1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   bool IsLE = DAG.getDataLayout().isLittleEndian();
649   unsigned NumElts = DemandedElts.getBitWidth();
650   unsigned BitWidth = DemandedBits.getBitWidth();
651   KnownBits LHSKnown, RHSKnown;
652   switch (Op.getOpcode()) {
653   case ISD::BITCAST: {
654     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
655     EVT SrcVT = Src.getValueType();
656     EVT DstVT = Op.getValueType();
657     if (SrcVT == DstVT)
658       return Src;
659 
660     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
661     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
662     if (NumSrcEltBits == NumDstEltBits)
663       if (SDValue V = SimplifyMultipleUseDemandedBits(
664               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
665         return DAG.getBitcast(DstVT, V);
666 
667     // TODO - bigendian once we have test coverage.
668     if (IsLE && SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
669       unsigned Scale = NumDstEltBits / NumSrcEltBits;
670       unsigned NumSrcElts = SrcVT.getVectorNumElements();
671       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
672       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
673       for (unsigned i = 0; i != Scale; ++i) {
674         unsigned Offset = i * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (IsLE && DemandedElts == 1 &&
805         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1735       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1736       unsigned RevAmt = BitWidth - Amt;
1737 
1738       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1739       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1740       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1741       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1742                                Depth + 1))
1743         return true;
1744 
1745       // rot*(x, 0) --> x
1746       if (Amt == 0)
1747         return TLO.CombineTo(Op, Op0);
1748 
1749       // See if we don't demand either half of the rotated bits.
1750       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1751           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1752         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1753         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1754       }
1755       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1756           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1757         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1758         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1759       }
1760     }
1761 
1762     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1763     if (isPowerOf2_32(BitWidth)) {
1764       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1765       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1766                                Depth + 1))
1767         return true;
1768     }
1769     break;
1770   }
1771   case ISD::UMIN: {
1772     // Check if one arg is always less than (or equal) to the other arg.
1773     SDValue Op0 = Op.getOperand(0);
1774     SDValue Op1 = Op.getOperand(1);
1775     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1776     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1777     Known = KnownBits::umin(Known0, Known1);
1778     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1779       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1780     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1781       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1782     break;
1783   }
1784   case ISD::UMAX: {
1785     // Check if one arg is always greater than (or equal) to the other arg.
1786     SDValue Op0 = Op.getOperand(0);
1787     SDValue Op1 = Op.getOperand(1);
1788     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1789     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1790     Known = KnownBits::umax(Known0, Known1);
1791     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1792       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1793     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1794       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1795     break;
1796   }
1797   case ISD::BITREVERSE: {
1798     SDValue Src = Op.getOperand(0);
1799     APInt DemandedSrcBits = DemandedBits.reverseBits();
1800     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1801                              Depth + 1))
1802       return true;
1803     Known.One = Known2.One.reverseBits();
1804     Known.Zero = Known2.Zero.reverseBits();
1805     break;
1806   }
1807   case ISD::BSWAP: {
1808     SDValue Src = Op.getOperand(0);
1809     APInt DemandedSrcBits = DemandedBits.byteSwap();
1810     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1811                              Depth + 1))
1812       return true;
1813     Known.One = Known2.One.byteSwap();
1814     Known.Zero = Known2.Zero.byteSwap();
1815     break;
1816   }
1817   case ISD::CTPOP: {
1818     // If only 1 bit is demanded, replace with PARITY as long as we're before
1819     // op legalization.
1820     // FIXME: Limit to scalars for now.
1821     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1822       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1823                                                Op.getOperand(0)));
1824 
1825     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1826     break;
1827   }
1828   case ISD::SIGN_EXTEND_INREG: {
1829     SDValue Op0 = Op.getOperand(0);
1830     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1831     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1832 
1833     // If we only care about the highest bit, don't bother shifting right.
1834     if (DemandedBits.isSignMask()) {
1835       unsigned MinSignedBits =
1836           TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1);
1837       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1838       // However if the input is already sign extended we expect the sign
1839       // extension to be dropped altogether later and do not simplify.
1840       if (!AlreadySignExtended) {
1841         // Compute the correct shift amount type, which must be getShiftAmountTy
1842         // for scalar types after legalization.
1843         EVT ShiftAmtTy = VT;
1844         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1845           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1846 
1847         SDValue ShiftAmt =
1848             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1849         return TLO.CombineTo(Op,
1850                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1851       }
1852     }
1853 
1854     // If none of the extended bits are demanded, eliminate the sextinreg.
1855     if (DemandedBits.getActiveBits() <= ExVTBits)
1856       return TLO.CombineTo(Op, Op0);
1857 
1858     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1859 
1860     // Since the sign extended bits are demanded, we know that the sign
1861     // bit is demanded.
1862     InputDemandedBits.setBit(ExVTBits - 1);
1863 
1864     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1865       return true;
1866     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1867 
1868     // If the sign bit of the input is known set or clear, then we know the
1869     // top bits of the result.
1870 
1871     // If the input sign bit is known zero, convert this into a zero extension.
1872     if (Known.Zero[ExVTBits - 1])
1873       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1874 
1875     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1876     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1877       Known.One.setBitsFrom(ExVTBits);
1878       Known.Zero &= Mask;
1879     } else { // Input sign bit unknown
1880       Known.Zero &= Mask;
1881       Known.One &= Mask;
1882     }
1883     break;
1884   }
1885   case ISD::BUILD_PAIR: {
1886     EVT HalfVT = Op.getOperand(0).getValueType();
1887     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1888 
1889     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1890     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1891 
1892     KnownBits KnownLo, KnownHi;
1893 
1894     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1895       return true;
1896 
1897     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1898       return true;
1899 
1900     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1901                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1902 
1903     Known.One = KnownLo.One.zext(BitWidth) |
1904                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1905     break;
1906   }
1907   case ISD::ZERO_EXTEND:
1908   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1909     SDValue Src = Op.getOperand(0);
1910     EVT SrcVT = Src.getValueType();
1911     unsigned InBits = SrcVT.getScalarSizeInBits();
1912     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1913     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1914 
1915     // If none of the top bits are demanded, convert this into an any_extend.
1916     if (DemandedBits.getActiveBits() <= InBits) {
1917       // If we only need the non-extended bits of the bottom element
1918       // then we can just bitcast to the result.
1919       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1920           VT.getSizeInBits() == SrcVT.getSizeInBits())
1921         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1922 
1923       unsigned Opc =
1924           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1925       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1926         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1927     }
1928 
1929     APInt InDemandedBits = DemandedBits.trunc(InBits);
1930     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1931     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1932                              Depth + 1))
1933       return true;
1934     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1935     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1936     Known = Known.zext(BitWidth);
1937 
1938     // Attempt to avoid multi-use ops if we don't need anything from them.
1939     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1940             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1941       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1942     break;
1943   }
1944   case ISD::SIGN_EXTEND:
1945   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1946     SDValue Src = Op.getOperand(0);
1947     EVT SrcVT = Src.getValueType();
1948     unsigned InBits = SrcVT.getScalarSizeInBits();
1949     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1950     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1951 
1952     // If none of the top bits are demanded, convert this into an any_extend.
1953     if (DemandedBits.getActiveBits() <= InBits) {
1954       // If we only need the non-extended bits of the bottom element
1955       // then we can just bitcast to the result.
1956       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1957           VT.getSizeInBits() == SrcVT.getSizeInBits())
1958         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1959 
1960       unsigned Opc =
1961           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1962       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1963         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1964     }
1965 
1966     APInt InDemandedBits = DemandedBits.trunc(InBits);
1967     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1968 
1969     // Since some of the sign extended bits are demanded, we know that the sign
1970     // bit is demanded.
1971     InDemandedBits.setBit(InBits - 1);
1972 
1973     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1974                              Depth + 1))
1975       return true;
1976     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1977     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1978 
1979     // If the sign bit is known one, the top bits match.
1980     Known = Known.sext(BitWidth);
1981 
1982     // If the sign bit is known zero, convert this to a zero extend.
1983     if (Known.isNonNegative()) {
1984       unsigned Opc =
1985           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1986       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1987         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1988     }
1989 
1990     // Attempt to avoid multi-use ops if we don't need anything from them.
1991     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1992             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1993       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1994     break;
1995   }
1996   case ISD::ANY_EXTEND:
1997   case ISD::ANY_EXTEND_VECTOR_INREG: {
1998     SDValue Src = Op.getOperand(0);
1999     EVT SrcVT = Src.getValueType();
2000     unsigned InBits = SrcVT.getScalarSizeInBits();
2001     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2002     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2003 
2004     // If we only need the bottom element then we can just bitcast.
2005     // TODO: Handle ANY_EXTEND?
2006     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2007         VT.getSizeInBits() == SrcVT.getSizeInBits())
2008       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2009 
2010     APInt InDemandedBits = DemandedBits.trunc(InBits);
2011     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2012     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2013                              Depth + 1))
2014       return true;
2015     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2016     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2017     Known = Known.anyext(BitWidth);
2018 
2019     // Attempt to avoid multi-use ops if we don't need anything from them.
2020     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2021             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2022       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2023     break;
2024   }
2025   case ISD::TRUNCATE: {
2026     SDValue Src = Op.getOperand(0);
2027 
2028     // Simplify the input, using demanded bit information, and compute the known
2029     // zero/one bits live out.
2030     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2031     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2032     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2033                              Depth + 1))
2034       return true;
2035     Known = Known.trunc(BitWidth);
2036 
2037     // Attempt to avoid multi-use ops if we don't need anything from them.
2038     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2039             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2040       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2041 
2042     // If the input is only used by this truncate, see if we can shrink it based
2043     // on the known demanded bits.
2044     if (Src.getNode()->hasOneUse()) {
2045       switch (Src.getOpcode()) {
2046       default:
2047         break;
2048       case ISD::SRL:
2049         // Shrink SRL by a constant if none of the high bits shifted in are
2050         // demanded.
2051         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2052           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2053           // undesirable.
2054           break;
2055 
2056         const APInt *ShAmtC =
2057             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2058         if (!ShAmtC || ShAmtC->uge(BitWidth))
2059           break;
2060         uint64_t ShVal = ShAmtC->getZExtValue();
2061 
2062         APInt HighBits =
2063             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2064         HighBits.lshrInPlace(ShVal);
2065         HighBits = HighBits.trunc(BitWidth);
2066 
2067         if (!(HighBits & DemandedBits)) {
2068           // None of the shifted in bits are needed.  Add a truncate of the
2069           // shift input, then shift it.
2070           SDValue NewShAmt = TLO.DAG.getConstant(
2071               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2072           SDValue NewTrunc =
2073               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2074           return TLO.CombineTo(
2075               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2076         }
2077         break;
2078       }
2079     }
2080 
2081     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2082     break;
2083   }
2084   case ISD::AssertZext: {
2085     // AssertZext demands all of the high bits, plus any of the low bits
2086     // demanded by its users.
2087     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2088     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2089     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2090                              TLO, Depth + 1))
2091       return true;
2092     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2093 
2094     Known.Zero |= ~InMask;
2095     break;
2096   }
2097   case ISD::EXTRACT_VECTOR_ELT: {
2098     SDValue Src = Op.getOperand(0);
2099     SDValue Idx = Op.getOperand(1);
2100     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2101     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2102 
2103     if (SrcEltCnt.isScalable())
2104       return false;
2105 
2106     // Demand the bits from every vector element without a constant index.
2107     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2108     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2109     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2110       if (CIdx->getAPIntValue().ult(NumSrcElts))
2111         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2112 
2113     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2114     // anything about the extended bits.
2115     APInt DemandedSrcBits = DemandedBits;
2116     if (BitWidth > EltBitWidth)
2117       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2118 
2119     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2120                              Depth + 1))
2121       return true;
2122 
2123     // Attempt to avoid multi-use ops if we don't need anything from them.
2124     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2125       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2126               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2127         SDValue NewOp =
2128             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2129         return TLO.CombineTo(Op, NewOp);
2130       }
2131     }
2132 
2133     Known = Known2;
2134     if (BitWidth > EltBitWidth)
2135       Known = Known.anyext(BitWidth);
2136     break;
2137   }
2138   case ISD::BITCAST: {
2139     SDValue Src = Op.getOperand(0);
2140     EVT SrcVT = Src.getValueType();
2141     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2142 
2143     // If this is an FP->Int bitcast and if the sign bit is the only
2144     // thing demanded, turn this into a FGETSIGN.
2145     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2146         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2147         SrcVT.isFloatingPoint()) {
2148       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2149       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2150       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2151           SrcVT != MVT::f128) {
2152         // Cannot eliminate/lower SHL for f128 yet.
2153         EVT Ty = OpVTLegal ? VT : MVT::i32;
2154         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2155         // place.  We expect the SHL to be eliminated by other optimizations.
2156         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2157         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2158         if (!OpVTLegal && OpVTSizeInBits > 32)
2159           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2160         unsigned ShVal = Op.getValueSizeInBits() - 1;
2161         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2162         return TLO.CombineTo(Op,
2163                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2164       }
2165     }
2166 
2167     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2168     // Demand the elt/bit if any of the original elts/bits are demanded.
2169     // TODO - bigendian once we have test coverage.
2170     if (IsLE && SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2171       unsigned Scale = BitWidth / NumSrcEltBits;
2172       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2173       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2174       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2175       for (unsigned i = 0; i != Scale; ++i) {
2176         unsigned Offset = i * NumSrcEltBits;
2177         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2178         if (!Sub.isZero()) {
2179           DemandedSrcBits |= Sub;
2180           for (unsigned j = 0; j != NumElts; ++j)
2181             if (DemandedElts[j])
2182               DemandedSrcElts.setBit((j * Scale) + i);
2183         }
2184       }
2185 
2186       APInt KnownSrcUndef, KnownSrcZero;
2187       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2188                                      KnownSrcZero, TLO, Depth + 1))
2189         return true;
2190 
2191       KnownBits KnownSrcBits;
2192       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2193                                KnownSrcBits, TLO, Depth + 1))
2194         return true;
2195     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2196       unsigned Scale = NumSrcEltBits / BitWidth;
2197       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2198       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2199       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2200       for (unsigned i = 0; i != NumElts; ++i)
2201         if (DemandedElts[i]) {
2202           unsigned Offset = (i % Scale) * BitWidth;
2203           DemandedSrcBits.insertBits(DemandedBits, Offset);
2204           DemandedSrcElts.setBit(i / Scale);
2205         }
2206 
2207       if (SrcVT.isVector()) {
2208         APInt KnownSrcUndef, KnownSrcZero;
2209         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2210                                        KnownSrcZero, TLO, Depth + 1))
2211           return true;
2212       }
2213 
2214       KnownBits KnownSrcBits;
2215       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2216                                KnownSrcBits, TLO, Depth + 1))
2217         return true;
2218     }
2219 
2220     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2221     // recursive call where Known may be useful to the caller.
2222     if (Depth > 0) {
2223       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2224       return false;
2225     }
2226     break;
2227   }
2228   case ISD::ADD:
2229   case ISD::MUL:
2230   case ISD::SUB: {
2231     // Add, Sub, and Mul don't demand any bits in positions beyond that
2232     // of the highest bit demanded of them.
2233     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2234     SDNodeFlags Flags = Op.getNode()->getFlags();
2235     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2236     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2237     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2238                              Depth + 1) ||
2239         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2240                              Depth + 1) ||
2241         // See if the operation should be performed at a smaller bit width.
2242         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2243       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2244         // Disable the nsw and nuw flags. We can no longer guarantee that we
2245         // won't wrap after simplification.
2246         Flags.setNoSignedWrap(false);
2247         Flags.setNoUnsignedWrap(false);
2248         SDValue NewOp =
2249             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2250         return TLO.CombineTo(Op, NewOp);
2251       }
2252       return true;
2253     }
2254 
2255     // Attempt to avoid multi-use ops if we don't need anything from them.
2256     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2257       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2258           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2259       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2260           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2261       if (DemandedOp0 || DemandedOp1) {
2262         Flags.setNoSignedWrap(false);
2263         Flags.setNoUnsignedWrap(false);
2264         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2265         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2266         SDValue NewOp =
2267             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2268         return TLO.CombineTo(Op, NewOp);
2269       }
2270     }
2271 
2272     // If we have a constant operand, we may be able to turn it into -1 if we
2273     // do not demand the high bits. This can make the constant smaller to
2274     // encode, allow more general folding, or match specialized instruction
2275     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2276     // is probably not useful (and could be detrimental).
2277     ConstantSDNode *C = isConstOrConstSplat(Op1);
2278     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2279     if (C && !C->isAllOnes() && !C->isOne() &&
2280         (C->getAPIntValue() | HighMask).isAllOnes()) {
2281       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2282       // Disable the nsw and nuw flags. We can no longer guarantee that we
2283       // won't wrap after simplification.
2284       Flags.setNoSignedWrap(false);
2285       Flags.setNoUnsignedWrap(false);
2286       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2287       return TLO.CombineTo(Op, NewOp);
2288     }
2289 
2290     LLVM_FALLTHROUGH;
2291   }
2292   default:
2293     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2294       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2295                                             Known, TLO, Depth))
2296         return true;
2297       break;
2298     }
2299 
2300     // Just use computeKnownBits to compute output bits.
2301     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2302     break;
2303   }
2304 
2305   // If we know the value of all of the demanded bits, return this as a
2306   // constant.
2307   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2308     // Avoid folding to a constant if any OpaqueConstant is involved.
2309     const SDNode *N = Op.getNode();
2310     for (SDNode *Op :
2311          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2312       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2313         if (C->isOpaque())
2314           return false;
2315     }
2316     if (VT.isInteger())
2317       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2318     if (VT.isFloatingPoint())
2319       return TLO.CombineTo(
2320           Op,
2321           TLO.DAG.getConstantFP(
2322               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2323   }
2324 
2325   return false;
2326 }
2327 
2328 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2329                                                 const APInt &DemandedElts,
2330                                                 APInt &KnownUndef,
2331                                                 APInt &KnownZero,
2332                                                 DAGCombinerInfo &DCI) const {
2333   SelectionDAG &DAG = DCI.DAG;
2334   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2335                         !DCI.isBeforeLegalizeOps());
2336 
2337   bool Simplified =
2338       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2339   if (Simplified) {
2340     DCI.AddToWorklist(Op.getNode());
2341     DCI.CommitTargetLoweringOpt(TLO);
2342   }
2343 
2344   return Simplified;
2345 }
2346 
2347 /// Given a vector binary operation and known undefined elements for each input
2348 /// operand, compute whether each element of the output is undefined.
2349 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2350                                          const APInt &UndefOp0,
2351                                          const APInt &UndefOp1) {
2352   EVT VT = BO.getValueType();
2353   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2354          "Vector binop only");
2355 
2356   EVT EltVT = VT.getVectorElementType();
2357   unsigned NumElts = VT.getVectorNumElements();
2358   assert(UndefOp0.getBitWidth() == NumElts &&
2359          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2360 
2361   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2362                                    const APInt &UndefVals) {
2363     if (UndefVals[Index])
2364       return DAG.getUNDEF(EltVT);
2365 
2366     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2367       // Try hard to make sure that the getNode() call is not creating temporary
2368       // nodes. Ignore opaque integers because they do not constant fold.
2369       SDValue Elt = BV->getOperand(Index);
2370       auto *C = dyn_cast<ConstantSDNode>(Elt);
2371       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2372         return Elt;
2373     }
2374 
2375     return SDValue();
2376   };
2377 
2378   APInt KnownUndef = APInt::getZero(NumElts);
2379   for (unsigned i = 0; i != NumElts; ++i) {
2380     // If both inputs for this element are either constant or undef and match
2381     // the element type, compute the constant/undef result for this element of
2382     // the vector.
2383     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2384     // not handle FP constants. The code within getNode() should be refactored
2385     // to avoid the danger of creating a bogus temporary node here.
2386     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2387     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2388     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2389       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2390         KnownUndef.setBit(i);
2391   }
2392   return KnownUndef;
2393 }
2394 
2395 bool TargetLowering::SimplifyDemandedVectorElts(
2396     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2397     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2398     bool AssumeSingleUse) const {
2399   EVT VT = Op.getValueType();
2400   unsigned Opcode = Op.getOpcode();
2401   APInt DemandedElts = OriginalDemandedElts;
2402   unsigned NumElts = DemandedElts.getBitWidth();
2403   assert(VT.isVector() && "Expected vector op");
2404 
2405   KnownUndef = KnownZero = APInt::getZero(NumElts);
2406 
2407   // TODO: For now we assume we know nothing about scalable vectors.
2408   if (VT.isScalableVector())
2409     return false;
2410 
2411   assert(VT.getVectorNumElements() == NumElts &&
2412          "Mask size mismatches value type element count!");
2413 
2414   // Undef operand.
2415   if (Op.isUndef()) {
2416     KnownUndef.setAllBits();
2417     return false;
2418   }
2419 
2420   // If Op has other users, assume that all elements are needed.
2421   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2422     DemandedElts.setAllBits();
2423 
2424   // Not demanding any elements from Op.
2425   if (DemandedElts == 0) {
2426     KnownUndef.setAllBits();
2427     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2428   }
2429 
2430   // Limit search depth.
2431   if (Depth >= SelectionDAG::MaxRecursionDepth)
2432     return false;
2433 
2434   SDLoc DL(Op);
2435   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2436   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2437 
2438   // Helper for demanding the specified elements and all the bits of both binary
2439   // operands.
2440   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2441     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2442                                                            TLO.DAG, Depth + 1);
2443     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2444                                                            TLO.DAG, Depth + 1);
2445     if (NewOp0 || NewOp1) {
2446       SDValue NewOp = TLO.DAG.getNode(
2447           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2448       return TLO.CombineTo(Op, NewOp);
2449     }
2450     return false;
2451   };
2452 
2453   switch (Opcode) {
2454   case ISD::SCALAR_TO_VECTOR: {
2455     if (!DemandedElts[0]) {
2456       KnownUndef.setAllBits();
2457       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2458     }
2459     SDValue ScalarSrc = Op.getOperand(0);
2460     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2461       SDValue Src = ScalarSrc.getOperand(0);
2462       SDValue Idx = ScalarSrc.getOperand(1);
2463       EVT SrcVT = Src.getValueType();
2464 
2465       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2466 
2467       if (SrcEltCnt.isScalable())
2468         return false;
2469 
2470       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2471       if (isNullConstant(Idx)) {
2472         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2473         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2474         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2475         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2476                                        TLO, Depth + 1))
2477           return true;
2478       }
2479     }
2480     KnownUndef.setHighBits(NumElts - 1);
2481     break;
2482   }
2483   case ISD::BITCAST: {
2484     SDValue Src = Op.getOperand(0);
2485     EVT SrcVT = Src.getValueType();
2486 
2487     // We only handle vectors here.
2488     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2489     if (!SrcVT.isVector())
2490       break;
2491 
2492     // Fast handling of 'identity' bitcasts.
2493     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2494     if (NumSrcElts == NumElts)
2495       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2496                                         KnownZero, TLO, Depth + 1);
2497 
2498     APInt SrcDemandedElts, SrcZero, SrcUndef;
2499 
2500     // Bitcast from 'large element' src vector to 'small element' vector, we
2501     // must demand a source element if any DemandedElt maps to it.
2502     if ((NumElts % NumSrcElts) == 0) {
2503       unsigned Scale = NumElts / NumSrcElts;
2504       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2505       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2506                                      TLO, Depth + 1))
2507         return true;
2508 
2509       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2510       // of the large element.
2511       // TODO - bigendian once we have test coverage.
2512       if (IsLE) {
2513         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2514         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2515         for (unsigned i = 0; i != NumElts; ++i)
2516           if (DemandedElts[i]) {
2517             unsigned Ofs = (i % Scale) * EltSizeInBits;
2518             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2519           }
2520 
2521         KnownBits Known;
2522         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2523                                  TLO, Depth + 1))
2524           return true;
2525       }
2526 
2527       // If the src element is zero/undef then all the output elements will be -
2528       // only demanded elements are guaranteed to be correct.
2529       for (unsigned i = 0; i != NumSrcElts; ++i) {
2530         if (SrcDemandedElts[i]) {
2531           if (SrcZero[i])
2532             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2533           if (SrcUndef[i])
2534             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2535         }
2536       }
2537     }
2538 
2539     // Bitcast from 'small element' src vector to 'large element' vector, we
2540     // demand all smaller source elements covered by the larger demanded element
2541     // of this vector.
2542     if ((NumSrcElts % NumElts) == 0) {
2543       unsigned Scale = NumSrcElts / NumElts;
2544       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2545       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2546                                      TLO, Depth + 1))
2547         return true;
2548 
2549       // If all the src elements covering an output element are zero/undef, then
2550       // the output element will be as well, assuming it was demanded.
2551       for (unsigned i = 0; i != NumElts; ++i) {
2552         if (DemandedElts[i]) {
2553           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2554             KnownZero.setBit(i);
2555           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2556             KnownUndef.setBit(i);
2557         }
2558       }
2559     }
2560     break;
2561   }
2562   case ISD::BUILD_VECTOR: {
2563     // Check all elements and simplify any unused elements with UNDEF.
2564     if (!DemandedElts.isAllOnes()) {
2565       // Don't simplify BROADCASTS.
2566       if (llvm::any_of(Op->op_values(),
2567                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2568         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2569         bool Updated = false;
2570         for (unsigned i = 0; i != NumElts; ++i) {
2571           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2572             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2573             KnownUndef.setBit(i);
2574             Updated = true;
2575           }
2576         }
2577         if (Updated)
2578           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2579       }
2580     }
2581     for (unsigned i = 0; i != NumElts; ++i) {
2582       SDValue SrcOp = Op.getOperand(i);
2583       if (SrcOp.isUndef()) {
2584         KnownUndef.setBit(i);
2585       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2586                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2587         KnownZero.setBit(i);
2588       }
2589     }
2590     break;
2591   }
2592   case ISD::CONCAT_VECTORS: {
2593     EVT SubVT = Op.getOperand(0).getValueType();
2594     unsigned NumSubVecs = Op.getNumOperands();
2595     unsigned NumSubElts = SubVT.getVectorNumElements();
2596     for (unsigned i = 0; i != NumSubVecs; ++i) {
2597       SDValue SubOp = Op.getOperand(i);
2598       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2599       APInt SubUndef, SubZero;
2600       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2601                                      Depth + 1))
2602         return true;
2603       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2604       KnownZero.insertBits(SubZero, i * NumSubElts);
2605     }
2606     break;
2607   }
2608   case ISD::INSERT_SUBVECTOR: {
2609     // Demand any elements from the subvector and the remainder from the src its
2610     // inserted into.
