType(); 3397 SDValue X = N0.getOperand(0); 3398 SDValue Y = N0.getOperand(1); 3399 if (X == N1) 3400 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3401 3402 if (Y != N1) 3403 return SDValue(); 3404 3405 // (X + Y) == Y --> X == 0 3406 // (X ^ Y) == Y --> X == 0 3407 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3408 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3409 3410 // The shift would not be valid if the operands are boolean (i1). 3411 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3412 return SDValue(); 3413 3414 // (X - Y) == Y --> X == Y << 1 3415 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3416 !DCI.isBeforeLegalize()); 3417 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3418 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3419 if (!DCI.isCalledByLegalizer()) 3420 DCI.AddToWorklist(YShl1.getNode()); 3421 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3422 } 3423 3424 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3425 SDValue N0, const APInt &C1, 3426 ISD::CondCode Cond, const SDLoc &dl, 3427 SelectionDAG &DAG) { 3428 // Look through truncs that don't change the value of a ctpop. 3429 // FIXME: Add vector support? Need to be careful with setcc result type below. 3430 SDValue CTPOP = N0; 3431 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3432 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3433 CTPOP = N0.getOperand(0); 3434 3435 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3436 return SDValue(); 3437 3438 EVT CTVT = CTPOP.getValueType(); 3439 SDValue CTOp = CTPOP.getOperand(0); 3440 3441 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3442 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3443 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3444 return SDValue(); 3445 3446 // (ctpop x) u< 2 -> (x & x-1) == 0 3447 // (ctpop x) u> 1 -> (x & x-1) != 0 3448 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3449 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3450 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3451 return SDValue(); 3452 if (C1 == 0 && (Cond == ISD::SETULT)) 3453 return SDValue(); // This is handled elsewhere. 3454 3455 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3456 3457 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3458 SDValue Result = CTOp; 3459 for (unsigned i = 0; i < Passes; i++) { 3460 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3461 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3462 } 3463 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3464 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3465 } 3466 3467 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3468 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3469 // For scalars, keep CTPOP if it is legal or custom. 3470 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3471 return SDValue(); 3472 // This is based on X86's custom lowering for CTPOP which produces more 3473 // instructions than the expansion here. 3474 3475 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3476 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3477 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3478 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3479 assert(CTVT.isInteger()); 3480 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3481 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3482 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3483 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3484 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3485 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3486 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3487 } 3488 3489 return SDValue(); 3490 } 3491 3492 /// Try to simplify a setcc built with the specified operands and cc. If it is 3493 /// unable to simplify it, return a null SDValue. 3494 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3495 ISD::CondCode Cond, bool foldBooleans, 3496 DAGCombinerInfo &DCI, 3497 const SDLoc &dl) const { 3498 SelectionDAG &DAG = DCI.DAG; 3499 const DataLayout &Layout = DAG.getDataLayout(); 3500 EVT OpVT = N0.getValueType(); 3501 3502 // Constant fold or commute setcc. 3503 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3504 return Fold; 3505 3506 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3507 // TODO: Handle non-splat vector constants. All undef causes trouble. 3508 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3509 // infinite loop here when we encounter one. 3510 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3511 if (isConstOrConstSplat(N0) && 3512 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3513 (DCI.isBeforeLegalizeOps() || 3514 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3515 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3516 3517 // If we have a subtract with the same 2 non-constant operands as this setcc 3518 // -- but in reverse order -- then try to commute the operands of this setcc 3519 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3520 // instruction on some targets. 3521 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3522 (DCI.isBeforeLegalizeOps() || 3523 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3524 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3525 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3526 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3527 3528 if (auto *N1C = isConstOrConstSplat(N1)) { 3529 const APInt &C1 = N1C->getAPIntValue(); 3530 3531 // Optimize some CTPOP cases. 3532 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3533 return V; 3534 3535 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3536 // equality comparison, then we're just comparing whether X itself is 3537 // zero. 3538 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3539 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3540 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3541 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3542 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3543 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3544 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3545 // (srl (ctlz x), 5) == 0 -> X != 0 3546 // (srl (ctlz x), 5) != 1 -> X != 0 3547 Cond = ISD::SETNE; 3548 } else { 3549 // (srl (ctlz x), 5) != 0 -> X == 0 3550 // (srl (ctlz x), 5) == 1 -> X == 0 3551 Cond = ISD::SETEQ; 3552 } 3553 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3554 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3555 Cond); 3556 } 3557 } 3558 } 3559 } 3560 3561 // FIXME: Support vectors. 3562 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3563 const APInt &C1 = N1C->getAPIntValue(); 3564 3565 // (zext x) == C --> x == (trunc C) 3566 // (sext x) == C --> x == (trunc C) 3567 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3568 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3569 unsigned MinBits = N0.getValueSizeInBits(); 3570 SDValue PreExt; 3571 bool Signed = false; 3572 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3573 // ZExt 3574 MinBits = N0->getOperand(0).getValueSizeInBits(); 3575 PreExt = N0->getOperand(0); 3576 } else if (N0->getOpcode() == ISD::AND) { 3577 // DAGCombine turns costly ZExts into ANDs 3578 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3579 if ((C->getAPIntValue()+1).isPowerOf2()) { 3580 MinBits = C->getAPIntValue().countTrailingOnes(); 3581 PreExt = N0->getOperand(0); 3582 } 3583 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3584 // SExt 3585 MinBits = N0->getOperand(0).getValueSizeInBits(); 3586 PreExt = N0->getOperand(0); 3587 Signed = true; 3588 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3589 // ZEXTLOAD / SEXTLOAD 3590 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3591 MinBits = LN0->getMemoryVT().getSizeInBits(); 3592 PreExt = N0; 3593 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3594 Signed = true; 3595 MinBits = LN0->getMemoryVT().getSizeInBits(); 3596 PreExt = N0; 3597 } 3598 } 3599 3600 // Figure out how many bits we need to preserve this constant. 3601 unsigned ReqdBits = Signed ? 3602 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3603 C1.getActiveBits(); 3604 3605 // Make sure we're not losing bits from the constant. 3606 if (MinBits > 0 && 3607 MinBits < C1.getBitWidth() && 3608 MinBits >= ReqdBits) { 3609 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3610 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3611 // Will get folded away. 3612 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3613 if (MinBits == 1 && C1 == 1) 3614 // Invert the condition. 3615 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3616 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3617 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3618 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3619 } 3620 3621 // If truncating the setcc operands is not desirable, we can still 3622 // simplify the expression in some cases: 3623 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3624 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3625 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3626 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3627 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3628 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3629 SDValue TopSetCC = N0->getOperand(0); 3630 unsigned N0Opc = N0->getOpcode(); 3631 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3632 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3633 TopSetCC.getOpcode() == ISD::SETCC && 3634 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3635 (isConstFalseVal(N1C) || 3636 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3637 3638 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3639 (!N1C->isNullValue() && Cond == ISD::SETNE); 3640 3641 if (!Inverse) 3642 return TopSetCC; 3643 3644 ISD::CondCode InvCond = ISD::getSetCCInverse( 3645 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3646 TopSetCC.getOperand(0).getValueType()); 3647 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3648 TopSetCC.getOperand(1), 3649 InvCond); 3650 } 3651 } 3652 } 3653 3654 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3655 // equality or unsigned, and all 1 bits of the const are in the same 3656 // partial word, see if we can shorten the load. 3657 if (DCI.isBeforeLegalize() && 3658 !ISD::isSignedIntSetCC(Cond) && 3659 N0.getOpcode() == ISD::AND && C1 == 0 && 3660 N0.getNode()->hasOneUse() && 3661 isa<LoadSDNode>(N0.getOperand(0)) && 3662 N0.getOperand(0).getNode()->hasOneUse() && 3663 isa<ConstantSDNode>(N0.getOperand(1))) { 3664 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3665 APInt bestMask; 3666 unsigned bestWidth = 0, bestOffset = 0; 3667 if (Lod->isSimple() && Lod->isUnindexed()) { 3668 unsigned origWidth = N0.getValueSizeInBits(); 3669 unsigned maskWidth = origWidth; 3670 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3671 // 8 bits, but have to be careful... 3672 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3673 origWidth = Lod->getMemoryVT().getSizeInBits(); 3674 const APInt &Mask = N0.getConstantOperandAPInt(1); 3675 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3676 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3677 for (unsigned offset=0; offset<origWidth/width; offset++) { 3678 if (Mask.isSubsetOf(newMask)) { 3679 if (Layout.isLittleEndian()) 3680 bestOffset = (uint64_t)offset * (width/8); 3681 else 3682 bestOffset = (origWidth/width - offset - 1) * (width/8); 3683 bestMask = Mask.lshr(offset * (width/8) * 8); 3684 bestWidth = width; 3685 break; 3686 } 3687 newMask <<= width; 3688 } 3689 } 3690 } 3691 if (bestWidth) { 3692 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3693 if (newVT.isRound() && 3694 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3695 SDValue Ptr = Lod->getBasePtr(); 3696 if (bestOffset != 0) 3697 Ptr = 3698 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3699 SDValue NewLoad = 3700 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3701 Lod->getPointerInfo().getWithOffset(bestOffset), 3702 Lod->getOriginalAlign()); 3703 return DAG.getSetCC(dl, VT, 3704 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3705 DAG.getConstant(bestMask.trunc(bestWidth), 3706 dl, newVT)), 3707 DAG.getConstant(0LL, dl, newVT), Cond); 3708 } 3709 } 3710 } 3711 3712 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3713 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3714 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3715 3716 // If the comparison constant has bits in the upper part, the 3717 // zero-extended value could never match. 3718 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3719 C1.getBitWidth() - InSize))) { 3720 switch (Cond) { 3721 case ISD::SETUGT: 3722 case ISD::SETUGE: 3723 case ISD::SETEQ: 3724 return DAG.getConstant(0, dl, VT); 3725 case ISD::SETULT: 3726 case ISD::SETULE: 3727 case ISD::SETNE: 3728 return DAG.getConstant(1, dl, VT); 3729 case ISD::SETGT: 3730 case ISD::SETGE: 3731 // True if the sign bit of C1 is set. 3732 return DAG.getConstant(C1.isNegative(), dl, VT); 3733 case ISD::SETLT: 3734 case ISD::SETLE: 3735 // True if the sign bit of C1 isn't set. 3736 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3737 default: 3738 break; 3739 } 3740 } 3741 3742 // Otherwise, we can perform the comparison with the low bits. 3743 switch (Cond) { 3744 case ISD::SETEQ: 3745 case ISD::SETNE: 3746 case ISD::SETUGT: 3747 case ISD::SETUGE: 3748 case ISD::SETULT: 3749 case ISD::SETULE: { 3750 EVT newVT = N0.getOperand(0).getValueType(); 3751 if (DCI.isBeforeLegalizeOps() || 3752 (isOperationLegal(ISD::SETCC, newVT) && 3753 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3754 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3755 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3756 3757 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3758 NewConst, Cond); 3759 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3760 } 3761 break; 3762 } 3763 default: 3764 break; // todo, be more careful with signed comparisons 3765 } 3766 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3767 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3768 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3769 OpVT)) { 3770 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3771 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3772 EVT ExtDstTy = N0.getValueType(); 3773 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3774 3775 // If the constant doesn't fit into the number of bits for the source of 3776 // the sign extension, it is impossible for both sides to be equal. 3777 if (C1.getMinSignedBits() > ExtSrcTyBits) 3778 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3779 3780 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3781 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3782 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3783 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3784 DAG.getConstant(Imm, dl, ExtDstTy)); 3785 if (!DCI.isCalledByLegalizer()) 3786 DCI.AddToWorklist(ZextOp.getNode()); 3787 // Otherwise, make this a use of a zext. 3788 return DAG.getSetCC(dl, VT, ZextOp, 3789 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3790 } else if ((N1C->isNullValue() || N1C->isOne()) && 3791 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3792 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3793 if (N0.getOpcode() == ISD::SETCC && 3794 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3795 (N0.getValueType() == MVT::i1 || 3796 getBooleanContents(N0.getOperand(0).getValueType()) == 3797 ZeroOrOneBooleanContent)) { 3798 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3799 if (TrueWhenTrue) 3800 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3801 // Invert the condition. 3802 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3803 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3804 if (DCI.isBeforeLegalizeOps() || 3805 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3806 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3807 } 3808 3809 if ((N0.getOpcode() == ISD::XOR || 3810 (N0.getOpcode() == ISD::AND && 3811 N0.getOperand(0).getOpcode() == ISD::XOR && 3812 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3813 isOneConstant(N0.getOperand(1))) { 3814 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3815 // can only do this if the top bits are known zero. 3816 unsigned BitWidth = N0.getValueSizeInBits(); 3817 if (DAG.MaskedValueIsZero(N0, 3818 APInt::getHighBitsSet(BitWidth, 3819 BitWidth-1))) { 3820 // Okay, get the un-inverted input value. 3821 SDValue Val; 3822 if (N0.getOpcode() == ISD::XOR) { 3823 Val = N0.getOperand(0); 3824 } else { 3825 assert(N0.getOpcode() == ISD::AND && 3826 N0.getOperand(0).getOpcode() == ISD::XOR); 3827 // ((X^1)&1)^1 -> X & 1 3828 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3829 N0.getOperand(0).getOperand(0), 3830 N0.getOperand(1)); 3831 } 3832 3833 return DAG.getSetCC(dl, VT, Val, N1, 3834 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3835 } 3836 } else if (N1C->isOne()) { 3837 SDValue Op0 = N0; 3838 if (Op0.getOpcode() == ISD::TRUNCATE) 3839 Op0 = Op0.getOperand(0); 3840 3841 if ((Op0.getOpcode() == ISD::XOR) && 3842 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3843 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3844 SDValue XorLHS = Op0.getOperand(0); 3845 SDValue XorRHS = Op0.getOperand(1); 3846 // Ensure that the input setccs return an i1 type or 0/1 value. 3847 if (Op0.getValueType() == MVT::i1 || 3848 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3849 ZeroOrOneBooleanContent && 3850 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3851 ZeroOrOneBooleanContent)) { 3852 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3853 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3854 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3855 } 3856 } 3857 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3858 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3859 if (Op0.getValueType().bitsGT(VT)) 3860 Op0 = DAG.getNode(ISD::AND, dl, VT, 3861 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3862 DAG.getConstant(1, dl, VT)); 3863 else if (Op0.getValueType().bitsLT(VT)) 3864 Op0 = DAG.getNode(ISD::AND, dl, VT, 3865 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3866 DAG.getConstant(1, dl, VT)); 3867 3868 return DAG.getSetCC(dl, VT, Op0, 3869 DAG.getConstant(0, dl, Op0.getValueType()), 3870 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3871 } 3872 if (Op0.getOpcode() == ISD::AssertZext && 3873 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3874 return DAG.getSetCC(dl, VT, Op0, 3875 DAG.getConstant(0, dl, Op0.getValueType()), 3876 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3877 } 3878 } 3879 3880 // Given: 3881 // icmp eq/ne (urem %x, %y), 0 3882 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3883 // icmp eq/ne %x, 0 3884 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3885 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3886 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3887 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3888 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3889 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3890 } 3891 3892 if (SDValue V = 3893 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3894 return V; 3895 } 3896 3897 // These simplifications apply to splat vectors as well. 3898 // TODO: Handle more splat vector cases. 3899 if (auto *N1C = isConstOrConstSplat(N1)) { 3900 const APInt &C1 = N1C->getAPIntValue(); 3901 3902 APInt MinVal, MaxVal; 3903 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3904 if (ISD::isSignedIntSetCC(Cond)) { 3905 MinVal = APInt::getSignedMinValue(OperandBitSize); 3906 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3907 } else { 3908 MinVal = APInt::getMinValue(OperandBitSize); 3909 MaxVal = APInt::getMaxValue(OperandBitSize); 3910 } 3911 3912 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3913 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3914 // X >= MIN --> true 3915 if (C1 == MinVal) 3916 return DAG.getBoolConstant(true, dl, VT, OpVT); 3917 3918 if (!VT.isVector()) { // TODO: Support this for vectors. 3919 // X >= C0 --> X > (C0 - 1) 3920 APInt C = C1 - 1; 3921 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3922 if ((DCI.isBeforeLegalizeOps() || 3923 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3924 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3925 isLegalICmpImmediate(C.getSExtValue())))) { 3926 return DAG.getSetCC(dl, VT, N0, 3927 DAG.getConstant(C, dl, N1.getValueType()), 3928 NewCC); 3929 } 3930 } 3931 } 3932 3933 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3934 // X <= MAX --> true 3935 if (C1 == MaxVal) 3936 return DAG.getBoolConstant(true, dl, VT, OpVT); 3937 3938 // X <= C0 --> X < (C0 + 1) 3939 if (!VT.isVector()) { // TODO: Support this for vectors. 3940 APInt C = C1 + 1; 3941 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3942 if ((DCI.isBeforeLegalizeOps() || 3943 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3944 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3945 isLegalICmpImmediate(C.getSExtValue())))) { 3946 return DAG.getSetCC(dl, VT, N0, 3947 DAG.getConstant(C, dl, N1.getValueType()), 3948 NewCC); 3949 } 3950 } 3951 } 3952 3953 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3954 if (C1 == MinVal) 3955 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3956 3957 // TODO: Support this for vectors after legalize ops. 3958 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3959 // Canonicalize setlt X, Max --> setne X, Max 3960 if (C1 == MaxVal) 3961 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3962 3963 // If we have setult X, 1, turn it into seteq X, 0 3964 if (C1 == MinVal+1) 3965 return DAG.getSetCC(dl, VT, N0, 3966 DAG.getConstant(MinVal, dl, N0.getValueType()), 3967 ISD::SETEQ); 3968 } 3969 } 3970 3971 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3972 if (C1 == MaxVal) 3973 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3974 3975 // TODO: Support this for vectors after legalize ops. 3976 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3977 // Canonicalize setgt X, Min --> setne X, Min 3978 if (C1 == MinVal) 3979 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3980 3981 // If we have setugt X, Max-1, turn it into seteq X, Max 3982 if (C1 == MaxVal-1) 3983 return DAG.getSetCC(dl, VT, N0, 3984 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3985 ISD::SETEQ); 3986 } 3987 } 3988 3989 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3990 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3991 if (C1.isNullValue()) 3992 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3993 VT, N0, N1, Cond, DCI, dl)) 3994 return CC; 3995 3996 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3997 // For example, when high 32-bits of i64 X are known clear: 3998 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3999 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4000 bool CmpZero = N1C->getAPIntValue().isNullValue(); 4001 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 4002 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4003 // Match or(lo,shl(hi,bw/2)) pattern. 4004 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4005 unsigned EltBits = V.getScalarValueSizeInBits(); 4006 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4007 return false; 4008 SDValue LHS = V.getOperand(0); 4009 SDValue RHS = V.getOperand(1); 4010 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4011 // Unshifted element must have zero upperbits. 4012 if (RHS.getOpcode() == ISD::SHL && 4013 isa<ConstantSDNode>(RHS.getOperand(1)) && 4014 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4015 DAG.MaskedValueIsZero(LHS, HiBits)) { 4016 Lo = LHS; 4017 Hi = RHS.getOperand(0); 4018 return true; 4019 } 4020 if (LHS.getOpcode() == ISD::SHL && 4021 isa<ConstantSDNode>(LHS.getOperand(1)) && 4022 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4023 DAG.MaskedValueIsZero(RHS, HiBits)) { 4024 Lo = RHS; 4025 Hi = LHS.getOperand(0); 4026 return true; 4027 } 4028 return false; 4029 }; 4030 4031 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4032 unsigned EltBits = N0.getScalarValueSizeInBits(); 4033 unsigned HalfBits = EltBits / 2; 4034 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4035 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4036 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4037 SDValue NewN0 = 4038 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4039 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4040 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4041 }; 4042 4043 SDValue Lo, Hi; 4044 if (IsConcat(N0, Lo, Hi)) 4045 return MergeConcat(Lo, Hi); 4046 4047 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4048 SDValue Lo0, Lo1, Hi0, Hi1; 4049 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4050 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4051 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4052 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4053 } 4054 } 4055 } 4056 } 4057 4058 // If we have "setcc X, C0", check to see if we can shrink the immediate 4059 // by changing cc. 4060 // TODO: Support this for vectors after legalize ops. 4061 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4062 // SETUGT X, SINTMAX -> SETLT X, 0 4063 // SETUGE X, SINTMIN -> SETLT X, 0 4064 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4065 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4066 return DAG.getSetCC(dl, VT, N0, 4067 DAG.getConstant(0, dl, N1.getValueType()), 4068 ISD::SETLT); 4069 4070 // SETULT X, SINTMIN -> SETGT X, -1 4071 // SETULE X, SINTMAX -> SETGT X, -1 4072 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4073 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4074 return DAG.getSetCC(dl, VT, N0, 4075 DAG.getAllOnesConstant(dl, N1.getValueType()), 4076 ISD::SETGT); 4077 } 4078 } 4079 4080 // Back to non-vector simplifications. 4081 // TODO: Can we do these for vector splats? 