2611     SDValue Src = Op.getOperand(0);
2612     SDValue Sub = Op.getOperand(1);
2613     uint64_t Idx = Op.getConstantOperandVal(2);
2614     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2615     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2616     APInt DemandedSrcElts = DemandedElts;
2617     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2618 
2619     APInt SubUndef, SubZero;
2620     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2621                                    Depth + 1))
2622       return true;
2623 
2624     // If none of the src operand elements are demanded, replace it with undef.
2625     if (!DemandedSrcElts && !Src.isUndef())
2626       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2627                                                TLO.DAG.getUNDEF(VT), Sub,
2628                                                Op.getOperand(2)));
2629 
2630     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2631                                    TLO, Depth + 1))
2632       return true;
2633     KnownUndef.insertBits(SubUndef, Idx);
2634     KnownZero.insertBits(SubZero, Idx);
2635 
2636     // Attempt to avoid multi-use ops if we don't need anything from them.
2637     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2638       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2639           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2640       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2641           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2642       if (NewSrc || NewSub) {
2643         NewSrc = NewSrc ? NewSrc : Src;
2644         NewSub = NewSub ? NewSub : Sub;
2645         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2646                                         NewSub, Op.getOperand(2));
2647         return TLO.CombineTo(Op, NewOp);
2648       }
2649     }
2650     break;
2651   }
2652   case ISD::EXTRACT_SUBVECTOR: {
2653     // Offset the demanded elts by the subvector index.
2654     SDValue Src = Op.getOperand(0);
2655     if (Src.getValueType().isScalableVector())
2656       break;
2657     uint64_t Idx = Op.getConstantOperandVal(1);
2658     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2659     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2660 
2661     APInt SrcUndef, SrcZero;
2662     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2663                                    Depth + 1))
2664       return true;
2665     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2666     KnownZero = SrcZero.extractBits(NumElts, Idx);
2667 
2668     // Attempt to avoid multi-use ops if we don't need anything from them.
2669     if (!DemandedElts.isAllOnes()) {
2670       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2671           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2672       if (NewSrc) {
2673         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2674                                         Op.getOperand(1));
2675         return TLO.CombineTo(Op, NewOp);
2676       }
2677     }
2678     break;
2679   }
2680   case ISD::INSERT_VECTOR_ELT: {
2681     SDValue Vec = Op.getOperand(0);
2682     SDValue Scl = Op.getOperand(1);
2683     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2684 
2685     // For a legal, constant insertion index, if we don't need this insertion
2686     // then strip it, else remove it from the demanded elts.
2687     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2688       unsigned Idx = CIdx->getZExtValue();
2689       if (!DemandedElts[Idx])
2690         return TLO.CombineTo(Op, Vec);
2691 
2692       APInt DemandedVecElts(DemandedElts);
2693       DemandedVecElts.clearBit(Idx);
2694       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2695                                      KnownZero, TLO, Depth + 1))
2696         return true;
2697 
2698       KnownUndef.setBitVal(Idx, Scl.isUndef());
2699 
2700       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2701       break;
2702     }
2703 
2704     APInt VecUndef, VecZero;
2705     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2706                                    Depth + 1))
2707       return true;
2708     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2709     break;
2710   }
2711   case ISD::VSELECT: {
2712     // Try to transform the select condition based on the current demanded
2713     // elements.
2714     // TODO: If a condition element is undef, we can choose from one arm of the
2715     //       select (and if one arm is undef, then we can propagate that to the
2716     //       result).
2717     // TODO - add support for constant vselect masks (see IR version of this).
2718     APInt UnusedUndef, UnusedZero;
2719     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2720                                    UnusedZero, TLO, Depth + 1))
2721       return true;
2722 
2723     // See if we can simplify either vselect operand.
2724     APInt DemandedLHS(DemandedElts);
2725     APInt DemandedRHS(DemandedElts);
2726     APInt UndefLHS, ZeroLHS;
2727     APInt UndefRHS, ZeroRHS;
2728     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2729                                    ZeroLHS, TLO, Depth + 1))
2730       return true;
2731     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2732                                    ZeroRHS, TLO, Depth + 1))
2733       return true;
2734 
2735     KnownUndef = UndefLHS & UndefRHS;
2736     KnownZero = ZeroLHS & ZeroRHS;
2737     break;
2738   }
2739   case ISD::VECTOR_SHUFFLE: {
2740     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2741 
2742     // Collect demanded elements from shuffle operands..
2743     APInt DemandedLHS(NumElts, 0);
2744     APInt DemandedRHS(NumElts, 0);
2745     for (unsigned i = 0; i != NumElts; ++i) {
2746       int M = ShuffleMask[i];
2747       if (M < 0 || !DemandedElts[i])
2748         continue;
2749       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2750       if (M < (int)NumElts)
2751         DemandedLHS.setBit(M);
2752       else
2753         DemandedRHS.setBit(M - NumElts);
2754     }
2755 
2756     // See if we can simplify either shuffle operand.
2757     APInt UndefLHS, ZeroLHS;
2758     APInt UndefRHS, ZeroRHS;
2759     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2760                                    ZeroLHS, TLO, Depth + 1))
2761       return true;
2762     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2763                                    ZeroRHS, TLO, Depth + 1))
2764       return true;
2765 
2766     // Simplify mask using undef elements from LHS/RHS.
2767     bool Updated = false;
2768     bool IdentityLHS = true, IdentityRHS = true;
2769     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2770     for (unsigned i = 0; i != NumElts; ++i) {
2771       int &M = NewMask[i];
2772       if (M < 0)
2773         continue;
2774       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2775           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2776         Updated = true;
2777         M = -1;
2778       }
2779       IdentityLHS &= (M < 0) || (M == (int)i);
2780       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2781     }
2782 
2783     // Update legal shuffle masks based on demanded elements if it won't reduce
2784     // to Identity which can cause premature removal of the shuffle mask.
2785     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2786       SDValue LegalShuffle =
2787           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2788                                   NewMask, TLO.DAG);
2789       if (LegalShuffle)
2790         return TLO.CombineTo(Op, LegalShuffle);
2791     }
2792 
2793     // Propagate undef/zero elements from LHS/RHS.
2794     for (unsigned i = 0; i != NumElts; ++i) {
2795       int M = ShuffleMask[i];
2796       if (M < 0) {
2797         KnownUndef.setBit(i);
2798       } else if (M < (int)NumElts) {
2799         if (UndefLHS[M])
2800           KnownUndef.setBit(i);
2801         if (ZeroLHS[M])
2802           KnownZero.setBit(i);
2803       } else {
2804         if (UndefRHS[M - NumElts])
2805           KnownUndef.setBit(i);
2806         if (ZeroRHS[M - NumElts])
2807           KnownZero.setBit(i);
2808       }
2809     }
2810     break;
2811   }
2812   case ISD::ANY_EXTEND_VECTOR_INREG:
2813   case ISD::SIGN_EXTEND_VECTOR_INREG:
2814   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2815     APInt SrcUndef, SrcZero;
2816     SDValue Src = Op.getOperand(0);
2817     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2818     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2819     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2820                                    Depth + 1))
2821       return true;
2822     KnownZero = SrcZero.zextOrTrunc(NumElts);
2823     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2824 
2825     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2826         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2827         DemandedSrcElts == 1) {
2828       // aext - if we just need the bottom element then we can bitcast.
2829       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2830     }
2831 
2832     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2833       // zext(undef) upper bits are guaranteed to be zero.
2834       if (DemandedElts.isSubsetOf(KnownUndef))
2835         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2836       KnownUndef.clearAllBits();
2837 
2838       // zext - if we just need the bottom element then we can mask:
2839       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2840       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
2841           Op->isOnlyUserOf(Src.getNode()) &&
2842           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2843         SDLoc DL(Op);
2844         EVT SrcVT = Src.getValueType();
2845         EVT SrcSVT = SrcVT.getScalarType();
2846         SmallVector<SDValue> MaskElts;
2847         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2848         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2849         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2850         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2851                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2852           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2853           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2854         }
2855       }
2856     }
2857     break;
2858   }
2859 
2860   // TODO: There are more binop opcodes that could be handled here - MIN,
2861   // MAX, saturated math, etc.
2862   case ISD::ADD: {
2863     SDValue Op0 = Op.getOperand(0);
2864     SDValue Op1 = Op.getOperand(1);
2865     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
2866       APInt UndefLHS, ZeroLHS;
2867       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2868                                      Depth + 1, /*AssumeSingleUse*/ true))
2869         return true;
2870     }
2871     LLVM_FALLTHROUGH;
2872   }
2873   case ISD::OR:
2874   case ISD::XOR:
2875   case ISD::SUB:
2876   case ISD::FADD:
2877   case ISD::FSUB:
2878   case ISD::FMUL:
2879   case ISD::FDIV:
2880   case ISD::FREM: {
2881     SDValue Op0 = Op.getOperand(0);
2882     SDValue Op1 = Op.getOperand(1);
2883 
2884     APInt UndefRHS, ZeroRHS;
2885     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2886                                    Depth + 1))
2887       return true;
2888     APInt UndefLHS, ZeroLHS;
2889     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2890                                    Depth + 1))
2891       return true;
2892 
2893     KnownZero = ZeroLHS & ZeroRHS;
2894     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2895 
2896     // Attempt to avoid multi-use ops if we don't need anything from them.
2897     // TODO - use KnownUndef to relax the demandedelts?
2898     if (!DemandedElts.isAllOnes())
2899       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2900         return true;
2901     break;
2902   }
2903   case ISD::SHL:
2904   case ISD::SRL:
2905   case ISD::SRA:
2906   case ISD::ROTL:
2907   case ISD::ROTR: {
2908     SDValue Op0 = Op.getOperand(0);
2909     SDValue Op1 = Op.getOperand(1);
2910 
2911     APInt UndefRHS, ZeroRHS;
2912     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2913                                    Depth + 1))
2914       return true;
2915     APInt UndefLHS, ZeroLHS;
2916     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2917                                    Depth + 1))
2918       return true;
2919 
2920     KnownZero = ZeroLHS;
2921     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2922 
2923     // Attempt to avoid multi-use ops if we don't need anything from them.
2924     // TODO - use KnownUndef to relax the demandedelts?
2925     if (!DemandedElts.isAllOnes())
2926       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2927         return true;
2928     break;
2929   }
2930   case ISD::MUL:
2931   case ISD::AND: {
2932     SDValue Op0 = Op.getOperand(0);
2933     SDValue Op1 = Op.getOperand(1);
2934 
2935     APInt SrcUndef, SrcZero;
2936     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2937                                    Depth + 1))
2938       return true;
2939     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2940                                    TLO, Depth + 1))
2941       return true;
2942 
2943     // If either side has a zero element, then the result element is zero, even
2944     // if the other is an UNDEF.
2945     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2946     // and then handle 'and' nodes with the rest of the binop opcodes.
2947     KnownZero |= SrcZero;
2948     KnownUndef &= SrcUndef;
2949     KnownUndef &= ~KnownZero;
2950 
2951     // Attempt to avoid multi-use ops if we don't need anything from them.
2952     // TODO - use KnownUndef to relax the demandedelts?
2953     if (!DemandedElts.isAllOnes())
2954       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2955         return true;
2956     break;
2957   }
2958   case ISD::TRUNCATE:
2959   case ISD::SIGN_EXTEND:
2960   case ISD::ZERO_EXTEND:
2961     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2962                                    KnownZero, TLO, Depth + 1))
2963       return true;
2964 
2965     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2966       // zext(undef) upper bits are guaranteed to be zero.
2967       if (DemandedElts.isSubsetOf(KnownUndef))
2968         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2969       KnownUndef.clearAllBits();
2970     }
2971     break;
2972   default: {
2973     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2974       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2975                                                   KnownZero, TLO, Depth))
2976         return true;
2977     } else {
2978       KnownBits Known;
2979       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2980       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2981                                TLO, Depth, AssumeSingleUse))
2982         return true;
2983     }
2984     break;
2985   }
2986   }
2987   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2988 
2989   // Constant fold all undef cases.
2990   // TODO: Handle zero cases as well.
2991   if (DemandedElts.isSubsetOf(KnownUndef))
2992     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2993 
2994   return false;
2995 }
2996 
2997 /// Determine which of the bits specified in Mask are known to be either zero or
2998 /// one and return them in the Known.
2999 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3000                                                    KnownBits &Known,
3001                                                    const APInt &DemandedElts,
3002                                                    const SelectionDAG &DAG,
3003                                                    unsigned Depth) const {
3004   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3005           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3006           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3007           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3008          "Should use MaskedValueIsZero if you don't know whether Op"
3009          " is a target node!");
3010   Known.resetAll();
3011 }
3012 
3013 void TargetLowering::computeKnownBitsForTargetInstr(
3014     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3015     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3016     unsigned Depth) const {
3017   Known.resetAll();
3018 }
3019 
3020 void TargetLowering::computeKnownBitsForFrameIndex(
3021   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3022   // The low bits are known zero if the pointer is aligned.
3023   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3024 }
3025 
3026 Align TargetLowering::computeKnownAlignForTargetInstr(
3027   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3028   unsigned Depth) const {
3029   return Align(1);
3030 }
3031 
3032 /// This method can be implemented by targets that want to expose additional
3033 /// information about sign bits to the DAG Combiner.
3034 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3035                                                          const APInt &,
3036                                                          const SelectionDAG &,
3037                                                          unsigned Depth) const {
3038   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3039           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3040           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3041           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3042          "Should use ComputeNumSignBits if you don't know whether Op"
3043          " is a target node!");
3044   return 1;
3045 }
3046 
3047 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3048   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3049   const MachineRegisterInfo &MRI, unsigned Depth) const {
3050   return 1;
3051 }
3052 
3053 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3054     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3055     TargetLoweringOpt &TLO, unsigned Depth) const {
3056   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3057           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3058           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3059           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3060          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3061          " is a target node!");
3062   return false;
3063 }
3064 
3065 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3066     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3067     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3068   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3069           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3070           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3071           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3072          "Should use SimplifyDemandedBits if you don't know whether Op"
3073          " is a target node!");
3074   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3075   return false;
3076 }
3077 
3078 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3079     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3080     SelectionDAG &DAG, unsigned Depth) const {
3081   assert(
3082       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3083        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3084        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3085        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3086       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3087       " is a target node!");
3088   return SDValue();
3089 }
3090 
3091 SDValue
3092 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3093                                         SDValue N1, MutableArrayRef<int> Mask,
3094                                         SelectionDAG &DAG) const {
3095   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3096   if (!LegalMask) {
3097     std::swap(N0, N1);
3098     ShuffleVectorSDNode::commuteMask(Mask);
3099     LegalMask = isShuffleMaskLegal(Mask, VT);
3100   }
3101 
3102   if (!LegalMask)
3103     return SDValue();
3104 
3105   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3106 }
3107 
3108 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3109   return nullptr;
3110 }
3111 
3112 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3113     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3114     bool PoisonOnly, unsigned Depth) const {
3115   assert(
3116       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3117        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3118        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3119        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3120       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3121       " is a target node!");
3122   return false;
3123 }
3124 
3125 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3126                                                   const SelectionDAG &DAG,
3127                                                   bool SNaN,
3128                                                   unsigned Depth) const {
3129   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3130           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3131           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3132           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3133          "Should use isKnownNeverNaN if you don't know whether Op"
3134          " is a target node!");
3135   return false;
3136 }
3137 
3138 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3139 // work with truncating build vectors and vectors with elements of less than
3140 // 8 bits.
3141 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3142   if (!N)
3143     return false;
3144 
3145   APInt CVal;
3146   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3147     CVal = CN->getAPIntValue();
3148   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3149     auto *CN = BV->getConstantSplatNode();
3150     if (!CN)
3151       return false;
3152 
3153     // If this is a truncating build vector, truncate the splat value.
3154     // Otherwise, we may fail to match the expected values below.
3155     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3156     CVal = CN->getAPIntValue();
3157     if (BVEltWidth < CVal.getBitWidth())
3158       CVal = CVal.trunc(BVEltWidth);
3159   } else {
3160     return false;
3161   }
3162 
3163   switch (getBooleanContents(N->getValueType(0))) {
3164   case UndefinedBooleanContent:
3165     return CVal[0];
3166   case ZeroOrOneBooleanContent:
3167     return CVal.isOne();
3168   case ZeroOrNegativeOneBooleanContent:
3169     return CVal.isAllOnes();
3170   }
3171 
3172   llvm_unreachable("Invalid boolean contents");
3173 }
3174 
3175 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3176   if (!N)
3177     return false;
3178 
3179   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3180   if (!CN) {
3181     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3182     if (!BV)
3183       return false;
3184 
3185     // Only interested in constant splats, we don't care about undef
3186     // elements in identifying boolean constants and getConstantSplatNode
3187     // returns NULL if all ops are undef;
3188     CN = BV->getConstantSplatNode();
3189     if (!CN)
3190       return false;
3191   }
3192 
3193   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3194     return !CN->getAPIntValue()[0];
3195 
3196   return CN->isZero();
3197 }
3198 
3199 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3200                                        bool SExt) const {
3201   if (VT == MVT::i1)
3202     return N->isOne();
3203 
3204   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3205   switch (Cnt) {
3206   case TargetLowering::ZeroOrOneBooleanContent:
3207     // An extended value of 1 is always true, unless its original type is i1,
3208     // in which case it will be sign extended to -1.
3209     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3210   case TargetLowering::UndefinedBooleanContent:
3211   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3212     return N->isAllOnes() && SExt;
3213   }
3214   llvm_unreachable("Unexpected enumeration.");
3215 }
3216 
3217 /// This helper function of SimplifySetCC tries to optimize the comparison when
3218 /// either operand of the SetCC node is a bitwise-and instruction.
3219 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3220                                          ISD::CondCode Cond, const SDLoc &DL,
3221                                          DAGCombinerInfo &DCI) const {
3222   // Match these patterns in any of their permutations:
3223   // (X & Y) == Y
3224   // (X & Y) != Y
3225   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3226     std::swap(N0, N1);
3227 
3228   EVT OpVT = N0.getValueType();
3229   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3230       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3231     return SDValue();
3232 
3233   SDValue X, Y;
3234   if (N0.getOperand(0) == N1) {
3235     X = N0.getOperand(1);
3236     Y = N0.getOperand(0);
3237   } else if (N0.getOperand(1) == N1) {
3238     X = N0.getOperand(0);
3239     Y = N0.getOperand(1);
3240   } else {
3241     return SDValue();
3242   }
3243 
3244   SelectionDAG &DAG = DCI.DAG;
3245   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3246   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3247     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3248     // Note that where Y is variable and is known to have at most one bit set
3249     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3250     // equivalent when Y == 0.
3251     assert(OpVT.isInteger());
3252     Cond = ISD::getSetCCInverse(Cond, OpVT);
3253     if (DCI.isBeforeLegalizeOps() ||
3254         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3255       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3256   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3257     // If the target supports an 'and-not' or 'and-complement' logic operation,
3258     // try to use that to make a comparison operation more efficient.
3259     // But don't do this transform if the mask is a single bit because there are
3260     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3261     // 'rlwinm' on PPC).
3262 
3263     // Bail out if the compare operand that we want to turn into a zero is
3264     // already a zero (otherwise, infinite loop).
3265     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3266     if (YConst && YConst->isZero())
3267       return SDValue();
3268 
3269     // Transform this into: ~X & Y == 0.
3270     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3271     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3272     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3273   }
3274 
3275   return SDValue();
3276 }
3277 
3278 /// There are multiple IR patterns that could be checking whether certain
3279 /// truncation of a signed number would be lossy or not. The pattern which is
3280 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3281 /// We are looking for the following pattern: (KeptBits is a constant)
3282 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3283 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3284 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3285 /// We will unfold it into the natural trunc+sext pattern:
3286 ///   ((%x << C) a>> C) dstcond %x
3287 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3288 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3289     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3290     const SDLoc &DL) const {
3291   // We must be comparing with a constant.
3292   ConstantSDNode *C1;
3293   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3294     return SDValue();
3295 
3296   // N0 should be:  add %x, (1 << (KeptBits-1))
3297   if (N0->getOpcode() != ISD::ADD)
3298     return SDValue();
3299 
3300   // And we must be 'add'ing a constant.
3301   ConstantSDNode *C01;
3302   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3303     return SDValue();
3304 
3305   SDValue X = N0->getOperand(0);
3306   EVT XVT = X.getValueType();
3307 
3308   // Validate constants ...
3309 
3310   APInt I1 = C1->getAPIntValue();
3311 
3312   ISD::CondCode NewCond;
3313   if (Cond == ISD::CondCode::SETULT) {
3314     NewCond = ISD::CondCode::SETEQ;
3315   } else if (Cond == ISD::CondCode::SETULE) {
3316     NewCond = ISD::CondCode::SETEQ;
3317     // But need to 'canonicalize' the constant.
3318     I1 += 1;
3319   } else if (Cond == ISD::CondCode::SETUGT) {
3320     NewCond = ISD::CondCode::SETNE;
3321     // But need to 'canonicalize' the constant.
3322     I1 += 1;
3323   } else if (Cond == ISD::CondCode::SETUGE) {
3324     NewCond = ISD::CondCode::SETNE;
3325   } else
3326     return SDValue();
3327 
3328   APInt I01 = C01->getAPIntValue();
3329 
3330   auto checkConstants = [&I1, &I01]() -> bool {
3331     // Both of them must be power-of-two, and the constant from setcc is bigger.
3332     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3333   };
3334 
3335   if (checkConstants()) {
3336     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3337   } else {
3338     // What if we invert constants? (and the target predicate)
3339     I1.negate();
3340     I01.negate();
3341     assert(XVT.isInteger());
3342     NewCond = getSetCCInverse(NewCond, XVT);
3343     if (!checkConstants())
3344       return SDValue();
3345     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3346   }
3347 
3348   // They are power-of-two, so which bit is set?
3349   const unsigned KeptBits = I1.logBase2();
3350   const unsigned KeptBitsMinusOne = I01.logBase2();
3351 
3352   // Magic!
3353   if (KeptBits != (KeptBitsMinusOne + 1))
3354     return SDValue();
3355   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3356 
3357   // We don't want to do this in every single case.
3358   SelectionDAG &DAG = DCI.DAG;
3359   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3360           XVT, KeptBits))
3361     return SDValue();
3362 
3363   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3364   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3365 
3366   // Unfold into:  ((%x << C) a>> C) cond %x
3367   // Where 'cond' will be either 'eq' or 'ne'.
3368   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3369   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3370   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3371   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3372 
3373   return T2;
3374 }
3375 
3376 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3377 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3378     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3379     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3380   assert(isConstOrConstSplat(N1C) &&
3381          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3382          "Should be a comparison with 0.");
3383   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3384          "Valid only for [in]equality comparisons.");
3385 
3386   unsigned NewShiftOpcode;
3387   SDValue X, C, Y;
3388 
3389   SelectionDAG &DAG = DCI.DAG;
3390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3391 
3392   // Look for '(C l>>/<< Y)'.
3393   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3394     // The shift should be one-use.
3395     if (!V.hasOneUse())
3396       return false;
3397     unsigned OldShiftOpcode = V.getOpcode();
3398     switch (OldShiftOpcode) {
3399     case ISD::SHL:
3400       NewShiftOpcode = ISD::SRL;
3401       break;
3402     case ISD::SRL:
3403       NewShiftOpcode = ISD::SHL;
3404       break;
3405     default:
3406       return false; // must be a logical shift.
3407     }
3408     // We should be shifting a constant.
3409     // FIXME: best to use isConstantOrConstantVector().
3410     C = V.getOperand(0);
3411     ConstantSDNode *CC =
3412         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3413     if (!CC)
3414       return false;
3415     Y = V.getOperand(1);
3416 
3417     ConstantSDNode *XC =
3418         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3419     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3420         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3421   };
3422 
3423   // LHS of comparison should be an one-use 'and'.
3424   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3425     return SDValue();
3426 
3427   X = N0.getOperand(0);
3428   SDValue Mask = N0.getOperand(1);
3429 
3430   // 'and' is commutative!
3431   if (!Match(Mask)) {
3432     std::swap(X, Mask);
3433     if (!Match(Mask))
3434       return SDValue();
3435   }
3436 
3437   EVT VT = X.getValueType();
3438 
3439   // Produce:
3440   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3441   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3442   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3443   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3444   return T2;
3445 }
3446 
3447 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3448 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3449 /// handle the commuted versions of these patterns.
3450 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3451                                            ISD::CondCode Cond, const SDLoc &DL,
3452                                            DAGCombinerInfo &DCI) const {
3453   unsigned BOpcode = N0.getOpcode();
3454   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3455          "Unexpected binop");
3456   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3457 
3458   // (X + Y) == X --> Y == 0
3459   // (X - Y) == X --> Y == 0
3460   // (X ^ Y) == X --> Y == 0
3461   SelectionDAG &DAG = DCI.DAG;
3462   EVT OpVT = N0.getValueType();
3463   SDValue X = N0.getOperand(0);
3464   SDValue Y = N0.getOperand(1);
3465   if (X == N1)
3466     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3467 
3468   if (Y != N1)
3469     return SDValue();
3470 
3471   // (X + Y) == Y --> X == 0
3472   // (X ^ Y) == Y --> X == 0
3473   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3474     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3475 
3476   // The shift would not be valid if the operands are boolean (i1).
3477   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3478     return SDValue();
3479 
3480   // (X - Y) == Y --> X == Y << 1
3481   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3482                                  !DCI.isBeforeLegalize());
3483   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3484   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3485   if (!DCI.isCalledByLegalizer())
3486     DCI.AddToWorklist(YShl1.getNode());
3487   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3488 }
3489 
3490 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3491                                       SDValue N0, const APInt &C1,
3492                                       ISD::CondCode Cond, const SDLoc &dl,
3493                                       SelectionDAG &DAG) {
3494   // Look through truncs that don't change the value of a ctpop.
3495   // FIXME: Add vector support? Need to be careful with setcc result type below.
3496   SDValue CTPOP = N0;
3497   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3498       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3499     CTPOP = N0.getOperand(0);
3500 
3501   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3502     return SDValue();
3503 
3504   EVT CTVT = CTPOP.getValueType();
3505   SDValue CTOp = CTPOP.getOperand(0);
3506 
3507   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3508   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3509   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3510     return SDValue();
3511 
3512   // (ctpop x) u< 2 -> (x & x-1) == 0
3513   // (ctpop x) u> 1 -> (x & x-1) != 0
3514   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3515     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3516     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3517       return SDValue();
3518     if (C1 == 0 && (Cond == ISD::SETULT))
3519       return SDValue(); // This is handled elsewhere.
3520 
3521     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3522 
3523     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3524     SDValue Result = CTOp;
3525     for (unsigned i = 0; i < Passes; i++) {
3526       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3527       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3528     }
3529     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3530     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3531   }
3532 
3533   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3534   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3535     // For scalars, keep CTPOP if it is legal or custom.
3536     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3537       return SDValue();
3538     // This is based on X86's custom lowering for CTPOP which produces more
3539     // instructions than the expansion here.
3540 
3541     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3542     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3543     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3544     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3545     assert(CTVT.isInteger());
3546     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3547     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3548     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3549     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3550     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3551     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3552     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3553   }
3554 
3555   return SDValue();
3556 }
3557 
3558 /// Try to simplify a setcc built with the specified operands and cc. If it is
3559 /// unable to simplify it, return a null SDValue.
3560 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3561                                       ISD::CondCode Cond, bool foldBooleans,
3562                                       DAGCombinerInfo &DCI,
3563                                       const SDLoc &dl) const {
3564   SelectionDAG &DAG = DCI.DAG;
3565   const DataLayout &Layout = DAG.getDataLayout();
3566   EVT OpVT = N0.getValueType();
3567 
3568   // Constant fold or commute setcc.
3569   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3570     return Fold;
3571 
3572   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3573   // TODO: Handle non-splat vector constants. All undef causes trouble.
3574   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3575   // infinite loop here when we encounter one.
3576   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3577   if (isConstOrConstSplat(N0) &&
3578       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3579       (DCI.isBeforeLegalizeOps() ||
3580        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3581     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3582 
3583   // If we have a subtract with the same 2 non-constant operands as this setcc
3584   // -- but in reverse order -- then try to commute the operands of this setcc
3585   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3586   // instruction on some targets.
3587   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3588       (DCI.isBeforeLegalizeOps() ||
3589        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3590       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3591       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3592     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3593 
3594   if (auto *N1C = isConstOrConstSplat(N1)) {
3595     const APInt &C1 = N1C->getAPIntValue();
3596 
3597     // Optimize some CTPOP cases.
3598     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3599       return V;
3600 
3601     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3602     // equality comparison, then we're just comparing whether X itself is
3603     // zero.
3604     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3605         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3606         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3607       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3608         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3609             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3610           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3611             // (srl (ctlz x), 5) == 0  -> X != 0
3612             // (srl (ctlz x), 5) != 1  -> X != 0
3613             Cond = ISD::SETNE;
3614           } else {
3615             // (srl (ctlz x), 5) != 0  -> X == 0
3616             // (srl (ctlz x), 5) == 1  -> X == 0
3617             Cond = ISD::SETEQ;
3618           }
3619           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3620           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3621                               Cond);
3622         }
3623       }
3624     }
3625   }
3626 
3627   // FIXME: Support vectors.
3628   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3629     const APInt &C1 = N1C->getAPIntValue();
3630 
3631     // (zext x) == C --> x == (trunc C)
3632     // (sext x) == C --> x == (trunc C)
3633     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3634         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3635       unsigned MinBits = N0.getValueSizeInBits();
3636       SDValue PreExt;
3637       bool Signed = false;
3638       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3639         // ZExt
3640         MinBits = N0->getOperand(0).getValueSizeInBits();
3641         PreExt = N0->getOperand(0);
3642       } else if (N0->getOpcode() == ISD::AND) {
3643         // DAGCombine turns costly ZExts into ANDs
3644         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3645           if ((C->getAPIntValue()+1).isPowerOf2()) {
3646             MinBits = C->getAPIntValue().countTrailingOnes();
3647             PreExt = N0->getOperand(0);
3648           }
3649       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3650         // SExt
3651         MinBits = N0->getOperand(0).getValueSizeInBits();
3652         PreExt = N0->getOperand(0);
3653         Signed = true;
3654       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3655         // ZEXTLOAD / SEXTLOAD
3656         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3657           MinBits = LN0->getMemoryVT().getSizeInBits();
3658           PreExt = N0;
3659         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3660           Signed = true;
3661           MinBits = LN0->getMemoryVT().getSizeInBits();
3662           PreExt = N0;
3663         }
3664       }
3665 
3666       // Figure out how many bits we need to preserve this constant.
3667       unsigned ReqdBits = Signed ?
3668         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3669         C1.getActiveBits();
3670 
3671       // Make sure we're not losing bits from the constant.
3672       if (MinBits > 0 &&
3673           MinBits < C1.getBitWidth() &&
3674           MinBits >= ReqdBits) {
3675         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3676         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3677           // Will get folded away.
3678           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3679           if (MinBits == 1 && C1 == 1)
3680             // Invert the condition.
3681             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3682                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3683           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3684           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3685         }
3686 
3687         // If truncating the setcc operands is not desirable, we can still
3688         // simplify the expression in some cases:
3689         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3690         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3691         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3692         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3693         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3694         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3695         SDValue TopSetCC = N0->getOperand(0);
3696         unsigned N0Opc = N0->getOpcode();
3697         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3698         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3699             TopSetCC.getOpcode() == ISD::SETCC &&
3700             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3701             (isConstFalseVal(N1C) ||
3702              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3703 
3704           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3705                          (!N1C->isZero() && Cond == ISD::SETNE);
3706 
3707           if (!Inverse)
3708             return TopSetCC;
3709 
3710           ISD::CondCode InvCond = ISD::getSetCCInverse(
3711               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3712               TopSetCC.getOperand(0).getValueType());
3713           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3714                                       TopSetCC.getOperand(1),
3715                                       InvCond);
3716         }
3717       }
3718     }
3719 
3720     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3721     // equality or unsigned, and all 1 bits of the const are in the same
3722     // partial word, see if we can shorten the load.
3723     if (DCI.isBeforeLegalize() &&
3724         !ISD::isSignedIntSetCC(Cond) &&
3725         N0.getOpcode() == ISD::AND && C1 == 0 &&
3726         N0.getNode()->hasOneUse() &&
3727         isa<LoadSDNode>(N0.getOperand(0)) &&
3728         N0.getOperand(0).getNode()->hasOneUse() &&
3729         isa<ConstantSDNode>(N0.getOperand(1))) {
3730       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3731       APInt bestMask;
3732       unsigned bestWidth = 0, bestOffset = 0;
3733       if (Lod->isSimple() && Lod->isUnindexed()) {
3734         unsigned origWidth = N0.getValueSizeInBits();
3735         unsigned maskWidth = origWidth;
3736         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3737         // 8 bits, but have to be careful...
3738         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3739           origWidth = Lod->getMemoryVT().getSizeInBits();
3740         const APInt &Mask = N0.getConstantOperandAPInt(1);
3741         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3742           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3743           for (unsigned offset=0; offset<origWidth/width; offset++) {
3744             if (Mask.isSubsetOf(newMask)) {
3745               if (Layout.isLittleEndian())
3746                 bestOffset = (uint64_t)offset * (width/8);
3747               else
3748                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3749               bestMask = Mask.lshr(offset * (width/8) * 8);
3750               bestWidth = width;
3751               break;
3752             }
3753             newMask <<= width;
3754           }
3755         }
3756       }
3757       if (bestWidth) {
3758         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3759         if (newVT.isRound() &&
3760             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3761           SDValue Ptr = Lod->getBasePtr();
3762           if (bestOffset != 0)
3763             Ptr =
3764                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3765           SDValue NewLoad =
3766               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3767                           Lod->getPointerInfo().getWithOffset(bestOffset),
3768                           Lod->getOriginalAlign());
3769           return DAG.getSetCC(dl, VT,
3770                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3771                                       DAG.getConstant(bestMask.trunc(bestWidth),
3772                                                       dl, newVT)),
3773                               DAG.getConstant(0LL, dl, newVT), Cond);
3774         }
3775       }
3776     }
3777 
3778     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3779     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3780       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3781 
3782       // If the comparison constant has bits in the upper part, the
3783       // zero-extended value could never match.
3784       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3785                                               C1.getBitWidth() - InSize))) {
3786         switch (Cond) {
3787         case ISD::SETUGT:
3788         case ISD::SETUGE:
3789         case ISD::SETEQ:
3790           return DAG.getConstant(0, dl, VT);
3791         case ISD::SETULT:
3792         case ISD::SETULE:
3793         case ISD::SETNE:
3794           return DAG.getConstant(1, dl, VT);
3795         case ISD::SETGT:
3796         case ISD::SETGE:
3797           // True if the sign bit of C1 is set.
3798           return DAG.getConstant(C1.isNegative(), dl, VT);
3799         case ISD::SETLT:
3800         case ISD::SETLE:
3801           // True if the sign bit of C1 isn't set.
3802           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3803         default:
3804           break;
3805         }
3806       }
3807 
3808       // Otherwise, we can perform the comparison with the low bits.
3809       switch (Cond) {
3810       case ISD::SETEQ:
3811       case ISD::SETNE:
3812       case ISD::SETUGT:
3813       case ISD::SETUGE:
3814       case ISD::SETULT:
3815       case ISD::SETULE: {
3816         EVT newVT = N0.getOperand(0).getValueType();
3817         if (DCI.isBeforeLegalizeOps() ||
3818             (isOperationLegal(ISD::SETCC, newVT) &&
3819              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3820           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3821           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3822 
3823           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3824                                           NewConst, Cond);
3825           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3826         }
3827         break;
3828       }
3829       default:
3830         break; // todo, be more careful with signed comparisons
3831       }
3832     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3833                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3834                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3835                                       OpVT)) {
3836       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3837       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3838       EVT ExtDstTy = N0.getValueType();
3839       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3840 
3841       // If the constant doesn't fit into the number of bits for the source of
3842       // the sign extension, it is impossible for both sides to be equal.
3843       if (C1.getMinSignedBits() > ExtSrcTyBits)
3844         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3845 
3846       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3847              ExtDstTy != ExtSrcTy && "Unexpected types!");
3848       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3849       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3850                                    DAG.getConstant(Imm, dl, ExtDstTy));
3851       if (!DCI.isCalledByLegalizer())
3852         DCI.AddToWorklist(ZextOp.getNode());
3853       // Otherwise, make this a use of a zext.
3854       return DAG.getSetCC(dl, VT, ZextOp,
3855                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3856     } else if ((N1C->isZero() || N1C->isOne()) &&
3857                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3858       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3859       if (N0.getOpcode() == ISD::SETCC &&
3860           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3861           (N0.getValueType() == MVT::i1 ||
3862            getBooleanContents(N0.getOperand(0).getValueType()) ==
3863                        ZeroOrOneBooleanContent)) {
3864         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3865         if (TrueWhenTrue)
3866           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3867         // Invert the condition.
3868         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3869         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3870         if (DCI.isBeforeLegalizeOps() ||
3871             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3872           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3873       }
3874 
3875       if ((N0.getOpcode() == ISD::XOR ||
3876            (N0.getOpcode() == ISD::AND &&
3877             N0.getOperand(0).getOpcode() == ISD::XOR &&
3878             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3879           isOneConstant(N0.getOperand(1))) {
3880         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3881         // can only do this if the top bits are known zero.
3882         unsigned BitWidth = N0.getValueSizeInBits();
3883         if (DAG.MaskedValueIsZero(N0,
3884                                   APInt::getHighBitsSet(BitWidth,
3885                                                         BitWidth-1))) {
3886           // Okay, get the un-inverted input value.
3887           SDValue Val;
3888           if (N0.getOpcode() == ISD::XOR) {
3889             Val = N0.getOperand(0);
3890           } else {
3891             assert(N0.getOpcode() == ISD::AND &&
3892                     N0.getOperand(0).getOpcode() == ISD::XOR);
3893             // ((X^1)&1)^1 -> X & 1
3894             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3895                               N0.getOperand(0).getOperand(0),
3896                               N0.getOperand(1));
3897           }
3898 
3899           return DAG.getSetCC(dl, VT, Val, N1,
3900                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3901         }
3902       } else if (N1C->isOne()) {
3903         SDValue Op0 = N0;
3904         if (Op0.getOpcode() == ISD::TRUNCATE)
3905           Op0 = Op0.getOperand(0);
3906 
3907         if ((Op0.getOpcode() == ISD::XOR) &&
3908             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3909             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3910           SDValue XorLHS = Op0.getOperand(0);
3911           SDValue XorRHS = Op0.getOperand(1);
3912           // Ensure that the input setccs return an i1 type or 0/1 value.
3913           if (Op0.getValueType() == MVT::i1 ||
3914               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3915                       ZeroOrOneBooleanContent &&
3916                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3917                         ZeroOrOneBooleanContent)) {
3918             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3919             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3920             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3921           }
3922         }
3923         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3924           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3925           if (Op0.getValueType().bitsGT(VT))
3926             Op0 = DAG.getNode(ISD::AND, dl, VT,
3927                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3928                           DAG.getConstant(1, dl, VT));
3929           else if (Op0.getValueType().bitsLT(VT))
3930             Op0 = DAG.getNode(ISD::AND, dl, VT,
3931                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3932                         DAG.getConstant(1, dl, VT));
3933 
3934           return DAG.getSetCC(dl, VT, Op0,
3935                               DAG.getConstant(0, dl, Op0.getValueType()),
3936                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3937         }
3938         if (Op0.getOpcode() == ISD::AssertZext &&
3939             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3940           return DAG.getSetCC(dl, VT, Op0,
3941                               DAG.getConstant(0, dl, Op0.getValueType()),
3942                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3943       }
3944     }
3945 
3946     // Given:
3947     //   icmp eq/ne (urem %x, %y), 0
3948     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3949     //   icmp eq/ne %x, 0
3950     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3951         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3952       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3953       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3954       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3955         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3956     }
3957 
3958     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3959     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3960     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3961         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3962         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3963         N1C && N1C->isAllOnes()) {
3964       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3965                           DAG.getConstant(0, dl, OpVT),
3966                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3967     }
3968 
3969     if (SDValue V =
3970             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3971       return V;
3972   }
3973 
3974   // These simplifications apply to splat vectors as well.
3975   // TODO: Handle more splat vector cases.
3976   if (auto *N1C = isConstOrConstSplat(N1)) {
3977     const APInt &C1 = N1C->getAPIntValue();
3978 
3979     APInt MinVal, MaxVal;
3980     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3981     if (ISD::isSignedIntSetCC(Cond)) {
3982       MinVal = APInt::getSignedMinValue(OperandBitSize);
3983       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3984     } else {
3985       MinVal = APInt::getMinValue(OperandBitSize);
3986       MaxVal = APInt::getMaxValue(OperandBitSize);
3987     }
3988 
3989     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3990     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3991       // X >= MIN --> true
3992       if (C1 == MinVal)
3993         return DAG.getBoolConstant(true, dl, VT, OpVT);
3994 
3995       if (!VT.isVector()) { // TODO: Support this for vectors.
3996         // X >= C0 --> X > (C0 - 1)
3997         APInt C = C1 - 1;
3998         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3999         if ((DCI.isBeforeLegalizeOps() ||
4000              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4001             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4002                                   isLegalICmpImmediate(C.getSExtValue())))) {
4003           return DAG.getSetCC(dl, VT, N0,
4004                               DAG.getConstant(C, dl, N1.getValueType()),
4005                               NewCC);
4006         }
4007       }
4008     }
4009 
4010     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4011       // X <= MAX --> true
4012       if (C1 == MaxVal)
4013         return DAG.getBoolConstant(true, dl, VT, OpVT);
4014 
4015       // X <= C0 --> X < (C0 + 1)
4016       if (!VT.isVector()) { // TODO: Support this for vectors.
4017         APInt C = C1 + 1;
4018         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4019         if ((DCI.isBeforeLegalizeOps() ||
4020              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4021             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4022                                   isLegalICmpImmediate(C.getSExtValue())))) {
4023           return DAG.getSetCC(dl, VT, N0,
4024                               DAG.getConstant(C, dl, N1.getValueType()),
4025                               NewCC);
4026         }
4027       }
4028     }
4029 
4030     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4031       if (C1 == MinVal)
4032         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4033 
4034       // TODO: Support this for vectors after legalize ops.
4035       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4036         // Canonicalize setlt X, Max --> setne X, Max
4037         if (C1 == MaxVal)
4038           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4039 
4040         // If we have setult X, 1, turn it into seteq X, 0
4041         if (C1 == MinVal+1)
4042           return DAG.getSetCC(dl, VT, N0,
4043                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4044                               ISD::SETEQ);
4045       }
4046     }
4047 
4048     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4049       if (C1 == MaxVal)
4050         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4051 
4052       // TODO: Support this for vectors after legalize ops.
4053       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4054         // Canonicalize setgt X, Min --> setne X, Min
4055         if (C1 == MinVal)
4056           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4057 
4058         // If we have setugt X, Max-1, turn it into seteq X, Max
4059         if (C1 == MaxVal-1)
4060           return DAG.getSetCC(dl, VT, N0,
4061                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4062                               ISD::SETEQ);
4063       }
4064     }
4065 
4066     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4067       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4068       if (C1.isZero())
4069         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4070                 VT, N0, N1, Cond, DCI, dl))
4071           return CC;
4072 
4073       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4074       // For example, when high 32-bits of i64 X are known clear:
4075       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4076       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4077       bool CmpZero = N1C->getAPIntValue().isZero();
4078       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4079       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4080         // Match or(lo,shl(hi,bw/2)) pattern.
4081         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4082           unsigned EltBits = V.getScalarValueSizeInBits();
4083           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4084             return false;
4085           SDValue LHS = V.getOperand(0);
4086           SDValue RHS = V.getOperand(1);
4087           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4088           // Unshifted element must have zero upperbits.
4089           if (RHS.getOpcode() == ISD::SHL &&
4090               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4091               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4092               DAG.MaskedValueIsZero(LHS, HiBits)) {
4093             Lo = LHS;
4094             Hi = RHS.getOperand(0);
4095             return true;
4096           }
4097           if (LHS.getOpcode() == ISD::SHL &&
4098               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4099               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4100               DAG.MaskedValueIsZero(RHS, HiBits)) {
4101             Lo = RHS;
4102             Hi = LHS.getOperand(0);
4103             return true;
4104           }
4105           return false;
4106         };
4107 
4108         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4109           unsigned EltBits = N0.getScalarValueSizeInBits();
4110           unsigned HalfBits = EltBits / 2;
4111           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4112           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4113           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4114           SDValue NewN0 =
4115               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4116           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4117           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4118         };
4119 
4120         SDValue Lo, Hi;
4121         if (IsConcat(N0, Lo, Hi))
4122           return MergeConcat(Lo, Hi);
4123 
4124         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4125           SDValue Lo0, Lo1, Hi0, Hi1;
4126           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4127               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4128             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4129                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4130           }
4131         }
4132       }
4133     }
4134 
4135     // If we have "setcc X, C0", check to see if we can shrink the immediate
4136     // by changing cc.
4137     // TODO: Support this for vectors after legalize ops.
4138     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4139       // SETUGT X, SINTMAX  -> SETLT X, 0
4140       // SETUGE X, SINTMIN -> SETLT X, 0
4141       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4142           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4143         return DAG.getSetCC(dl, VT, N0,
4144                             DAG.getConstant(0, dl, N1.getValueType()),
4145                             ISD::SETLT);
4146 
4147       // SETULT X, SINTMIN  -> SETGT X, -1
4148       // SETULE X, SINTMAX  -> SETGT X, -1
4149       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4150           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4151         return DAG.getSetCC(dl, VT, N0,
4152                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4153                             ISD::SETGT);
4154     }
4155   }
4156 
4157   // Back to non-vector simplifications.
4158   // TODO: Can we do these for vector splats?
4159   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4160     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4161     const APInt &C1 = N1C->getAPIntValue();
4162     EVT ShValTy = N0.getValueType();
4163 
4164     // Fold bit comparisons when we can. This will result in an
4165     // incorrect value when boolean false is negative one, unless
4166     // the bitsize is 1 in which case the false value is the same
4167     // in practice regardless of the representation.
4168     if ((VT.getSizeInBits() == 1 ||
4169          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4170         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4171         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4172         N0.getOpcode() == ISD::AND) {
4173       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4174         EVT ShiftTy =
4175             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4176         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4177           // Perform the xform if the AND RHS is a single bit.
4178           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4179           if (AndRHS->getAPIntValue().isPowerOf2() &&
4180               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4181             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4182                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4183                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4184           }
4185         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4186           // (X & 8) == 8  -->  (X & 8) >> 3
4187           // Perform the xform if C1 is a single bit.
4188           unsigned ShCt = C1.logBase2();
4189           if (C1.isPowerOf2() &&
4190               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4191             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4192                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4193                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4194           }
4195         }
4196       }
4197     }
4198 
4199     if (C1.getMinSignedBits() <= 64 &&
4200         !isLegalICmpImmediate(C1.getSExtValue())) {
4201       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4202       // (X & -256) == 256 -> (X >> 8) == 1
4203       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4204           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4205         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4206           const APInt &AndRHSC = AndRHS->getAPIntValue();
4207           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4208             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4209             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4210               SDValue Shift =
4211                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4212                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4213               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4214               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4215             }
4216           }
4217         }
4218       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4219                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4220         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4221         // X <  0x100000000 -> (X >> 32) <  1
4222         // X >= 0x100000000 -> (X >> 32) >= 1
4223         // X <= 0x0ffffffff -> (X >> 32) <  1
4224         // X >  0x0ffffffff -> (X >> 32) >= 1
4225         unsigned ShiftBits;
4226         APInt NewC = C1;
4227         ISD::CondCode NewCond = Cond;
4228         if (AdjOne) {
4229           ShiftBits = C1.countTrailingOnes();
4230           NewC = NewC + 1;
4231           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4232         } else {
4233           ShiftBits = C1.countTrailingZeros();
4234         }
4235         NewC.lshrInPlace(ShiftBits);
4236         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4237             isLegalICmpImmediate(NewC.getSExtValue()) &&
4238             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4239           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4240                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4241           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4242           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4243         }
4244       }
4245     }
4246   }
4247 
4248   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4249     auto *CFP = cast<ConstantFPSDNode>(N1);
4250     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4251 
4252     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4253     // constant if knowing that the operand is non-nan is enough.  We prefer to
4254     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4255     // materialize 0.0.
4256     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4257       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4258 
4259     // setcc (fneg x), C -> setcc swap(pred) x, -C
4260     if (N0.getOpcode() == ISD::FNEG) {
4261       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4262       if (DCI.isBeforeLegalizeOps() ||
4263           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4264         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4265         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4266       }
4267     }
4268 
4269     // If the condition is not legal, see if we can find an equivalent one
4270     // which is legal.
4271     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4272       // If the comparison was an awkward floating-point == or != and one of
4273       // the comparison operands is infinity or negative infinity, convert the
4274       // condition to a less-awkward <= or >=.
4275       if (CFP->getValueAPF().isInfinity()) {
4276         bool IsNegInf = CFP->getValueAPF().isNegative();
4277         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4278         switch (Cond) {
4279         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4280         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4281         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4282         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4283         default: break;
4284         }
4285         if (NewCond != ISD::SETCC_INVALID &&
4286             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4287           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4288       }
4289     }
4290   }
4291 
4292   if (N0 == N1) {
4293     // The sext(setcc()) => setcc() optimization relies on the appropriate
4294     // constant being emitted.
4295     assert(!N0.getValueType().isInteger() &&
4296            "Integer types should be handled by FoldSetCC");
4297 
4298     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4299     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4300     if (UOF == 2) // FP operators that are undefined on NaNs.
4301       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4302     if (UOF == unsigned(EqTrue))
4303       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4304     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4305     // if it is not already.
4306     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4307     if (NewCond != Cond &&
4308         (DCI.isBeforeLegalizeOps() ||
4309                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4310       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4311   }
4312 
4313   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4314       N0.getValueType().isInteger()) {
4315     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4316         N0.getOpcode() == ISD::XOR) {
4317       // Simplify (X+Y) == (X+Z) -->  Y == Z
4318       if (N0.getOpcode() == N1.getOpcode()) {
4319         if (N0.getOperand(0) == N1.getOperand(0))
4320           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4321         if (N0.getOperand(1) == N1.getOperand(1))
4322           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4323         if (isCommutativeBinOp(N0.getOpcode())) {
4324           // If X op Y == Y op X, try other combinations.
4325           if (N0.getOperand(0) == N1.getOperand(1))
4326             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4327                                 Cond);
4328           if (N0.getOperand(1) == N1.getOperand(0))
4329             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4330                                 Cond);
4331         }
4332       }
4333 
4334       // If RHS is a legal immediate value for a compare instruction, we need
4335       // to be careful about increasing register pressure needlessly.
4336       bool LegalRHSImm = false;
4337 
4338       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4339         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4340           // Turn (X+C1) == C2 --> X == C2-C1
4341           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4342             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4343                                 DAG.getConstant(RHSC->getAPIntValue()-
4344                                                 LHSR->getAPIntValue(),
4345                                 dl, N0.getValueType()), Cond);
4346           }
4347 
4348           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4349           if (N0.getOpcode() == ISD::XOR)
4350             // If we know that all of the inverted bits are zero, don't bother
4351             // performing the inversion.
4352             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4353               return
4354                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4355                              DAG.getConstant(LHSR->getAPIntValue() ^
4356                                                RHSC->getAPIntValue(),
4357                                              dl, N0.getValueType()),
4358                              Cond);
4359         }
4360 
4361         // Turn (C1-X) == C2 --> X == C1-C2
4362         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4363           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4364             return
4365               DAG.getSetCC(dl, VT, N0.getOperand(1),
4366                            DAG.getConstant(SUBC->getAPIntValue() -
4367                                              RHSC->getAPIntValue(),
4368                                            dl, N0.getValueType()),
4369                            Cond);
4370           }
4371         }
4372 
4373         // Could RHSC fold directly into a compare?
4374         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4375           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4376       }
4377 
4378       // (X+Y) == X --> Y == 0 and similar folds.
4379       // Don't do this if X is an immediate that can fold into a cmp
4380       // instruction and X+Y has other uses. It could be an induction variable
4381       // chain, and the transform would increase register pressure.
4382       if (!LegalRHSImm || N0.hasOneUse())
4383         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4384           return V;
4385     }
4386 
4387     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4388         N1.getOpcode() == ISD::XOR)
4389       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4390         return V;
4391 
4392     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4393       return V;
4394   }
4395 
4396   // Fold remainder of division by a constant.