4082 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4084 const APInt &C1 = N1C->getAPIntValue(); 4085 EVT ShValTy = N0.getValueType(); 4086 4087 // Fold bit comparisons when we can. This will result in an 4088 // incorrect value when boolean false is negative one, unless 4089 // the bitsize is 1 in which case the false value is the same 4090 // in practice regardless of the representation. 4091 if ((VT.getSizeInBits() == 1 || 4092 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4093 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4094 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4095 N0.getOpcode() == ISD::AND) { 4096 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4097 EVT ShiftTy = 4098 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4099 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4100 // Perform the xform if the AND RHS is a single bit. 4101 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4102 if (AndRHS->getAPIntValue().isPowerOf2() && 4103 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4104 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4105 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4106 DAG.getConstant(ShCt, dl, ShiftTy))); 4107 } 4108 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4109 // (X & 8) == 8 --> (X & 8) >> 3 4110 // Perform the xform if C1 is a single bit. 4111 unsigned ShCt = C1.logBase2(); 4112 if (C1.isPowerOf2() && 4113 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4114 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4115 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4116 DAG.getConstant(ShCt, dl, ShiftTy))); 4117 } 4118 } 4119 } 4120 } 4121 4122 if (C1.getMinSignedBits() <= 64 && 4123 !isLegalICmpImmediate(C1.getSExtValue())) { 4124 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4125 // (X & -256) == 256 -> (X >> 8) == 1 4126 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4127 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4128 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4129 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4130 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4131 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4132 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4133 SDValue Shift = 4134 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4135 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4136 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4137 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4138 } 4139 } 4140 } 4141 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4142 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4143 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4144 // X < 0x100000000 -> (X >> 32) < 1 4145 // X >= 0x100000000 -> (X >> 32) >= 1 4146 // X <= 0x0ffffffff -> (X >> 32) < 1 4147 // X > 0x0ffffffff -> (X >> 32) >= 1 4148 unsigned ShiftBits; 4149 APInt NewC = C1; 4150 ISD::CondCode NewCond = Cond; 4151 if (AdjOne) { 4152 ShiftBits = C1.countTrailingOnes(); 4153 NewC = NewC + 1; 4154 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4155 } else { 4156 ShiftBits = C1.countTrailingZeros(); 4157 } 4158 NewC.lshrInPlace(ShiftBits); 4159 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4160 isLegalICmpImmediate(NewC.getSExtValue()) && 4161 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4162 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4163 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4164 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4165 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4166 } 4167 } 4168 } 4169 } 4170 4171 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4172 auto *CFP = cast<ConstantFPSDNode>(N1); 4173 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4174 4175 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4176 // constant if knowing that the operand is non-nan is enough. We prefer to 4177 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4178 // materialize 0.0. 4179 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4180 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4181 4182 // setcc (fneg x), C -> setcc swap(pred) x, -C 4183 if (N0.getOpcode() == ISD::FNEG) { 4184 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4185 if (DCI.isBeforeLegalizeOps() || 4186 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4187 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4188 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4189 } 4190 } 4191 4192 // If the condition is not legal, see if we can find an equivalent one 4193 // which is legal. 4194 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4195 // If the comparison was an awkward floating-point == or != and one of 4196 // the comparison operands is infinity or negative infinity, convert the 4197 // condition to a less-awkward <= or >=. 4198 if (CFP->getValueAPF().isInfinity()) { 4199 bool IsNegInf = CFP->getValueAPF().isNegative(); 4200 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4201 switch (Cond) { 4202 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4203 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4204 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4205 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4206 default: break; 4207 } 4208 if (NewCond != ISD::SETCC_INVALID && 4209 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4210 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4211 } 4212 } 4213 } 4214 4215 if (N0 == N1) { 4216 // The sext(setcc()) => setcc() optimization relies on the appropriate 4217 // constant being emitted. 4218 assert(!N0.getValueType().isInteger() && 4219 "Integer types should be handled by FoldSetCC"); 4220 4221 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4222 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4223 if (UOF == 2) // FP operators that are undefined on NaNs. 4224 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4225 if (UOF == unsigned(EqTrue)) 4226 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4227 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4228 // if it is not already. 4229 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4230 if (NewCond != Cond && 4231 (DCI.isBeforeLegalizeOps() || 4232 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4233 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4234 } 4235 4236 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4237 N0.getValueType().isInteger()) { 4238 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4239 N0.getOpcode() == ISD::XOR) { 4240 // Simplify (X+Y) == (X+Z) --> Y == Z 4241 if (N0.getOpcode() == N1.getOpcode()) { 4242 if (N0.getOperand(0) == N1.getOperand(0)) 4243 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4244 if (N0.getOperand(1) == N1.getOperand(1)) 4245 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4246 if (isCommutativeBinOp(N0.getOpcode())) { 4247 // If X op Y == Y op X, try other combinations. 4248 if (N0.getOperand(0) == N1.getOperand(1)) 4249 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4250 Cond); 4251 if (N0.getOperand(1) == N1.getOperand(0)) 4252 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4253 Cond); 4254 } 4255 } 4256 4257 // If RHS is a legal immediate value for a compare instruction, we need 4258 // to be careful about increasing register pressure needlessly. 4259 bool LegalRHSImm = false; 4260 4261 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4262 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4263 // Turn (X+C1) == C2 --> X == C2-C1 4264 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4265 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4266 DAG.getConstant(RHSC->getAPIntValue()- 4267 LHSR->getAPIntValue(), 4268 dl, N0.getValueType()), Cond); 4269 } 4270 4271 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4272 if (N0.getOpcode() == ISD::XOR) 4273 // If we know that all of the inverted bits are zero, don't bother 4274 // performing the inversion. 4275 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4276 return 4277 DAG.getSetCC(dl, VT, N0.getOperand(0), 4278 DAG.getConstant(LHSR->getAPIntValue() ^ 4279 RHSC->getAPIntValue(), 4280 dl, N0.getValueType()), 4281 Cond); 4282 } 4283 4284 // Turn (C1-X) == C2 --> X == C1-C2 4285 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4286 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4287 return 4288 DAG.getSetCC(dl, VT, N0.getOperand(1), 4289 DAG.getConstant(SUBC->getAPIntValue() - 4290 RHSC->getAPIntValue(), 4291 dl, N0.getValueType()), 4292 Cond); 4293 } 4294 } 4295 4296 // Could RHSC fold directly into a compare? 4297 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4298 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4299 } 4300 4301 // (X+Y) == X --> Y == 0 and similar folds. 4302 // Don't do this if X is an immediate that can fold into a cmp 4303 // instruction and X+Y has other uses. It could be an induction variable 4304 // chain, and the transform would increase register pressure. 4305 if (!LegalRHSImm || N0.hasOneUse()) 4306 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4307 return V; 4308 } 4309 4310 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4311 N1.getOpcode() == ISD::XOR) 4312 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4313 return V; 4314 4315 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4316 return V; 4317 } 4318 4319 // Fold remainder of division by a constant. 4320 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4321 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4322 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4323 4324 // When division is cheap or optimizing for minimum size, 4325 // fall through to DIVREM creation by skipping this fold. 4326 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4327 if (N0.getOpcode() == ISD::UREM) { 4328 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4329 return Folded; 4330 } else if (N0.getOpcode() == ISD::SREM) { 4331 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4332 return Folded; 4333 } 4334 } 4335 } 4336 4337 // Fold away ALL boolean setcc's. 4338 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4339 SDValue Temp; 4340 switch (Cond) { 4341 default: llvm_unreachable("Unknown integer setcc!"); 4342 case ISD::SETEQ: // X == Y -> ~(X^Y) 4343 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4344 N0 = DAG.getNOT(dl, Temp, OpVT); 4345 if (!DCI.isCalledByLegalizer()) 4346 DCI.AddToWorklist(Temp.getNode()); 4347 break; 4348 case ISD::SETNE: // X != Y --> (X^Y) 4349 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4350 break; 4351 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4352 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4353 Temp = DAG.getNOT(dl, N0, OpVT); 4354 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4355 if (!DCI.isCalledByLegalizer()) 4356 DCI.AddToWorklist(Temp.getNode()); 4357 break; 4358 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4359 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4360 Temp = DAG.getNOT(dl, N1, OpVT); 4361 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4362 if (!DCI.isCalledByLegalizer()) 4363 DCI.AddToWorklist(Temp.getNode()); 4364 break; 4365 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4366 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4367 Temp = DAG.getNOT(dl, N0, OpVT); 4368 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4369 if (!DCI.isCalledByLegalizer()) 4370 DCI.AddToWorklist(Temp.getNode()); 4371 break; 4372 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4373 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4374 Temp = DAG.getNOT(dl, N1, OpVT); 4375 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4376 break; 4377 } 4378 if (VT.getScalarType() != MVT::i1) { 4379 if (!DCI.isCalledByLegalizer()) 4380 DCI.AddToWorklist(N0.getNode()); 4381 // FIXME: If running after legalize, we probably can't do this. 4382 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4383 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4384 } 4385 return N0; 4386 } 4387 4388 // Could not fold it. 4389 return SDValue(); 4390 } 4391 4392 /// Returns true (and the GlobalValue and the offset) if the node is a 4393 /// GlobalAddress + offset. 4394 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4395 int64_t &Offset) const { 4396 4397 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4398 4399 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4400 GA = GASD->getGlobal(); 4401 Offset += GASD->getOffset(); 4402 return true; 4403 } 4404 4405 if (N->getOpcode() == ISD::ADD) { 4406 SDValue N1 = N->getOperand(0); 4407 SDValue N2 = N->getOperand(1); 4408 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4409 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4410 Offset += V->getSExtValue(); 4411 return true; 4412 } 4413 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4414 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4415 Offset += V->getSExtValue(); 4416 return true; 4417 } 4418 } 4419 } 4420 4421 return false; 4422 } 4423 4424 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4425 DAGCombinerInfo &DCI) const { 4426 // Default implementation: no optimization. 4427 return SDValue(); 4428 } 4429 4430 //===----------------------------------------------------------------------===// 4431 // Inline Assembler Implementation Methods 4432 //===----------------------------------------------------------------------===// 4433 4434 TargetLowering::ConstraintType 4435 TargetLowering::getConstraintType(StringRef Constraint) const { 4436 unsigned S = Constraint.size(); 4437 4438 if (S == 1) { 4439 switch (Constraint[0]) { 4440 default: break; 4441 case 'r': 4442 return C_RegisterClass; 4443 case 'm': // memory 4444 case 'o': // offsetable 4445 case 'V': // not offsetable 4446 return C_Memory; 4447 case 'n': // Simple Integer 4448 case 'E': // Floating Point Constant 4449 case 'F': // Floating Point Constant 4450 return C_Immediate; 4451 case 'i': // Simple Integer or Relocatable Constant 4452 case 's': // Relocatable Constant 4453 case 'p': // Address. 4454 case 'X': // Allow ANY value. 4455 case 'I': // Target registers. 4456 case 'J': 4457 case 'K': 4458 case 'L': 4459 case 'M': 4460 case 'N': 4461 case 'O': 4462 case 'P': 4463 case '<': 4464 case '>': 4465 return C_Other; 4466 } 4467 } 4468 4469 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4470 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4471 return C_Memory; 4472 return C_Register; 4473 } 4474 return C_Unknown; 4475 } 4476 4477 /// Try to replace an X constraint, which matches anything, with another that 4478 /// has more specific requirements based on the type of the corresponding 4479 /// operand. 4480 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4481 if (ConstraintVT.isInteger()) 4482 return "r"; 4483 if (ConstraintVT.isFloatingPoint()) 4484 return "f"; // works for many targets 4485 return nullptr; 4486 } 4487 4488 SDValue TargetLowering::LowerAsmOutputForConstraint( 4489 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4490 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4491 return SDValue(); 4492 } 4493 4494 /// Lower the specified operand into the Ops vector. 4495 /// If it is invalid, don't add anything to Ops. 4496 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4497 std::string &Constraint, 4498 std::vector<SDValue> &Ops, 4499 SelectionDAG &DAG) const { 4500 4501 if (Constraint.length() > 1) return; 4502 4503 char ConstraintLetter = Constraint[0]; 4504 switch (ConstraintLetter) { 4505 default: break; 4506 case 'X': // Allows any operand; labels (basic block) use this. 4507 if (Op.getOpcode() == ISD::BasicBlock || 4508 Op.getOpcode() == ISD::TargetBlockAddress) { 4509 Ops.push_back(Op); 4510 return; 4511 } 4512 LLVM_FALLTHROUGH; 4513 case 'i': // Simple Integer or Relocatable Constant 4514 case 'n': // Simple Integer 4515 case 's': { // Relocatable Constant 4516 4517 GlobalAddressSDNode *GA; 4518 ConstantSDNode *C; 4519 BlockAddressSDNode *BA; 4520 uint64_t Offset = 0; 4521 4522 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4523 // etc., since getelementpointer is variadic. We can't use 4524 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4525 // while in this case the GA may be furthest from the root node which is 4526 // likely an ISD::ADD. 4527 while (1) { 4528 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4529 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4530 GA->getValueType(0), 4531 Offset + GA->getOffset())); 4532 return; 4533 } 4534 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4535 // gcc prints these as sign extended. Sign extend value to 64 bits 4536 // now; without this it would get ZExt'd later in 4537 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4538 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4539 BooleanContent BCont = getBooleanContents(MVT::i64); 4540 ISD::NodeType ExtOpc = 4541 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4542 int64_t ExtVal = 4543 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4544 Ops.push_back( 4545 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4546 return; 4547 } 4548 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4549 Ops.push_back(DAG.getTargetBlockAddress( 4550 BA->getBlockAddress(), BA->getValueType(0), 4551 Offset + BA->getOffset(), BA->getTargetFlags())); 4552 return; 4553 } 4554 const unsigned OpCode = Op.getOpcode(); 4555 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4556 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4557 Op = Op.getOperand(1); 4558 // Subtraction is not commutative. 4559 else if (OpCode == ISD::ADD && 4560 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4561 Op = Op.getOperand(0); 4562 else 4563 return; 4564 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4565 continue; 4566 } 4567 return; 4568 } 4569 break; 4570 } 4571 } 4572 } 4573 4574 std::pair<unsigned, const TargetRegisterClass *> 4575 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4576 StringRef Constraint, 4577 MVT VT) const { 4578 if (Constraint.empty() || Constraint[0] != '{') 4579 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4580 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4581 4582 // Remove the braces from around the name. 4583 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4584 4585 std::pair<unsigned, const TargetRegisterClass *> R = 4586 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4587 4588 // Figure out which register class contains this reg. 4589 for (const TargetRegisterClass *RC : RI->regclasses()) { 4590 // If none of the value types for this register class are valid, we 4591 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4592 if (!isLegalRC(*RI, *RC)) 4593 continue; 4594 4595 for (const MCPhysReg &PR : *RC) { 4596 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4597 std::pair<unsigned, const TargetRegisterClass *> S = 4598 std::make_pair(PR, RC); 4599 4600 // If this register class has the requested value type, return it, 4601 // otherwise keep searching and return the first class found 4602 // if no other is found which explicitly has the requested type. 4603 if (RI->isTypeLegalForClass(*RC, VT)) 4604 return S; 4605 if (!R.second) 4606 R = S; 4607 } 4608 } 4609 } 4610 4611 return R; 4612 } 4613 4614 //===----------------------------------------------------------------------===// 4615 // Constraint Selection. 4616 4617 /// Return true of this is an input operand that is a matching constraint like 4618 /// "4". 4619 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4620 assert(!ConstraintCode.empty() && "No known constraint!"); 4621 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4622 } 4623 4624 /// If this is an input matching constraint, this method returns the output 4625 /// operand it matches. 4626 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4627 assert(!ConstraintCode.empty() && "No known constraint!"); 4628 return atoi(ConstraintCode.c_str()); 4629 } 4630 4631 /// Split up the constraint string from the inline assembly value into the 4632 /// specific constraints and their prefixes, and also tie in the associated 4633 /// operand values. 4634 /// If this returns an empty vector, and if the constraint string itself 4635 /// isn't empty, there was an error parsing. 4636 TargetLowering::AsmOperandInfoVector 4637 TargetLowering::ParseConstraints(const DataLayout &DL, 4638 const TargetRegisterInfo *TRI, 4639 const CallBase &Call) const { 4640 /// Information about all of the constraints. 4641 AsmOperandInfoVector ConstraintOperands; 4642 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4643 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4644 4645 // Do a prepass over the constraints, canonicalizing them, and building up the 4646 // ConstraintOperands list. 4647 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4648 unsigned ResNo = 0; // ResNo - The result number of the next output. 4649 4650 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4651 ConstraintOperands.emplace_back(std::move(CI)); 4652 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4653 4654 // Update multiple alternative constraint count. 4655 if (OpInfo.multipleAlternatives.size() > maCount) 4656 maCount = OpInfo.multipleAlternatives.size(); 4657 4658 OpInfo.ConstraintVT = MVT::Other; 4659 4660 // Compute the value type for each operand. 4661 switch (OpInfo.Type) { 4662 case InlineAsm::isOutput: 4663 // Indirect outputs just consume an argument. 4664 if (OpInfo.isIndirect) { 4665 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4666 break; 4667 } 4668 4669 // The return value of the call is this value. As such, there is no 4670 // corresponding argument. 4671 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4672 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4673 OpInfo.ConstraintVT = 4674 getSimpleValueType(DL, STy->getElementType(ResNo)); 4675 } else { 4676 assert(ResNo == 0 && "Asm only has one result!"); 4677 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4678 } 4679 ++ResNo; 4680 break; 4681 case InlineAsm::isInput: 4682 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4683 break; 4684 case InlineAsm::isClobber: 4685 // Nothing to do. 4686 break; 4687 } 4688 4689 if (OpInfo.CallOperandVal) { 4690 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4691 if (OpInfo.isIndirect) { 4692 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4693 if (!PtrTy) 4694 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4695 OpTy = PtrTy->getElementType(); 4696 } 4697 4698 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4699 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4700 if (STy->getNumElements() == 1) 4701 OpTy = STy->getElementType(0); 4702 4703 // If OpTy is not a single value, it may be a struct/union that we 4704 // can tile with integers. 4705 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4706 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4707 switch (BitSize) { 4708 default: break; 4709 case 1: 4710 case 8: 4711 case 16: 4712 case 32: 4713 case 64: 4714 case 128: 4715 OpInfo.ConstraintVT = 4716 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4717 break; 4718 } 4719 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4720 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4721 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4722 } else { 4723 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4724 } 4725 } 4726 } 4727 4728 // If we have multiple alternative constraints, select the best alternative. 4729 if (!ConstraintOperands.empty()) { 4730 if (maCount) { 4731 unsigned bestMAIndex = 0; 4732 int bestWeight = -1; 4733 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4734 int weight = -1; 4735 unsigned maIndex; 4736 // Compute the sums of the weights for each alternative, keeping track 4737 // of the best (highest weight) one so far. 4738 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4739 int weightSum = 0; 4740 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4741 cIndex != eIndex; ++cIndex) { 4742 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4743 if (OpInfo.Type == InlineAsm::isClobber) 4744 continue; 4745 4746 // If this is an output operand with a matching input operand, 4747 // look up the matching input. If their types mismatch, e.g. one 4748 // is an integer, the other is floating point, or their sizes are 4749 // different, flag it as an maCantMatch. 4750 if (OpInfo.hasMatchingInput()) { 4751 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4752 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4753 if ((OpInfo.ConstraintVT.isInteger() != 4754 Input.ConstraintVT.isInteger()) || 4755 (OpInfo.ConstraintVT.getSizeInBits() != 4756 Input.ConstraintVT.getSizeInBits())) { 4757 weightSum = -1; // Can't match. 4758 break; 4759 } 4760 } 4761 } 4762 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4763 if (weight == -1) { 4764 weightSum = -1; 4765 break; 4766 } 4767 weightSum += weight; 4768 } 4769 // Update best. 4770 if (weightSum > bestWeight) { 4771 bestWeight = weightSum; 4772 bestMAIndex = maIndex; 4773 } 4774 } 4775 4776 // Now select chosen alternative in each constraint. 4777 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4778 cIndex != eIndex; ++cIndex) { 4779 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4780 if (cInfo.Type == InlineAsm::isClobber) 4781 continue; 4782 cInfo.selectAlternative(bestMAIndex); 4783 } 4784 } 4785 } 4786 4787 // Check and hook up tied operands, choose constraint code to use. 4788 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4789 cIndex != eIndex; ++cIndex) { 4790 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4791 4792 // If this is an output operand with a matching input operand, look up the 4793 // matching input. If their types mismatch, e.g. one is an integer, the 4794 // other is floating point, or their sizes are different, flag it as an 4795 // error. 