4397   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4398       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4399     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4400 
4401     // When division is cheap or optimizing for minimum size,
4402     // fall through to DIVREM creation by skipping this fold.
4403     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4404       if (N0.getOpcode() == ISD::UREM) {
4405         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4406           return Folded;
4407       } else if (N0.getOpcode() == ISD::SREM) {
4408         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4409           return Folded;
4410       }
4411     }
4412   }
4413 
4414   // Fold away ALL boolean setcc's.
4415   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4416     SDValue Temp;
4417     switch (Cond) {
4418     default: llvm_unreachable("Unknown integer setcc!");
4419     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4420       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4421       N0 = DAG.getNOT(dl, Temp, OpVT);
4422       if (!DCI.isCalledByLegalizer())
4423         DCI.AddToWorklist(Temp.getNode());
4424       break;
4425     case ISD::SETNE:  // X != Y   -->  (X^Y)
4426       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4427       break;
4428     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4429     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4430       Temp = DAG.getNOT(dl, N0, OpVT);
4431       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4432       if (!DCI.isCalledByLegalizer())
4433         DCI.AddToWorklist(Temp.getNode());
4434       break;
4435     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4436     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4437       Temp = DAG.getNOT(dl, N1, OpVT);
4438       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4439       if (!DCI.isCalledByLegalizer())
4440         DCI.AddToWorklist(Temp.getNode());
4441       break;
4442     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4443     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4444       Temp = DAG.getNOT(dl, N0, OpVT);
4445       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4446       if (!DCI.isCalledByLegalizer())
4447         DCI.AddToWorklist(Temp.getNode());
4448       break;
4449     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4450     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4451       Temp = DAG.getNOT(dl, N1, OpVT);
4452       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4453       break;
4454     }
4455     if (VT.getScalarType() != MVT::i1) {
4456       if (!DCI.isCalledByLegalizer())
4457         DCI.AddToWorklist(N0.getNode());
4458       // FIXME: If running after legalize, we probably can't do this.
4459       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4460       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4461     }
4462     return N0;
4463   }
4464 
4465   // Could not fold it.
4466   return SDValue();
4467 }
4468 
4469 /// Returns true (and the GlobalValue and the offset) if the node is a
4470 /// GlobalAddress + offset.
4471 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4472                                     int64_t &Offset) const {
4473 
4474   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4475 
4476   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4477     GA = GASD->getGlobal();
4478     Offset += GASD->getOffset();
4479     return true;
4480   }
4481 
4482   if (N->getOpcode() == ISD::ADD) {
4483     SDValue N1 = N->getOperand(0);
4484     SDValue N2 = N->getOperand(1);
4485     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4486       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4487         Offset += V->getSExtValue();
4488         return true;
4489       }
4490     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4491       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4492         Offset += V->getSExtValue();
4493         return true;
4494       }
4495     }
4496   }
4497 
4498   return false;
4499 }
4500 
4501 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4502                                           DAGCombinerInfo &DCI) const {
4503   // Default implementation: no optimization.
4504   return SDValue();
4505 }
4506 
4507 //===----------------------------------------------------------------------===//
4508 //  Inline Assembler Implementation Methods
4509 //===----------------------------------------------------------------------===//
4510 
4511 TargetLowering::ConstraintType
4512 TargetLowering::getConstraintType(StringRef Constraint) const {
4513   unsigned S = Constraint.size();
4514 
4515   if (S == 1) {
4516     switch (Constraint[0]) {
4517     default: break;
4518     case 'r':
4519       return C_RegisterClass;
4520     case 'm': // memory
4521     case 'o': // offsetable
4522     case 'V': // not offsetable
4523       return C_Memory;
4524     case 'n': // Simple Integer
4525     case 'E': // Floating Point Constant
4526     case 'F': // Floating Point Constant
4527       return C_Immediate;
4528     case 'i': // Simple Integer or Relocatable Constant
4529     case 's': // Relocatable Constant
4530     case 'p': // Address.
4531     case 'X': // Allow ANY value.
4532     case 'I': // Target registers.
4533     case 'J':
4534     case 'K':
4535     case 'L':
4536     case 'M':
4537     case 'N':
4538     case 'O':
4539     case 'P':
4540     case '<':
4541     case '>':
4542       return C_Other;
4543     }
4544   }
4545 
4546   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4547     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4548       return C_Memory;
4549     return C_Register;
4550   }
4551   return C_Unknown;
4552 }
4553 
4554 /// Try to replace an X constraint, which matches anything, with another that
4555 /// has more specific requirements based on the type of the corresponding
4556 /// operand.
4557 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4558   if (ConstraintVT.isInteger())
4559     return "r";
4560   if (ConstraintVT.isFloatingPoint())
4561     return "f"; // works for many targets
4562   return nullptr;
4563 }
4564 
4565 SDValue TargetLowering::LowerAsmOutputForConstraint(
4566     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4567     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4568   return SDValue();
4569 }
4570 
4571 /// Lower the specified operand into the Ops vector.
4572 /// If it is invalid, don't add anything to Ops.
4573 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4574                                                   std::string &Constraint,
4575                                                   std::vector<SDValue> &Ops,
4576                                                   SelectionDAG &DAG) const {
4577 
4578   if (Constraint.length() > 1) return;
4579 
4580   char ConstraintLetter = Constraint[0];
4581   switch (ConstraintLetter) {
4582   default: break;
4583   case 'X':     // Allows any operand; labels (basic block) use this.
4584     if (Op.getOpcode() == ISD::BasicBlock ||
4585         Op.getOpcode() == ISD::TargetBlockAddress) {
4586       Ops.push_back(Op);
4587       return;
4588     }
4589     LLVM_FALLTHROUGH;
4590   case 'i':    // Simple Integer or Relocatable Constant
4591   case 'n':    // Simple Integer
4592   case 's': {  // Relocatable Constant
4593 
4594     GlobalAddressSDNode *GA;
4595     ConstantSDNode *C;
4596     BlockAddressSDNode *BA;
4597     uint64_t Offset = 0;
4598 
4599     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4600     // etc., since getelementpointer is variadic. We can't use
4601     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4602     // while in this case the GA may be furthest from the root node which is
4603     // likely an ISD::ADD.
4604     while (1) {
4605       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4606         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4607                                                  GA->getValueType(0),
4608                                                  Offset + GA->getOffset()));
4609         return;
4610       }
4611       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4612         // gcc prints these as sign extended.  Sign extend value to 64 bits
4613         // now; without this it would get ZExt'd later in
4614         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4615         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4616         BooleanContent BCont = getBooleanContents(MVT::i64);
4617         ISD::NodeType ExtOpc =
4618             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4619         int64_t ExtVal =
4620             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4621         Ops.push_back(
4622             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4623         return;
4624       }
4625       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4626         Ops.push_back(DAG.getTargetBlockAddress(
4627             BA->getBlockAddress(), BA->getValueType(0),
4628             Offset + BA->getOffset(), BA->getTargetFlags()));
4629         return;
4630       }
4631       const unsigned OpCode = Op.getOpcode();
4632       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4633         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4634           Op = Op.getOperand(1);
4635         // Subtraction is not commutative.
4636         else if (OpCode == ISD::ADD &&
4637                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4638           Op = Op.getOperand(0);
4639         else
4640           return;
4641         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4642         continue;
4643       }
4644       return;
4645     }
4646     break;
4647   }
4648   }
4649 }
4650 
4651 std::pair<unsigned, const TargetRegisterClass *>
4652 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4653                                              StringRef Constraint,
4654                                              MVT VT) const {
4655   if (Constraint.empty() || Constraint[0] != '{')
4656     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4657   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4658 
4659   // Remove the braces from around the name.
4660   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4661 
4662   std::pair<unsigned, const TargetRegisterClass *> R =
4663       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4664 
4665   // Figure out which register class contains this reg.
4666   for (const TargetRegisterClass *RC : RI->regclasses()) {
4667     // If none of the value types for this register class are valid, we
4668     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4669     if (!isLegalRC(*RI, *RC))
4670       continue;
4671 
4672     for (const MCPhysReg &PR : *RC) {
4673       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4674         std::pair<unsigned, const TargetRegisterClass *> S =
4675             std::make_pair(PR, RC);
4676 
4677         // If this register class has the requested value type, return it,
4678         // otherwise keep searching and return the first class found
4679         // if no other is found which explicitly has the requested type.
4680         if (RI->isTypeLegalForClass(*RC, VT))
4681           return S;
4682         if (!R.second)
4683           R = S;
4684       }
4685     }
4686   }
4687 
4688   return R;
4689 }
4690 
4691 //===----------------------------------------------------------------------===//
4692 // Constraint Selection.
4693 
4694 /// Return true of this is an input operand that is a matching constraint like
4695 /// "4".
4696 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4697   assert(!ConstraintCode.empty() && "No known constraint!");
4698   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4699 }
4700 
4701 /// If this is an input matching constraint, this method returns the output
4702 /// operand it matches.
4703 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4704   assert(!ConstraintCode.empty() && "No known constraint!");
4705   return atoi(ConstraintCode.c_str());
4706 }
4707 
4708 /// Split up the constraint string from the inline assembly value into the
4709 /// specific constraints and their prefixes, and also tie in the associated
4710 /// operand values.
4711 /// If this returns an empty vector, and if the constraint string itself
4712 /// isn't empty, there was an error parsing.
4713 TargetLowering::AsmOperandInfoVector
4714 TargetLowering::ParseConstraints(const DataLayout &DL,
4715                                  const TargetRegisterInfo *TRI,
4716                                  const CallBase &Call) const {
4717   /// Information about all of the constraints.
4718   AsmOperandInfoVector ConstraintOperands;
4719   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4720   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4721 
4722   // Do a prepass over the constraints, canonicalizing them, and building up the
4723   // ConstraintOperands list.
4724   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4725   unsigned ResNo = 0; // ResNo - The result number of the next output.
4726 
4727   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4728     ConstraintOperands.emplace_back(std::move(CI));
4729     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4730 
4731     // Update multiple alternative constraint count.
4732     if (OpInfo.multipleAlternatives.size() > maCount)
4733       maCount = OpInfo.multipleAlternatives.size();
4734 
4735     OpInfo.ConstraintVT = MVT::Other;
4736 
4737     // Compute the value type for each operand.
4738     switch (OpInfo.Type) {
4739     case InlineAsm::isOutput:
4740       // Indirect outputs just consume an argument.
4741       if (OpInfo.isIndirect) {
4742         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4743         break;
4744       }
4745 
4746       // The return value of the call is this value.  As such, there is no
4747       // corresponding argument.
4748       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4749       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4750         OpInfo.ConstraintVT =
4751             getSimpleValueType(DL, STy->getElementType(ResNo));
4752       } else {
4753         assert(ResNo == 0 && "Asm only has one result!");
4754         OpInfo.ConstraintVT =
4755             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4756       }
4757       ++ResNo;
4758       break;
4759     case InlineAsm::isInput:
4760       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4761       break;
4762     case InlineAsm::isClobber:
4763       // Nothing to do.
4764       break;
4765     }
4766 
4767     if (OpInfo.CallOperandVal) {
4768       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4769       if (OpInfo.isIndirect) {
4770         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4771         if (!PtrTy)
4772           report_fatal_error("Indirect operand for inline asm not a pointer!");
4773         OpTy = PtrTy->getElementType();
4774       }
4775 
4776       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4777       if (StructType *STy = dyn_cast<StructType>(OpTy))
4778         if (STy->getNumElements() == 1)
4779           OpTy = STy->getElementType(0);
4780 
4781       // If OpTy is not a single value, it may be a struct/union that we
4782       // can tile with integers.
4783       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4784         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4785         switch (BitSize) {
4786         default: break;
4787         case 1:
4788         case 8:
4789         case 16:
4790         case 32:
4791         case 64:
4792         case 128:
4793           OpInfo.ConstraintVT =
4794               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4795           break;
4796         }
4797       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4798         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4799         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4800       } else {
4801         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4802       }
4803     }
4804   }
4805 
4806   // If we have multiple alternative constraints, select the best alternative.
4807   if (!ConstraintOperands.empty()) {
4808     if (maCount) {
4809       unsigned bestMAIndex = 0;
4810       int bestWeight = -1;
4811       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4812       int weight = -1;
4813       unsigned maIndex;
4814       // Compute the sums of the weights for each alternative, keeping track
4815       // of the best (highest weight) one so far.
4816       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4817         int weightSum = 0;
4818         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4819              cIndex != eIndex; ++cIndex) {
4820           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4821           if (OpInfo.Type == InlineAsm::isClobber)
4822             continue;
4823 
4824           // If this is an output operand with a matching input operand,
4825           // look up the matching input. If their types mismatch, e.g. one
4826           // is an integer, the other is floating point, or their sizes are
4827           // different, flag it as an maCantMatch.
4828           if (OpInfo.hasMatchingInput()) {
4829             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4830             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4831               if ((OpInfo.ConstraintVT.isInteger() !=
4832                    Input.ConstraintVT.isInteger()) ||
4833                   (OpInfo.ConstraintVT.getSizeInBits() !=
4834                    Input.ConstraintVT.getSizeInBits())) {
4835                 weightSum = -1; // Can't match.
4836                 break;
4837               }
4838             }
4839           }
4840           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4841           if (weight == -1) {
4842             weightSum = -1;
4843             break;
4844           }
4845           weightSum += weight;
4846         }
4847         // Update best.
4848         if (weightSum > bestWeight) {
4849           bestWeight = weightSum;
4850           bestMAIndex = maIndex;
4851         }
4852       }
4853 
4854       // Now select chosen alternative in each constraint.
4855       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4856            cIndex != eIndex; ++cIndex) {
4857         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4858         if (cInfo.Type == InlineAsm::isClobber)
4859           continue;
4860         cInfo.selectAlternative(bestMAIndex);
4861       }
4862     }
4863   }
4864 
4865   // Check and hook up tied operands, choose constraint code to use.
4866   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4867        cIndex != eIndex; ++cIndex) {
4868     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4869 
4870     // If this is an output operand with a matching input operand, look up the
4871     // matching input. If their types mismatch, e.g. one is an integer, the
4872     // other is floating point, or their sizes are different, flag it as an
4873     // error.
4874     if (OpInfo.hasMatchingInput()) {
4875       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4876 
4877       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4878         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4879             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4880                                          OpInfo.ConstraintVT);
4881         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4882             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4883                                          Input.ConstraintVT);
4884         if ((OpInfo.ConstraintVT.isInteger() !=
4885              Input.ConstraintVT.isInteger()) ||
4886             (MatchRC.second != InputRC.second)) {
4887           report_fatal_error("Unsupported asm: input constraint"
4888                              " with a matching output constraint of"
4889                              " incompatible type!");
4890         }
4891       }
4892     }
4893   }
4894 
4895   return ConstraintOperands;
4896 }
4897 
4898 /// Return an integer indicating how general CT is.
4899 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4900   switch (CT) {
4901   case TargetLowering::C_Immediate:
4902   case TargetLowering::C_Other:
4903   case TargetLowering::C_Unknown:
4904     return 0;
4905   case TargetLowering::C_Register:
4906     return 1;
4907   case TargetLowering::C_RegisterClass:
4908     return 2;
4909   case TargetLowering::C_Memory:
4910     return 3;
4911   }
4912   llvm_unreachable("Invalid constraint type");
4913 }
4914 
4915 /// Examine constraint type and operand type and determine a weight value.
4916 /// This object must already have been set up with the operand type
4917 /// and the current alternative constraint selected.
4918 TargetLowering::ConstraintWeight
4919   TargetLowering::getMultipleConstraintMatchWeight(
4920     AsmOperandInfo &info, int maIndex) const {
4921   InlineAsm::ConstraintCodeVector *rCodes;
4922   if (maIndex >= (int)info.multipleAlternatives.size())
4923     rCodes = &info.Codes;
4924   else
4925     rCodes = &info.multipleAlternatives[maIndex].Codes;
4926   ConstraintWeight BestWeight = CW_Invalid;
4927 
4928   // Loop over the options, keeping track of the most general one.
4929   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4930     ConstraintWeight weight =
4931       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4932     if (weight > BestWeight)
4933       BestWeight = weight;
4934   }
4935 
4936   return BestWeight;
4937 }
4938 
4939 /// Examine constraint type and operand type and determine a weight value.
4940 /// This object must already have been set up with the operand type
4941 /// and the current alternative constraint selected.
4942 TargetLowering::ConstraintWeight
4943   TargetLowering::getSingleConstraintMatchWeight(
4944     AsmOperandInfo &info, const char *constraint) const {
4945   ConstraintWeight weight = CW_Invalid;
4946   Value *CallOperandVal = info.CallOperandVal;
4947     // If we don't have a value, we can't do a match,
4948     // but allow it at the lowest weight.
4949   if (!CallOperandVal)
4950     return CW_Default;
4951   // Look at the constraint type.
4952   switch (*constraint) {
4953     case 'i': // immediate integer.
4954     case 'n': // immediate integer with a known value.
4955       if (isa<ConstantInt>(CallOperandVal))
4956         weight = CW_Constant;
4957       break;
4958     case 's': // non-explicit intregal immediate.
4959       if (isa<GlobalValue>(CallOperandVal))
4960         weight = CW_Constant;
4961       break;
4962     case 'E': // immediate float if host format.
4963     case 'F': // immediate float.
4964       if (isa<ConstantFP>(CallOperandVal))
4965         weight = CW_Constant;
4966       break;
4967     case '<': // memory operand with autodecrement.
4968     case '>': // memory operand with autoincrement.
4969     case 'm': // memory operand.
4970     case 'o': // offsettable memory operand
4971     case 'V': // non-offsettable memory operand
4972       weight = CW_Memory;
4973       break;
4974     case 'r': // general register.
4975     case 'g': // general register, memory operand or immediate integer.
4976               // note: Clang converts "g" to "imr".
4977       if (CallOperandVal->getType()->isIntegerTy())
4978         weight = CW_Register;
4979       break;
4980     case 'X': // any operand.
4981   default:
4982     weight = CW_Default;
4983     break;
4984   }
4985   return weight;
4986 }
4987 
4988 /// If there are multiple different constraints that we could pick for this
4989 /// operand (e.g. "imr") try to pick the 'best' one.
4990 /// This is somewhat tricky: constraints fall into four classes:
4991 ///    Other         -> immediates and magic values
4992 ///    Register      -> one specific register
4993 ///    RegisterClass -> a group of regs
4994 ///    Memory        -> memory
4995 /// Ideally, we would pick the most specific constraint possible: if we have
4996 /// something that fits into a register, we would pick it.  The problem here
4997 /// is that if we have something that could either be in a register or in
4998 /// memory that use of the register could cause selection of *other*
4999 /// operands to fail: they might only succeed if we pick memory.  Because of
5000 /// this the heuristic we use is:
5001 ///
5002 ///  1) If there is an 'other' constraint, and if the operand is valid for
5003 ///     that constraint, use it.  This makes us take advantage of 'i'
5004 ///     constraints when available.
5005 ///  2) Otherwise, pick the most general constraint present.  This prefers
5006 ///     'm' over 'r', for example.
5007 ///
5008 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5009                              const TargetLowering &TLI,
5010                              SDValue Op, SelectionDAG *DAG) {
5011   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5012   unsigned BestIdx = 0;
5013   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5014   int BestGenerality = -1;
5015 
5016   // Loop over the options, keeping track of the most general one.
5017   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5018     TargetLowering::ConstraintType CType =
5019       TLI.getConstraintType(OpInfo.Codes[i]);
5020 
5021     // Indirect 'other' or 'immediate' constraints are not allowed.
5022     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5023                                CType == TargetLowering::C_Register ||
5024                                CType == TargetLowering::C_RegisterClass))
5025       continue;
5026 
5027     // If this is an 'other' or 'immediate' constraint, see if the operand is
5028     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5029     // the operand is an integer in the range [0..31] we want to use I (saving a
5030     // load of a register), otherwise we must use 'r'.
5031     if ((CType == TargetLowering::C_Other ||
5032          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5033       assert(OpInfo.Codes[i].size() == 1 &&
5034              "Unhandled multi-letter 'other' constraint");
5035       std::vector<SDValue> ResultOps;
5036       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5037                                        ResultOps, *DAG);
5038       if (!ResultOps.empty()) {
5039         BestType = CType;
5040         BestIdx = i;
5041         break;
5042       }
5043     }
5044 
5045     // Things with matching constraints can only be registers, per gcc
5046     // documentation.  This mainly affects "g" constraints.
5047     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5048       continue;
5049 
5050     // This constraint letter is more general than the previous one, use it.
5051     int Generality = getConstraintGenerality(CType);
5052     if (Generality > BestGenerality) {
5053       BestType = CType;
5054       BestIdx = i;
5055       BestGenerality = Generality;
5056     }
5057   }
5058 
5059   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5060   OpInfo.ConstraintType = BestType;
5061 }
5062 
5063 /// Determines the constraint code and constraint type to use for the specific
5064 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5065 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5066                                             SDValue Op,
5067                                             SelectionDAG *DAG) const {
5068   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5069 
5070   // Single-letter constraints ('r') are very common.
5071   if (OpInfo.Codes.size() == 1) {
5072     OpInfo.ConstraintCode = OpInfo.Codes[0];
5073     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5074   } else {
5075     ChooseConstraint(OpInfo, *this, Op, DAG);
5076   }
5077 
5078   // 'X' matches anything.
5079   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5080     // Labels and constants are handled elsewhere ('X' is the only thing
5081     // that matches labels).  For Functions, the type here is the type of
5082     // the result, which is not what we want to look at; leave them alone.
5083     Value *v = OpInfo.CallOperandVal;
5084     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5085       OpInfo.CallOperandVal = v;
5086       return;
5087     }
5088 
5089     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5090       return;
5091 
5092     // Otherwise, try to resolve it to something we know about by looking at
5093     // the actual operand type.
5094     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5095       OpInfo.ConstraintCode = Repl;
5096       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5097     }
5098   }
5099 }
5100 
5101 /// Given an exact SDIV by a constant, create a multiplication
5102 /// with the multiplicative inverse of the constant.
5103 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5104                               const SDLoc &dl, SelectionDAG &DAG,
5105                               SmallVectorImpl<SDNode *> &Created) {
5106   SDValue Op0 = N->getOperand(0);
5107   SDValue Op1 = N->getOperand(1);
5108   EVT VT = N->getValueType(0);
5109   EVT SVT = VT.getScalarType();
5110   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5111   EVT ShSVT = ShVT.getScalarType();
5112 
5113   bool UseSRA = false;
5114   SmallVector<SDValue, 16> Shifts, Factors;
5115 
5116   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5117     if (C->isZero())
5118       return false;
5119     APInt Divisor = C->getAPIntValue();
5120     unsigned Shift = Divisor.countTrailingZeros();
5121     if (Shift) {
5122       Divisor.ashrInPlace(Shift);
5123       UseSRA = true;
5124     }
5125     // Calculate the multiplicative inverse, using Newton's method.
5126     APInt t;
5127     APInt Factor = Divisor;
5128     while ((t = Divisor * Factor) != 1)
5129       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5130     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5131     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5132     return true;
5133   };
5134 
5135   // Collect all magic values from the build vector.
5136   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5137     return SDValue();
5138 
5139   SDValue Shift, Factor;
5140   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5141     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5142     Factor = DAG.getBuildVector(VT, dl, Factors);
5143   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5144     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5145            "Expected matchUnaryPredicate to return one element for scalable "
5146            "vectors");
5147     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5148     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5149   } else {
5150     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5151     Shift = Shifts[0];
5152     Factor = Factors[0];
5153   }
5154 
5155   SDValue Res = Op0;
5156 
5157   // Shift the value upfront if it is even, so the LSB is one.
5158   if (UseSRA) {
5159     // TODO: For UDIV use SRL instead of SRA.
5160     SDNodeFlags Flags;
5161     Flags.setExact(true);
5162     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5163     Created.push_back(Res.getNode());
5164   }
5165 
5166   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5167 }
5168 
5169 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5170                               SelectionDAG &DAG,
5171                               SmallVectorImpl<SDNode *> &Created) const {
5172   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5174   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5175     return SDValue(N, 0); // Lower SDIV as SDIV
5176   return SDValue();
5177 }
5178 
5179 /// Given an ISD::SDIV node expressing a divide by constant,
5180 /// return a DAG expression to select that will generate the same value by
5181 /// multiplying by a magic number.
5182 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5183 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5184                                   bool IsAfterLegalization,
5185                                   SmallVectorImpl<SDNode *> &Created) const {
5186   SDLoc dl(N);
5187   EVT VT = N->getValueType(0);
5188   EVT SVT = VT.getScalarType();
5189   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5190   EVT ShSVT = ShVT.getScalarType();
5191   unsigned EltBits = VT.getScalarSizeInBits();
5192   EVT MulVT;
5193 
5194   // Check to see if we can do this.
5195   // FIXME: We should be more aggressive here.
5196   if (!isTypeLegal(VT)) {
5197     // Limit this to simple scalars for now.
5198     if (VT.isVector() || !VT.isSimple())
5199       return SDValue();
5200 
5201     // If this type will be promoted to a large enough type with a legal
5202     // multiply operation, we can go ahead and do this transform.
5203     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5204       return SDValue();
5205 
5206     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5207     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5208         !isOperationLegal(ISD::MUL, MulVT))
5209       return SDValue();
5210   }
5211 
5212   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5213   if (N->getFlags().hasExact())
5214     return BuildExactSDIV(*this, N, dl, DAG, Created);
5215 
5216   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5217 
5218   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5219     if (C->isZero())
5220       return false;
5221 
5222     const APInt &Divisor = C->getAPIntValue();
5223     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5224     int NumeratorFactor = 0;
5225     int ShiftMask = -1;
5226 
5227     if (Divisor.isOne() || Divisor.isAllOnes()) {
5228       // If d is +1/-1, we just multiply the numerator by +1/-1.
5229       NumeratorFactor = Divisor.getSExtValue();
5230       magics.Magic = 0;
5231       magics.ShiftAmount = 0;
5232       ShiftMask = 0;
5233     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5234       // If d > 0 and m < 0, add the numerator.
5235       NumeratorFactor = 1;
5236     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5237       // If d < 0 and m > 0, subtract the numerator.
5238       NumeratorFactor = -1;
5239     }
5240 
5241     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5242     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5243     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5244     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5245     return true;
5246   };
5247 
5248   SDValue N0 = N->getOperand(0);
5249   SDValue N1 = N->getOperand(1);
5250 
5251   // Collect the shifts / magic values from each element.
5252   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5253     return SDValue();
5254 
5255   SDValue MagicFactor, Factor, Shift, ShiftMask;
5256   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5257     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5258     Factor = DAG.getBuildVector(VT, dl, Factors);
5259     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5260     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5261   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5262     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5263            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5264            "Expected matchUnaryPredicate to return one element for scalable "
5265            "vectors");
5266     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5267     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5268     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5269     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5270   } else {
5271     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5272     MagicFactor = MagicFactors[0];
5273     Factor = Factors[0];
5274     Shift = Shifts[0];
5275     ShiftMask = ShiftMasks[0];
5276   }
5277 
5278   // Multiply the numerator (operand 0) by the magic value.
5279   // FIXME: We should support doing a MUL in a wider type.
5280   auto GetMULHS = [&](SDValue X, SDValue Y) {
5281     // If the type isn't legal, use a wider mul of the the type calculated
5282     // earlier.
5283     if (!isTypeLegal(VT)) {
5284       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5285       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5286       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5287       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5288                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5289       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5290     }
5291 
5292     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5293       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5294     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5295       SDValue LoHi =
5296           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5297       return SDValue(LoHi.getNode(), 1);
5298     }
5299     return SDValue();
5300   };
5301 
5302   SDValue Q = GetMULHS(N0, MagicFactor);
5303   if (!Q)
5304     return SDValue();
5305 
5306   Created.push_back(Q.getNode());
5307 
5308   // (Optionally) Add/subtract the numerator using Factor.
5309   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5310   Created.push_back(Factor.getNode());
5311   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5312   Created.push_back(Q.getNode());
5313 
5314   // Shift right algebraic by shift value.
5315   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5316   Created.push_back(Q.getNode());
5317 
5318   // Extract the sign bit, mask it and add it to the quotient.
5319   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5320   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5321   Created.push_back(T.getNode());
5322   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5323   Created.push_back(T.getNode());
5324   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5325 }
5326 
5327 /// Given an ISD::UDIV node expressing a divide by constant,
5328 /// return a DAG expression to select that will generate the same value by
5329 /// multiplying by a magic number.
5330 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5331 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5332                                   bool IsAfterLegalization,
5333                                   SmallVectorImpl<SDNode *> &Created) const {
5334   SDLoc dl(N);
5335   EVT VT = N->getValueType(0);
5336   EVT SVT = VT.getScalarType();
5337   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5338   EVT ShSVT = ShVT.getScalarType();
5339   unsigned EltBits = VT.getScalarSizeInBits();
5340   EVT MulVT;
5341 
5342   // Check to see if we can do this.
5343   // FIXME: We should be more aggressive here.
5344   if (!isTypeLegal(VT)) {
5345     // Limit this to simple scalars for now.
5346     if (VT.isVector() || !VT.isSimple())
5347       return SDValue();
5348 
5349     // If this type will be promoted to a large enough type with a legal
5350     // multiply operation, we can go ahead and do this transform.
5351     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5352       return SDValue();
5353 
5354     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5355     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5356         !isOperationLegal(ISD::MUL, MulVT))
5357       return SDValue();
5358   }
5359 
5360   bool UseNPQ = false;
5361   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5362 
5363   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5364     if (C->isZero())
5365       return false;
5366     // FIXME: We should use a narrower constant when the upper
5367     // bits are known to be zero.
5368     const APInt& Divisor = C->getAPIntValue();
5369     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5370     unsigned PreShift = 0, PostShift = 0;
5371 
5372     // If the divisor is even, we can avoid using the expensive fixup by
5373     // shifting the divided value upfront.
5374     if (magics.IsAdd != 0 && !Divisor[0]) {
5375       PreShift = Divisor.countTrailingZeros();
5376       // Get magic number for the shifted divisor.
5377       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5378       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5379     }
5380 
5381     APInt Magic = magics.Magic;
5382 
5383     unsigned SelNPQ;
5384     if (magics.IsAdd == 0 || Divisor.isOne()) {
5385       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5386              "We shouldn't generate an undefined shift!");
5387       PostShift = magics.ShiftAmount;
5388       SelNPQ = false;
5389     } else {
5390       PostShift = magics.ShiftAmount - 1;
5391       SelNPQ = true;
5392     }
5393 
5394     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5395     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5396     NPQFactors.push_back(
5397         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5398                                : APInt::getZero(EltBits),
5399                         dl, SVT));
5400     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5401     UseNPQ |= SelNPQ;
5402     return true;
5403   };
5404 
5405   SDValue N0 = N->getOperand(0);
5406   SDValue N1 = N->getOperand(1);
5407 
5408   // Collect the shifts/magic values from each element.
5409   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5410     return SDValue();
5411 
5412   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5413   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5414     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5415     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5416     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5417     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5418   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5419     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5420            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5421            "Expected matchUnaryPredicate to return one for scalable vectors");
5422     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5423     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5424     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5425     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5426   } else {
5427     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5428     PreShift = PreShifts[0];
5429     MagicFactor = MagicFactors[0];
5430     PostShift = PostShifts[0];
5431   }
5432 
5433   SDValue Q = N0;
5434   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5435   Created.push_back(Q.getNode());
5436 
5437   // FIXME: We should support doing a MUL in a wider type.
5438   auto GetMULHU = [&](SDValue X, SDValue Y) {
5439     // If the type isn't legal, use a wider mul of the the type calculated
5440     // earlier.
5441     if (!isTypeLegal(VT)) {
5442       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5443       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5444       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5445       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5446                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5447       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5448     }
5449 
5450     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5451       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5452     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5453       SDValue LoHi =
5454           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5455       return SDValue(LoHi.getNode(), 1);
5456     }
5457     return SDValue(); // No mulhu or equivalent
5458   };
5459 
5460   // Multiply the numerator (operand 0) by the magic value.
5461   Q = GetMULHU(Q, MagicFactor);
5462   if (!Q)
5463     return SDValue();
5464 
5465   Created.push_back(Q.getNode());
5466 
5467   if (UseNPQ) {
5468     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5469     Created.push_back(NPQ.getNode());
5470 
5471     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5472     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5473     if (VT.isVector())
5474       NPQ = GetMULHU(NPQ, NPQFactor);
5475     else
5476       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5477 
5478     Created.push_back(NPQ.getNode());
5479 
5480     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5481     Created.push_back(Q.getNode());
5482   }
5483 
5484   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5485   Created.push_back(Q.getNode());
5486 
5487   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5488 
5489   SDValue One = DAG.getConstant(1, dl, VT);
5490   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5491   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5492 }
5493 
5494 /// If all values in Values that *don't* match the predicate are same 'splat'
5495 /// value, then replace all values with that splat value.
5496 /// Else, if AlternativeReplacement was provided, then replace all values that
5497 /// do match predicate with AlternativeReplacement value.
5498 static void
5499 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5500                           std::function<bool(SDValue)> Predicate,
5501                           SDValue AlternativeReplacement = SDValue()) {
5502   SDValue Replacement;
5503   // Is there a value for which the Predicate does *NOT* match? What is it?
5504   auto SplatValue = llvm::find_if_not(Values, Predicate);
5505   if (SplatValue != Values.end()) {
5506     // Does Values consist only of SplatValue's and values matching Predicate?
5507     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5508           return Value == *SplatValue || Predicate(Value);
5509         })) // Then we shall replace values matching predicate with SplatValue.
5510       Replacement = *SplatValue;
5511   }
5512   if (!Replacement) {
5513     // Oops, we did not find the "baseline" splat value.
5514     if (!AlternativeReplacement)
5515       return; // Nothing to do.
5516     // Let's replace with provided value then.
5517     Replacement = AlternativeReplacement;
5518   }
5519   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5520 }
5521 
5522 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5523 /// where the divisor is constant and the comparison target is zero,
5524 /// return a DAG expression that will generate the same comparison result
5525 /// using only multiplications, additions and shifts/rotations.
5526 /// Ref: "Hacker's Delight" 10-17.
5527 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5528                                         SDValue CompTargetNode,
5529                                         ISD::CondCode Cond,
5530                                         DAGCombinerInfo &DCI,
5531                                         const SDLoc &DL) const {
5532   SmallVector<SDNode *, 5> Built;
5533   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5534                                          DCI, DL, Built)) {
5535     for (SDNode *N : Built)
5536       DCI.AddToWorklist(N);
5537     return Folded;
5538   }
5539 
5540   return SDValue();
5541 }
5542 
5543 SDValue
5544 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5545                                   SDValue CompTargetNode, ISD::CondCode Cond,
5546                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5547                                   SmallVectorImpl<SDNode *> &Created) const {
5548   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5549   // - D must be constant, with D = D0 * 2^K where D0 is odd
5550   // - P is the multiplicative inverse of D0 modulo 2^W
5551   // - Q = floor(((2^W) - 1) / D)
5552   // where W is the width of the common type of N and D.
5553   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5554          "Only applicable for (in)equality comparisons.");
5555 
5556   SelectionDAG &DAG = DCI.DAG;
5557 
5558   EVT VT = REMNode.getValueType();
5559   EVT SVT = VT.getScalarType();
5560   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5561   EVT ShSVT = ShVT.getScalarType();
5562 
5563   // If MUL is unavailable, we cannot proceed in any case.
5564   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5565     return SDValue();
5566 
5567   bool ComparingWithAllZeros = true;
5568   bool AllComparisonsWithNonZerosAreTautological = true;
5569   bool HadTautologicalLanes = false;
5570   bool AllLanesAreTautological = true;
5571   bool HadEvenDivisor = false;
5572   bool AllDivisorsArePowerOfTwo = true;
5573   bool HadTautologicalInvertedLanes = false;
5574   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5575 
5576   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5577     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5578     if (CDiv->isZero())
5579       return false;
5580 
5581     const APInt &D = CDiv->getAPIntValue();
5582     const APInt &Cmp = CCmp->getAPIntValue();
5583 
5584     ComparingWithAllZeros &= Cmp.isZero();
5585 
5586     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5587     // if C2 is not less than C1, the comparison is always false.
5588     // But we will only be able to produce the comparison that will give the
5589     // opposive tautological answer. So this lane would need to be fixed up.
5590     bool TautologicalInvertedLane = D.ule(Cmp);
5591     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5592 
5593     // If all lanes are tautological (either all divisors are ones, or divisor
5594     // is not greater than the constant we are comparing with),
5595     // we will prefer to avoid the fold.
5596     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5597     HadTautologicalLanes |= TautologicalLane;
5598     AllLanesAreTautological &= TautologicalLane;
5599 
5600     // If we are comparing with non-zero, we need'll need  to subtract said
5601     // comparison value from the LHS. But there is no point in doing that if
5602     // every lane where we are comparing with non-zero is tautological..
5603     if (!Cmp.isZero())
5604       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5605 
5606     // Decompose D into D0 * 2^K
5607     unsigned K = D.countTrailingZeros();
5608     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5609     APInt D0 = D.lshr(K);
5610 
5611     // D is even if it has trailing zeros.
5612     HadEvenDivisor |= (K != 0);
5613     // D is a power-of-two if D0 is one.
5614     // If all divisors are power-of-two, we will prefer to avoid the fold.
5615     AllDivisorsArePowerOfTwo &= D0.isOne();
5616 
5617     // P = inv(D0, 2^W)
5618     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5619     unsigned W = D.getBitWidth();
5620     APInt P = D0.zext(W + 1)
5621                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5622                   .trunc(W);
5623     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5624     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5625 
5626     // Q = floor((2^W - 1) u/ D)
5627     // R = ((2^W - 1) u% D)
5628     APInt Q, R;
5629     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5630 
5631     // If we are comparing with zero, then that comparison constant is okay,
5632     // else it may need to be one less than that.
5633     if (Cmp.ugt(R))
5634       Q -= 1;
5635 
5636     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5637            "We are expecting that K is always less than all-ones for ShSVT");
5638 
5639     // If the lane is tautological the result can be constant-folded.
5640     if (TautologicalLane) {
5641       // Set P and K amount to a bogus values so we can try to splat them.
5642       P = 0;
5643       K = -1;
5644       // And ensure that comparison constant is tautological,
5645       // it will always compare true/false.
5646       Q = -1;
5647     }
5648 
5649     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5650     KAmts.push_back(
5651         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5652     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5653     return true;
5654   };
5655 
5656   SDValue N = REMNode.getOperand(0);
5657   SDValue D = REMNode.getOperand(1);
5658 
5659   // Collect the values from each element.
5660   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5661     return SDValue();
5662 
5663   // If all lanes are tautological, the result can be constant-folded.
5664   if (AllLanesAreTautological)
5665     return SDValue();
5666 
5667   // If this is a urem by a powers-of-two, avoid the fold since it can be
5668   // best implemented as a bit test.
5669   if (AllDivisorsArePowerOfTwo)
5670     return SDValue();
5671 
5672   SDValue PVal, KVal, QVal;
5673   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5674     if (HadTautologicalLanes) {
5675       // Try to turn PAmts into a splat, since we don't care about the values
5676       // that are currently '0'. If we can't, just keep '0'`s.
5677       turnVectorIntoSplatVector(PAmts, isNullConstant);
5678       // Try to turn KAmts into a splat, since we don't care about the values
5679       // that are currently '-1'. If we can't, change them to '0'`s.
5680       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5681                                 DAG.getConstant(0, DL, ShSVT));
5682     }
5683 
5684     PVal = DAG.getBuildVector(VT, DL, PAmts);
5685     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5686     QVal = DAG.getBuildVector(VT, DL, QAmts);
5687   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5688     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5689            "Expected matchBinaryPredicate to return one element for "
5690            "SPLAT_VECTORs");
5691     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5692     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5693     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5694   } else {
5695     PVal = PAmts[0];
5696     KVal = KAmts[0];
5697     QVal = QAmts[0];
5698   }
5699 
5700   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5701     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5702       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5703     assert(CompTargetNode.getValueType() == N.getValueType() &&
5704            "Expecting that the types on LHS and RHS of comparisons match.");
5705     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5706   }
5707 
5708   // (mul N, P)
5709   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5710   Created.push_back(Op0.getNode());
5711 
5712   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5713   // divisors as a performance improvement, since rotating by 0 is a no-op.
5714   if (HadEvenDivisor) {
5715     // We need ROTR to do this.
5716     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5717       return SDValue();
5718     // UREM: (rotr (mul N, P), K)
5719     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5720     Created.push_back(Op0.getNode());
5721   }
5722 
5723   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5724   SDValue NewCC =
5725       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5726                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5727   if (!HadTautologicalInvertedLanes)
5728     return NewCC;
5729 
5730   // If any lanes previously compared always-false, the NewCC will give
5731   // always-true result for them, so we need to fixup those lanes.
5732   // Or the other way around for inequality predicate.
5733   assert(VT.isVector() && "Can/should only get here for vectors.");
5734   Created.push_back(NewCC.getNode());
5735 
5736   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5737   // if C2 is not less than C1, the comparison is always false.
5738   // But we have produced the comparison that will give the
5739   // opposive tautological answer. So these lanes would need to be fixed up.
5740   SDValue TautologicalInvertedChannels =
5741       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5742   Created.push_back(TautologicalInvertedChannels.getNode());
5743 
5744   // NOTE: we avoid letting illegal types through even if we're before legalize
5745   // ops – legalization has a hard time producing good code for this.
5746   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5747     // If we have a vector select, let's replace the comparison results in the
5748     // affected lanes with the correct tautological result.
5749     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5750                                               DL, SETCCVT, SETCCVT);
5751     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5752                        Replacement, NewCC);
5753   }
5754 
5755   // Else, we can just invert the comparison result in the appropriate lanes.
5756   //
5757   // NOTE: see the note above VSELECT above.
5758   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5759     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5760                        TautologicalInvertedChannels);
5761 
5762   return SDValue(); // Don't know how to lower.
5763 }
5764 
5765 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5766 /// where the divisor is constant and the comparison target is zero,
5767 /// return a DAG expression that will generate the same comparison result
5768 /// using only multiplications, additions and shifts/rotations.
5769 /// Ref: "Hacker's Delight" 10-17.
5770 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5771                                         SDValue CompTargetNode,
5772                                         ISD::CondCode Cond,
5773                                         DAGCombinerInfo &DCI,
5774                                         const SDLoc &DL) const {
5775   SmallVector<SDNode *, 7> Built;
5776   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5777                                          DCI, DL, Built)) {
5778     assert(Built.size() <= 7 && "Max size prediction failed.");
5779     for (SDNode *N : Built)
5780       DCI.AddToWorklist(N);
5781     return Folded;
5782   }
5783 
5784   return SDValue();
5785 }
5786 
5787 SDValue
5788 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5789                                   SDValue CompTargetNode, ISD::CondCode Cond,
5790                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5791                                   SmallVectorImpl<SDNode *> &Created) const {
5792   // Fold:
5793   //   (seteq/ne (srem N, D), 0)
5794   // To:
5795   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5796   //
5797   // - D must be constant, with D = D0 * 2^K where D0 is odd
5798   // - P is the multiplicative inverse of D0 modulo 2^W
5799   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5800   // - Q = floor((2 * A) / (2^K))
5801   // where W is the width of the common type of N and D.
5802   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5803          "Only applicable for (in)equality comparisons.");
5804 
5805   SelectionDAG &DAG = DCI.DAG;
5806 
5807   EVT VT = REMNode.getValueType();
5808   EVT SVT = VT.getScalarType();
5809   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5810   EVT ShSVT = ShVT.getScalarType();
5811 
5812   // If we are after ops legalization, and MUL is unavailable, we can not
5813   // proceed.
5814   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5815     return SDValue();
5816 
5817   // TODO: Could support comparing with non-zero too.
5818   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5819   if (!CompTarget || !CompTarget->isZero())
5820     return SDValue();
5821 
5822   bool HadIntMinDivisor = false;
5823   bool HadOneDivisor = false;
5824   bool AllDivisorsAreOnes = true;
5825   bool HadEvenDivisor = false;
5826   bool NeedToApplyOffset = false;
5827   bool AllDivisorsArePowerOfTwo = true;
5828   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5829 
5830   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5831     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5832     if (C->isZero())
5833       return false;
5834 
5835     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5836 
5837     // WARNING: this fold is only valid for positive divisors!
5838     APInt D = C->getAPIntValue();
5839     if (D.isNegative())
5840       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5841 
5842     HadIntMinDivisor |= D.isMinSignedValue();
5843 
5844     // If all divisors are ones, we will prefer to avoid the fold.
5845     HadOneDivisor |= D.isOne();
5846     AllDivisorsAreOnes &= D.isOne();
5847 
5848     // Decompose D into D0 * 2^K
5849     unsigned K = D.countTrailingZeros();
5850     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5851     APInt D0 = D.lshr(K);
5852 
5853     if (!D.isMinSignedValue()) {
5854       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5855       // we don't care about this lane in this fold, we'll special-handle it.
5856       HadEvenDivisor |= (K != 0);
5857     }
5858 
5859     // D is a power-of-two if D0 is one. This includes INT_MIN.
5860     // If all divisors are power-of-two, we will prefer to avoid the fold.
5861     AllDivisorsArePowerOfTwo &= D0.isOne();
5862 
5863     // P = inv(D0, 2^W)
5864     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5865     unsigned W = D.getBitWidth();
5866     APInt P = D0.zext(W + 1)
5867                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5868                   .trunc(W);
5869     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5870     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5871 
5872     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5873     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5874     A.clearLowBits(K);
5875 
5876     if (!D.isMinSignedValue()) {
5877       // If divisor INT_MIN, then we don't care about this lane in this fold,
5878       // we'll special-handle it.
5879       NeedToApplyOffset |= A != 0;
5880     }
5881 
5882     // Q = floor((2 * A) / (2^K))
5883     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5884 
5885     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5886            "We are expecting that A is always less than all-ones for SVT");
5887     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5888            "We are expecting that K is always less than all-ones for ShSVT");
5889 
5890     // If the divisor is 1 the result can be constant-folded. Likewise, we
5891     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5892     if (D.isOne()) {
5893       // Set P, A and K to a bogus values so we can try to splat them.
5894       P = 0;
5895       A = -1;
5896       K = -1;
5897 
5898       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5899       Q = -1;
5900     }
5901 
5902     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5903     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5904     KAmts.push_back(
5905         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5906     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5907     return true;
5908   };
5909 
5910   SDValue N = REMNode.getOperand(0);
5911   SDValue D = REMNode.getOperand(1);
5912 
5913   // Collect the values from each element.
5914   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5915     return SDValue();
5916 
5917   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5918   if (AllDivisorsAreOnes)
5919     return SDValue();
5920 
5921   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5922   // since it can be best implemented as a bit test.
5923   if (AllDivisorsArePowerOfTwo)
5924     return SDValue();
5925 
5926   SDValue PVal, AVal, KVal, QVal;
5927   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5928     if (HadOneDivisor) {
5929       // Try to turn PAmts into a splat, since we don't care about the values
5930       // that are currently '0'. If we can't, just keep '0'`s.
5931       turnVectorIntoSplatVector(PAmts, isNullConstant);
5932       // Try to turn AAmts into a splat, since we don't care about the
5933       // values that are currently '-1'. If we can't, change them to '0'`s.
5934       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5935                                 DAG.getConstant(0, DL, SVT));
5936       // Try to turn KAmts into a splat, since we don't care about the values
5937       // that are currently '-1'. If we can't, change them to '0'`s.
5938       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5939                                 DAG.getConstant(0, DL, ShSVT));
5940     }
5941 
5942     PVal = DAG.getBuildVector(VT, DL, PAmts);
5943     AVal = DAG.getBuildVector(VT, DL, AAmts);
5944     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5945     QVal = DAG.getBuildVector(VT, DL, QAmts);
5946   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5947     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5948            QAmts.size() == 1 &&
5949            "Expected matchUnaryPredicate to return one element for scalable "
5950            "vectors");
5951     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5952     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5953     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5954     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5955   } else {
5956     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5957     PVal = PAmts[0];
5958     AVal = AAmts[0];
5959     KVal = KAmts[0];
5960     QVal = QAmts[0];
5961   }
5962 
5963   // (mul N, P)
5964   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5965   Created.push_back(Op0.getNode());
5966 
5967   if (NeedToApplyOffset) {
5968     // We need ADD to do this.
5969     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5970       return SDValue();
5971 
5972     // (add (mul N, P), A)
5973     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5974     Created.push_back(Op0.getNode());
5975   }
5976 
5977   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5978   // divisors as a performance improvement, since rotating by 0 is a no-op.
5979   if (HadEvenDivisor) {
5980     // We need ROTR to do this.
5981     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5982       return SDValue();
5983     // SREM: (rotr (add (mul N, P), A), K)
5984     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5985     Created.push_back(Op0.getNode());
5986   }
5987 
5988   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5989   SDValue Fold =
5990       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5991                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5992 
5993   // If we didn't have lanes with INT_MIN divisor, then we're done.
5994   if (!HadIntMinDivisor)
5995     return Fold;
5996 
5997   // That fold is only valid for positive divisors. Which effectively means,
5998   // it is invalid for INT_MIN divisors. So if we have such a lane,
5999   // we must fix-up results for said lanes.
6000   assert(VT.isVector() && "Can/should only get here for vectors.");
6001 
6002   // NOTE: we avoid letting illegal types through even if we're before legalize
6003   // ops – legalization has a hard time producing good code for the code that
6004   // follows.
6005   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6006       !isOperationLegalOrCustom(ISD::AND, VT) ||
6007       !isOperationLegalOrCustom(Cond, VT) ||
6008       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6009     return SDValue();
6010 
6011   Created.push_back(Fold.getNode());
6012 
6013   SDValue IntMin = DAG.getConstant(
6014       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6015   SDValue IntMax = DAG.getConstant(
6016       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6017   SDValue Zero =
6018       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6019 
6020   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6021   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6022   Created.push_back(DivisorIsIntMin.getNode());
6023 
6024   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6025   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6026   Created.push_back(Masked.getNode());
6027   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6028   Created.push_back(MaskedIsZero.getNode());
6029 
6030   // To produce final result we need to blend 2 vectors: 'SetCC' and
6031   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6032   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6033   // constant-folded, select can get lowered to a shuffle with constant mask.
6034   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6035                                 MaskedIsZero, Fold);
6036 
6037   return Blended;
6038 }
6039 
6040 bool TargetLowering::
6041 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6042   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6043     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6044                                 "be a constant integer");
6045     return true;
6046   }
6047 
6048   return false;
6049 }
6050 
6051 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6052                                          const DenormalMode &Mode) const {
6053   SDLoc DL(Op);
6054   EVT VT = Op.getValueType();
6055   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6056   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6057   // Testing it with denormal inputs to avoid wrong estimate.
6058   if (Mode.Input == DenormalMode::IEEE) {
6059     // This is specifically a check for the handling of denormal inputs,
6060     // not the result.
6061 
6062     // Test = fabs(X) < SmallestNormal
6063     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6064     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6065     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6066     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6067     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6068   }
6069   // Test = X == 0.0
6070   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6071 }
6072 
6073 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6074                                              bool LegalOps, bool OptForSize,
6075                                              NegatibleCost &Cost,
6076                                              unsigned Depth) const {
6077   // fneg is removable even if it has multiple uses.
6078   if (Op.getOpcode() == ISD::FNEG) {
6079     Cost = NegatibleCost::Cheaper;
6080     return Op.getOperand(0);
6081   }
6082 
6083   // Don't recurse exponentially.
6084   if (Depth > SelectionDAG::MaxRecursionDepth)
6085     return SDValue();
6086 
6087   // Pre-increment recursion depth for use in recursive calls.
6088   ++Depth;
6089   const SDNodeFlags Flags = Op->getFlags();
6090   const TargetOptions &Options = DAG.getTarget().Options;
6091   EVT VT = Op.getValueType();
6092   unsigned Opcode = Op.getOpcode();
6093 
6094   // Don't allow anything with multiple uses unless we know it is free.
6095   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6096     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6097                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6098     if (!IsFreeExtend)
6099       return SDValue();
6100   }
6101 
6102   auto RemoveDeadNode = [&](SDValue N) {
6103     if (N && N.getNode()->use_empty())
6104       DAG.RemoveDeadNode(N.getNode());
6105   };
6106 
6107   SDLoc DL(Op);
6108 
6109   // Because getNegatedExpression can delete nodes we need a handle to keep
6110   // temporary nodes alive in case the recursion manages to create an identical
6111   // node.