4796 if (OpInfo.hasMatchingInput()) { 4797 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4798 4799 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4800 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4801 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4802 OpInfo.ConstraintVT); 4803 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4804 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4805 Input.ConstraintVT); 4806 if ((OpInfo.ConstraintVT.isInteger() != 4807 Input.ConstraintVT.isInteger()) || 4808 (MatchRC.second != InputRC.second)) { 4809 report_fatal_error("Unsupported asm: input constraint" 4810 " with a matching output constraint of" 4811 " incompatible type!"); 4812 } 4813 } 4814 } 4815 } 4816 4817 return ConstraintOperands; 4818 } 4819 4820 /// Return an integer indicating how general CT is. 4821 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4822 switch (CT) { 4823 case TargetLowering::C_Immediate: 4824 case TargetLowering::C_Other: 4825 case TargetLowering::C_Unknown: 4826 return 0; 4827 case TargetLowering::C_Register: 4828 return 1; 4829 case TargetLowering::C_RegisterClass: 4830 return 2; 4831 case TargetLowering::C_Memory: 4832 return 3; 4833 } 4834 llvm_unreachable("Invalid constraint type"); 4835 } 4836 4837 /// Examine constraint type and operand type and determine a weight value. 4838 /// This object must already have been set up with the operand type 4839 /// and the current alternative constraint selected. 4840 TargetLowering::ConstraintWeight 4841 TargetLowering::getMultipleConstraintMatchWeight( 4842 AsmOperandInfo &info, int maIndex) const { 4843 InlineAsm::ConstraintCodeVector *rCodes; 4844 if (maIndex >= (int)info.multipleAlternatives.size()) 4845 rCodes = &info.Codes; 4846 else 4847 rCodes = &info.multipleAlternatives[maIndex].Codes; 4848 ConstraintWeight BestWeight = CW_Invalid; 4849 4850 // Loop over the options, keeping track of the most general one. 4851 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4852 ConstraintWeight weight = 4853 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4854 if (weight > BestWeight) 4855 BestWeight = weight; 4856 } 4857 4858 return BestWeight; 4859 } 4860 4861 /// Examine constraint type and operand type and determine a weight value. 4862 /// This object must already have been set up with the operand type 4863 /// and the current alternative constraint selected. 4864 TargetLowering::ConstraintWeight 4865 TargetLowering::getSingleConstraintMatchWeight( 4866 AsmOperandInfo &info, const char *constraint) const { 4867 ConstraintWeight weight = CW_Invalid; 4868 Value *CallOperandVal = info.CallOperandVal; 4869 // If we don't have a value, we can't do a match, 4870 // but allow it at the lowest weight. 4871 if (!CallOperandVal) 4872 return CW_Default; 4873 // Look at the constraint type. 4874 switch (*constraint) { 4875 case 'i': // immediate integer. 4876 case 'n': // immediate integer with a known value. 4877 if (isa<ConstantInt>(CallOperandVal)) 4878 weight = CW_Constant; 4879 break; 4880 case 's': // non-explicit intregal immediate. 4881 if (isa<GlobalValue>(CallOperandVal)) 4882 weight = CW_Constant; 4883 break; 4884 case 'E': // immediate float if host format. 4885 case 'F': // immediate float. 4886 if (isa<ConstantFP>(CallOperandVal)) 4887 weight = CW_Constant; 4888 break; 4889 case '<': // memory operand with autodecrement. 4890 case '>': // memory operand with autoincrement. 4891 case 'm': // memory operand. 4892 case 'o': // offsettable memory operand 4893 case 'V': // non-offsettable memory operand 4894 weight = CW_Memory; 4895 break; 4896 case 'r': // general register. 4897 case 'g': // general register, memory operand or immediate integer. 4898 // note: Clang converts "g" to "imr". 4899 if (CallOperandVal->getType()->isIntegerTy()) 4900 weight = CW_Register; 4901 break; 4902 case 'X': // any operand. 4903 default: 4904 weight = CW_Default; 4905 break; 4906 } 4907 return weight; 4908 } 4909 4910 /// If there are multiple different constraints that we could pick for this 4911 /// operand (e.g. "imr") try to pick the 'best' one. 4912 /// This is somewhat tricky: constraints fall into four classes: 4913 /// Other -> immediates and magic values 4914 /// Register -> one specific register 4915 /// RegisterClass -> a group of regs 4916 /// Memory -> memory 4917 /// Ideally, we would pick the most specific constraint possible: if we have 4918 /// something that fits into a register, we would pick it. The problem here 4919 /// is that if we have something that could either be in a register or in 4920 /// memory that use of the register could cause selection of *other* 4921 /// operands to fail: they might only succeed if we pick memory. Because of 4922 /// this the heuristic we use is: 4923 /// 4924 /// 1) If there is an 'other' constraint, and if the operand is valid for 4925 /// that constraint, use it. This makes us take advantage of 'i' 4926 /// constraints when available. 4927 /// 2) Otherwise, pick the most general constraint present. This prefers 4928 /// 'm' over 'r', for example. 4929 /// 4930 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4931 const TargetLowering &TLI, 4932 SDValue Op, SelectionDAG *DAG) { 4933 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4934 unsigned BestIdx = 0; 4935 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4936 int BestGenerality = -1; 4937 4938 // Loop over the options, keeping track of the most general one. 4939 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4940 TargetLowering::ConstraintType CType = 4941 TLI.getConstraintType(OpInfo.Codes[i]); 4942 4943 // Indirect 'other' or 'immediate' constraints are not allowed. 4944 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4945 CType == TargetLowering::C_Register || 4946 CType == TargetLowering::C_RegisterClass)) 4947 continue; 4948 4949 // If this is an 'other' or 'immediate' constraint, see if the operand is 4950 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4951 // the operand is an integer in the range [0..31] we want to use I (saving a 4952 // load of a register), otherwise we must use 'r'. 4953 if ((CType == TargetLowering::C_Other || 4954 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4955 assert(OpInfo.Codes[i].size() == 1 && 4956 "Unhandled multi-letter 'other' constraint"); 4957 std::vector<SDValue> ResultOps; 4958 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4959 ResultOps, *DAG); 4960 if (!ResultOps.empty()) { 4961 BestType = CType; 4962 BestIdx = i; 4963 break; 4964 } 4965 } 4966 4967 // Things with matching constraints can only be registers, per gcc 4968 // documentation. This mainly affects "g" constraints. 4969 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4970 continue; 4971 4972 // This constraint letter is more general than the previous one, use it. 4973 int Generality = getConstraintGenerality(CType); 4974 if (Generality > BestGenerality) { 4975 BestType = CType; 4976 BestIdx = i; 4977 BestGenerality = Generality; 4978 } 4979 } 4980 4981 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4982 OpInfo.ConstraintType = BestType; 4983 } 4984 4985 /// Determines the constraint code and constraint type to use for the specific 4986 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4987 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4988 SDValue Op, 4989 SelectionDAG *DAG) const { 4990 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4991 4992 // Single-letter constraints ('r') are very common. 4993 if (OpInfo.Codes.size() == 1) { 4994 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4995 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4996 } else { 4997 ChooseConstraint(OpInfo, *this, Op, DAG); 4998 } 4999 5000 // 'X' matches anything. 5001 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5002 // Labels and constants are handled elsewhere ('X' is the only thing 5003 // that matches labels). For Functions, the type here is the type of 5004 // the result, which is not what we want to look at; leave them alone. 5005 Value *v = OpInfo.CallOperandVal; 5006 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5007 OpInfo.CallOperandVal = v; 5008 return; 5009 } 5010 5011 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5012 return; 5013 5014 // Otherwise, try to resolve it to something we know about by looking at 5015 // the actual operand type. 5016 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5017 OpInfo.ConstraintCode = Repl; 5018 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5019 } 5020 } 5021 } 5022 5023 /// Given an exact SDIV by a constant, create a multiplication 5024 /// with the multiplicative inverse of the constant. 5025 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5026 const SDLoc &dl, SelectionDAG &DAG, 5027 SmallVectorImpl<SDNode *> &Created) { 5028 SDValue Op0 = N->getOperand(0); 5029 SDValue Op1 = N->getOperand(1); 5030 EVT VT = N->getValueType(0); 5031 EVT SVT = VT.getScalarType(); 5032 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5033 EVT ShSVT = ShVT.getScalarType(); 5034 5035 bool UseSRA = false; 5036 SmallVector<SDValue, 16> Shifts, Factors; 5037 5038 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5039 if (C->isNullValue()) 5040 return false; 5041 APInt Divisor = C->getAPIntValue(); 5042 unsigned Shift = Divisor.countTrailingZeros(); 5043 if (Shift) { 5044 Divisor.ashrInPlace(Shift); 5045 UseSRA = true; 5046 } 5047 // Calculate the multiplicative inverse, using Newton's method. 5048 APInt t; 5049 APInt Factor = Divisor; 5050 while ((t = Divisor * Factor) != 1) 5051 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5052 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5053 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5054 return true; 5055 }; 5056 5057 // Collect all magic values from the build vector. 5058 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5059 return SDValue(); 5060 5061 SDValue Shift, Factor; 5062 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5063 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5064 Factor = DAG.getBuildVector(VT, dl, Factors); 5065 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5066 assert(Shifts.size() == 1 && Factors.size() == 1 && 5067 "Expected matchUnaryPredicate to return one element for scalable " 5068 "vectors"); 5069 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5070 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5071 } else { 5072 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5073 Shift = Shifts[0]; 5074 Factor = Factors[0]; 5075 } 5076 5077 SDValue Res = Op0; 5078 5079 // Shift the value upfront if it is even, so the LSB is one. 5080 if (UseSRA) { 5081 // TODO: For UDIV use SRL instead of SRA. 5082 SDNodeFlags Flags; 5083 Flags.setExact(true); 5084 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5085 Created.push_back(Res.getNode()); 5086 } 5087 5088 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5089 } 5090 5091 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5092 SelectionDAG &DAG, 5093 SmallVectorImpl<SDNode *> &Created) const { 5094 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5096 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5097 return SDValue(N, 0); // Lower SDIV as SDIV 5098 return SDValue(); 5099 } 5100 5101 /// Given an ISD::SDIV node expressing a divide by constant, 5102 /// return a DAG expression to select that will generate the same value by 5103 /// multiplying by a magic number. 5104 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5105 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5106 bool IsAfterLegalization, 5107 SmallVectorImpl<SDNode *> &Created) const { 5108 SDLoc dl(N); 5109 EVT VT = N->getValueType(0); 5110 EVT SVT = VT.getScalarType(); 5111 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5112 EVT ShSVT = ShVT.getScalarType(); 5113 unsigned EltBits = VT.getScalarSizeInBits(); 5114 EVT MulVT; 5115 5116 // Check to see if we can do this. 5117 // FIXME: We should be more aggressive here. 5118 if (!isTypeLegal(VT)) { 5119 // Limit this to simple scalars for now. 5120 if (VT.isVector() || !VT.isSimple()) 5121 return SDValue(); 5122 5123 // If this type will be promoted to a large enough type with a legal 5124 // multiply operation, we can go ahead and do this transform. 5125 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5126 return SDValue(); 5127 5128 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5129 if (MulVT.getSizeInBits() < (2 * EltBits) || 5130 !isOperationLegal(ISD::MUL, MulVT)) 5131 return SDValue(); 5132 } 5133 5134 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5135 if (N->getFlags().hasExact()) 5136 return BuildExactSDIV(*this, N, dl, DAG, Created); 5137 5138 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5139 5140 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5141 if (C->isNullValue()) 5142 return false; 5143 5144 const APInt &Divisor = C->getAPIntValue(); 5145 APInt::ms magics = Divisor.magic(); 5146 int NumeratorFactor = 0; 5147 int ShiftMask = -1; 5148 5149 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5150 // If d is +1/-1, we just multiply the numerator by +1/-1. 5151 NumeratorFactor = Divisor.getSExtValue(); 5152 magics.m = 0; 5153 magics.s = 0; 5154 ShiftMask = 0; 5155 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5156 // If d > 0 and m < 0, add the numerator. 5157 NumeratorFactor = 1; 5158 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5159 // If d < 0 and m > 0, subtract the numerator. 5160 NumeratorFactor = -1; 5161 } 5162 5163 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5164 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5165 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5166 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5167 return true; 5168 }; 5169 5170 SDValue N0 = N->getOperand(0); 5171 SDValue N1 = N->getOperand(1); 5172 5173 // Collect the shifts / magic values from each element. 5174 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5175 return SDValue(); 5176 5177 SDValue MagicFactor, Factor, Shift, ShiftMask; 5178 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5179 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5180 Factor = DAG.getBuildVector(VT, dl, Factors); 5181 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5182 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5183 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5184 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5185 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5186 "Expected matchUnaryPredicate to return one element for scalable " 5187 "vectors"); 5188 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5189 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5190 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5191 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5192 } else { 5193 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5194 MagicFactor = MagicFactors[0]; 5195 Factor = Factors[0]; 5196 Shift = Shifts[0]; 5197 ShiftMask = ShiftMasks[0]; 5198 } 5199 5200 // Multiply the numerator (operand 0) by the magic value. 5201 // FIXME: We should support doing a MUL in a wider type. 5202 auto GetMULHS = [&](SDValue X, SDValue Y) { 5203 // If the type isn't legal, use a wider mul of the the type calculated 5204 // earlier. 5205 if (!isTypeLegal(VT)) { 5206 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5207 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5208 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5209 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5210 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5211 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5212 } 5213 5214 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5215 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5216 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5217 SDValue LoHi = 5218 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5219 return SDValue(LoHi.getNode(), 1); 5220 } 5221 return SDValue(); 5222 }; 5223 5224 SDValue Q = GetMULHS(N0, MagicFactor); 5225 if (!Q) 5226 return SDValue(); 5227 5228 Created.push_back(Q.getNode()); 5229 5230 // (Optionally) Add/subtract the numerator using Factor. 5231 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5232 Created.push_back(Factor.getNode()); 5233 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5234 Created.push_back(Q.getNode()); 5235 5236 // Shift right algebraic by shift value. 5237 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5238 Created.push_back(Q.getNode()); 5239 5240 // Extract the sign bit, mask it and add it to the quotient. 5241 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5242 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5243 Created.push_back(T.getNode()); 5244 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5245 Created.push_back(T.getNode()); 5246 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5247 } 5248 5249 /// Given an ISD::UDIV node expressing a divide by constant, 5250 /// return a DAG expression to select that will generate the same value by 5251 /// multiplying by a magic number. 5252 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5253 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5254 bool IsAfterLegalization, 5255 SmallVectorImpl<SDNode *> &Created) const { 5256 SDLoc dl(N); 5257 EVT VT = N->getValueType(0); 5258 EVT SVT = VT.getScalarType(); 5259 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5260 EVT ShSVT = ShVT.getScalarType(); 5261 unsigned EltBits = VT.getScalarSizeInBits(); 5262 EVT MulVT; 5263 5264 // Check to see if we can do this. 5265 // FIXME: We should be more aggressive here. 5266 if (!isTypeLegal(VT)) { 5267 // Limit this to simple scalars for now. 5268 if (VT.isVector() || !VT.isSimple()) 5269 return SDValue(); 5270 5271 // If this type will be promoted to a large enough type with a legal 5272 // multiply operation, we can go ahead and do this transform. 5273 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5274 return SDValue(); 5275 5276 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5277 if (MulVT.getSizeInBits() < (2 * EltBits) || 5278 !isOperationLegal(ISD::MUL, MulVT)) 5279 return SDValue(); 5280 } 5281 5282 bool UseNPQ = false; 5283 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5284 5285 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5286 if (C->isNullValue()) 5287 return false; 5288 // FIXME: We should use a narrower constant when the upper 5289 // bits are known to be zero. 5290 const APInt& Divisor = C->getAPIntValue(); 5291 APInt::mu magics = Divisor.magicu(); 5292 unsigned PreShift = 0, PostShift = 0; 5293 5294 // If the divisor is even, we can avoid using the expensive fixup by 5295 // shifting the divided value upfront. 5296 if (magics.a != 0 && !Divisor[0]) { 5297 PreShift = Divisor.countTrailingZeros(); 5298 // Get magic number for the shifted divisor. 5299 magics = Divisor.lshr(PreShift).magicu(PreShift); 5300 assert(magics.a == 0 && "Should use cheap fixup now"); 5301 } 5302 5303 APInt Magic = magics.m; 5304 5305 unsigned SelNPQ; 5306 if (magics.a == 0 || Divisor.isOneValue()) { 5307 assert(magics.s < Divisor.getBitWidth() && 5308 "We shouldn't generate an undefined shift!"); 5309 PostShift = magics.s; 5310 SelNPQ = false; 5311 } else { 5312 PostShift = magics.s - 1; 5313 SelNPQ = true; 5314 } 5315 5316 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5317 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5318 NPQFactors.push_back( 5319 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5320 : APInt::getNullValue(EltBits), 5321 dl, SVT)); 5322 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5323 UseNPQ |= SelNPQ; 5324 return true; 5325 }; 5326 5327 SDValue N0 = N->getOperand(0); 5328 SDValue N1 = N->getOperand(1); 5329 5330 // Collect the shifts/magic values from each element. 5331 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5332 return SDValue(); 5333 5334 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5335 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5336 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5337 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5338 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5339 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5340 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5341 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5342 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5343 "Expected matchUnaryPredicate to return one for scalable vectors"); 5344 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5345 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5346 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5347 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5348 } else { 5349 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5350 PreShift = PreShifts[0]; 5351 MagicFactor = MagicFactors[0]; 5352 PostShift = PostShifts[0]; 5353 } 5354 5355 SDValue Q = N0; 5356 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5357 Created.push_back(Q.getNode()); 5358 5359 // FIXME: We should support doing a MUL in a wider type. 5360 auto GetMULHU = [&](SDValue X, SDValue Y) { 5361 // If the type isn't legal, use a wider mul of the the type calculated 5362 // earlier. 5363 if (!isTypeLegal(VT)) { 5364 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5365 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5366 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5367 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5368 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5369 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5370 } 5371 5372 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5373 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5374 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5375 SDValue LoHi = 5376 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5377 return SDValue(LoHi.getNode(), 1); 5378 } 5379 return SDValue(); // No mulhu or equivalent 5380 }; 5381 5382 // Multiply the numerator (operand 0) by the magic value. 5383 Q = GetMULHU(Q, MagicFactor); 5384 if (!Q) 5385 return SDValue(); 5386 5387 Created.push_back(Q.getNode()); 5388 5389 if (UseNPQ) { 5390 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5391 Created.push_back(NPQ.getNode()); 5392 5393 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5394 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5395 if (VT.isVector()) 5396 NPQ = GetMULHU(NPQ, NPQFactor); 5397 else 5398 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5399 5400 Created.push_back(NPQ.getNode()); 5401 5402 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5403 Created.push_back(Q.getNode()); 5404 } 5405 5406 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5407 Created.push_back(Q.getNode()); 5408 5409 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5410 5411 SDValue One = DAG.getConstant(1, dl, VT); 5412 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5413 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5414 } 5415 5416 /// If all values in Values that *don't* match the predicate are same 'splat' 5417 /// value, then replace all values with that splat value. 5418 /// Else, if AlternativeReplacement was provided, then replace all values that 5419 /// do match predicate with AlternativeReplacement value. 5420 static void 5421 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5422 std::function<bool(SDValue)> Predicate, 5423 SDValue AlternativeReplacement = SDValue()) { 5424 SDValue Replacement; 5425 // Is there a value for which the Predicate does *NOT* match? What is it? 5426 auto SplatValue = llvm::find_if_not(Values, Predicate); 5427 if (SplatValue != Values.end()) { 5428 // Does Values consist only of SplatValue's and values matching Predicate? 5429 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5430 return Value == *SplatValue || Predicate(Value); 5431 })) // Then we shall replace values matching predicate with SplatValue. 5432 Replacement = *SplatValue; 5433 } 5434 if (!Replacement) { 5435 // Oops, we did not find the "baseline" splat value. 5436 if (!AlternativeReplacement) 5437 return; // Nothing to do. 5438 // Let's replace with provided value then. 5439 Replacement = AlternativeReplacement; 5440 } 5441 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5442 } 5443 5444 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5445 /// where the divisor is constant and the comparison target is zero, 5446 /// return a DAG expression that will generate the same comparison result 5447 /// using only multiplications, additions and shifts/rotations. 5448 /// Ref: "Hacker's Delight" 10-17. 5449 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5450 SDValue CompTargetNode, 5451 ISD::CondCode Cond, 5452 DAGCombinerInfo &DCI, 5453 const SDLoc &DL) const { 5454 SmallVector<SDNode *, 5> Built; 5455 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5456 DCI, DL, Built)) { 5457 for (SDNode *N : Built) 5458 DCI.AddToWorklist(N); 5459 return Folded; 5460 } 5461 5462 return SDValue(); 5463 } 5464 5465 SDValue 5466 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5467 SDValue CompTargetNode, ISD::CondCode Cond, 5468 DAGCombinerInfo &DCI, const SDLoc &DL, 5469 SmallVectorImpl<SDNode *> &Created) const { 5470 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5471 // - D must be constant, with D = D0 * 2^K where D0 is odd 5472 // - P is the multiplicative inverse of D0 modulo 2^W 5473 // - Q = floor(((2^W) - 1) / D) 5474 // where W is the width of the common type of N and D. 5475 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5476 "Only applicable for (in)equality comparisons."); 5477 5478 SelectionDAG &DAG = DCI.DAG; 5479 5480 EVT VT = REMNode.getValueType(); 5481 EVT SVT = VT.getScalarType(); 5482 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5483 EVT ShSVT = ShVT.getScalarType(); 5484 5485 // If MUL is unavailable, we cannot proceed in any case. 5486 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5487 return SDValue(); 5488 5489 bool ComparingWithAllZeros = true; 5490 bool AllComparisonsWithNonZerosAreTautological = true; 5491 bool HadTautologicalLanes = false; 5492 bool AllLanesAreTautological = true; 5493 bool HadEvenDivisor = false; 5494 bool AllDivisorsArePowerOfTwo = true; 5495 bool HadTautologicalInvertedLanes = false; 5496 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5497 5498 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5499 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5500 if (CDiv->isNullValue()) 5501 return false; 5502 5503 const APInt &D = CDiv->getAPIntValue(); 5504 const APInt &Cmp = CCmp->getAPIntValue(); 5505 5506 ComparingWithAllZeros &= Cmp.isNullValue(); 5507 5508 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5509 // if C2 is not less than C1, the comparison is always false. 