6112   std::list<HandleSDNode> Handles;
6113 
6114   switch (Opcode) {
6115   case ISD::ConstantFP: {
6116     // Don't invert constant FP values after legalization unless the target says
6117     // the negated constant is legal.
6118     bool IsOpLegal =
6119         isOperationLegal(ISD::ConstantFP, VT) ||
6120         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6121                      OptForSize);
6122 
6123     if (LegalOps && !IsOpLegal)
6124       break;
6125 
6126     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6127     V.changeSign();
6128     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6129 
6130     // If we already have the use of the negated floating constant, it is free
6131     // to negate it even it has multiple uses.
6132     if (!Op.hasOneUse() && CFP.use_empty())
6133       break;
6134     Cost = NegatibleCost::Neutral;
6135     return CFP;
6136   }
6137   case ISD::BUILD_VECTOR: {
6138     // Only permit BUILD_VECTOR of constants.
6139     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6140           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6141         }))
6142       break;
6143 
6144     bool IsOpLegal =
6145         (isOperationLegal(ISD::ConstantFP, VT) &&
6146          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6147         llvm::all_of(Op->op_values(), [&](SDValue N) {
6148           return N.isUndef() ||
6149                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6150                               OptForSize);
6151         });
6152 
6153     if (LegalOps && !IsOpLegal)
6154       break;
6155 
6156     SmallVector<SDValue, 4> Ops;
6157     for (SDValue C : Op->op_values()) {
6158       if (C.isUndef()) {
6159         Ops.push_back(C);
6160         continue;
6161       }
6162       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6163       V.changeSign();
6164       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6165     }
6166     Cost = NegatibleCost::Neutral;
6167     return DAG.getBuildVector(VT, DL, Ops);
6168   }
6169   case ISD::FADD: {
6170     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6171       break;
6172 
6173     // After operation legalization, it might not be legal to create new FSUBs.
6174     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6175       break;
6176     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6177 
6178     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6179     NegatibleCost CostX = NegatibleCost::Expensive;
6180     SDValue NegX =
6181         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6182     // Prevent this node from being deleted by the next call.
6183     if (NegX)
6184       Handles.emplace_back(NegX);
6185 
6186     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6187     NegatibleCost CostY = NegatibleCost::Expensive;
6188     SDValue NegY =
6189         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6190 
6191     // We're done with the handles.
6192     Handles.clear();
6193 
6194     // Negate the X if its cost is less or equal than Y.
6195     if (NegX && (CostX <= CostY)) {
6196       Cost = CostX;
6197       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6198       if (NegY != N)
6199         RemoveDeadNode(NegY);
6200       return N;
6201     }
6202 
6203     // Negate the Y if it is not expensive.
6204     if (NegY) {
6205       Cost = CostY;
6206       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6207       if (NegX != N)
6208         RemoveDeadNode(NegX);
6209       return N;
6210     }
6211     break;
6212   }
6213   case ISD::FSUB: {
6214     // We can't turn -(A-B) into B-A when we honor signed zeros.
6215     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6216       break;
6217 
6218     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6219     // fold (fneg (fsub 0, Y)) -> Y
6220     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6221       if (C->isZero()) {
6222         Cost = NegatibleCost::Cheaper;
6223         return Y;
6224       }
6225 
6226     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6227     Cost = NegatibleCost::Neutral;
6228     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6229   }
6230   case ISD::FMUL:
6231   case ISD::FDIV: {
6232     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6233 
6234     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6235     NegatibleCost CostX = NegatibleCost::Expensive;
6236     SDValue NegX =
6237         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6238     // Prevent this node from being deleted by the next call.
6239     if (NegX)
6240       Handles.emplace_back(NegX);
6241 
6242     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6243     NegatibleCost CostY = NegatibleCost::Expensive;
6244     SDValue NegY =
6245         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6246 
6247     // We're done with the handles.
6248     Handles.clear();
6249 
6250     // Negate the X if its cost is less or equal than Y.
6251     if (NegX && (CostX <= CostY)) {
6252       Cost = CostX;
6253       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6254       if (NegY != N)
6255         RemoveDeadNode(NegY);
6256       return N;
6257     }
6258 
6259     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6260     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6261       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6262         break;
6263 
6264     // Negate the Y if it is not expensive.
6265     if (NegY) {
6266       Cost = CostY;
6267       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6268       if (NegX != N)
6269         RemoveDeadNode(NegX);
6270       return N;
6271     }
6272     break;
6273   }
6274   case ISD::FMA:
6275   case ISD::FMAD: {
6276     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6277       break;
6278 
6279     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6280     NegatibleCost CostZ = NegatibleCost::Expensive;
6281     SDValue NegZ =
6282         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6283     // Give up if fail to negate the Z.
6284     if (!NegZ)
6285       break;
6286 
6287     // Prevent this node from being deleted by the next two calls.
6288     Handles.emplace_back(NegZ);
6289 
6290     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6291     NegatibleCost CostX = NegatibleCost::Expensive;
6292     SDValue NegX =
6293         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6294     // Prevent this node from being deleted by the next call.
6295     if (NegX)
6296       Handles.emplace_back(NegX);
6297 
6298     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6299     NegatibleCost CostY = NegatibleCost::Expensive;
6300     SDValue NegY =
6301         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6302 
6303     // We're done with the handles.
6304     Handles.clear();
6305 
6306     // Negate the X if its cost is less or equal than Y.
6307     if (NegX && (CostX <= CostY)) {
6308       Cost = std::min(CostX, CostZ);
6309       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6310       if (NegY != N)
6311         RemoveDeadNode(NegY);
6312       return N;
6313     }
6314 
6315     // Negate the Y if it is not expensive.
6316     if (NegY) {
6317       Cost = std::min(CostY, CostZ);
6318       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6319       if (NegX != N)
6320         RemoveDeadNode(NegX);
6321       return N;
6322     }
6323     break;
6324   }
6325 
6326   case ISD::FP_EXTEND:
6327   case ISD::FSIN:
6328     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6329                                             OptForSize, Cost, Depth))
6330       return DAG.getNode(Opcode, DL, VT, NegV);
6331     break;
6332   case ISD::FP_ROUND:
6333     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6334                                             OptForSize, Cost, Depth))
6335       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6336     break;
6337   }
6338 
6339   return SDValue();
6340 }
6341 
6342 //===----------------------------------------------------------------------===//
6343 // Legalization Utilities
6344 //===----------------------------------------------------------------------===//
6345 
6346 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6347                                     SDValue LHS, SDValue RHS,
6348                                     SmallVectorImpl<SDValue> &Result,
6349                                     EVT HiLoVT, SelectionDAG &DAG,
6350                                     MulExpansionKind Kind, SDValue LL,
6351                                     SDValue LH, SDValue RL, SDValue RH) const {
6352   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6353          Opcode == ISD::SMUL_LOHI);
6354 
6355   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6356                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6357   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6358                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6359   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6360                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6361   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6362                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6363 
6364   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6365     return false;
6366 
6367   unsigned OuterBitSize = VT.getScalarSizeInBits();
6368   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6369 
6370   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6371   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6372          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6373 
6374   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6375   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6376                           bool Signed) -> bool {
6377     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6378       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6379       Hi = SDValue(Lo.getNode(), 1);
6380       return true;
6381     }
6382     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6383       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6384       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6385       return true;
6386     }
6387     return false;
6388   };
6389 
6390   SDValue Lo, Hi;
6391 
6392   if (!LL.getNode() && !RL.getNode() &&
6393       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6394     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6395     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6396   }
6397 
6398   if (!LL.getNode())
6399     return false;
6400 
6401   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6402   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6403       DAG.MaskedValueIsZero(RHS, HighMask)) {
6404     // The inputs are both zero-extended.
6405     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6406       Result.push_back(Lo);
6407       Result.push_back(Hi);
6408       if (Opcode != ISD::MUL) {
6409         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6410         Result.push_back(Zero);
6411         Result.push_back(Zero);
6412       }
6413       return true;
6414     }
6415   }
6416 
6417   if (!VT.isVector() && Opcode == ISD::MUL &&
6418       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6419       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6420     // The input values are both sign-extended.
6421     // TODO non-MUL case?
6422     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6423       Result.push_back(Lo);
6424       Result.push_back(Hi);
6425       return true;
6426     }
6427   }
6428 
6429   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6430   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6431   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6432     // FIXME getShiftAmountTy does not always return a sensible result when VT
6433     // is an illegal type, and so the type may be too small to fit the shift
6434     // amount. Override it with i32. The shift will have to be legalized.
6435     ShiftAmountTy = MVT::i32;
6436   }
6437   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6438 
6439   if (!LH.getNode() && !RH.getNode() &&
6440       isOperationLegalOrCustom(ISD::SRL, VT) &&
6441       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6442     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6443     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6444     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6445     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6446   }
6447 
6448   if (!LH.getNode())
6449     return false;
6450 
6451   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6452     return false;
6453 
6454   Result.push_back(Lo);
6455 
6456   if (Opcode == ISD::MUL) {
6457     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6458     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6459     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6460     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6461     Result.push_back(Hi);
6462     return true;
6463   }
6464 
6465   // Compute the full width result.
6466   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6467     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6468     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6469     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6470     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6471   };
6472 
6473   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6474   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6475     return false;
6476 
6477   // This is effectively the add part of a multiply-add of half-sized operands,
6478   // so it cannot overflow.
6479   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6480 
6481   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6482     return false;
6483 
6484   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6485   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6486 
6487   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6488                   isOperationLegalOrCustom(ISD::ADDE, VT));
6489   if (UseGlue)
6490     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6491                        Merge(Lo, Hi));
6492   else
6493     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6494                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6495 
6496   SDValue Carry = Next.getValue(1);
6497   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6498   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6499 
6500   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6501     return false;
6502 
6503   if (UseGlue)
6504     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6505                      Carry);
6506   else
6507     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6508                      Zero, Carry);
6509 
6510   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6511 
6512   if (Opcode == ISD::SMUL_LOHI) {
6513     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6514                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6515     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6516 
6517     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6518                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6519     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6520   }
6521 
6522   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6523   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6524   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6525   return true;
6526 }
6527 
6528 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6529                                SelectionDAG &DAG, MulExpansionKind Kind,
6530                                SDValue LL, SDValue LH, SDValue RL,
6531                                SDValue RH) const {
6532   SmallVector<SDValue, 2> Result;
6533   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6534                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6535                            DAG, Kind, LL, LH, RL, RH);
6536   if (Ok) {
6537     assert(Result.size() == 2);
6538     Lo = Result[0];
6539     Hi = Result[1];
6540   }
6541   return Ok;
6542 }
6543 
6544 // Check that (every element of) Z is undef or not an exact multiple of BW.
6545 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6546   return ISD::matchUnaryPredicate(
6547       Z,
6548       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6549       true);
6550 }
6551 
6552 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6553                                        SelectionDAG &DAG) const {
6554   EVT VT = Node->getValueType(0);
6555 
6556   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6557                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6558                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6559                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6560     return false;
6561 
6562   SDValue X = Node->getOperand(0);
6563   SDValue Y = Node->getOperand(1);
6564   SDValue Z = Node->getOperand(2);
6565 
6566   unsigned BW = VT.getScalarSizeInBits();
6567   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6568   SDLoc DL(SDValue(Node, 0));
6569 
6570   EVT ShVT = Z.getValueType();
6571 
6572   // If a funnel shift in the other direction is more supported, use it.
6573   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6574   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6575       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6576     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6577       // fshl X, Y, Z -> fshr X, Y, -Z
6578       // fshr X, Y, Z -> fshl X, Y, -Z
6579       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6580       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6581     } else {
6582       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6583       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6584       SDValue One = DAG.getConstant(1, DL, ShVT);
6585       if (IsFSHL) {
6586         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6587         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6588       } else {
6589         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6590         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6591       }
6592       Z = DAG.getNOT(DL, Z, ShVT);
6593     }
6594     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6595     return true;
6596   }
6597 
6598   SDValue ShX, ShY;
6599   SDValue ShAmt, InvShAmt;
6600   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6601     // fshl: X << C | Y >> (BW - C)
6602     // fshr: X << (BW - C) | Y >> C
6603     // where C = Z % BW is not zero
6604     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6605     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6606     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6607     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6608     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6609   } else {
6610     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6611     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6612     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6613     if (isPowerOf2_32(BW)) {
6614       // Z % BW -> Z & (BW - 1)
6615       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6616       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6617       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6618     } else {
6619       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6620       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6621       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6622     }
6623 
6624     SDValue One = DAG.getConstant(1, DL, ShVT);
6625     if (IsFSHL) {
6626       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6627       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6628       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6629     } else {
6630       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6631       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6632       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6633     }
6634   }
6635   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6636   return true;
6637 }
6638 
6639 // TODO: Merge with expandFunnelShift.
6640 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6641                                SDValue &Result, SelectionDAG &DAG) const {
6642   EVT VT = Node->getValueType(0);
6643   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6644   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6645   SDValue Op0 = Node->getOperand(0);
6646   SDValue Op1 = Node->getOperand(1);
6647   SDLoc DL(SDValue(Node, 0));
6648 
6649   EVT ShVT = Op1.getValueType();
6650   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6651 
6652   // If a rotate in the other direction is supported, use it.
6653   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6654   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6655     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6656     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6657     return true;
6658   }
6659 
6660   if (!AllowVectorOps && VT.isVector() &&
6661       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6662        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6663        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6664        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6665        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6666     return false;
6667 
6668   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6669   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6670   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6671   SDValue ShVal;
6672   SDValue HsVal;
6673   if (isPowerOf2_32(EltSizeInBits)) {
6674     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6675     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6676     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6677     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6678     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6679     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6680     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6681   } else {
6682     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6683     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6684     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6685     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6686     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6687     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6688     SDValue One = DAG.getConstant(1, DL, ShVT);
6689     HsVal =
6690         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6691   }
6692   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6693   return true;
6694 }
6695 
6696 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6697                                       SelectionDAG &DAG) const {
6698   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6699   EVT VT = Node->getValueType(0);
6700   unsigned VTBits = VT.getScalarSizeInBits();
6701   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6702 
6703   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6704   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6705   SDValue ShOpLo = Node->getOperand(0);
6706   SDValue ShOpHi = Node->getOperand(1);
6707   SDValue ShAmt = Node->getOperand(2);
6708   EVT ShAmtVT = ShAmt.getValueType();
6709   EVT ShAmtCCVT =
6710       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6711   SDLoc dl(Node);
6712 
6713   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6714   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6715   // away during isel.
6716   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6717                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6718   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6719                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6720                        : DAG.getConstant(0, dl, VT);
6721 
6722   SDValue Tmp2, Tmp3;
6723   if (IsSHL) {
6724     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6725     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6726   } else {
6727     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6728     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6729   }
6730 
6731   // If the shift amount is larger or equal than the width of a part we don't
6732   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6733   // values for large shift amounts.
6734   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6735                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6736   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6737                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6738 
6739   if (IsSHL) {
6740     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6741     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6742   } else {
6743     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6744     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6745   }
6746 }
6747 
6748 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6749                                       SelectionDAG &DAG) const {
6750   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6751   SDValue Src = Node->getOperand(OpNo);
6752   EVT SrcVT = Src.getValueType();
6753   EVT DstVT = Node->getValueType(0);
6754   SDLoc dl(SDValue(Node, 0));
6755 
6756   // FIXME: Only f32 to i64 conversions are supported.
6757   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6758     return false;
6759 
6760   if (Node->isStrictFPOpcode())
6761     // When a NaN is converted to an integer a trap is allowed. We can't
6762     // use this expansion here because it would eliminate that trap. Other
6763     // traps are also allowed and cannot be eliminated. See
6764     // IEEE 754-2008 sec 5.8.
6765     return false;
6766 
6767   // Expand f32 -> i64 conversion
6768   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6769   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6770   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6771   EVT IntVT = SrcVT.changeTypeToInteger();
6772   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6773 
6774   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6775   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6776   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6777   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6778   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6779   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6780 
6781   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6782 
6783   SDValue ExponentBits = DAG.getNode(
6784       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6785       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6786   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6787 
6788   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6789                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6790                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6791   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6792 
6793   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6794                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6795                           DAG.getConstant(0x00800000, dl, IntVT));
6796 
6797   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6798 
6799   R = DAG.getSelectCC(
6800       dl, Exponent, ExponentLoBit,
6801       DAG.getNode(ISD::SHL, dl, DstVT, R,
6802                   DAG.getZExtOrTrunc(
6803                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6804                       dl, IntShVT)),
6805       DAG.getNode(ISD::SRL, dl, DstVT, R,
6806                   DAG.getZExtOrTrunc(
6807                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6808                       dl, IntShVT)),
6809       ISD::SETGT);
6810 
6811   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6812                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6813 
6814   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6815                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6816   return true;
6817 }
6818 
6819 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6820                                       SDValue &Chain,
6821                                       SelectionDAG &DAG) const {
6822   SDLoc dl(SDValue(Node, 0));
6823   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6824   SDValue Src = Node->getOperand(OpNo);
6825 
6826   EVT SrcVT = Src.getValueType();
6827   EVT DstVT = Node->getValueType(0);
6828   EVT SetCCVT =
6829       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6830   EVT DstSetCCVT =
6831       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6832 
6833   // Only expand vector types if we have the appropriate vector bit operations.
6834   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6835                                                    ISD::FP_TO_SINT;
6836   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6837                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6838     return false;
6839 
6840   // If the maximum float value is smaller then the signed integer range,
6841   // the destination signmask can't be represented by the float, so we can
6842   // just use FP_TO_SINT directly.
6843   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6844   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6845   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6846   if (APFloat::opOverflow &
6847       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6848     if (Node->isStrictFPOpcode()) {
6849       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6850                            { Node->getOperand(0), Src });
6851       Chain = Result.getValue(1);
6852     } else
6853       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6854     return true;
6855   }
6856 
6857   // Don't expand it if there isn't cheap fsub instruction.
6858   if (!isOperationLegalOrCustom(
6859           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6860     return false;
6861 
6862   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6863   SDValue Sel;
6864 
6865   if (Node->isStrictFPOpcode()) {
6866     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6867                        Node->getOperand(0), /*IsSignaling*/ true);
6868     Chain = Sel.getValue(1);
6869   } else {
6870     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6871   }
6872 
6873   bool Strict = Node->isStrictFPOpcode() ||
6874                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6875 
6876   if (Strict) {
6877     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6878     // signmask then offset (the result of which should be fully representable).
6879     // Sel = Src < 0x8000000000000000
6880     // FltOfs = select Sel, 0, 0x8000000000000000
6881     // IntOfs = select Sel, 0, 0x8000000000000000
6882     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6883 
6884     // TODO: Should any fast-math-flags be set for the FSUB?
6885     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6886                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6887     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6888     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6889                                    DAG.getConstant(0, dl, DstVT),
6890                                    DAG.getConstant(SignMask, dl, DstVT));
6891     SDValue SInt;
6892     if (Node->isStrictFPOpcode()) {
6893       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6894                                 { Chain, Src, FltOfs });
6895       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6896                          { Val.getValue(1), Val });
6897       Chain = SInt.getValue(1);
6898     } else {
6899       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6900       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6901     }
6902     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6903   } else {
6904     // Expand based on maximum range of FP_TO_SINT:
6905     // True = fp_to_sint(Src)
6906     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6907     // Result = select (Src < 0x8000000000000000), True, False
6908 
6909     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6910     // TODO: Should any fast-math-flags be set for the FSUB?
6911     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6912                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6913     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6914                         DAG.getConstant(SignMask, dl, DstVT));
6915     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6916     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6917   }
6918   return true;
6919 }
6920 
6921 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6922                                       SDValue &Chain,
6923                                       SelectionDAG &DAG) const {
6924   // This transform is not correct for converting 0 when rounding mode is set
6925   // to round toward negative infinity which will produce -0.0. So disable under
6926   // strictfp.
6927   if (Node->isStrictFPOpcode())
6928     return false;
6929 
6930   SDValue Src = Node->getOperand(0);
6931   EVT SrcVT = Src.getValueType();
6932   EVT DstVT = Node->getValueType(0);
6933 
6934   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6935     return false;
6936 
6937   // Only expand vector types if we have the appropriate vector bit operations.
6938   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6939                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6940                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6941                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6942                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6943     return false;
6944 
6945   SDLoc dl(SDValue(Node, 0));
6946   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6947 
6948   // Implementation of unsigned i64 to f64 following the algorithm in
6949   // __floatundidf in compiler_rt.  This implementation performs rounding
6950   // correctly in all rounding modes with the exception of converting 0
6951   // when rounding toward negative infinity. In that case the fsub will produce
6952   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6953   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6954   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6955       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6956   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6957   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6958   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6959 
6960   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6961   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6962   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6963   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6964   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6965   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6966   SDValue HiSub =
6967       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6968   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6969   return true;
6970 }
6971 
6972 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6973                                               SelectionDAG &DAG) const {
6974   SDLoc dl(Node);
6975   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6976     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6977   EVT VT = Node->getValueType(0);
6978 
6979   if (VT.isScalableVector())
6980     report_fatal_error(
6981         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6982 
6983   if (isOperationLegalOrCustom(NewOp, VT)) {
6984     SDValue Quiet0 = Node->getOperand(0);
6985     SDValue Quiet1 = Node->getOperand(1);
6986 
6987     if (!Node->getFlags().hasNoNaNs()) {
6988       // Insert canonicalizes if it's possible we need to quiet to get correct
6989       // sNaN behavior.
6990       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6991         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6992                              Node->getFlags());
6993       }
6994       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6995         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6996                              Node->getFlags());
6997       }
6998     }
6999 
7000     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7001   }
7002 
7003   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7004   // instead if there are no NaNs.
7005   if (Node->getFlags().hasNoNaNs()) {
7006     unsigned IEEE2018Op =
7007         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7008     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7009       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7010                          Node->getOperand(1), Node->getFlags());
7011     }
7012   }
7013 
7014   // If none of the above worked, but there are no NaNs, then expand to
7015   // a compare/select sequence.  This is required for correctness since
7016   // InstCombine might have canonicalized a fcmp+select sequence to a
7017   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7018   // expansion to libcall, we might introduce a link-time dependency
7019   // on libm into a file that originally did not have one.
7020   if (Node->getFlags().hasNoNaNs()) {
7021     ISD::CondCode Pred =
7022         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7023     SDValue Op1 = Node->getOperand(0);
7024     SDValue Op2 = Node->getOperand(1);
7025     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7026     // Copy FMF flags, but always set the no-signed-zeros flag
7027     // as this is implied by the FMINNUM/FMAXNUM semantics.
7028     SDNodeFlags Flags = Node->getFlags();
7029     Flags.setNoSignedZeros(true);
7030     SelCC->setFlags(Flags);
7031     return SelCC;
7032   }
7033 
7034   return SDValue();
7035 }
7036 
7037 // Only expand vector types if we have the appropriate vector bit operations.
7038 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7039   assert(VT.isVector() && "Expected vector type");
7040   unsigned Len = VT.getScalarSizeInBits();
7041   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7042          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7043          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7044          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7045          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7046 }
7047 
7048 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7049   SDLoc dl(Node);
7050   EVT VT = Node->getValueType(0);
7051   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7052   SDValue Op = Node->getOperand(0);
7053   unsigned Len = VT.getScalarSizeInBits();
7054   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7055 
7056   // TODO: Add support for irregular type lengths.
7057   if (!(Len <= 128 && Len % 8 == 0))
7058     return SDValue();
7059 
7060   // Only expand vector types if we have the appropriate vector bit operations.
7061   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7062     return SDValue();
7063 
7064   // This is the "best" algorithm from
7065   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7066   SDValue Mask55 =
7067       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7068   SDValue Mask33 =
7069       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7070   SDValue Mask0F =
7071       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7072   SDValue Mask01 =
7073       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7074 
7075   // v = v - ((v >> 1) & 0x55555555...)
7076   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7077                    DAG.getNode(ISD::AND, dl, VT,
7078                                DAG.getNode(ISD::SRL, dl, VT, Op,
7079                                            DAG.getConstant(1, dl, ShVT)),
7080                                Mask55));
7081   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7082   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7083                    DAG.getNode(ISD::AND, dl, VT,
7084                                DAG.getNode(ISD::SRL, dl, VT, Op,
7085                                            DAG.getConstant(2, dl, ShVT)),
7086                                Mask33));
7087   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7088   Op = DAG.getNode(ISD::AND, dl, VT,
7089                    DAG.getNode(ISD::ADD, dl, VT, Op,
7090                                DAG.getNode(ISD::SRL, dl, VT, Op,
7091                                            DAG.getConstant(4, dl, ShVT))),
7092                    Mask0F);
7093   // v = (v * 0x01010101...) >> (Len - 8)
7094   if (Len > 8)
7095     Op =
7096         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7097                     DAG.getConstant(Len - 8, dl, ShVT));
7098 
7099   return Op;
7100 }
7101 
7102 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7103   SDLoc dl(Node);
7104   EVT VT = Node->getValueType(0);
7105   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7106   SDValue Op = Node->getOperand(0);
7107   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7108 
7109   // If the non-ZERO_UNDEF version is supported we can use that instead.
7110   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7111       isOperationLegalOrCustom(ISD::CTLZ, VT))
7112     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7113 
7114   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7115   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7116     EVT SetCCVT =
7117         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7118     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7119     SDValue Zero = DAG.getConstant(0, dl, VT);
7120     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7121     return DAG.getSelect(dl, VT, SrcIsZero,
7122                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7123   }
7124 
7125   // Only expand vector types if we have the appropriate vector bit operations.
7126   // This includes the operations needed to expand CTPOP if it isn't supported.
7127   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7128                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7129                          !canExpandVectorCTPOP(*this, VT)) ||
7130                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7131                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7132     return SDValue();
7133 
7134   // for now, we do this:
7135   // x = x | (x >> 1);
7136   // x = x | (x >> 2);
7137   // ...
7138   // x = x | (x >>16);
7139   // x = x | (x >>32); // for 64-bit input
7140   // return popcount(~x);
7141   //
7142   // Ref: "Hacker's Delight" by Henry Warren
7143   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7144     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7145     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7146                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7147   }
7148   Op = DAG.getNOT(dl, Op, VT);
7149   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7150 }
7151 
7152 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7153   SDLoc dl(Node);
7154   EVT VT = Node->getValueType(0);
7155   SDValue Op = Node->getOperand(0);
7156   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7157 
7158   // If the non-ZERO_UNDEF version is supported we can use that instead.