5510 // But we will only be able to produce the comparison that will give the 5511 // opposive tautological answer. So this lane would need to be fixed up. 5512 bool TautologicalInvertedLane = D.ule(Cmp); 5513 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5514 5515 // If all lanes are tautological (either all divisors are ones, or divisor 5516 // is not greater than the constant we are comparing with), 5517 // we will prefer to avoid the fold. 5518 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5519 HadTautologicalLanes |= TautologicalLane; 5520 AllLanesAreTautological &= TautologicalLane; 5521 5522 // If we are comparing with non-zero, we need'll need to subtract said 5523 // comparison value from the LHS. But there is no point in doing that if 5524 // every lane where we are comparing with non-zero is tautological.. 5525 if (!Cmp.isNullValue()) 5526 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5527 5528 // Decompose D into D0 * 2^K 5529 unsigned K = D.countTrailingZeros(); 5530 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5531 APInt D0 = D.lshr(K); 5532 5533 // D is even if it has trailing zeros. 5534 HadEvenDivisor |= (K != 0); 5535 // D is a power-of-two if D0 is one. 5536 // If all divisors are power-of-two, we will prefer to avoid the fold. 5537 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5538 5539 // P = inv(D0, 2^W) 5540 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5541 unsigned W = D.getBitWidth(); 5542 APInt P = D0.zext(W + 1) 5543 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5544 .trunc(W); 5545 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5546 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5547 5548 // Q = floor((2^W - 1) u/ D) 5549 // R = ((2^W - 1) u% D) 5550 APInt Q, R; 5551 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5552 5553 // If we are comparing with zero, then that comparison constant is okay, 5554 // else it may need to be one less than that. 5555 if (Cmp.ugt(R)) 5556 Q -= 1; 5557 5558 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5559 "We are expecting that K is always less than all-ones for ShSVT"); 5560 5561 // If the lane is tautological the result can be constant-folded. 5562 if (TautologicalLane) { 5563 // Set P and K amount to a bogus values so we can try to splat them. 5564 P = 0; 5565 K = -1; 5566 // And ensure that comparison constant is tautological, 5567 // it will always compare true/false. 5568 Q = -1; 5569 } 5570 5571 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5572 KAmts.push_back( 5573 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5574 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5575 return true; 5576 }; 5577 5578 SDValue N = REMNode.getOperand(0); 5579 SDValue D = REMNode.getOperand(1); 5580 5581 // Collect the values from each element. 5582 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5583 return SDValue(); 5584 5585 // If all lanes are tautological, the result can be constant-folded. 5586 if (AllLanesAreTautological) 5587 return SDValue(); 5588 5589 // If this is a urem by a powers-of-two, avoid the fold since it can be 5590 // best implemented as a bit test. 5591 if (AllDivisorsArePowerOfTwo) 5592 return SDValue(); 5593 5594 SDValue PVal, KVal, QVal; 5595 if (VT.isVector()) { 5596 if (HadTautologicalLanes) { 5597 // Try to turn PAmts into a splat, since we don't care about the values 5598 // that are currently '0'. If we can't, just keep '0'`s. 5599 turnVectorIntoSplatVector(PAmts, isNullConstant); 5600 // Try to turn KAmts into a splat, since we don't care about the values 5601 // that are currently '-1'. If we can't, change them to '0'`s. 5602 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5603 DAG.getConstant(0, DL, ShSVT)); 5604 } 5605 5606 PVal = DAG.getBuildVector(VT, DL, PAmts); 5607 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5608 QVal = DAG.getBuildVector(VT, DL, QAmts); 5609 } else { 5610 PVal = PAmts[0]; 5611 KVal = KAmts[0]; 5612 QVal = QAmts[0]; 5613 } 5614 5615 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5616 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5617 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5618 assert(CompTargetNode.getValueType() == N.getValueType() && 5619 "Expecting that the types on LHS and RHS of comparisons match."); 5620 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5621 } 5622 5623 // (mul N, P) 5624 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5625 Created.push_back(Op0.getNode()); 5626 5627 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5628 // divisors as a performance improvement, since rotating by 0 is a no-op. 5629 if (HadEvenDivisor) { 5630 // We need ROTR to do this. 5631 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5632 return SDValue(); 5633 // UREM: (rotr (mul N, P), K) 5634 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5635 Created.push_back(Op0.getNode()); 5636 } 5637 5638 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5639 SDValue NewCC = 5640 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5641 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5642 if (!HadTautologicalInvertedLanes) 5643 return NewCC; 5644 5645 // If any lanes previously compared always-false, the NewCC will give 5646 // always-true result for them, so we need to fixup those lanes. 5647 // Or the other way around for inequality predicate. 5648 assert(VT.isVector() && "Can/should only get here for vectors."); 5649 Created.push_back(NewCC.getNode()); 5650 5651 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5652 // if C2 is not less than C1, the comparison is always false. 5653 // But we have produced the comparison that will give the 5654 // opposive tautological answer. So these lanes would need to be fixed up. 5655 SDValue TautologicalInvertedChannels = 5656 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5657 Created.push_back(TautologicalInvertedChannels.getNode()); 5658 5659 // NOTE: we avoid letting illegal types through even if we're before legalize 5660 // ops – legalization has a hard time producing good code for this. 5661 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5662 // If we have a vector select, let's replace the comparison results in the 5663 // affected lanes with the correct tautological result. 5664 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5665 DL, SETCCVT, SETCCVT); 5666 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5667 Replacement, NewCC); 5668 } 5669 5670 // Else, we can just invert the comparison result in the appropriate lanes. 5671 // 5672 // NOTE: see the note above VSELECT above. 5673 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5674 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5675 TautologicalInvertedChannels); 5676 5677 return SDValue(); // Don't know how to lower. 5678 } 5679 5680 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5681 /// where the divisor is constant and the comparison target is zero, 5682 /// return a DAG expression that will generate the same comparison result 5683 /// using only multiplications, additions and shifts/rotations. 5684 /// Ref: "Hacker's Delight" 10-17. 5685 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5686 SDValue CompTargetNode, 5687 ISD::CondCode Cond, 5688 DAGCombinerInfo &DCI, 5689 const SDLoc &DL) const { 5690 SmallVector<SDNode *, 7> Built; 5691 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5692 DCI, DL, Built)) { 5693 assert(Built.size() <= 7 && "Max size prediction failed."); 5694 for (SDNode *N : Built) 5695 DCI.AddToWorklist(N); 5696 return Folded; 5697 } 5698 5699 return SDValue(); 5700 } 5701 5702 SDValue 5703 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5704 SDValue CompTargetNode, ISD::CondCode Cond, 5705 DAGCombinerInfo &DCI, const SDLoc &DL, 5706 SmallVectorImpl<SDNode *> &Created) const { 5707 // Fold: 5708 // (seteq/ne (srem N, D), 0) 5709 // To: 5710 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5711 // 5712 // - D must be constant, with D = D0 * 2^K where D0 is odd 5713 // - P is the multiplicative inverse of D0 modulo 2^W 5714 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5715 // - Q = floor((2 * A) / (2^K)) 5716 // where W is the width of the common type of N and D. 5717 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5718 "Only applicable for (in)equality comparisons."); 5719 5720 SelectionDAG &DAG = DCI.DAG; 5721 5722 EVT VT = REMNode.getValueType(); 5723 EVT SVT = VT.getScalarType(); 5724 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5725 EVT ShSVT = ShVT.getScalarType(); 5726 5727 // If we are after ops legalization, and MUL is unavailable, we can not 5728 // proceed. 5729 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5730 return SDValue(); 5731 5732 // TODO: Could support comparing with non-zero too. 5733 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5734 if (!CompTarget || !CompTarget->isNullValue()) 5735 return SDValue(); 5736 5737 bool HadIntMinDivisor = false; 5738 bool HadOneDivisor = false; 5739 bool AllDivisorsAreOnes = true; 5740 bool HadEvenDivisor = false; 5741 bool NeedToApplyOffset = false; 5742 bool AllDivisorsArePowerOfTwo = true; 5743 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5744 5745 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5746 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5747 if (C->isNullValue()) 5748 return false; 5749 5750 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5751 5752 // WARNING: this fold is only valid for positive divisors! 5753 APInt D = C->getAPIntValue(); 5754 if (D.isNegative()) 5755 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5756 5757 HadIntMinDivisor |= D.isMinSignedValue(); 5758 5759 // If all divisors are ones, we will prefer to avoid the fold. 5760 HadOneDivisor |= D.isOneValue(); 5761 AllDivisorsAreOnes &= D.isOneValue(); 5762 5763 // Decompose D into D0 * 2^K 5764 unsigned K = D.countTrailingZeros(); 5765 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5766 APInt D0 = D.lshr(K); 5767 5768 if (!D.isMinSignedValue()) { 5769 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5770 // we don't care about this lane in this fold, we'll special-handle it. 5771 HadEvenDivisor |= (K != 0); 5772 } 5773 5774 // D is a power-of-two if D0 is one. This includes INT_MIN. 5775 // If all divisors are power-of-two, we will prefer to avoid the fold. 5776 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5777 5778 // P = inv(D0, 2^W) 5779 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5780 unsigned W = D.getBitWidth(); 5781 APInt P = D0.zext(W + 1) 5782 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5783 .trunc(W); 5784 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5785 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5786 5787 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5788 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5789 A.clearLowBits(K); 5790 5791 if (!D.isMinSignedValue()) { 5792 // If divisor INT_MIN, then we don't care about this lane in this fold, 5793 // we'll special-handle it. 5794 NeedToApplyOffset |= A != 0; 5795 } 5796 5797 // Q = floor((2 * A) / (2^K)) 5798 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5799 5800 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5801 "We are expecting that A is always less than all-ones for SVT"); 5802 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5803 "We are expecting that K is always less than all-ones for ShSVT"); 5804 5805 // If the divisor is 1 the result can be constant-folded. Likewise, we 5806 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5807 if (D.isOneValue()) { 5808 // Set P, A and K to a bogus values so we can try to splat them. 5809 P = 0; 5810 A = -1; 5811 K = -1; 5812 5813 // x ?% 1 == 0 <--> true <--> x u<= -1 5814 Q = -1; 5815 } 5816 5817 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5818 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5819 KAmts.push_back( 5820 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5821 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5822 return true; 5823 }; 5824 5825 SDValue N = REMNode.getOperand(0); 5826 SDValue D = REMNode.getOperand(1); 5827 5828 // Collect the values from each element. 5829 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5830 return SDValue(); 5831 5832 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5833 if (AllDivisorsAreOnes) 5834 return SDValue(); 5835 5836 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5837 // since it can be best implemented as a bit test. 5838 if (AllDivisorsArePowerOfTwo) 5839 return SDValue(); 5840 5841 SDValue PVal, AVal, KVal, QVal; 5842 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5843 if (HadOneDivisor) { 5844 // Try to turn PAmts into a splat, since we don't care about the values 5845 // that are currently '0'. If we can't, just keep '0'`s. 5846 turnVectorIntoSplatVector(PAmts, isNullConstant); 5847 // Try to turn AAmts into a splat, since we don't care about the 5848 // values that are currently '-1'. If we can't, change them to '0'`s. 5849 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5850 DAG.getConstant(0, DL, SVT)); 5851 // Try to turn KAmts into a splat, since we don't care about the values 5852 // that are currently '-1'. If we can't, change them to '0'`s. 5853 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5854 DAG.getConstant(0, DL, ShSVT)); 5855 } 5856 5857 PVal = DAG.getBuildVector(VT, DL, PAmts); 5858 AVal = DAG.getBuildVector(VT, DL, AAmts); 5859 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5860 QVal = DAG.getBuildVector(VT, DL, QAmts); 5861 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5862 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5863 QAmts.size() == 1 && 5864 "Expected matchUnaryPredicate to return one element for scalable " 5865 "vectors"); 5866 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5867 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5868 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5869 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5870 } else { 5871 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5872 PVal = PAmts[0]; 5873 AVal = AAmts[0]; 5874 KVal = KAmts[0]; 5875 QVal = QAmts[0]; 5876 } 5877 5878 // (mul N, P) 5879 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5880 Created.push_back(Op0.getNode()); 5881 5882 if (NeedToApplyOffset) { 5883 // We need ADD to do this. 5884 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5885 return SDValue(); 5886 5887 // (add (mul N, P), A) 5888 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5889 Created.push_back(Op0.getNode()); 5890 } 5891 5892 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5893 // divisors as a performance improvement, since rotating by 0 is a no-op. 5894 if (HadEvenDivisor) { 5895 // We need ROTR to do this. 5896 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5897 return SDValue(); 5898 // SREM: (rotr (add (mul N, P), A), K) 5899 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5900 Created.push_back(Op0.getNode()); 5901 } 5902 5903 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5904 SDValue Fold = 5905 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5906 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5907 5908 // If we didn't have lanes with INT_MIN divisor, then we're done. 5909 if (!HadIntMinDivisor) 5910 return Fold; 5911 5912 // That fold is only valid for positive divisors. Which effectively means, 5913 // it is invalid for INT_MIN divisors. So if we have such a lane, 5914 // we must fix-up results for said lanes. 5915 assert(VT.isVector() && "Can/should only get here for vectors."); 5916 5917 // NOTE: we avoid letting illegal types through even if we're before legalize 5918 // ops – legalization has a hard time producing good code for the code that 5919 // follows. 5920 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5921 !isOperationLegalOrCustom(ISD::AND, VT) || 5922 !isOperationLegalOrCustom(Cond, VT) || 5923 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 5924 return SDValue(); 5925 5926 Created.push_back(Fold.getNode()); 5927 5928 SDValue IntMin = DAG.getConstant( 5929 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5930 SDValue IntMax = DAG.getConstant( 5931 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5932 SDValue Zero = 5933 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5934 5935 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5936 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5937 Created.push_back(DivisorIsIntMin.getNode()); 5938 5939 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5940 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5941 Created.push_back(Masked.getNode()); 5942 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5943 Created.push_back(MaskedIsZero.getNode()); 5944 5945 // To produce final result we need to blend 2 vectors: 'SetCC' and 5946 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5947 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5948 // constant-folded, select can get lowered to a shuffle with constant mask. 5949 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 5950 MaskedIsZero, Fold); 5951 5952 return Blended; 5953 } 5954 5955 bool TargetLowering:: 5956 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5957 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5958 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5959 "be a constant integer"); 5960 return true; 5961 } 5962 5963 return false; 5964 } 5965 5966 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5967 const DenormalMode &Mode) const { 5968 SDLoc DL(Op); 5969 EVT VT = Op.getValueType(); 5970 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5971 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 5972 // Testing it with denormal inputs to avoid wrong estimate. 5973 if (Mode.Input == DenormalMode::IEEE) { 5974 // This is specifically a check for the handling of denormal inputs, 5975 // not the result. 5976 5977 // Test = fabs(X) < SmallestNormal 5978 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 5979 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 5980 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 5981 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 5982 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 5983 } 5984 // Test = X == 0.0 5985 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 5986 } 5987 5988 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5989 bool LegalOps, bool OptForSize, 5990 NegatibleCost &Cost, 5991 unsigned Depth) const { 5992 // fneg is removable even if it has multiple uses. 5993 if (Op.getOpcode() == ISD::FNEG) { 5994 Cost = NegatibleCost::Cheaper; 5995 return Op.getOperand(0); 5996 } 5997 5998 // Don't recurse exponentially. 5999 if (Depth > SelectionDAG::MaxRecursionDepth) 6000 return SDValue(); 6001 6002 // Pre-increment recursion depth for use in recursive calls. 6003 ++Depth; 6004 const SDNodeFlags Flags = Op->getFlags(); 6005 const TargetOptions &Options = DAG.getTarget().Options; 6006 EVT VT = Op.getValueType(); 6007 unsigned Opcode = Op.getOpcode(); 6008 6009 // Don't allow anything with multiple uses unless we know it is free. 6010 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6011 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6012 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6013 if (!IsFreeExtend) 6014 return SDValue(); 6015 } 6016 6017 auto RemoveDeadNode = [&](SDValue N) { 6018 if (N && N.getNode()->use_empty()) 6019 DAG.RemoveDeadNode(N.getNode()); 6020 }; 6021 6022 SDLoc DL(Op); 6023 6024 // Because getNegatedExpression can delete nodes we need a handle to keep 6025 // temporary nodes alive in case the recursion manages to create an identical 6026 // node. 6027 std::list<HandleSDNode> Handles; 6028 6029 switch (Opcode) { 6030 case ISD::ConstantFP: { 6031 // Don't invert constant FP values after legalization unless the target says 6032 // the negated constant is legal. 6033 bool IsOpLegal = 6034 isOperationLegal(ISD::ConstantFP, VT) || 6035 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6036 OptForSize); 6037 6038 if (LegalOps && !IsOpLegal) 6039 break; 6040 6041 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6042 V.changeSign(); 6043 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6044 6045 // If we already have the use of the negated floating constant, it is free 6046 // to negate it even it has multiple uses. 6047 if (!Op.hasOneUse() && CFP.use_empty()) 6048 break; 6049 Cost = NegatibleCost::Neutral; 6050 return CFP; 6051 } 6052 case ISD::BUILD_VECTOR: { 6053 // Only permit BUILD_VECTOR of constants. 6054 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6055 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6056 })) 6057 break; 6058 6059 bool IsOpLegal = 6060 (isOperationLegal(ISD::ConstantFP, VT) && 6061 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6062 llvm::all_of(Op->op_values(), [&](SDValue N) { 6063 return N.isUndef() || 6064 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6065 OptForSize); 6066 }); 6067 6068 if (LegalOps && !IsOpLegal) 6069 break; 6070 6071 SmallVector<SDValue, 4> Ops; 6072 for (SDValue C : Op->op_values()) { 6073 if (C.isUndef()) { 6074 Ops.push_back(C); 6075 continue; 6076 } 6077 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6078 V.changeSign(); 6079 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6080 } 6081 Cost = NegatibleCost::Neutral; 6082 return DAG.getBuildVector(VT, DL, Ops); 6083 } 6084 case ISD::FADD: { 6085 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6086 break; 6087 6088 // After operation legalization, it might not be legal to create new FSUBs. 6089 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6090 break; 6091 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6092 6093 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6094 NegatibleCost CostX = NegatibleCost::Expensive; 6095 SDValue NegX = 6096 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6097 // Prevent this node from being deleted by the next call. 6098 if (NegX) 6099 Handles.emplace_back(NegX); 6100 6101 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6102 NegatibleCost CostY = NegatibleCost::Expensive; 6103 SDValue NegY = 6104 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6105 6106 // We're done with the handles. 6107 Handles.clear(); 6108 6109 // Negate the X if its cost is less or equal than Y. 6110 if (NegX && (CostX <= CostY)) { 6111 Cost = CostX; 6112 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6113 if (NegY != N) 6114 RemoveDeadNode(NegY); 6115 return N; 6116 } 6117 6118 // Negate the Y if it is not expensive. 6119 if (NegY) { 6120 Cost = CostY; 6121 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6122 if (NegX != N) 6123 RemoveDeadNode(NegX); 6124 return N; 6125 } 6126 break; 6127 } 6128 case ISD::FSUB: { 6129 // We can't turn -(A-B) into B-A when we honor signed zeros. 6130 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6131 break; 6132 6133 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6134 // fold (fneg (fsub 0, Y)) -> Y 6135 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6136 if (C->isZero()) { 6137 Cost = NegatibleCost::Cheaper; 6138 return Y; 6139 } 6140 6141 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6142 Cost = NegatibleCost::Neutral; 6143 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6144 } 6145 case ISD::FMUL: 6146 case ISD::FDIV: { 6147 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6148 6149 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6150 NegatibleCost CostX = NegatibleCost::Expensive; 6151 SDValue NegX = 6152 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6153 // Prevent this node from being deleted by the next call. 6154 if (NegX) 6155 Handles.emplace_back(NegX); 6156 6157 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6158 NegatibleCost CostY = NegatibleCost::Expensive; 6159 SDValue NegY = 6160 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6161 6162 // We're done with the handles. 6163 Handles.clear(); 6164 6165 // Negate the X if its cost is less or equal than Y. 6166 if (NegX && (CostX <= CostY)) { 6167 Cost = CostX; 6168 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6169 if (NegY != N) 6170 RemoveDeadNode(NegY); 6171 return N; 6172 } 6173 6174 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6175 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6176 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6177 break; 6178 6179 // Negate the Y if it is not expensive. 6180 if (NegY) { 6181 Cost = CostY; 6182 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6183 if (NegX != N) 6184 RemoveDeadNode(NegX); 6185 return N; 6186 } 6187 break; 6188 } 6189 case ISD::FMA: 6190 case ISD::FMAD: { 6191 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6192 break; 6193 6194 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6195 NegatibleCost CostZ = NegatibleCost::Expensive; 6196 SDValue NegZ = 6197 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6198 // Give up if fail to negate the Z. 6199 if (!NegZ) 6200 break; 6201 6202 // Prevent this node from being deleted by the next two calls. 6203 Handles.emplace_back(NegZ); 6204 6205 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6206 NegatibleCost CostX = NegatibleCost::Expensive; 6207 SDValue NegX = 6208 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6209 // Prevent this node from being deleted by the next call. 6210 if (NegX) 6211 Handles.emplace_back(NegX); 6212 6213 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6214 NegatibleCost CostY = NegatibleCost::Expensive; 6215 SDValue NegY = 6216 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6217 6218 // We're done with the handles. 6219 Handles.clear(); 6220 6221 // Negate the X if its cost is less or equal than Y. 6222 if (NegX && (CostX <= CostY)) { 6223 Cost = std::min(CostX, CostZ); 6224 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6225 if (NegY != N) 6226 RemoveDeadNode(NegY); 6227 return N; 6228 } 6229 6230 // Negate the Y if it is not expensive. 6231 if (NegY) { 6232 Cost = std::min(CostY, CostZ); 6233 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6234 if (NegX != N) 6235 RemoveDeadNode(NegX); 6236 return N; 6237 } 6238 break; 6239 } 6240 6241 case ISD::FP_EXTEND: 6242 case ISD::FSIN: 6243 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6244 OptForSize, Cost, Depth)) 6245 return DAG.getNode(Opcode, DL, VT, NegV); 6246 break; 6247 case ISD::FP_ROUND: 6248 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6249 OptForSize, Cost, Depth)) 6250 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6251 break; 6252 } 6253 6254 return SDValue(); 6255 } 6256 6257 //===----------------------------------------------------------------------===// 6258 // Legalization Utilities 6259 //===----------------------------------------------------------------------===// 6260 6261 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6262 SDValue LHS, SDValue RHS, 6263 SmallVectorImpl<SDValue> &Result, 6264 EVT HiLoVT, SelectionDAG &DAG, 6265 MulExpansionKind Kind, SDValue LL, 6266 SDValue LH, SDValue RL, SDValue RH) const { 6267 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6268 Opcode == ISD::SMUL_LOHI); 6269 6270 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6271 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6272 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6273 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6274 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6275 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6276 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6277 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6278 6279 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6280 return false; 6281 6282 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6283 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6284 6285 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6286 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6287 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6288 6289 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6290 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6291 bool Signed) -> bool { 6292 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6293 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6294 Hi = SDValue(Lo.getNode(), 1); 6295 return true; 6296 } 6297 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6298 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6299 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6300 return true; 6301 } 6302 return false; 6303 }; 6304 6305 SDValue Lo, Hi; 6306 6307 if (!LL.getNode() && !RL.getNode() && 6308 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6309 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6310 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6311 } 6312 6313 if (!LL.getNode()) 6314 return false; 6315 6316 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6317 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6318 DAG.MaskedValueIsZero(RHS, HighMask)) { 6319 // The inputs are both zero-extended. 6320 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6321 Result.push_back(Lo); 6322 Result.push_back(Hi); 6323 if (Opcode != ISD::MUL) { 6324 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6325 Result.push_back(Zero); 6326 Result.push_back(Zero); 6327 } 6328 return true; 6329 } 6330 } 6331 6332 if (!VT.isVector() && Opcode == ISD::MUL && 6333 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6334 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6335 // The input values are both sign-extended. 6336 // TODO non-MUL case? 6337 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6338 Result.push_back(Lo); 6339 Result.push_back(Hi); 6340 return true; 6341 } 6342 } 6343 6344 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6345 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6346 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6347 // FIXME getShiftAmountTy does not always return a sensible result when VT 6348 // is an illegal type, and so the type may be too small to fit the shift 6349 // amount. Override it with i32. The shift will have to be legalized. 6350 ShiftAmountTy = MVT::i32; 6351 } 6352 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6353 6354 if (!LH.getNode() && !RH.getNode() && 6355 isOperationLegalOrCustom(ISD::SRL, VT) && 6356 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6357 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6358 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6359 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6360 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6361 } 6362 6363 if (!LH.getNode()) 6364 return false; 6365 6366 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6367 return false; 6368 6369 Result.push_back(Lo); 6370 6371 if (Opcode == ISD::MUL) { 6372 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6373 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6374 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6375 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6376 Result.push_back(Hi); 6377 return true; 6378 } 6379 6380 // Compute the full width result. 6381 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6382 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6383 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6384 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6385 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6386 }; 6387 6388 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6389 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6390 return false; 6391 6392 // This is effectively the add part of a multiply-add of half-sized operands, 6393 // so it cannot overflow. 6394 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6395 6396 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6397 return false; 6398 6399 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6400 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6401 6402 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6403 isOperationLegalOrCustom(ISD::ADDE, VT)); 6404 if (UseGlue) 6405 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6406 Merge(Lo, Hi)); 6407 else 6408 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6409 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6410 6411 SDValue Carry = Next.getValue(1); 6412 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6413 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6414 6415 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6416 return false; 6417 6418 if (UseGlue) 6419 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6420 Carry); 6421 else 6422 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6423 Zero, Carry); 6424 6425 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6426 6427 if (Opcode == ISD::SMUL_LOHI) { 6428 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6429 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6430 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6431 6432 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6433 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6434 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6435 } 6436 6437 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6438 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6439 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6440 return true; 6441 } 6442 6443 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6444 SelectionDAG &DAG, MulExpansionKind Kind, 6445 SDValue LL, SDValue LH, SDValue RL, 6446 SDValue RH) const { 6447 SmallVector<SDValue, 2> Result; 6448 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6449 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6450 DAG, Kind, LL, LH, RL, RH); 6451 if (Ok) { 6452 assert(Result.size() == 2); 6453 Lo = Result[0]; 6454 Hi = Result[1]; 6455 } 6456 return Ok; 6457 } 6458 6459 // Check that (every element of) Z is undef or not an exact multiple of BW. 6460 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6461 return ISD::matchUnaryPredicate( 6462 Z, 6463 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6464 true); 6465 } 6466 6467 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6468 SelectionDAG &DAG) const { 6469 EVT VT = Node->getValueType(0); 6470 6471 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6472 !isOperationLegalOrCustom(ISD::SRL, VT) || 6473 !isOperationLegalOrCustom(ISD::SUB, VT) || 6474 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6475 return false; 6476 6477 SDValue X = Node->getOperand(0); 6478 SDValue Y = Node->getOperand(1); 6479 SDValue Z = Node->getOperand(2); 6480 6481 unsigned BW = VT.getScalarSizeInBits(); 6482 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6483 SDLoc DL(SDValue(Node, 0)); 6484 6485 EVT ShVT = Z.getValueType(); 6486 6487 // If a funnel shift in the other direction is more supported, use it. 6488 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6489 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6490 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6491 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6492 // fshl X, Y, Z -> fshr X, Y, -Z 6493 // fshr X, Y, Z -> fshl X, Y, -Z 6494 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6495 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6496 } else { 6497 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6498 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6499 SDValue One = DAG.getConstant(1, DL, ShVT); 6500 if (IsFSHL) { 6501 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6502 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6503 } else { 6504 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6505 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6506 } 6507 Z = DAG.getNOT(DL, Z, ShVT); 6508 } 6509 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6510 return true; 6511 } 6512 6513 SDValue ShX, ShY; 6514 SDValue ShAmt, InvShAmt; 6515 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6516 // fshl: X << C | Y >> (BW - C) 6517 // fshr: X << (BW - C) | Y >> C 6518 // where C = Z % BW is not zero 6519 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6520 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6521 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6522 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6523 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6524 } else { 6525 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6526 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6527 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6528 if (isPowerOf2_32(BW)) { 6529 // Z % BW -> Z & (BW - 1) 6530 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6531 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6532 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6533 } else { 6534 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6535 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6536 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6537 } 6538 6539 SDValue One = DAG.getConstant(1, DL, ShVT); 6540 if (IsFSHL) { 6541 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6542 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6543 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6544 } else { 6545 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6546 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6547 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6548 } 6549 } 6550 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6551 return true; 6552 } 6553 6554 // TODO: Merge with expandFunnelShift. 6555 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6556 SDValue &Result, SelectionDAG &DAG) const { 6557 EVT VT = Node->getValueType(0); 6558 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6559 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6560 SDValue Op0 = Node->getOperand(0); 6561 SDValue Op1 = Node->getOperand(1); 6562 SDLoc DL(SDValue(Node, 0)); 6563 6564 EVT ShVT = Op1.getValueType(); 6565 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6566 6567 // If a rotate in the other direction is supported, use it. 6568 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6569 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6570 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6571 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6572 return true; 6573 } 6574 6575 if (!AllowVectorOps && VT.isVector() && 6576 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6577 !isOperationLegalOrCustom(ISD::SRL, VT) || 6578 !isOperationLegalOrCustom(ISD::SUB, VT) || 6579 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6580 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6581 return false; 6582 6583 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6584 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6585 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6586 SDValue ShVal; 6587 SDValue HsVal; 6588 if (isPowerOf2_32(EltSizeInBits)) { 6589 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6590 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6591 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6592 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6593 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6594 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6595 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6596 } else { 6597 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6598 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6599 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6600 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6601 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6602 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6603 SDValue One = DAG.getConstant(1, DL, ShVT); 6604 HsVal = 6605 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6606 } 6607 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6608 return true; 6609 } 6610 6611 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6612 SelectionDAG &DAG) const { 6613 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6614 EVT VT = Node->getValueType(0); 6615 unsigned VTBits = VT.getScalarSizeInBits(); 6616 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6617 6618 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6619 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6620 SDValue ShOpLo = Node->getOperand(0); 6621 SDValue ShOpHi = Node->getOperand(1); 6622 SDValue ShAmt = Node->getOperand(2); 6623 EVT ShAmtVT = ShAmt.getValueType(); 6624 EVT ShAmtCCVT = 6625 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6626 SDLoc dl(Node); 6627 6628 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6629 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6630 // away during isel. 6631 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6632 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6633 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6634 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6635 : DAG.getConstant(0, dl, VT); 6636 6637 SDValue Tmp2, Tmp3; 6638 if (IsSHL) { 6639 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6640 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6641 } else { 6642 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6643 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6644 } 6645 6646 // If the shift amount is larger or equal than the width of a part we don't 6647 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6648 // values for large shift amounts. 6649 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6650 DAG.getConstant(VTBits, dl, ShAmtVT)); 6651 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6652 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6653 6654 if (IsSHL) { 6655 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6656 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6657 } else { 6658 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6659 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6660 } 6661 } 6662 6663 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6664 SelectionDAG &DAG) const { 6665 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6666 SDValue Src = Node->getOperand(OpNo); 6667 EVT SrcVT = Src.getValueType(); 6668 EVT DstVT = Node->getValueType(0); 6669 SDLoc dl(SDValue(Node, 0)); 6670 6671 // FIXME: Only f32 to i64 conversions are supported. 6672 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6673 return false; 6674 6675 if (Node->isStrictFPOpcode()) 6676 // When a NaN is converted to an integer a trap is allowed. We can't 6677 // use this expansion here because it would eliminate that trap. Other 6678 // traps are also allowed and cannot be eliminated. See 6679 // IEEE 754-2008 sec 5.8. 6680 return false; 6681 6682 // Expand f32 -> i64 conversion 6683 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6684 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6685 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6686 EVT IntVT = SrcVT.changeTypeToInteger(); 6687 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6688 6689 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6690 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6691 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6692 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6693 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6694 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6695 6696 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6697 6698 SDValue ExponentBits = DAG.getNode( 6699 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6700 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6701 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6702 6703 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6704 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6705 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6706 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6707 6708 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6709 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6710 DAG.getConstant(0x00800000, dl, IntVT)); 6711 6712 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6713 6714 R = DAG.getSelectCC( 6715 dl, Exponent, ExponentLoBit, 6716 DAG.getNode(ISD::SHL, dl, DstVT, R, 6717 DAG.getZExtOrTrunc( 6718 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6719 dl, IntShVT)), 6720 DAG.getNode(ISD::SRL, dl, DstVT, R, 6721 DAG.getZExtOrTrunc( 6722 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6723 dl, IntShVT)), 6724 ISD::SETGT); 6725 6726 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6727 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6728 6729 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6730 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6731 return true; 6732 } 6733 6734 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6735 SDValue &Chain, 6736 SelectionDAG &DAG) const { 6737 SDLoc dl(SDValue(Node, 0)); 6738 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6739 SDValue Src = Node->getOperand(OpNo); 6740 6741 EVT SrcVT = Src.getValueType(); 6742 EVT DstVT = Node->getValueType(0); 6743 EVT SetCCVT = 6744 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6745 EVT DstSetCCVT = 6746 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6747 6748 // Only expand vector types if we have the appropriate vector bit operations. 6749 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6750 ISD::FP_TO_SINT; 6751 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6752 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6753 return false; 6754 6755 // If the maximum float value is smaller then the signed integer range, 6756 // the destination signmask can't be represented by the float, so we can 6757 // just use FP_TO_SINT directly. 6758 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6759 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6760 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6761 if (APFloat::opOverflow & 6762 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6763 if (Node->isStrictFPOpcode()) { 6764 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6765 { Node->getOperand(0), Src }); 6766 Chain = Result.getValue(1); 6767 } else 6768 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6769 return true; 6770 } 6771 6772 // Don't expand it if there isn't cheap fsub instruction. 6773 if (!isOperationLegalOrCustom( 6774 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6775 return false; 6776 6777 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6778 SDValue Sel; 6779 6780 if (Node->isStrictFPOpcode()) { 6781 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6782 Node->getOperand(0), /*IsSignaling*/ true); 6783 Chain = Sel.getValue(1); 6784 } else { 6785 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6786 } 6787 6788 bool Strict = Node->isStrictFPOpcode() || 6789 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6790 6791 if (Strict) { 6792 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6793 // signmask then offset (the result of which should be fully representable). 6794 // Sel = Src < 0x8000000000000000 6795 // FltOfs = select Sel, 0, 0x8000000000000000 6796 // IntOfs = select Sel, 0, 0x8000000000000000 6797 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6798 6799 // TODO: Should any fast-math-flags be set for the FSUB? 6800 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6801 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6802 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6803 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6804 DAG.getConstant(0, dl, DstVT), 6805 DAG.getConstant(SignMask, dl, DstVT)); 6806 SDValue SInt; 6807 if (Node->isStrictFPOpcode()) { 6808 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6809 { Chain, Src, FltOfs }); 6810 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6811 { Val.getValue(1), Val }); 6812 Chain = SInt.getValue(1); 6813 } else { 6814 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6815 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6816 } 6817 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6818 } else { 6819 // Expand based on maximum range of FP_TO_SINT: 6820 // True = fp_to_sint(Src) 6821 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6822 // Result = select (Src < 0x8000000000000000), True, False 6823 6824 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6825 // TODO: Should any fast-math-flags be set for the FSUB? 6826 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6827 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6828 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6829 DAG.getConstant(SignMask, dl, DstVT)); 6830 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6831 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6832 } 6833 return true; 6834 } 6835 6836 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6837 SDValue &Chain, 6838 SelectionDAG &DAG) const { 6839 // This transform is not correct for converting 0 when rounding mode is set 6840 // to round toward negative infinity which will produce -0.0. So disable under 6841 // strictfp. 6842 if (Node->isStrictFPOpcode()) 6843 return false; 6844 6845 SDValue Src = Node->getOperand(0); 6846 EVT SrcVT = Src.getValueType(); 6847 EVT DstVT = Node->getValueType(0); 6848 6849 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6850 return false; 6851 6852 // Only expand vector types if we have the appropriate vector bit operations. 6853 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6854 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6855 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6856 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6857 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6858 return false; 6859 6860 SDLoc dl(SDValue(Node, 0)); 6861 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6862 6863 // Implementation of unsigned i64 to f64 following the algorithm in 6864 // __floatundidf in compiler_rt. This implementation performs rounding 6865 // correctly in all rounding modes with the exception of converting 0 6866 // when rounding toward negative infinity. In that case the fsub will produce 6867 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6868 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6869 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6870 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6871 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6872 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6873 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6874 6875 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6876 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6877 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6878 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6879 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6880 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6881 SDValue HiSub = 6882 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6883 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6884 return true; 6885 } 6886 6887 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6888 SelectionDAG &DAG) const { 6889 SDLoc dl(Node); 6890 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6891 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6892 EVT VT = Node->getValueType(0); 6893 6894 if (VT.isScalableVector()) 6895 report_fatal_error( 6896 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6897 6898 if (isOperationLegalOrCustom(NewOp, VT)) { 6899 SDValue Quiet0 = Node->getOperand(0); 6900 SDValue Quiet1 = Node->getOperand(1); 6901 6902 if (!Node->getFlags().hasNoNaNs()) { 6903 // Insert canonicalizes if it's possible we need to quiet to get correct 6904 // sNaN behavior. 