7159   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7160       isOperationLegalOrCustom(ISD::CTTZ, VT))
7161     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7162 
7163   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7164   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7165     EVT SetCCVT =
7166         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7167     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7168     SDValue Zero = DAG.getConstant(0, dl, VT);
7169     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7170     return DAG.getSelect(dl, VT, SrcIsZero,
7171                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7172   }
7173 
7174   // Only expand vector types if we have the appropriate vector bit operations.
7175   // This includes the operations needed to expand CTPOP if it isn't supported.
7176   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7177                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7178                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7179                          !canExpandVectorCTPOP(*this, VT)) ||
7180                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7181                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7182                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7183     return SDValue();
7184 
7185   // for now, we use: { return popcount(~x & (x - 1)); }
7186   // unless the target has ctlz but not ctpop, in which case we use:
7187   // { return 32 - nlz(~x & (x-1)); }
7188   // Ref: "Hacker's Delight" by Henry Warren
7189   SDValue Tmp = DAG.getNode(
7190       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7191       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7192 
7193   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7194   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7195     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7196                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7197   }
7198 
7199   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7200 }
7201 
7202 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7203                                   bool IsNegative) const {
7204   SDLoc dl(N);
7205   EVT VT = N->getValueType(0);
7206   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7207   SDValue Op = N->getOperand(0);
7208 
7209   // abs(x) -> smax(x,sub(0,x))
7210   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7211       isOperationLegal(ISD::SMAX, VT)) {
7212     SDValue Zero = DAG.getConstant(0, dl, VT);
7213     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7214                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7215   }
7216 
7217   // abs(x) -> umin(x,sub(0,x))
7218   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7219       isOperationLegal(ISD::UMIN, VT)) {
7220     SDValue Zero = DAG.getConstant(0, dl, VT);
7221     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7222                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7223   }
7224 
7225   // 0 - abs(x) -> smin(x, sub(0,x))
7226   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7227       isOperationLegal(ISD::SMIN, VT)) {
7228     SDValue Zero = DAG.getConstant(0, dl, VT);
7229     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7230                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7231   }
7232 
7233   // Only expand vector types if we have the appropriate vector operations.
7234   if (VT.isVector() &&
7235       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7236        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7237        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7238        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7239     return SDValue();
7240 
7241   SDValue Shift =
7242       DAG.getNode(ISD::SRA, dl, VT, Op,
7243                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7244   if (!IsNegative) {
7245     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7246     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7247   }
7248 
7249   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7250   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7251   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7252 }
7253 
7254 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7255   SDLoc dl(N);
7256   EVT VT = N->getValueType(0);
7257   SDValue Op = N->getOperand(0);
7258 
7259   if (!VT.isSimple())
7260     return SDValue();
7261 
7262   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7263   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7264   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7265   default:
7266     return SDValue();
7267   case MVT::i16:
7268     // Use a rotate by 8. This can be further expanded if necessary.
7269     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7270   case MVT::i32:
7271     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7272     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7273     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7274     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7275     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7276                        DAG.getConstant(0xFF0000, dl, VT));
7277     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7278     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7279     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7280     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7281   case MVT::i64:
7282     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7283     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7284     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7285     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7286     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7287     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7288     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7289     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7290     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7291                        DAG.getConstant(255ULL<<48, dl, VT));
7292     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7293                        DAG.getConstant(255ULL<<40, dl, VT));
7294     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7295                        DAG.getConstant(255ULL<<32, dl, VT));
7296     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7297                        DAG.getConstant(255ULL<<24, dl, VT));
7298     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7299                        DAG.getConstant(255ULL<<16, dl, VT));
7300     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7301                        DAG.getConstant(255ULL<<8 , dl, VT));
7302     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7303     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7304     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7305     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7306     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7307     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7308     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7309   }
7310 }
7311 
7312 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7313   SDLoc dl(N);
7314   EVT VT = N->getValueType(0);
7315   SDValue Op = N->getOperand(0);
7316   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7317   unsigned Sz = VT.getScalarSizeInBits();
7318 
7319   SDValue Tmp, Tmp2, Tmp3;
7320 
7321   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7322   // and finally the i1 pairs.
7323   // TODO: We can easily support i4/i2 legal types if any target ever does.
7324   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7325     // Create the masks - repeating the pattern every byte.
7326     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7327     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7328     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7329 
7330     // BSWAP if the type is wider than a single byte.
7331     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7332 
7333     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7334     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7335     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7336     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7337     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7338     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7339 
7340     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7341     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7342     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7343     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7344     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7345     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7346 
7347     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7348     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7349     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7350     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7351     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7352     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7353     return Tmp;
7354   }
7355 
7356   Tmp = DAG.getConstant(0, dl, VT);
7357   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7358     if (I < J)
7359       Tmp2 =
7360           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7361     else
7362       Tmp2 =
7363           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7364 
7365     APInt Shift(Sz, 1);
7366     Shift <<= J;
7367     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7368     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7369   }
7370 
7371   return Tmp;
7372 }
7373 
7374 std::pair<SDValue, SDValue>
7375 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7376                                     SelectionDAG &DAG) const {
7377   SDLoc SL(LD);
7378   SDValue Chain = LD->getChain();
7379   SDValue BasePTR = LD->getBasePtr();
7380   EVT SrcVT = LD->getMemoryVT();
7381   EVT DstVT = LD->getValueType(0);
7382   ISD::LoadExtType ExtType = LD->getExtensionType();
7383 
7384   if (SrcVT.isScalableVector())
7385     report_fatal_error("Cannot scalarize scalable vector loads");
7386 
7387   unsigned NumElem = SrcVT.getVectorNumElements();
7388 
7389   EVT SrcEltVT = SrcVT.getScalarType();
7390   EVT DstEltVT = DstVT.getScalarType();
7391 
7392   // A vector must always be stored in memory as-is, i.e. without any padding
7393   // between the elements, since various code depend on it, e.g. in the
7394   // handling of a bitcast of a vector type to int, which may be done with a
7395   // vector store followed by an integer load. A vector that does not have
7396   // elements that are byte-sized must therefore be stored as an integer
7397   // built out of the extracted vector elements.
7398   if (!SrcEltVT.isByteSized()) {
7399     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7400     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7401 
7402     unsigned NumSrcBits = SrcVT.getSizeInBits();
7403     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7404 
7405     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7406     SDValue SrcEltBitMask = DAG.getConstant(
7407         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7408 
7409     // Load the whole vector and avoid masking off the top bits as it makes
7410     // the codegen worse.
7411     SDValue Load =
7412         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7413                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7414                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7415 
7416     SmallVector<SDValue, 8> Vals;
7417     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7418       unsigned ShiftIntoIdx =
7419           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7420       SDValue ShiftAmount =
7421           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7422                                      LoadVT, SL, /*LegalTypes=*/false);
7423       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7424       SDValue Elt =
7425           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7426       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7427 
7428       if (ExtType != ISD::NON_EXTLOAD) {
7429         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7430         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7431       }
7432 
7433       Vals.push_back(Scalar);
7434     }
7435 
7436     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7437     return std::make_pair(Value, Load.getValue(1));
7438   }
7439 
7440   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7441   assert(SrcEltVT.isByteSized());
7442 
7443   SmallVector<SDValue, 8> Vals;
7444   SmallVector<SDValue, 8> LoadChains;
7445 
7446   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7447     SDValue ScalarLoad =
7448         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7449                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7450                        SrcEltVT, LD->getOriginalAlign(),
7451                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7452 
7453     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7454 
7455     Vals.push_back(ScalarLoad.getValue(0));
7456     LoadChains.push_back(ScalarLoad.getValue(1));
7457   }
7458 
7459   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7460   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7461 
7462   return std::make_pair(Value, NewChain);
7463 }
7464 
7465 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7466                                              SelectionDAG &DAG) const {
7467   SDLoc SL(ST);
7468 
7469   SDValue Chain = ST->getChain();
7470   SDValue BasePtr = ST->getBasePtr();
7471   SDValue Value = ST->getValue();
7472   EVT StVT = ST->getMemoryVT();
7473 
7474   if (StVT.isScalableVector())
7475     report_fatal_error("Cannot scalarize scalable vector stores");
7476 
7477   // The type of the data we want to save
7478   EVT RegVT = Value.getValueType();
7479   EVT RegSclVT = RegVT.getScalarType();
7480 
7481   // The type of data as saved in memory.
7482   EVT MemSclVT = StVT.getScalarType();
7483 
7484   unsigned NumElem = StVT.getVectorNumElements();
7485 
7486   // A vector must always be stored in memory as-is, i.e. without any padding
7487   // between the elements, since various code depend on it, e.g. in the
7488   // handling of a bitcast of a vector type to int, which may be done with a
7489   // vector store followed by an integer load. A vector that does not have
7490   // elements that are byte-sized must therefore be stored as an integer
7491   // built out of the extracted vector elements.
7492   if (!MemSclVT.isByteSized()) {
7493     unsigned NumBits = StVT.getSizeInBits();
7494     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7495 
7496     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7497 
7498     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7499       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7500                                 DAG.getVectorIdxConstant(Idx, SL));
7501       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7502       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7503       unsigned ShiftIntoIdx =
7504           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7505       SDValue ShiftAmount =
7506           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7507       SDValue ShiftedElt =
7508           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7509       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7510     }
7511 
7512     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7513                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7514                         ST->getAAInfo());
7515   }
7516 
7517   // Store Stride in bytes
7518   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7519   assert(Stride && "Zero stride!");
7520   // Extract each of the elements from the original vector and save them into
7521   // memory individually.
7522   SmallVector<SDValue, 8> Stores;
7523   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7524     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7525                               DAG.getVectorIdxConstant(Idx, SL));
7526 
7527     SDValue Ptr =
7528         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7529 
7530     // This scalar TruncStore may be illegal, but we legalize it later.
7531     SDValue Store = DAG.getTruncStore(
7532         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7533         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7534         ST->getAAInfo());
7535 
7536     Stores.push_back(Store);
7537   }
7538 
7539   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7540 }
7541 
7542 std::pair<SDValue, SDValue>
7543 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7544   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7545          "unaligned indexed loads not implemented!");
7546   SDValue Chain = LD->getChain();
7547   SDValue Ptr = LD->getBasePtr();
7548   EVT VT = LD->getValueType(0);
7549   EVT LoadedVT = LD->getMemoryVT();
7550   SDLoc dl(LD);
7551   auto &MF = DAG.getMachineFunction();
7552 
7553   if (VT.isFloatingPoint() || VT.isVector()) {
7554     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7555     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7556       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7557           LoadedVT.isVector()) {
7558         // Scalarize the load and let the individual components be handled.
7559         return scalarizeVectorLoad(LD, DAG);
7560       }
7561 
7562       // Expand to a (misaligned) integer load of the same size,
7563       // then bitconvert to floating point or vector.
7564       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7565                                     LD->getMemOperand());
7566       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7567       if (LoadedVT != VT)
7568         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7569                              ISD::ANY_EXTEND, dl, VT, Result);
7570 
7571       return std::make_pair(Result, newLoad.getValue(1));
7572     }
7573 
7574     // Copy the value to a (aligned) stack slot using (unaligned) integer
7575     // loads and stores, then do a (aligned) load from the stack slot.
7576     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7577     unsigned LoadedBytes = LoadedVT.getStoreSize();
7578     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7579     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7580 
7581     // Make sure the stack slot is also aligned for the register type.
7582     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7583     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7584     SmallVector<SDValue, 8> Stores;
7585     SDValue StackPtr = StackBase;
7586     unsigned Offset = 0;
7587 
7588     EVT PtrVT = Ptr.getValueType();
7589     EVT StackPtrVT = StackPtr.getValueType();
7590 
7591     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7592     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7593 
7594     // Do all but one copies using the full register width.
7595     for (unsigned i = 1; i < NumRegs; i++) {
7596       // Load one integer register's worth from the original location.
7597       SDValue Load = DAG.getLoad(
7598           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7599           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7600           LD->getAAInfo());
7601       // Follow the load with a store to the stack slot.  Remember the store.
7602       Stores.push_back(DAG.getStore(
7603           Load.getValue(1), dl, Load, StackPtr,
7604           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7605       // Increment the pointers.
7606       Offset += RegBytes;
7607 
7608       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7609       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7610     }
7611 
7612     // The last copy may be partial.  Do an extending load.
7613     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7614                                   8 * (LoadedBytes - Offset));
7615     SDValue Load =
7616         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7617                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7618                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7619                        LD->getAAInfo());
7620     // Follow the load with a store to the stack slot.  Remember the store.
7621     // On big-endian machines this requires a truncating store to ensure
7622     // that the bits end up in the right place.
7623     Stores.push_back(DAG.getTruncStore(
7624         Load.getValue(1), dl, Load, StackPtr,
7625         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7626 
7627     // The order of the stores doesn't matter - say it with a TokenFactor.
7628     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7629 
7630     // Finally, perform the original load only redirected to the stack slot.
7631     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7632                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7633                           LoadedVT);
7634 
7635     // Callers expect a MERGE_VALUES node.
7636     return std::make_pair(Load, TF);
7637   }
7638 
7639   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7640          "Unaligned load of unsupported type.");
7641 
7642   // Compute the new VT that is half the size of the old one.  This is an
7643   // integer MVT.
7644   unsigned NumBits = LoadedVT.getSizeInBits();
7645   EVT NewLoadedVT;
7646   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7647   NumBits >>= 1;
7648 
7649   Align Alignment = LD->getOriginalAlign();
7650   unsigned IncrementSize = NumBits / 8;
7651   ISD::LoadExtType HiExtType = LD->getExtensionType();
7652 
7653   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7654   if (HiExtType == ISD::NON_EXTLOAD)
7655     HiExtType = ISD::ZEXTLOAD;
7656 
7657   // Load the value in two parts
7658   SDValue Lo, Hi;
7659   if (DAG.getDataLayout().isLittleEndian()) {
7660     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7661                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7662                         LD->getAAInfo());
7663 
7664     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7665     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7666                         LD->getPointerInfo().getWithOffset(IncrementSize),
7667                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7668                         LD->getAAInfo());
7669   } else {
7670     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7671                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7672                         LD->getAAInfo());
7673 
7674     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7675     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7676                         LD->getPointerInfo().getWithOffset(IncrementSize),
7677                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7678                         LD->getAAInfo());
7679   }
7680 
7681   // aggregate the two parts
7682   SDValue ShiftAmount =
7683       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7684                                                     DAG.getDataLayout()));
7685   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7686   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7687 
7688   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7689                              Hi.getValue(1));
7690 
7691   return std::make_pair(Result, TF);
7692 }
7693 
7694 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7695                                              SelectionDAG &DAG) const {
7696   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7697          "unaligned indexed stores not implemented!");
7698   SDValue Chain = ST->getChain();
7699   SDValue Ptr = ST->getBasePtr();
7700   SDValue Val = ST->getValue();
7701   EVT VT = Val.getValueType();
7702   Align Alignment = ST->getOriginalAlign();
7703   auto &MF = DAG.getMachineFunction();
7704   EVT StoreMemVT = ST->getMemoryVT();
7705 
7706   SDLoc dl(ST);
7707   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7708     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7709     if (isTypeLegal(intVT)) {
7710       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7711           StoreMemVT.isVector()) {
7712         // Scalarize the store and let the individual components be handled.
7713         SDValue Result = scalarizeVectorStore(ST, DAG);
7714         return Result;
7715       }
7716       // Expand to a bitconvert of the value to the integer type of the
7717       // same size, then a (misaligned) int store.
7718       // FIXME: Does not handle truncating floating point stores!
7719       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7720       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7721                             Alignment, ST->getMemOperand()->getFlags());
7722       return Result;
7723     }
7724     // Do a (aligned) store to a stack slot, then copy from the stack slot
7725     // to the final destination using (unaligned) integer loads and stores.
7726     MVT RegVT = getRegisterType(
7727         *DAG.getContext(),
7728         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7729     EVT PtrVT = Ptr.getValueType();
7730     unsigned StoredBytes = StoreMemVT.getStoreSize();
7731     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7732     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7733 
7734     // Make sure the stack slot is also aligned for the register type.
7735     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7736     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7737 
7738     // Perform the original store, only redirected to the stack slot.
7739     SDValue Store = DAG.getTruncStore(
7740         Chain, dl, Val, StackPtr,
7741         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7742 
7743     EVT StackPtrVT = StackPtr.getValueType();
7744 
7745     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7746     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7747     SmallVector<SDValue, 8> Stores;
7748     unsigned Offset = 0;
7749 
7750     // Do all but one copies using the full register width.
7751     for (unsigned i = 1; i < NumRegs; i++) {
7752       // Load one integer register's worth from the stack slot.
7753       SDValue Load = DAG.getLoad(
7754           RegVT, dl, Store, StackPtr,
7755           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7756       // Store it to the final location.  Remember the store.
7757       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7758                                     ST->getPointerInfo().getWithOffset(Offset),
7759                                     ST->getOriginalAlign(),
7760                                     ST->getMemOperand()->getFlags()));
7761       // Increment the pointers.
7762       Offset += RegBytes;
7763       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7764       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7765     }
7766 
7767     // The last store may be partial.  Do a truncating store.  On big-endian
7768     // machines this requires an extending load from the stack slot to ensure
7769     // that the bits are in the right place.
7770     EVT LoadMemVT =
7771         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7772 
7773     // Load from the stack slot.
7774     SDValue Load = DAG.getExtLoad(
7775         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7776         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7777 
7778     Stores.push_back(
7779         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7780                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7781                           ST->getOriginalAlign(),
7782                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7783     // The order of the stores doesn't matter - say it with a TokenFactor.
7784     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7785     return Result;
7786   }
7787 
7788   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7789          "Unaligned store of unknown type.");
7790   // Get the half-size VT
7791   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7792   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7793   unsigned IncrementSize = NumBits / 8;
7794 
7795   // Divide the stored value in two parts.
7796   SDValue ShiftAmount = DAG.getConstant(
7797       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7798   SDValue Lo = Val;
7799   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7800 
7801   // Store the two parts
7802   SDValue Store1, Store2;
7803   Store1 = DAG.getTruncStore(Chain, dl,
7804                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7805                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7806                              ST->getMemOperand()->getFlags());
7807 
7808   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7809   Store2 = DAG.getTruncStore(
7810       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7811       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7812       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7813 
7814   SDValue Result =
7815       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7816   return Result;
7817 }
7818 
7819 SDValue
7820 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7821                                        const SDLoc &DL, EVT DataVT,
7822                                        SelectionDAG &DAG,
7823                                        bool IsCompressedMemory) const {
7824   SDValue Increment;
7825   EVT AddrVT = Addr.getValueType();
7826   EVT MaskVT = Mask.getValueType();
7827   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7828          "Incompatible types of Data and Mask");
7829   if (IsCompressedMemory) {
7830     if (DataVT.isScalableVector())
7831       report_fatal_error(
7832           "Cannot currently handle compressed memory with scalable vectors");
7833     // Incrementing the pointer according to number of '1's in the mask.
7834     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7835     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7836     if (MaskIntVT.getSizeInBits() < 32) {
7837       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7838       MaskIntVT = MVT::i32;
7839     }
7840 
7841     // Count '1's with POPCNT.
7842     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7843     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7844     // Scale is an element size in bytes.
7845     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7846                                     AddrVT);
7847     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7848   } else if (DataVT.isScalableVector()) {
7849     Increment = DAG.getVScale(DL, AddrVT,
7850                               APInt(AddrVT.getFixedSizeInBits(),
7851                                     DataVT.getStoreSize().getKnownMinSize()));
7852   } else
7853     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7854 
7855   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7856 }
7857 
7858 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7859                                        EVT VecVT, const SDLoc &dl,
7860                                        ElementCount SubEC) {
7861   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7862          "Cannot index a scalable vector within a fixed-width vector");
7863 
7864   unsigned NElts = VecVT.getVectorMinNumElements();
7865   unsigned NumSubElts = SubEC.getKnownMinValue();
7866   EVT IdxVT = Idx.getValueType();
7867 
7868   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7869     // If this is a constant index and we know the value plus the number of the
7870     // elements in the subvector minus one is less than the minimum number of
7871     // elements then it's safe to return Idx.
7872     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7873       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7874         return Idx;
7875     SDValue VS =
7876         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7877     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7878     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7879                               DAG.getConstant(NumSubElts, dl, IdxVT));
7880     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7881   }
7882   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7883     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7884     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7885                        DAG.getConstant(Imm, dl, IdxVT));
7886   }
7887   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7888   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7889                      DAG.getConstant(MaxIndex, dl, IdxVT));
7890 }
7891 
7892 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7893                                                 SDValue VecPtr, EVT VecVT,
7894                                                 SDValue Index) const {
7895   return getVectorSubVecPointer(
7896       DAG, VecPtr, VecVT,
7897       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7898       Index);
7899 }
7900 
7901 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7902                                                SDValue VecPtr, EVT VecVT,
7903                                                EVT SubVecVT,
7904                                                SDValue Index) const {
7905   SDLoc dl(Index);
7906   // Make sure the index type is big enough to compute in.
7907   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7908 
7909   EVT EltVT = VecVT.getVectorElementType();
7910 
7911   // Calculate the element offset and add it to the pointer.
7912   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7913   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7914          "Converting bits to bytes lost precision");
7915   assert(SubVecVT.getVectorElementType() == EltVT &&
7916          "Sub-vector must be a vector with matching element type");
7917   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7918                                   SubVecVT.getVectorElementCount());
7919 
7920   EVT IdxVT = Index.getValueType();
7921   if (SubVecVT.isScalableVector())
7922     Index =
7923         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7924                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7925 
7926   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7927                       DAG.getConstant(EltSize, dl, IdxVT));
7928   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7929 }
7930 
7931 //===----------------------------------------------------------------------===//
7932 // Implementation of Emulated TLS Model
7933 //===----------------------------------------------------------------------===//
7934 
7935 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7936                                                 SelectionDAG &DAG) const {
7937   // Access to address of TLS varialbe xyz is lowered to a function call:
7938   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7939   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7940   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7941   SDLoc dl(GA);
7942 
7943   ArgListTy Args;
7944   ArgListEntry Entry;
7945   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7946   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7947   StringRef EmuTlsVarName(NameString);
7948   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7949   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7950   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7951   Entry.Ty = VoidPtrType;
7952   Args.push_back(Entry);
7953 
7954   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7955 
7956   TargetLowering::CallLoweringInfo CLI(DAG);
7957   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7958   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7959   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7960 
7961   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7962   // At last for X86 targets, maybe good for other targets too?
7963   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7964   MFI.setAdjustsStack(true); // Is this only for X86 target?
7965   MFI.setHasCalls(true);
7966 
7967   assert((GA->getOffset() == 0) &&
7968          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7969   return CallResult.first;
7970 }
7971 
7972 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7973                                                 SelectionDAG &DAG) const {
7974   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7975   if (!isCtlzFast())
7976     return SDValue();
7977   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7978   SDLoc dl(Op);
7979   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7980     if (C->isZero() && CC == ISD::SETEQ) {
7981       EVT VT = Op.getOperand(0).getValueType();
7982       SDValue Zext = Op.getOperand(0);
7983       if (VT.bitsLT(MVT::i32)) {
7984         VT = MVT::i32;
7985         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7986       }
7987       unsigned Log2b = Log2_32(VT.getSizeInBits());
7988       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7989       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7990                                 DAG.getConstant(Log2b, dl, MVT::i32));
7991       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7992     }
7993   }
7994   return SDValue();
7995 }
7996 
7997 // Convert redundant addressing modes (e.g. scaling is redundant
7998 // when accessing bytes).
7999 ISD::MemIndexType
8000 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8001                                       SDValue Offsets) const {
8002   bool IsScaledIndex =
8003       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8004   bool IsSignedIndex =
8005       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8006 
8007   // Scaling is unimportant for bytes, canonicalize to unscaled.
8008   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8009     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8010 
8011   return IndexType;
8012 }
8013 
8014 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8015   SDValue Op0 = Node->getOperand(0);
8016   SDValue Op1 = Node->getOperand(1);
8017   EVT VT = Op0.getValueType();
8018   unsigned Opcode = Node->getOpcode();
8019   SDLoc DL(Node);
8020 
8021   // umin(x,y) -> sub(x,usubsat(x,y))
8022   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8023       isOperationLegal(ISD::USUBSAT, VT)) {
8024     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8025                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8026   }
8027 
8028   // umax(x,y) -> add(x,usubsat(y,x))
8029   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8030       isOperationLegal(ISD::USUBSAT, VT)) {
8031     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8032                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8033   }
8034 
8035   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8036   ISD::CondCode CC;
8037   switch (Opcode) {
8038   default: llvm_unreachable("How did we get here?");
8039   case ISD::SMAX: CC = ISD::SETGT; break;
8040   case ISD::SMIN: CC = ISD::SETLT; break;
8041   case ISD::UMAX: CC = ISD::SETUGT; break;
8042   case ISD::UMIN: CC = ISD::SETULT; break;
8043   }
8044 
8045   // FIXME: Should really try to split the vector in case it's legal on a
8046   // subvector.
8047   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8048     return DAG.UnrollVectorOp(Node);
8049 
8050   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
8051   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8052 }
8053 
8054 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8055   unsigned Opcode = Node->getOpcode();
8056   SDValue LHS = Node->getOperand(0);
8057   SDValue RHS = Node->getOperand(1);
8058   EVT VT = LHS.getValueType();
8059   SDLoc dl(Node);
8060 
8061   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8062   assert(VT.isInteger() && "Expected operands to be integers");
8063 
8064   // usub.sat(a, b) -> umax(a, b) - b
8065   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8066     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8067     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8068   }
8069 
8070   // uadd.sat(a, b) -> umin(a, ~b) + b
8071   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8072     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8073     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8074     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8075   }
8076 
8077   unsigned OverflowOp;
8078   switch (Opcode) {
8079   case ISD::SADDSAT:
8080     OverflowOp = ISD::SADDO;
8081     break;
8082   case ISD::UADDSAT:
8083     OverflowOp = ISD::UADDO;
8084     break;
8085   case ISD::SSUBSAT:
8086     OverflowOp = ISD::SSUBO;
8087     break;
8088   case ISD::USUBSAT:
8089     OverflowOp = ISD::USUBO;
8090     break;
8091   default:
8092     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8093                      "addition or subtraction node.");
8094   }
8095 
8096   // FIXME: Should really try to split the vector in case it's legal on a
8097   // subvector.