6905 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6906 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6907 Node->getFlags()); 6908 } 6909 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6910 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6911 Node->getFlags()); 6912 } 6913 } 6914 6915 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6916 } 6917 6918 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6919 // instead if there are no NaNs. 6920 if (Node->getFlags().hasNoNaNs()) { 6921 unsigned IEEE2018Op = 6922 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6923 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6924 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6925 Node->getOperand(1), Node->getFlags()); 6926 } 6927 } 6928 6929 // If none of the above worked, but there are no NaNs, then expand to 6930 // a compare/select sequence. This is required for correctness since 6931 // InstCombine might have canonicalized a fcmp+select sequence to a 6932 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6933 // expansion to libcall, we might introduce a link-time dependency 6934 // on libm into a file that originally did not have one. 6935 if (Node->getFlags().hasNoNaNs()) { 6936 ISD::CondCode Pred = 6937 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6938 SDValue Op1 = Node->getOperand(0); 6939 SDValue Op2 = Node->getOperand(1); 6940 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6941 // Copy FMF flags, but always set the no-signed-zeros flag 6942 // as this is implied by the FMINNUM/FMAXNUM semantics. 6943 SDNodeFlags Flags = Node->getFlags(); 6944 Flags.setNoSignedZeros(true); 6945 SelCC->setFlags(Flags); 6946 return SelCC; 6947 } 6948 6949 return SDValue(); 6950 } 6951 6952 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6953 SelectionDAG &DAG) const { 6954 SDLoc dl(Node); 6955 EVT VT = Node->getValueType(0); 6956 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6957 SDValue Op = Node->getOperand(0); 6958 unsigned Len = VT.getScalarSizeInBits(); 6959 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6960 6961 // TODO: Add support for irregular type lengths. 6962 if (!(Len <= 128 && Len % 8 == 0)) 6963 return false; 6964 6965 // Only expand vector types if we have the appropriate vector bit operations. 6966 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6967 !isOperationLegalOrCustom(ISD::SUB, VT) || 6968 !isOperationLegalOrCustom(ISD::SRL, VT) || 6969 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6970 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6971 return false; 6972 6973 // This is the "best" algorithm from 6974 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6975 SDValue Mask55 = 6976 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6977 SDValue Mask33 = 6978 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6979 SDValue Mask0F = 6980 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6981 SDValue Mask01 = 6982 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6983 6984 // v = v - ((v >> 1) & 0x55555555...) 6985 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6986 DAG.getNode(ISD::AND, dl, VT, 6987 DAG.getNode(ISD::SRL, dl, VT, Op, 6988 DAG.getConstant(1, dl, ShVT)), 6989 Mask55)); 6990 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6991 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6992 DAG.getNode(ISD::AND, dl, VT, 6993 DAG.getNode(ISD::SRL, dl, VT, Op, 6994 DAG.getConstant(2, dl, ShVT)), 6995 Mask33)); 6996 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6997 Op = DAG.getNode(ISD::AND, dl, VT, 6998 DAG.getNode(ISD::ADD, dl, VT, Op, 6999 DAG.getNode(ISD::SRL, dl, VT, Op, 7000 DAG.getConstant(4, dl, ShVT))), 7001 Mask0F); 7002 // v = (v * 0x01010101...) >> (Len - 8) 7003 if (Len > 8) 7004 Op = 7005 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7006 DAG.getConstant(Len - 8, dl, ShVT)); 7007 7008 Result = Op; 7009 return true; 7010 } 7011 7012 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 7013 SelectionDAG &DAG) const { 7014 SDLoc dl(Node); 7015 EVT VT = Node->getValueType(0); 7016 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7017 SDValue Op = Node->getOperand(0); 7018 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7019 7020 // If the non-ZERO_UNDEF version is supported we can use that instead. 7021 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7022 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7023 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7024 return true; 7025 } 7026 7027 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7028 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7029 EVT SetCCVT = 7030 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7031 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7032 SDValue Zero = DAG.getConstant(0, dl, VT); 7033 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7034 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7035 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7036 return true; 7037 } 7038 7039 // Only expand vector types if we have the appropriate vector bit operations. 7040 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7041 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7042 !isOperationLegalOrCustom(ISD::SRL, VT) || 7043 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7044 return false; 7045 7046 // for now, we do this: 7047 // x = x | (x >> 1); 7048 // x = x | (x >> 2); 7049 // ... 7050 // x = x | (x >>16); 7051 // x = x | (x >>32); // for 64-bit input 7052 // return popcount(~x); 7053 // 7054 // Ref: "Hacker's Delight" by Henry Warren 7055 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7056 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7057 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7058 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7059 } 7060 Op = DAG.getNOT(dl, Op, VT); 7061 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7062 return true; 7063 } 7064 7065 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7066 SelectionDAG &DAG) const { 7067 SDLoc dl(Node); 7068 EVT VT = Node->getValueType(0); 7069 SDValue Op = Node->getOperand(0); 7070 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7071 7072 // If the non-ZERO_UNDEF version is supported we can use that instead. 7073 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7074 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7075 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7076 return true; 7077 } 7078 7079 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7080 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7081 EVT SetCCVT = 7082 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7083 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7084 SDValue Zero = DAG.getConstant(0, dl, VT); 7085 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7086 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7087 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7088 return true; 7089 } 7090 7091 // Only expand vector types if we have the appropriate vector bit operations. 7092 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7093 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7094 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7095 !isOperationLegalOrCustom(ISD::SUB, VT) || 7096 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7097 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7098 return false; 7099 7100 // for now, we use: { return popcount(~x & (x - 1)); } 7101 // unless the target has ctlz but not ctpop, in which case we use: 7102 // { return 32 - nlz(~x & (x-1)); } 7103 // Ref: "Hacker's Delight" by Henry Warren 7104 SDValue Tmp = DAG.getNode( 7105 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7106 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7107 7108 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7109 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7110 Result = 7111 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7112 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7113 return true; 7114 } 7115 7116 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7117 return true; 7118 } 7119 7120 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7121 SelectionDAG &DAG, bool IsNegative) const { 7122 SDLoc dl(N); 7123 EVT VT = N->getValueType(0); 7124 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7125 SDValue Op = N->getOperand(0); 7126 7127 // abs(x) -> smax(x,sub(0,x)) 7128 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7129 isOperationLegal(ISD::SMAX, VT)) { 7130 SDValue Zero = DAG.getConstant(0, dl, VT); 7131 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7132 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7133 return true; 7134 } 7135 7136 // abs(x) -> umin(x,sub(0,x)) 7137 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7138 isOperationLegal(ISD::UMIN, VT)) { 7139 SDValue Zero = DAG.getConstant(0, dl, VT); 7140 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7141 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7142 return true; 7143 } 7144 7145 // 0 - abs(x) -> smin(x, sub(0,x)) 7146 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7147 isOperationLegal(ISD::SMIN, VT)) { 7148 SDValue Zero = DAG.getConstant(0, dl, VT); 7149 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7150 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7151 return true; 7152 } 7153 7154 // Only expand vector types if we have the appropriate vector operations. 7155 if (VT.isVector() && 7156 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7157 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7158 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7159 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7160 return false; 7161 7162 SDValue Shift = 7163 DAG.getNode(ISD::SRA, dl, VT, Op, 7164 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7165 if (!IsNegative) { 7166 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7167 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7168 } else { 7169 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7170 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7171 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7172 } 7173 return true; 7174 } 7175 7176 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7177 SDLoc dl(N); 7178 EVT VT = N->getValueType(0); 7179 SDValue Op = N->getOperand(0); 7180 7181 if (!VT.isSimple()) 7182 return SDValue(); 7183 7184 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7185 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7186 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7187 default: 7188 return SDValue(); 7189 case MVT::i16: 7190 // Use a rotate by 8. This can be further expanded if necessary. 7191 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7192 case MVT::i32: 7193 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7194 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7195 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7196 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7197 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7198 DAG.getConstant(0xFF0000, dl, VT)); 7199 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7200 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7201 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7202 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7203 case MVT::i64: 7204 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7205 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7206 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7207 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7208 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7209 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7210 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7211 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7212 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7213 DAG.getConstant(255ULL<<48, dl, VT)); 7214 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7215 DAG.getConstant(255ULL<<40, dl, VT)); 7216 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7217 DAG.getConstant(255ULL<<32, dl, VT)); 7218 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7219 DAG.getConstant(255ULL<<24, dl, VT)); 7220 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7221 DAG.getConstant(255ULL<<16, dl, VT)); 7222 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7223 DAG.getConstant(255ULL<<8 , dl, VT)); 7224 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7225 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7226 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7227 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7228 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7229 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7230 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7231 } 7232 } 7233 7234 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7235 SDLoc dl(N); 7236 EVT VT = N->getValueType(0); 7237 SDValue Op = N->getOperand(0); 7238 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7239 unsigned Sz = VT.getScalarSizeInBits(); 7240 7241 SDValue Tmp, Tmp2, Tmp3; 7242 7243 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7244 // and finally the i1 pairs. 7245 // TODO: We can easily support i4/i2 legal types if any target ever does. 7246 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7247 // Create the masks - repeating the pattern every byte. 7248 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 7249 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 7250 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 7251 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7252 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7253 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7254 7255 // BSWAP if the type is wider than a single byte. 7256 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7257 7258 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 7259 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 7260 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 7261 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 7262 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7263 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7264 7265 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 7266 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 7267 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 7268 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 7269 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7270 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7271 7272 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 7273 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 7274 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 7275 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 7276 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7277 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7278 return Tmp; 7279 } 7280 7281 Tmp = DAG.getConstant(0, dl, VT); 7282 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7283 if (I < J) 7284 Tmp2 = 7285 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7286 else 7287 Tmp2 = 7288 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7289 7290 APInt Shift(Sz, 1); 7291 Shift <<= J; 7292 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7293 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7294 } 7295 7296 return Tmp; 7297 } 7298 7299 std::pair<SDValue, SDValue> 7300 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7301 SelectionDAG &DAG) const { 7302 SDLoc SL(LD); 7303 SDValue Chain = LD->getChain(); 7304 SDValue BasePTR = LD->getBasePtr(); 7305 EVT SrcVT = LD->getMemoryVT(); 7306 EVT DstVT = LD->getValueType(0); 7307 ISD::LoadExtType ExtType = LD->getExtensionType(); 7308 7309 if (SrcVT.isScalableVector()) 7310 report_fatal_error("Cannot scalarize scalable vector loads"); 7311 7312 unsigned NumElem = SrcVT.getVectorNumElements(); 7313 7314 EVT SrcEltVT = SrcVT.getScalarType(); 7315 EVT DstEltVT = DstVT.getScalarType(); 7316 7317 // A vector must always be stored in memory as-is, i.e. without any padding 7318 // between the elements, since various code depend on it, e.g. in the 7319 // handling of a bitcast of a vector type to int, which may be done with a 7320 // vector store followed by an integer load. A vector that does not have 7321 // elements that are byte-sized must therefore be stored as an integer 7322 // built out of the extracted vector elements. 7323 if (!SrcEltVT.isByteSized()) { 7324 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7325 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7326 7327 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7328 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7329 7330 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7331 SDValue SrcEltBitMask = DAG.getConstant( 7332 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7333 7334 // Load the whole vector and avoid masking off the top bits as it makes 7335 // the codegen worse. 7336 SDValue Load = 7337 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7338 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7339 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7340 7341 SmallVector<SDValue, 8> Vals; 7342 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7343 unsigned ShiftIntoIdx = 7344 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7345 SDValue ShiftAmount = 7346 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7347 LoadVT, SL, /*LegalTypes=*/false); 7348 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7349 SDValue Elt = 7350 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7351 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7352 7353 if (ExtType != ISD::NON_EXTLOAD) { 7354 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7355 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7356 } 7357 7358 Vals.push_back(Scalar); 7359 } 7360 7361 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7362 return std::make_pair(Value, Load.getValue(1)); 7363 } 7364 7365 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7366 assert(SrcEltVT.isByteSized()); 7367 7368 SmallVector<SDValue, 8> Vals; 7369 SmallVector<SDValue, 8> LoadChains; 7370 7371 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7372 SDValue ScalarLoad = 7373 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7374 LD->getPointerInfo().getWithOffset(Idx * Stride), 7375 SrcEltVT, LD->getOriginalAlign(), 7376 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7377 7378 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7379 7380 Vals.push_back(ScalarLoad.getValue(0)); 7381 LoadChains.push_back(ScalarLoad.getValue(1)); 7382 } 7383 7384 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7385 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7386 7387 return std::make_pair(Value, NewChain); 7388 } 7389 7390 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7391 SelectionDAG &DAG) const { 7392 SDLoc SL(ST); 7393 7394 SDValue Chain = ST->getChain(); 7395 SDValue BasePtr = ST->getBasePtr(); 7396 SDValue Value = ST->getValue(); 7397 EVT StVT = ST->getMemoryVT(); 7398 7399 if (StVT.isScalableVector()) 7400 report_fatal_error("Cannot scalarize scalable vector stores"); 7401 7402 // The type of the data we want to save 7403 EVT RegVT = Value.getValueType(); 7404 EVT RegSclVT = RegVT.getScalarType(); 7405 7406 // The type of data as saved in memory. 7407 EVT MemSclVT = StVT.getScalarType(); 7408 7409 unsigned NumElem = StVT.getVectorNumElements(); 7410 7411 // A vector must always be stored in memory as-is, i.e. without any padding 7412 // between the elements, since various code depend on it, e.g. in the 7413 // handling of a bitcast of a vector type to int, which may be done with a 7414 // vector store followed by an integer load. A vector that does not have 7415 // elements that are byte-sized must therefore be stored as an integer 7416 // built out of the extracted vector elements. 7417 if (!MemSclVT.isByteSized()) { 7418 unsigned NumBits = StVT.getSizeInBits(); 7419 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7420 7421 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7422 7423 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7424 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7425 DAG.getVectorIdxConstant(Idx, SL)); 7426 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7427 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7428 unsigned ShiftIntoIdx = 7429 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7430 SDValue ShiftAmount = 7431 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7432 SDValue ShiftedElt = 7433 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7434 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7435 } 7436 7437 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7438 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7439 ST->getAAInfo()); 7440 } 7441 7442 // Store Stride in bytes 7443 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7444 assert(Stride && "Zero stride!"); 7445 // Extract each of the elements from the original vector and save them into 7446 // memory individually. 7447 SmallVector<SDValue, 8> Stores; 7448 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7449 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7450 DAG.getVectorIdxConstant(Idx, SL)); 7451 7452 SDValue Ptr = 7453 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7454 7455 // This scalar TruncStore may be illegal, but we legalize it later. 7456 SDValue Store = DAG.getTruncStore( 7457 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7458 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7459 ST->getAAInfo()); 7460 7461 Stores.push_back(Store); 7462 } 7463 7464 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7465 } 7466 7467 std::pair<SDValue, SDValue> 7468 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7469 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7470 "unaligned indexed loads not implemented!"); 7471 SDValue Chain = LD->getChain(); 7472 SDValue Ptr = LD->getBasePtr(); 7473 EVT VT = LD->getValueType(0); 7474 EVT LoadedVT = LD->getMemoryVT(); 7475 SDLoc dl(LD); 7476 auto &MF = DAG.getMachineFunction(); 7477 7478 if (VT.isFloatingPoint() || VT.isVector()) { 7479 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7480 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7481 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7482 LoadedVT.isVector()) { 7483 // Scalarize the load and let the individual components be handled. 7484 return scalarizeVectorLoad(LD, DAG); 7485 } 7486 7487 // Expand to a (misaligned) integer load of the same size, 7488 // then bitconvert to floating point or vector. 7489 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7490 LD->getMemOperand()); 7491 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7492 if (LoadedVT != VT) 7493 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7494 ISD::ANY_EXTEND, dl, VT, Result); 7495 7496 return std::make_pair(Result, newLoad.getValue(1)); 7497 } 7498 7499 // Copy the value to a (aligned) stack slot using (unaligned) integer 7500 // loads and stores, then do a (aligned) load from the stack slot. 7501 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7502 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7503 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7504 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7505 7506 // Make sure the stack slot is also aligned for the register type. 7507 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7508 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7509 SmallVector<SDValue, 8> Stores; 7510 SDValue StackPtr = StackBase; 7511 unsigned Offset = 0; 7512 7513 EVT PtrVT = Ptr.getValueType(); 7514 EVT StackPtrVT = StackPtr.getValueType(); 7515 7516 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7517 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7518 7519 // Do all but one copies using the full register width. 7520 for (unsigned i = 1; i < NumRegs; i++) { 7521 // Load one integer register's worth from the original location. 7522 SDValue Load = DAG.getLoad( 7523 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7524 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7525 LD->getAAInfo()); 7526 // Follow the load with a store to the stack slot. Remember the store. 7527 Stores.push_back(DAG.getStore( 7528 Load.getValue(1), dl, Load, StackPtr, 7529 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7530 // Increment the pointers. 7531 Offset += RegBytes; 7532 7533 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7534 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7535 } 7536 7537 // The last copy may be partial. Do an extending load. 7538 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7539 8 * (LoadedBytes - Offset)); 7540 SDValue Load = 7541 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7542 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7543 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7544 LD->getAAInfo()); 7545 // Follow the load with a store to the stack slot. Remember the store. 7546 // On big-endian machines this requires a truncating store to ensure 7547 // that the bits end up in the right place. 7548 Stores.push_back(DAG.getTruncStore( 7549 Load.getValue(1), dl, Load, StackPtr, 7550 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7551 7552 // The order of the stores doesn't matter - say it with a TokenFactor. 7553 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7554 7555 // Finally, perform the original load only redirected to the stack slot. 7556 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7557 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7558 LoadedVT); 7559 7560 // Callers expect a MERGE_VALUES node. 7561 return std::make_pair(Load, TF); 7562 } 7563 7564 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7565 "Unaligned load of unsupported type."); 7566 7567 // Compute the new VT that is half the size of the old one. This is an 7568 // integer MVT. 7569 unsigned NumBits = LoadedVT.getSizeInBits(); 7570 EVT NewLoadedVT; 7571 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7572 NumBits >>= 1; 7573 7574 Align Alignment = LD->getOriginalAlign(); 7575 unsigned IncrementSize = NumBits / 8; 7576 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7577 7578 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7579 if (HiExtType == ISD::NON_EXTLOAD) 7580 HiExtType = ISD::ZEXTLOAD; 7581 7582 // Load the value in two parts 7583 SDValue Lo, Hi; 7584 if (DAG.getDataLayout().isLittleEndian()) { 7585 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7586 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7587 LD->getAAInfo()); 7588 7589 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7590 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7591 LD->getPointerInfo().getWithOffset(IncrementSize), 7592 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7593 LD->getAAInfo()); 7594 } else { 7595 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7596 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7597 LD->getAAInfo()); 7598 7599 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7600 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7601 LD->getPointerInfo().getWithOffset(IncrementSize), 7602 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7603 LD->getAAInfo()); 7604 } 7605 7606 // aggregate the two parts 7607 SDValue ShiftAmount = 7608 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7609 DAG.getDataLayout())); 7610 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7611 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7612 7613 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7614 Hi.getValue(1)); 7615 7616 return std::make_pair(Result, TF); 7617 } 7618 7619 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7620 SelectionDAG &DAG) const { 7621 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7622 "unaligned indexed stores not implemented!"); 7623 SDValue Chain = ST->getChain(); 7624 SDValue Ptr = ST->getBasePtr(); 7625 SDValue Val = ST->getValue(); 7626 EVT VT = Val.getValueType(); 7627 Align Alignment = ST->getOriginalAlign(); 7628 auto &MF = DAG.getMachineFunction(); 7629 EVT StoreMemVT = ST->getMemoryVT(); 7630 7631 SDLoc dl(ST); 7632 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7633 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7634 if (isTypeLegal(intVT)) { 7635 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7636 StoreMemVT.isVector()) { 7637 // Scalarize the store and let the individual components be handled. 7638 SDValue Result = scalarizeVectorStore(ST, DAG); 7639 return Result; 7640 } 7641 // Expand to a bitconvert of the value to the integer type of the 7642 // same size, then a (misaligned) int store. 7643 // FIXME: Does not handle truncating floating point stores! 7644 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7645 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7646 Alignment, ST->getMemOperand()->getFlags()); 7647 return Result; 7648 } 7649 // Do a (aligned) store to a stack slot, then copy from the stack slot 7650 // to the final destination using (unaligned) integer loads and stores. 7651 MVT RegVT = getRegisterType( 7652 *DAG.getContext(), 7653 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7654 EVT PtrVT = Ptr.getValueType(); 7655 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7656 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7657 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7658 7659 // Make sure the stack slot is also aligned for the register type. 7660 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7661 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7662 7663 // Perform the original store, only redirected to the stack slot. 7664 SDValue Store = DAG.getTruncStore( 7665 Chain, dl, Val, StackPtr, 7666 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7667 7668 EVT StackPtrVT = StackPtr.getValueType(); 7669 7670 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7671 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7672 SmallVector<SDValue, 8> Stores; 7673 unsigned Offset = 0; 7674 7675 // Do all but one copies using the full register width. 7676 for (unsigned i = 1; i < NumRegs; i++) { 7677 // Load one integer register's worth from the stack slot. 7678 SDValue Load = DAG.getLoad( 7679 RegVT, dl, Store, StackPtr, 7680 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7681 // Store it to the final location. Remember the store. 7682 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7683 ST->getPointerInfo().getWithOffset(Offset), 7684 ST->getOriginalAlign(), 7685 ST->getMemOperand()->getFlags())); 7686 // Increment the pointers. 7687 Offset += RegBytes; 7688 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7689 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7690 } 7691 7692 // The last store may be partial. Do a truncating store. On big-endian 7693 // machines this requires an extending load from the stack slot to ensure 7694 // that the bits are in the right place. 7695 EVT LoadMemVT = 7696 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7697 7698 // Load from the stack slot. 7699 SDValue Load = DAG.getExtLoad( 7700 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7701 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7702 7703 Stores.push_back( 7704 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7705 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7706 ST->getOriginalAlign(), 7707 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7708 // The order of the stores doesn't matter - say it with a TokenFactor. 7709 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7710 return Result; 7711 } 7712 7713 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7714 "Unaligned store of unknown type."); 7715 // Get the half-size VT 7716 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7717 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7718 unsigned IncrementSize = NumBits / 8; 7719 7720 // Divide the stored value in two parts. 7721 SDValue ShiftAmount = DAG.getConstant( 7722 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7723 SDValue Lo = Val; 7724 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7725 7726 // Store the two parts 7727 SDValue Store1, Store2; 7728 Store1 = DAG.getTruncStore(Chain, dl, 7729 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7730 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7731 ST->getMemOperand()->getFlags()); 7732 7733 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7734 Store2 = DAG.getTruncStore( 7735 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7736 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7737 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7738 7739 SDValue Result = 7740 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7741 return Result; 7742 } 7743 7744 SDValue 7745 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7746 const SDLoc &DL, EVT DataVT, 7747 SelectionDAG &DAG, 7748 bool IsCompressedMemory) const { 7749 SDValue Increment; 7750 EVT AddrVT = Addr.getValueType(); 7751 EVT MaskVT = Mask.getValueType(); 7752 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7753 "Incompatible types of Data and Mask"); 7754 if (IsCompressedMemory) { 7755 if (DataVT.isScalableVector()) 7756 report_fatal_error( 7757 "Cannot currently handle compressed memory with scalable vectors"); 7758 // Incrementing the pointer according to number of '1's in the mask. 7759 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7760 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7761 if (MaskIntVT.getSizeInBits() < 32) { 7762 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7763 MaskIntVT = MVT::i32; 7764 } 7765 7766 // Count '1's with POPCNT. 7767 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7768 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7769 // Scale is an element size in bytes. 7770 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7771 AddrVT); 7772 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7773 } else if (DataVT.isScalableVector()) { 7774 Increment = DAG.getVScale(DL, AddrVT, 7775 APInt(AddrVT.getFixedSizeInBits(), 7776 DataVT.getStoreSize().getKnownMinSize())); 7777 } else 7778 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7779 7780 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7781 } 7782 7783 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7784 EVT VecVT, const SDLoc &dl, 7785 unsigned NumSubElts) { 7786 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7787 return Idx; 7788 7789 EVT IdxVT = Idx.getValueType(); 7790 unsigned NElts = VecVT.getVectorMinNumElements(); 7791 if (VecVT.isScalableVector()) { 7792 // If this is a constant index and we know the value plus the number of the 7793 // elements in the subvector minus one is less than the minimum number of 7794 // elements then it's safe to return Idx. 7795 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7796 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7797 return Idx; 7798 SDValue VS = 7799 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7800 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7801 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7802 DAG.getConstant(NumSubElts, dl, IdxVT)); 7803 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7804 } 7805 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7806 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7807 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7808 DAG.getConstant(Imm, dl, IdxVT)); 7809 } 7810 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7811 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7812 DAG.getConstant(MaxIndex, dl, IdxVT)); 7813 } 7814 7815 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7816 SDValue VecPtr, EVT VecVT, 7817 SDValue Index) const { 7818 return getVectorSubVecPointer( 7819 DAG, VecPtr, VecVT, 7820 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7821 Index); 7822 } 7823 7824 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7825 SDValue VecPtr, EVT VecVT, 7826 EVT SubVecVT, 7827 SDValue Index) const { 7828 SDLoc dl(Index); 7829 // Make sure the index type is big enough to compute in. 7830 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7831 7832 EVT EltVT = VecVT.getVectorElementType(); 7833 7834 // Calculate the element offset and add it to the pointer. 7835 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7836 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7837 "Converting bits to bytes lost precision"); 7838 7839 // Scalable vectors don't need clamping as these are checked at compile time 7840 if (SubVecVT.isFixedLengthVector()) { 7841 assert(SubVecVT.getVectorElementType() == EltVT && 7842 "Sub-vector must be a fixed vector with matching element type"); 7843 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7844 SubVecVT.getVectorNumElements()); 7845 } 7846 7847 EVT IdxVT = Index.getValueType(); 7848 7849 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7850 DAG.getConstant(EltSize, dl, IdxVT)); 7851 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7852 } 7853 7854 //===----------------------------------------------------------------------===// 7855 // Implementation of Emulated TLS Model 7856 //===----------------------------------------------------------------------===// 7857 7858 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7859 SelectionDAG &DAG) const { 7860 // Access to address of TLS varialbe xyz is lowered to a function call: 7861 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7862 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7863 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7864 SDLoc dl(GA); 7865 7866 ArgListTy Args; 7867 ArgListEntry Entry; 7868 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7869 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7870 StringRef EmuTlsVarName(NameString); 7871 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7872 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7873 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7874 Entry.Ty = VoidPtrType; 7875 Args.push_back(Entry); 7876 7877 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7878 7879 TargetLowering::CallLoweringInfo CLI(DAG); 7880 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7881 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7882 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7883 7884 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7885 // At last for X86 targets, maybe good for other targets too? 7886 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7887 MFI.setAdjustsStack(true); // Is this only for X86 target? 7888 MFI.setHasCalls(true); 7889 7890 assert((GA->getOffset() == 0) && 7891 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7892 return CallResult.first; 7893 } 7894 7895 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7896 SelectionDAG &DAG) const { 7897 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7898 if (!isCtlzFast()) 7899 return SDValue(); 7900 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7901 SDLoc dl(Op); 7902 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7903 if (C->isNullValue() && CC == ISD::SETEQ) { 7904 EVT VT = Op.getOperand(0).getValueType(); 7905 SDValue Zext = Op.getOperand(0); 7906 if (VT.bitsLT(MVT::i32)) { 7907 VT = MVT::i32; 7908 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7909 } 7910 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7911 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7912 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7913 DAG.getConstant(Log2b, dl, MVT::i32)); 7914 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7915 } 7916 } 7917 return SDValue(); 7918 } 7919 7920 // Convert redundant addressing modes (e.g. scaling is redundant 7921 // when accessing bytes). 7922 ISD::MemIndexType 7923 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7924 SDValue Offsets) const { 7925 bool IsScaledIndex = 7926 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7927 bool IsSignedIndex = 7928 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7929 7930 // Scaling is unimportant for bytes, canonicalize to unscaled. 7931 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7932 IsScaledIndex = false; 7933 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7934 } 7935 7936 return IndexType; 7937 } 7938 7939 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7940 SDValue Op0 = Node->getOperand(0); 7941 SDValue Op1 = Node->getOperand(1); 7942 EVT VT = Op0.getValueType(); 7943 unsigned Opcode = Node->getOpcode(); 7944 SDLoc DL(Node); 7945 7946 // umin(x,y) -> sub(x,usubsat(x,y)) 7947 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7948 isOperationLegal(ISD::USUBSAT, VT)) { 7949 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7950 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7951 } 7952 7953 // umax(x,y) -> add(x,usubsat(y,x)) 7954 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7955 isOperationLegal(ISD::USUBSAT, VT)) { 7956 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7957 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7958 } 7959 7960 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7961 ISD::CondCode CC; 7962 switch (Opcode) { 7963 default: llvm_unreachable("How did we get here?"); 7964 case ISD::SMAX: CC = ISD::SETGT; break; 7965 case ISD::SMIN: CC = ISD::SETLT; break; 7966 case ISD::UMAX: CC = ISD::SETUGT; break; 7967 case ISD::UMIN: CC = ISD::SETULT; break; 7968 } 7969 7970 // FIXME: Should really try to split the vector in case it's legal on a 7971 // subvector. 7972 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7973 return DAG.UnrollVectorOp(Node); 7974 7975 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7976 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7977 } 7978 7979 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7980 unsigned Opcode = Node->getOpcode(); 7981 SDValue LHS = Node->getOperand(0); 7982 SDValue RHS = Node->getOperand(1); 7983 EVT VT = LHS.getValueType(); 7984 SDLoc dl(Node); 7985 7986 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7987 assert(VT.isInteger() && "Expected operands to be integers"); 7988 7989 // usub.sat(a, b) -> umax(a, b) - b 7990 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7991 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7992 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7993 } 7994 7995 // uadd.sat(a, b) -> umin(a, ~b) + b 7996 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7997 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7998 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7999 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8000 } 8001 8002 unsigned OverflowOp; 8003 switch (Opcode) { 8004 case ISD::SADDSAT: 8005 OverflowOp = ISD::SADDO; 8006 break; 8007 case ISD::UADDSAT: 8008 OverflowOp = ISD::UADDO; 8009 break; 8010 case ISD::SSUBSAT: 8011 OverflowOp = ISD::SSUBO; 8012 break; 8013 case ISD::USUBSAT: 8014 OverflowOp = ISD::USUBO; 8015 break; 8016 default: 8017 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8018 "addition or subtraction node."); 8019 } 8020 8021 // FIXME: Should really try to split the vector in case it's legal on a 8022 // subvector. 8023 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8024 return DAG.UnrollVectorOp(Node); 8025 8026 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8027 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8028 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8029 SDValue SumDiff = Result.getValue(0); 8030 SDValue Overflow = Result.getValue(1); 8031 SDValue Zero = DAG.getConstant(0, dl, VT); 8032 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8033 8034 if (Opcode == ISD::UADDSAT) { 8035 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8036 // (LHS + RHS) | OverflowMask 8037 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8038 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8039 } 8040 // Overflow ? 0xffff.... : (LHS + RHS) 8041 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8042 } 8043 8044 if (Opcode == ISD::USUBSAT) { 8045 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8046 // (LHS - RHS) & ~OverflowMask 8047 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8048 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8049 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8050 } 8051 // Overflow ? 0 : (LHS - RHS) 8052 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8053 } 8054 8055 // SatMax -> Overflow && SumDiff < 0 8056 // SatMin -> Overflow && SumDiff >= 0 8057 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8058 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 8059 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8060 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8061 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 8062 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 8063 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8064 } 8065 8066 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8067 unsigned Opcode = Node->getOpcode(); 8068 bool IsSigned = Opcode == ISD::SSHLSAT; 8069 SDValue LHS = Node->getOperand(0); 8070 SDValue RHS = Node->getOperand(1); 8071 EVT VT = LHS.getValueType(); 8072 SDLoc dl(Node); 8073 8074 assert((Node->getOpcode() == ISD::SSHLSAT || 8075 Node->getOpcode() == ISD::USHLSAT) && 8076 "Expected a SHLSAT opcode"); 8077 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8078 assert(VT.isInteger() && "Expected operands to be integers"); 8079 8080 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8081 8082 unsigned BW = VT.getScalarSizeInBits(); 8083 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8084 SDValue Orig = 8085 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8086 8087 SDValue SatVal; 8088 if (IsSigned) { 8089 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8090 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8091 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8092 SatMin, SatMax, ISD::SETLT); 8093 } else { 8094 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8095 } 8096 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8097 8098 return Result; 8099 } 8100 8101 SDValue 8102 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8103 assert((Node->getOpcode() == ISD::SMULFIX || 8104 Node->getOpcode() == ISD::UMULFIX || 8105 Node->getOpcode() == ISD::SMULFIXSAT || 8106 Node->getOpcode() == ISD::UMULFIXSAT) && 8107 "Expected a fixed point multiplication opcode"); 8108 8109 SDLoc dl(Node); 8110 SDValue LHS = Node->getOperand(0); 8111 SDValue RHS = Node->getOperand(1); 8112 EVT VT = LHS.getValueType(); 8113 unsigned Scale = Node->getConstantOperandVal(2); 8114 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8115 Node->getOpcode() == ISD::UMULFIXSAT); 8116 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8117 Node->getOpcode() == ISD::SMULFIXSAT); 8118 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8119 unsigned VTSize = VT.getScalarSizeInBits(); 8120 8121 if (!Scale) { 8122 // [us]mul.fix(a, b, 0) -> mul(a, b) 8123 if (!Saturating) { 8124 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8125 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8126 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8127 SDValue Result = 8128 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8129 SDValue Product = Result.getValue(0); 8130 SDValue Overflow = Result.getValue(1); 8131 SDValue Zero = DAG.getConstant(0, dl, VT); 8132 8133 APInt MinVal = APInt::getSignedMinValue(VTSize); 8134 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8135 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8136 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8137 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 8138 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 8139 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8140 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8141 SDValue Result = 8142 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8143 SDValue Product = Result.getValue(0); 8144 SDValue Overflow = Result.getValue(1); 8145 8146 APInt MaxVal = APInt::getMaxValue(VTSize); 8147 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8148 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8149 } 8150 } 8151 8152 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8153 "Expected scale to be less than the number of bits if signed or at " 8154 "most the number of bits if unsigned."); 8155 assert(LHS.getValueType() == RHS.getValueType() && 8156 "Expected both operands to be the same type"); 8157 8158 // Get the upper and lower bits of the result. 8159 SDValue Lo, Hi; 8160 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8161 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8162 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8163 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8164 Lo = Result.getValue(0); 8165 Hi = Result.getValue(1); 8166 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8167 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8168 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8169 } else if (VT.isVector()) { 8170 return SDValue(); 8171 } else { 8172 report_fatal_error("Unable to expand fixed point multiplication."); 8173 } 8174 8175 if (Scale == VTSize) 8176 // Result is just the top half since we'd be shifting by the width of the 8177 // operand. Overflow impossible so this works for both UMULFIX and 8178 // UMULFIXSAT. 8179 return Hi; 8180 8181 // The result will need to be shifted right by the scale since both operands 8182 // are scaled. The result is given to us in 2 halves, so we only want part of 8183 // both in the result. 8184 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8185 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8186 DAG.getConstant(Scale, dl, ShiftTy)); 8187 if (!Saturating) 8188 return Result; 8189 8190 if (!Signed) { 8191 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8192 // widened multiplication) aren't all zeroes. 8193 8194 // Saturate to max if ((Hi >> Scale) != 0), 8195 // which is the same as if (Hi > ((1 << Scale) - 1)) 8196 APInt MaxVal = APInt::getMaxValue(VTSize); 8197 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8198 dl, VT); 8199 Result = DAG.getSelectCC(dl, Hi, LowMask, 8200 DAG.getConstant(MaxVal, dl, VT), Result, 8201 ISD::SETUGT); 8202 8203 return Result; 8204 } 8205 8206 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8207 // widened multiplication) aren't all ones or all zeroes. 8208 8209 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8210 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8211 8212 if (Scale == 0) { 8213 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8214 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8215 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8216 // Saturated to SatMin if wide product is negative, and SatMax if wide 8217 // product is positive ... 8218 SDValue Zero = DAG.getConstant(0, dl, VT); 8219 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8220 ISD::SETLT); 8221 // ... but only if we overflowed. 8222 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8223 } 8224 8225 // We handled Scale==0 above so all the bits to examine is in Hi. 8226 8227 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8228 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8229 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8230 dl, VT); 8231 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8232 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8233 // which is the same as if (HI < (-1 << (Scale - 1)) 8234 SDValue HighMask = 8235 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8236 dl, VT); 8237 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8238 return Result; 8239 } 8240 8241 SDValue 8242 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8243 SDValue LHS, SDValue RHS, 8244 unsigned Scale, SelectionDAG &DAG) const { 8245 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8246 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8247 "Expected a fixed point division opcode"); 8248 8249 EVT VT = LHS.getValueType(); 8250 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8251 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8252 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8253 8254 // If there is enough room in the type to upscale the LHS or downscale the 8255 // RHS before the division, we can perform it in this type without having to 8256 // resize. For signed operations, the LHS headroom is the number of 8257 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8258 // The headroom for the RHS is the number of trailing zeroes. 