8098   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8099     return DAG.UnrollVectorOp(Node);
8100 
8101   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8102   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8103   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8104   SDValue SumDiff = Result.getValue(0);
8105   SDValue Overflow = Result.getValue(1);
8106   SDValue Zero = DAG.getConstant(0, dl, VT);
8107   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8108 
8109   if (Opcode == ISD::UADDSAT) {
8110     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8111       // (LHS + RHS) | OverflowMask
8112       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8113       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8114     }
8115     // Overflow ? 0xffff.... : (LHS + RHS)
8116     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8117   }
8118 
8119   if (Opcode == ISD::USUBSAT) {
8120     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8121       // (LHS - RHS) & ~OverflowMask
8122       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8123       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8124       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8125     }
8126     // Overflow ? 0 : (LHS - RHS)
8127     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8128   }
8129 
8130   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8131   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8132   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8133   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8134                               DAG.getConstant(BitWidth - 1, dl, VT));
8135   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8136   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8137 }
8138 
8139 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8140   unsigned Opcode = Node->getOpcode();
8141   bool IsSigned = Opcode == ISD::SSHLSAT;
8142   SDValue LHS = Node->getOperand(0);
8143   SDValue RHS = Node->getOperand(1);
8144   EVT VT = LHS.getValueType();
8145   SDLoc dl(Node);
8146 
8147   assert((Node->getOpcode() == ISD::SSHLSAT ||
8148           Node->getOpcode() == ISD::USHLSAT) &&
8149           "Expected a SHLSAT opcode");
8150   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8151   assert(VT.isInteger() && "Expected operands to be integers");
8152 
8153   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8154 
8155   unsigned BW = VT.getScalarSizeInBits();
8156   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8157   SDValue Orig =
8158       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8159 
8160   SDValue SatVal;
8161   if (IsSigned) {
8162     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8163     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8164     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8165                              SatMin, SatMax, ISD::SETLT);
8166   } else {
8167     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8168   }
8169   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8170 
8171   return Result;
8172 }
8173 
8174 SDValue
8175 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8176   assert((Node->getOpcode() == ISD::SMULFIX ||
8177           Node->getOpcode() == ISD::UMULFIX ||
8178           Node->getOpcode() == ISD::SMULFIXSAT ||
8179           Node->getOpcode() == ISD::UMULFIXSAT) &&
8180          "Expected a fixed point multiplication opcode");
8181 
8182   SDLoc dl(Node);
8183   SDValue LHS = Node->getOperand(0);
8184   SDValue RHS = Node->getOperand(1);
8185   EVT VT = LHS.getValueType();
8186   unsigned Scale = Node->getConstantOperandVal(2);
8187   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8188                      Node->getOpcode() == ISD::UMULFIXSAT);
8189   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8190                  Node->getOpcode() == ISD::SMULFIXSAT);
8191   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8192   unsigned VTSize = VT.getScalarSizeInBits();
8193 
8194   if (!Scale) {
8195     // [us]mul.fix(a, b, 0) -> mul(a, b)
8196     if (!Saturating) {
8197       if (isOperationLegalOrCustom(ISD::MUL, VT))
8198         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8199     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8200       SDValue Result =
8201           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8202       SDValue Product = Result.getValue(0);
8203       SDValue Overflow = Result.getValue(1);
8204       SDValue Zero = DAG.getConstant(0, dl, VT);
8205 
8206       APInt MinVal = APInt::getSignedMinValue(VTSize);
8207       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8208       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8209       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8210       // Xor the inputs, if resulting sign bit is 0 the product will be
8211       // positive, else negative.
8212       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8213       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8214       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8215       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8216     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8217       SDValue Result =
8218           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8219       SDValue Product = Result.getValue(0);
8220       SDValue Overflow = Result.getValue(1);
8221 
8222       APInt MaxVal = APInt::getMaxValue(VTSize);
8223       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8224       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8225     }
8226   }
8227 
8228   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8229          "Expected scale to be less than the number of bits if signed or at "
8230          "most the number of bits if unsigned.");
8231   assert(LHS.getValueType() == RHS.getValueType() &&
8232          "Expected both operands to be the same type");
8233 
8234   // Get the upper and lower bits of the result.
8235   SDValue Lo, Hi;
8236   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8237   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8238   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8239     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8240     Lo = Result.getValue(0);
8241     Hi = Result.getValue(1);
8242   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8243     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8244     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8245   } else if (VT.isVector()) {
8246     return SDValue();
8247   } else {
8248     report_fatal_error("Unable to expand fixed point multiplication.");
8249   }
8250 
8251   if (Scale == VTSize)
8252     // Result is just the top half since we'd be shifting by the width of the
8253     // operand. Overflow impossible so this works for both UMULFIX and
8254     // UMULFIXSAT.
8255     return Hi;
8256 
8257   // The result will need to be shifted right by the scale since both operands
8258   // are scaled. The result is given to us in 2 halves, so we only want part of
8259   // both in the result.
8260   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8261   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8262                                DAG.getConstant(Scale, dl, ShiftTy));
8263   if (!Saturating)
8264     return Result;
8265 
8266   if (!Signed) {
8267     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8268     // widened multiplication) aren't all zeroes.
8269 
8270     // Saturate to max if ((Hi >> Scale) != 0),
8271     // which is the same as if (Hi > ((1 << Scale) - 1))
8272     APInt MaxVal = APInt::getMaxValue(VTSize);
8273     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8274                                       dl, VT);
8275     Result = DAG.getSelectCC(dl, Hi, LowMask,
8276                              DAG.getConstant(MaxVal, dl, VT), Result,
8277                              ISD::SETUGT);
8278 
8279     return Result;
8280   }
8281 
8282   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8283   // widened multiplication) aren't all ones or all zeroes.
8284 
8285   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8286   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8287 
8288   if (Scale == 0) {
8289     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8290                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8291     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8292     // Saturated to SatMin if wide product is negative, and SatMax if wide
8293     // product is positive ...
8294     SDValue Zero = DAG.getConstant(0, dl, VT);
8295     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8296                                                ISD::SETLT);
8297     // ... but only if we overflowed.
8298     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8299   }
8300 
8301   //  We handled Scale==0 above so all the bits to examine is in Hi.
8302 
8303   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8304   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8305   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8306                                     dl, VT);
8307   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8308   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8309   // which is the same as if (HI < (-1 << (Scale - 1))
8310   SDValue HighMask =
8311       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8312                       dl, VT);
8313   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8314   return Result;
8315 }
8316 
8317 SDValue
8318 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8319                                     SDValue LHS, SDValue RHS,
8320                                     unsigned Scale, SelectionDAG &DAG) const {
8321   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8322           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8323          "Expected a fixed point division opcode");
8324 
8325   EVT VT = LHS.getValueType();
8326   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8327   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8328   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8329 
8330   // If there is enough room in the type to upscale the LHS or downscale the
8331   // RHS before the division, we can perform it in this type without having to
8332   // resize. For signed operations, the LHS headroom is the number of
8333   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8334   // The headroom for the RHS is the number of trailing zeroes.
8335   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8336                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8337   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8338 
8339   // For signed saturating operations, we need to be able to detect true integer
8340   // division overflow; that is, when you have MIN / -EPS. However, this
8341   // is undefined behavior and if we emit divisions that could take such
8342   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8343   // example).
8344   // Avoid this by requiring an extra bit so that we never get this case.
8345   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8346   // signed saturating division, we need to emit a whopping 32-bit division.
8347   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8348     return SDValue();
8349 
8350   unsigned LHSShift = std::min(LHSLead, Scale);
8351   unsigned RHSShift = Scale - LHSShift;
8352 
8353   // At this point, we know that if we shift the LHS up by LHSShift and the
8354   // RHS down by RHSShift, we can emit a regular division with a final scaling
8355   // factor of Scale.
8356 
8357   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8358   if (LHSShift)
8359     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8360                       DAG.getConstant(LHSShift, dl, ShiftTy));
8361   if (RHSShift)
8362     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8363                       DAG.getConstant(RHSShift, dl, ShiftTy));
8364 
8365   SDValue Quot;
8366   if (Signed) {
8367     // For signed operations, if the resulting quotient is negative and the
8368     // remainder is nonzero, subtract 1 from the quotient to round towards
8369     // negative infinity.
8370     SDValue Rem;
8371     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8372     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8373     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8374     if (isTypeLegal(VT) &&
8375         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8376       Quot = DAG.getNode(ISD::SDIVREM, dl,
8377                          DAG.getVTList(VT, VT),
8378                          LHS, RHS);
8379       Rem = Quot.getValue(1);
8380       Quot = Quot.getValue(0);
8381     } else {
8382       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8383                          LHS, RHS);
8384       Rem = DAG.getNode(ISD::SREM, dl, VT,
8385                         LHS, RHS);
8386     }
8387     SDValue Zero = DAG.getConstant(0, dl, VT);
8388     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8389     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8390     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8391     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8392     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8393                                DAG.getConstant(1, dl, VT));
8394     Quot = DAG.getSelect(dl, VT,
8395                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8396                          Sub1, Quot);
8397   } else
8398     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8399                        LHS, RHS);
8400 
8401   return Quot;
8402 }
8403 
8404 void TargetLowering::expandUADDSUBO(
8405     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8406   SDLoc dl(Node);
8407   SDValue LHS = Node->getOperand(0);
8408   SDValue RHS = Node->getOperand(1);
8409   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8410 
8411   // If ADD/SUBCARRY is legal, use that instead.
8412   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8413   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8414     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8415     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8416                                     { LHS, RHS, CarryIn });
8417     Result = SDValue(NodeCarry.getNode(), 0);
8418     Overflow = SDValue(NodeCarry.getNode(), 1);
8419     return;
8420   }
8421 
8422   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8423                             LHS.getValueType(), LHS, RHS);
8424 
8425   EVT ResultType = Node->getValueType(1);
8426   EVT SetCCType = getSetCCResultType(
8427       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8428   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8429   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8430   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8431 }
8432 
8433 void TargetLowering::expandSADDSUBO(
8434     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8435   SDLoc dl(Node);
8436   SDValue LHS = Node->getOperand(0);
8437   SDValue RHS = Node->getOperand(1);
8438   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8439 
8440   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8441                             LHS.getValueType(), LHS, RHS);
8442 
8443   EVT ResultType = Node->getValueType(1);
8444   EVT OType = getSetCCResultType(
8445       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8446 
8447   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8448   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8449   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8450     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8451     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8452     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8453     return;
8454   }
8455 
8456   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8457 
8458   // For an addition, the result should be less than one of the operands (LHS)
8459   // if and only if the other operand (RHS) is negative, otherwise there will
8460   // be overflow.
8461   // For a subtraction, the result should be less than one of the operands
8462   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8463   // otherwise there will be overflow.
8464   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8465   SDValue ConditionRHS =
8466       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8467 
8468   Overflow = DAG.getBoolExtOrTrunc(
8469       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8470       ResultType, ResultType);
8471 }
8472 
8473 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8474                                 SDValue &Overflow, SelectionDAG &DAG) const {
8475   SDLoc dl(Node);
8476   EVT VT = Node->getValueType(0);
8477   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8478   SDValue LHS = Node->getOperand(0);
8479   SDValue RHS = Node->getOperand(1);
8480   bool isSigned = Node->getOpcode() == ISD::SMULO;
8481 
8482   // For power-of-two multiplications we can use a simpler shift expansion.
8483   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8484     const APInt &C = RHSC->getAPIntValue();
8485     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8486     if (C.isPowerOf2()) {
8487       // smulo(x, signed_min) is same as umulo(x, signed_min).
8488       bool UseArithShift = isSigned && !C.isMinSignedValue();
8489       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8490       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8491       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8492       Overflow = DAG.getSetCC(dl, SetCCVT,
8493           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8494                       dl, VT, Result, ShiftAmt),
8495           LHS, ISD::SETNE);
8496       return true;
8497     }
8498   }
8499 
8500   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8501   if (VT.isVector())
8502     WideVT =
8503         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8504 
8505   SDValue BottomHalf;
8506   SDValue TopHalf;
8507   static const unsigned Ops[2][3] =
8508       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8509         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8510   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8511     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8512     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8513   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8514     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8515                              RHS);
8516     TopHalf = BottomHalf.getValue(1);
8517   } else if (isTypeLegal(WideVT)) {
8518     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8519     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8520     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8521     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8522     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8523         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8524     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8525                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8526   } else {
8527     if (VT.isVector())
8528       return false;
8529 
8530     // We can fall back to a libcall with an illegal type for the MUL if we
8531     // have a libcall big enough.
8532     // Also, we can fall back to a division in some cases, but that's a big
8533     // performance hit in the general case.
8534     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8535     if (WideVT == MVT::i16)
8536       LC = RTLIB::MUL_I16;
8537     else if (WideVT == MVT::i32)
8538       LC = RTLIB::MUL_I32;
8539     else if (WideVT == MVT::i64)
8540       LC = RTLIB::MUL_I64;
8541     else if (WideVT == MVT::i128)
8542       LC = RTLIB::MUL_I128;
8543     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8544 
8545     SDValue HiLHS;
8546     SDValue HiRHS;
8547     if (isSigned) {
8548       // The high part is obtained by SRA'ing all but one of the bits of low
8549       // part.
8550       unsigned LoSize = VT.getFixedSizeInBits();
8551       HiLHS =
8552           DAG.getNode(ISD::SRA, dl, VT, LHS,
8553                       DAG.getConstant(LoSize - 1, dl,
8554                                       getPointerTy(DAG.getDataLayout())));
8555       HiRHS =
8556           DAG.getNode(ISD::SRA, dl, VT, RHS,
8557                       DAG.getConstant(LoSize - 1, dl,
8558                                       getPointerTy(DAG.getDataLayout())));
8559     } else {
8560         HiLHS = DAG.getConstant(0, dl, VT);
8561         HiRHS = DAG.getConstant(0, dl, VT);
8562     }
8563 
8564     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8565     // pre-lowered to the correct types. This all depends upon WideVT not
8566     // being a legal type for the architecture and thus has to be split to
8567     // two arguments.
8568     SDValue Ret;
8569     TargetLowering::MakeLibCallOptions CallOptions;
8570     CallOptions.setSExt(isSigned);
8571     CallOptions.setIsPostTypeLegalization(true);
8572     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8573       // Halves of WideVT are packed into registers in different order
8574       // depending on platform endianness. This is usually handled by
8575       // the C calling convention, but we can't defer to it in
8576       // the legalizer.
8577       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8578       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8579     } else {
8580       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8581       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8582     }
8583     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8584            "Ret value is a collection of constituent nodes holding result.");
8585     if (DAG.getDataLayout().isLittleEndian()) {
8586       // Same as above.
8587       BottomHalf = Ret.getOperand(0);
8588       TopHalf = Ret.getOperand(1);
8589     } else {
8590       BottomHalf = Ret.getOperand(1);
8591       TopHalf = Ret.getOperand(0);
8592     }
8593   }
8594 
8595   Result = BottomHalf;
8596   if (isSigned) {
8597     SDValue ShiftAmt = DAG.getConstant(
8598         VT.getScalarSizeInBits() - 1, dl,
8599         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8600     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8601     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8602   } else {
8603     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8604                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8605   }
8606 
8607   // Truncate the result if SetCC returns a larger type than needed.
8608   EVT RType = Node->getValueType(1);
8609   if (RType.bitsLT(Overflow.getValueType()))
8610     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8611 
8612   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8613          "Unexpected result type for S/UMULO legalization");
8614   return true;
8615 }
8616 
8617 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8618   SDLoc dl(Node);
8619   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8620   SDValue Op = Node->getOperand(0);
8621   EVT VT = Op.getValueType();
8622 
8623   if (VT.isScalableVector())
8624     report_fatal_error(
8625         "Expanding reductions for scalable vectors is undefined.");
8626 
8627   // Try to use a shuffle reduction for power of two vectors.
8628   if (VT.isPow2VectorType()) {
8629     while (VT.getVectorNumElements() > 1) {
8630       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8631       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8632         break;
8633 
8634       SDValue Lo, Hi;
8635       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8636       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8637       VT = HalfVT;
8638     }
8639   }
8640 
8641   EVT EltVT = VT.getVectorElementType();
8642   unsigned NumElts = VT.getVectorNumElements();
8643 
8644   SmallVector<SDValue, 8> Ops;
8645   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8646 
8647   SDValue Res = Ops[0];
8648   for (unsigned i = 1; i < NumElts; i++)
8649     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8650 
8651   // Result type may be wider than element type.
8652   if (EltVT != Node->getValueType(0))
8653     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8654   return Res;
8655 }
8656 
8657 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8658   SDLoc dl(Node);
8659   SDValue AccOp = Node->getOperand(0);
8660   SDValue VecOp = Node->getOperand(1);
8661   SDNodeFlags Flags = Node->getFlags();
8662 
8663   EVT VT = VecOp.getValueType();
8664   EVT EltVT = VT.getVectorElementType();
8665 
8666   if (VT.isScalableVector())
8667     report_fatal_error(
8668         "Expanding reductions for scalable vectors is undefined.");
8669 
8670   unsigned NumElts = VT.getVectorNumElements();
8671 
8672   SmallVector<SDValue, 8> Ops;
8673   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8674 
8675   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8676 
8677   SDValue Res = AccOp;
8678   for (unsigned i = 0; i < NumElts; i++)
8679     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8680 
8681   return Res;
8682 }
8683 
8684 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8685                                SelectionDAG &DAG) const {
8686   EVT VT = Node->getValueType(0);
8687   SDLoc dl(Node);
8688   bool isSigned = Node->getOpcode() == ISD::SREM;
8689   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8690   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8691   SDValue Dividend = Node->getOperand(0);
8692   SDValue Divisor = Node->getOperand(1);
8693   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8694     SDVTList VTs = DAG.getVTList(VT, VT);
8695     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8696     return true;
8697   }
8698   if (isOperationLegalOrCustom(DivOpc, VT)) {
8699     // X % Y -> X-X/Y*Y
8700     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8701     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8702     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8703     return true;
8704   }
8705   return false;
8706 }
8707 
8708 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8709                                             SelectionDAG &DAG) const {
8710   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8711   SDLoc dl(SDValue(Node, 0));
8712   SDValue Src = Node->getOperand(0);
8713 
8714   // DstVT is the result type, while SatVT is the size to which we saturate
8715   EVT SrcVT = Src.getValueType();
8716   EVT DstVT = Node->getValueType(0);
8717 
8718   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8719   unsigned SatWidth = SatVT.getScalarSizeInBits();
8720   unsigned DstWidth = DstVT.getScalarSizeInBits();
8721   assert(SatWidth <= DstWidth &&
8722          "Expected saturation width smaller than result width");
8723 
8724   // Determine minimum and maximum integer values and their corresponding
8725   // floating-point values.
8726   APInt MinInt, MaxInt;
8727   if (IsSigned) {
8728     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8729     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8730   } else {
8731     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8732     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8733   }
8734 
8735   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8736   // libcall emission cannot handle this. Large result types will fail.
8737   if (SrcVT == MVT::f16) {
8738     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8739     SrcVT = Src.getValueType();
8740   }
8741 
8742   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8743   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8744 
8745   APFloat::opStatus MinStatus =
8746       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8747   APFloat::opStatus MaxStatus =
8748       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8749   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8750                              !(MaxStatus & APFloat::opStatus::opInexact);
8751 
8752   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8753   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8754 
8755   // If the integer bounds are exactly representable as floats and min/max are
8756   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8757   // of comparisons and selects.
8758   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8759                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8760   if (AreExactFloatBounds && MinMaxLegal) {
8761     SDValue Clamped = Src;
8762 
8763     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8764     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8765     // Clamp by MaxFloat from above. NaN cannot occur.
8766     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8767     // Convert clamped value to integer.
8768     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8769                                   dl, DstVT, Clamped);
8770 
8771     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8772     // which will cast to zero.
8773     if (!IsSigned)
8774       return FpToInt;
8775 
8776     // Otherwise, select 0 if Src is NaN.
8777     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8778     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8779                            ISD::CondCode::SETUO);
8780   }
8781 
8782   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8783   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8784 
8785   // Result of direct conversion. The assumption here is that the operation is
8786   // non-trapping and it's fine to apply it to an out-of-range value if we
8787   // select it away later.
8788   SDValue FpToInt =
8789       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8790 
8791   SDValue Select = FpToInt;
8792 
8793   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8794   // MinInt if Src is NaN.
8795   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8796                            ISD::CondCode::SETULT);
8797   // If Src OGT MaxFloat, select MaxInt.
8798   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8799                            ISD::CondCode::SETOGT);
8800 
8801   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8802   // is already zero.
8803   if (!IsSigned)
8804     return Select;
8805 
8806   // Otherwise, select 0 if Src is NaN.
8807   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8808   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8809 }
8810 
8811 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8812                                            SelectionDAG &DAG) const {
8813   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8814   assert(Node->getValueType(0).isScalableVector() &&
8815          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8816 
8817   EVT VT = Node->getValueType(0);
8818   SDValue V1 = Node->getOperand(0);
8819   SDValue V2 = Node->getOperand(1);
8820   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8821   SDLoc DL(Node);
8822 
8823   // Expand through memory thusly:
8824   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8825   //  Store V1, Ptr
8826   //  Store V2, Ptr + sizeof(V1)
8827   //  If (Imm < 0)
8828   //    TrailingElts = -Imm
8829   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8830   //  else
8831   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8832   //  Res = Load Ptr
8833 
8834   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8835 
8836   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8837                                VT.getVectorElementCount() * 2);
8838   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8839   EVT PtrVT = StackPtr.getValueType();
8840   auto &MF = DAG.getMachineFunction();
8841   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8842   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8843 
8844   // Store the lo part of CONCAT_VECTORS(V1, V2)
8845   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8846   // Store the hi part of CONCAT_VECTORS(V1, V2)
8847   SDValue OffsetToV2 = DAG.getVScale(
8848       DL, PtrVT,
8849       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8850   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8851   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8852 
8853   if (Imm >= 0) {
8854     // Load back the required element. getVectorElementPointer takes care of
8855     // clamping the index if it's out-of-bounds.
8856     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8857     // Load the spliced result
8858     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8859                        MachinePointerInfo::getUnknownStack(MF));
8860   }
8861 
8862   uint64_t TrailingElts = -Imm;
8863 
8864   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8865   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8866   SDValue TrailingBytes =
8867       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8868 
8869   if (TrailingElts > VT.getVectorMinNumElements()) {
8870     SDValue VLBytes = DAG.getVScale(
8871         DL, PtrVT,
8872         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8873     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8874   }
8875 
8876   // Calculate the start address of the spliced result.
8877   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8878 
8879   // Load the spliced result
8880   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8881                      MachinePointerInfo::getUnknownStack(MF));
8882 }
8883 
8884 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8885                                            SDValue &LHS, SDValue &RHS,
8886                                            SDValue &CC, bool &NeedInvert,
8887                                            const SDLoc &dl, SDValue &Chain,
8888                                            bool IsSignaling) const {
8889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8890   MVT OpVT = LHS.getSimpleValueType();
8891   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8892   NeedInvert = false;
8893   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8894   default:
8895     llvm_unreachable("Unknown condition code action!");
8896   case TargetLowering::Legal:
8897     // Nothing to do.
8898     break;
8899   case TargetLowering::Expand: {
8900     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8901     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8902       std::swap(LHS, RHS);
8903       CC = DAG.getCondCode(InvCC);
8904       return true;
8905     }
8906     // Swapping operands didn't work. Try inverting the condition.
8907     bool NeedSwap = false;
8908     InvCC = getSetCCInverse(CCCode, OpVT);
8909     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8910       // If inverting the condition is not enough, try swapping operands
8911       // on top of it.
8912       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8913       NeedSwap = true;
8914     }
8915     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8916       CC = DAG.getCondCode(InvCC);
8917       NeedInvert = true;
8918       if (NeedSwap)
8919         std::swap(LHS, RHS);
8920       return true;
8921     }
8922 
8923     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8924     unsigned Opc = 0;
8925     switch (CCCode) {
8926     default:
8927       llvm_unreachable("Don't know how to expand this condition!");
8928     case ISD::SETUO:
8929       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8930         CC1 = ISD::SETUNE;
8931         CC2 = ISD::SETUNE;
8932         Opc = ISD::OR;
8933         break;
8934       }
8935       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8936              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8937       NeedInvert = true;
8938       LLVM_FALLTHROUGH;
8939     case ISD::SETO:
8940       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8941              "If SETO is expanded, SETOEQ must be legal!");
8942       CC1 = ISD::SETOEQ;
8943       CC2 = ISD::SETOEQ;
8944       Opc = ISD::AND;
8945       break;
8946     case ISD::SETONE:
8947     case ISD::SETUEQ:
8948       // If the SETUO or SETO CC isn't legal, we might be able to use
8949       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8950       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8951       // the operands.
8952       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8953       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8954           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8955            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8956         CC1 = ISD::SETOGT;
8957         CC2 = ISD::SETOLT;
8958         Opc = ISD::OR;
8959         NeedInvert = ((unsigned)CCCode & 0x8U);
8960         break;
8961       }
8962       LLVM_FALLTHROUGH;
8963     case ISD::SETOEQ:
8964     case ISD::SETOGT:
8965     case ISD::SETOGE:
8966     case ISD::SETOLT:
8967     case ISD::SETOLE:
8968     case ISD::SETUNE:
8969     case ISD::SETUGT:
8970     case ISD::SETUGE:
8971     case ISD::SETULT:
8972     case ISD::SETULE:
8973       // If we are floating point, assign and break, otherwise fall through.
8974       if (!OpVT.isInteger()) {
8975         // We can use the 4th bit to tell if we are the unordered
8976         // or ordered version of the opcode.
8977         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8978         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8979         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8980         break;
8981       }
8982       // Fallthrough if we are unsigned integer.
8983       LLVM_FALLTHROUGH;
8984     case ISD::SETLE:
8985     case ISD::SETGT:
8986     case ISD::SETGE:
8987     case ISD::SETLT:
8988     case ISD::SETNE:
8989     case ISD::SETEQ:
8990       // If all combinations of inverting the condition and swapping operands
8991       // didn't work then we have no means to expand the condition.
8992       llvm_unreachable("Don't know how to expand this condition!");
8993     }
8994 
8995     SDValue SetCC1, SetCC2;
8996     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8997       // If we aren't the ordered or unorder operation,
8998       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8999       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9000       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9001     } else {
9002       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9003       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9004       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9005     }
9006     if (Chain)
9007       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9008                           SetCC2.getValue(1));
9009     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9010     RHS = SDValue();
9011     CC = SDValue();
9012     return true;
9013   }
9014   }
9015   return false;
9016 }
9017