8259 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8260 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8261 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8262 8263 // For signed saturating operations, we need to be able to detect true integer 8264 // division overflow; that is, when you have MIN / -EPS. However, this 8265 // is undefined behavior and if we emit divisions that could take such 8266 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8267 // example). 8268 // Avoid this by requiring an extra bit so that we never get this case. 8269 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8270 // signed saturating division, we need to emit a whopping 32-bit division. 8271 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8272 return SDValue(); 8273 8274 unsigned LHSShift = std::min(LHSLead, Scale); 8275 unsigned RHSShift = Scale - LHSShift; 8276 8277 // At this point, we know that if we shift the LHS up by LHSShift and the 8278 // RHS down by RHSShift, we can emit a regular division with a final scaling 8279 // factor of Scale. 8280 8281 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8282 if (LHSShift) 8283 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8284 DAG.getConstant(LHSShift, dl, ShiftTy)); 8285 if (RHSShift) 8286 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8287 DAG.getConstant(RHSShift, dl, ShiftTy)); 8288 8289 SDValue Quot; 8290 if (Signed) { 8291 // For signed operations, if the resulting quotient is negative and the 8292 // remainder is nonzero, subtract 1 from the quotient to round towards 8293 // negative infinity. 8294 SDValue Rem; 8295 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8296 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8297 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8298 if (isTypeLegal(VT) && 8299 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8300 Quot = DAG.getNode(ISD::SDIVREM, dl, 8301 DAG.getVTList(VT, VT), 8302 LHS, RHS); 8303 Rem = Quot.getValue(1); 8304 Quot = Quot.getValue(0); 8305 } else { 8306 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8307 LHS, RHS); 8308 Rem = DAG.getNode(ISD::SREM, dl, VT, 8309 LHS, RHS); 8310 } 8311 SDValue Zero = DAG.getConstant(0, dl, VT); 8312 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8313 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8314 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8315 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8316 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8317 DAG.getConstant(1, dl, VT)); 8318 Quot = DAG.getSelect(dl, VT, 8319 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8320 Sub1, Quot); 8321 } else 8322 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8323 LHS, RHS); 8324 8325 return Quot; 8326 } 8327 8328 void TargetLowering::expandUADDSUBO( 8329 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8330 SDLoc dl(Node); 8331 SDValue LHS = Node->getOperand(0); 8332 SDValue RHS = Node->getOperand(1); 8333 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8334 8335 // If ADD/SUBCARRY is legal, use that instead. 8336 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8337 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8338 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8339 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8340 { LHS, RHS, CarryIn }); 8341 Result = SDValue(NodeCarry.getNode(), 0); 8342 Overflow = SDValue(NodeCarry.getNode(), 1); 8343 return; 8344 } 8345 8346 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8347 LHS.getValueType(), LHS, RHS); 8348 8349 EVT ResultType = Node->getValueType(1); 8350 EVT SetCCType = getSetCCResultType( 8351 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8352 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8353 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8354 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8355 } 8356 8357 void TargetLowering::expandSADDSUBO( 8358 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8359 SDLoc dl(Node); 8360 SDValue LHS = Node->getOperand(0); 8361 SDValue RHS = Node->getOperand(1); 8362 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8363 8364 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8365 LHS.getValueType(), LHS, RHS); 8366 8367 EVT ResultType = Node->getValueType(1); 8368 EVT OType = getSetCCResultType( 8369 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8370 8371 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8372 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8373 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8374 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8375 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8376 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8377 return; 8378 } 8379 8380 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8381 8382 // For an addition, the result should be less than one of the operands (LHS) 8383 // if and only if the other operand (RHS) is negative, otherwise there will 8384 // be overflow. 8385 // For a subtraction, the result should be less than one of the operands 8386 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8387 // otherwise there will be overflow. 8388 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8389 SDValue ConditionRHS = 8390 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8391 8392 Overflow = DAG.getBoolExtOrTrunc( 8393 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8394 ResultType, ResultType); 8395 } 8396 8397 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8398 SDValue &Overflow, SelectionDAG &DAG) const { 8399 SDLoc dl(Node); 8400 EVT VT = Node->getValueType(0); 8401 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8402 SDValue LHS = Node->getOperand(0); 8403 SDValue RHS = Node->getOperand(1); 8404 bool isSigned = Node->getOpcode() == ISD::SMULO; 8405 8406 // For power-of-two multiplications we can use a simpler shift expansion. 8407 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8408 const APInt &C = RHSC->getAPIntValue(); 8409 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8410 if (C.isPowerOf2()) { 8411 // smulo(x, signed_min) is same as umulo(x, signed_min). 8412 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8413 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8414 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8415 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8416 Overflow = DAG.getSetCC(dl, SetCCVT, 8417 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8418 dl, VT, Result, ShiftAmt), 8419 LHS, ISD::SETNE); 8420 return true; 8421 } 8422 } 8423 8424 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8425 if (VT.isVector()) 8426 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8427 VT.getVectorNumElements()); 8428 8429 SDValue BottomHalf; 8430 SDValue TopHalf; 8431 static const unsigned Ops[2][3] = 8432 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8433 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8434 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8435 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8436 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8437 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8438 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8439 RHS); 8440 TopHalf = BottomHalf.getValue(1); 8441 } else if (isTypeLegal(WideVT)) { 8442 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8443 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8444 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8445 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8446 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8447 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8448 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8449 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8450 } else { 8451 if (VT.isVector()) 8452 return false; 8453 8454 // We can fall back to a libcall with an illegal type for the MUL if we 8455 // have a libcall big enough. 8456 // Also, we can fall back to a division in some cases, but that's a big 8457 // performance hit in the general case. 8458 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8459 if (WideVT == MVT::i16) 8460 LC = RTLIB::MUL_I16; 8461 else if (WideVT == MVT::i32) 8462 LC = RTLIB::MUL_I32; 8463 else if (WideVT == MVT::i64) 8464 LC = RTLIB::MUL_I64; 8465 else if (WideVT == MVT::i128) 8466 LC = RTLIB::MUL_I128; 8467 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8468 8469 SDValue HiLHS; 8470 SDValue HiRHS; 8471 if (isSigned) { 8472 // The high part is obtained by SRA'ing all but one of the bits of low 8473 // part. 8474 unsigned LoSize = VT.getFixedSizeInBits(); 8475 HiLHS = 8476 DAG.getNode(ISD::SRA, dl, VT, LHS, 8477 DAG.getConstant(LoSize - 1, dl, 8478 getPointerTy(DAG.getDataLayout()))); 8479 HiRHS = 8480 DAG.getNode(ISD::SRA, dl, VT, RHS, 8481 DAG.getConstant(LoSize - 1, dl, 8482 getPointerTy(DAG.getDataLayout()))); 8483 } else { 8484 HiLHS = DAG.getConstant(0, dl, VT); 8485 HiRHS = DAG.getConstant(0, dl, VT); 8486 } 8487 8488 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8489 // pre-lowered to the correct types. This all depends upon WideVT not 8490 // being a legal type for the architecture and thus has to be split to 8491 // two arguments. 8492 SDValue Ret; 8493 TargetLowering::MakeLibCallOptions CallOptions; 8494 CallOptions.setSExt(isSigned); 8495 CallOptions.setIsPostTypeLegalization(true); 8496 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8497 // Halves of WideVT are packed into registers in different order 8498 // depending on platform endianness. This is usually handled by 8499 // the C calling convention, but we can't defer to it in 8500 // the legalizer. 8501 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8502 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8503 } else { 8504 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8505 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8506 } 8507 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8508 "Ret value is a collection of constituent nodes holding result."); 8509 if (DAG.getDataLayout().isLittleEndian()) { 8510 // Same as above. 8511 BottomHalf = Ret.getOperand(0); 8512 TopHalf = Ret.getOperand(1); 8513 } else { 8514 BottomHalf = Ret.getOperand(1); 8515 TopHalf = Ret.getOperand(0); 8516 } 8517 } 8518 8519 Result = BottomHalf; 8520 if (isSigned) { 8521 SDValue ShiftAmt = DAG.getConstant( 8522 VT.getScalarSizeInBits() - 1, dl, 8523 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8524 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8525 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8526 } else { 8527 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8528 DAG.getConstant(0, dl, VT), ISD::SETNE); 8529 } 8530 8531 // Truncate the result if SetCC returns a larger type than needed. 8532 EVT RType = Node->getValueType(1); 8533 if (RType.bitsLT(Overflow.getValueType())) 8534 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8535 8536 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8537 "Unexpected result type for S/UMULO legalization"); 8538 return true; 8539 } 8540 8541 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8542 SDLoc dl(Node); 8543 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8544 SDValue Op = Node->getOperand(0); 8545 EVT VT = Op.getValueType(); 8546 8547 if (VT.isScalableVector()) 8548 report_fatal_error( 8549 "Expanding reductions for scalable vectors is undefined."); 8550 8551 // Try to use a shuffle reduction for power of two vectors. 8552 if (VT.isPow2VectorType()) { 8553 while (VT.getVectorNumElements() > 1) { 8554 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8555 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8556 break; 8557 8558 SDValue Lo, Hi; 8559 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8560 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8561 VT = HalfVT; 8562 } 8563 } 8564 8565 EVT EltVT = VT.getVectorElementType(); 8566 unsigned NumElts = VT.getVectorNumElements(); 8567 8568 SmallVector<SDValue, 8> Ops; 8569 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8570 8571 SDValue Res = Ops[0]; 8572 for (unsigned i = 1; i < NumElts; i++) 8573 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8574 8575 // Result type may be wider than element type. 8576 if (EltVT != Node->getValueType(0)) 8577 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8578 return Res; 8579 } 8580 8581 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8582 SDLoc dl(Node); 8583 SDValue AccOp = Node->getOperand(0); 8584 SDValue VecOp = Node->getOperand(1); 8585 SDNodeFlags Flags = Node->getFlags(); 8586 8587 EVT VT = VecOp.getValueType(); 8588 EVT EltVT = VT.getVectorElementType(); 8589 8590 if (VT.isScalableVector()) 8591 report_fatal_error( 8592 "Expanding reductions for scalable vectors is undefined."); 8593 8594 unsigned NumElts = VT.getVectorNumElements(); 8595 8596 SmallVector<SDValue, 8> Ops; 8597 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8598 8599 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8600 8601 SDValue Res = AccOp; 8602 for (unsigned i = 0; i < NumElts; i++) 8603 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8604 8605 return Res; 8606 } 8607 8608 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8609 SelectionDAG &DAG) const { 8610 EVT VT = Node->getValueType(0); 8611 SDLoc dl(Node); 8612 bool isSigned = Node->getOpcode() == ISD::SREM; 8613 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8614 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8615 SDValue Dividend = Node->getOperand(0); 8616 SDValue Divisor = Node->getOperand(1); 8617 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8618 SDVTList VTs = DAG.getVTList(VT, VT); 8619 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8620 return true; 8621 } 8622 if (isOperationLegalOrCustom(DivOpc, VT)) { 8623 // X % Y -> X-X/Y*Y 8624 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8625 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8626 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8627 return true; 8628 } 8629 return false; 8630 } 8631 8632 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8633 SelectionDAG &DAG) const { 8634 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8635 SDLoc dl(SDValue(Node, 0)); 8636 SDValue Src = Node->getOperand(0); 8637 8638 // DstVT is the result type, while SatVT is the size to which we saturate 8639 EVT SrcVT = Src.getValueType(); 8640 EVT DstVT = Node->getValueType(0); 8641 8642 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8643 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8644 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8645 assert(SatWidth <= DstWidth && 8646 "Expected saturation width smaller than result width"); 8647 8648 // Determine minimum and maximum integer values and their corresponding 8649 // floating-point values. 8650 APInt MinInt, MaxInt; 8651 if (IsSigned) { 8652 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8653 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8654 } else { 8655 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8656 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8657 } 8658 8659 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8660 // libcall emission cannot handle this. Large result types will fail. 8661 if (SrcVT == MVT::f16) { 8662 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8663 SrcVT = Src.getValueType(); 8664 } 8665 8666 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8667 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8668 8669 APFloat::opStatus MinStatus = 8670 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8671 APFloat::opStatus MaxStatus = 8672 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8673 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8674 !(MaxStatus & APFloat::opStatus::opInexact); 8675 8676 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8677 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8678 8679 // If the integer bounds are exactly representable as floats and min/max are 8680 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8681 // of comparisons and selects. 8682 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8683 isOperationLegal(ISD::FMAXNUM, SrcVT); 8684 if (AreExactFloatBounds && MinMaxLegal) { 8685 SDValue Clamped = Src; 8686 8687 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8688 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8689 // Clamp by MaxFloat from above. NaN cannot occur. 8690 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8691 // Convert clamped value to integer. 8692 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8693 dl, DstVT, Clamped); 8694 8695 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8696 // which will cast to zero. 8697 if (!IsSigned) 8698 return FpToInt; 8699 8700 // Otherwise, select 0 if Src is NaN. 8701 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8702 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8703 ISD::CondCode::SETUO); 8704 } 8705 8706 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8707 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8708 8709 // Result of direct conversion. The assumption here is that the operation is 8710 // non-trapping and it's fine to apply it to an out-of-range value if we 8711 // select it away later. 8712 SDValue FpToInt = 8713 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8714 8715 SDValue Select = FpToInt; 8716 8717 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8718 // MinInt if Src is NaN. 8719 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8720 ISD::CondCode::SETULT); 8721 // If Src OGT MaxFloat, select MaxInt. 8722 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8723 ISD::CondCode::SETOGT); 8724 8725 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8726 // is already zero. 8727 if (!IsSigned) 8728 return Select; 8729 8730 // Otherwise, select 0 if Src is NaN. 8731 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8732 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8733 } 8734 8735 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8736 SelectionDAG &DAG) const { 8737 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8738 assert(Node->getValueType(0).isScalableVector() && 8739 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8740 8741 EVT VT = Node->getValueType(0); 8742 SDValue V1 = Node->getOperand(0); 8743 SDValue V2 = Node->getOperand(1); 8744 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8745 SDLoc DL(Node); 8746 8747 // Expand through memory thusly: 8748 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8749 // Store V1, Ptr 8750 // Store V2, Ptr + sizeof(V1) 8751 // If (Imm < 0) 8752 // TrailingElts = -Imm 8753 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8754 // else 8755 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8756 // Res = Load Ptr 8757 8758 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8759 8760 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8761 VT.getVectorElementCount() * 2); 8762 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8763 EVT PtrVT = StackPtr.getValueType(); 8764 auto &MF = DAG.getMachineFunction(); 8765 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8766 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8767 8768 // Store the lo part of CONCAT_VECTORS(V1, V2) 8769 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8770 // Store the hi part of CONCAT_VECTORS(V1, V2) 8771 SDValue OffsetToV2 = DAG.getVScale( 8772 DL, PtrVT, 8773 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8774 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8775 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8776 8777 if (Imm >= 0) { 8778 // Load back the required element. getVectorElementPointer takes care of 8779 // clamping the index if it's out-of-bounds. 8780 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8781 // Load the spliced result 8782 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8783 MachinePointerInfo::getUnknownStack(MF)); 8784 } 8785 8786 uint64_t TrailingElts = -Imm; 8787 8788 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8789 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8790 SDValue TrailingBytes = 8791 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8792 8793 if (TrailingElts > VT.getVectorMinNumElements()) { 8794 SDValue VLBytes = DAG.getVScale( 8795 DL, PtrVT, 8796 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8797 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8798 } 8799 8800 // Calculate the start address of the spliced result. 8801 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8802 8803 // Load the spliced result 8804 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8805 MachinePointerInfo::getUnknownStack(MF)); 8806 } 8807 8808 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8809 SDValue &LHS, SDValue &RHS, 8810 SDValue &CC, bool &NeedInvert, 8811 const SDLoc &dl, SDValue &Chain, 8812 bool IsSignaling) const { 8813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8814 MVT OpVT = LHS.getSimpleValueType(); 8815 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8816 NeedInvert = false; 8817 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8818 default: 8819 llvm_unreachable("Unknown condition code action!"); 8820 case TargetLowering::Legal: 8821 // Nothing to do. 8822 break; 8823 case TargetLowering::Expand: { 8824 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8825 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8826 std::swap(LHS, RHS); 8827 CC = DAG.getCondCode(InvCC); 8828 return true; 8829 } 8830 // Swapping operands didn't work. Try inverting the condition. 8831 bool NeedSwap = false; 8832 InvCC = getSetCCInverse(CCCode, OpVT); 8833 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8834 // If inverting the condition is not enough, try swapping operands 8835 // on top of it. 8836 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8837 NeedSwap = true; 8838 } 8839 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8840 CC = DAG.getCondCode(InvCC); 8841 NeedInvert = true; 8842 if (NeedSwap) 8843 std::swap(LHS, RHS); 8844 return true; 8845 } 8846 8847 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8848 unsigned Opc = 0; 8849 switch (CCCode) { 8850 default: 8851 llvm_unreachable("Don't know how to expand this condition!"); 8852 case ISD::SETUO: 8853 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8854 CC1 = ISD::SETUNE; 8855 CC2 = ISD::SETUNE; 8856 Opc = ISD::OR; 8857 break; 8858 } 8859 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8860 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8861 NeedInvert = true; 8862 LLVM_FALLTHROUGH; 8863 case ISD::SETO: 8864 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8865 "If SETO is expanded, SETOEQ must be legal!"); 8866 CC1 = ISD::SETOEQ; 8867 CC2 = ISD::SETOEQ; 8868 Opc = ISD::AND; 8869 break; 8870 case ISD::SETONE: 8871 case ISD::SETUEQ: 8872 // If the SETUO or SETO CC isn't legal, we might be able to use 8873 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8874 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8875 // the operands. 8876 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8877 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8878 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8879 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8880 CC1 = ISD::SETOGT; 8881 CC2 = ISD::SETOLT; 8882 Opc = ISD::OR; 8883 NeedInvert = ((unsigned)CCCode & 0x8U); 8884 break; 8885 } 8886 LLVM_FALLTHROUGH; 8887 case ISD::SETOEQ: 8888 case ISD::SETOGT: 8889 case ISD::SETOGE: 8890 case ISD::SETOLT: 8891 case ISD::SETOLE: 8892 case ISD::SETUNE: 8893 case ISD::SETUGT: 8894 case ISD::SETUGE: 8895 case ISD::SETULT: 8896 case ISD::SETULE: 8897 // If we are floating point, assign and break, otherwise fall through. 8898 if (!OpVT.isInteger()) { 8899 // We can use the 4th bit to tell if we are the unordered 8900 // or ordered version of the opcode. 8901 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8902 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8903 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8904 break; 8905 } 8906 // Fallthrough if we are unsigned integer. 8907 LLVM_FALLTHROUGH; 8908 case ISD::SETLE: 8909 case ISD::SETGT: 8910 case ISD::SETGE: 8911 case ISD::SETLT: 8912 case ISD::SETNE: 8913 case ISD::SETEQ: 8914 // If all combinations of inverting the condition and swapping operands 8915 // didn't work then we have no means to expand the condition. 8916 llvm_unreachable("Don't know how to expand this condition!"); 8917 } 8918 8919 SDValue SetCC1, SetCC2; 8920 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8921 // If we aren't the ordered or unorder operation, 8922 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8923 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8924 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8925 } else { 8926 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8927 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8928 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8929 } 8930 if (Chain) 8931 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8932 SetCC2.getValue(1)); 8933 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8934 RHS = SDValue(); 8935 CC = SDValue(); 8936 return true; 8937 } 8938 } 8939 return false; 8940 } 8941